

Copyright © 2001, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

EMBEDDED SOFTWARE

by

Edward A. Lee

Memorandum No. UCB/ERL MOl/26

9 July 2001

EMBEDDED SOFTWARE

by

Edward A. Lee

Memorandum No. UCB/ERL MO1/26

9 July 2001

ELECTRONICS RESEARCH LABORATORY

CollegeofEngineering
Universityof Califomia, Berkeley

94720

Embedded Software

Edward A. Lee, UC Berkeley, eal@eecs.berkelev.edu

July 9, 2001

1. What is Embedded Software?

Deep in the intellectual roots of computation is the notion that software is the realization of
mathematical functions as procedures. Abody ofinput data is mapped by the software into a
body of output data. The mechanism that is used to carry out the procedure is not nearly as
important as the abstract properties of the procedure itself. In fact, we can reduce the mechanism
to seven operations on amachine (the famous Turing machine) with an infinite tape capable of
storing zeros and ones [81]. This mechanism is, in theory, as good as any other mechanism. The
significance of the software is not affected by the mechanism. Abelson and Sussman say that
software gives us a"procedural epistemology" [1]. Knowledge as procedure.

Embedded software is not like that. Its principal role is not the transformation ofdata, but rather
the interaction with the physical world. It executes on machines that are not, first and foremost,
computers. They are cars, airplanes, telephones, audio equipment, robots, appliances, toys,
security systems, pacemakers, heart monitors, weapons, television sets, printers, scanners, climate
control systems, manufacturing systems, etc.

Software with aprincipal role of interacting with the physical world must, of necessity, acquire
some properties of the physical world. It takes time. It consumes power. It does not terminate
(unless it fails). It isnot the idealized procedures ofAlan Turing.

Computer science has tended to view this physicality of embedded software as messy. Design of
embedded software, consequently, has not benefited from the richly developed abstractions of the
twentieth century. Instead of using object modeling, polymorphic type systems, and automated
memory management, engineers write assembly code for idiosyncratic DSP processors that can
do finite impulse response filtering in one (deterministic) instruction cycle per tap.

The engineers that write embedded software are rarely computer scientists. They are experts in
the application domain with agood understanding of the target architectures they work with. This
is probably appropriate. The principal role of embedded software is interaction with the physical
world. Consequently, the designer of that software should be the person who best understands
that physical world. The challenge to computer scientists, should they choose to accept it, is to
invent betterabstractions for thatdomain expertto do herjob.

Today's domain experts may resist such help. In fact, their skepticism is well warranted. They see
Java programs stalling for one third of asecond to perform garbage collection and update the user
interface, and they envision airplanes falling out of the sky. The fact is that the best-of-class
methods offered by computer scientists today are, for the most part, apoor match to the
requirements of embedded systems.

At the same time, however, these domain experts face aserious challenge. The complexity of
their applications (and consequent size of their programs) is growing rapidly. Their device^ow
often sit on anetwork, wireless or wired. Even some programmable DSPs now run aTCP/IP
ferotocol stack. And the applications are getting much more dynamic, with downloadable
customization and migrating code. Meanwhile, reliability standards for embedded software
remain very high, unlike general-purpose software. At aminimum, the methods used for general-
purpose software require considerable adaptation for embedded software. At amaximum, entirely
new abstractions are needed that embrace physicality and deliver robustness.

2. Just Software on Small Computers?

An arrogant view of embedded software is that it is just software on small computers. This view
is naive. Timeliness, concurrency, liveness, reactivity, and heterogeneity need to be an integral
part of the programming abstractions. They are essential to the correctness ofaprogram. It is not
sufficient torealize the right mapping from input data tooutput data.

Timeliness

Time has been systematically removed from theories of computation. "Pure" computation does
not take time, and has nothing to do with time. It is hard to overemphasize how deeply rooted this
is in our culture. So-called "real-time" operating systems often reduce the characterization ofa
component (a process) to asingle number, its priority. Even most "temporal" logics talk about
"eventually" and "always," where time is not aquantifier, but rather aqualifier [68]. Attempts to
imbue object-oriented design with real-time are far from satisfactory [23].

The issue is not just that execution takes time. Even with infinitely fast computers, embedded
software would still have todeal with time because the physical processes with which it interacts
evolve over time.

But much of the problem is that computation does take time. Computer architecture has been
tending towards making things harder for the designers of embedded systems. Much of the
(architectural) performance gain in modem processors comes from statistical speedups such as
elaborate caching schemes, speculative instruction execution, dynamic dispatch, and branch
prediction. These techniques compromise the reliability of embedded systems the way they are
designed today, and in fact are mostly not used in embedded processors such as programmable
DSPs and microcontrollers. I believe that these techniques have such a big impact onaverage
case performance that they are indispensable. But the software world will have to find
abstractions that regain control of time, or the embedded system designers will continue to refuse
to use these processors.

Concurrency

Embedded systems rarely interact with only asingle physical process. They must simultaneously
react to stimulus from the network and from a variety ofsensors, and at the same time, retain
timely control over actuators. This implies that embedded software is concurrent.

In general-purpose software practice, management of concurrency is primitive. Threads or
processes, semaphores, and monitors are the classic tools for managing concurrency, but Iview
them as comparable to assembly language in abstraction. They are very difficult to use reliably.

by operating system experts. Only trivial designs are completely
engineers). Excessively conservative rules of thumb dominate (such as: always gra oc
same order [53]). Concurrency theory has much to offer that has not made its way in o
widespread practice, but it probably needs adaptation for the embedd^ "rt nrthaf
instance, it often reduces concurrency to "interleavings," which tnvialize time by asserting that
all computations are equivalent to sequences ofdiscrete time-less operations.

Embedded systems engage the physical world. And in the physical
at once Reconciling the sequentiality of software and the concurrency of the real world is akey
challenge in the design of embedded systems. Classical approaches to concunency in software
(threads, processes, semaphore synchronization, monitors for mutual e«l"Sion,
remote procedure calls) provide agood foundation, but are insufficient by themselves. Complex
compositions are simply too hard to understand.

An alternative view of concurrency that seems much better suited to embedded systems is
implemented in synchronous/reactive languages [10] such as Esterel [13], "'''•^hare used in
safetv-critical real-time applications. In Esterel, concurrency is compiled away. Although this
apprLh leads to highly reliable programs, it is too static for networked
requires that mutations be handled more as incremental compilation than as process scheduling,Ind Sn^nral compilation for these languages proves to be challenging. We need anjpro^h
somewhere in between that of Esterel and that of today's real-time operating systems, with the
safety and predictability of Esterel and the adaptability of areal-time operating system.

Liveness

In embedded systems, liveness is acritical issue. Programs must not terminate or b\ock waiting
for events that will never occur. In the Turing view of computation, all non-tenmnating
fall into an equivalence class, implicitly deemed to be aclass of defective prograiiK. In etnbedded
/•^mpniing, however, terminating programs are defective. The term deadlock pejorative y
describes premature termination of such systems. It is to be avoided at all costs.

Akev part of the prevailing computation paradigm is that software is defined by the function it^ompures Cfunction m^els everything interesting about the software. Even for ^ portions
of embedded software that terminate (and hence have an associated computable function), this
model is apoor match. Akey property of embedded software is its interaction with Phy®'"'
processes, via sensors and actuators. Because of this interaction, many of the critical propert
are not represented by any function that is computed, in the usual sense meant in the theory ot
computation. These properties include temporal properties (when interactions with the
environment occur), power consumption, fault recovery, security, and robustness.

In the Turing paradigm, given asufficiently rich abstraction for expressing procedures, it is
undecidable whether thore procedures halt. This undecidability has been inconvenient because we
cannot identify programs that fail to halt. Now it should be viewed as inconvenient because we
cannot idenUfy programs that fail to keep running. Moreover, correctness cannot be viewed as
getting the right final answer. It has to take into account the timeliness ofacontinuing stream of
partial answers.

Interfaces

Software engineering has experienced major improvements over the last decade or so the
widespread use of object-oriented design. Object-oriented design is acomponent technology, m
the sense that alarge complicated design is composed of pieces that expose interfaces tha
abstract their own complexity.

The use of interfaces in software is not new. It is arguable that the most widely appliedcornpLm ^ based on interfaces is procedures. Procedums am finite computations that
take ore-defined arguments and produce final results. Procedure libraries are marketable
component repositories, and have provided an effective abstraction for complex functionaluy.
Objm-oriented design aggregates procedures with the data that they operate on (and renames the
procedures "methods").

Procedures however, are apoor match for many embedded system problems. Consider for
example aspeech coder for acellular telephone. It is artificial to define the speech c^er in terms
of finite computations, ft can be done of course. However, asp^h coder is
than aprocedure, ft is anonterminating computation that transforms an unbounded^am of
input data into an unbounded stream of output data. Indeed, acommercial speech coder
component for cellular telephony is likely to be defined as aprocess that expects to execute on a
dedicated signal processor. There is no widely accepted mechanism for packaging the speech
coder in any way that it can safely share computing resources with other computations.

