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Abstract

We explore the information-theoretic dudity between source coding with side information at the decoder
and channel coding withsideinformation at the encoder. We begin witha mathematical characterization of
the functional duadity between classical source and channel coding, formulating the precise conditions under
which the optimal encoder for one problem is functionally identical to the optunal decoder for the other
problem. We then extend this functional duality to the case ofcoding with side information. By applying
thisduality, we areable to generalize the result ofWyner-Ziv [1] relating to norate-loss for source coding with
side information from Gaussian to more arbitrary distributions. Weconsiderseveral examplescorresponding
to both discrete-valued and continuous-valued cases to illustrate our formulation. Our treatment inspires the
construction and dual use of pr£ictical coset codes for a large class of emerging applications for coding with
side information, such as distributed sensor networks, watermarking and information-hiding communication
systems.
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1 Introduction

Classical source coding under a distortion constraint and channel coding under a channel cost constraint have

long been considered as information-theoretic duals^ ofeach other starting from Shannon's landmark paper in

1959 [3]. In the source coding (rate-distortion) problem, the goal is to find, for a given source distribution,

the conditional distribution between the input source alphabet and the output reconstruction alphabet that

minimizes the mutual information [4] between the input source and the output reconstruction subject to a

target distortion constraint corresponding to a given distortion measure. In the channel coding (capacity-

cost) problem, the goal is to find, for a given channel input-output conditional distribution, the channel input

distribution that maximizes the mutual information between input and output subject to a target channel cost

(or power) constraint corresponding to a channel cost measure.

^This work was presented in part at the 33rd Asilomar Conf. on Signals, Systems and Computers, Pacific Grove, 1999, titled
"On the duality between distributed source coding and data hiding".

^This should not be confused for Lagrangian duality in optimization theory [2].



Cover and Thomas [4] point out that these twoproblems are information-theoretic duals of eachother. This

duality has also been exploited in the formulation of numerical optimization algorithms for the channel capacity

and rate-distortion problemsusing the Blahut-Arimoto algorithm [5]. In [4] (seeSec13.5in [4]), a packingversus

covering interpretation of duality in Gaussian source and channel coding has been formulated to illustrate this

duality. Indeed, some of the solutions to practical source coding (respectively channel coding) have been inspired

by solutions to channel coding (source coding): e.g., trellis-coded quantization [6, 7] in source coding has been

inspired by treUis-coded modulation [8, 7] in channel coding, and shaping of constellation points [9] in channel

coding has been inspired by constraining ofentropy ofquantization points [10] in source coding. In [7] a duality

between quantization and modulation has been analjrzed.

In this work, we address the problem of duality betweensource [1] and channel [11] coding in the presence

of side-information at the decoder and encoder, respectively. As a first step towards this goal, we first address

the more classical duality between source and channel coding with the objective of providing a mathematical

characterization of their functional duality. To be specific, given an optimal source (respectively channel)

coding scheme (given by the encoder and decoder), we detail the conditions under which such a scheme is a

functional dual to a channel (source) coding scheme (given by the encoder and decoder), in the sense that the

optimal encoder mapping for one problem is functionally identical to the optimal decoder mapping for the other

problem. Weshow in the sequel that this functional duality is enabled through appropriate choices of measures

and constraints for the dual source (or channel) coding problem. Our inspirationfor this formulation is derived

from recent work by Gastpar et al. on the optimality conditions for uncoded communications [12, 13].

We then extend this duality to the case of coding with side information, where we study the duality be

tween source coding with side information at the decoder, and channel coding with side information at the

encoder. These problems have attracted considerable attention in recent times due to a large class of relevant

applications related to both problems. A partial list of applications for source coding with side information

includes distributed sensor networks [14], sensor arrays, digital upgrade of analog television signals [15], and

communication in ad-hoc networks. The application set for the problemof channel codingwith side information

includes data hiding, watermarking [16], broadcast[17], ISI preceding, multi-antenna communication systems

and steganography. In this paper, we explore the information-theoretic duality between these two problems,

and provide a mathematical characterization of the conditions under which they become functional duals, i.e.

the encoder for one problem is exchangeable for the decoder of the other.

As an example, we will show that the problem of encoding a memoryless Gaussian source with correlated



Gaussian side-information available at the decoder studied by Wyner and Ziv in [1] is a functional dual to the

Gaussian watermarking problem studied in [16], related to the problem of "writing on dirty paper considered

by Costa in [18]. Recently, Costa's result [18] has been generalized from the case of Gaussian side information

to more arbitrary distributions by Cohen and Lapidoth in [19]. By invoking our duality concepts, we are able

to find a similar generalization of the result of Wjmer-Ziv [1] relating to no rate-loss for source coding with

side information from Gaussian to more arbitrary distributions. Rate-loss refers to the performance loss due to

the presence of side information at only one end (decoder only in source coding and encoder only in channel

coding) rather than at both ends. Agoal of this paper is to inspire the practical dual use of functional blocks

for the two problems, building on our preliminary work in [20]. It is illuminating to note that both problems

have recently inspired promising constructive frameworks based on coset codes that are underpinned by the

relevant information-theoretic concepts, e.g. [21, 22, 20, 23, 24] for thechannel coding problem, and [25, 26] for

the source coding problem.

To summarize, themain contributions ofthis paper are 1) a mathematical characterization ofthe functional

duality between conventional source and channel coding, and 2) extension of this to the case of source and

channel coding with side information at the decoder and encoder respectively. The paper is organized as

follows. In the next section we review the problems ofsource coding with side information and channel coding

with side information. Sections 3 formulates the precise notion of duality between general source and channel

coding problems. Section 4 concludes the paper.

2 Coding with side information

In this section we give a brief review of source coding and channel coding with side information.

2.1 Source coding with side information at decoder (SCSI)

Consider the problem [1] of rate-distortion optimal lossy encoding of a source X with the side information

S available (losslessly) at the decoder as shown in Fig. 1. X and S are correlated random variables with

X
Encoder

Bits at

rate

Figure 1: Source encoding with side information at the decoder. The encoder transmits at a rate greater than
or equal to R bits/ source sample.



joint distributionp(a:, s), such that the sequence pair {Xjt, Sk}'^i denotesindependent realizations of the given

random variables. Let the alphabets of X and 5 be A", 5 respectively. The encoding and decoding are done

in blocks of length L. The encoder is a mapping: —> {1,2,...,2^^}, and the decoder is a mapping

(1,2,...,2^^} X —> X^ where X is the reconstruction alphabet and the distortion criterion is given by

E j; d(XkjXk, 5ife)j, where d:Xx XxS —> is the per-letter additive distortion measure^ and E(.)
is the expectation operator and R is the rate of transmission.

Fact 1 [1]: The rate-distortion function for this set-up, R*{D), is given by

=pSx)
such that S -* X U form a Markov chain and E[d{X,f{U,S),S)] < D, where U is an auxiliary random

variable with alphabet U. This is a natural Markov chain associated with the definition of the problem, which

characterizes the fact that only the decoder has access to the side information. In other words, the dependency

between the side information S and the auxiliary variable U is completely captured through the source X.

Using this Markov chain it can be seen that I{U',X) —I{U;S) = I{U;X\S). Prom this identity, the above

optimization problem can be rewritten as follows:

such that S X—* Uand Ej^d(X, X, 5)j <D. Further, since the decoder does not have access to the source
X, in (2) we have the constraint that X {U, S) X which implies that U and S completely determine the

reconstruction X.

Now the rate-distortion function Rx\3{D) when both the encoder and the decoder have access to the side

information is given by:

such that E[d{X^ *5')] < D. Asa way ofmeasuring the performance loss due to the presence ofside information

only at the decoder (see Fig. 1),wenote that the SCSI problem (2) differs from (3) in two regards: the inclusion

of auxiUary random variable U, and the presence of the Markov chain. In order to address this, it is insightful

to recast the rate-distortion problem in (3) as in Fig. 2 by introducing an intermediate processing stage between

X and X that includes U, and imposing the Markov constraint S X U as follows:

mm

- p(Hx)J(xk.) (4)

^Although d : X XX R"'" is typically considered in the literature, the extension to a more general d which includes S is
straightforwau-d. It can be interpreted as the distortion between x and x when the outcome of the side information is s. This is
necessary for a precise formulation ofduality between source and channel coding with side information. A similar generalization of
cost measure is considered in Section 2.2 for the case of channel coding with side information.
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Figure 2: Source coding with side information present at both encoder and decoder: an intermediate stage is
introduced with U.

such that 5 -> X C/ and E[d{X,X,S)] < D. As in (2), we have the additional Markov constraint X

{U, S) —* X that emphasizes the fact that the reconstruction X depends only on U and S. Note that this

formulation subsumes that of (3) when U = X, i.e. the first processing stage is an identity operation. It can be

shown by invoking the data processing inequality that this expanded formulation does not perform any better

than the original one of (3), i.e. the two formulations are identical. Theonly reason for this expanded version

is to exactly match the constraints of the SCSI problemof (2) for a fair comparison.

