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Abstract

Equipment and Process Modeling and Diagnostics in Semiconductor
Manufacturing

by

Jiamgxin Wang

Doctor of Philosophy in Engineering-Mechanical Engineering

University of California at Berkeley

Professor Costas J. Spanos, Professor Alice M. Agogino, Cochairs

The modem semiconductor industry is currently advancing into the world of

sub 0.1-micron technology. Extremely fine feature sizes, dozens of masking levels,

and very high product yields are now the norm. As device sizes diminish, final

product quality becomes increasingly sensitive to variations at every single process

step. This thesis aims at developing advanced methodologies for efficient and

accurate diagnostics of process and equipment variations. Demonstrated on two

critical systems of semiconductor manufacturing, the techniques developed in this

thesis can also be adapted to a variety of process and equipment diagnostics.

Furnace systems have tremendous importance in semiconductor manufacturing

since many heating steps are involved in a semiconductor process and it is crucial

to properly monitor and control the temperature at each step. A furnace system is

a typical djmamic system whose physical model can be constructed based on our



understanding of the thermal systems. In this thesis we describe how to choose

a linear dynamic model to approximate the real system, how to estimate model

parameters when system information is only partially available, and how to detect

variations of system parameters using a statistical model-classification approach.

This approach is evaluated using experiment2d data collected from a five-zone

Tylan furnace at the Berkeley Microfabrication Laboratory. We also discuss the

application of sensor fusion techniques for enhancing the reliability of diagnostics.

This general approach can be extended to other systems that have relatively simple

mathematical-approximation models based on known physics.

Compared to furnace systems, photolithography processes are much more com

plex. While complicated physical-mathematical models of lithography are available

in certain commercial packages, the prohibitively large computation required makes

them infeasible for real-time applications. In this thesis, we explore replacing the

complex first principle models with simpler empirical models. Due to the high di

mensionality and high non-linearity of the problem, a simple mapping usually does

not exist between the Critical Dimension (CD) profiles and input recipe param

eters, which is desired for diagnosing input parameter variations. Two different

approaches are proposed to solve this problem and they may be used complemen-

tarily in different situations. The first approach is to construct an explicit inverse

model using statistical modeling techniques. The second is to build a library of

input-output data pairs and, during diagnostics, search for a candidate-solution

set whose statistics are used to calculate the final solution. The two approaches

are evaluated and compared on computer simulation results. Finally, time series

models are considered to enhance the diagnostics of input parameter variations.

The key contribution of this work is that it provides a computationally tractable



modeling and diagnostic framework for lithography processes. In addition, our

approaches also provide a principled way to evaluate the utilities of parameter

measurements and the required precision and accuracies. This knowledge can be

invaluable to engineers for designing effective metrology techniques. Although the

application is to semiconductor process diagnostics, it is possible to apply the

concepts and techniques developed to other complex processes and systems.

To summarize, this thesis focuses on the development of statistical diagnos

tic strategies for monitoring and controlling processes and equipment in modem

semiconductor manufacturing. Using experimental and simulated data, we have

demonstrated the effectiveness of the proposed approaches for a system with a

relatively simple physical model (the furnace system) as well as for an extremely

complex (photolithography) process.

Professor Costas J. Spanos
Dissertation Committee Cochair

Professor Alice M. Agogino
Dissertation Committee Cochair
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Chapter 1

Introduction

1.1 Motivation

After more thaua three decades of rapid growth, the modem semiconductor in

dustry is moving into a new frontier, the world of sub 0.1-micron technology. Ex

tremely fine feature sizes, dozens of masking levels, and very high product yields

are the norm of today's semiconductor manufacturing. There are strong economic

incentives for having very high small feature reproducibility, process reliability and

efiiciency [1]. Research and development efforts are made in a number of areas by

different groups of people. Physicists and chemists are looking into better under

standing of the physics and chemistry underlying semiconductor processes; mate

rial scientists are trying to discover and adopt new materials; electrical engineers

are creating new sensors to improve metrology to meet in-situ and high-precision

requirements; and we, statistical control engineers, are designing better method

ologies to monitor process and equipment health based on available experimental

observations.



Modern semiconductor manufacturing is fiill of variations as processes and

equipment are affected by environmental parameters, material properties, machine

variables, as well as human factors. When the features become smaller, these vari

ations are increasingly significant in causing degraded yield, slower parts, and

higher production cost. Thus, it is imperative to have advanced process control

methods to reduce these variations. Many studies are under way in this area [32].

Some simple statistical control tools are currently used in modern semiconductor

manufacturing. Manufacturing engineers have applied techniques such as statis-

ticzd process control to detect abnormal observations [30, 112]. However, more

advanced application of statistical control is needed to solve complex diagnostic

problems. One important, yet difficult goal, is to identify the precise sources of

variations and understand their effects. Using statistical and probabilistic meth

ods, we can build models that capture the essentials of the variations through

empirical experiments, we can perform diagnostics that identify possible devia

tions from the desired norm, and we can develop control methodologies that bring

about optimal performance.

1.2 Thesis Objective

This thesis explores applications of some general modeling and diagnostic ap

proaches for monitoring zmdcontrol of modem semiconductor equipments and pro

cesses. It discusses appropriate modeling approaches and fault diagnostic strate

gies under different conditions. In particular, it describes methodologies for two

different problems, a typical furnace system and the photolithography process.

The fault diagnostics for the furnace system is based on physical modeling and



the lithography process is based on empirical modeling. While the study of both

systems are important, the modeling and diagnostic methodologies can be easily

transferred to other equipments or processes {e.g., Plasma Etching, CMP, etc.).

A furnace is a dynamic system whose physical model can be constructed based

on our understanding of thermal systems. We use a simple linear djmamic model to

accurately approximate the real system. Abnormal changes in some system param

eters may indicate malfunctions or potential failures of some system components.

