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Abstract

In the literature on generalized pattern search algorithms, it is usually assumed
that the cost function can be evaluated exactly. However, there is a large class of
engineering problems where the numerical evaluation of the cost function involves the
solution of systems of ordinary and partial differential equations as well as algebraic
equations. Computer code for solving these systems can be millions of lines long, and
often defines a discontinuous numerical approximation to the cost function. In such
cases, standard generalized pattern search algorithms are not applicable.

In this paper we extend a class of generalized pattern search algorithms to a form
that uses adaptive precision approximations—to the cost function. These numerical
approximations need not define a continuous function. Our algorithms can be used
for solving linearly constrained problems with cost functions that are at least locally
Lipschitz continuous.

Assuming that the cost function is smooth, we prove that our algorithms converge
to a stationary point. Under the weaker assumption that the cost function is only
locally Lipschitz continuous, we show that our algorithms converge to points at which
the Clarke generalized directional derivatives are nonnegative in predefined directions.

An important feature of our adaptive precision scheme is the use of coarse approx-
imations in the early iterations, with the approximation precision controlled by a test.
Such an approach leads to substantial time savings in minimizing computationally
expensive functions.

Key words: Algorithm implementation, approximations, generalized pattern search,
Hooke-Jeeves, Clarke’s generalized directional derivative, nonsmooth optimization.
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1 Introduction

Generalized pattern search (GPS) algorithms are derivative free methods for the mini-
mization of smooth functions, possibly with linear inequality constraints. Examples of
pattern search algorithms are the coordinate search [9], the pattern search algorithm of
Hooke and Jeeves [5], and the multidirectional search algorithm of Dennis and Torczon [6].
What they all have in common is that they construct a mesh, or pattern, which is then
explored according to some rule, and if a decrease in cost is not obtained on the current
mesh, then the mesh is refined and the process is repeated. In 1997, Torczon [11] was the
first to show that all the existing pattern search algorithms are specific implementations
of an abstract pattern search scheme and to establish that for unconstrained problems
with smooth cost functions, the gradient of the cost function vanishes at accumulation
points of sequences constructed by this scheme. Lewis and Torczon extended her theory
to address bound constrained problems [7] and problems with linear inequality constraints
[8]. In both cases, convergence to a feasible point z* satisfying (Vf(z*),z — z*) > 0 for
all feasible z is proven under the condition that f(-) is once continuously differentiable.
Audet and Dennis [1] present a simpler abstraction of GPS algorithms, and, in addition to
reestablishing the Torczon and the Lewis and Torczon results, they relax the assumption
that the cost function is smooth to that it is locally Lipschitz continuous. However, their
characterization of accumulation points of sequences constructed by a GPS algorithm, on
a locally Lipschitz continuous cost function, while not without merit, falls short of showing
that the accumulation points are stationary in the Clarke sense [3] (i.e., 0 € 8°f(z*)). It
does not seem possible to improve their result.

In principle, a natural area for the application of GPS algorithms is engineering op-
timization, where the cost functions are defined on the solution of complex systems of
simultaneous equations including algebraic equations, ordinary differential equations, and
partial differential equations. In such cases, obtaining an accurate approximation to the
cost function often takes many hours, if not days, and there is no straightforward way
of approximating gradients. Furthermore, it is common that the termination criteria of
the numerical solvers introduce discontinuities in the resulting approximations to the cost
functions. Hence, standard GPS algorithms are not applicable because the cost func-
tion is discontinuous and too expensive to evaluate with fixed precision throughout the
optimization.

In this paper we present a modified class of GPS algorithms which adjust the precision
of the function evaluations adaptively: low precision in the early iterations, with precision
progressively increasing as a solution is approached. The fact, that the approximations to
the cost function may be discontinuous, does not affect the convergence of these methods
to stationary points.

The GPS algorithms that we present are somewhat simpler in structure than those
presented in [11, 7, 8] and [1]. We assume that the cost function f(-) is at least lo-
cally Lipschitz continuous and that it can be approximated by a family of functions, say
{fer ()}, where each f, () may be discontinuous but converges to f(-) uniformly on
bounded sets. A test in the algorithm determines when precision must be increased. This



test makes use only of the current mesh size and includes parameters that can be used to
control the speed with which precision is increased. This flexibility can be exploited to
obtain an order of magnitude reduction in computing times, as compared to using high
precision throughout the computation. Since our GPS algorithms include global search
and local search stages, as is typical in GPS algorithms, our GPS algorithms can also be
used with surrogate cost functions for the the global search, as in [10, 2].

