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Abstract

The Synchronous Reactive (SR) domain in PtolemyII models systemsas components
with both infinite processing resources and infinite communication bandwidth.
Computation within components and data transfer between components are
considered to happen instantaneously. Therefore, a given system is simulated as if all
of its components execute and produce outputs at the same time. This raises
interesting issues, particularly in systems withfeedback. To guarantee a deterministic
model of computation, outputs are permitted to have undefined value, and certain
constraints are imposed on component behavior. Specialized components, such as
finite state machines, may execute even when some inputs are undefined, producing
only those outputs that can be determined from the defined inputs. This report
outlines the semantics of the SR model of computation and describes its
implementationas a domain in Ptolemy II.
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1. Introduction

l.I Ptolemy 11
The University of California at Berkeley Ptolemy project studies heterogeneous
modeling, simulation, and design of concurrent systems. Ptolemy II [6], which is
actively under development, is an environment for modeling heterogeneous, hierarchical
systems. Computation in Ptolemy II is component-based, which makes it highly effective
at simulating complex systems comprised of many different types of components. For
example, in a single model, one component may perform signal processing, another may
be responsible for feedback control, and another may produce three-dimensional graphics
to represent the current state of the model.

Components called actors interact with one another by exchanging tokens of data via
ports. During an execution of an actor (known as a firing), the actor may consume tokens
from input ports, produce tokens on output ports, create visual output on the screen,
access a file, or even produce audio output. Many actors have customizable parameters^
making them quickly configurable for easy reusability.

Vergil is a front-end graphical user interface that allows users to create block diagrams
that represent Ptolemy models. Users can drag and drop components, connect
components, edit component parameters, and execute models. The visual syntax of
Vergil is very appealing because model creation feels more like drawing than
programming. It also offers an easy-to-read representation of component connections.
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Figure 1. A screenshot from Vergil.
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1.2 Models of Computation
A model ofcomputation [13] is a formal set of semantics that specifies the behavior and
method of communication of components. A model of computation must specify a
scheme for calculating a schedule (ordering) of component firings. It must define the
manner in which time progresses (if there is a notion of time). It also must indicate how
component communication occurs. Edward A. Lee, the director of the Ptolemy project,
gives some guidelines [11] for choosing ah appropriate model of computation for a
specific purpose.

In Ptolemy II, a model of computation is realized as a domain. Domains currently
implemented or under development in Ptolemy II are:

CSP Communicating Sequential Processes
CT Continuous Time

DDE Distributed Discrete Event

DE Discrete Event

DT Discrete Time

FSM Finite State Machines

Giotto Time Triggered
OR Graphics
HDF Heterochronous Dataflow

PEG Port-Based Objects
PDF Parameterized Dataflow

PN Process Networks

RTOS Real-Time Operating Systems
RTP Real-Time Processes

SDF Synchronous Dataflow
SR Synchronous Reactive

The domain in which components are executed determines many aspects of their
behavior and interaction. This is the key that allows Ptolemy II to separate an abstract
syntax firom the semantics of a particular domain. Actors call methods of ports to send
and receive data, but the domain specifies the behavior of these methods. Thus it is
possible to write actors that will work in multiple domains, since an actor need not be
aware of the mechanism for data transfer.

Some actors in Ptolemy II are domain specific. That is, upon firing, the actor makes
certain assumptions about the domain, making the actor invalid in any domain that does
not satisfy the assumptions. However, a careful effort is made to write domain
polymorphic actors that will work in as many domains as possible, promoting reusability.

Likewise, some actors in Ptolemy II are data specific. They operate only on certain types
of tokens. Other actors are data polymorphic, and can operate on any of a number of
types of tokens. These actors may behave differently depending on the type of input data
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received. For example, an actor may add inputs that are numbers and concatenate inputs
that are strings.

1.3 Hierarchical Heterogeneity
Often, the best way to describe a real-world system is by combining several different
models of computation. A composite actor is an actor that can contain other actors.
Composite actors are domain polymorphic since they can execute under many top-level
domains. Since the actors in a composite actor can execute under a different set of
semantics, different parts of a model can operateunder different models of computation.
Composite actors can also be arbitrarily nested. A composite actorcan conveniently be
considered a black box, so a user can analyze its behavior without necessarily
understanding the details ofthe model inside.

The abilityofPtolemyII to integrate different modelsof computation into one simulation
makes it heterogeneous. The ability of a Ptolemy II component to containa sub-model
makes it hierarchical. This hierarchical heterogeneity requires determining how different
models ofcomputation can interact, and it is a key focus of Ptolemy projectresearch.

1.4 Motivation for SR

Benveniste and Berry [2] define a Synchronous Reactive system as one in which both
computation within a component and communication between components happen
instantaneously. In models with cycles, this introduces interesting issues involving
instantaneous feedback. This also presents the possibility of instantaneous dialog, in
which a component could query another component, receive a response, perform some
computation, and produce an output, all with zero time delay.

The Synchronous Reactive (SR) model of computation offers precise control over the
timing of events. Due to tight synchronization, SR is good at simulating systems with
concurrent control logic. This same synchronization makes modeling events such as
global resets or clock ticks a matter ofease.

In SR, some specialized actors can be executed multiple times in one instant, each time
moving closer to a global solution. This means that certain models that would not be
valid in other domains can produce meaningful results under SR semantics, which
suggests that SR is better than many other domains for modelingcertainsystems.
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2. Synchronous Reactive Semantics

2.1 Overview

A number of languages are based on the Synchronous Reactive model of computation.
These synchronous languages include Esterel [3], Signal [1], Lustre [10], and Argos [15].
Ptolemy Classic [5] included an SR domain by Stephen Edwards [7], on which this
Ptolemy II implementation is based.

Berry [4], the architect of Esterel, offers a synchrony hypothesis: assume that every
reaction within a system is instantaneous. In SR, both data transfer between components
and computation within components take no time. These events therefore must be
atomic, which eliminates many complications from the semantics. For example, one
need not determine an ordering of event beginnings or endings, since all events start and
finish in the same instant. Thus, all components are considered to be executing and
communicating simultaneously, and SR is a synchronous model of computation. An
action of a component is instantaneous with respect to the environment, and also with
respect to other components.