Statistical model classification methods and Minimum Mean Square Error (MMSE)

estimation approaches are adopted to detect variations of three different types of

system parameters that are important to the furnace system. Our analysis is based

on experimental data collected from a five-zone Tylan fiimace in the Berkeley Mi-

crofabrication Laboratory. This is a relatively simple system and the diagnostics

perform well under normal conditions when not too many different faults happen

at the same time. Application of sensor fusion techniques [2, 4, 68, 120] is also

discussed to enhance the reliability of the diagnostics.

In contrast, the photolithography process is extremely complex involving many

subsystems and processes [100]. Although there are physically based simulation

models of the entire photolithography process that are feasible when parameters

are well-tuned [52, 78, 95], such modelsare often too complicated and their compu

tation requirements are prohibitively high for read-time control and diagnostic ap

plications. Thus, a simple statistical model that enables fast simulation is needed.

This thesis proposes a novel approach for modeling the photolithography process

based on statistical analyses of the relationships between input and output vari

ables. This empirical model is developed for a set of parameters over their ranges



of interest. High complexity, non-linearity, and uncertainties of the lithography

process make diagnostics non-trivial. In this work we are particularly concerned

with the variations of the Critical Dimension (CD) profiles of small layout features.

Errors in several factors (and their combinations) such as light source, photoresist

parameters, and Post Exposure Bake (PEB) process parameters, may all poten

tially cause variations in CD profiles. Some parameters may be measured and

adjusted easily, but most of them c2mnot, due to difficulties and high metrology

cost. Successful diagnostic strategies are developed based on the empirical mod

eling approach where input drifts are predicted by CD profile measurements. In

most cases, input parameter drifts can be modeled as time series sequences. We

discuss how to estimate the time series model parameters and make use of the time

series model in diagnostics. The performance of the diagnostics is evaluated based

on computer simulation results. We do not have any actual experimental results

for verification at this stage.

1.3 Thesis Organization

Chapter 2 reviews major modeling techniques for diflferent situations with em

phasis on approaches that are utilized in the two seimple problems. Chapter 3

discusses fault detection and diagnostic methodologies in general. Then, the two

sample problems, a furnace system and a photolithography process, will be dis

cussed in Chapter 4 and Chapter 5, respectively. Modeling, diagnostic and exper

imental results of each problem will be presented. Finally Chapter 6 summarizes

important contributions of this thesis and discusses some interesting future direc

tions.



Chapter 2

Modeling

A model is an abstract, often simplified, mathematical description of a physical

system or a process. A good model does not have to be a complete description

of reality, but it should capture certain properties and characteristics germane to

a particular goal, such as diagnostics, prediction, classification, etc. Accuracy is

often desired in a good model, but depending on the exact nature of the problem at

hand, compromises among accuracy, simplicity, efficiency, and robustness have to

be considered. With a model, one can achieve better understanding of the system

or process in order to control its state, monitor its behavior, and generalize its

principles to other domains. Almost all serious scientific endeavors require building

some kind of model. In today's engineering applications, having a good model often

leads to low-cost and safe experimentation, easy manipulation and exploration of

a system or process, and accelerated research and development cycles.

Modeling is the course of creating a model for a system or process. Different

modeling techniques are required depending on the detailed natmre of a model,

such as a physical model vs. an empirical model, a parametric model vs. a non-



parametric model, etc. There are also some common practices in all modeling,

such as observation and experimentation, model selection and parameter estima

tion, and model verification and assessment [13]. Modeling often faces a number

of challenges, including complexity, non-Unearity, and dynamics of a system or

process, limitations in metrology and numerical computation, uncertainties such

as systematic and stochastic errors, insufficient time and data, hidden system vari

ables, and simply poor understanding of the true nature of the system in question.

Modeling is especially important for modem semiconductor manufacturing.

Due to the extremely high complexity and economic risk, good modeling plays a

pivotal role in equipment diagnostics and process control [1, 122]. Single errors

in a single subsystem may cause the loss of an entire line of wafers; many system

parameters are difficult to measure with confidence and recipe drifts are common;

early detection and real-time monitoring are essential to prevent serious problems

from happening; and development of control strategies are often too expensive on

real hardware, while it is producing real product. This chapter focuses on general

modeling issues relevant to modern semiconductor manufacturing, in particular,

physical modeling and empirical modeling, and techniques for model parameter

estimation.

2.1 Physical Models

Here let us msdce a rough distinction between physical and empirical models.

Physical models are mostly based on knowledge of physical properties of a system

or process, and empirical models are derived mostly from observed inputs and out

puts. For example, a furnace may be viewed as a thermal system and a physical



model can be built based on our knowledge of thermodynamics and heat trans

fer; on the other hand, if we do not have a sufficient physical underst£inding of a

furnace, we can design experiments to collect input data such as supplied power,

temperature settings, baking time, and output data such as temperature mea

surements and wafer quality to infer an empirical, statistical relationship between

inputs and outputs. Obviously, physical models are intuitive and convenient, and

logical deduction can be made to predict the state of a system or a process unam

biguously. On the other hand, realistic systems and processes are often extremely

complex and not entirely understood. It is often very difficult or even impossible

to build an accurate physical model. For example, a plasma etching i^stem is

still too complex to be understood completely [110]. In this situation, we often

have to resort to empirical models or consider a simplified physical model with

many necessary assumptions. Another drawback of a physical model is its lack of

robustness especially when a compromise between model complexity and reality

is made. But nevertheless, whenever an accurate and efficient physical model is

available, we should consider it before resorting to empirical models.

Most physical systems are inherently non-linear and involve dynamics. Linear

approximation models are often used for simplicity [106]. The study of linear

dynamic systems is mature, with powerful anjilysis techniques and a long history

of successful industrial applications [26, 61, 103, 107]. However, the non-linearity

of a system has to be taken into account when linear approximation cannot meet

the requirements of control accuracy or modeling needs [106]. Typically, a linear

dynamic system is described by a set of linear differential equations (difference

equations in discrete time). Non-linear systems, however, have a range of possible

formats.
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Many efforts have been made in the semiconductor manufacturing industry to

understand the physics behind the processes and utilize the physiced knowledge to

perform controls [75, 100, 110]. A good example of a process suitable for physical

modeling is the thermal process. There are numerous heating processes involved in

the product line. Modeling of a furnace system is essential for accurate and stable

temperature control. Thermal systems are among those that are well studied.

