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Abstract

We present a new blockdiagram language for describing synchronous software. It coordi
nates the execution of synchronous, concurrent softwaremodules, allowing real-time sys
temsto be assembled fromprecompiled blocksspecified in otherlanguages. The semantics
we present, based on fixed points, is deterministic even in the presence of instantaneous
feedback. The execution policy develops a static schedule—a fixed order in which to exe
cute the blocks that makes the system execution predictable.

We present exact and heuristic algorithms for finding schedules that minimize system
execution time, and show that good schedules can be found quickly. The scheduling algo
rithms are applicable to otherproblems where largesystems ofequations needto be solved.

Key words: Heterogeneity, Synchronous, SoftwareModules, Execution, Fixed points.
Embeddedsystems. Coordination Language, Systemof Equations, Relaxation, Chaotic
Iteration

1 Introduction

The need for new techniques for designing software in embedded systems con
tinues to grow as hardware costs plummet. Software is coming to dominate these
systems, yet most of it is still written using ad hoc techniques in languages de
signed for batch processing systems. Such techniques do not address concurrency
and real-time constraints, two of the more challenging aspects of much embedded
software. In this paper, we present a new coordination language better tuned to the
problem of assembling efficient, predictable software for these systems.

This work was done while the author was at the University of California, Berkeley



Most embedded systems operate in real time, so when they perform a task is as
important as the task itself. Digital logic designers have long built clocked systems
to control when events occur, but only recently has this paradigm become available
to software designers in the form of the so-called synchronous languages [4,27],
which include Esterel [11], Argos [36,37], Lustre [19,28], and Signal [31]. These
provide powerful primitives for synchronizing parts of a system to external inputs.

This paper proposes a synchronouscoordinationlanguage that allowssystems to
be assembled from pieces specified in different languages.This allowseach system
design problem to be solved using the language best-suited for it, and improves
reuse possibilities. Furthermore, thecoordination language and its scheduling tech
niques can be used as a foundation for designing otherlanguages.

Oursystems consist ofsynchronously communicating blocks. Like all synchronous
languages, it adopts a model of time like that used in synchronous digital circuits:
in each tickof the global clock, thesystem examines inputs from theenvironment,
evaluates the function of the system (which depends both on those inputs and the
system's state), and produces outputs which are either sent to the environment or
used to determine the state of the system in the next cycle. Within each cycle, the
blocks communicate instantaneously (i.e., information generated in a cycle can be
observed in the same cycle), and no restrictions are placed on their topology. In
particular, instantaneous feedback is allowed.

Each block must be able to both evaluate its outputs based on its inputs and
advance its state. Splitting these is necessary because a block may need to beeval
uatedmore than once per instant if it appears in a feedback loop. Blocks must not
make any assumptions about the number of times they are evaluated since it is an
unpredictable function of the whole system and the scheduling algorithm. In con
trast, the state of each block is advanced exactly once per instant after its outputs
have been determined. As mentioned earlier, this may make the block compute a
different function in each instant.

The main contribution of this coordination language is the ability to execute
such systems without the compiler requiring information about the contents of the
blocks, allowing them to be described in different languages. Provided each block
usesthe samecommunication protocol andbehaves monotonically (never "changes
itsmind" when presented with additional information), the systems are determinis
tic, deadlock-free, and can be executedefficiently and predictably.

The remainder of the paper is divided into two parts. The first halfformally de
fines the semantics of these systems as the unique leastfixed point of the function
of all the blocks, thus proving the language is deterministic. The second half in
troduces techniques for scheduling and ultimately executing these systems in com
pliance with the semantics. Experimental results and a discussion offuture work
concludes the paper.
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Fig. 1. (a) A cyclic token-ring arbiter composed of three blocks, (b) The function within
each block, (c) A truth table for the function arranged according to the number of defined
inputs. A line indicates a single input becoming defined.

2 Synchronous Block Diagrams

Our block diagram language is based on ideas from traditional zero-delay three-
valued circuit simulation. Blocks compute a function of their inputs and commu
nicate through zero-delay "wires" that convey values such as 0, 1, or undefined
(we use J_ to represent this unknown value). Time is divided into a sequence of
discrete instants (clock cycles), and in each cycle each block sets the values on its
outputs depending on the value it sees on its inputs and the state of the system.
Wires communicate instantaneously, i.e., when a block sets the value of an output
wire, all blocks connected to that wire see the new value in the same clock cycle.
The number and connectivity of the blocks does not change while the system runs.

The cyclic token-ring arbiter in Fig. 1 is typical of the systems that can be de
scribed with our block-diagram language.^ This system arbitrates fairly among
requests for exclusive access to a shared resource by marching a token around a
ring. In each instant the arbitergrants access to the first requestor to the right of the
block with the token. Fig. lb shows the function of each block, which passes the
token around the ring and either responds to a request or passes its opportunity to
its right neighbor. At all times, exactly one of the latches stores a 1; the rest contain
aO.

Berry [9] attributes this example to Robert de Simone.



(a) (b)

Fig. 2. Semantic challenges: (a) An ambiguous system, (b) A paradoxical system.

It appears this systemmight deadlock since the PO outputdepends immediately
on the value of PI, which comes instantly from the PO output of the block to its
left, and so on around the ring. The presence of the "token"—actually a 1 value on
one of the latches—breaks this deadlock by setting to 1 the TI input of the block
immediately to the right of the token. The presence of this 1 establishes the output
of the OR gateindependent of the value of PI, breaking the deadlock situation.