Under the assumption that the cost function is continuously differentiable, all the
accumulation points constructed by our GPS are stationary, while under the assumption
that f(-) is only locally Lipschitz continuous, we regain the results of [1].

2 Notation

1.

>

9°?'?’9"

We denote by Z the set of integers, by Q the set of rational numbers, and by N £
{0, 1, ...} the set of natural numbers. The set N; is defined as N, £ {1, 2 .}
Slmlla.rly, vectors in R*® with strictly positive elements are denoted by R} & {:z: €
R* |28 >0,Vi=1,...,n} and the set Q; is defined as Q; £ {g€ Q| ¢ > 0}.

. The inner product in R* is denoted by (-,-) and for z,y € R" defined by (z,y) £

21.—1 z! y

. If a subsequence {z;}iex C {2}, converges to some point T, we write ; ¥ z

Let W be a set containing a sequence {wi}i-;o. Then, we denote by w; the sequence
{w;}£_, and by W, the set of all k element sequences in W.

We denote by {e;}; the unit vectors in R".
If X is a set, we denote by 90X its boundary and by X its closure.
If S is a set, we denote by 25 the set of all nonempt3; subsets of S.

If De @Q@**9? is a matrix, we will use the notatlon de D to denote the fact that
d € Q" is a column vector of the matrix D. Similarly, by D C D we mean that
D e @**P (1 < p < q) is a matrix containing only columns of D. Further, card(D)
denotes the number of columns of D.

. The least common multiple of a set of natural numbers is the smallest nonzero natural

number that is a multiple of all the elements in the set.

3 Minimization Problem

We want to solve the linearly constrained problem

min f(z) (1a)

X2{zeR|I<Qz <y Lu € R U {+oo}; | <u; Q€ Q™"} (1b)



where the cost function f: R® — R is (at least) Lipschitz continuous and the number of
constraints n. is finite.

We assume that the function f(-) cannot be evaluated exactly, but that it can be
approximated by functions f,: R* — R, k € N, where ¢, € R is a vector containing
precision parameters. We will assume that f(-) and its approximating functions {f, (-)}52,
have the following properties.

Assumption 3.1
1. There ezists an error bound function ¢: R — Ry such that for any bounded set

S C X, there ezists an es € R%. and a scaler Ks € (0, 00) such that for all z € S
and for all ¢ € R, with ¢ < €5 ?,

| fer (z) — f(2)| < Ks p(ex)- ’ (2)
Furthermore,
Jim, p(ex) = 0. (3)
2. The function f: R* — R:3s at least locally Lipschitz continuous. O
Remark 3.2 The functions f, : R* — R may be discontinuous. O

Next, we state an assumption on the level sets of the family of approximate functions.
To do so, we first define the notion of a level set.

Definition 3.3 (Level Set) Given a function f: R* — R and an o € R, such that
a > infyern f(z), we will say that the set Lo(f) C R®, defined as

Lo(f) £ {z € R* | f(z) < o}, (4)
is a level set of f(-), parametrized by a. O

Assumption 3.4 (Compactness of Level Sets) Let {fc (-)}t>, be as in Assumption
3.1 and let X C R* be the constraint set. Let zo € X be the initial iterate and e € R‘_’,_ be
the initial precision parameter. Then, we assume that there ezists a compact set C C R*
such that

Li, eo)(fa)NXCC  VkeN - (5)

0

“For e € R, by € < es, we mean that € < e§, foralli=1, ...,q.



4 Generalized Pattern Search Algorithms
4.1 Geometric Aspects of the Algorithms

A major aspect of any GPS algorithm is the rule for constructing the meshes on which the
searches are conducted. The main difference between our rule for mesh construction and
those of others, such as the one of Audet’s and Dennis [1], is that we use a different rule
for mesh refinement, which results in our meshes being nested, and hence simplifies the
explanation of the geometry of mesh construction. As far as we can tell, our simplification
has no impact on computational efficiency.