Later in this thesis, we describe how to build a furnace model based on heat

transfer theory.

2.2 Empirical Modeling

Empirical models refer to models that are derived from input/output observa

tions of a system or process without explicit use of underlying theory. As discussed

previously, the distinction between empirical models and physical models is very

blurred, and many problems involve both. For example, knowledge of physical

properties is often used to design data collection experiments for empirical mod

eling. Empiricgd models are needed when the complexity of a system or process is

extremely high smd the physics are not well understood, or when simple statistical

relationships potentially exist between input/output variables of interest. Empir

ical models enable fast and inexpensive experimentation smd can be chosen from

a variety of different types according to the practical consideration of the problem

at hand. Statistics and other methods used in empirical modeling can deal with

uncertainty in a principled way [33]. On the other hand, empirical models usually

lack intuitive physical interpretation and must be based on large amounts of data.

Empirical models can be categorized in several ways, such as parametric vs.
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abilistic, etc. Parametric models refer to those whose model complexities (e.g.,

number of active parameters) do not increase as the number of observation data

points increases [11]. Some of the commonly used parametric models include lin

ear regression and various non-linear regression methods [7, 10, 13, 71]. Non-

parametric models do not assume a particular functional form for the model, but

increase model complexity as more data are available. Examples are kernel den

sity estimation [11] 2ind nearest neighbor methods [25]. Yet some other methods

have characteristics of both parametric and non-parametric models, such as artifi

cial neural networks and Gaussian mixture models, and sometimes are referred to

as semi-parametric models [11]. Forward models are those that map user-defined

inputs to outputs and inverse models map outputs to inputs. In many realis

tic situations, models do not have one-to-one mapping. Next, we describe a few

commonly used empirical modeling methods and some relevaint applications in

semiconductor manufacturing.

2.2.1 Linear Regression

Linear regression (LR) is perhaps the most widely used empirical modeling

method in various engineering and scientific applications. A linear model assumes

that output variables are linearly dependent on some fixed transformations of input

variables [7,13, 71,109]. Since the fixed transformation of input variables (forming

a design matrix) can be non-linear, the model is more general than a purely linear

relationship between inputs and outputs. For example, let {X, Y) be input-output

pair, and

y = oA -H 6X2 -H c (2.1)
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is a linear regression model where a and b are coefficients to be estimated and e

is additive noise with certain assumed probabilistic distribution (often Gaussian).

Linear regression has been intensely studied and well understood [13, 109]. Al

though exact lineajity rarely exists in the natural world, linear regression models

offer good approximation for many practical applications. Furthermore, linear

regression has some nice properties such as simplicity and transparency (input-

output relationship can be expressed by a simple formula). It can help data anal

ysis such as sensitivity tests, principal component analysis, etc. LR is often used

first, since it can help assess the complexity of the problem.

2.2.2 Non-linear Regression

Non-linear regression is a natural extension to linear regression where arbitrary

non-linear relationships may exist between the model parameters and output vari

ables [10]. They are obviously much more powerful than simple linear models to

capture realistic systems and processes. However, non-linear models are much more

difficult to determine. They may require some knowledge of the physical system

to decide what types of non-linear functions are appropriate. Finally, even when

the form of the model is determined, the methods for estimating the parameter

values are much more complex and time consuming than that for linear models.

2.2.3 Artificial Neural Networks

Artificial neural networks were originally motivated by conjectures of how neu

rons in animal brain process information [11, 105]. A t3q)ical feed-forward neural

network consists of a number of nodes (sometimes called neurons) and links be-
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tween nodes. Each node has an output activation potential, which is propagated

through the links in onedirection. At eachnode (cf. figure 2.1), a weighted sum of

input activation potentials from all incoming links is taken and a transformation

(typicallya sigmoid function) and thresholding are performed to obtain an output

£ictivation potential for that node.

Artificial neural networks have been shown to be good universail function ap-

proximators. With a sufficient number of nodes and links, a neural network can

model very complex non-linear relationships between input and output variables.

Furthermore, neural networks can be trained efficiently using the back-propagation

2ilgorithm [11,104,105] firom a given set of input and output training pairs of data.

After each input data point is presented to the network, link weights are adjusted

to minimize an error function E (e.g., root mean squared error) measuring dissim

ilarity between network outputs and desired tairget outputs. The objective is to

assess the source of the error and divide the blame among the contributing weights.

In back-propagation, one first finds the partial derivatives of E with respect to top-

layer node activation potentials, and then finds that with respect to link weights

coming into the toj)-layer nodes by applying chain rule of diflferentiation; this pro

cess is repeated until we reach the earliest layer of nodes so that we obtain the

psirtial derivatives of E with respect to each link weight in the network^. This pro

cess takes only 0{W) steps where W is the number of tunable link weights. The

link weights are then adjusted following the negative direction of the gradients.

One commonly used neural network model is the multilayer perceptron (MLP)

[9, 104, 105], which has its nodes arranged in layers and links between nodes are

^Thresholding on each node activation potential can be implemented as having an incoming
link from a common bias node emitting a constant unit activation potential. Thus, thresholds
can be treated in the same fashion as link weights.
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only allowed in a single forward direction. A typical three-layer^ MLP is shown in

figure 2.2 (of course, actu2d number of nodes may vary). It was proven that with a

sufficient number of hidden nodes and links, an MLP can approximate any linear or

non-linear (even discontinuous) function to arbitrary precision. One of the major

drawbacks of using neural networks is their lack of transparency in that even a

well-trained neural network offers little intuition about the process it presents.