In general, under the given set ofconstraints I{X\X\S) < I{X;U\S). Thus R*{D) = Rx\s{D) If

if at optimality in (4), I{X;X\S) = I{X]U\S), which means that conditioned on the side information S, the

information conveyed about the somce X byobserving U is the same as that byobserving X. This implies the

Markov constraint: X —» {X,S) U. Thus, given the side information 5, the auxiliary variable U and the

reconstruction X are information equivalent. So the encoder can as well generate U (which depends only on

the source X) instead ofX (which depends on both Uand side information Y), thus obviating the need for the

side information Y at the encoder.

More formally, there is no rate loss, i.e., R*{D) = Rx\s{D) if and only if [1] the distribution achieving the

minimization in (3) (say p*(x, s,x)) can be represented in the form having the auxiliary random variable U:

p*{x,s, X,u) such that

(a) T>uP*i^^s,x,u) =p*{x,s,x),

(b) the reconstruction X can be represented as :r= f*{u,s), which is obtained by the SCSI problem (1), and

(c) the following two Markov chains are satisfied: S X —* U and X {X,S) ^ U.

It is important to note that these constraints are associated with the optimizing distribution for the problem

of source coding with side information at both encoder and decoder as given by (3,4). It is not in general

possible to guarantee no rate loss if we start the other way around, i.e. with the SCSI problem of (1,2) and

impose these constraints.



2.2 Channel coding with side information at encoder (CCSI)

Channel coding with side information [11, 21, 18] about the channel at the encoder is shown schematically in

Fig. 3. The encoder wishes to communicate over a channel given by the conditional distribution p{y\x,s), where

m
Encoder

Xi Channel i Y
1 • Decoder

A

m

1 P(Y|X,S) i
! '

Figure 3: Channel coding with sideinformation: the encoder has access to sideinformation S about the channel;
m represents the message, and X and Y are the input and the output of the channel respectively.

y is the channel output, X is the channel input which the encoder can control and 5, the sideinformation with

a given distribution p(s), is the second channel input which the encoder cannot control but can only observe,

and has alphabet S and there is a cost measure u} : X x S —* K"*". This can be interpreted as the cost of

transmitting x when the side information outcome is s. The encoder isa mapping:{l, 2,..., 2^^} x —* X^,

and the decoder is a mapping: —» {1,2,..., 2^^}, where C is the rate of transmission.

Fact 2 [11]: The capacity C*(W), for a costconstraint W, of this channel coding set-up is given by

max
(5)

such that y {X, S) U form a Markov chain^ and E[u;{X, 5)] < W, where C/ is an auxUiary random

variable with alphabet U. This is a natural Markov chain associated with the definition of the problem which

means that the dependency between the auxiliary variable U and the channel output Y is completely captured

through the channel input X and the sideinformation S. The encoder can influence the channel output Y only

through the input X. The above optimization can be rewritten as

(6)

such that y —> (X, S) —* U and E[uj{X, 5)] < W. Further, since the encoder does not have access to the

channel output y, in (6) we have the constraint that Y —> {U, S) —* X, which impUes that U and S completely

determine the channel input X.

Now the capacity of the system Cy|3(W), when both the encoder and the decoder have access to the side
^See equation (2.4) in [11].



information is given by:

such that E[oj{X, 5)] < W. As was done in SCSI, we note that the CCSI problem (6) differs from (7) in two
"P-nooH#*!- Channel

u p(x|u,s)
X p(y|x,s) Y

S

Figure 4: Channel coding with side information present at both encoder and decoder: an intermediate stage is
introduced with U.

regards: the inclusion of auxiliary random variable U, and the presence of the Markov chain. To address this,

it is insightful to recast the capacity-cost problem in (7) as in Fig. 4 by introducing anintermediate processing

stage that includes U, and imposing the Markov chain Y {X,S) U as follows:

such that Y {X,S) ->U and E[oj{X, 5)] < W. This is because, a) in (8) we have the additional constraint

that y {U, S) -* X, which impUes that Uand S completely determine the channel input X, and b) using the

Markov chain Y-> {X,S) -* U, we have I{X;Y\S) = I{U',Y\S). Note that this formulation subsumes that of

(7) when U= X, i.e., the first processing stage is an identity operation. It can be shown by invoking the data

processing inequality that this expanded formulation does not perform any better than the original one of (7),

i.e. the two formulations are identical.

In general, under the given set of constraints I{U]Y\S) > I{U]Y) —I{U]S). Thus C*(W) = Cy^s0^) H

only ifat optimahty in (8), /(C/; Y\S) = I{U] Y) - I{U\ S), which means that the information conveyed about

the auxiliary variable Uby observing (y, S) is the same as that by observing Y. This implies thatS >Y—*U.

Thus given the channel output Y, the side information S does not give any more information about U (which

contains the message sent by the encoder) thus obviating the need for the side information at the decoder.

More formally, there is no rate-loss, i.e., C*{W^ = Cy|s(iy) if and only if the distribution achieving the

maximization in (7) (say p*{x, s,y)) can be represented in the form having the auxiliary variable U: s,y, u)

such that

(a) =^*(^'•^'2/)'

(b) the channel input X can be represented as x = /"(u,s), which is obtained by the CCSI problem (5), and

(c) the following two Markov chains are satisfied: Y —• {X, S) ^ U and S —* Y U.



It is important to note that these constraints are associated with the optimizing distribution for the problem

of channel coding with side information at both encoder and decoder as given by (7,8). It is not in general

possible to guarantee no rate loss if we start the other way around, i.e. with the CCSI problem of (5,6) and

impose these constraints.

3 Duality

Traditionally, the conventional source and channel coding [4] problems have been considered as information-

theoretic duals of each other. Shannon in his 1959 paper [3] on rate-distortion theory stated (italicized for

emphasis) duality between the properties ofa source with a distortion measure and those ofa channel. This

duality is enhanced if we consider channels in which there is a cost associated with the different input letters..".

In thissection we obtaina precise characterization offunctional duality between conventional source andchannel

coding and then extend this notion for source and channel coding with side information. In otherwords, for a

given source coding problem, we obtain a channel coding problem, where the roles ofencoder and decoder are

functionally exchangeable and the input/output joint distribution is the same with some renaming ofvariables.

For a given source, the rate-distortion function [4] denoted byR{D) istheminimum rateofinformation required

to represent it with a distortion constraint D. Similarly, for a given channel, the capacity-cost function [4]

denoted by C{W) is the maximum rate of information that can be reliably transmitted with a cost constraint

W.

3.1 Duality in conventional source and channel coding

We would like to emphasize that the notion of duality pervades the literature starting from Shannon in 1959.

To study these concepts in one framework, let us state a correspondence between the variables involved in the

two coding problems.

f source input X *—^ Y channel output 1 , i j „ (n\
source coding I T v v u i r channel coding (9)^ source reconstruction X *—* X channel input J

To avoid confusion, we stick to the conventional notation ofsource coding and use the same for channel coding.

Let us now recall twofacts which have beenrecently studiedin [12,13] in a totallydifferent context ofoptimaUty

ofuncoded transmission. It was shown in [12, 13] that for a given source p{x) and a channel p{x\x), there exist

distortion and cost measures such that uncoded transmission is optimal. The essential concepts are presented

in the following form for completeness. We denote the given distribution by p(.) and the distribution which

optimizes the given objective function by p*{.).

8



Fact 3 [12]: For a conventional channel coding problem with a channel p(a:|x), input and output alphabets X

andX respectively, given a channel input distribution 3 a costmeasure uj : X —* and a costconstraint

W such that

" p(i) :(X\:k) ~^\x), Eu(X) <W
where the cost measure and cost constraint are given respectively by

uj{x) =c\D (p(x|x)|1p*(x)) +9and W=Fp.(i) |̂ w(X)j , (11)

D(.||-) is information divergence [4], ci > 0, ^ are arbitrary constants, p*{x) =

Fact 4 [12]: For a conventional source coding problem, with a source p(x), input and reconstruction alphabets

X, X respectively, given a conditional distribution p*(x|x), 3 a distortion measmre d : X x X K"*", and a

distortion constraint D such that

P*(i|̂ ) = .X̂ p^],Bd(,X, X)<D

where the distortion measure and distortion constraint sire given respectively by

d{x,x) =-C2logp''(x|x) +do{x) and D=Fp(x)p-(i|i) |̂ d(X,X)j , (13)

C2 > 0 and do{x) are arbitrary, p*(x|x) = , P*{x) = Z)iP(^)P'(^k)-

Remark 1: In Fact 3, for a range of cost measures a;, the channel input distribution p*{x) maximizes I{X]X).

This cost measure has a nice interpretation in some interesting cases such as Gaussian and binary symmetric

channels. It can be shown [12] that for an additive memoryless Gaussian noise channel, and Gaussian channel

input distribution, this cost measure is given by x^, for an appropriate choice of ci and 9. In general, this cost

measure penalizes those input distributions which does not result in the output distribution given by p*{x).

Similarly, in Fact 4, the conditional distribution p*{x\x) minimizes I{X\X) for a range of distortion measures.

As in Fact 3, it has nice closed-form solutions for the Gaussian and binary memoryless sources. For example,

for the Gaussian memoryless source, and additive Gaussian conditional distribution, this distortion measure

is given by (x —x)^ for an appropriate choice of C2 and do{x). In general, this distortion measure somewhat

corresponds to the conditional length of description of the source value x, given a reconstruction value x. See

[12] for details and other examples.