Processes, and their cousin, threads, are widely used for concurrent software design. Processes
can be viewed as acomponent technology, where amultitasking operating system or
multithreaded execution engine provides the framework that coordinates the components. Process

by the framework. In this context, aprocess can be viewed as acomponent that exposes
interface an ordered sequence ofexternal interactions.

However, as acomponent technology, processes and threads are extremely weak. A
of two processes is not aprocess (it no longer exposes at its interface an ^ .
external interactions). Worse, acomposition oftwo processes is ®
we can easily characterize, ft is for this reason that concurrent programs built from processes or
threads are so hard to get right, ft is very difficult to talk about the properties of the aggregate
because we have no ontology for the aggregate. We don't know what it is. There
(understandable) interface definition.

Obiect-oriented interface definitions work well because of the type syste^ that Mpport thena.
Type systems are one of the great practical triumphs of contemporaiy softw^e. They do more
than anv other formal method to ensure correctness of (practical) software. ObjMt-oriented
laneuaees with their user-defined abstract data types, have had abig impact mtoth re^ability
soffwafe (witness the Java class libraries) and the quality of software. Combined with
nattems 1281 and obiect modeling [25], type systems give us avocabulary for talking about larg^trocmrein softtS of iod'e and procedures. However, object-oriented programing
talks only about static structure, ft is about the syntax of procedural programs, and says nothingrboutTheir colraency or dynamics. For example, it is not part of the type signature of» ^ject
S WtUlLo method must be called before the fire() method. Temporal properties of an
object (method x() must be invoked every 10ms) are also not part of the type signature.

Heterogeneity

Heteroffeneitv is an intrinsic part of computation in embedded systems. First, such systems areS Smornrwam L software designs, so that the embedded software interacts with
is specifically designed to interact with it. Some of this haidwaie ^ continuous-

time dynamics, which is aparticularly poor match to prevailing
Moreover embedded systems must interact with events occurring irregularly in time (alarms, user—^nsor triggers, etc.) and legularly in time (sampled sensor fata aM acmtor conrto^
sienals) These events have widely different tolerances for timeliness of reaction. T^ay, they areir^ngldTn i^l-rime software in ad hoc ways; for example, they might be all abstracted as
periodic events, and rate-monotonic principles [63] might be used to assign pnonties.

Perhaps because of the scientific training of most engineers and computer scientists, the tendency
is to seek agrand-unified theory, the common model that subsumes everything as aspecial c^,iVd tto cL'̂ 'principl^ expll it all. We find it anathema to combine multipte FO^tnimng
languages, despite the fact that this occurs in practice all the tune. Proponents of any o
lanluase are sure absolutely sure, that their language is fully general. There is no need for any
othlr Md ifonly the rest of the world would understand its charms, they would switch to using it.
This view will never work for embedded systems, since languages are bound to fit better or worse
for any given problem.

Reactivity

Reactive systems are those that react continuously to their environment at the speed of the
environment. Harel and Pnueli [35] and Berry [12] contrast them with
react with the environment at their own speed, and transformatwtxal systems, which s'mply «ke a
body of input data and transform it into abody of output data. R^ctive systems have re"'-'""®conLints, and are frequently safety-critical, to the point that failures could res"ltmJoss rf
human life. Unlike transformational systems, reactive systems typically do not terminate (unless
they fail).

Robust distributed networked reactive systems must be capable of adapting to chMging
conditions. Service demands, computing resources, and sensors may appear and disappear.
Quality of service demands may change as conditions change. The system is therefore
continuously being redesigned while it operates, and all the while it must not fail.

Anumber of techniques have emerged to provide more robust support for reactive "y"'®-"
than what is provided by real-time operating systems. The synchronous languages, such as Esterel
113] Lustre [32], Signal [11], and Argos [69], are reactive, have been used for applications where
validation is important, such as safety-critical control systems in aircraft and n"®'®"'P""®'
olants. Lustre, for example, is used by Schneider Electric and Aerospatiale in France. Use of
these languages is rapidly spreading in the automotive industry, and support for them is beginning
to appear on commercial EDA (electronic design automation) software.

Most of these uses of synchronous languages have only needed fairly small-reale monolithic
programs, although there have been investigations into distributed versions. For example,
tensions to Esterel support processes that do not obey the synchronous hypothesis [14] _
Processes communicate via channels with rendezvous. This has been subsequenUy extended to
add process suspension and resumption.

These manage concurrency in avery different way than that found in rral-tiine
onerating systems. Their mechanism makes much heavier use of static (compile-time) analysis ofconcS wTuarantee behavior. However, compile-time analysis of concurrency has asenous
drawback: it compromises modularity and precludes adaptive software architectures.

3. Limitations of Prevaiiit^ Software Engineering Methods

It seems obvious that complex embedded software will have to be
distinct components of some sort. Ideally, these components are reusable, and embody valuable
expertise in one or more aspects of the problem domain. The composition must be meaningful,
and ideally, acomposition ofcomponents yields anew component that can be used to fom other
comnositions. To work, these components need to be abstractions of the complex, dorna
specific software that they encapsulate. They must hide the details, and expose only the essential
external interfaces, with well-defined semantics.

Procedures and Object Orientation

Aprimary abstraction mechanism of this sort in software is the procedure (or in object^rien^
culture, amethod). Procedures are terminating computations. They take arguments, perform a
finite computation, and return results. The real world, however, does not start, execute, complete,
and return.

Object orientation couples procedural abstraction with data to get
however, are passive, requiring external invocation of their methods. So called active objects
are more like an afterthought, requiring still amodel of computation to have any useful
semantics. The real world is active, more like processes than objects, but with aclear and clean
semantics that isfirmly rooted inthe physical world.

So while object-oriented design has proven extremely effective in building large software
systems, it has little to offer to address the specific problems of the embedded system designer.

Hardware Design

Hardware design, of course, is more constrained than software by the physical world. It is
instractive to examine the abstractions that have worked for hardware, such as synchronous
design. The synchronous abstraction is widely used in hardware to build large, comp ex, an
modular designs, and has recently been applied to software [10], particularly for designing
embedded software.

Hardware models are conventionally constructed using hardware description languages such as
Verilog and VHDL; these language realize adiscrete-event model of computation *at nrakes
time afirst-class concept, information shared by all components. Synchronous desi^« done
through astylized use of these languages. Discrete-event models are often us^ for model ng
complex systems, particularly in the context of networking, but have not yet (to my knowledge)
been deployed into embedded system design.

Conceptually, the distinction between hardware and software, from the pers^ctive of
computation, has only to do with the degree of concurrency and the role
with alarge amount of concurrency and aheavy temporal content nught as well be thought of

using hardware abstractions, regardless of how it is implemented. An application that is
sequential and has no temporal behavior might as well be thought of using software abstractions,
regardless of how it is implemented. The key problem becomes one of identifying the appropnate
abstractions for representing the design.

Real-Time Operating Systems

Most embedded systems, as well as many emerging applications of desktop computers, involve
real-time computations. Some of these have hard deadlines, typically involving streaming data
and signal processing. Examples include communication subsystems, sensor and actuator
interfaces, audio and speech processing subsystems, and video subsystems. Many of these require
not just real-time throughput, but also low latency.

In general-purpose computers, these tasks have been historically delegated to specialized
hardware, such as SoundBlaster cards, video cards, and modems. In embedded systems, these
tasks typically compete for resources. As embedded systems become networked, the situation
gets much more complicated, because the combination of tasks competing for resources is not
known at design time.

Many such embedded systems incorporate areal-time operating system, which in addition to
standard operating system services such as FO, offers specialized scheduling services tuned to
real-time needs. The schedules might be based on priorities, using for example the pnriciples ot
rate-monotonic scheduling [63]148], or on deadlines. There remains much work to be done to
improve the match between the assumptions of the scheduling principle (such as periodicity, in
the case of rate-monotonic scheduling) and the realities of embedded systems. Because the match
is not always good today, many real-time embedded systems contain hand-built, specialized
microkernels for task scheduling. Such microkernels, however, are rarely sufficiently flexible to
accommodate networked applications, and as the complexity ofembedded applications grows,
they will be increasingly difficult to design. The issues are not simple.

Akey problem in scheduling is that most techniques are not compositional. That is, even if
assurances can be provided for an individual component, there are no systematic mechanisms for
providing assurances to the aggregate of two components, except in trivial cases. Achronic
problem with priority-based scheduling, known as priority inversion, is one manifestation ot this
problem.

Priority inversion occurs when processes interact, for example by using amonitor to obtain
exclusive access to ashared resource. Suppose that alow priority process has access to the
resource, and is preempted by amedium priority process. Then ahigh pnonty process preeinpts
the medium priority process and attempts to gain access to the resource. It is blocked by the low
priority process, but the low priority process is blocked by the presence of an executable process
with higher priority, the medium priority process. By this mechanism, the high priority process
cannot execute until the medium priority process completes and allows the low priority process to
relinquish the resource.

Although there are ways to prevent priority inversion, the problem is symptomatic of adeeper
failure. In apriority-based scheduling scheme, processes interact both through the scheduler and
through the mutual exclusion mechanism (monitors) supported by the framework. These two
interaction mechanisms together, however, have no coherent compositional semantics. It seems
like a fruitful research goal to seek a better mechanism.