In recent years, neural networks have been used widely, and successfully, in

many engineering applications [6, 16, 19, 53, 59], and have emerged as a poten

tially powerful technique for many complex semiconductor manufacturing prob

lems. There are some successful examples of applying neural networks in plasma

etching process [80, 108] and other processes [59, 89, 90]. Substantial amount

of work has been done by Gary May and his colleagues [15, 46, 80] on applying

Neural networks to plasma etching processes, Plasma-Enhanced Chemical Vapor

Deposition (PECVD) processes and some other processes. Nadi [90] used neural

networks in his PhD work for modeling two processes, including a dry-oxidation

process of silicon and a Low Pressure Chemical Vapor Deposition (LPCVD) pro

cess of polysilicon.

2.2.4 Probabilistic Graphical Models

Graphical modeling is a technique that combines probability and graph the

ory [62, 72]. This method is becomingincreasingly popular during the past decade.

Graphical model families unify a wide variety of known models, such as Bayesian

Networks (BN) [48, 49, 98], Hidden Markov Models (HMM) [62, 99], Kalman

^Here "three-layer" refers to three layers of nodes. Some authors prefer naming an MLP by
the number of link layers, in which case we would call our example a "two-layer" MLP.
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Filters (KF) [47, 62], Factor Analysis (FA) [33], Gaussian Mixtures (GM) [11],

etc. Graphical models capture uncertainty and probabilistic relationships among

observable and hidden variables of a static or dynamic system, and can be con

structed using domain knowledge or learned from data in a principled way. The

"inference" (joint probability estimation) of arbitrary sets of observable or hidden

variables are theoretically possible for a graphical model, although in general it

involves exponentially large amounts of computation. Many approximation algo

rithms for inference in graphical models have been proposed such as variationail

methods [63], mean-held methods [62], and Monte Carlo sampling [31, 105].

2.2.5 Fuzzy Logic

Fuzzy logic [124, 125, 126] came about when researchers became unsatished

with the rigidity of classical logic, and observed a gap between the fuzzy nature

of real world entities and the crispness of existing logical and mathematical tools.

Fuzzy logic assumes statements are true only to a certain degree and variables take

on a "fuzzy" set of values with different degrees. Fuzzy logic is a fundamentally

different way of dealing with imprecision and uncertainty thcin other approaches,

such as probability theory. Mziny successful engineering applications, including

semiconductor manufacturing, have been successfully modeled by fuzzy logic and

fuzzy set theory, for applications such as fuzzy automatic control and fuzzy pattern

recognition [8, 45, 77, 81].
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2.3 Parameter Estimation

Once the structure of a model is determined for a given problem, an essential

task is parameter estimation. For both physical and empirical models, there are

some common approaches to estimating an optimal set of parameters. First, exper

iments need to be implemented (except for some known physical models) to collect

data used for parameter estimation. An appropriate cost metric has to be selected

to evaluate the optimality of a parameter estimate. Optimization algorithms [65]

are employed to find optimal parameters for the selected metric. Parameter esti

mation is usually performed on a different set of data (training set) than that to

be used for testing (test set). One issue that has to be considered is the possibil

ity of overfitting [11]. In this section, we describe general paraimeter estimation

techniques and issues related to some of the above models in more detail.

2.3.1 Design of Experiments (DOE)

When the structure of the model is chosen, either based on physical considera

tions or empirical assumptions, experimental data are needed to extract parameters

and evaluate model accuracy. The task of design of Experiments (DOE) involves

defining experiment goals and objectives, planning and conducting experiments

and collecting data in desired formats [38]. A successful DOE requires a good

understanding of every component of the system and equipment utilized in the

experiments. The data used for modeling need to be fault-free, which means that

random noise is allowed for processes or measurements but no systematic error

should be present.
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2.3.2 Cost Function

There are a number of different cost functions commonly used for parameter

estimation, and each is more appropriate under certain conditions and inappro

priate under others. Minimum Mean Squared Error (MMSE) [11] is often used in

regression problems where the expected value of the squared difference between

model output and desired output is minimized. However, MMSE is usually not

appropriate for a classification problem (whose desired targets are discrete class

labels) where Mean Cross Entropy (MCE) [11, 62] may be more suitable. For

problems endowed with probability distributions. Maximum Likelihood (ML) [11]

is often used where estimation is based on maximizing the conditional probabil

ity of the observed data given specific parameter estimates. For certain problems,

such as those having data with Gaussian distributions, ML is equivalent to MMSE.

Bayesianstatistics suggest the use of Maximuma Posteriori (MAP) [11] estimation

of parameters, where the posterior probability of a model (M), given observations

(D), can be written as

KM|I» . M

according to Hayes' rule [11]. Then the MAP estimate is the model M* that maxi

mizes the p(M\D). Noticethat if the prior probabilities of different modelsp(M)'s

are equal, since the marginal probability of data p{D) is the same for all models,

MAP is equivalent to ML. Many other commonly used cost metrics axe based on

information theory, for example, Maximum Mutual Information (MMI) [22].
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2.3.3 Optimization

For a given cost metric, one would like to find a global optimal set of parameters

for a given model. Some optimization problems can be solved analytically. For

example, solving a system of normal equations gives the optimal parameters for

linear regression [7, 13, 109]. Yet in most other problems, a gradient descent

(or ascent) is employed. This involves initialization of parameters, calculation of

gradients of the cost function with respect to parameters to be optimized, smd

testing of convergence. Many algorithms exist to speed up the gradient search,

many based on higher order gradient estimation (e.g. Hessian matrix) such as the

Quasi-Newtonfamilyof methods [11]. One common problem with gradient search

for non-convex problems is convergence to local minima. Remedies include random

restart gradient search [105], simulated annealing [21, 105], etc. Although these

remedies may guarantee finding the global optimum theoretically, they often take

too long to be cost-effective. The success of gradient-based methods depends on the

structure of the cost function space (e.g. convexity, smoothness and the number

of local minima) as well as the accurate estimation of gradients. For example, the

success of neural networks can be largely attributed to the discovery of the efficient

back-propagation algorithm for gradient estimation [104].