The way the cyclic arbiter breaks its deadlock is typical. In general, there needs
to be at least one non-strict block—one that can produce a partially-defined output
in response to a partially-defined input—in each feedback loop. A three-valued OR
gate is typical of a non-strict block: if one of its inputs is 1, its output is 1 regard
less of the value on the other input. Similarly, AND gates, multiplexers, and delay
elements are all non-strict. Functions that always require all their inputs, such as
inverters and exclusive-OR gates,are strict. A feedback loopconsisting exclusively
of exclusive-ORgates will always deadlock.

The main objective of our block-diagram language is to handlesystems like the
cyclic arbiter that may appear to deadlock but do not because of behavioral de
tails. Specifically, we are able to define the semantics of andsimulate suchsystems
without detailedknowledge of the functions computed by each block. This is use
ful in software systems linked togetherfrom pieces that are compiledseparately or
whose blocksare specified usingdifferent languages. We used a circuit diagram to
define the function of the blocks in this example, but could just have easily used a
synchronous language such as Esterel.

Systems with paradoxes and ambiguity, such those inFig. 2 have a natural inter
pretation in this framework: the undefined value ± appears on wires participating in
unbroken feedback loops. For example, the system withthe single buffer in Fig. 2a
appears to besatisified with any value on its single wire, but our deterministic se
mantics declare the undefined value _L to be the only correct solution. Similarly,
the paradoxical system in Fig. 2b seems to have no satisfying assignment. How
ever, since the inverter mustproduce J_ in response to a J. input, our semantics say
both wires take the value JL.

In the remainder of this section, we put the semantics of our language on firm
mathematical ground by defining it as the least fixed point (LFP) of the function
of all the blocks and using a well-known fixed point theorem to show that this is
unique. The second half ofthe paper discusses how to efficiently evaluate this LFR



2.1 Semantics

We base the semantics of our systems on three main concepts. First, the values
passed through wires are taken from a complete partial order—a set whose ele
ments are ordered by how much "information" each contains. Second, the blocks
are restricted to compute functions that are monotonic with respect to this order, so
they never decrease or change existing information. Finally, a well-known theorem
guarantees thatsuch monotonic functions have a unique least fixed point, which we
define as the behavior of the system in each instant.

Our coordination language permits the unknown value, written ±, on a wire,
which is usedto represent wires in feedback loops withambiguous or contradictory
values. Formally, each wire takes a value from a partially-ordered set V with a
binary relation C that is reflexive {x C x), antisymmetric (ifx C y and y C then
X= y), and transitive (if x • y and y Q z then x C z). We construct such sets by
"lifting" a set. Starting with a setV ofdefined values such as {0,1} or the integers,
lifting V adds the undefined element ± (i.e., V= {±} UV) and imposes the order
J_ C ±, J_ C v', and v' C v' for all v' € V. This order leaves distinct members of the
set V incomparable, e.g., neither 0 • 1 nor 1 C 0.

The C relation naturally extends to vectors ((oi,...C (6i,...iff E
b\,a2Qb2,"-, and C bn) and imposes an information orderingin the sense that
if a E then there are only two possibilities for corresponding elements of a and
b: they can be identical, or fljt = J_ and bk € V' is defined.

To ensure deterministic semantics, we require that each block compute a mono
tonic function of its inputs (i.e., a function F for which x E y implies F(x) E
This has a natural interpretation: presenting a block with a more-defined input al
ways produces a more-defined output or the same value.

Fig. Ic is an oddly-drawn truth table for the function of an arbiter block that
shows it is monotonic. Input/output pairs are separated by a slash and arranged
such that following a line upward always leads to a more defined input. Careful
inspection of the diagram will show that the outputs also always become more
defined along an upward path, implying the function is monotonic. For example,
the rightmost path is thesequence ±±±/±J. ^ ±_L0/±0 —^ 0±0/±0 —»000/00.

The fixed-point theorem operates on a totally-ordered sequence called a chain,
i.e., a set C C V such that x E y or y E ^ for all x,y € C. The maximum length of
these chains is important, so we define the height of a partially-ordered set V as the
sizeof the longest chain in V. A lifted set thatrepresents the value on a single wire
has height two, since the longest chains all look like {-L, v'} for some v' CV. The
height of an n-valued vector of elements of V is n -I-1 (vectors in the longest chain
have between 0 and n J_ elements).

The fixed-point theorem we use also applies to sets with infinite-height chains,
but this requires chains and functions to stay bounded. An upper bound ^ GV of a
set 5 C V satisfies j C ^ for all seS. The least upper bound, if it exists, is the unique
element lub5 such that lub5 E ^ for all upper bounds b. A complete partial order
(bounded on infinite chains) is a set V that is partially ordered, has a distinguished
bottom element ± such that _L E v for all v G V, and all chains C C V have a least
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Fig. 3.(a)Asystem, (b)itsdependency graph, and (c) the dependency graph after removing
nodes 2 and 4. Each node corresponds to an output and each arc represents a functional
dependence.

upper bound. A function F : V —> Vis continuous (bounded on infinite chains) if
for all chains C C V, F(lubC) = lub{F(c): c GC}.

Since all the chains in our domains (i.e., finite vectors of lifted sets) are finite,
ourpartial orders are complete since finite chains always have a least upper bound.
Furthermore, it is not difficult to show that our monotonic functions, since they are
defined on sets with only finite chains, are also continuous.