Unfortunately, current practice often invofves fiiie tUhing priorities until aparticular
implementation seems to work. The result is fragile systems that fail when anything changes.

Real-Time Object-Oriented Models

Real-time practice has recently been exterfded to distributed component software in Ae Jo™
real-time CORBA and related models [9]. CORBA is fundamentally adistnbuted object-oriented
approach based on remote procedure calls. Built upon this foundation of remote prwedure c^ls
are various services, including an event service that provides apubli^sh-and-subwnbe semntics.
Real-time CORBA extends this further by associating pnonties with event handling, a
leveraging real-time scheduling for processing events in atimely manner. Real-time CORBA,
however is still based on prevailing software abstractions. Thus, for effective real-time
perforrrmnce, aprogrammer has to specify various numbers, such as woRt-case and typical
Lecution times for procedures, cached and not. These numbers are hard to know precisely. Real
time scheduling is then driven by additional parameters such ^-r*n'"''^am^R taken
with semantically weak parameters called "importance and cnticality. These pararrteteR, taken
together, amount to guesses, as their actual effect on system behavior is hard to predict except by
experimentation.

Asophisticated component technology for embedded software will talk more about
than procedures. But we must find away to make these processes compositional, and to control
their real-time behavior in predictable and undeRtandable ways. It will talk ,.
and the models of computation used to regulate interaction between components. And it will talk
about time,

\

4. Actor-Oriented Design

Object-oriented design emphasizes inheritance and procedural interfaces. We need an approach
that like object-oriented design, constructs complex applications by asremblmg components, but
emphasizes concurrency and communication abstractions, and admits time as afirst-class
concept. Isuggest the term actor-oriented design for arefactored software architecture, where
instead of objecR, the components are parameterized actors with ports. Ports and parameters
define the interface of an actor. Aport represents an interaction with other actOR, but uiilike a
method does not have call-retum semantics. Its precise semantics depends on the model of
computation, but conceptually it represenR signaling between components.

There are many examples of actor-oriented frameworks^, including Simulink (fro^he
MathWorks), LabVIEW (from National InstrumenR), Easy 5x (from B^ing), SPW (the signal
processing worksystem, from Cadence), and Cocentric System studio (from Synopsys). The
approach has nor been entirely ignored by the software engineering community, as evidenc^ by
ROOM (real-time object-oriented modeling from Rational) and some
languages (ADLs, such as Wright [8]). Hardware design languap, such as VITOL, Venlog, a
SystemC, are all actor oriented. In the academic community, active objects and act^ [3][4],
timed I/O automata [67], Polis and Metropolis [20], Giotto [38], and Ptolemy and Ptolemy H
[21] all emphasize actor orientation.

Affha uses the term "actors " which he defines to extend the concept of objects to concurrent
..in-P"""'"" [5]. Agha's actors encapsulate athread ofcontrol and have interfaces for interacting
with other actoR. The protocols used for this interface are called interaction patterns, and are part

of the model of computation. My use of the term "actors" is broader, in that Ido not require the
actors to encapsulate athread of control. But I share with Agha the notion of interaction patterns,
which I call the "model of computation."

Agha argues that no model of concurrency can or should allow all communication abstractions to
be directly expressed. He describes message passing as akin to "gotos" in their lack of structure.
Instead, actors should be composed using an interaction policy. These more specialized
interaction policies will form models ofcomputation.

Abstract Syntax

It is useful to separate syntactic issues from semantic issues. Mabstract syntax defines how a
design can be decomposed into interconnected components, without being concerned with how a
design is represented on paper or in acomputer file (that is the concern of the concrete syntax).
An abstract syntax is also not concerned with the meaning of the interconnections of components,
nor even what acomponent is. Adesign is aset of components and relationships among them,
where the relationships conform to this abstract syntax. Here, we describe the abstract syntax
using informal diagrams that illustrate these sets and relations by giving use cases, although
formalizing the abstract syntax isnecessary for precision.

Relation

Parametefs

Figure 1. Abstract syntax ofactor-oriented designs.

Consider the diagram in figure 1. This shows three components (actors), each with one port, and
an interconnection between these ports mediated by a relation. This illustrates abasic abstract
syntax. The abstract syntax says nothing about the meaning of the interconnection, but rather just
merely that it exists. To be useful, the abstract syntax is typically augmented with hierarchy,
where an actor is itself an aggregate of actors. It can be further elaborated with such features as
ports supporting multiple links and relations representing multiple connections. An elaborate
abstract syntax of this type isdescribed in [21].

Concrete Syntaxes

The abstract syntax may be associated with any number of concrete syntaxes. For instance, an
XML schema might be used to provide atextual representation of astructure [55]. Avisual editor
may provide adiagrammatic syntax, like that shown in figure 2.

I utilities
Idirector libratY
I actor library
I Oraptiics

DE Director

88j^^

Master Clock

This model illustrates composite types in Ptolemy II.
The Record Assembler artor composes a string with an
integer into a record token, which is thenpassed through
a channel that has random delay. The tokens arrive
possibly inanother order. TheRecord Disassembler
actor separates the stnng from the sequence number.
The strings are displayed as received (possibleout
oforder), and resequenced by the Sequencer actor,
which puts thembackin order. This example demonstrates
how types propagate through record composition and
decomposition.

Stnng Sequence

Record AssemWer

Sequence Count
Record Disassembler

Channel Model • Display As Received

Ttie ctiannel rs modeled ^
by a vanable delay, wtiich
here is lendom. with a

Rayteigh distribution.

Display Reseqi

Figure 2. An example of avisual concrete syntax. This is the visual editor for Ptolemy II [21]
called Vergil, designed by Steve Neuendorffer.

Actor-oriented design does not require visual syntaxes. However, visual depictions of systems
have always held astrong human appeal, making them extremely effective in conveying
information about adesign. Many ofthe methods described in this chapter can use such
depictions to completely and formally specify models. Visual syntaxes can be every bit as precise
and complete as textual syntaxes, particularly when they are judiciously combined with textual
syntaxes.

Visual representations of models have amixed history. In circuit design, schematic diagrams used
to be routinely used to capture all of the essential information needed to implement some systems.
Today, schematics are usually replaced by text in hardware description languages such as VHDL
or Verilog. In other contexts, visual representations have largely failed, for example flowcharts
for capturing the behavior of software. Recently, anumber of innovative visual formalisms have
been garnering support, including visual dataflow, hierarchical concurrent finite state machines,
and object models. The UML visual language for object modeling, for example, has been
receiving a great deal ofpractical use [25].

Semantics

Asemantics gives meaning to components and their interconnection. It states, for example, that a
component is aprocess, and aconnection represents communication between processes^
Alternatively, acomponent may be astate and aconnection may represent atransition between
states. In the former case, the semantics may restrict how the communication may occur. These

semantic models can be viewed as architectural patterns [66], although for the purposes ofthis
chapter, Iwill call them models ofcomputation. One of my objectives here is to codify afew of
the known models ofcomputation that are useful for embedded software design.

Consider afamily of models of computation where components are producers or consumers of
data (or both). In this case, the ports acquire the property of being inputs, outputs, or both.
Consider for example the diagram in figure 3.

senal)
recewer.put(t)

P2

Figure 3. Producer-consumer communication mechanism.

This diagram has two actors, one producer and one consumer. The diagram suggests aport that is
an output by showing an outgoing arrow, and an input by showing an ingoing arrow. It also
shows asimplified version of the Ptolemy II data transport mechanism [21]. The producer sends a
token tvia its port by calling asend() method on that port. This results in acall to the put()
method ofthe receiver in the destination port. The destination actor retrieves the token by calling
get() on the port. This mechanism, however, is polymorphic, in the sense that it does not specify
what itmeans to call put() or get(). This depends on the model ofcomputation.

Amodel of computation may be very broad or very specific. The more constraints there are, the
more specific it is. Ideally, this specificity comes with benefits. For example, Unix pipes do not
support feedback structures, and therefore cannot deadlock. Common practice in concurrent
programming is that the components are threads that share memory and exchange objects using
semaphores and monitors. This is avery broad model of computation with few benefits. In
particular, it is hard to talk about the properties of an aggregate of components because an
aggregate of components is not acomponent in the framework. Moreover, it is difficult to analyze
adesign in such amodel of computation for deadlock or temporal behavior.

Amodel of computation is often deeply ingrained in the human culture of the desipers that use
it. It fades out ofthe domain ofdiscourse. Itcan be argued that the Turing sequentiality of
computation is so deeply ingrained in contemporary computer science culture that we no longer
realize just how thoroughly we have banished time from computation. In amore domain-specific
context, users of modeling- languages such as Simulink rarely question the suitability of the
semantics to their problem at hand. To such users, it does not "have asemantics, it just is.

The key challenge in embedded software research is to invent or identify models of computation
with properties that match the application domain well. One of the requirements is that time be
central to the model.