SR systems are reactive because they respond to inputs from the environment. Since the
components are reactive, and computation within components is infinitely fast, output
events are synchronized with input events. This makes SR different from many other
models of computation, where component execution causes a time delay between the
appearance of inputs and the production ofoutputs.

Using actions that occur instantaneously is a natural way to model reactive systems. In
the real world, we consider objects in motion to react to each other instantaneously. We
also regard our personal perception ofour surroundings to be instantaneous.

Since inputs trigger outputs with absolutely no time delay, the presence of a feedback
loop incites interesting issues.

4
Figure 2. A co-dependent system.
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In Figure 2, the output of component A is connected to the input of component B, and
vice versa. The semantics of SR state that the two components should fire at the same
time. Therefore, if actor A implements the function fA and actor B implements the
function fe, then simultaneously, fA(x) = y and feCy) = x. It is not immediately clear how
to execute such a system.

LogicalNot

Figures. An inconsistent system.

The system in Figure 3 connects a negated value to the value itself. It is imclear how
such a paradoxical system should behave.

LogicalNot LogicalNot2

Figure 4. A system with multiple solutions.

In Figure 4, a value is negated twice and connected to the value itself. Assuming that the
value is a boolean, two reasonable solutions for the value exist, and both are equally
valid. It is impossible to determine the results of the execution of this system.

All of these matters will ultimately be resolved by permitting the value ofa channel to be
unknown. This solution, however, does not come without a price: for some models,
certain values may never become known. Figures 3 and 4 are both such models.
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2.2 Actor output monotonicity constraint

absent value^ value2 value3 defined

undefined

Figure 5. Apointed complete partial order relating possible values inSR.

Figure 5 shows the relationship between possible values in SR. The undefined element,
which is represented by the symbol ±(pronounced "bottom"), is lower than every other
element inthe ordering. The relation, however, does not specify any means ofcomparing
any other two elements in the set. Thus, any two defined elements in the partial order are
incomparable.

The partial ordering is important because itcan be used to define valid value transitions.
To simulate an instant of an SR model, first the values on all channels mustbe set to the
undefined value. Components can then execute and produce outputs, with the restriction
that the new value must behigher than the old value inthe partial order. One value is not
permitted to change to another ifthe two are incomparable. Consequently, the only valid
transition is for ±, the undefined value, to become defined. This principle is the actor
output monotonicity constraint, and all actors must obey itwith each output they produce.

Each output can transition only once in an instant from unknown to some known value,
so a model with n outputs can undergo atmost n transitions inan instant. This seemingly
insignificant observation leads to an important property of the model of computation:
given a finite number ofcomponent ou^uts, an instant ofthe execution ofthe system can
be simulated with a finite number of transitions. Therefore, any finite number of
execution instants of the system canbe modeled in a finite amount of time.

Figure 6. A scalar-valuedCPO.

Figure 6 shows a complete partial ordering for a system with a single output. For
simplicity, assume that the only valid values are 0 and 1. In each instant, this system will
experience at most a single transition. The value will change from ±to 0 or from ±to 1.
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It is possible that no transition will occur in an instant, and the output will not change
from ±. Thus, the execution ofan instant could have three possible results.

Figure 7. A vector-valued CPO.

The complete partial ordering in Figure 7 is for a system with two outputs. Once again,
for the s^e ofsimplicity, assume that the only valid values are 0 and 1. This system will
undergo at most two transitions in a particular instant. Upward lines on the CPO
represent the valid transitions. Note that certain results can be obtained in more than one
manner; the order of a sequence of transitions does not affect the final state. If less than
two transitions occur, either or both of the values could remain undefined.

It should be evident that the depth of the CPO for a system is simply the number of
outputs. Since the CPO is finite, the maximumnumberof transitionsalso must be finite.
Since transitions can only occur in the upward direction, component outputs implement
monotonic functions. The step-size of each transition is fixed, so the system must
eventually reach one node of the CPO and remain there. Therefore, the system is
guaranteedto converge to a solution in finite time. The strategy for simulatingan instant
in SR is to execute components until the system reaches a stable state such that further
execution of components would not result in further transitions. This stable state is
known as a fixed-point. Executing one instant essentially amounts to finding a vector-
valued solution to an equation.

The terms known and defined are used almost interchangeably, as are unknown and
undefined. However, a subtle distinction exists. Typically, during the simulation of an
instant, a value is referred to as known or unknown. It is always possible for a value that
is unknown at a particular point in the simulation to become known by the end of the
execution of the instant. If, after the simulation of the instant is complete, a value
remains unknown, it is referred to as undefined.

Channels are not permitted to take multiple valueswithin an instant, even if these values
would approach a fixed-point. Such behavior would require metrics on data values to
determine whether the vdues were converging. However, the single-value specification
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does not require that data values be measurable. This allows SR to be used without
difficulty even when the best metrics on data are not clear.

2.3 Scheduling flexibility
In SR, all events happen simultaneously. Unfortunately, it is not possible to build a
computer that could executeall components of a system simultaneously in a deterministic
manner. Therefore, the problem of determining the order in which to fire components is
"solved" by not specifying any scheme. In fact, with certain restrictions (to be described
in a later section), components can be executed in any order and any number of times in a
given instant. Thus for any particular model, many possible valid schedules exist.
Schedulers for SR can handle disconnected graphs and cyclic graphs. Cyclic graphs
make instantaneous feedback and instantaneous dialog possible.

Figure 8. A number of components can be grouped in a block.

In addition to offering flexibility in scheduling, SR semantics also allow the application
of certain graph transformations without modifying the behavior of the system. For
example, SR is compositional. Any particular grouping of components can be
hierarchically combined intoan executable blockwithout affecting the result of executing
the entire system. SR is also decompositional. Blocks can be arbitrarily split and
separately executed.