We define the semantics of our systems as the least fixed point of a function.
A fixed point of a function F is simply a value x satisfying F{x) = x. For block
diagrams, this corresponds to the case where the output of each block produces
matching inputs. In short, the inputs and outputs of each block are consistent. A
function may have many fixed points, but we are interested in the least-defined
fixed point IfpF, which by definition satisfies F(lfpF) = IfpF and IfpF Cx for all
fixed points x of F. A fixed point is attractive as a definition ofbehavior because it
corresponds to theintuitive notion ofa consistent state of the system. Furthermore,
the least fixed point can be reached purely through deductive reasoning (i.e., it is
unnecessary to make and test hypotheses to compute the least fixed point, which is
notthecasewith otherfixed points), andit is unique, making systems deterministic.

The key theorem that defines thesemantics and guarantees determinism is a folk
theorem variously attributed to Knaster, Tarski, and Kleene [30].

Theorem 1 The leastfixed point ofa continuous junction F ona complete partial
order is unique and equal to the least upper bound ofthe chain {1,F(J_),F^(_L),...}.

Finally we are ina position todefine the semantics ofour systems. The function
for the system is derived from the functions of the blocks and their connectivity.
Consider the system in Fig. 3a.Thefunctions of its three blocks are

A : / X5 X _ v2

B:IxSxV^

C: 7 X 5 X



where I is the setof all possible inputs to thesystem and S is the set of all possible
states of the system. Although block A is drawn with three inputs, theAfunction is
only defined on because only two of its inputs are connected to internal wires.
The effect of the external input is felt through A's dependence on /; 5 and C are
probably independent of /. This very abstract model of bothinputs andsystem state
is sufficientfor our purposes. The semantics treats environment inputs and system
state equivalently: they simply select the functions computed by the blocks. The
only requirement is that A, B, and C be monotonic with respect to outputs.

The function of this system G: IxSxV^ maps the input, state, and 7
current output values to a new set of 7 output values. We will define the semantics
as the least fixed point of this function.

Eachcomponent of the vector-valued Gfunction is an output ofoneof theblocks
and is a component of one of the blockfunctions. For example, G\ is the function
for output 1, which is the first output of block A. The two non-external inputs of
block A are driven by outputs 3 and 7, so

Gi (i,5,VI,..., V7) = A1 (i,^,V3, V7)

The other component of the G function are defined similarly:

G2(/,5,Vi,...,V7

G3(/,5,Vi,...,V7

G4(/,5,Vi,...,V7

G5(i,^,Vi,...,V7

G6(i,5,Vi,...,V7

G7(/,^,Vi,...,V7

= A2(i,5,V3,V7)

= Bi(/,5,Vi,V2,V5,V6)

= B2(/,j:,Vi,V2,V5,V6)

= Ci(/,5,V5,V2,V4,V7)

= C2(/,5,V5,V2,V4,V7)

= C3(/,^,V5,V2,V4,V7)

In general, an n-output system implies a system function G : / x 5 x V" V"
constructed in this way. The behavior of the system in an instant in state s eS with
inputs / 6 / is the least vector x EV" that satisfies

G{i,s,x) =x, (1)

Theorem 2 There is always a unique least x that satisfies (1), so these systems are
deterministic.

Proof. This follows from Theorem 1 because V" is a complete partial order (and
G{i,s,x) is continuous w.r.t. x because it is a vector-valued combination of the
monotonic (and hence continuous because chains in V are finite) block functions. •



3 Execution

In each instant, the semantics of our block diagram language requires us to find
the least fixedpoint of G, the monotonic function describing the composition of all
the blocks in the system. We compute this fixed point by evaluating the functions
of the blocks in a particular order—aschedule—that guaratees that the final result
is the least fixed point.

We obtain these schedules through a divide-and-conquer approach. The "con
quer" partcomes from theiteration inTheorem 1,which says theLFPof a function
Gcan be computed by taking the least upper bound ofthe chain {±,G(J-), G^(±),...}.
Because chains in our domain (the vector of all block outputs) are finite, this re
duces to evaluatingG until a fixed point is reached. Specifically, an n-outputsystem
has chains of height«-I-1, so we are guaranteed to reach the LFP after evaluating
G n times.

The"divide" partof ourdivide-and-conquer algorithm comes from Bekic's The
orem [3]:

Theorem 3 (Bekic) Let X : V" x V" V" and 7 : W" x V" -> V" be continuous
functions on a complete partial order. Then the least fixed point ofXxY : W" x
yn _^ym yn (jc,y), where

X= Ifp;,X{x, Ifpy Y{x,y)), (2)
y= lfpy7(x,y), (3)

and lfp;c/(x,y) is a function ofy, say g{y), that is the least function that satisfies
f{8{y).y) =8ly)-

This provides a mechanism for evaluating the least fixed point ofa vector-valued
function by breaking it into two, evaluating the least fixed point of the first half,
then using the result to evaluate the second half. At first glance, this is not helpful
since evaluating theLFPof the first halfrequires evaluating theLFP of thesecond
halfalong the way. However, the computation does become substantially simpler
when X does not depend on its second argument;

Corollary 1 IfX(x,y) does notdepend ony, then the leastfixed point ofX x Yis
{x,y) where x=\fp^X{x,z), y=1^3,7(i,y), and zis an arbitrary vector in V".

This implies that the LFP of a system with no feedback can be evaluated by
calculating the LFP ofthe blocks intopological order, i.e., by evaluating the blocks
that depend only on external inputs first, then by evaluating blocks that only depend
on that set of blocks, and so forth.