Models of Computation

Amodel ofcomputation can be thought ofas the "laws ofphysics that govern component
interactions. It is the programmer's model, or the conceptual framework within which larger
designs areconstructed by composing components.

s^l's(=?i-rr;-°':::'c:?j.

"" .h. vi N.— .»*,. ^» -P, —
transformations are occurring simultaneously, in arbitrary order.

In networked embedded systems, communicationorde.ofmag^^^^^^^
—arlnd— ta'ke "zero" time) is usually poorly -^ed to^^ '̂-c.es, and
vice versa. Thus, practical designs will almost certainly have to combine techniques.

It is well —
abstraction above the hardware suppon. igast one more level of abstraction in

Linda [18], and many others.

management.

It is fairly common to support models of computation with language extensions or eM'̂ y "®*
n,-rain for examole supports synchronous message passing based on guarlanguages Occa^ [32], Signal [11], and Argos [69] support the

entirely rewritten.

hardware implementations. Java, in theory, provides portability, migratability, and acertain
measure of security. C provides efficient execution.

The interaction between modules could follow any of several principles, e.g., those of Kahn
process networks [45]. This abstraction provides arobust interaction layer with loosely
synchronized communication and support for mutable systems (in which subsystems come and
go). It is not directly built into any of the underlying languages, but rather interacts with them as
an application interface. The programmer uses them as adesign pattern [28] rather th^ as a
language feature. Larger applications may mix more than one model of computation. For
example, the interaction of modules in areal-time, safety-critical subsystem might follow the
synchronous/reactive model of computation, while the interaction of this subsystem with other
subsystems follows aprocess networks model. Thus, domain-specific approaches can be
combined.

5. Examples of Models of Computation

There are many models of computation, each dealing with concurrency and time in different
ways. In this section, Ioutline some of the most useful models for embedded software. All ot
these will lend a semantics to the same abstract syntax shown in figure 1.

Dataflow

In dataflow models, actors are atomic (indivisible) computations that are triggered by the
availability of input data. Connections between actors represent the flow of data from aproducer
actor to aconsumer actor. Examples of commercial frameworks that use dataflow models are
SPW (signal processing worksystem, from Cadence) and LabVIEW (from National Instruments).

Synchronous dataflow (SDF) is aparticularly restricted special case with the extremely "sejul
property that deadlock and boundedness are decidable [47][52][56][57]. Boolean dataflow (BDF)
is ageneralization that sometimes yields to deadlock and boundedness analysis, although
fundamentally these questions remain undecidable [16]. Dynamic dataflow (DDF) uses only run
time analysis, and thus makes no attempt to statically answer questions about deadlock and
boundedness [42][46][73].

Time Triggered

Some systems with timed events are driven by clocks, which are signals with events that are
repeated indefinitely with afixed period. Anumber of software frameworks and hardware
architectures have evolved tosupport this highly regular style ofcomputation.

The time-triggered architecture [49] is ahardware architecture supporting such models. The TTA
takes advantage of this regularity by statically scheduling computations and communications
among distributed components.

In hardware design, cycle-driven simulators stimulate computations regularly according to the
clock ticks. This strategy matches synchronous hardware design well, and yields highly efficient
simulations for certain kinds ofdesigns. In the Scenic system [61], for example, components are
processes that run indefinitely, stall to wait for clock ticks, or stall to wait for some condition on
the inputs (which are synchronous with clock ticks). Scenic also includes aclever mechanism for

modeling preemption, an important feature ofmany embedded systems. Scenic has evolved into
the SystemC specification language for system-level hardware design (see http://systemc.org).

The Giotto programming language [38] provides atime-triggered software abstraction which,
unlike the XTAor cycle-driven simulation, is hardware independent. It is intended for embedded
software systems where periodic events dojninate. Itcombines with finite-state machines (see
below) to yield modal models that can bequite expressive.

Discrete-time models ofcomputation are closely related. These are commonly used for digital
signal processing, where there is an elaborate theory that handles the composition of subsystems.
This model ofcomputation can be generalized tosupport multiple sample rates. In either case, a
global clock defines the discrete points at which signals have values (at the ticks).

Synchronous/Reactive

In the synchronous/reactive (SR) model ofcomputation [10], connections between components
represent data values that are aligned with global clock ticks, as with time-triggered approaches.
However, unlike time-triggered and discrete-time approaches, there isno assumption that all (or
even most) signals have a value ateach time tick. This model efficiently deals with concurrent
models with irregular events. The components represent relations between input and output
values ateach tick, allowing for absences ofvalue, and are usually partial functions with certain
technical restrictions to ensure determinacy. Sophisticated compiler techniques yield extremely
efficient execution thatcanreduce all concurrency to a sequential execution. Examples of
languages that use the SR model ofcomputation include Esterel [13], Signal [11], and Lustre
[19].

SR models are excellent for applications with concurrent and complex control logic. Because of
the tight synchronization, safety-critical real-time applications are agood match. However, also
because ofthe tight synchronization, some applications are overspecified in the SR model, which
thus limits the implementation alternatives and makes distributed systems difficult tomodel.
Moreover, in most realizations, modularity iscompromised by the need toseek a global fixed
point at each clock tick.

Discrete Events

In discrete-event (DE) models ofcomputation, the connections represent sets ofevents placed on
a time line. Anevent consists of a value andtime stamp. This model of computation is popular
for specifying hardware and for simulating telecommunications systems, and has been realized in
a large number ofsimulation environments, simulation languages, and hardware description
languages, including VHDL and Verilog. Like SR, there is aglobally consistent notion oftime,
but unlike SR time has a metric, in that the timebetween events has significance.

DE models are excellent descriptions ofconcurrent hardware, although increasingly the globally
consistent notion oftime isproblematic. In particular, itover-specifies (or over-models) systems
where maintaining such aglobally consistent notion is difficult, including large VLSI chips with
high clock rates, and networked distributed systems. Akey weakness is that it is relatively
expensive to implement in software, as evidenced by the relatively slow simulators.

Process Networks

Acommon way of handling concurrent software is where components are pr^esses or threads
that communicate by asynchronous, buffered message passing. The sendern« wX the teceWto be ready to receive the message. Thete are ^^veml vanarru^^
technique, but Ifocus on one that ensures determinate computation, namely Kahn process
networks [45].

In aKahn nrccess network (PN) model of computation, the connections represent sequences of?ata vies Sstand the components represent functions that map input sequences rnto
iLtlu"^technical restrictions on these functions are necessary to ensurerScTmearlTng that the sequences are fully
of process networks that constract processes as sequences of atorrac actor firings [].
PN models are excellent for signal processing [62]. They are loosely coupled, and henceSyeasy mpamllelize or distribute. They can be implemented efficiently b°th
and hardware, and hence leave implementation options open. Akey weataess of PN rn^e
that they are awkward for specifying complicated control logic. Control logic is specified by
routing data values.

Rendezvous

In svnchronous message passing, the components are processes, and processes communicate inSttTmanTou^actLns cflled rendezvous. If two processes
reaches the point first at which it is ready to communicate, then it stalls until the other promadv tVcXunicate. "Atomic" means that the two processes are simultaneously mvo ved in the
exchange, and that the exchange is initiated and completed in asingle ,40,
Examples of rendezvous models include Hoare's communicating sequential processes (CSP) []SlnL-s« ofcommunicating systems (CCS) [72). This m^el computati^ has
been realized in anumber of concurrent programming languages, including Lotos and Oc
Rendezvous models are particularly well matched to applications where resource sharing is akey
element such as client-server database models and multitasking or multiplexing of hardvva
~es Akey weakness of rendezvous-based models is that maintaining detemunacy crm be
difficult. Proponents of the approach, of course, cite the ability to model nondetermmacy key
Strength.

Rendezvous models and PN both involve threads that communicate via message passing
frchr^rsly^ the former case and asynchronously in the latter. Neither m^el 'ntnnsicaUy
includes anotion of time, which can make it difficult to interoperate with models that do include
anotion of time. In fact, message events are partially ordered, rather than totally ordered as they
would be were they placed ona time line.

Both models of computation can be augmented with anotion of time to promote interoperability
and to directly model temporal properties (see for example [74]). In the Pamela system [83],ti^Ids rtIS time does not advance while they are active, but can advance when they stall
on inputs outputs, or explicitly indicate that time can advance. By this vehicle, additional
consLnis are imposed on the order ofevents, and determinate interoperability with timed

models of computation becomes possible. This mechanism has the potential of supporting low-
latency feedback and configurable hardware.

Publish and Subscribe

In publish-and-subscribe models, connecttons between components are via named event streams.
Acomponent that is aconsumer of such streams registers an interest in the stream. When a
producer produces an event to such astream, the consumer is notified that anew event is
available. It then queries aserver for the value of the event. Linda is aclassic example of afully
elaborated publish-and-subscribe mechanism [6]. It has recently been reimplemented in
JavaSpaces, from SunMicrosystems.

Continuous Time

Physical systems can often be modeled using coupled differential equations. These have anatural
representation in the abstract syntax of figure 1, where the connections represent continuous-time
signals (functions of the time continuum). The components represent relations between these
signals. The job of an execution environment is to find afixed-point, i.e., aset of functions of
time that satisfy all the relations.