The k-th iteration of our GPS algorithms has the following structure. We begin with
the current iterate xj, precision parameter €x, and mesh My. A set-valued map is used
to select a finite subset of mesh points in M, for the so-called “global search”. If this
set contains a point 2’ such that f., (z') < fe,(zk), then we set zx1 = =/, ex41 = €&,
M1 = My, and update the index k to k + 1. If the global search set does not yield a
point of lower cost, we proceed to a “local search”, which consists of evaluating f, (-) on
a set of neighbors of z; in the mesh M. If a point =’ of lower cost is found, then we set
Tp41 = T, €41 = €k, M4y = M, and update the index k to k + 1. If the local search
also fails to produce an improvement, then the mesh My is subdivided to yield a finer
mesh My, and the precision parameter is reduced according to a prescribed rule. After
updating k to k + 1, the entire process is repeated.

We will now flesh out the geometric details of our GPS algorithms. We begin with the
construction of the meshes.

4.1.1 Construction of the Meshes

Before we can explain how the mesh is to be constructed, we must introduce the notions
of a positive combination and of a positive span, as defined by Davis [4], and that of a
base direction matrix. )

Definition 4.1 (Positive Combination, Positive Span)

1. A positive combination of vectors {v;}}_, is a linear combination Y F_, Aivi with
Ai20foralie{l,...,p}.

2. Let V be a n X p matriz and let C C R" be a convez cone. If every c € C can be
written as a positive combination of columns of V, then the columns of V are said
to positively span C, and the matriz V is said to be a positive spanning set.

3. Ifp=n+1, then V is said to be a minimal positive spanning set. O

We will denote by S the set of all matrices whose columns positively span R*.



Next, we define a base direction matriz. We will use the columns of the base direction
matrix to specify the mesh and hence the search directions. The base direction matrix
will be fixed for all iterations.

Definition 4.2 (Base Direction Matrix) LetS be the set of all matrices whose columns
positively span R*. Then, the base direction matrix D is any matriz satisfying

Deq@>?ns (6)
where p > n is any arbitrary but finite natural number. 0

Remark 4.3 The fact that the matrix D has only rational elements makes it very easy
to establish the minimal distance between distinct mesh points (Lemma 5.1). At the same
time, from a computational point of view, requiring D e @**PNS rather than D € R**PNS
does not result in any practical inconvenience. O

Note that the base direction mairix D may not be a minimal positive spanning set,
e.g., for the one-dimensional case, D = [-1, 1, 1.1] would not be minimal. Hence, D
can be used to generate a set D, which we define as the set of all submatrices of D

(constructed by deleting columns of D) whose column vectors positively span R”.

The meshes, over which our algorithms search, are constructed iteratively, as follows.

Definition 4.4 (k-th Mesh) Let zp € X, 1,50,k € N, with r > 1, {t;}*-} CN, and the
base direction matriz D € Q@**P NS be given, and let

I (7

where for k > 0 -
se=so+ )t (8)

Then we define the mesh My by =
M 2 {zo+ ArDm | m € N°}. B (9)
]

It should be clear from the construction of the meshes that whenever ¢, > 0, the mesh
M1 is obtained from the mesh M by dividing the intervals between neighboring points
of the mesh Mj into rt* subintervals by adding additional mesh points. Therefore, it is
clear that the meshes are nested, i.e., M C Mgy; with equality if Agy; = Ag.

We now present two examples: first a simple example of a mesh that is generated by
a minimal positive spanning set, and then an example of a mesh generation using a more
complicated base direction matrix D.



Figure 1: Minimal positive spanning set D= [&1, da, c?;;] and generated mesh in R?

Example 4.5 The vectors {d,},_1 in Fig. 1 form a minimal positive spanning set. The
base direction matrix D is defined by

D=(& & &)2 (o ) _1). (10)
In Fig. 1, the bullets (o) are the mesh points of the mesh M = {0+ 1Dm | m € N}
For example, in Fig. 1, T = Dm, withm = (3, 2, 1)T. O

Next we present a mesh constructed using a more complicated base direction matrix.