To illustrate our scheduling and execution procedure, consider the three-block
system in Fig. 3a. We represent its communication dependencies with the graph in
Fig. 3b, whose nodes represent outputs. An arc is drawn from node x to node yif
output yis on ablock with an input connected to output x, e.g., there is an arc from
node 5 to node 3 because output 5 drives block B,which produces output 3.
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Fig. 4. Decomposing the dependency graph in Fig. 3b using Bekic's theorem, (a) A
brute-force evaluation using Theorem 1 involves evaluating a feedback loop with seven
wires. Cost: 7^ = 49 (b) Splitting it two using Bekic's theorem (the X function contains
nodes 2 and 4, the others are part of the Y function) transforms the graph into an inner
feedback loop with five wires and an outer loop with two. Cost: 2^ -I- (2 -+• 1)5^ = 79 (c)
Further decomposing the Y function transforms the five-element feedback loop into two
loops (5 and 7, 3and 1) ofone wire each. Cost: 2^ -I- (2 -t-1) (3 -f1-b 3) = 25

One way to evaluate the LFP of the system is to directly apply the iteration of
Theorem 1. If we assume evaluating a single block output has a cost of 1 (which
we do throughout this paper), then because the height of the set with all vectors
of length 7 is 7 (these vectors represent the values on all the wires) we need to
evaluate all block outputs 7 times. There are 7 block outputs, to evaluating the
system function once has cost 7, Thus the total cost of evaluating the LFP of the
systemusing a brute-force iteration is 7 •7 = 49.

Bekic's Theorem and Corollary 1 allow us to evaluate the LFP more cheaply.
We cannot apply Corollary 1at first because thedependency graph is strongly con
nected, i.e., there is a directed path in bothdirections between every pairof nodes,
implying every function is dependent on every other. So we use Bekic's Theorem
to evaluate the LFP.

Bekic gives us the freedom to divide the system function any way we like, so
we will choose a decomposition with the goal of reducing the number of function
evaluations. For reasons we will explain later, we first choose the X function to
consist of nodes 2 and 4, and Y to contain the rest. This decomposition is shown
in Fig. 4b, which is drawn to suggest the application of Bekic's theorem. First,
we calculate Jc = lfp^X(jr,lfpyy(;c,y)) as follows. Starting with jcq = -L, h+\ =
X{xk,\fpyY{xk,y)), and Jc = Jc2, where lfpyy(^ik,y) is also calculated by an iteration
yo = -L, yj+i = Y(xk,yj). and l^yy(Jc;k,y) = ys- Once x is evaluated, it is used to
evaluate y, again through theiteration yo = -L, Sj+i = Y(x^yj), and y = ys.

We compute the cost of evaluating the LFP fhis way as follows. There are five
outputs in the Yfunction, so Ycosts 5 toevaluate. It takes 5 iterations to evaluate



and this is done three times: twice to evaluate x, and once more to

evaluate y. The Xfunction is evaluated twice. Thus the total cost is 2^ + (2+1 )5^ =
79, unfortunately higher than the costof evaluating the LFPusing brute force.

We can do better. Evaluating lfpyy(j:,y) is the most costly part of this compu
tation because we evaluated it using brute force. But it can be further decomposed
and evaluated more cheaply. Fig. 3c shows the dependency graph for the Y func
tion consists of three strongly-connected components (an SCC is a maximal set of
nodes with directed paths between all pairs)—nodes 5 and 7, node 6, and nodes 1
and3—whose leastfixed pointcanbeevaluated more efficiently using Corollary 1.
Furthermore,it is more efficient to use Bekic's Theoremthan bruteforce to evaluate
the LFP of a two-output function.

To more succinctly represent these iterations, we introduce notation for repre
senting a schedule, which indicates a sequence of nodes to evaluate. Juxtaposition
is the fundamental partof the notation: writing a b means evaluate a, then evaluate
b, eachof which may be single nodes or more complicated schedules. A group of
nodes surrounded by square brackets [ni «2 •**1 is evaluated in parallel. Note that
the order of nodes within brackets is irrelevant since they are all evaluated at once.
The most complicated notation in our schedules describes an evaluation according
to Bekic's Theorem and consists of two sub-schedules separated by a dot and sur
rounded byparenthesis with a superscript ( . ^2 )"» corresponding to n iterations
of the sequence S2 followed by asingle evaluation of 52- So ( .52)^ expands
to S2 s\ 52, ( . ^2 expands to 52 s\ 52 si 52, and so forth. In the language of
Bekic's Theorem, s\ evaluates X and52 is Y. In this notation, the brute-force, single
decomposition, andmultiple decomposition schedules for the example system are

([5 763 142] .)"^
([4 2], ([5763 11.)')^
([4 2], (5 .7)'6 (3 . 1)' f

This last schedule implies the following sequence of nodeevaluations:

7 5 7 6 1 3 1 [4 2] 7 5 7 6 1-3 1 [4 2] 7 5 7 6 13 1

which has cost 25 (eachnodeevaluation hasunit cost), substantially betterthanthe
brute-force cost of 49.

Ourschedules area generalization of those proposed by Bourdoncle [13], which
always remove exactly one node from an SCC. This can lead to less efficient sched
ules for certain graphs, such as Fig. 3a. Furthermore Bourdoncle's scheduling al
gorithm is heuristic and can miss the optimal schedule, although itruns faster.