Differential equations are excellent for modeling the physical systems with which embedded
software interacts. Joint modeling ofthese physical systems and the software that interacts with
them is essential todeveloping confidence in adesign ofembedded software. Such joint
modeling is supported by such actor-oriented modeling frameworks as Simulink, Saber, VHDL-
AMS, and Ptolemy II.

Finite State Machines

All ofthe models ofcomputation considered so far are concurrent. It is often useful to combine
these concurrent models hierarchically with finite-state machines (FSMs) toget modal luodels.
FSMs are different from any ofthe models we have considered so far in that they are strictly
sequential. Acomponent in this model is called astate or mode, and exactly one state is active at
a time. The connections between states represent transitions, or transfer ofcontrol between states.
Execution is astrictly ordered sequence of state transitions. Transition systems are amore general
version, in that agiven component may represent more than one system state (and there may be
an infinite number of components).

FSM models are excellent for describing control logic in embedded systems, particularly safety-
critical systems. FSM models are amenable to in-depth formal analysis, using for example model
checking, and thus can be used to avoid surprising behavior. Moreover, FSMs are easily mapped
to either hardware or software implementations.

FSM models have a number ofkey weaknesses. First, ata very fundamental level, they are not as
expressive as the other models of computation described here. They are not sufficiently rich to
describe all partial recursive functions. However, this weakness is acceptable in light of the
formal analysis that becomes possible. Many questions about designs are decidable for FSMs and
undecidable for other models ofcomputation. Another key weakness is that the number ofstates
can get very large even in the face of only modest complexity. This makes the models unwieldy.

The latter Drobleiti cati often be solved by using FSMs in combination with concuirent models of
computation. This was first noted by Harel, who introduced the Statecharts formalism Statecf^
comLe synchronous/icactive modeling with FSMs [33]. Statecharts have ton ^o^ed by UMLr,nS tUTdynamics of softwate [25). FSMs have also ton comtoed wtth dtffetenttal
equations, yielding the so-called hybrid systems model of computation [39].

FSMs can be hierarchically combined with ahuge variety of concurrent models of computarion.
We call the resulting formalism "*charts" (pronounced "starcharts") where the star lepresents a
wildcard [29].

Consider the model shown in figure 4. In that figure, component Bis hierarchically rcfmed by
another model consisting of three components, c, d, and e. ^
states of astate machine, and the connections between them are state transitions. States canaSownt^neTm concuirent models themselves. The interpretation sthat while the FSM is
SStocomponent Bis in fact defined by component H. While it is in state e, component
Bisdefined by a composition ofF and G.

—p- A B
/ ^ \

/••f c)

/ e K

/
i y' ——

Figure 4. Hierarchical composition of an FSM with concurrent models of computation.
In the figure square boxes depict components in aconcurrent model of computation, whileSsl^ctles in astate Lchine. Despite the different sTr
is the same- components with interconnections. If the concurrent model of computatmn is SR,
then the combination has Statechart semantics. Ifitis continuous
hybrid systems semantics. If it is PN. then the combination is similar to the SDL language [7bJ.
it isDE, then the combination issimilar toPolls [20].

6. Choosing a Model of Computation

The rich variety of models of computation outlined above can be daunting to adesigner faced
with having to select them. Most designers today do not face this choice because they
monly one or two. This is changing, however, as the level of abstraction and domain-specificity

of design practice both rise. We expect that sophisticated and highly visual user interfaces will be
needed to enable designers to cope with this heterogeneity.

An essential difference between concurrent models of computation is their modeling of ti™.
Some are very explicit by taking time to be areal number that advances uniformly, and placing
!Ztson atSnXe or evolving continuous signals along the time line. Others ""strac
and take time to be discrete. Others are still more abstract and take time to te
imposed by causality. This latter interpretation results in time that is partially ordered, and
explains much of the expressiveness in process networks and rendezvous-based m^els of
computation. Partially ordered time provides amathematical framework for formally analyzing
and comparing models of computation [59].

Many researchers have thought deeply about the role of time in computation.
observe that in certain classes of systems, "the nature of tune is by no means universal, bw rather
local to each subsystem, and consequently multiform" (11]. Lamport observes tha ac^f^inated
notion of time cannot be exactly maintained in distributed systems, and shows that apartial
ordering is sufficient [51]. He gives amechanism in which messages in an asynchronous systemciSW ^nd manipulate these time stamps. We can then talk about processes
having information or knowledge at aconsistent cut, rather than' simultaneously .Fidge gives a
related mechanism in which processes that can fork and join increment acounter o^ach
1261 Apartial oidering relationship between these lists of times is deternuned by procMSl^Siion'destruction, L communication. If the number of p^e^^^^^
Mattem gives amore efficient implementation by using vector time [71]. All of this work
offers ideas for modeling time.

How can we reconcile this multiplicity ofviews? Agrand
seek aconcurrent model of computation that serves all purposes. This could be accomplished by
creating amelange, amixture of all of the above. For example, one imght permit each connection
between components to use adistinct protocol, where some are timed and s^enot, and some
synchronous and some not, as done for example in ROOM [78] and SystemC 2.0
(http://systemc.org). This offers rich expressiveness, but such amixture
complex and difficult to understand, and synthesis and validation tools would be difficult to
design. In my opinion, such richly expressive formalisms are best used as foundations for more
specialized models of computation. This, in fact, is the intent in SystemC 2.0 [79).

Another alternative would be to choose one concurrent model of computation, say the rendezvous
model and show that all the others are subsumed as special cases. This is «»sy to do, in
theory'. Most of these models of computation are sufficiently expressive to be ables"bsume
most of the others. However, this fails to acknowledge the strengths and wealmesses of each
model of computation. Process networks, for instance, are very good at describing the data
dependencies in asignal processing system, but not as good at descnbing the associated control
logic and resource management. Finite-state machines are good at modeling at 'ea^t simple
control logic, but inadequate for modeling data dependencies and numenc compuution.
Rendezvous-based models are good for resource management, but they overspecify
dependencies. Thus, to design interesting systems, designers need to use heterogeneous model .
Certain architecture description languages (ADLs), such as Wright [8] and Rapide [66], define a
model of computation. The models are intended for descnbing the nch sorts of component
interactions that commonly arise in software architecture. Indeed, such descnptions y)®'''
good insights about design. But sometimes, the match is poor. Wnght, for example, which

halted on CSP does not cleanly describe asynchronous message passing (it requires givingdLtTdS'ns Ae nschanisn. of message passing). Ibelieve that what -jaUy wan.
L arcmecJe design languages rather than descnptton lan^^^^^
focus should not be on describing cuiient practice, but rather on improving futme practice^S d^emfom wl its strong commitiLnt to CSP, should not be concerned with whete itS miSSnchronous mLage passing. It should instead take the stand that asynchronous
message passing is abad idea for the designs it addresses.

7. Heterogeneous Models

FiEure 4shows ahierarchical heterogeneous combination of models of computation. A
coLunent model at the top level has acomponent that is refined into afinite-state machine. Thst^esTSe mchine are further mfined into aconcuirent model of computation. Ideally,
each concurrent model of computation can be designed in such away that it composes
transparently with FSMs, and, in fact, with other '
when building arealization ofamodel of computation, it would be best rf td.d not need to oe
jointly designed with the realizations that it can compose with hierarchically.
Thi^ is achallenEine problem. It is not always obvious what the meaning should te of some
particular hierarchical combination. The semantics of various combinations of FSMs ve"0
coIliureLcy models are described in [29]. In Ptolemy II [21], the composition is accomplished
viaa notion called domain polymorphism.

In Ptolemy II, components in aconcurrent model of computation implement» ^coSof asuite of acion methods. These methods define the execution the componem^ A
component that can be executed under the direction of any ofanumber of models of computatio
is cahed adomain polymorphic component. The component is not defined to operate withparticular model of computation, but instead has awell-defined behavior in several, and can be
usefully used in several.

The term "domain polymorphism" requires some This"'"
the Ptolemv project to refer to an implementation of amodel of computation. ThisfnlptemScan be thought of as a"language," except that it f
traditional textual syntax of conventional programnung languages. Instead, it abides by alo^raSt syntax that underlies all Ptolemy models. The term "domain" is afanciful one,
coming from the speculative notion in astrophysics that there are regions of the universe wheretheTw\"ics differ. Such regions are called "domains." The model of computation is
analogous tothe laws ofphysics.

In Ptolemv II an application (which is called a"model") is constructed by composing
minnonents (most of which are domain polymorphic), connecting them, and assigning adom .Sitgtls theTnreraction between components and the flow of contiol. hprovides the
execution semantics to the assembly of components. The key to hierarchically composi g
multiple models of computation is that an aggregation ofcomponents under the control of
domain should itselfdefine adomain polymorphic component.
as acomponent within adifferent model of computation. In Ptolemy U, this is how finite-state
machine models are hierarchically composed with other models to get hybrid systems, Statech
likemodels, andSDL-like models.