Example 4.6 Fig. 2 shows a mesh generated using zg = 0, A = 1 and the base direction
matrix 07

=~ ~ o~ A 1 -0.5 -0.75

b=(4 & &)= (o Y 75) : (11)

Fig. 2(a) shows the vectors {d,},_l (bold arrows) and all possible mesh points of the form
Dv withv = (n, 0, 0)T, v = (0, n, 0)T, and v = (0, 0, n)Twheren € N. Each
arrow points to a mesh point and indicates how the base vectors {d;}3_; are added to
obtain the mesh points. Fig. 2(b) shows the set of all mesh points of the form Dv with
v=(n, m, 0)T and v = (n, 0, m)T where n,m € N. For example, the point labeled with
% is given by ¥ = Dv where v = (2, 1, O)T In Fig. 2(c), more mesh points are drawn
by adding some positive multiple of d2 to some mesh points that have been generated in
Fig. 2(b). For clarity, not all possible mesh points are drawn. In Fig. 2(d), additional
mesh points are generated by adding some positive multiple of d3 to some mesh points of
Fig. 2(c). Fig. 2(e) finally contains all possible mesh points, now indicated by bullets (o).

For clarity, only the vectors {d;}2_, are drawn in Fig. 2(e). 0

4.1.2 Global and Local Search Set

We will now characterize the set-valued maps that determine the mesh points for the
“global” and “local” searches. Note that the images of these maps may depend on the
entire history of the computation.
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Definition 4.7 (Candidates for Direction Matrix, Direction Matrix)
1. Let S be the set of all matrices whose column vectors positively span R*. Given a
base direction matriz D, we define the candidates for direction matrices to be the set

Ds 2 {D | Dc Dns} (12)

where the matriz D is constructed by deleting columns of D.
2. We will call the elements of Dy to be the direction matrices. O
Definition 4.8 Let X, C R* and A, C Q4 be the sets of all sequences containing k

elements, let M be the current mesh, and let Dp be the set of all candidates for the
direction matriz.

1. We define the global search set map to be any set-valued map
v Xp X A xRL = (2¥ nX)Up (13a)
whose image Yi(Zy, Ay, €x) contains only a finite number of mesh points.
2. We define the local search direction map to be any map
05k X X A = Dp. (13b)

3. We will call Gy £ ~v(zy, Ag, €x) the global search set.
4. With Dy = Jﬁ,k(g:_k,ék), we will call
Ly & {zx +Ax Drej | j=1,..., card(Dg)} NX (13c)

the local search set. 0

Remark 4.9
1. The map 7x(-,,) can be dynamic in the sense that if {z;_ o 2 ve(zx, A, €&), then
the rule for selecting z, 1 < 7 < I, can depend on {zx,}'=} and {fe, (zx,)}izh- It is
only important that the global search terminates after a finite number of computa-
tions, and that G, C 2™ NX) U .

2. As we shall see, the global search affects only the efficiency of the algorithm but not
its convergence properties. Any heuristic procedure that leads to a finite number of
function evaluations can be used for (-, -, ).

3. The empty set is included in the range of (-, -, -) to allow omitting the global search
of in the GPS algorithm.

4. Since the range of § ﬁ,k(" ) is D, any image of 65’,6(-, *) is a positive spanning set.

O
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4.2 A Model Adaptive Precision GPS Algorithm

We are now ready to present a model generalized pattern search algorithm with adaptive
precision function evaluations.

Algorithm 4.10 (Model GPS Algorithm)

Data: Initial iterate gy € X;
Precision parameter ¢ € R} ;
Initial mesh size exponent sg € N;
Base direction matrix D € Q**? N'S (see Definition 4.2).
Maps: Global search set map x: Xi X Ax x RL = (2 nX) U@
Local search direction map 5 ,: Xi X Ax = Dp (see Definition 4.8).
Function p: Ry — R (to assign €), such that the composition
pop: R, — R, is strictly monotone decreasing and satisfies
e(p(A))/A = 0,as A = 0.
Step 0: Initialize £k = 0 and A = 1/r%.
Step 1: Global Search
Construct the global search set Gx = Yk (zk, Ag, €)-
If f,(2') < fe,(zi) for any =’ € Gi, go to Step 3; else, go to Step 2.
Step 2: Local Search
Construct the direction matrix Dy = ﬁ,k(ﬁk’ JAVR
Construct Ly 2 {zx + Ax Drej | j=1,..., card(Dg)} N X and
evaluate f, (-) for any =’ € L, until some z’ € Ly
satisfying f, (z') < fe, (k) is obtained, or until all points in Ly
are evaluated.
Step 3: Parameter Update
If there exists an 2’ € Gy U Ly, satisfying f, (2') < fe, (zk),
set Try1 = &', Sp41 = Sk, D1 = Dy, €p41 = €k ;
else, set T3 = Tk, Sk+1 = Sk + tk, wWith ¢ € N arbitrary,
Dgyr = 1/r%+, ety = p(Dg41)-
Step 4: Replace k by &+ 1, and go to Step 1.
Remark 4.11

1. If the optimization is started with the precision parameter ¢y € IR?,_ too small, the
computation time may become unnecessary large. Therefore, in implementing the
Model GPS Algorithm, one may allow € to increase arbitrarily over a preset number
of iterations K.