Using this, we have the following theorem which connects the source and channel coding problems.

Theorem la: For a source coding problem, with a given source p(x), input and reconstruction alphabets X



and X respectively, a distortion measure d : X x X and a distortion constraint let the conditional

distribution achieving rate-distortion optimality R{D) be given by:

= P(X|.): X~'̂ Ed(X,X) <D
inducing the following distributions:

Then 3 a dual channel coding problem for the channel p*(x|x), having input and output alphabets X and X

respectively, a cost measure cj : X —* R"*", and a cost constraint W, such that:

• the rate-distortion bound R{D) is equal to the capacity-cost bound C{W)^ i.e.,

p(i|x): X~p(x),Ed{X,X) <D = p(i); (X|l) ~p'(i|i),£;u;(X) <W (1®)

• the channel input distribution given by p*{x) achieves capacity-cost optimality, i.e.,

" p{x): X\X ~p^\x),Eu{X) <W - (17)

where the cost measure and cost constraint are given respectively by:

a.(x)4c,D(p*(x|x)||p(x)) + 9, W &E^f^^MX)), (18)

for arbitrary ci > 0 and 0.

Proof: Omitted

Theorem lb: For a channel coding problem, with a givenchannelp{x\x), input and output alphabets X and X

respectively, a cost measure u;: A" ^ R""", and a cost constraint W, let the channel input distribution achieving

the capacity-cost optimality C{W) be given by:

~ p{x) :{X\X) - |(x|x), Eij{X) <W
inducing the following distributions:

P*{^) - (20)
X

Then 3 a dualsource coding problem for the source p*{x), having input and reconstruction alphabets X and X

respectively, a distortion measmre d: X x X and a distortion constraint D, such that:

10



• the capacity-cost bound C(W^) is equal to the rate-distortion bound R{D), i.e.,

max j,y _ niin
p(x) : {X\X)r^p{x\x),Euj{X) < W p(xla:) : X ^ p*{x),Ed{X,X) < D

• the conditional distribution given by p*{x\x) achieves rate-distortion optimality, i.e.,

♦ axgmin TfY-Y^P(^1^) - p(i|3.). X~p-(x),Ed(,X,X) <d'^ ' '•

where the distortion measure and distortion constraint are given respectively by:

d(x,x) = -C2logp(a:|x) -l-do(a^), E> = Ep.(£)p(x\x)(d(X, X)),

for arbitrary C2 > 0 and do(a:).

P(X) P*(X|X)

P*(X) P(XIX)

P*(X) p(X)

(a)

P*(X)

^(x|5c)

P*(X1X)

P*(X)

P*(X)

I(X;X); (21)

(22)

(23)

(b)

Figure 5: (a) For a given source coding problem with somrce p(x), the dual channel coding problem is defined
ina reverse order, (b) For a given channel coding problem with channel p(a;|x), the dual source coding problem
is defined in a reverse order.

Remark 2: The first property ofthedual problem asgiven by (16) implies that the minimum value ofI(X;X)

with respect to p{x\x) under one set of constraints is exactly equal to the maximum value of I{X\X) with

respect to p{x) under another setofconstraints. The second property asgiven by (17) implies that the solution

to the dual channel coding problem is exactly the distribution p*{x) induced from the solution to the given

source coding problem, provided we are careful about our choice of cost measure as given by (18). Similar

interpretations can be given to the properties given by (21), (22) and (23). In other words, for a given source

coding problem, we canassociate a dual channel coding problem with the same input-output joint distribution,

and the rate-distortion bound is equal to the capacity-cost bound, R{D) = C{W). Note that for a given source

coding problem, although the conditional distribution isp*{x\x) with p{x) as the source input, the dual channel

coding problem is defined for the channel p*(x|i) with input distribution p*{x^ in the reverse order as shown in

Fig. 5. For a given source coding problem, the test channel [4] characterized by p*{x\x) becomes the channel

for the dual channel coding problem and vice versa.

11



Using the forward part of Shannon source and channel coding theorems, for a pair of dual problems, the

random codebooks are constructed using the same distribution, p*{x) and the jointly t3rpical encoding and

decoding (done respectivelyin source and channel coding) are the same in the sense of finding a codeword from

the codebook which is jointly typical (in the sense of p*{x, x) = p{x)p*(i|x) or p*(re, x) = p*(x)p(rc|f)) with the

observed //-length sequence of source input and channel output respectively with the same distribution p{x).

Thus the distribution p*{x\x) characterizing the function of the encoder of source coding also characterizes the

function of the decoder in the dual channel coding. Thus the encoder of the one is functionally identical to the

decoder of the other and vice versa. Summarizing, we have:

• Source encoder and channel decoder are characterized by a mapping which has the same domain and

range: —» {1,2,..., 2^^}, and similarly the source decoder and channel encoder zure characterized

by a mapping which has the same domain and range: {1,2,..., 2 '̂'̂ } —> X^, where R is the rate of

transmission. Thus the roles of encoder and decoder are reversed in these two problems.

• Using the forward part [4] of Shannon^ source and channel coding theorems, in the limit of large block-

length, a rate-distortion optimal encoder ofthe former is functionally identical to a capacity-cost optimal

decoder of the latter and vice versa in the sense of Theorem la and lb.

Let us consider the following examples as illustrations of duality.

Example 1; Source coding (see Fig. 6(a)): the source is Gaussian with mean 0 and variance <7^, i.e., p{x) =

with a quadratic (squared error) distortion measure, d : X x X R"*" which is given by d{x,x) =

(x- x)^, and a distortion constraint D. The optimal test channel conditional distribution [4] satisfying (14) is

of the form X = pX + g, where p{q) —A/'(0, and p = i.e., p*{x\x) = Af

The induced distributions are given by X = X + Z, where p{Z) = Af{0,D), i.e., p*(x|x) = J\f{x,D) and

p*{x) = Af{0,a^ —D). Note that D <a^.

Channel coding dual (see Fig. 6(b)): given the additive memoryless Gaussian noise channel as given above,

X = X + Z, i.e., p*(x|x) = Af{x, D), and a cost measure u;: A" IR+, a cost constraint W; the channel input

distribution obtained from the above source coding problem, given by p*{x) = Af{0, - D) maximizes I{X-,X)

over all p(x) such that E{uj{X)) < W, where using Theorem la,

a;(x) = [ciL>(p*(x|x)|1p(x)) + 9\=x'^ (24)
''Recall that in the limit oflarge block-length, insource coding, the rate-distortion bound R{D) isapproached from above, while

in channel coding the capacity-cost bound C{W) is approached from below.
®With a slight abuse ofnotation, we denote a Gaussian random variable X with mean £ind variance aseither X ~ //(/x, ct )

or p(x) =

12



for an appropriate choice of parameters: ci = 2cr^, 9= c\ ^ , and the cost constraint is

"W — —D. This cost measure, a;(x) corresponds to the traditional average power constraint on the channel

input. Note from Fig. 6thatthe roles of the encoder and the decoder of these dual problems are exactly reversed.

The test chaimel in thesource coding problem becomes thechannel inthedual channel coding problem. It isalso

interesting to note that we could have started with this channel coding problem and obtained the above source

coding problem as its dual by noting that d{x,x) can be put in the form (given in (13)), —C2logp (a:|x) H-do(3j),

where C2 = 2T>, do{x) = —Dlog(27r£)).

Encoder

X

Test Channel

A

X

z

(a)

Channel

A i

X
Ki)
iz

Decoder

X

(b)

-(±)

A

X

Figure 6: (a) Gaussian Source coding: p{x) = p{q) = •A/^(0> ^)i ~ //{0,D).
The effect ofencoding on X ischaracterized as fiX + q. Test channel gives the relation between X and X. (b)
Channel coding dual with thesame joint distribution. The decoding is depicted asone ofrecovering X from X.

Fxample 2: Channel coding: consider a binary symmetric channel with transition probability p, characterized

as: X = X^Z, where X,X,Z e {0,1}, p{Z = 1) = p and © denotes binary modulo-2 addition. The cost

measure is given by ^(t) = i for i = 0,1, which corresponds to a constraint on the duty cycle of the channel

input. The capacity of this channel with expected cost Euj{X) < W, for some 0 < VF < 0.5 can be shown [4]

to be® C{W) = h{p*W)- /i(p), where p*W = p{l-W) + {I - p)W. The optimal channel input distribution

is p*{X = 1) = W. Note that p*{X = l)=p^W.