2.3.4 Model Overfitting

Parameter estimation is often performed on a separate set of data (training

set) from the set used for evaluating the model (test set) [11]. Although we often

assume both data sets come from the same underlying distribution, a finite, often

noisy, training set cannot guarantee that the optimality of parameters carries over
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to the test set. This is the problem of overfitting where error rates are much

lower on the training set than on the test set since a model may be fitted on the

idiosyncrasies and noises of training data instead of on the general patterns of the

underlying system behavior. This problem is especially severe for very complex

models and for problems with limited training data [11].

There are several methods to alleviate the problem of overfitting. One way

is to limit the size of the potential parameter space such that a restricted model

is actually used. For example, for a linear regression problem, one can limit the

transformation of input variables to some simple form; for neural network, one

can reduce the number of hidden nodes and links, which leads to fewer active

parameters. One can also effectively limit the parameter space by adding a regu-

larization term [116]. For example. Minimum Description Length (MDL) princi

ple [102], Akaike Information Criterion (AIC) and Takayuki Information Criterion

(TIC) [76] are such regularization methods (they are often referred to as model

selection methods as well). Another popular method, especially useful for early

stopping in gradient search optimization, is to evaluate the cost function periodi

cally on a cross-validationdata set that is separate from the training set [105]. The

trjuning process should be terminated when the cost function stops decreasing on

the cross-validation set.
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Chapter 3

Diagnostics

Any realistic physical system must face the possibility of noise and failure. The

task of diagnostics is to monitor the behavior of a system and infer the values of

system variables so that if anything abnormal occurs, we would be able to locate

the source of error and propose preventive or corrective action.

In order to achieve high reproducibility, in a semiconductor manufacturing line,

it is desired to keep all system parameters relatively stable while a recipe is being

run. Parameter drifts may bring significantly adverse effects if not detected quickly

and accurately. Persistent parameter drifts not only cause loss of wafers, but may

also be precursors to severe system damage. Most semiconductor manufactur

ing lines are themselves very expensive, and downtime is costly. Unfortunately,

real-time measurement of many system paurameters of interest is often very diffi

cult, expensive and inaccurate. Therefore, it is important to be able to estimate

paurauneter drifts through diagnostic methods.

In this chapter, we give a short review of some popular techniques for detecting

and isolating component faults [37, 55,96,97,101]. These techniques involvemamy
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different fields, such as control theory, statistics, signal processing, filter theory, etc.

In practice, they may be applied individually or combined with each other.

3.1 Sources of Errors

Before describing techniques for error detections, we first give a synopsis of

different types of errors, discuss common error models, and introduce potential

error sources in semiconductor manufacturing.

3.1.1 Types of errors

We may define an error as a deviation between a measured or computed value

of a system variable and the desired value. It is important to distinguish between

two error types, the systematic error and the random error, since different solutions

are required to deal with each of them. A systematic error is caused by any factors

that systematically affect the value of the variable across samples. For example, if a

thermostat is malfunctioning in a furnace and always sets the baking temperature

to be three degrees higher than the specified value, we may call the resulting

deviation a systematic error. Thus, a systematic error tends to affect variables in

a fixed way and is often referred to as bias. On the other hand, a random error is

caused by any factors that randomly affect measurement of the variable across the

sample. For example, the random fluctuation of temperature measurements made

on a furnace in a steady state may be called a random error. Such random error

adds variability to individual measurements but does not affect the average across

many samples.
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Figure 3.1: Error type according to time-dependency.

Errors can also be categorized by their time-dependencies (cf. figure 3.1). An

abrupt error has a sharp onset; an incipient error has a smooth onset and is

also called a drift; an intermittent error has alternating on-and-off patterns [56].

Among these three time-dependencies, drifts are the most difl&cult to estimate and

are also the most common type of errors in semiconductor manufacturing.

3.1.2 Error Modeling

To eliminate or reduce a systematic error, we need to locate the source of the

error and make appropriate adjustments. However, this approach does not work for
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random errors due to their nature of uncertainty. What we can do is to study the

statistical properties of rcindom errors and minimize their effect using statistical

approaches. Random errors can be characterized statistically by their probability

distribution functions or probability density functions. The Gaussian distribution

is often a good approximation of the probability distribution of a random error,

and in such cases, estimating the mean and variance of the error is sufficient. For

other cases where the probability distribution of a random error is very differ

ent ffom the Gaussian, we have to resort to other techniques for estimating the

probability density function [117, 118]. Commonly available techniques include

the histogram method [11], kernel density estimation method [11], etc. For many

physical systems, we may be interested in modeUng the random dynamic behavior

of system parameters over time. Time series models can be applied in such cases

and they are often very useful for estimation and prediction [14, 39].

3.1.3 Variations in Semiconductor Manufacturing Systems

Modem semiconductor manufacturing relies on highly complex processes and

very expensive equipment, which involve hundreds, and even thousands, of active

parameters that have to be controlled properly in order to achieve reliable system

behavior. Variations in such a complex setting are abundant and may be caused

by changing environmental conditions, uncertain material properties, machine in

stabilities, as well as many human factors. Many of these variables are difficult

to measure accurately. Metrology tools are only available for a limited number

of variables and are often expensive and time-consuming, which makes real-time

diagnostics particularly difficult to realize. So we have to rely on those parame

ters that can be measured to estimate those that cannot be measured. Parameter
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estimation (cf. Chapter 2) is therefore very important for detecting variations. Un

fortunately, no general solution exists that can deal with all situations. Although

the general statistical approach remains similar, specific solutions are system- or

process-dependent. Therefore, in this thesis, we illustrateour statistical diagnostic

approaches on two different problems, a furnace system and a photolithography

process.

3.2 Fault Detection and Classification

A fault is an unpermitted deviation of at least one characteristic property

or variable of the system from acceptable behavior. Fault detection is thus the

determination of faults present in a system. Fault classification is to assign a

detected fault into one of the prescribed fault classes according to its location, size

and time-variant behavior.

3.2.1 Fault Detection for Linear Dynamic Systems

Fault detection for linear djmamic systems has been studied extensively, based

on well-established linear system theory. It had been successfully applied to many

differentareas, such as vehicledynamic systems, aircraft control systems, robotics,

etc. Several major techniques for model-based fault detection have been introduced

in the literature [44, 50, 55, 56, 97, 117].