2. Audet and Dennis [1] increase and decrease the mesh divider using the formula
Agyr = 7™ Ap where 7 € Q, 7 > 1, and m is any element of Z. Thus, our mesh
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construction is a special case of Audet’s and Dennis’ construction since we set 7 =
1/r, with 7 € N;, r > 2 (so that, 7 < 1) and m € N. We prefer our construction
because it leads to simpler geometric constructions, and because we do not see any
reason why it should affect the computational performance negatively.

3. In Step 2, once a decrease of the cost function is obtained, one can proceed to Step 3.
However, one is allowed to evaluate the approximating cost function at more points
in £; in an attempt to obtain a bigger reduction in cost. However, one is allowed to
proceed to Step 3 only after either a cost decrease has been found, or after all points
in £ are tested.

4. In Step 3, we are not restricted to accepting the z' € G U L; that gives lowest
cost value. But the mesh divider Ay is reduced only if there exists no ' € G U Ly

satisfying fe,(2') < fe, (zk)- O

4.3 An Extension of the Hooke-Jeeves Algorithm

To illustrate the use of our Model GPS Algorithm 4.10, we will now use it to obtain an
extension of the Hooke-Jeeves algorithm [5]. To simplify exposition, we will assume that
X =R"

4.3.1 Algorithm Parameters ﬁ, r, So and i

Hooke and Jeeves decrease the “current step size” (A € Ry in [5]) by a factor p € (0,1),
when necessary. To fit their algorithm into our framework, we have to set p £ 1/q for
some g € N, \ {1} 5 and restrict the initial value of their variable A to take on rational
values only .

In view of the above, for our extension of the Hooke and Jeeves algorithm, we define
our base direction matrix as D £ A[+e;, —ey, ..., +€n, —€n] (Where A is the initial value
of the “step size” in [5]) and our other parameters to be r £ g, so = 0, and # € {0, 1},
for all k € N.

4.3.2 Map for Exploratory Moves

To facilitate the algorithm explanation, we first introduce a set-valued map E: R* x Q4 x
RY — 2™« which defines the “exploratory moves” in [5]. The map E: R* xQ4 xRY — 2Me
will then be used in Section 4.3.3 to define the global search set map and, under conditions
to be seen in Section 4.3.4, the local search direction map as well.

5The Restriction p £ 1/q is not serious because one usually has no knowledge that justifies requiring
another value.

5In numerical computer programs, the restriction A € Q; is automatically fulfilled since irrational
numbers cannot be represented.



Algorithm 4.12 (Map E: R* x Q. x R} — 2 for “Exploratory Moves”)

12

Parameter: Base direction matrix D = A [+e1, —e1,...,+en, —eg) € QPX2°
(A being the initial step size of [5]).
Input: Base point z € R?;

Mesh divider Ag € Q4 ;
Precision parameter ¢ € R} .

Output: Set of trial points 7.
Step O: Initialize 7 = 0.
Step 1: Fori=1,...,n
Set T =1z + ArDegiy and T+ T U {Z}.
If fe, (%) < fer(z)
Set x =17.
else

Set =1z + Ar Deg; and T+ T U {Z}.
If fek (E) < fék(z)
Set z = 7.
end if.
end if.
end for.
Step 2: Return 7.

Thus, E(:l:, Ak,ek) =T.

4.3.3 Global Search Set Map 7;: X; x A x R} — 2M«
We define the global search set map Y(:,",*) as follows:

Algorithm 4.13 (Global Search Set Map 7x: X; x A, x R — 2M)

Map: Map for “exploratory moves” E: R* x Q4 x R}, — 2Mk.
Input: Previous and current iterate, zx—; € R® and z; € R*;
Mesh divider Ay € Q4 ;
Precision parameter ¢, € R}.
Output: Global search set G.
Step 1: Set z = zx + (zk — Tg-1)-
Step 2: Compute Gy = E(z, A, €k).
Step 3: If (minzegk fek(x)) > fek(mk)
Set Gi < Gi U E(zg, Ag, €k)-
end if.
Step 4: Return Gi.