Source coding dual: given the binary source with distribution from the above, i.e., p*(X = 1) = p*W, with

a distortion measure d(.,*)> ^ distortion constraint D', the test channel conditional distribution p*{x\x)

(induced from the above channel coding problem) minimizes I{X\X) over all p{x\x) such thatEd{X, X) <

where using Theorem lb,

d{x, x) = [—C2logp(x|:r) + do(a:)] = x ©x, (25)

is the Hamming distortion measure if we choose C2 = [log(i_pi_log(p))' = (log(^?p)-log(p)l'
distortion constraint is D = p. Thus in this binary example, the duty cycle cost measure for the channel coding

problem corresponds to the Hamming distortion measure for the dual source coding problem.
®Note that when W = 0.5, we get the classical capacity of the binary symmetric channel, 1 —h(p).
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3.2 Duality between source and channel coding with common side information

Let us consider a similar formulation of duality for source and channel coding with common side information

present at both the encoder and the decoder (denoted by SCSIB and CCSIB respectively, where the appended

"B" stands for "both"). This is a straightforward extension of the treatment of the previous section to the case

where we condition on the common side information. The motivation for addressing this extension is that this is

a necessary step (as will be evident in Section 3.3) that will serve as a bridge to establishing the duality between

SCSI and CCSL Another motivation is to establish the need for the generalized notion of cost and distortion

measures introduced in Section 2. The following lemmas extend the ideas given in Facts 3 and 4 to this case in

a straightforward way and are presented here for completeness.

Lemma la: For CCSIB, with a given channel p(x|x, s), side information p(s), input, side information and

output alphabets X, S and X respectively, given a conditional channel input distribution p*(i|s), 3 a cost

measure a;: ^ x 5 —> 1R+ and a cost constraint W such that

p*(x|s)= /(X;X|S) (26)

under the constraints (X|X, 5) ~p(a:|f,s), S ~p(s) and Eu;{X,S) < W, where

w(x,s) = cijD(p(a:|i,s)||p*(a;|s)) + 0(s), axidW= Ep(^s)p'(x\3){i^{X,S)), (27)

with ci > 0 and 0(s) being arbitrary and p*(a;|s) = X^£P*(iE|s)p(a;|x, s) from standard Bayes' rule.

Proof: Omitted

Lemma lb: For SCSIB, with a given source p(a:|s), side information p(s), input, side information and recon

struction alphabets X, «S, and X respectively, given a conditional distribution, p*{x\x, s), 3 a distortion measure,

d:A:'Xi^x5—and a distortion constraint D such that

P-(X|X,.)= (28)

under the constraints (^^15) p(x|s), S /N./ p(s), and Ed{X,X,S) < D, where

d(x,X, s) = C2logp (x|x, s) -4-do(^>^)) ^nd D = .^p(a;|s)p{s)p*(i|a:,s)(^(-^>'̂ ))» (^^)

with C2 > 0 and do{x,s) being arbitrary, and p*(xlx,s) =

standard Bayes' rule.

As noted earlier, with the more general distortion and cost measures, we are able to extend the concepts of

Facts 3 and 4 to the case when a common side information is present at both the encoder and the decoder. We
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will give an example of a Gaussian source to illustrate the behavior of these measures. We now connect these

two coding problems using the following theorem (which is an extension of Theorem la), which says that for a

given SCSIB, we can associate a dual CCSIB having the same joint distribution.

Theorem 2a: For a SCSIB, with a given source p(xls), side information p(s), input, side information and

reconstruction alphabets X, S and X respectively, a distortion measure d.X y. X x5—and a distortion

constraint jD, let the conditional distribution achieving the rate-distortion optimaHty Rx\s{D) be given by:

p-(xks)4 ^ y
^ p(x|x,s) : (J |̂iS) ~p(x|s),o ~p(s),£o(A,A,o) <

inducing the following distributions:

Then 3 a dual CCSIB for the channel p*(x|x,s), having side information p(s), input, side information and

output alphabets X, S and X respectively, a cost measure u;: XxS —* K"*" and a cost constraint W, such that:

• the rate-distortion bound with side information Rx\a{D) is equal to the capacity-cost bound with side

information Cx\si^), i.e.,

min I{X\X\S)= max I{X\X\S)-,
{X\S) p{x\s) ] r (X|l,5)~p^(x|x,s) '

p(xlx,s):^ S^p{s) I P( |̂s) : S 5~p(s)
Ed{X,X,S)<D J [ Euj{X,S)<W

(32)

the channel input distribution given byp*(x|s) achieves capacity-cost optimality, i.e..

P*(i|«) - . (X|1,S) ~p*(i|i,s),S ~p(s),£:a;(X,S) <W

where the cost measure and cost constraint are given respectively by

w(x,s) = ciD(p*(x|x,s)|1p(x1s))0(5), W= jEp(s)p.(i|s)(w(X,5)), (34)

for arbitrary ci > 0 and 0(s).

Proof: Omitted

Remark 3: The first property ofthedual problem asgiven by (32) imphes that theminimum of/(X; X|5) with

respect to p(x|x, s) under one set ofsource coding constraints is equal to the maximum ofthe same objective

function J(X;X\S) with respect to p(x|s) under another setofchannel coding constraints. The second property
denotes the capacity of CCSIB using (7) and (9).
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as givenby (33) impliesthat the solution to the dual CCSIB problem is exactly the distribution induced

from the solution to the given SCSIB, provided we are careful about our choice of cost measure as in (34). We

emphasize that for a given SCSIB, we can associate a dual CCSIB with the same joint distribution, and the

rate-distortion bound is equal to the capacity-costbound, /ia.|3(i?) =

A similar result holds true for the case of CCSIB which is an extension of Theorem lb. It essentially says

that for a given CCSIB problem, there exists a dual SCSIB problem with an optimal distortion measure. We are

not presenting this here. In other words, for a given SCSIB, there exists a dual CCSIB such that in the limit

of large blocklength, a rate-distortion optimal encoder of the former is functionally identical to a capacity-cost

optimal decoderof the latter and vice versa. Further, using the forward psui; of the coding theorems [27], wesee

that the random conditional codebooks are constructed with the conditional distribution p*(x|s) corresponding

to the given outcome of the side information. The jointly tjqjical encoding and decoding in SCSIB and CCSIB

respectively are identical. Let us consider an example to illustrate the dual problems.

Example 3: SCSIB (see Fig. 7(a)): consider a Gaussian source X, given byX = 5 + V, withp{V) = ff{0,N),

i.e., p{x\s) = M{s,N) and S is the Gaussian side information given by p(s) = f/{0,Q) for some positive

real N and Q, the distortion measure d : X x X x S —* K""" is quadratic, {x —x —s)^ and the distortion

constraint D. This corresponds to the case of reconstruction of V, the difference between X and 5 (instead of

X) using a mean squared error asdistortion measure. Letct = • The optimal conditional distribution® [27]

satisfying (30) is given by X= aV +q, with p{q) = Af{0, i.e., p*{x\x, s) =M(a{x —
The induced conditional test channel distribution is given by X = X + S Z, where p{Z) = i.e.,

p*{x\x, s) = J\f{x + s, D), and X is independent of S, i.e., p'*(x|s) = M{0, N —D). Note that D < N. Further,

a is equal to the coefl&cient in the Minimum Mean Squared Error (MMSE) estimate of X from X + Z.

Dual CCSIB (see Fig. 7(b)): given the additivememoryless Gaussian channel obtained from the above SCSIB,

characterized by X = X + S+Z, i.e., p*{x\x, s) = J\f{x + s, D), with a costmeasure w: X x 5 —> R""", and a cost

constraint W; the channel input distribution induced from the above SCSIB, p*(f |s) = A/'(0, N —D) maximizes

/(X;X|5) over all p(x|s) such that Euj{X,S) < W, where using Theorem 2a, we have the cost measure

u){x, s) = CiD {p*{x\x, s)||p(i|s)) + e{s) = x^ (35)

ifwe choose ci = 2N, 0{s) = ci [Jlog^ — , and the cost constraint is W= N - D. This corresponds to a

simple average power constraint on the channel input, independent ofthe side information S. Thusthe encoder

completely ignores the presence of the side information, and the decoder subtracts the side information from
®given by the rate-distortion bound on V = X —5
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the channel output before further processing. Note that the functional roles oftheencoder and decoder ofthese

dual problems are exactly reversed: the test channel ofSCSIB becomes the channel ofthe dual CCSIB, and the

source encoder for SCSIB becomes the channel decoder for CCSIB. We could just as easily have started with

the CCSIB problem and found the dual SCSIB problem.

Remark 4: If in this example, for SCSIB with the same source X, and side information 5, if we choose the

Encoder Test Channel
A

X

Channel

(b)

X

-s

Decoder

a

A

X

Figure 7: Duality: a = {N - D)/N, p{q) = M{Q, p{Z) = U{0,D). (a) SCSIB as given in Example
3, with distortion d{x,x,s) = {x —x —s)^. (b) CCSIB dual of (a) with cost a;(x, s) = x^. Note the roles of
encoder and decoder are exchanged in (a) and (b).

distortion measure to be d{x,x,s) = [x —x)^ (i*c«> if we are interested in the conventional MSE reconstruction

of the source X rather than that of the difference between the source and the side information, {X —S)),

then the optimal conditional distribution is given by X=aX + (1 —oc)S +q, with p{q) =M{0, ^^ ^), i.e.,

p*{x\x, s) =N (a(a: - s) +s, •This induces the test channel given by X=X+Z, i.e., p*(x|x, s) =
/\f{x,D), and the correlation between X and S is given by p*(i|s) = M{s, N —D). The dual CCSIB will have

the channel p*(x|x, s) = J\f{x,D), under the channel cost measure a;(x,s) = (x - s)^. This corresponds to a

constraint on the average power of the difference between the channel input X and side information S (In data

hiding and watermarking applications [16, 22] such a cost measure is popular as it represents the amount of

distortion induced on the original host signal.). Summarizing, we see that the distortion measure (x —x)^ in

SCSIB corresponds to the channel cost measure (x —s)^ in the dual CCSIB, where we saw earlier that the

distortion measure (x —x —s)^ in SCSIB corresponds to the cost measure x^ in the dual CCSIB.