Domain-polymorphic components in Ptolemy nsimply need to implement aJava mterffc®
Executable. This interface defines three phases of execution, an miualizatwn phase, which is
executed once an iteration phase, which can be executed multiple times, and atermination
tjhase which is executed once. The iteration itself is divided into three pha^s also. The first
phase' called prefire, can examine the status of the inputs and can abort the iteration or co"''""
ft. Th^ piefiie phase can also initiate some computation, if appropn^e. The ptoe^
fire, can also perform some computation, if appropriate, and can
phase, called postfire, can commit any state changes for the component that imght be appropnat .
To get hierarchical mixtures of domains, adomain must itself implement the Executable interface
reexecureTn aggregate of components. Thus, it must define an initialization iteration, and
termination phase, and it within the iteration phase, it must define the same three phases of
execution.

The three-phase iteration has proven suitable for ahuge variety of m^els of computation,
including synchronous dataflow (SOP) [56), discrete events (DE) [54], discrete tmie (DT) [27],
finite-state machines (FSM) [29], continuous-time (CT) [64], and Giotto (a time-tnggered
domain) [38]. All of these domains can be combined hierarchically.

Some domains in Ptolemy II have fixed-point semantics, meaning that in each iteration, thedZin Z r^^tedly fire the components until afixed point is found. Two such don '̂ns am
continuous time (CT) [64] and synchronous/reactive (SR) [24][86].
committed only in the postfire phase of an iteration makes it easy to use domain-polymorphic
components insuch a domain.

Ptolemy Ualso has domains for which this pattern this pattern does not work quite as well. In
particular, in the process networks (PN) domain [30] and communicating sequential pwesses
(CSP) domain, each component executes in its own thread. These domains have no difficulty
executing domain polymorphic components. They simply wrap mathread a(potentially)LZnce of iteratlL However, aggregates in such domains are harder to encapsuhne as do^m
polymorphic components, because it is hard to define an iteration for the aggregate- Si^e each
component in the aggregate has its own thread of execution, it can be tncky to define the
boundary points between iterations. This is an open issue that the Ptolemy prtyect
address, and to which there are several candidate solutions that are applicable for particular
problems.

8. Component Interfaces

The approach described in the previous section is fairly ad hoc. The Ptolemy project has
constructed domains to implement various models of computation, most of which
research communities centered on them. It has then experimented combinations (rf models
of computation, and through trial and error, has identified areasonable design for adomain- ^
polymorphic component interface definition. Can this ad hoc approach be made more systematic.

Ibelieve that type system concepts can be extended to make this ad hoc approach moreysteZic Type systems in mtidera programming languages, however, do not go far enough.sZTresearchers'have proposed extending the type system— such r^es ^
bounds overruns, which are traditionally left to the run-time system [88]. But many issues are still
not dealt with. For example, the fact that prefire is executed before^re in adomain-polymorphi
component isnot expressed in the type system.

At its root, atype system constrains what acomponent can say about its interface, and how
compatibility is ensured when components are composed. Mathematically, type system meth
depend on apartial order of types, typically defined by asubtyping relation or by lossless
convertibility. They can be built from the robust mathematics of partial orders, leveraging for
example fixed-point theorems to ensure convergence of type checking, type resolution, and type
inference algorithms.

With this very broad interpretation of type systems, all we need is that the properties o^
interface be given as elements ofapartial order, preferably acomplete partial order (CPO) or a
lattice [781.1 suggest first that dynamic properties of an interface, such as the conventions m
domain-polymorphic component design, can be described using nondetermimstic automata, and
that the pertinent partial ordering relation is the simulation relation between automate.
Preliminary work in this direction is reported in [60], where the result is called asystem-level typ
system.

Svstem-level types can be used without modifying the underlying languages, but rather by
overlaying on standard languages design patterns that make these types exp icit. omain-
polymorphic components are simply those whose system-level types are polymorphic.

Note that theie is considerable precedent for such augmentations of the type system. For
Lucassen and Giffoid introduce state into functions using the type system to delate whethe
functions are free of side effects [65]. Martin-L6f introduces dependent types, in which ^re
indexed by terms [70]. Xi uses dependent types to augment the type system to include array si ,
and uses type resolution to annotate programs that do not need dynamc array bounds chec i g
[88]. The technique uses singleton types instead of general terms [37] to help avoid
undecidability. While much of the fundamental work has been developed using fimctional
languages (especially ML), there is no reason that 1can see that it cannot be applied to more
widely accepted languages.

On-line Type Systems

Static support for type systems give the compiler responsibility for the robustness of software
[17] This is not adequate when the software architecture is dynamic. The software needs to take
responsibility for its own robustness [50]. This means that algorithms that support the type system
need to be adapted to be practically executable at run time.

ML is an early and well known realization of a"modem type system [31][81][87]. It was the
first language to use type inference in an integrated way [41], where the types of variables are not
declared, but are rather inferred from how they are used. The compile-time algorithms here are
elegant, but it is not clear to me whether run-time adaptations are practical.

Many modem languages, including Java and C++, use declared types rather than ^pe '"fefencf-
but their extensive use of polymorphism still implies aneed for fairly sophisticated type checking
and type resolution. Type resolution allows for automatic (lossless) type conversions and for
optimized run-time code, where the overhead of late binding can be avoided.

Tvpe inference and type checking can be reformulated as the problem of finding the fixed ^mt
of amonotonic function on alattice, an approach due to Dana Scott [77]. The lattice descnbes a
partial order of types, where the ordering relationship is the subtype relation, ^mple
Double is asubtype of Number in Java. Atypical implementation reformulates the fixed point

problem as the solution of asystem of equations [72] or of inequalities [89]. Reasonably efficient
algorithms have been identified for solving such systems of inequalities [75], although these
algorithms are still primarily viewed as part of acompiler, and not part of arun-time system.

Iteration to afixed point, at first glance, seems too costly for on-line real-time computation.
However, there are several languages based on such iteration that are used primarily in areal-time
context. Esterel is a notable one ofthese [13]. Esterel compilers synthesize run-time algorithms
that converge to afixed point at each clock of asynchronous system [11]. Such synthesis requires
detailed static information about thestructure of the application, butmethods have been
demonstrated that use less static information [24]. Although these techniques have not been
proposed primarily in the context of atype system, Ibelieve they can be adapted.

Reflecting Program Dynamics

Object-oriented programming promises software modularization, but has not completely
delivered. The type system captures only static, structural aspects of software. It says little about
the state trajectory of aprogram (its dynamics) and about its concurrency. Nonetheless, it has
proved extremely useful, and through the use of reflection, is able to support distributed systems
and mobile code.

Reflection, as applied in software, can be viewed as having an on-line model ofthe software
within thesoftware itself. InJava forexample, this isapplied ina simple way. Thestatic structure
ofobjects is visible through the Class class and the classes in the reflection package, which
includes Method, Constructor, and various others. These classes allow Java code todynamically
query objects for their methods, determine on-the-fly the arguments of the methods, and construct
calls to those methods. Reflection is an integral part of Java Beans, mobile code, and COREA
support. Itprovides a run-time environment with the facilities for stitching together components
with relatively intolerant interfaces.

However, static structure isnot enough. The interfaces between components involve more than
method templates, including such properties as communication protocols. To get adaptive
software in thecontext of real-time applications, it will alsobe important to reflect program state.
Thus, we need reflection on the programdynamics.

The first question becomes at what granularity to do this. Reflection intrinsically refers to a
particular abstracted representation of aprogram. E.g., in the case of static structure, Java's
reflection package does not include finer granularity than methods.

Process-level reflection could include two critical facets, conununication protocols and process
state. The former would capture ina type system such properties aswhether the process uses
rendezvous, streams, orevents tocommunication with other processes. By contrast, Java Beans
defines this property universally to all applications using Java Beans. That is, the event model is
the only interaction mechanism available. Ifacomponent needs rendezvous, itmust implement
that on top of events, and the type system provides no mechanism for the component to assert that
it needs rendezvous. For this reason, Java Beans seem unlikely tobe very useful in applications
that need stronger synchronization between processes, and thus it is unlikely to be used much
beyond user interface design.

Reflecting process state could be done with an automaton that simulates the program. (We use the
term "simulates" in the technical sense ofautomata theory.) That is, a component orits run-time

tko nfa nrocess (much as an object accesses its own staticenvironment can access P ^he state ofa

represents dynamics instead of static structure.

on Statecharts, but would ThS mode, of apt^gram,
intended to capture all aspects of ben ctmrmrp (associations between objects are only

^ «uM t. «"»-
becoming popular with object models (especially UML).