In most models of computation, components cannot be combined or separated without
changing the semantics of the model. For example, such a transformation could create
artificial deadlock in the Synchronous Dataflow (SDF) domain [12]. This is because the
director for the SDF domain requires complete dataflow information to statically
schedule models before execution. In SDF, determining a schedule ahead of time
eliminates the processing overhead of dynamic scheduling. Edwards, in his thesis [7],
presents an algorithm that exploits the decompositional properties of SR to achieve
efficient predetermined scheduling of SR models.

Simulation ofSynchronous Reactive Systems in Ptolemy II



Communication between components is imbuffered. In a particular instant, a given
channel can have only one value, so there is no need for components to consume tokens
of data. Thus any number of inputs can be connected to a particular channel without
sacrificing determinacy. However, connecting multiple outputs to a single channel is not
permitted, since it could cause unpredictable behavior.

Const

TrigFunclion

Con8t2

Figure 9. A channel with two driving outputs.

Only a single output is allowed to be connected to any particular channel. Otherwise, a
race condition would occur, as shown in Figure 9. The value output to a particular
channel would depend on the order of execution of components,and the model would not
be deterministic.

Sequential component structure implies determinacy, but models with concurrently
cooperating components can also be deterministic. For example, any number of
components may send data to a component that displays inputs as a graph on the screen.
Provided that the order the information is received does not affect the result, the model is
deterministic.

The rate of convergence of an instant depends on the number of outputs in the model. In
a best-case scenario, the components are executed in such a manner that at least one
output becomes defined on each firing. Assume that the cost of firing each component is
the same. If exactly one output becomes defined on each firing, the result of an instant
will converge in a time linearly dependent upon the number ofoutputs.

In a worst-case scenario, one iterates through all of the components repeatedly, firing
them each time. Each pass through the list ofcomponents, a random order is determined.
In the very worst case, one fires all of the components that produce no output before,
finally, the last component fired produces an output. If there are m components and n
outputs, the n iterations throughthe list of m elements produce n*m component firings. If
we assume that every component has at least one output, then n>m, and there will be at
most firings to simulate the instant.
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covergence time vs number of outputs

2D 25 30 35

number of outputs

Figure 10. A comparison ofoutputs tosimulation convergence time.

Thus, if there are n outputs in a model, the time of convergence is between n and n .
Actual convergence rates can beexpected to fall above the (lower) red line but below the
(higher) blue line in Figure 10. This figure was actually created by an SR model, in
Ptolemy II.

It might be possible to generate extremely efficient schedules by using detailed
information regarding the behavior of components. However, it is assumed that
heterogeneity prevents detailed analysis oftheinternal functionality ofcomponents.

The scheduling flexibility of SR is quite convenient because the optimum scheduling
strategy might depend onthe application. For simulation, it is desirable to mimmize the
total computation time by minimizing the average time to execute an instant of the
model. However, for implementation, it is required that the computation for any given
instant completes in a certain period of time, and it is thus desirable to mmimize the
worst-case timeto execute an instant. Anyscheduling scheme that satisfies the semantics
of SR is valid.

2.4 Actor prefireQ monotonicity assumption
In Ptolemy II, an iteration of an actor consists of one call of theprefireQ method, some
number of calls of thefireQ method, and one call of thepostfireQ method. The prefireQ
method returns true if the actor desires to be fired, and false otherwise. For example, an
actor may return false in prefireQ if there are insufficient inputs to act upon. The
postfireQ method returns true if the actor desires to be further iterated, and false
otherwise. An actor may return false in postfireQ if it wishes to become inactive after a
certain number of firings.

Simulation ofSynchronous Reactive Systems in Ptolemy II 10



For an SR model to be deterministic, all actors must satisfy the preflreQ monotonicity
assumption: if the prefireQ method of an actor would return true if it were to be called at
some point during the simulation of an instant, the method must return true if it were to
be called at any later point during the simulation of an instant. In other words, the value
that would be returned by an actor's prefireQ method can only change from false to true
during the course of the execution of an instant. As established in section 2.2, the
quantity of known information in the model can only increase during the execution of an
instant. Therefore, this constraint is roughly equivalent to stating that an actor should
never decline to fire if it would consent to fire with fewer (or the same number of) known
inputs.

Figure 11. A model to illustrate the prefireQ monotonicity assumption.

The following example describes a situation in which an actor would violate SR
semantics by behaving contrary to the prefireQ monotonicity assumption. In Figure 11,
at the beginning of an instant, assume that the prefireQ methods of both actors (if called)
would return true, indicating willingness to fire. If actor A prefires and then fires, it may
produce an input for actor B. If actor B violated the prefireQ monotonicity assumption, it
could now retum false in prefireQ, and, consequently, would not fire. However, if actor
B prefires and fires first, fiien actor A will prefire and fire. In this case, unlike the first,
both actors would execute. Therefore, if any actor violates the assumption, the behavior
of the system would depend on the order of execution of components. Thus, to preserve
scheduling flexibility and determinacy, we disallow actors that behave in such a manner.
To explicitly verify that no actor violates this stipulation, it would be necessary to invoke
and test the result of the prefireQ method of all actors after any firing. Since this would
consume considerable processor resources, the monotonicity of the prefireQ method of
each actor is assumed.

2.5 Nonstrict actors

Certain components may be able to produce one or more outputs even if some of their
inputs are unknown. These components should be executed as nonstrict actors.
Nonstrict actors may be fired any number of times in the simulation of an instant.
Because values are not permitted to change once they are defined, a firing should not
produce any outputs that cannot be definitively determined from the given known inputs.
A component is not allowed to "change its mind" and output a different value later in the
simulation of the instant. Therefore nonstrict actors must distinguish between inputs that
are absent and inputs that are unknown.

Simulation ofSynchronous Reactive Systems in Ptolemy II 11



Most non-SR components are considered strict. A strict component requires that all of its
inputs are known before it is fired. Thus, a strict actor need not be aware that certain
values might be unknown, because it will never be fired if any of its inputs are unknown,
and therefore it will never perceive them. An SR model can contain any sub-model that
operates according to a different model of computation as long as the sub-model is
considered strict. This is convenient because it allows any model to be imported into SR
as a strict block. Since a strict actor only executes when all of its inputs are known, there
is no need to fire it multiple times in the same instant.