3.3 Duzdity of SCSI and CCSI

This section contsiins the main result of this paper. First let us state a correspondence between the variables

used in the definition of SCSI and CCSI.

SCSI <

source input X
side information S

auxiliary variable U
source reconstruction X

17

Y channel output
S side information

U auxiliary variable
X channel input

CCSI (36)



We follow the notation of SCSI and use the same for CCSI. The duahty between SCSI and CCSI has been

studied in [20, 28]. In this section, we formulate the notion of functional duahty for the SCSI and CCSI similar

to the one developed in the previous sections.

3.3.1 Duality formulation

Recall that in the Wyner-Ziv formulation of SCSI (Fig. 1), the problem is to rate-distortion optimally compress

X with side information S present only at the decoder. The objective function to be minimized is [I{U;X) —

7(17; 5)1 with respect to p{u\x) and x = /(u, s), where U is an auxiliary random variable. It is important

to note that there is a natural Markov chain associated with the definition of the problem: 5 —> X C/

which essentially captmres the fact that side information S is available at only the decoder. Suppose the

objective function [I{U]X) - IiU;S)] is optimized by {p*(u|x),/*(u,s)}. This®, with the Markov chain S -*

X —* Uy completely determines the joint distribution p*{x,s,x,u) = p(s)p(x|s)p*(u|x)p*(x|u,s), thus fixing

all conditional distributions including p*(u|s). Similarly, in the Gelfand-Pinsker formulation of CCSI (Fig. 2),

the problem is to reliably transmit maximal amount of information across a channel in the presence of side

information only at the encoder. The objective function to be maximized is [I{U;X) —I{U;S)] with respect

to p(u|s) and x = f{u,s), where U is an auxiliary random variable. A natural Markov chain associated with

the definition of this problem is given by X (X, S) —> C/, which essentially captures the fact that the

channel output is governed only by the channel input X and side information 5. Suppose the objective function

is optimized by {p*'(u|s),/*(u, s)}. This, with the Markov chain X (X,5) —+ C/, completely determines

the joint distribution p*(x,s,x,u) = p(s)p''(u|s)p*(x|u,s)p(x|x,s), thus fixing all the conditional distributions

including p*(u|x).

In order for general duality between the CCSI and SCSI problems, we have to reconcile the fact that these

two problems come with completely different Markov chain conditions in their very definition. Thus for a

general SCSI problem, the distribution minimizing [I{U;X) —7(17; 5)] cannot be used for any CCSI problem

unless X —> (X,S) —» 17 is satisfied, which is a necessary initial condition for the latter. Therefore, unless

the optimizing joint distribution p*{x,s,x,u) satisfies both Markov chains, there can be no duality. However,

fortuitously, there exists a rich subset of these problems (including the important Gaussian case), where these

Markov chains are satisfied, and we do have a functional duality. We have the following theorems characterizing

this.

Theorem 3a: For a SCSI, with a given source p(x|s), side information p(s), input, side information and
^Recall the convention relating to p(.) and p*(.) given in Section 3.1.
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reconstruction alphabets X,S and X respectively, a distortion measure d: X x X x S —* and a distortion

constraint £), let the conditional distribution achieving the rate-distortion optimality R*{D) be given by:

/ p*{u\x), \ = argmin I{U;X) - I{U-,S),
\x = r{u,s)j P{u\x), ( (XIS) ~p(x|s),5~p(s) 1 (37)

x = f{u,s) '\ Ed{X,X,S)<D,{S-*X^U) j

inducing the following distributions: p*{x,s,x,u) = p(s)p(xls)p*(u|x)p*(x|w, s),

where p*{x\u,s) is given by x = f*{u,s). Ifp*(x,s,x,u) is such that X {X,S) —* U, then 3 a dual CCSI,

for the channel p*(x|x,s), having side information p(s), input, side information and output alphabets A", 5 and

X respectively, a cost measure a;: x 5 R+ and a cost constraint W, such that:

• the rate-distortion bound with side information R*{D) is equal to the capacity-cost bound with side

information C*(W), i.e.,

mm

P(wla:), . ^
x = f{u,s)

I{U]X)-IiU;S) _ max I{U;X) - I{U;S)\
f (X15)-p(xls)

S- p(s) I p(u|s), . ^
Ed{X,X,S)<D ( x = g{u,s)

S-^X^U

(A'lX,5)-p^(xlx,s)
S - p(s) [ (39)

Euj{X,S)<W
X-.{X,S)^U

the conditional distribution p*{u\s) and the function x = f*{u,s) achieve capacity-cost optimality, i.e.,

axgmax I{U;X) —I{U\S),r p*{u\s), \ = Mgmax
\x =r{u,s)\ p(w|s) ./ (Xll,5)-p*(x|x,s),5~p(s) 1

X= g(u, s) ' \ Euj{X, S) <W,{X-*{X,S)—*U) f
(40)

where the cost measure and cost constraint are given respectively by

u;(x,s) = ciI?(p*(x|x,s)|1p(x|s)) +0(s), W= Ep(s)p'{x\3){<^{X,S)), (41)

for arbitrary ci > 0 and 0(s).

Proof; See Appendix

Theorem 3b: For a CCSI, with a given channel p(x|x,s), side information p(s), input, side information and

output alphabets X, S, and Xrespectively, a cost measure u :XxS R"^, and acost constraint W, let the

conditional distribution achieving the capacity-cost optimahty C*{W) be given by:

r p*(u|s) \ = argmax I{U\X) - I{U]S),
\ x= /*(u,s) J p(u|s) / (XIX,^) ~p(x|x,s),5~p(s) 1 (42)

x = f{u,s) Elj{X,S)<W,{X-^{X,S)^U) J
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inducing the following distributions: p*{x, s, x, u) = p(s)p''(uis)p*(i|u, s)p(x|x, s),

= = W) ' ''''

where p*{x\u, s) is given by x = f*{u, s). If p*{x, s,x,u) is such that S —* X U, then 3 a dual SCSI for the

source p*(x|s), having side information p(s), input, side information andreconstruction alphabets X,S, and X

respectively, a distortion measure d: X x X x S and a distortion constraint D, such that:

• the capacity-cost bound with side information C*iW) is equal to the rate-distortion bound with side

information R*{D), i.e.,

max I(U;A) — 1{u;::3) min

p(uls)
X = f{u, s)

I{U',X)-I{U;S)
r {X\X,S)^p{x\x,s) ]

S ~ p(5)
Euj{X,S)<W

X-^{X,S)-^U J

:
p{u\x)

X= g{u, s)

mx)-ms);
f (X|5)~p*(x|s)

S ~ p{s)
Ed{X,X,S)<D

S-^X^U

:
(44)

the conditional distribution p'*('u|x) and the function x = /*(u, s) achieve rate-distortion optimality, i.e.,

/ p*(u|x), \ = argmin I{U;X) - I{U\S),
\x = f*{u,s) J f (-X"|5) ~p''(x|s),5 ~p(s) 1

x = g(u,s) \ Ed{X,X,S)<D,{S^X^U) j
(45)

where the distortion measure and distortion constraint are given respectively by

d(x,X, s) — C2logp(x|x, s) -l-do(^j5)i D —•^p(s)p*(x|5)p(z|x,s)('̂ (-^»-^>^))) (46)

for arbitrary C2 > 0 and do(x, s).

Remsirk 5: Before we interpret these theorems in terms of functional duality, we want to point out (see an

illustration of the Gaussian case in Fig. 8 ) that using the forward part of the coding theorems [1, 11], in SCSI

and CCSI, a codebook with blocklength L, consisting of roughly codewords is partitioned (so-called

random binning as given in [4]) into 2^^ cosets containing roughly 2^^^ '̂̂ ^ codewords (see the correspondence

in (36)). In SCSI, this is a partition of a source codebook for quantizing X into cosets of "channel codebooks"

for the fictitious channel between U amd 5. In CCSI, this is a partition of a channel codebook for the fictitious

channel between U and X into cosets of "source codebooks" for quantizing S. This concept of coset codes also

ties these two problems together.