10



5.1 Merging Block Evaluations

These schedules describe evaluating nodes, yet in our language only blocks can
be evaluated as a whole. The simple-minded approach of evaluating a wholeblock
when the schedulecalls for a single outputon that block (i.e., a node) still produces
the least fixed point because the blocks are monotonic. It is easy to show that the
sequence ofintermediate results produced by evaluating nodes is a lower bound for
the sequence produced by evaluating blocks.

However, this approach is wasteful because it may perform more evaluations
than necessary. To eliminate some (but notall) of this inefficiency, we propose the
following algorithm thatcan reorder a schedule to take into account block evalua
tions.

First, considerthe following rewrite rules. Written in a deductive style, they im
ply the subexpression above the bar can be rewritten as the subexpression below
the bar when the condition on the right is true. Two helper functions simplify the
predicates: O(^) is the set of all indices that appear in subexpression s, and /(/) is
the set of predecessors of node /, i.e., all the nodes that directly affect output i.

s I

i s
when I{i) D0(5') = 0 (4)

always (5)
(5, . 52 i)"

(•?! • S2)"i
(51 i . 52)"
(i Si . 52)"
(51 . 52 0"

[h
n

in\

in]

when /(/) n 0(52) = 0 (6)

always (7)

when \/j <k, 0{ij)ni(ik) = 0 (8)

always (9)

The first transform, (4), follows by noting that the predicateensures node i does
notuseanyoutput in the sequence 5, so thattheresult after evaluating them both is
the same.

Transform (5) actually increases the number of evaluations since

(51 . 52)"/ = 52 51 52 ••• 51 52 i

(51 . 52 0" = ^2 i 51 52 f • 5i 52 i.

Transform (6) requires that i not use any outputs of 52. Examining the bottom
sequence shows why thisrestriction is necessary: the final / is moved tojust before
the final evaluation of 52:

(51 i . 52)^^ = 52 51 i S2S1 i 51 i 52-

11



Transform (7) just adds a trailing evaluation of i.

{i s\ . S2)" = S2 i ^2 isi i ••• i si S2

(51 . S2 0" = ^2 i Si S2 isi i i si S2 i

Transform (8) says that any sequence of nodes that do not depend on partial
results may be evaluated in parallel. And Transform (9) says nodes evaluated in
parallel can always be evaluated in sequence: the parallel result is always a lower
bound for the series result because the functions are monotonic.

Together, these rules suggest an algorithm for rewriting schedules to better suit
block evaluations. The goal of the algorithm is to move outputs on the same block
together so they can be coalesced into a single parallel (block) evaluation by (8).
It considers each node in turn, applying (4)-(7) repeatedly to find a position where
the node can be merged with another on the same block using (8).

For the schedule

([4 2].(5.7)'6(1.3))2

of the system in Fig. 3, applying (9) to node 4 then applying (7) gives

(2 . (5 . 7)' 6(1.3) Af

Next, applying (5) and (8) gives

(2.(5.7)'6(1.[3 41))2.

Replacing nodes with blocks produces the final schedule

(A.(C.C)^ C(A.B)^^

which corresponds to the following sequence of block evaluations

CCCCBABACCCCBABACCCCBAB.

3.2 Scheduling

Fig.5 shows therecursive branch-and-bound algorithm weuse tocompute sched
ules. It takes a dependency graph and a bound and attempts to find a schedule
for computing the least fixed point of the system represented by the dependency
graph that meets the bound. The core of the algorithm decomposes the graph into
strongly-connected components (line 2) and then attempts to find a schedule for
each see by further decomposing it (lines 5-22).

The algorithm always produces correct schedules. The schedule for a graph is
a sequence of schedules for each See in topological order, since this is the order
in which the algorithm considers them (line 5), and if a schedule for the SCC that
meets the bound is found, it is added to the returned schedule in line 10 or 21.

12
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function schedule(G,Z7) returns (j,c)
Decompose G into strongly-connected components Gi,..., G/,
b = min{Z?,I?=i |G,|̂ - |G/| -\-\} Bound to meet
(5, c) = (the empty schedule, 0) Initialize the schedule and its cost
for all strongly-connected components G/ in topological order do

y -b —c- Zj=i+ \\Gj\ Rough boundfor this component
if b' < |G,| then

return (O,®®) Scheduling is impossible in sub-linear cost
if |G/| = 1 then

Append G, to s Schedulefor a single node is the node
c = c 4-1 Schedule a single node

else

/ = the empty schedule Best schedulefor this component
for all subsets X of G, do

{s",c") = schedule(G,- - X, ) Schedule rest of component

if \X\'̂ -\-{\X\ + \)c" <b' then
s' = ([G/] . Evaluate this component using Bekic
b' = \X\^{\X\l)c" Evaluation cost

if s' is the empty schedule then
return No schedulefor this SCC met the bound

Append s' to s
c = c-\-b' Add the cost ofscheduling this component

if c < t then

return (j,c) Met thebound
else

return (0,OO) Could notfinda low-cost schedule

Fig. 5. The branch-and-bound algorithm for finding the optimal schedule. Capital letters
denote sets of nodes. Primed variables are associated with a strongly-connected component,
double-primed variables withpart of a component. Selecting which subsetsto considerand
in what order in line 14 is the crux of the algorithm. Choosing these judiciously is the
subject of Section 3.3.

Corollary 1 tells us that evaluating SCCs in topological orderis correct. Each SCC
is decomposed and scheduled using the computation in Bekic's Theorem, which
appears in line 17.