The handling of nonstrict components is a unique aspect of SR; most other models of
computation do not distinguish between strict and nonstrict components. Consequently,
using nonstrict actors in SR, it is possible to describe some systems that might be very
difficult to specify using other models ofcomputation, ifnot impossible.

Models of computation that can handle cyclic graphs require some means of breaking the
dependency cycle. In other words, one of die components in the cyclemust produce an
output to start the computation of a loop. In SR, a nonstrict actor can achieve this goal,
since a nonstrictactor may be able to produce some outputs even if some of its inputs are
unknown.

Simulation ofSynchronous Reactive Systems in Ptolemy II 12



3. Synchronous Reactive Implementation

3.1 Overview

In Ptolemy Classic, all components (called stars) were domain-specific. Creating a new
domain required writing a set of stars to execute in the domain. The Ptolemy II SR
domain was designed to be able to execute models containing existing domain-
polymorphic actors. However, to take advantage of the domain's handling of nonstrict
actors, these actors must be specially created.

In Ptolemy II, a domain defines a model of computation. Every domain has a director
and a receiver. Each is implemented as a Java class. The director is responsible for
regulating the execution of actors according to the semantics of the model of
computation. The receiver is a receptacle for tokens of data. In a dataflow domain, for
example, a receiver may implement a FIFO queue. In SR, however, the receiver is a
mailbox that can contain only one token at a time.

Some domains, but not all, use a scheduler, which determines the order of actor firings.
A scheduler is also implemented as a Java class. The Discrete-Event (DE) domain [16] is
an example of a domain with no scheduler. Instead, actor firings are dynamically
triggered by events, which are stored in a global queue. SR, however, has two
schedulers. The SR Randomized Scheduler returns a random ordering of the actors that
are controlled by the director. The director is expected to repeatedly fire the actors in this
order until it determines that the values have reached a fixed-point. If the SR Optimized
Scheduler is used, a single execution of the schedule guarantees that an instant converges
to a fixed-point. Therefore, only one pass through the schedule is required, and the
director need not explicitly check for convergence.

3.2 SR Receiver

The SR receiver is a mailbox with capacity one. A receiver can have known status,
meaning it is either known to contain a token or known to not contain a token, or the
status can be unknown. The isKnown() method of a receiver returns true if the receiver
has known status. If a receiver has known status, the hasToken() method returns whether
the receiver has a token. If a receiver has unknown status, calling its hasToken() method
will result in an exception (specifically, an UnknownTokenException).

The get() method of a receiver returns the contained token if the receiver has known
status and has a token. If the receiver has unknown status, an UnknownTokenException
is thrown. If the receiver has known status but does not contain a token, a call to the get()
method results in a ptolemy.actor.NoTokenException.
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In the course of an iteration in SR, receivers can change from unknown status to known
status, but neverthe otherway around. The status of a receiver is automatically set to be
known when theputQ method is called to place a token in the receiver or the setAbsentQ
method is called to explicitly set the receiver to contain no token. Once a receiver
becomes known, its value (or lack of a value if it is absent) cannot change until the next
instant. The hasRoom() method of a receiver always returns true, indicating that it is
possible to place a token in the receiver at all times. However, if a receiver has a value,
and it receives a token that is not the same as the one it already contains, an exception of
type LlegalOufr)utException will result. This exception will also be thrown if an actor
attempts to place a token in a receiver thathasabsent status, or attempts to set a receiver
to have absent status if it already contains a token.

Since the value of a receiver cannot change (once it is known) in the course of an
iteration, tokens need not be consumed. A receiver retains its token until the director
calls its resetO method at the beginning of the next iteration, which resets the receiver to
have unknown status. Since the reset() method of a receiver is a protected method, there
is no way for an actor to reset a receiver to have unknown status. The following table
describes the informational methods of an SR Receiver. The left column indicates the
current state of the receiver.

n..^hnrf

isKnownO hasTokenO getO hasRoomO

Unknown False UnknownTokenException UnknownTokenException True

Absent True False NoRoomException True

Value True True Contained Value True

Only the three action methods setAbsent(), putQ, and reset() modify the state of an SR
Receiver. The following table describes the action methods of an SR receiver:

——• • method
setAbsentO put(Token) resetO

Unknown Sets Absent Puts Value Sets Unknown

Absent No Action IllegalOutputException Sets Unknown

Value IllegalOutputException * Sets Unknown

(*) When a receiver contains a value and the putQ method is called, no action results if
the new value is the same as the old value. If the new value differs from the old value, an
IllegalOutputException will result.
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setAbsentO resetO

Absent Value

OO
resetO put(Token)

setAbsentO resetO put{Token)

Figure 12. Possible states and transitions of an SR Receiver.

Figure 12 shows the states and state transitions of an SR Receiver. The receiver can enter
the Absent state or the Value state from the Unknown state. The resetQ method always
retums the receiver to the Unknown state. Note that it is impossible for a receiver in the
Absent state to directly transition to the Value state or vice versa.

3.3 SR Randomized Scheduler

The SR Randomized Scheduler produces a random ordering of the actors to be executed
by the director. According to* a strategy known as chaotic iteration, the director
repeatedly executes the actors in this list, stopping when it determines that the system has
reached a fixed-point. This scheduler is useful because it demonstrates that if all
components meet the stated assumptions, SR semantics can be satisfied regardless of the
execution order of individual components. It also seems to be a natural way to schedule
firings, since there is no reason (other than efficiency of simulation) to choose any
particular ordering.

3.4 SR Optimized Scheduler
Some domains, such as Synchronous Dataflow (SDF), are statically scheduled. At the
cost of the preprocessing necessary to calculate a schedule, this eliminates the overhead
of dynamic scheduling. For real-time systems, simulation speed can be very important,
and static scheduling is highly desirable. A code generator sequences segments of
machine code together to compute the results of component firings. If a schedule is
available, these blocks of code can be appended in a predetermined order, reducing
branch instructions and improving efficiency. This is particularly valuable for generating
code for embedded systems. The SR Optimized Scheduler produces static schedules for
the SR domain.