Remark 6: In Theorem 3a, the property of the dual CCSI, given by (39), implies that the minimum of

[I{U;X) —I{U;5)1 with respect to p{u\x) and x = f{u, s) under one set of constraints is equal to the maximum

of the same objective function [I{U;X) —I{U; 5)] with respect to p(w|s) and x = f{u, s) under another set of
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CCSI; space filling sphere / SCSI: space filling sphere
(channel code) 'f (channel code)

CCSI: space covering sphere "JU SCSI: space covering sphere
(sourcecode) —(sourcecode)

* I Y u' 1
^ I A iv I

Figure 8: Coset code structure for SCSI and CCSI for the Gaussian case: InSCSI (respectively CCSI) thesetof
source (channel) codewords denoted by small spheres are partitioned into cosets ofchannel (source) codewords
denoted by big spheres.

constraints. Further, the property as given by (40) impHes that the solution to the dual CCSI is exactly the

distribution p"'('u|s) and x = f*{u, s) induced from thesolution to thegiven SCSI, provided we are careful about

our choice of channel cost measure as given in (41). A similarinterpretation can be given to the propertiesgiven

by (44) and (45) in Theorem 3b. In other words. Theorem 3(a) statesthat for a given SCSI, we canassociate a

dual CCSI suchthat the joint distribution is identical, with the appropriatechoice of the channel cost measure,

and the rate-distortion bound is equal to the capacity cost bound, R*{D) = C*(W).

Using the forward part [1, 11], the random codebooks are constructed with distribution p*{u). These code-

books are randomly peurtitioned into approximately 2^^ cosets (see Remark 5). The test channel

characterized by p*(x|x, s) ofSCSI becomes the channel ofthe dual CCSI and vice versa. The jointly typical

encoding operation in SCSI is identical to the jointly tjrpical decoding operation in CCSI in the following sense:

find a codeword U from the composite codebook which is jointly typical (in the sense of p*{u,x)) with the

observed (source input in SCSI and channel output in CCSI) L-sequence coming firom the same distribution

p*{x). Then the encoder ofSCSI sends the index ofthe coset containing this typical codeword as a message to

the decoder, while the decoder of CCSI declares the index of the coset contadning this typical codeword as the

message sent from the encoder. The corresponding decoder and encoder of SCSI and CCSI respectively have

access to a message. The jointly typicad decoding operationin SCSI is identical to the jointly typicalencoding

operation in CCSI, and is done as follows: find a codeword U from the coset whose index is given by the mes

sage that is jointly typical (in the sense ofp*{u,s)) with the observed side information. Thus, p*{u\x) ( '̂•(uls)

respectively) characterizing the function of the encoder (decoder) of a SCSI also characterizes the function of

the decoder (encoder) of the dual CCSI. The reconstruction and the channel input are the same, taken as a

function of this typical codeword and the observed side information. Thus the encoder (decoder respectively) of

SCSI and the decoder (encoder) of CCSI are functionally identical. Wewillillustrate this shortly usingconcrete
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examples.

Remark 7; Note that for a general SCSI (say SCSIi), with a given sourcep(x|s), side information p(s), and

distortion measure d, even if the joint distribution (say p*{x,s,x,u)) induced by the optimizer p*{u\x) and

X = f*{u,s) has the Markov property X —» {X,S) U (needed to define the dual CCSI problem), there

might be rate-loss (see end of Section 2.1 for conditions for rate-loss) compared to the corresponding SCSIB

(say SCSIBi). We want to point out that its dual CCSI (say CCSIi), with the cost measure given in Theorem

3a, which uses the same joint distribution p*{x, s, x,tt) has no rate-loss (see end of Section 2.2) compared to its

corresponding CCSIB (say CCSIBi)^ as can be seen firom the proof of Theorem 3a. Further, if we had started

with CCSIi as the given problem, then its dual say SCSI2 with the associated distortion measure (say d') as

given by Theorem 3b, will have no rate-loss compared to its corresponding SCSIB2. Clearly both SCSIi and

SCSI2 use the same joint distribution p*(x, s,x,u), but different distortion measures. Using the forward part

of Wyner-Ziv theorem, the encoder and the decoder of SCSli are respectively identical to that of SCSI2' This

is illustrated as given below.

SCSIBi CCSIBi W SCSIB2
rate-loss NO rate-loss ^ NO rate-loss ^

SCSh ^ CCSh W SCSI2

A similar sequenceof arguments holds true for a general CCSI with the joint distribution satisfying S ^ X —* U.

Thus in SCSI and CCSI, we can not guarantee uniqueness of functionally dual problems. This is summarized

by the following corollary.

Corollary 1: For every SCSI (respectively CCSI) with a givensourcep(x|s) (channelp(x|x, s)), side information

p(s), a distortion measure d (cost measure u>) and a distortion constraint D (cost constraint W), if the optimal

joint distribution p*(x, s,x,u) satisfies X —» {X,S) U {S X U), then 3 a distortion measure d'

(cost measure uj') and a distortion constraint D' (cost constraint W) such that the SCSI (CCSI), using this

distortion (cost) measure has p*(x,s,x, w) as the optimal joint distribution, and there is no rate-loss compared

to its corresponding SCSIB (CCSIB).

The well-studied Gaussian cases for SCSI [1] and CCSI [18] tempt one to associate duality with no rate-loss.

But in general, functional duality does not equate to no rate-loss in the given SCSI and similarly in the given

CCSI. In other words, even if a given SCSI has rate-loss compared to its corresponding SCSIB, we can find a

dual CCSI if the optimizer in the given SCSI satisfies the twoMarkov chains as mentioned in Theorem 3a. This

is illustrated using an example to be given in Section 3.3.4. A similar observation can be madefor a given CCSI

with the joint distribution induced by the optimizer p'*(u|s) and x = f*{u,s), satisfying S ^ X ^ U. In the
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proofof Theorem 3a and 3b, the corresponding CCSIB and SCSIB problems serve as a bridge in obtaining the

dual problems for SCSI and CCSL Summarizing, we note the following:

• Theobjective function [I{U\X)-I{U\ 5)] isconvex in one variablep(u|x), givenp(x|s), p(s), S -* X -* U

and X = f{u,s) and concave in the other variable p(u|s), given p(x|x,s), p(s), X {X,S) U and

X = /(u,s).

• For SCSI, p(x|s) and p(s) are fixed; the optimization involves minimizing [I{U\X) - I{U\ 5)] over p(u|x).

• For CCSI, p(x|x,s) and p(s) are fixed; the optimization involves maximizing [I{U]X) —I{U;S)] over

p(u|s).

• The encoderof SCSIand the decoderof CCSIare characterizedby a mapping havingthe same domainand

range: —>• {1,2,, 2^^}. Similarly the decoder ofSCSI and the encoder ofCCSI are characterized

by a mapping having the same domain and range: {1,2,..., 2'̂ ^} x Thus the mappings ofthe

encoder and decoder are reversed in these two problems.

• Using the forward^^ part of the Wyner-Ziv [ij and Gelfand-Pinsker [llj theorems, in the limit of large

block-length, a rate-distoHion optimal encoder of a SCSI is functionally identical to a capacity-cost optimal

decoder of the dual CCSI and vice versa in the sense of Theorem 3a and 3b.

In the following, we consider an important generalization of the result ofWyner-Ziv [1] relating to no rate-

loss for SCSI fi:om Gaussian to more arbitrary distributions. We have obtained this generalization as a dual to

the recent generaUzation of Costa's result to arbitrary side information, obtained in [19]. Then we consider an

example [1, 18] with the noise and the side information both being Gaussian, illustrating the duality. Finally,

we consider a discrete example [1] of SCSI having a rate-loss compared to its corresponding SCSIB and obtain

its dual CCSI.

3.3.2 Generalization of Gaussian case of Wyner and Ziv with no rate-loss

Cohen and Lapidoth [19] have recently generalized the "dirty paper" result of Costa [18] to hold even if the

channel side information is not Gaussian (the channel noise has to be Gaussian). That is, for the CCSI problem

with X = S X+ Z (see correspondence in (36)), where Z is i.i.d. Gaussian, there is no capacity loss over the

corresponding CCSIB problem where S is known at both ends, with S being arbitrary. By the above duality,
^"Recall that in the limit of large block-length, in SCSI, the rate-distortion bound i2*(Z)) is approached from above, while in

CCSI, the capacity-cost bound CIW) is approached from below.
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we are now in a position to correspondingly generalize the Wyner-Ziv result (withno rate-loss) for the Gaussian

source characterized hy X = S + V (where X, 5, V are all Gaussian) to the more general case where V is

Gaussian but X and S are otherwise arbitrary (but related by X —S-\-V): this follows directly from the above

duality, and is a direct example of how generalization of a result in one problem leads to a corresponding impact

in the dual problem. This important generalization is presented as a corollary in the following. While the SCSI

claum of this corollary can be obtained "fromfirst principles" similar to [19], it is far more insightful and elegant

to deduce this using the duality concepts developed in Theorem 3.