The function begins by attempting to lower the givenbound (line 3). It is always
possible to evaluate an SCCby using Bekic'sTheorem with a Yfunction containing
exactly 1node. For an «-node SCC, this costs (n —1)^ + n= —n4-1: the estimate
used in line 3.This upper boundis tightbecausea fully-connected graphcan require
this many evaluations.

To schedule each SCC, the main loop (lines 5-22) begins by computing a bound
for the SCC (line 6) by assuming all the remaining SCCs can be scheduled with
linear cost. If this optimistic bound still requires the SCC to be scheduled in less
than linear cost, then the function returns failure (line 8).
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There are two ways an SCC can be scheduled. A trivial SCC consisting of a sin
gle node can always be scheduledwith cost one, handledby lines 10-11. Handling
nontrivial SCCs, done in lines 12-22, is the main challenge.

The branching in this branch-and-bound algorithm comes from differentdecom
positions of eachSCC. Themostcost-effective decomposition is rarely obvious, so
the algorithm tests many different ones, bounding thecost of the worst schedule it
is willing to consider as better schedulesare found.

Decomposing anSCCamounts tochoosing theX function inBekic's Theorem—
a set of nodes that will become an outer loop in the schedule. The next section
discusses how different subsets of each SCC are chosen in line 14; for the moment
assume the algorithm considers all 1" - 1 possibilities.

The inner loop (lines 14-18) begins by calling the scheduler recursively tosched
ule therest of the SCC(line 15). Thebound deserves explanation. Thecostof eval
uating the entire SCC using Bekic's Theorem is |Xp -h (|X| + \)c" (the expression
in lines 16 and 18), where \X\ is the number of nodes in the removed subset (the
dimension of Bekic's X function) and c" is the cost of evaluating the nodes that
remain. The bound in line 15must be metto make this expression less than b', the
maximum cost allowed to evaluate the SCC.

If the cost c" of evaluating the rest of the nodes in the SCC is sufficiently low,
the schedule that produces it is used to schedule the SCC (line 17) using the com
putation inBekic's Theorem, and its cost becomes the new bound.

If the algorithm finds a schedule for the SCC that meets the bound, the schedule
for the SCC is appended to the schedule for the graph (line 21) and the cost of the
component's schedule is added to the total schedule cost c(line 22). Note that since
the SCCs are considered in topological order (line 5) and the schedule for each is
appended to the schedule for the graph (line 10 and 21), the SCCs are scheduled in
topological order in accordance with Corollary 1.

Finally, if the cost of all the SCCs did not exceed the bound (line 23), the func
tion returns a pair consisting of the schedule for the graph and its cost (line 24),
otherwise the function returns failure (line 26).

3.3 Finding Efficient Schedules

The branch-and-bound algorithm in Fig. 5 will always find the most efficient
schedule if it considers all 2" - 1 subsets in line 14, but this makes the algorithm
very costly (exponential) to run. The branch-and-bound technique does tend to re
duce the number ofpossibilities considered by attempting to trim the search space
as much and as soon as possible, but the asymptotic running time remains expo
nential.

If we are resigned to considering all possible subsets in line 14, which appears
to be necessary to find the optimal schedule, we consider them in an order that
attempts to find tighter bounds more quickly to reduce the number that must be
considered. We consider all subsets of size 1 first, then all subsets of size 2, and so
forth. Thisorder should lower thebound more quickly because thecost of evaluat
ing an SCC using Beckic's Theorem rises with the square of the size of the subset.
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(a) (b) (c) (d)

Fig. 6. The heuristic for partitioning an SCC in action. Nodes in K, the candidate kernel,
are drawn normally. In eachstep, the heuristic retums the predecessors of K nodes, drawn
in black, as a candidate subset X. (a)The initial K —{6} gives X = {2,4,5,7}. (b) Adding
node7 to ^ gives X = {2,3,5}. (c) Node 5 added, (d)Node 2 added.

as reflected in the cost computation of line 18.
If, however, we are willing settle for merely a good schedule instead of the opti

mum, we can greatly reduce scheduling time byusing a heuristic that only consid
ers some of the possible subsets. The motivation for this heuristic comes from the
observation that an optimal partition of an SCC always breaks its strong connec
tivity, and that breaking strong connectivity requires making sure some subset of
nodes in the resulting graph has no predecessors outside that set (Frank [25] calls
this a well-known result). If partitioning anSCC did notbreak strong connectivity,
the remainder would consist of a single SCCthatwould have to be evaluated using
Bekic's Theorem. It would have been more efficient to have combined the two X
functions rather than nesting the evaluation.

The heuristic tries to find a small subset of nodes to remove from the SCC to
break strong connectivity. It does this by adding each node in the SCC one at a
time to a set K. In each step, the heuristic retums a set X (used in line 14) which
contains the predecessors of K. The branch-and-bound algorithm removes the X
nodes from the graph, which usually makes K a kernel and thus breaks the strong
connectivity of the graph. This does not break strong connectivity if XUAT is the
whole SCC, e.g., in a fully-connected subgraph.