Well-chosen n^flection automata would add va'"e in a^umter of
be asked, via the ne^ork. or bas^ on ^nsor dam, --^^a^ t^fsTn ~ states, and not

techniques as model checking,

on the state of the program.

represented.

hierarchy, or "or" states in Statecharts).

f.i~-
components in the run-time environment to be reflective ine run
portion of the system of components for efficient execution,
scheduling, storage management, an P® provides aconvenient place to reflect aspects of
Because it outlives all application compo , p „oarf^Qat& of closelv related components,
the application that transcend asingle component or an aggr g

9. Frameworks Supporting Models of Computation

In this context, iframework is aset of constraints on components and their interaction, and aset
of benefits that derive from those constraints. This is broader than, but consistent with the
definition of frameworks in object-oriented design [43]. By this definition, there^ ahuge
number of frameworks, some of which are purely conceptual, cultural, or even philosophical,
some of which ate embodied in software. Operating systems are frameworks where the
components are programs or processes. Programming languages are frameworks where the
components are language primitives and aggregates of these pnmrt;ves, ^
interactions are defined by the grammar. Distributed component middleware such as CO^A [9]
and DCOM are fiameworks. Synchronous digital hardware design pnnciples are a
Java Beans form aframework that is particularly tuned to user interface construction. Aparticular
class library and policies for its use is aframework [43].

For any particular application domain, some frameworks are better than others. Operating
systems with no real-time facilities have limited utility in embedded systems, for example.
In order to obtain certain benefits, frameworks impose constraints. As arule, stronger benefits
^omfal the eTpense of stronger constraints. Thus, frameworks may become rather specialized as
they seek these benefits.

The drawback with specialized frameworks is that they are unlikely to solve all the framework
prStte^ fm any complex system. To avoid giving up the benefits of specialized frameworks,
^signers of these complex systems will have to mix frameworks heterogeneously. Of ®SIis needed within which to heterogeneously mix frameworks^ The design osuch a
framework is the purpose of the Ptolemy project [21]. Each domain, which imptements amod
ofcomputation, offers the designer aspecialized framework. But domains can be mixed
hierarchically using the concept of domain polymorphism.

Afew other research projects have also heterogeneously combined models ofcomputation TheS system and its vLal editor Dibit, like Ptolemy, provide aframework for heterosen^
models [1]. Amodel in adomain is called afacet, and heterogeneous modeU are multi-facetted
designs [7], Jouidan et al. have proposed acombination of Argos, ahierarchical finite-state
machine language, with Lustre [32], which has amore dataflow flavor, albeit still w"""" »
synchronous/reactive concurrency framework [44]. Another interesting ®
semantic models is done in Statemate [34], which combines activity charts with statecharts, ^is
soZf integration has more recently become part of UML. The activity charts have some of the
flavor of a process network.

10. Conclusions

Embedded software requires aview ofcomputation that is significantly different from'he
prevailing abstractions in computation. Because such software engages the physical ^^14 it has

timp nnrf Other non-functional properties. Suitable abstractions compose componentsi<» 'rr'.'T:2
to be more specialized. This specialization limits their applicability, but this linuration can be

.iinr!i»>H hv hierarchically combining heterogeneous models of computation. System-level

and promise to provide robust and understandable composition technologies.

11. Acknowledgements

Berkeley. Most notably, the mdividials ^ ^j p Christopher Hylands, Joem

Paul Whitaker, and Yuhong Xiong.

References

[1] H. Abelson and G. J. Sussman, Structure^ Ime^etaiion ofComputer
Programs, The MIT I^ss, Murali. and J. Penix, "Orbit -
AmmSorih Lsurance System Design and Analysis." University of

p»..—c—•v."

MIT Press, Cambridge, MA, 1986. ProCTamming Paradigm for Open

[31

[4]

[8]

[9]

t"- "n .dd -..B. S»«.Ed... Ch^-d i. M.

161 smuj., N. cm.~1 D. <i«l™l". -U«l* »d Fd-B.- Cm-'- ™. !'•
p, KiS,;.•Kf,S:«, D.6S.: Th,

Proceedines of Forum on Design Languages y t-
Snand D. Garlan, 'formalizing
16th International Conference on Software Engineering (ICSE 94), May PP

McGraw-Hill, I"'^ Approach to Reactive and Real-
[10] A.BenvenisteandG.Berry, The Synchro 79 no. 9,1991, pp. 1270-1282.
[ill A^enS an^ru G^mic, "Hybrid Dynar^cal Systems Theory and the^SIGNAL Language,"/EEETranj. on AutommicComrol, vol. 35, no. ,pp.

f1SI sTBhattacharyya, P. K. Murthy and E. A. Lee, Software Synthesi^om

' ' Jhe Token HovI^ModeW Report UCB/ERL 93/69, Ph.D. Dissertanon, Dept.

of EECS, Univefsity of California, Berkeley, CA ^4720, 1993.
http://ptolemy.eecs.berkeley.edii/publications

[17] L. Cardelli and P. Wegner, "On Understanding Types, Data Abstraction, and
Polymorphism," ACM Computing Surveys, Vol. 17, No. 4, pp. 471-522, 1985.

[18] N. Carriero and D. Gelemter, "Linda in Context," Comm. ofthe ACM, vol. 32, no.
4, pp. 444-458, April 1989.

[19] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice, "LUSTRE: ADeclarative
Language for Programming Synchronous Systems," Conference Record ofthe
14th Annual ACM Symp. on Principles ofProgramming Unguages, Munich,
Germany, January, 1987.

[20] M. Chiodp, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, A. Sangiovanni-
Vincentelli, "A Formal Methodology for Hardware/Software Co-design of
Embedded Systems," IEEE Micro, August 1994, pp.26-36.

[21] J Davis II, C. Hylands, B. Kienhuis, E. A. Lee, J. Liu, X. Liu, L. Muliadi, S.
Neuendorffer, J. Tsay, B. Vogel, and Y. Xiong, "Heterogeneous Concurrent
Modeling and Design inJava," Technical Memorandum UCB/ERL MO1/12,
EECS, University ofCalifornia, Berkeley, March 15,2001.
http://ptolemy.eecs.berkeley.edu/publications

[22] E. Dijkstra, "Cooperating Sequential Processes", in Programming Languages, E
F. Genuys, editor. Academic Press, New York, 1968.

[23] B. P. Douglass, Real-Time UML, Addison Wesley, 1998
[24] S A Edwards, 'The Specification and Execution of Heterogeneous Synchronous

Reactive Systems," technical report UCB/ERL M97/31, Ph.D. thesis. University
ofCalifornia, Berkeley, May 1997. http://ptolemy.eecs.berkeley.edu/publications

[25] H.-E. Eriksson and M. Penker, UML Toolkit, Wiley, 1998.
[26] C. J. Fidge, "Logical Time in Distributed Systems," Computer, Vol. 24, No. 8, pp.

28-33, Aug. 1991.
[27] C. Fong, "Discrete-Time Dataflow Models for Visual Simulation in Ptolemy ii.

Memorandum UCB/ERL MOl/9, Electronics Research Laboratory, University of
California, Berkeley, January 2001. http://ptolemy.eecs.berkeley.edu/publications

[28] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison Wesley, 1994.

[29] A. Girault, B. Lee, and E. A. Lee, "Hierarchical Finite State Machines with
Multiple Concurrency Models," IEEE Transactions On Computer-aided Design
OfIntegrated Circuits And Systems, Vol. 18, No. 6, June 1999.

[30] M. Goel, "Process Networks in Ptolemy II." UCB/ERL Memorandum M98/69,
University ofCalifornia, Berkeley, CA 94720, December 16,1998.
http://ptolemy.eecs.berkeley.edu/publications

[31] M. J. Gordon, R. Milner, L. Morris, M. Newey and C. P. Wadsworth, "A
Metalanguage for Interactive Proof in LCF," ConfRecord of the 5th Annual ACM
Symp. on Principles ofProgramming Languages, ACM, pp. 119-130,1978.

[32] N. Halbwachs, P. Caspi, P. Raymond, D. Pilaud, 'The Synchronous Data Flow
Programming Language LUSTRE," Proc. of the IEEE, Vol. 79, No. 9, 1991, pp.
1305-1319. „ c . ^

[33] D. Harel, "Statecharts: AVisual Formalism for Complex Systems, Set. Comput.
Progrflm., vol 8,pp. 231-274, 1987.

[34] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-
Trauring, M. Trakhtenbrot, "STATEMATE: AWorking Environment for the
Development of Complex Reactive Systems," IEEE Trans, on Software
Engineering, Vol. 16, No. 4,April 1990.

n51 DHarel and A. Pnueli. "On the Development of Reactive Systems." in
Modelsfor Verification and Specification ofConcurrent Systems, Spnnger Verlag.

t361 RHarper and P. Lee, "Advanced Languages for Systenis Software; The FoxftojecTin 1994," Technical Report, CMU-CS-FOX-94-01, Camegte-Mellon
r371 S"Si -Seton, Union, and Intersection Types for Program Extraction," in
' (ed.), Proc. of the Int. Conf. on Theoretical Aspects ofComputer
,38] ?ASgSHomwitz, and C. Meyer Kirsch, "Emb^d^ Control SystemsDevelopment with Giotto," Proc. ofLCTES 2001, Snowb.rd, Utah, June 22-23,
[39] T°A.'Henzinger, "The theory of hybrid automata,"

Annual Symposium on Logic'» Computer Scence, IEEE Computer Society Press,
^A-t'-HSSSequentia. Processes,"
p'̂ HJdIk!'"Con'2°pOo^^^ a"'' Application of FunctioMl Pro^mnung
Unguages," ACM Computing Surveys, Vol. 21, No. 3, Septemter _

,421 RJaeamaihan "Parallel Execution of GLU Programs," presented at 2ndInternational Workshop on Dataflow Computing, Hamilton Island, Queensi .