CCSI [19] (see Fig. 9(a)): Let the channel be additive white Gaussian, given by X = X + S + Z, with

p{Z) = J\f(0,D), i.e., p(x|i,s) = Af{x s,D) for some D > 0 and let the side information, given by p(s) be

arbitrary, and let the cost measure be quadratic: u}{x, s) = and let W = N —D for some^^ N > D. Let

a = as before. It was shown in [19] that C*{N —D) = ^log^ (no rate-loss) and that the optimizer

given by the distribution, U = X + aS, i.e., p*(u|5) = M{as,{N —D)) and the function characterizing the

channel input, X = f*{U,S) = U —aS induce the relation between U and X as given by 17 = aX q, where

p{q)=Af{0, i.e., p*{u\x)=M (ax,
Note (as in Section 3.2) that a is equal to the coefficient in the MMSE estimate of X from X + Z. We now

provide an interpretation for the joint distribution depicted in Fig. 9(a) by connecting it to that depicted in the

CCSIB problem in Fig. 7(b). It is observed that the former (CCSI) can be obtained from the latter (CCSIB) by

moving the side-information adder (arrow labeled "-5" in Fig. 7(b)) to the right past the addition by "q" and

wrapping around to the encoder with input as 17 = aX + q, resulting in X = 17—aS. This is akin to moving of

the Decision Feedback Equalizer (DFE) from the receiver to the transmitter as a preceding unit in inter-symbol

interference channels [29]. Note that the channel input X is statistically independent of side information S,

i.e., p"'(x|s) = M{0,N —D). Further, it can be verified (see the Appendix for a note regsirding this) that the

joint distribution satisfies the Markov chain S X U (necessary condition for finding the dual SCSI). The

channel output X is related to the side information S in the following way: X = 5-1- V, where p{V) = A7(0, N),

i.e., p*(x|s) = Af{s, N).

Corollary 2; For the above CCSI, we can associate a dual SCSI (see Fig. 9(b)) given as follows: given

a conditional source X characterized by X = 5 -I- V, where p(V) = //{0,N), i.e., p*(x|s) = M{s,N) and

side information p{s) as above (chosen arbitrarily in CCSI); the conditional distribution given by the above

CCSI, U = aX + q, i.e., p*{u\x) = //{ax, and the function X = /*(17,5) = U —aS minimize

Using the correspondence as given in (36) and renaming P = N —D, N = D, v/e get the notation for CCSI conventionally used
in the literature.
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[I{U',X) - /(C/;S)], such that 5 -4 X i7 and B{d{X,X,S)) < D, implying R*{D) = C*{N - D) and the

distortion measure is given by

d{x, X, s) ——C2logp(a;lx, s) + do{x, s) = {x —x —s)"

by choosing C2 = 2D and do{x, s) = -Dlog(27rI>) with distortion constraint D.

Proof: Follows from Theorem 3b and the two Markov chains.

Channel Decoder Encoder

X
a

_Test Claimel_

-oS

(b)

(47)

X

Figure 9: DuaHty: a, q and Z are the same as in Fig. 7. The side information S has arbitrary but fixed
distribution, (a) CCSI: the cost measure is w(x, s) = The joint distribution is represented in this forni. The
decoding operation is depicted as one of recovering Ufrom X. (b) SCSI: the distortion measure is d(x, x, s) =
(2; _ X- s)2. The joint distribution is represented in this form. The effect of encoding is illustrated as aX+ g.

The reconstruction X = U —aS is the MMSE estimate of (X —5) from U and S. It is observed that the

joint distribution of SCSI as depicted in Fig. 9(b) can be obtained from that of SCSIB as depicted in Fig. 7(a),

by moving the side-information adder (arrow labeled "-5") in the encoder to the right past the addition by

"q", and wrapping around to the decoder with U= cxX + g, resulting in X = 17 —ocS. Note that in both the

problems there is no rate loss compared to the corresponding CCSIB and SCSIB even though p{s) is chosen

arbitrarily. This CCSI with the given quadratic cost measure is the problem of transmission over a Gaussian

channel with known interference similar to the one considered by Costa [18]. Thus, its dual is the SCSI with

the decoder wishing to reconstruct (X —S) under a mean squared error constraint.

As discussed in Section 3.2, if we consider the channel (see Fig. 10(a)) to be additive white Gaussian,

X= X-l-Z, i.e., p(x|x, s) =M{x, D), with the side information being arbitrary but known and uj{x, s) = (x-s)^

asthe cost measure with thecost constraint given by = N—D, then theoptimal distributions p (ujs), p (xjs)

and p*{u\x) will remain the same as before and the channel input becomes X= U-1- (1 —a)S. The dual SCSI

(see Fig. 10(b)) will have (x - x)^ as the distortion measure, similar to the observation made in Remark 4, with

p*(x|s) = A/'(s, N) as the conditional source and all the dual properties as given by Theorem 3b. With this cost

measure, this CCSI corresponds to the watermarking channel [16, 22], i.e., a power constraint on (X —5), and

its dual is the SCSI with the decoder wishing to reconstruct X under a mean squared errorconstraint. In both

the above pairs ofdual problems, the channel ofCCSI becomes the test channel ofSCSI, and the encoder of
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Encoder

X

q

(b)

Test Channel
r--.

u X
•<±>

X

S(l-a)

Figure 10: Duality: a, q and Z are the same as in Fig. 9. The side information S has arbitrary but fixed
distribution, (a) CCSI: the cost measure is u;(x, s) = (x —s)^. (b) SCSI: the distortion measure is d{x,x,s) =
(x —x)^.

one of the problems is functionally identical to the decoder of the dual problem. This is further illustrated in

the following example, which is a special case where S is Gaussian. This is presented for completeness due to

the special significance of Gaussian distribution. To break up monotony, we illustrate the duality starting from

SCSI.

3.3.3 Example of Gaussian SCSI and CCSI

SCSI: given a Gaussian source X, Gaussian side information 5 given by: X = 5+V, with p{V) = //{O, N), i.e.,

p(x|s) = M{s, N), Gaussian side information p(s) = M{0,Q) for some N,Q > 0, and a quadratic distortion mea

sure d(x,x, s) = (x —x)^, the optimal conditional distribution (see Fig. 10(b)with 5 taken as Gaussian) satisfy

ing (37) foT D<NisU =aX -\-q, where a = and p{q) = ^(^^)), i.e., p*{u\x) =Af (ax, ^

the reconstruction is given hy X = U+ ^S. The minimum of [/(i7;X) —I{U]S)] = ^log^ and it can be shown

that X —> (X,5) ^ U. There is no rate-loss compared to its corresponding SCSIB. p*(x|x, s) = Af{x,D)

implyingp*(uis) =Af {as, {N —D)).

Dual CCSI: given an additive memoryless Gaussian channel p*(x|x,s) = M{x,D), with Gaussian side infor

mation p(s), a cost measure ijj : X x S —* and a cost constraint W', p*(u|s) and x = f*{u,s) maximize

[I{U-,X) —I{U-,S)] over all p(u|s), x = f{u,s) such that X —> {X,S) U, Euj{X,S) < W, where (see Fig.

10(a) with S taken as Gaussian) the channel input is given hy X = U + and the cost measure is

uj{x, s) = ciD (p*(x|x, s)||p(x|s)) -I- 9{s) = (x - s)^, W = N —D, (48)

if we choose ci = 2N, 9{s) = ci [^log^ ~ • Note again the dual roles of the encoder and the decoder of

these dual SCSI and CCSI problems.

3.3.4 Example of discrete SCSI and CCSI

Here we consider a discrete example which has the following interesting characteristics:

• we find a pair of SCSIB and CCSIB (given by SCSIBi and CCSIB\) to be dual problems in the sense
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of Theorem 2a, but their corresponding SCSI and CCSI (given by SCSIi and CCSIi), although looking

similar, are not duals in the sense of Theorem 3a and 3b;

• SCSIi and CCSh have rate-loss (unlike the previous example) compared totheir corresponding SCSIBi

and CCSIBi respectively;

• the optimal distribution in SCSIi satisfies the two Markov chains and we find its dual CCSI given by

cash.

SCSIBi CCSIBi
rate-loss IJ, rate-loss

cash " scsh Nor^uai cash

CCSIi'. given a binary channel p(a;|i,s), characterized byX = X ®S ®Z where X,S and Z € {0,1},

= 1) = 0.5, p{Z = l)=p for some 0<p< 0.5, Z and S independent. Let the cost measure be uj{x, s) = x

(equivalent to a constraint on the duty cycle of X). The encoder wishes to communicate with Euj{X,S) <W

for some 0 < W < 0.5. The capacity of this channel is given by:

Lemma 2: The capacityof above channel is C*{W) = k*{W), where

fc(iy) ={W-Mp). ^dk'{W)= POT), (49)
for 0 < 0 < 1, p < /3 < 0.5 and W = 9(3.

Proof: See Appendix

This is essentially the concave hull of the function k{W). The capacity is plotted as a function of W in Fig.

11(a). When W >W* (see Fig. 11(a)), k*{W) = k{W) and we have U= XeS, p*(X = 1) = Wand X is

independent of S thus implying X = U®S. For W< W, we need time-sharing to achieve the optimal points.

The joint distribution does not satisfy S —* X —* U. Thus it is not possible to find a dual SCSI problem.

CCSIBi: The capacity of the corresponding channel when both the encoder and the decoder have access to

the side information is given by Cx\s{^) = h{p * W) —h{p).