Thus, k(zk, Ax, €k) = G-
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4.3.4 Local Search Direction Map d5,: X; x A = D

If the global search, as defined by Algorithm 4.13, has failed in reducing f,(-), then
Algorithm 4.13 has constructed a set Gi that contains the set {zx+Ax De; |i=1,..., 2n}.
This is because in the evaluation of E(z, A, €x), all “if(-)” statements yield false, and,
hence, one has constructed {zx + A De; [i=1,..., 2n} = E(zg, Ak, €)-

Because the columns of D span R” positively, it follows that the search on the set
{zx + AxDe; | i=1,..., 2n} is a local search. Hence, the constructed set

Eké{xk+Akﬁe,-|i=1,...,2n}cgk (14)

is a local search set. Consequently, f¢,(-) has already been evaluated at all points of Ly
(during the construction of Gi) and, hence, one does not need to evaluate f¢,(-) again
in a local search. In view of (13c) and (14), the local search direction map is given by
Dy = b5 (e, Ap) 2 D.

4.3.5 Parameter Update

The point z' in Step 3 of the GPS Model Algorithm 4.10 corresponds to z' £ arg mingeg, fe, x ()
in the Hooke-Jeeves algorithm. (Note that £y C Gy if a local search has been done as ex-
plained in the above paragraph.)

5 Convergence Results

5.1 Unconstrained Minimization

We will now establish the convergence properties of the Model GPS Algorithm 4.10 on
unconstrained minimization problems, i.e., for X = R". -

First, we will show that for any mesh My, the minimal Euclidean distance between all
distinct mesh points is bounded from below by a constant times the mesh divider Ay.

Lemma 5.1 (Minimal Distance between Distinct Mesh Points) Consider the se-
quences {Ar}2, C Q4 of mesh dividers, and {My}52, of meshes, constructed by Model
GPS Algorithm 4.10. Then there exists a constant ¢ > 0, independent of k, such that
min [lu —v|| > Agec. (15)
uFv
u,veM,

Proof. By Definition 4.4, for any given k, we have M 2 {39+ Ar Dm | m € NP} where
D € Qr*P is fixed for all k. Let [ be the least common multiple of all denominators of the
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elements of D. Then, Z21Di is in Z™. Furthermore any pair of mesh points u,v can
be represented as u £ zg + A D'mu and v £ 29 + Ag D m,, where m,, m, € NP. Hence,

min |[u—v|] = _ min Ay ||D (my — my)|l
uF 1D (mu —mo)il0
u,vEM; my,my,ENP
A A

= min Ag|Dm|==F min |Zm|2>F. (16)

|5 mi|£0 |Z m|£0

meL? mezZr

The inequality holds because Z m is a nonzero integer vector. 0

The following corollary follows directly from Lemma 5.1 and will be used to show that
Ay —+0as k — oo.

Corollary 5.2 Any bounded subset of a mesh M, constructed by Model GPS Algorithm 4.10,
contains only a finite number of mesh points. O

Proposition 5.3 Consider the sequence of mesh dividers {A}32, C Q4 constructed by
Model GPS Algorithm 4.10. Then, the mesh dividers satisfy liminfg_, Ax = 0.

Proof. By (7), Ax = 1/r%, where 7 € N with r > 1, and s, C N is a nondecreasing
sequence. For the sake of contradiction, suppose that there exists a Ag. € Q4 , such that
Ap > Ap- for all k € N Then there exists a corresponding sx- = maxgen Sk, and the
finest possible mesh is Mg £ {zo + (1/7°*) Dm|m € NP}.

Next, since by Assumption 3.4, there exists a compact set C, such that Ly, (z)(fe,)NX C
C for all £ € N, it follows from Corollary 5.2 that M. N Ly, (zo)(fc,,) contains only a
finite number of points for any k¥ € N. Thus, at least one pomt in Mj- must belong to
the sequence {z;}§2, infinitely many times. Furthermore, because {sx}32, C N is nonde-
creasing with si. being its maximal element, it follows that e; = ¢~ for all £ > k*. Hence
the sequence {fe,. (zx)}52, cannot be strictly monotone decreasing, which contradicts the
constructions in Algorithm 4.10. 0O

Having shown that liminfy_,.o Ay = 0, we can introduce the notion of a refining
subsequence as used by Audet and Dennis [1].