Fig. 6 illustrates how this heuristic chooses partitions (i.e., subsets ofa strongly-
connected component) for the dependency graph in Fig. 3b. Initially, K is seeded
with a single node, 6 (Fig. 6a). Its predecessors are nodes 2, 4, 5, and 7, so the
first subset X = {2,4,5,7}. Next, the algorithm adds one of the nodes in X to X,
choosing theone that will produce the smallest X in the next step. Adding nodes 2
or 4 would add node 3 or 1 to X, but adding node 5 or 7 removes one node from
X. The algorithm chooses 7 arbitrarily, returning X = {2,4,5} (Fig. 6b). The next
step adds 5 to K, again because adding nodes 2 or 4 would add a node to X and
adding 5 reduces the size of X. This produces X = {2,4}, which turns out to be
the bestchoice; however, thealgorithm continues to produce new X setsuntilevery
node has been added to K.

This heuristic may not locate the optimal subset for two reasons. First, certain
kernels aremissed because only onenode is everadded to thekernel set,even when
there is a choice. Second, the optimal subset may be larger than the minimum—it
may include nodes that are notrequired to break strong connectivity.
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4 Experimental Results

To test the efficiency of the scheduling algorithm and the partition selection
heuristics, we generated 304 block diagrams at random and found the minimum
cost schedule for each using both the exact and hueristic scheduling algorithms.
The exact algorithm considers all possible subsets by first considering all subsets
with one vertex, then all with two, and so forth: an exponential number of possibil
ities. The heuristic variant uses the algorithm described in the last section to choose
small subsets within the branch-and-bound techique.

To create the random block diagrams, we generated sixteen systems with two
blocks, sixteen with three blocks, etc., up to twenty blocks. For each block in a
system, we independently selected a number of inputs and outputs at random from
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Fig. 10. Thecost of the schedule generated by theexact (a) andheurstic (b) schedulers as a
function of problem size.

one to ten, uniformly distributed. Then, we connectedeach block's input to a block
and output chosen at rtuidom.

All data were collected on a a SPARCStation 10 with 96MB of main memory,
although the program never consumed more than about 4MB. All times include
the time to initialize the program and load the system, typically a few hundred
milliseconds.

Fig. 7 shows thetime it took toschedule each system using theexact and heuristic
algorithm. The number of outputs in the system is plotted horizontally (the sum
of the number of outputs on each block—exactly the number of vertices in the
dependency graph). The times are plotted vertically on a logarithmic scale. The
exact algorithm required over 500 seconds to compute a schedule for 98 systems
(out of 304), but the heuristicalwayscompletedin under eight seconds.

From Fig. 7, it appears the time torun theexact algorithm varies substantially and
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grows quickly with problem size. The heuristic algorithm's run time also appears
to be growingexponentially, but much more slowly and predictably.

Fig. 8 shows the heuristic is exponentially more efficient than the exact algo
rithm. Although the speedup is between 1x and 2x about 40% of the time, and
the heuristic is actually slower in about 20% of the cases, this is only the case
when both the exact and heuristic times are fairly small. For longer times (e.g., one
second or more), the heuristic partitioner is the clear winner by an exponentially
growing margin.

To save time, the heuristicpartitionerconsidersonly a subset of all possible par
titions.Unfortunately, it can miss the optimalpartition, leadingto the cost increases
shown in Fig. 9. But this penalty is not devastating: the increase is less than 12%
for more than an quarter of the cases. Interestingly, the additional cost does not
appear to be related to the problem size, suggesting the heuristic will continue to
work well for larger problems.

The cost ofan optimal schedule for an n-node graph ranges from nto n2-«+l.
The graphs in Fig. 10 bear this out—the cost of all schedules falls between the
n and rp- lines. However, more interestingly, the asymptotic bound appears to be
closer to Of course, this a function of the systems we chose to schedule, and
there are systems whose optimal schedule costs rP there do not appear
to be many of them.

From these results, we conclude both the exact and heuristic partitioning schemes
have merit. Inmany cases, finding theexact answer is computationally feasible, but
when it is not, the heuristic scheme is far faster and produces comparable results—
half of the time within 25% of the optimal schedule, and rarely more than twice as
bad.

5 Related Work

This work arose from a desire to marry the heterogeneous philosophy of the
Ptolemy project [16] with thesynchronous semantics of the Esterel language [11].
The Ptolemy system consists of domains that each implement a particular block-
diagram language. The structure of these domains has followed Lee and Messer-
schmitt's Synchronous Dataflow [32,33] block diagram language, which can be
executed bya very efficient scheduler that needs little information about the blocks
apart from their connectivity. This approach ofallowing blocks to be black boxes
enables heterogeneous systems to be modeled hierarchically by nesting systems
described in other domains within blocks. When we began the work presented in
this paper (c. 1996) it was not clear that this same philosophy could be applied to
the synchronous languages, whose execution then required detailed understanding
not justof the components of the system but also ofthe system's state space.

Although Benveniste's synchronous dataflow language SIGNAL [6] also has
provisions for dealing with instantaneous feedback, its solution is very language-
specific. Instead, the semantics presented here follow from Berry's more general
constructive semantics for Esterel [8,10], which also address the instantaneous
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feedback problem. This grew out of his work on implementing Esterel programs
in hardware [7,8], which could produce irksome cyclic circuits. Malik's procedure
for analyzing the meaning of such circuits [34,35] provided a solution and con
nected the synchronous semantics of Esterel with the fixpoint semantics long used
in the denotational semantics community pioneered by Dana Scott and Christopher
Strachey in the early 1970s [39]. Textbooks such as Gunter [26] or Winskel [43]
describe this philosophy in detail.