SCSIi [1]: Consider [1] a doubly symmetric binary source {X, S} such that X, 5 6 {0,1}, p{S = 1) = 0.5, and

X = 50Z where Z € {0,1} and independent of X and P[Z = 1] = a for some 0 < a < 0.5. The encoder

wishes to represent X such that E[d{Xy X, 5)] < p, where 0 < p < 0.5 and d{x, x,s) = x0x. Therate-distortion

function [1] is R*{p) = g*{p) where

P(P) = ^P<" and g'(p) = P(/3)l. (50)
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Distortion p

Figure 11: (a) Capacity-cost function for the discrete channel with side information with p = 0.1. Solid line:
capacity of CCSIi. Upper dotted line: capacity oiCCSIBi. (b) Rate-distortion function of doubly symmetric
binary random variable with a = 0.3. Solid line: rate of SCSI\. Lower dotted line: rate of SCSIB\.

for 0 < ^ < 1 and 0 < /? < a and p = + (1 —9)a. Thus the rate-distortion function is the convex hull of the

function g{jp). The rate-distortion function is plotted as a function of p in Fig. 11(b). When p <p' (see Fig.

11(b)), g*{p) = g{p) and we have U = X ®Q where p*(Q = 1) = p and Q is independent of X and X = U.

Further, the joint distribution satisfies X ^ {X,S) —* U.

SCSIBy. The rate-distortion function when the side information is available at both the encoder and decoder

is given by Rx\s{p) = h{a) —h{p) if 0 < p < a and 0 if p > a.

Note that for a channel noise p, and cost W, the capacity-cost function of CCSIi is h{W) —h{p) (which for

CCSIBi is h{p * W) —h{p)) and for a distortion p and correlation noise a = p* W, the rate-distortion bound

for SCSIi is h{p*p*W) —h{p) (which for SCSIBi is h{p*W)—h{p)). Thus SCSIBi and CCSIB\ are duals

in the sense of Theorem 2a but the corresponding SCSIi and CCSIi are not duals in the sense of Theorem 3a.

CCSIy. The given SCSIi doessatisfyX ^ {X,S) ^ U, and we can associate with it a dual CCSI as given by

Theorem 3a with the same joint distributions: with the channel given by p'(xlx,s). We consider a numerical

example for illustration.

Example 4: Let a = 0.3 and p = 0.1 and the minimization in SCSIi induces the following distribution:

p*{U = 1\S = 0) =p*{U = 0\S = 1) = 0.34, andp'*(X = 0|X,5 = 0,0) = l-p*{X = 0|X,5 = 1,1) = 0.95,

p*{X = 0\X,S = 0,1) = 1 -p*{X = 0\X,S = 1,0) = 0.79. The cost measure (using Theorem 3a) is

u}{x, s) = X®s, where we choose ci = 2.222 and 9{s) = -0.642. Note that the Hamming distortion measure

(x©x) in SCSIi corresponds to the Hamming cost measure (x©s) in the dual CCSIi. The capacity is 0.456

bits/sample, which is equal to the rate of transmission for dual SCSIi. Further, by following Remark 7, for
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SCSIi with the same source p(a:|s) and sideinformation p(s) we can find a distortion measure d' (which results

in the same joint distribution p*{x, s,x, u)) suchthat there is no rate-loss. By choosing C2 = 1 and do{x, s) = 0

in (46), this is given as follows: d'(x, x, s) = d'{l ®x, 1 ©x, 1 0 s) and

xxs d'(x,x, s) xxs d'(x,x, s) xxs d'(x,x, s) xxs d'(x,x, s)
000 0.067 001 0.333 010 2.280 oil 4.459

4 Conclusions

We have considered a mathematical formulation of duality between source and channel coding with side infor

mation. Our notion of duality is in the functional sense, i.e. where the encoder/decoder functional mappings

can beexactly swapped inthedual problems. We have, asa necessary first step, first addressed thewell-known

duality between conventional source and channel coding and then extended this notion to the more general case

ofcoding with side information. We have given several examples for illustration. By using this concept we have

obtained a generalization of theWyner-Ziv result relating to no rate-loss insource coding with side information

(with respect to the side information being available at both ends) from Gaussian to arbitrary distributions.

A key observation that follows firom our duality treatment is that contrary to popular opinion, duality does

not equate to no rate-loss in coding with side information. The main motivation for understanding the duality

between these two important problems is toenable efficient constructions of the encoder and the decoder based

thefi:amework ofstructured coset codes. Our goal is to inspire dual constructions for these two problems that

leverage this functional encoder-decoder duality, and allow progress made in one field to apply naturally

to the other as well. This would have an impact on a wide range of emerging applications including sensor

networks, data hiding, broadcEust and multi-antenna communication systems.
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Appendix

Proof of Theorem 3a: The outcome of the given source coding problem is v*{u\x) and x = f*{u,s) such

that S X -^U and X (X,5) U, which defines a joint distribution p*(x,s,u,x). Consider the channel

p"'(x|x,s) (derived fi:om the joint distribution) with input X and output X, and side information S present at

boththe encoder andthe decoder (CCSIB). For thischannel, given the input distribution p*(x|s) (derived from
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the above joint distribution), 3 a cost measure (using Lemma la) given by: lo{x,s) = cijD(p*(x|:r,s)llp(xls)) +

6{s), such that

where £?p.(i|s)p(s)(a;(X, 5)) = W. Now clearly, the joint distribution p*{x,s,x) (obtained from the above

p*{x,s,x,u)) can be represented in the form p*{x,SjX,u) such that x = /*(u,s) and S ^ X U and

X —* {X,S) —* U, the condition required for no rate-loss. Thus the capacity ofthis channel coding problem is

the same even if the side information is present only at the encoder. Hence, p*(u|5) and x = /*(u, s) derived

from the above joint distribution maximize [I{U\X) —I{U',S)] under the constraint (XIX,^) ~ p*(x|^,s),

S ~ p(s), X^{X,S)-^U and Euj{X,S) < W.

Markov constraint in Section 3.3.2 [19]: Using the induced joint distributions, we note that [I{U;X) —

I{U] 5)] = h{X\S)-h{X+aS\X). Now h{X+aS\X) = h{X-a{X+Z)\X). Since X-aiX+Z) is independent

of X + Z and S, we can see that h{X + a5|X) = h{X\S,X) impljdng that [I{U]X) —I{U]S)] = 7(X;X|S).

Thus using this and the Markov condition in the definition of the problem, U —>• {X^S) A", we have

I{U]X) - I{U\ S) = I{U\ X|5) which implies S-^X-^U.

Proof of Lemma 2 : Clearly /:(W) is a monotone non-decreasing function of W. For p < W < 0.5, it

is a concave function of W. First we prove that C*(W) > k*{W). Let U = X05 where X and S are

independent and P[X = 1] = /? which implies that X = U 0 5. Now

m X) - m 5) = (1 - h{p)) - (1 - h{(3)) = h{P) - h{p). (52)

Thus C*{p) > h{P) —h{p) for p < < 0.5. It can be noted that C*(0) > 0. Let 0 < W < 0.5 be given, and 9

and are given such that W = 913 and 0 < ^ < 1. Thus

C*{W) = C*{9(3) > 9C*{(3) + {l- 9)C*{0) > 9[h{j3) - h{p)]. (53)

We maximize the right hand side to get the tightest lower bound.

Now weprovethat C*{W) < fc*(W). We use techniquessimilar to those givenin [Ij. Let U,S be the random

variables and X = f{U,S) such that their joint distribution satisfy the constraint: E[u}{X, 5)] < W. Let the set

A be defined as: A = {u : f{0,u) = /(l,Ti)}. Now let = E[X\U = w] = P[X = 1\U= v\ for u £U. Consider

u € A*^, if /(0,u) = 0 and /(l,u) = 1, then X = O^Z = Z and if /(0,u) = 1 and f{l,u) = 0 then X = 10Z.
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Thus for a u g fl'(X|Cf = u) = h(du) and ffiXjU = u)= h(p). Now consider u € A. Let be such that

0 < /3„ < 1 and = H(S\U = u). If /(0,u) = /(l,u) = 0 then A' = 50Z and if /(0,u) = /(l,u) = 1

then X = 10S0Z. Thus H{X\U = u) = h(^^*p). Since H(S) = 1,we have

I(U-,X) - I(U\S) = H(X) - H{S) - H{X\U) + H(S\U) < H{S\U) - H{X\U) (54)

= ^ P[C/ =v\ [ff(S|!7 =u) - H{X\U =u)l + ^ P[U =u] [J?(5|£/ =«) - H{X\U =u)\ (55)
u£A

=(1 _9) ^ A„[h(d„) - /i(p)| +Y,PlUe u][h(fi„) - h{Pu *p)) <(1 - «) X! - ''(p)l' (5®)
u^A" u&A u€j4®

where 9= P[U ^ A] and = P[U = u]/(l - 9) and h{Pu) - h{p^*p) < 0for 1>p > 0. Since 0< A„ < 1and

I{U',X)-I{U;S)<{l-9)h
.u^A"

where /? = Y1ugA'= Clearly 0< I{U;X) - I{U', S), which implies that (3>pasO<p< 0.5. We have

- (1 - 0)h{p) = (1 - e)[h{p) - hip)], (57)

W' ={1- 9)P =^P[U =u]P[X = l\U =u]< E[X] < W. (58)
ueA"

Thus we have shown that I(U-,X) - I{U\S) < 8[h(fi) - h(p)l = k'(W), such that p < /3 < 0.5 and

W = 0/3 Since k*iW) is monotone in W, we have proved that C*{W) < k*{W).
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