Definition 5.4 (Refining Subsequence) Consider a sequence {zi}, constructed by
Model GPS Algorithm 4.10. We will say that the subsequence {zr}rex is the refining
subsequence, if Agy1 < Ay for all k € K, and Agyq = Ay for all k ¢ K. a

When the cost function f(-) is only locally Lipschitz continuous, we, as well as Audet
and Dennis [1], only get a weak characterization of limit points of refining sequences. As

we will now see.

We recall the definition of Clarke’s generalized directional derivative [3]:
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Definition 5.5 (Clarke’s Generalized Directional Derivative) Let f: R* — R be
locally Lipschitz continuous at the point z* € R*. Then, Clarke's generalized directional
derivative of f(-) at z* in the direction h € R" is defined by

d°f(a*; h) 2 limsup f +”:) —f@) (17)
o

Theorem 5.6 Suppose that Assumptions 8.1 and 3.4 are satisfied and let z* € R* be an
accumulation point of a refining subsequence {zx}rek, constructed by Model GPS Algo-
rithm 4.10. Let d be any column of the base direction matriz D along which fe,(-) was
evaluated for infinitely many iterates in the subsequence {zx}rex. Then,

d°f(z*; d) > 0. (18)

Proof. Let {z}reck be the refining subsequence and, WLOG, suppose that zx —¥ =
By Assumption 3.4, there exists a compact set C such that L feo(zo)( fe,)NX C C for all
k € N. Therefore, by Assumption 3.1, there exists an e, € R} and a scalar K1, € (0, o0)
such that, for all z € C and for all 0 < ¢ < e, we have |f.(z) — f(z)| < KL ¢(€). Because
f(-) is locally Lipschitz continuous, its directional derivative d°f(-;-) exists. Hence,

dof(z*;d) -y limsupf(x-'-td)—f(x)

zz* t
t10
> limsup flzx + A d) — f(zk)
keK Ag
Z ]ij fek(wk +Ak d) fek(xk) - 2KL (p(ék)
s Ag
> limsup fek(mk + Ag d) ffk(xk) — limsup2 Ky, 22ok2 ( k)
keK Ag keK
(ek)

> —limsup2 Ky, ——
keK

(19)

The last inequality holds because {z;}rek is a refining subsequence. Since by Proposi-
tion 5.3, Ar — 0, it follows from the constructions in Model GPS Algorithm 4.10 that
o(ex)/Ax 2K 0. 0

Remark 5.7 Note that (18) is not a standard optimality condition since it holds only for
certain directions d. Consider, for example, the Lipschitz continuous functions

e 1 2
flz) 2 {llmll, ifz' >0and z¢ > 0, (20)

llz|| cos(4 arccos (z'/||||)), otherwise,
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Figure 3: Visualization of equation (20)

which is shown in Fig. 3. This function is not differentiable at the origin, but it does
have directional derivatives everywhere. At the origin z* = 0, we have df(z*;d) = 1 for
d € {*e;, ey}, but the directional derivative along s = (=1, —1)T is df(z*;s) = —n/ 2,

Using the Hooke-Jeeves algorithm with initial value zo = (-1, 0)T, we would converge to
the origin, a point that possess some negative directional derivatives. O

We now state that pattern search algorithms with adaptive precision function evaluations
converge to stationary points.

Theorem 5.8 (Convergence to a Stationary Point) Suppose that Assumptions 3.1
and 3.4 are satisfied and, in addition, that f(-) is once continuously differentiable. Let
z* € R be an accumulation point of a refining subsequence {zy}rex, constructed by
Model GPS Algorithm 4.10. Then,

Vf(z*) =0. - (21)

Proof. Since f(-) is once continuously differentiable, we have d°f(z*; h) = df(z*;h) =
(Vf(z*), h). Now, let D5 be the set of all candidates for the direction matrix, and let D* €
D7 be any positive spanning matrix that is used infinitely many times in conjunction with
the refining subsequence {zy}rek. Since the number of distinct columns in Dy is finite,
there must be at least one such D*. It follows from Theorem 5.6 that 0 < (Vf(z*), d*)
for all d* € D*. Let | denote the number of columns of D*. Then, because the columns of
D* positively span R", we can express any h € R", as follows,

l
h=> odi, dieD*, >0, Vie{l,...,1} (22a)
=1
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Hence, 0 < (Vf(z*), h). Similarly, we can express the vector —h, as follows,

l
-h=) Bid}, dieD*, Bi>0, Vie{l,..., I} (22b)

=1
Hence, 0 > (Vf(z*), h), which implies 0 = (Vf(z*), h), and, since h is arbitrary, that
Vi(z*)=0. O

5.2 Linearly Constrained Minimization
We now extend our convergence proofs to the linearly constrained problem (1), by follow-
ing the arguments in Audet and Dennis [1].