Acyclic models are straightforward to schedule, since components can be executed in
topological order. An acyclic SR graph can be considered to be a dataflow model
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without computation or communication delay. An acyclic model can have multiple
schedules that are all consistent with SR semantics. Figure 13 shows one such model.

Figure 13. A modelwithtwo validand equally efficient possible schedules.

In Figure 13, it is clear that an optimal schedule will execute both actors A and B before
actor C. However, the ordering {A B C} and the ordering {B A C} are both valid and
equally efficient.

The SR Optimized Scheduler implements an algorithm described by Stephen Edwards [7]
for scheduling models that may have cycles. After the execution of schedule returned by
this algorithm, further component firings would not result in more values becoming
defined. Therefore, the schedule guarantees that the system will reach a fixed-point, so
this approach will produce the same results as the chaotic iteration strategy.

The first step in the scheduling algorithm is to construct a directed dependencygraph of
the model. The nodes in the dependency graph are the output ports of all the actors to be
executed. Thus, an actor with multiple outputs is represented by multiple nodes in the
dependency graph. However, since we wish to execute actors that may have no outputs,
we include a single node in the dependency graph to represent these actors. Edges are
drawn from a first node to any second node that directly depends on the value of the first
node. Figure 14 shows a model, and Figure 15 shows its dependency graph.

Simulation ofSynchronous Reactive Systems in Ptolemy II 16



•
1

B

lU

Figure 14. A system with feedback,
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Figure 15. The dependency graph generatedfrom Figure 14.

The reachable set of a node is the set of nodes that can be reached by starting at the node
and following some path of edges. Forexample, in Figure 15, the reachable setof node 5
contains every node except node 1. A graph is strongly connected if every node in the
graph is reachable from every other node in the graph. In other words, in a strongly
connected graph, all nodes are mutually reachable. A strongly connected component, or
see, is thelargest subgraph of a graph such that the subgraph is strongly connected. The
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four strongly connected components from Figure 15 are shown inFigure 16. Three SCCs
consist of a single node, andoneSCC contains node 2, node 4, andnode 5.

1

O
o

o

O o

Figure 16. The strongly connected components of Figure 15.

Inthe original graph, the nodes inone SCC may be reachable from the nodes in another
SCC. However, the converse must not be true, since that would make the two SCCs
mutually reachable, and bydefinition, they would notbe strongly connected components.
Since the reachability relation is transitive and anti-symmetric, there must exist some
ordering of SCCs such that any given SCC is not reachable from any other SCC that
appears later in the ordering. In effect, this means that the strongly connected
components of a graph can be sorted topologically.

In a dependency graph, we consider the nodes in the reachable set ofa node to depend
(either directly or indirectly) on the node. Since, in a topological ordering of SCCs, a
given SCC does not depend on any subsequent SCC, schedules can be generated for each
SCC and simplyconcatenatedin this order.

Ifasubgraph consists ofasingle node, the schedule for the sub^aph is simply one firing
of the actor that corresponds to the node. However, the situation is sigmficantly more
complicated for SCCs that contain multiple nodes. Since all the nodes in an SCC are
mutually reachable, all nodes in a given SCC are dependent on all other nodes in the
SCC. Therefore, the SCC contains cycles, and itsnodes cannot betopologically sorted.

To calculate the schedule of an SCC, we divide the nodes into a head and a tail. The
dependency graph cannow berepresented in theform shown in Figure 17.
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Head

Tall

Figure 17. The separation ofa dependency graph into a head and a tail.

This graph can also be represented in the slightly different, but topologically identical,
form shown in Figure 18.

Head

Tall

Figure 18. An equivalent representation ofthe graph in Figure 17.

Edwards [7] gives a formal proof that the head of the graph will converge to a fixed-point
after n execution iterations of the tail and the head, where n is the number of nodes in the
head. Once the fixed-point of the head is known, a final execution of the tail will bring
the entire system to a fixed-point. Thus, the schedule returned is iTH)"T, where H and T
represent the schedules of the head and tail, respectively, and n signifies the number of
repetitions of the parenthesized element. The schedules of the head and tail can be
calculated by recursive application of this algorithm.

Some choices of head and tail separation produce better results than others. Since we
have demonstrated that strongly connected graphs can be significantly more expensive to
schedule, my implementation considers only separations that break strong connectivity in
the tail. Given a strongly connected graph, strong connectivity can be broken by
removing the predecessor set of any node. Since the node will have no predecessors, it
will not be reachable from any other node. Therefore, the resulting graph will not be
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strongly connected. By choosing the head tobethe predecessor setofa node, we achieve
our goal of breaking strong connectivity in the resulting tail. My implementation also
attempts to minimize the number of nodes in the head, since a large head can result in
many more component firings. In Figure 16, the three single-node sub-graphs are trivial.
In the other SCC, node 2 is the only predecessor ofnode 5. If wechoose node 2 to be the
head and remove it from the graph, the tail contains node 4 andnode 5. Theschedule of
the head is H= {2}, and the schedule of the tail is T= {5 4}. Therefore, theschedule of
the SCC is THT= {54254}. Tocompute theschedule of theentire dependency graph,
we concatenate the schedules of the SCCs in topological order, obtaining (1 542543
6}. Finally, translating nodes inthe dependency graph to corresponding actors, we obtain
the schedule {A C B B C B B D}.

The SROptimized Scheduler has several advantages over theSRRandomized Scheduler.
It typically requires significantly fewer actor firings to arrive at a fixed-point. Instead of
producing a schedule that may require repeated execution depending on dynamic data,
the optimized scheduler generates a predetermined static schedule. It also eliminates the
needfor the director to explicitly determine whether the simulation has reached a fixed-
point.

3.5 Handling of nonstrict actors
Unless an actor contains an attribute called "_nonStrictMarker", it is assumed to be a
strictactor, meaning that it requires all of its inputs to be known before it is fired. This is
very important since oncean actordefines a particular output, it is not allowed to change
that value in a subsequent firing in the course of the iteration. Thus, for a nonstrict actor
to be valid in SR, a firing must produce the same outputs given the same inputs (in a
given iteration). This is not an issue for strict actors, since they need only be executed
once in the course ofan instant.