Based on modem control theory, when the model of a linear dynamic system is

known, state observers can be developed for state estimation, which is then used

for fault detection. Jones [61] and Willsky [123] developed fault detection filters
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for state estimation. Mehra and Peschon [84] suggested using Kalman Filters [47]

to set up dedicated observers for fault detection. Willsky [123], Clark [20] and

Frank [36] used bank of observers for similar purposes.

Parameter estimation is also one of the most important fault detection meth

ods. We discussed parameter estimation techniques in detail in Chapter 2 (cf. Sec

tion 2.3). Examples of applying parameter estimation to fault detection have been

reported in [35, 55, 101].

For linear dynamic systems, the pairity equation approach is also a popular

method of fault detection. Parity equations based on both state space equa

tions [18, 96] and input-output equations [41, 51] have been studied.

While most of the techniques above were developed based on linear systems,

some of them have also been adopted for fault detection of nonlinear dynamic

systems under appropriate assumptions [36, 40].

3.2.2 Fault Classification Methods

When a fault has been detected in a system, classification techniques are needed

to identify what type of fault it is. If we have the knowledge of exactly what pos

sible fault types there may be and have access to a sufficient number of labeled

data samples of each fault type, we can apply a vmety of standard pattern recog

nition techniques to perform fault classification. In each case, supervised learning

algorithms can be adopted to train classifiers on the labeled training data [86,105].

Statistically, the optimal classification performance is given by Bayes classi

fiers [86], which give the most probable classification of a new instance given the
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training data. The Bayes classifier combines the predictions of all possible hy

potheses, weighted by their posterior probabilities given the training data. For

problems whose hypotheses are equivjilent to classes, the Bayes classifier amounts

to choosing the class with the maximum a posteriori (MAP) probability [86].

The /u-Nearest-Neighbor (A;NN) [25] is an instance-based learning technique

that is intuitive and can be readily used for classification. It operates on the

geometric space defined by the variables of interest with some distance metric

(e.g., the L2 norm). Foreach new data vector to be clsissified, its distances to each

of the saved data samples are computed and the k data samples that are nearest

to the new data vector 2ire identified. Then, the new data vector is said to belong

to the class that has the most instances in the k nearest data samples.

Given labeled training data vectors, it is often possible to approximate decision

rules by performing linear or non-linear regression for each class. If the regression is

based on polynomials of the data vector, it is often called the Polynomial Classifier

(PC) [73],

Artificial Neural Networks (ANN) include a family of populair classification

tools, such as Multi-layer Perceptrons (MLPs) and Radial Basis Function (RBF)

networks [11]. Since ANNs are capable of learning arbitrary nonlinear functions,

they can form highly complex decision boundaries for very difficult classification

problems.

Classifiers based on fuzzy set theory [125] and fuzzy logic [126] are also very

popular, especially for problems with fuzziness and uncertainty. They address the

problem of rigidity in classical logic and can be constructed from knowledge as well
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as in a data-driven manner. Fuzzy inferences [23,69,124] employa number offuzzy

if-then rules for approximate reasoning and include fuzzification and defuzzification

steps to interface with conventionally defined problems. Fuzzy classifiers have also

been combined with ANNs to take advantage of both frameworks, and the resulting

hybrid systems are often called Neuro-fuzzy classifiers [8, 45, 81].

There also exist other popular classifiers that can be used for fault classification,

such as statistical decision trees [86, 105] and kernel-based classifiers including

Support-Vector Machines (SVMs) [24].

3.2.3 Fault Detection and Process Control in Semiconduc

tor Manufacturing

Currently, fault detection and classification in semiconductor manufacturing are

rather primitive, and simpleformsofStatistical Process Control (SPC) [30,112] are

dominant in industry. Directly measurable parameters are monitored and alarms

are set if some parameter exceeds a predefined tolerance level, and sometimes when

necessary, machines are shutdown accordingly. Control charts are used to identify

alien data points and the control limits are usually defined based on the statistics

of parameters in normal system operation. The control rules are defined according

to the needs of specific tasks. Standardized rules, such as the Western Electric

Rules [66], are also widely used in industry.

A number of advantages of such a simple process control mechanism may jus

tify its popularity in the semiconductor industry today. For example, SPC is easy

to implement, easy to understand for field process engineers (with relatively little

training), and reliable under familiar situations. However, several serious disadvan-
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tages of SPC suggest we seek more sophisticated process control strategies. First

of all, setting control limits is only suitable for steady state operations and may

be quite problematic for dynamic operations. Secondly, SPC only detects changes

of directly measurable parameters, but system states also depend on many im

portant parameters that are not directly observable. Thirdly, SPC can only find

statistic2dly significant excursions without giving explanations of the rejil source of

the problem or how to fix it. Finally, SPC usually does not give early detection

of small faults, which often leads to more serious faults and expensive machine

shutdowns and repairs.

It is therefore worth the efibrt to develop Advanced Process Control (APC)

strategies incorporating adaptable fault diagnostics that provide early detection

of parameter drifts, give analysis of true error sources, and suggest possible fixes

of problems. Although the APC strategies are becoming the current trend in the

semiconductor industry, no unified standard exists and even the scope is not well

defined. Due to the complex nature of semiconductor manufacturing processes,

the current APC focus is on multivariate analysis, principal component analysis

(PCA), factor analysis, data modeling, etc.

Regarding control techniques, Rvm-to-Run (R2R) control has been receiving

increasing attention in recent years in the semiconductor manufacturing commu

nity. In a typical R2R control, feedback control techniques are utilized to adjust

recipe settings automatically. This, however, requires accurate process modeling,

high-performance metrology and adjustable actuators, which are all difficult to

obtain for most processes. Much work has been done in this area [32, 88].

In this work, we focus on applying parameter estimation-based fault detection
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methodologies to different semiconductor equipment and processes.