First, we introduce the notion of a tangent cone and a normal cone, which are defined
as follows:

Definition 5.9 (Tangent and Normal Cone)
1. Let X C R*. Then, we deﬁne the tangent cone to X at a point z* € X by

Tx(z*) £ {u(z—2*) [ p 20,z €X}. (23a)

2. Let Tx(z*) be as above. Then, we define the normal cone to X at z* € X by
Nx(z*) £ {v € R* | Vt € Tx(z*), (v, t) < 0}. (23b)

O

Next, we introduce the concept of conformity of a pattern to a constraint set (see [1]),
which will enable us to extend the convergence results for our Model GPS Algorithm 4.10
from unconstrained optimization problems to linearly constrained optimization problems.

Definition 5.10 The function 65 ,: X} x Ay, — Dy is said to conform to the feasible set
X, if for some p > 0 and for each z* € dX satisfying ||z* — zk|| < p, the tangent cone
Tx(z*) can be generated by nonnegative linear combinations of the columns of a subset
Dy (zx) C Dy = 6ﬁ’k(§k,ék)'

Furthermore, we define Dz« (-) to be such that all its columns belong to Tx(z*). O

Remark 5.11 The definition that all columns of D,-(-) belong to Tx(z*) facilitates the
extension of Theorem 5.6 to the constraint case. O

We can now state our final result which states that the accumulation points generated
by Model GPS Algorithm 4.10 are feasible stationary points of problem (1).
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Theorem 5.12 (Convergence to a Feasible Stationary Point)
Suppose Assumptions 3.1 and 3.4 are satisfied and that f(-) is once continuously differen-
tiable. Let z* € X be an accumulation point of a refining subsequence {zx}rek constructed
by Model GPS Algorithm 4.10 in solving problem (1).

If there erists a k* € N such that for all k > k*, the local search direction maps
0p : X X Ay = Dp conform to the feasible set X, then

(Vf(=*),t) 20, Vie Tx(z"), (24a)

and
-Vf(z*) € Nx(z*). (24b)

Proof. If z* is in the interior of X, then the result reduces to Theorem 5.8.
Let z* € 0X and let D;«(zx) be as in Definition 5.10. Since the family of maps
{s B0 )} kek ksg- conforms to the feasible set X and since there are only finitely many

linear constraints, we have that D,-(zx) converges to Dg-(z*), as zj —X' z*, for some
infinite subset K’ C K. By Theorem 5.6, we have (Vf(z*), d) > 0 for all d € D-(z*).
Furthermore, it follows from the conformity of the family of local search direction maps
{6 5’,:(-, -)} KEK, k>k®? that every t € Tx(z*) is a nonnegative linear combination of columns
of Dy (z*). Therefore, (Vf(z*), t) > 0. It follows directly that (—V f(z*), t) < 0, which
shows that —V f(z*) € Nx(z*). O

When the function f(-) is only locally Lipschitz continuous, we obtain following corol-
lary which follows directly from Theorem 5.6 and equation (24a).

Corollary 5.13 Suppose that the assumptions of Theorem 5.12 are satisfied, but f(-) were
only locally Lipschitz continuous. Then, -

d’f(z*;d) >0, Vd€& Dy(z*). (25)

- O

6 Conclusion

We have extended the family of GPS algorithms to a form capable of solving optimization
problems in which the cost function f(-) cannot be evaluated exactly, but can be approxi-
mated by a family of functions {f, (-)}32,- An important feature of our algorithms is that
they use presumably low-cost, coarse precision approximations to the cost function when
far from a solution, with the precision progressively increased as a solution is approached.
This feature is known to lead to considerable time savings over using very high precision
approximations to the cost function in all iterations.

In constructing our algorithms, we have adopted a geometric framework that should
be easier to grasp than that found in earlier versions of GPS algorithms, but which is not
prejudicial to numerical efficiency of the resulting algorithms.
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