In my implementation, actors need not have knowledge of whether their outputs have
already been defined in the current instant. If an output channel has a value and an actor
outputs a token with the same value, nothing happens. However, if an actor outputs a
token of a different type or with a differentvalue, the actor has attempted to perform an
action not in accordance with SR semantics, and an exception is thrown.

3.6 SR Director

A director is responsible for determining an execution order for components, possibly
obtaining this information from a scheduler. It then must fire the components, update
time according to the semantics, and handle any idiosyncrasies of the particular domain.
The director is typically the most complex element of a domain. The SR Director is no
exception.

SR is an untimed domain, so it has no notion of the passage of time. Computation
happens in a series of instants. An instant is one iteration of the director. If SR is

Simulation of Synchronous Reactive Systems in Ptolemy II 20



embedded inside a timed domain, the SR Director will inherit the current time of the
outside director.

Before each iteration, the director sets all receivers to the unknown state by calling the
reset() method of each one. In my implementation of SR, receivers notify the director
when they transition from the unknown state to a known state. The receivers inform the
director of the change by calling the director's incrementKnownReceiverCountO method.
Thus, the director need not query all ofthe receivers to determine the number with known
state.

An actor is considered ready tofire if sufficient known inputs are available. Actor firings
are essentially triggered by these known inputs since the director only fires an actor if it is
ready to fire. An actor has completed firing if it has defined all of its outputs. It is
assumed that a strict actor does not distinguish between absent and undefined values.
Therefore, if a strict actor fires and leaves some of its outputs undefined, the director will
assume that these values are absent, and explicitly make them so. There is no concern
that the actor may attempt to change this value, since a strict actor may only be executed
once in an instant.

An actor is considered allowed tofire if its prefireQ method has retumed true. Each time
the director desires to execute an actor that is not allowed to fire, the prefireQ method of
the actor will be called to attempt to obtain permission. An actor is considered allowed to
iterate if its postfireQ method has not retumed false. If the postfireQ method of an actor
does retum false, the actor will not be fired in any subsequent iteration ofthe director.

The name of the scheduler to be used is specified by the scheduler parameter of the
director. If the SR Randomized Scheduler is used, in the course of an iteration, the
director repeatedly cycles through the schedule, firing those actors that are allowed to fire
and ready to fire. An iteration has converged if both the total number of known outputs
and the number of actors that are allowed to fire have converged. In other words, the
director detects a fixed-point when all ready-to-fire actors are executed, and no new
outputs are produced. Since further execution would not result in more defined outputs,
the iteration ends. Note that all receivers having known state is not a sufficient condition
for the convergence of an iteration. After the values are present, each actor must have the
opportunity to fire before the end of the iteration.

If the SR Optimized Scheduler is used, the system arrives at a fixed-point after a single
pass through the schedule, so the director need not check for convergence. The execution
results are equivalent regardless ofwhich scheduler is used.

The iterations parameter of the director determines how many instants of the system will
be simulated. When the iteration count reaches this value, the postfireQ method of the
SR Director returns false to indicate that it does not wish to be fired again.

Simulation ofSynchronous Reactive Systems in Ptolemy II 21



3.7 Specialized actors
I have created a number of nonstrict actors for use in the SR domain. Since directors for
other domains would simply ignore the nonstrict marker attribute, these actors could be
valid in other domains. However, their behavior is most interesting in SR. The following
table describes these specialized actors:

Absent Galls the sendAbsentQ method of the output port to
explicitly output an absent value

Undefined Produces no token, so the output remains undefined
InstantaneousDialogGenerator Generates an instantaneous dialog with another actor
NonStrictDelay Delays tokens by one instant
NonStrictDisplay Displays inputs if they exist, or otherwise indicates

whether they are absent or unknown
NonStrictLogicFunction Performs a logical function {and, or, xor, nand, nor, or

xnor) on the inputs, producing a result if it can be
determined from the known inputs

NonStrictSelect Selects from the input channels based on a control input
NonStrictThreeBitAdder Adds three input bits, producing a result if it can be

determined from the known inputs
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4. Synchronous Reactive Execution

4.1 Simple Examples

Ramp

AddSublract SequencePIotter

Ramp 2

Ramp 3 SequencePIotter?

Figure 19. A disconnected graph.

As mentioned, SR is able to schedule disconnected graphs for execution. Figure 19
shows one such graph. Two ramps are connected to the plus port of AddSubtract, and the
result is plotted. A third ramp is also plotted. Figure 20 shows the results of its execution
in Ptolemy II.
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Figure 20. The execution results ofFigure 19.

Figure 21 shows a model including a three bit adder which is nonstrict. The only valid
inputs to the adder are0 and 1. The actual inputs to the adder area constant (1), another
constant (0), and an undefined value.
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Const = 1

Const« 0 NonStrictThreeBitAdder
h(ghBilDisplay

Undefined
iowBitOisplay

Figure 21. A model with a nonstrict three bit adder.

If this system is executed, the adder will attempt to produce partial results from the
known inputs. If the undefined value was 0, the inputs would be 1,0, and 0. The high bit
output would be 0, and the low bit output would be 1. If the undefined value was 1, the
inputs would be 1, 0, and 1. The high bit output would be 1, and the low bit output would
be 0. Therefore, from the given known inputs, neither of the outputs can be definitively
determined, so the adder produces no outputs.

-highBitDispla

defined

lowBitDlsplay—

Figure 22. The execution results of Figure 21.

Figure 23 is identical to Figure 21 with one exception: the value of both constants is 1,
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Const = 1

Const = 1 NonStrictThreoBitAdder
highBitOisplay

Undefined
towBitDisplay

Figure 23. A second model witha nonstrict three bit adder.

If the undefined value was 0, the inputs would be 1, 1, and 0. The high bit output would
be 1, and the low bit output would be 0. If the undefined value was 1, the inputs would
be 1, 1, and 1. The high bit output would be 1, and the low bit output would be 1.
Therefore, from these known inputs, the highbit output can be determined to be 1. The
low bit, however, remains unknown.