3.3 Sensor Fusion

Any sensor is subject to failures, noise, and other uncertainties. Therefore, we

cannot put complete faith on the results of any single sensor. Sensor redundan

cies, both physical and functional, aire often exploited to improve measurement

reliabilities. Sensor fusion is a technique that integrates information from differ

ent sensors, and uses the integrated information to improve and interpret sensor

readings, as well as to monitor sensor performances. Much work has been done in

this area [2, 4, 44, 68, 117, 119].

Sensor fusion generally involves two major steps, a validation step and and an

information-fusion step. The function of the validation step is to identify erroneous

sensors. This amounts to making decisions on whether a sensor reading should

be discounted, removed or adjusted. One example of validation is to perform

smoothing, which removes or reduces noise (in this case, noise is the identified

error) using filtering techniques such as a Kalman filter. A validation range (also

called a validation gate) cam be defined (based on the prediction of the filters in the

case of Kalman filter). A sensor reading within the validation range is assumed

to be valid and used in the subsequent steps. Each valid sensor measurement

is assigned a confidence 'Value" as a measure of how confident we are in that

particular measurement. Confidence values can be defined in a number of different

ways [44, 64, 67]. For example, we may define it as a function of the distance

between the measurement and the prediction [2]. Based on the results of sensor

validation, there exist a variety of methods to perform information fusion. One
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simple example is to calculate a weighted average of all valid sensor measurements

where the weights are the (normalized) confidence values.

Substantial research work on sensor fusion has been done in the Berkeley BEST

Lab (Berkeley Expert System Technology laboratory) led by Professor Alice M.

Agogino [2, 3, 42, 43, 117]. Alag suggested a probabilistic framework in his PhD

dissertation [4]. Goebel developed a fuzzy sensor validation and fusion in his PhD

research [44]. The two approaches were compared [43] and both of them had been

proven to be successful for difierent applications [5, 118, 119].

In this work, we apply a simple, easy-to-implement sensor validation and fusion

technique on the furnace problem to enhance diagnostic reliability in Chapter 4.
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Diagnosing Malfunctions in
Thermal Systems
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4.1 Introduction

Precise control of process temperature becomes important in today's semicon

ductor industry due to the high accuracy needed in each process step. Multi-zone

batch furnaces are widely used, and high reliability of furnace systems is a cru

cial factor in achieving high product yield. Temperature control itself is not very

difficult. A FID controller will do a good job as long as the furnace system is

working well. However, uncertainty caused by system or sensor fedlures may de

grade reliability. Therefore monitoring the health of the thermal system becomes

an important tzek. Many researches have been focused on controlling cross-wafer

temperature uniformity [34]. But little work has been done on diagnosing the

health of the thermal system itself.

In this chapter, we study a furnace system as an example of diagnostics based

on physical modeling. We show how to find the structure of the system model
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based on the physics of the thermal system. We design experiments to extract

the system parameters. We develop an approach to detect failures including tem

perature sensor failures, power supply failures, and system faults for multi-zone

furnace systems. For a certain fault pattern, multiple data sets may be collected.

Therefore, we can treat these data sets as different sensors that can measure faults.

A sensor fusion technique is then used to integrate these detection results to find

a more reliable estimate of the faults.

A simple linear dynamic model with a closed-loop PID-based temperature con

troller is adopted to describe the overall thermal system based on physical consid

erations. The parameters are estimated using the data collected in experiments

conducted on an actual five-zone furnace in the Berkeley Microfabrication Labo

ratory.

There are three major fault sources of concern in this work. The first is the

failure of the temperature sensors (thermocouples). We are particularly interested

in the parameterized bias of these sensors. The furnace we used in the experiments

has five thermocouples that monitor the temperature of the five zones respectively.

Each of these sensors might develop a bias or its random noise might increase.

The second fault source is power supply inefficiency, i.e., the heaters fail to

supply enough power requested by the controller. In our furnace, there are five

independent heaters corresponding to the five zones, so the power inefficiencies of

the five heaters are considered independently.

Finally, the insulation failure of the tube is ainother fault source, which corre

sponds to the change of thermal resistance parameters in the system model. In this
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work we define fault pEirameters to evaluate the faults and develop a generalized

system model that includes all three types of faults.

Our method depends on real-time collection of temperature readings and of

the power delivered to the heating elements. This information is processed in con

junction with the thermal model of the system. A statistical model classification

approach [120] is utilized in this problem. Different models are created corre

sponding to the fault-free system and to systems with single or multiple failures.

Analysis of real-time temperature settings, temperature sensor readings, and re

quested power outputs, determines the model that fits the best. Thus, the most

likely failure model is identified. For convenient fault parameter estimation, we

use a least square matching algorithm. Different data types have been used for

different fault detection purposes. Finally, a sensor fusion technique [2, 64] is used

to enhance diagnostic reliability.

Experiments were performed on a five-zone furnace system used for dry ox

idation. Simulations of a fault-free furnace, a variety of failure models, sensor

fusion, and fault detection algorithms were performed in MATLAB. All models

were based on both physical constraints and empirical data fitting parameter esti

mation is discussed. In the next section, we will describe the system model of the

furnace.

4.2 Furnace Modeling

In this work, we use a t3rpical furnace system as an example to suggest a general

approach to detect the furnace system failures that could be the primary factors of
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temperature inaccuracy. The system we chose to model is a five zone, 6-inch tube

made by Xylan and controlled by the Tystax controller. This system is used in the

Berkeley Microfabrication Laboratory for routine dry oxidation of 6-inch wafers.

We start with setting up the system model. First, we study the structure of the

model based on physical consideration of the thermal system. Then, we perform a

series of experimental runs with the actual furnace in order to extract the model

parameters.

4.2.1 System Modeling

Figure 4.1 is a schematic of a five-zone furnace system (not to scale.) Five

heater elements supply power to each of the five different zones, respectively. Five

thermocouples located in the five zones provide readings for monitoring and con

trol.

The behavior of the heat flow and temperature in a thermal system can be

described mathematically by expressions similar to those used in an electrical net

work [54, 85). The advantage is that we can then use electrical network theory

(e.g.. Miller theorem) [87] to gain insight on the significance of each parameter.