Shiple, Berry, and Touati [40] describe the procedure the Esterel V5 compiler
uses to handle programs with instantaneous feedback: the programis first translated
into a netlist using Berry's procedure [7,8]. We took the semantics of our block
diagram language from thesemantics of thesenetlists. Next, anycycles inthenetlist
are unrolled using Bourdoncle's algorithm [13] and the state space of the program
explored symbolically [21] usingBinaryDecision Diagrams [15,14].

Ourexecution procedure amounts to using chaotic iteration to find the least fixed
point. Chaotic iteration has been widely studied asa method forfinding solutions to
systems of equations [38]. One of itsmain advantages, which wedo not exploit, is
its ability to be usedon parallel hardware without the need for synchronization [2].
A series of researchers have shown that chaotic iteration schemes converge under
successively weaker conditions [41,42]. Wei notes that the computation will con
verge even if older intermediate results (say, those that might not have yet come
from another processor running in parallel) are used. This result, stronger than we
need, confirms our ability to evaluate blocks even though our analysis is done on a
per-output basis.

Ourscheduling technique builds on Bourdoncle's work [13], which comes from
thefield ofabstract program interpretation pioneered byCousot andCousot [23,24,22].
Our schedules are a strict superset of Bourdoncle's because we are able to remove
more than one node at a time from strongly-connected components, which can be
a great advantage for highly connected graphs. Furthermore, our algorithm, when
run in exact modecan guarantee an optimal (lowest cost) schedule, whereas Bour
doncle's algorithm is a heuristic.

Berry and Sentovich [12] present another technique for executing systems with
constructive semantics (e.g., our block diagrams). Their goal, however, is execu
tion within the asynchronous domain of the POLIS project's CFSMs [1,20] which
has no explicit scheduler, something that could be found in a distributed system.
Thus, while their semantics are very similar to ours, their execution environment
is far less disciplined and hence less predictable. It does, however, have the novel
ability to pipeline the execution of a synchronous system. Caspi, Girault, and Pi-
laud [17,18] propose a more disciplined mechanism for distributed implementa
tions of synchronous systems, although theirs does not directly implement con
structive semantics, instead assuming a system's behavior has been coded into a
finite automaton.

The key dilference between Esterel's constructive semantics [8,10,12] and ours
is the admission of ± values on signal values. Fora program to be considered cor
rect, Esterel's constructive semantics specifically prohibits the appearance of _L on
any signal, internal or otherwise, whereas oursemantics permits this. As a result.
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our approach does not require systems to undergo the extensive analysis necessary
to prove a program constructive to run it, unlike Esterel. While this does appear
to permit seemingly erroneous systems under our scheme, it has the benefit of al
lowing heterogeneity, i.e., our systems can execute without the compiler/scheduler
knowing details about the contents of the blocks.

Berry's group has an experimental system for performing separate compilation
of Esterel modules. Each module is compiled into a separate netlist. Before the
system runs, a linking phase wires these netlists together, which sometimes re
quires unrolling to address Esterel's reincarnation problem (an idiosynchrasy due
to preemption constructs in Esterel, not shared by our block diagram langauge).
Finally, the resulting netlist is simulated using three-valued logic by traversing the
in-memory network. This technique does not allow compile-time scheduling, and
is probably not veryefficient. To our knowledge, this workhas not beenpublished.

The Lustre language [19,28] explicitly prohibits zero-delay feedback loops and
the compiler requires detailedunderstanding of the program. The compilation tech
nique [29] explores the state spaceof the system to buildan automaton. A simple-
minded search would produce many equivalent states, so the compiler employs a
clever state minimization technique that removes these redundant states on the fly.

Benveniste et al. [5] propose another approach to separate compilation of syn
chronous specifications based on characterizing functional dependencies among
inputs and outputs on a single block. Rather than completelycharacterizingthe I/O
behavior of a block, they abstract it either structurally ("this output depends on this
input") or functionally ("this output depends on this input when the block is in state
A"). They still require, however, that the system have an acyclic computation order
in every cycle, something they admit may not be trivial to prove.

6 Conclusions

We have presented the semantics of a coordination language for synchronous
software systems along with a practical implementation policy. It is novel in its
ability to handle heterogeneous zero-delay software blocks with feedback and re
main deterministic. The formal semantics for these systems is based on the least
fixed point of a monotonic function on a finite partial order, and we presented an
execution scheme that finds this least fixed point by executing the blocks in a fixed
order according to a schedule.

The schedules are derived from a recursive strongly-connected component de
composition of the system. Any schedule so derived is correct, but the cost of ex
ecuting a particularschedule depends on the choiceof nodes to remove from each
see. We use a branch-and-bound algorithm to make good choices, and have both
an exact way to develop the set of choices and a heuristic that greatly reduces the
number of choices to consider at the expense of sometimes returning a schedule
with more than the lowest possible cost.

The language and scheduler have been implemented as the SR Domain, part of
the"Ptolemy Classic" environment available from http://ptolemy.eecs.berkeley.edu/.
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There, blocks written in the other Ptolemy domains, including dataflow and discrete-
event,can be importedinto SR block diagrams to buildheterogeneous simulations.

Almost certainly there are more sophisticated algorithms for choosing the nodes
to remove from an SCC. It is an open question whether this scheduling problem is
NP-hard, but we suspect it is due to the subtle relationship betweena graph and the
optimal schedule for it. However, sincedetermining the minimum number of nodes
required to breakthe strong connectivity of a graph can be done in polynomial time
with network flow algorithms, there is still hope for a polynomial-time algorithm.
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