-highBitOisplay

iowBitOispiay

defined

Figure 24. The execution results of Figure 23.

In the case where all of the inputs to the adder were defined, SR would behave like many
other domains, producing defined values for both outputs.
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NonStrictLogicalOr

Figure 25. A cyclic graph.

Figure 25 shows a cyclic graph with an instantaneous feedback loop. When the
execution of an instant begins, the NonStrictLogicalOr observes one input that is True
and one input that is undefined. It can determine that the output should be True
regardless of the value of the unknown input. This True value becomes the previously
undefined input of the actor. All values are now known, and the model has reached a
fixed-point. Note that the final results of the model are logically consistent.

NonSlrictLogiolAnd

Figure 26. Another cyclic graph.

Figure 26 is very similar to the previous example, but in this case, the logic actor is a
NonStrictLogicalAnd. When the execution of an instant begins, this actor observes one
True input and one imdefmed input. If the unknown input was False, the actor would
output False. If the unknown input was True, the actor would output True. Therefore,
the output cannot be determined. No further values can be computed, so the iteration
ends, and the output of the NonStrictLogicalAnd remains undefined.
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Figure 27. A model with instantaneous dialog.

In Figure 27, the specialized actor InstantaneousDialogGenerator both sends data to and
receives data from a LookupTable. A LookupTable takes an integer index n as input and
outputs the n^ element contained in the internal table as output. This particular
LookupTable contains the follo\ving values:

index

0

1

2

3

4

element

"Wow,"

Ttolemv"

amazing!

The InstantaneousDialogGenerator outputs incrementing integers (starting at 0), so the
LookupTable will output its elements in sequential order. In the first iteration, the
InstantaneousDialogGenerator outputs 0. The LookupTable then outputs "Wow,". When
the InstantaneousDialogGenerator fires again, it will read this input and output it to the
display actor. Since all of this happens in the course of a single iteration, the generator
has engaged in an instantaneous dialog with the LookupTable. For the simplicity of this
example, the InstantaneousDialogGenerator simply retransmits its input, but an actor
could perform an arbitrary computation and output a different value. Figure 28 shows the
results of five iterations of the model.
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Figure 28. The execution results of Figure 27.

4.2 SR embedded in SR

Figure 29. A hierarchical SR model.
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Figure 30. The same model, flattened.

An SR model embedded within an SR model essentially has the same behavior as the
aggregate model with a single top-level SR director. However, a hierarchical SR in SR
model will not behave exactly the same as the combined model if the inner composite
actor is not treated as a nonstrict actor by the outer director. For example, in Figure 29, if
the SR sub-model is considered to be strict and the value on channel 1 is unknown, the
sub-model will not fire, and thus the nonstrict actor A will not fire.

If the sub-model in Figure 29 is treated as a nonstrict actor, the system is exactly
equivalent to that in Figure 30. In fact, any hierarchical pure-SR model is equivalent to
the same model with a single top-level SR director provided that all internal composite
actors are treated as nonstrict.

4.3 SR embedded in other domains

When SR is embedded in another domain, the SR composite actor is fired by the outer
director. The SR director inherits the current time from the outer director. The flexibility
that hierarchical heterogeneity provides is illustrated by this model, which embeds SR in
the Discrete-Time (DT) domain [8] to create a "Timed SR":
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SR composite act<x

Figure 31. A DT model containing an SR composite actor.

Ramp TlmedPlotter

Figure 32. The contained SR model.

Executing this hierarchical model produces the results in Figure 33.

TimedPlotter

D.O 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Figure 33. The execution results of Figure 31.
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In any other domain, an embedded SR model is simply fired as an actor according to the
semantics ofthe outer director.

4.4 Other domains embedded in SR

Embedding other domains inside SR can be very convenient. Since there are many
existing actors and models that operate according to various models of computation, it is
desirable to be able to use these components in SR without rearchitecting their
functionality. These components can be inserted into an SR model in the Ptolemy II
implementation.

It is fairly easy to incorporate foreign sub-models into an SR model. Hierarchical
heterogeneity is handled in the manner described in the previous section. In most cases,
the sub-model must be treated as a strict block, since Ae system may expect all of its
inputs to be defined.

4.5 FSM embedded in SR

All nonstrict actors mentioned to this point have been specially programmed for specific
purposes in SR. The Finite State Machines (FSM) domain [9] is a particularly interesting
domain to embed in SR, because FSMs can be a rich source of customizable nonstrict
actors.

In the FSM model of computation, the system is in one ofa number ofstates at any given
time. The system can change states via transitions, which are triggered by specified input
conditions. Each transition may produce associated outputs.

In his Ph.D. dissertation, Bilung Lee [14] discusses FSM within SR. Ptolemy II was
designed to allow actors to easily separate the production stage, in which outputs are
produced, from the transition stage, in which state changes occur. An actor produces
outputs in its fire() method but updates its state only in its postfire() method. Therefore,
in a given iteration, an actor can be fired any number of times before postfire() is called
exactly once to update its state.

If an SR model contains an FSM that is considered to be nonstrict, the FSM will be fired
even if some inputs are unknown. If a particular transition includes unknown inputs in its
input conditions, the transition simply does not occur, and no output is produced. If the
inputs becomeknown, and the FSM is fired later in the iteration, the outputs will then be
produced.

Perhaps a more complete approach would allow a transition to occur if the result of the
input conditions can be determined from the given known inputs, even if some of the
inputs included in the conditionsare unknown. My implementation does not handle such
cases, as doing so would require substantial modifications to tool-generated expression
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parser code. However, these complex transitions can be expressed by separating the
input conditions, creating multiple transitions.

inputi

input2

siaw

O
state2

outputi

inputi 1

outputi = input2

Figure 34. An FSM composite actor.

In the following example, an FSM is embedded inside an SR model. The FSM model is
shown in Figure 34. The FSM composite actorhas two inputs and one output. The FSM
has a single transition: if the first input equals 1, the transition is enabled, and the value of
the second input is produced on the output. We will consider four cases of inputs for this
FSM embedded in SR.