[43] SS-pSrks=(Components +Patterns)." Communications of the

[45] Sr-VteSeSTofa SJple^W^
[46] DJK2n^e7a7"4tcSS Methtid Specification Version 1.0,"UnpublUhed Memorandum, The Naval Research Laboratory, Washington D.C.,
[47] rS',Siller, "Properties ofaModel for .j

Determinacy, Termination, Queueing," SIAM Journal, Vol. 14. pp. 1390-1411,
,481 M'S'̂ n TWa, B. Pollak. R. Obenza, and M. G. Harbour, APractitioner's

HWtook for ReaUTime Analysis: Guide to Rate Monotonic Analysisfor
Real-Time Systems, Kluwer Academic Publishers, Norwell, Massachusetts, 1993.

,491 MHolimann, W. Elmenteich, "A Universal Smart Transducer
Interface- TTP/A," 3rd IEEE International Symposium on Object-oriented Rea

s,. »

uSort/'rTml cS^ ^Communicarions o/,he ACM, Vol. 21, No. 7, July, parallelism
,421 R Lauwereins P.Wauters,M.Ade,J.A.Peperstraete, Geometric Parallelism

and Cyclo-Static Dataflow in GRAPE-II", Proc. 5th Int. Workshop on Rapid
^v^tem Prototvpins, Grenoble, France, June, 1994. j n **

[53] DLea, ConlLnt Programming in JavaTM: Design Principles and Patterns.
Addison-Wesley, Reading MA, 1997.

[40]

[41]

150]

[51]

[541 E. A. Lee, "Modelinl Concurrent Real-time Processes Using Discrete Events,"
.Annals ofSoftware Engineering, Special Volume on Real-Time Software
Engineering, vol. 7 (1999), pp. 25-45. yv/it
E. A. Ue and S. Neuendorffer, "MoML -AModeling Markup Language mXML,
Version 0.4," Technical Memorandum UCB/ERL MOO/12, University of

' ' . . a r\Amr\ 1/1 onnn

[55]

[56]

California, Berkeley, CA 94720, March 14,2000.
http://ptoleniy.eecs.berkeley.edu/publications
E. A. Lee and D. G. Messerschmitt, "Synchronous Data Flow, Proceedings ofthe

[57] EA. 'Le?Ind D. '̂g. Messerschmitt, "Static Scheduling of Synchronous Data Flow
Programs for Digital Signal Processing," IEEE Trans, on Computers, January,
1987.

[58] E. A. Lee and T. M. Parks, "Dataflow Process Networks,", Proceedings of the/£££, vol. 83, no. 5, pp. 773-801, May, 1995. , . r- • moHpU
[59] EA. Lee and A. Sangiovanni-Vincentelli, "A Framework for Comparing Modelsof Computation,"/EEETransncrion on CAD, December 1998. _
1601 E A. Lee and Y.Xiong, "System-Level Types for Component-Based Itesign,Technical Memorandum UCB/ERL MOO/8, Electronics Research Lab, University

ofCalifornia, Berkeley, CA 94720, USA, February 29,2000.
http://ptolemy.eecs.berkeley.edu/publications - • r

(611 S. Liao, S. Tjiang, R. Gupta, "An efficient implementation of reactivity for
modeling hardware in the Scenic design environment," Proc. ofthe Design
Automation Conference (DAC 97), Anaheim, CA, 1997. , r

[621 P Lieverse, P. Van Der Wolf, E. Deprettere, and K. Vissers, "A Methodology for
Architecture Exploration of Heterogeneous Signal Processing Systems, to appear
Journal ofVLSI Signal Processing.2001. .

1631 C. Liu and J. Uyland, "Scheduling Algorithms for Multiprogramming in a
Hard-Real-Time Environment," JACM, vol. 20, pp. 46-61, January 19 •

[641 J Liu, "Continuous Time and Mixed-Signal Simulation mPtolemy II, UCB/EKLMemorandum M98/74, Dept. of EECS, University of California, Berkeley, CA
94720, December 1998. „ ^ d ti.

[65] J. M. Lucassen and D. K. Gifford, "Polymorphic Effect Systems in Proc. 15-th
ACM Symp. on Principles ofProgramming Languages, pp. 47-57, iy8».

(661 D. C. Luckham and J. Vera, "An Event-Based Architecture Definition Language,
IEEE Transactions on Software Engineering, 21(9), pp. 717-734, September,
1995.

[67] N. A. Lynch, Distributed Algorithms, Morgan Kaufmann Publishers, Inc., San
Francisco, California, 1996.

[68] Z. Manna and A. Pnueli, The Temporal Logic ofReactive and Concurrent
Sv5/cms, Springer-Verlag, 1991. ,

[69] F. Maraninchi, 'The Argos Language: Graphical Representation of Automata and
Description of Reactive Systems," in Proc. IEEE Workshop on Visual Languages,
Kobe, Japan, Oct. 1991. . , .

[70] P. Martin-Lof, "Constructive Mathematics and Computer To^
Methodology, and Philosophy ofScience VI, pp. 153-175, North-Holland, 1980.

[711 F. Mattem, "Virtual Time and Global States of Distnbuted Systems, m
and Distributed Algorithms, M. Cosnard and P. Quinton, eds., North-Holland,
Amsterdam, 1989, pp. 215-226. • .» /

[72] R. Milner, "A Theory of Type Polymorphism in Programming, Journal oj
Computer and System Sciences, 17, pp. 384-375,1978.

[73] T. M. Parks, "Bounded Scheduling of Process Networks," Technical Report
UCB/ERL-95-105, PhD Dissertation, EECS Department, University of California.
Berkeley, CA 94720, December 1995.*

[74] G. M. Reed and A. W. Roscoe, "A Timed Model for Communicating Sequential
Processes," Theoretical Computer Science, 58(1/3): 249-261, June 1988.^^

[75] J. Rehof and T. Mogensen, 'Tractable Constraints in Finite Semilattices, Third
International Static Analysis Symposium, pp. 285-301, Volume 1145 of Lecture
Notes in Computer Science, Springer, Sept., 1996.

[76] S. Saracco, J. R. W. Smith, and R. Reed, Telecommunications Systems
Engineering Using SDL, North-Holland -Elsevier, 1989.

[77] D. Scott, "Outline of amathematical theory of computation ,Proc. of the 4th
annual Princeton conf. on Information sciences and systems, 1970,169-176.

[78] B. Selic, G. Gullekson, and P. Ward, Real-Time Object-Oriented Modeling, John
Wiley &Sons, New York, NY 1994. - «n" ^

[79] S. Swan, "An Introduction to System Level Modeling in SystemC 2.0, Cadence
Design Systems, Inc., draft report. May 2001.

[80] W. T. Trotter, Combinatorics and Partially Ordered Sets, Johns Hopkins
University Press, Baltimore, Maryland, 1992.

[81] A. M. Turing, "On Computable Numbers with an Application to the
Entscheidungsproblem," Proc, London Math. Soc., Vol 42, pp. 230-265, 1936.

[82] J. D. Ullman, Elements ofML Programming, Prentice-Hall, 1994.
[83] AJ C van Gemund, "Performance Prediction of Parallel Processing Systems.

The PAMELA Methodology," Proc. 7th Int. Conf on Supercomputing, pages 418-
327,Tokyo, July 1993. „ rc i

[84] M. von der Beeck, "A Comparison of Statecharts Variants, in Proc.
Techniques in Real Time and Fault Tolerant Systems, LNCS 863, pp. 128-148,
Sprinter-Verlag, Berlin, 1994. ^

[85] T. von Eicken, D. E. Culler, and S. C. Goldstein, and K. E. Schauser, Active
messages; amechanism for integrated communications and computation, Proc. ot
the 19th Int Symp. on Computer Architecture, Gold Coast, Australia, May 1992,
also available as technical report TR UCB/CSD 92/675, CS Division, University
ofCalifornia, Berkeley, CA 94720. , • tt"

[86] P Whitaker, 'The Simulation of Synchronous Reactive Systems In Ptolemy ii.
Master's Report, Memorandum UCB/ERL MOl/20, Electronics Research
Laboratory, University of California, Berkeley, May 2001.
http://ptolemy.eecs.berkeley.edu/publications

[87] A. Wikstrom, Standard ML, Prentice-Hall, Englewood Cliffs, NJ, 198^
[88] H. Xi and F. Pfenning, "Eliminating Array Bound Checking Through Dependent

Types " In Proceedings ofACM SIGPLAN Conference on Programming
iZguage Design and Implementation (PLDI '98), pp. 249-257, Montreal, June
1998.

[89] Y. Xiong and E. A. Lee, "An Extensible Type System for Component-Based
Design," 6th International Conference on Tools and Algorithmsfor the
Construction and Analysis ofSystems, Berlin, Germany, March/April 2000 .
LNCS 1785, Springer-Verlag, 2000.

	Copyright notice 2001
	ERL-01-26