Undefined 1
fsm actor NonStrictDisplay

Undefined 2

Figure 35. A model with two undefined inputs.

Case 1: Both inputs are undefined, as shown in Figure 35. In this case, the transition does
not occur because the first input is unknown.
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Undefined 1
fsm actor NonStrictDispiay

Const = 2

Figure 36. A model with one undefined input and one defined input.

Case2: In Figure 36, the second input is defined, but the first is not Again, the transition
does not occur because the first input is unknown.

Const = 1
fsm artnr NonStrictDispiay

Undefined 2

Figure 37. A model with one defined inputand one undefined input.

Case 3: In Figure 37, the first input is defined, but the second is undefined. The input
conditions to enable the transition are satisfied, but the value to output cannot be
determined. Therefore no value will be produced at the output. However, the transition
will be committed, and the FSM will change state upon the conclusion of the iteration.
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Const = 1
fsm arlor NonStrictDisplay

Const« 2

Figure 38. A model with two defined inputs.

Case 4: Both inputs are defined, as shown in Figure 38. The transition will occur, and the
value of the second input, which is 2, will be produced as the output of the FSM. Again,
the FSM will change state.

4.6 The Reflex Game

In this section, I present a heterogeneous model that embeds FSM within SR within DE.
The system is an adaptation of the Reflex Game described by Berry and Gonthier [4].
Once the user starts the game, an event occurs after some randomly determined time
interval. The user is expected to respond to the event as quickly as possible, and the
system reports their reaction time.
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Start Timer Display 'Read/ and *Now!'

RandomTlme

ButtonTlme
SR Composite Actor Display Outputs

Figure 39. The Reflex Game.

Figure 39 shows the top-level DE model of the system. As we have seen before, a thick
red border around an actor indicates that the actor contains a sub-model. We will run the

system as a real-time model by setting the synchronizeToRealTime parameter of the DE
Director to true. The Start Timer actor generates an event at time zero. This event
triggers the firing of the RandomTime composite actor, which is shown in Figure 40.

Uniform Timer WallClockTime
output

Figure 40. The RandomTime composite actor.

Since this sub-model has no director, it operates according to the semantics of the top-
level DE director. When the Uniform actor receives a trigger input, it responds by
producing a random number according to a uniform distribution. The distribution is set
to have a range from 3.0 to 7.0. The Timer actor sets a timer to produce an event after the
time period specified by this value (in seconds). Upon receiving this trigger, the
WallClockTime actor produces a token that has the value of the time elapsed since the
beginning of the execution of the model.

In the top-level model, the actor Display 'Ready' and 'Now!' will receive one event at
time zero and one event at a random time between 3.0 and 7.0 seconds. Upon receiving
the first event, this actor informs the user to be ready for the signal, and upon receiving
the second event, the actor signals the user to respond.
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The ButtonTime actor handles the response of the user by generating an event in response
to a button click. Upon detecting a click, the actor requests immediate firing from the
director. Upon firing, the ButtonTime actor outputs a token representing the elapsed time
since the start of execution.

The SR Composite Actor receives two time values. One is the time of the randomly
generated event, and the other is the time of the response by the user. Since the real-time
capability of the DE Director is being used, each time value is received at the actual time
of the corresponding event. The contents of the SR Composite Actor are shown in Figure
41.

slartTrigger
startOut

FSM Composite Actor
stopOut

stopTrigger
respon^Time

Figure 41. The SR Composite Actor.

This actor has two input ports and three output ports. In a given iteration, either of the
inputs could be undefined. In fact, both inputs will be defined only if the two events
occur at precisely the same time. The automaton inside the FSM Composite Actor is
shown in Figure 42.
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startOut s savedStartTime; stopOut» stopTime; msponseTime « stopTime - savedStartTime

responseTime

N

Figure 42. The FSM Composite Actor.

The FSM begins in the ready state. When the input startTime is present, corresponding
to the randomly generated event, the FSM records the value ofstartTime in the parameter
savedStartTime and transitions to the startReceived state. If this actor is fired when the
StartTime input is unknown, the transition will not occur since it is not possible to
determine the presence ofstartTime.

Once this FSM is in the startReceived state, the presence of a stopTime input will cause
three outputs to be produced. The original startTime that was recorded as the
savedStartTime parameter will be produced on the port startOut. The value of the
StopTime input will be output on the stopOut port. Also, the reaction time of the user will
be calculated as the difference of these two times, and this value will be produced on the
responseTime output.

Note that if the user were to click the button early, generating a stopTime input before a
StartTime input, the FSM would not make any transition from the ready state. Also, if
this FSM were to receive a second startTime input while in the startReceived state, no
transition would occur.

The Display Outputs composite actor in the top-level model presents the start time, stop
time, and response time to the user. The results of an execution of the Reflex Game are
shown in Figure 43.
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Click here when you see IMowi'

Ready...

Start time: 5.526

Stop time: 5.759

Response time: 0.231

Figure 43. The execution results of the Reflex Game.
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5. Conclusion

At first, SR may seem to be a very idealized model of computation, but we have shown
that it can be used for practical applications. In fact, SR can be appropriate for modeling
any system that reacts to its environment. Thus the Synchronous Reactive domain can be
suitable for simulating user interfaces, objects that interact instantaneously, and any other
real-world reactive system.

Fixed-point semantics are a natural way to model systems with zero-delay feedback.
Deadlock does not occur, and determinacy can be ensured. Also, the fixed-point
approach allows flexible component scheduling, so any model can be executed regardless
of its configuration.

Using hierarchical heterogeneity in Ptolemy II, we can superimpose useful semantic
properties of other domains onto SR. For example, we can introduce a notion of time
simply by embedding SR inside any timed domain. It is also possible to describe
different parts of an SR model using the models of computation that best describe their
behavior.

Further work in this area might include specifying alternate ways to define nonstrict
actors. Writing Java code to define these actors is inconvenient, since actors must be
custom-written for most applications. Creating finite state machines that are nonstrict is
significantly easier, but less expressive. Perhaps some innovative scheme could provide
the advantages ofeach.
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