This insight is very important for fault piirameter estimation. We take the tem

peratures at the thermocouple locations as the temperatures of the five zones.

For each zone, heat is supplied by the heating element, heat exchange happens

between zones, and between the furnace tube and the environment. All three

modes of heat transfer, conduction, convection and radiation, happen in such a

furnace system. But since this furnace tube runs at very low pressure, convection

by air can then be ignored. Also, most heat exchange transferred by radiation
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Insulator j Heater

"Thermocouple Wafer Boat Door

Figure 4.1: Schematic of furnace system.

happens within each zone, so we assume the effect of radiation across zones is not

significant. Therefore, in this work, we consider conduction as the major mode

of heat transfer. We use thermal resistance to capture the relationship between

heat supply and temperature change, so that the analogy between the heat flow

system and the DC electric circuits can be utilized to simplify the analysis. Here

we assume that for a specific furnace system, the values of the thermal resistances

and capacitances 2ire fixed (not a function of temperature), since conduction is the

major mode of heat transfer here [85]. This may not be exact, but it can make

the problem easier and it is proven to be a V2ilid assumption for the system we

study. Figure 4.2 depicts the electrical equivalent of the thermal system, where

the heaters {Pi, P2, P3, P4, P5} are equivalent to current sources, and temperatures

{Ti,T2,T3,T4,T5} are equivalent to potentials. The correspondence of the thermal

system to its electrical equivalent is found in Table 4.1.

Since this is a linear circuit, we can easily develop the following continuous
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Figure 4.2: Electrical equivalent of the thermal system.

Thermal Parameter Electrical Parameter

Temperature: T(K) Voltage: V(V)
Heat Flow, Power: P(W) Current: 1(A)

Resistance: R(K/W) Resistance: R(f2=V/A)
Capacity: C(J/K) Capacitance: C(F=A' s/V)

Ambient Temperature Electrical Ground

Table 4.1: Electrical equivalents of thermal parameters.

time open loop system equations.

dTi ,Ti-Ta ,Ti-n „
' dt Ri Rn "

^ dTj , Ti-Ta , T2-T1 , T2-T3 _ „

r> ^^3 , ^3 ~ Tg Tj —T2 Tz — ^
^ dt ita ii23 K34 ~

rfT4 T4 —Tg T4 —^3 ^4 —Ts _
^ df fl4 Ji34 i?45 ~

^ dTs , Tz —Ta , ^5 —T4 _ ^
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(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

where T® is the ambient temperature (ground of the circuit network in figure 4.2).

For simulation convenience, The discrete time system equation (Eq 4.6) can be

converted from the continuous time system equation (Eq 4.1'^Eq 4.5).
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5 ,4.6,
ut ik+1

where tk+i —t*; = At = 1, fe = 0,1,2,.. ..

One-minute time step is used, which is sufficient, since thermal systems are

relatively slow. Let

T(fc) = [ri(fc) T2(k) Ti^k) Ti(k) n{k)f-,
P(fc) = [Pi(fc) Pj(fc) Piik) P4ik) Ps{k)f.

(4.7)

where bold face letters are used to represent data matrices.

The discrete time furnace system equation then becomes Eq 4.8:

T(k +1) = AT(k) + BP(k) (4.8)
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All the thermal resistances and capaciteinces in the above equations are un

known and must be estimated using experimental data.

While the open loop thermal system is considered equivalent to a linear circuit,

the actual behavior of the temperature controller must be taken into account. In

our furnace system, a heuristically enhanced PID controller is used for temperature

control. The details of the built-in controller cire not completely known to us, so

we have to assume a likely structure and extract the parameters by observing

experimental data. Note that knowing the exact controller behavior is helpful

but not necessary. This is an advantage of our method, since it takes significant

effort to decode the vendor's design, and we want our methodology to be able to

compensate for this type of uncertainty.

The overall structure of the furnace system is shown in figure 4.3. If we consider

the thermal system and the controller together as our plant, the only input to the

plant are the temperature setting trajectories, which are designed by the user

according to the needs of a particular process. The noise to the sensors is assumed

to be additive, independently, identically, normzdly distributed (IIND) for each

zone of the furnace.

4.2.2 Parameter Extraction

Once the system structure is fixed, the free parameters in the system equations

have to be extracted from experimental data. These parameters include all thermal

resistances and capacities. For parameter 2iccur2icy, several sets of experimental

data need to be collected, which are generated when the system is working properly.

Figure 4.4 shows a typical run of the furnace system. The curves in the figure are
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T(k+l)=AT(k)+BP(k)

'ower
Controller

Temperature Setting
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Figure 4.3: Overall system structure.
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the temperature cmd power profiles of a dry oxidation process.

Initially the system was at 750®C (standby temperature). The desired final

temperatures were set to 1000®C for all five zones. It takes about 30 minutes

for the temperatures to stabilize. The oxidation lasts for 3 hours and then the

temperatures are set back to the standby level of TbO^C. Note that zone #1, which

is next to the furnace door, needs more power than other zones to compensate for

the additional heat loss.

Most processes require uniform temperatures inside the furnace tube. How

ever, special temperature settings are necessary in the experimental design for the

purpose of system parameter extraction. In this work, we set a temperature gra

dient across the five zones with a difference of ICC between adjacent zones (e.g.,

zone #1: 930®C, zone #2: 940®C, zone #3: 950®C, zone #4: 960®C, zone #5:

970®C) as shown in figure 4.5. If this difference is too small, we would not be able

to extract some of the parameters accurately, and if it is too large, the control

system of the furnace might not be able to achieve and sustain it.

From the system equations (Eq 4.8) we obtain the steady state expression

depicted in Eq 4.11 Eq 4.15.

P Ti T»

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

Ri

Ri

Ri

Rs

Ti-Tj

Ri2
= Pi;

T2-T1

Ri2

T2-Tz

R2Z
= P2\

Tz-T2 T3-T4

R34
= Pz\

R23
. T4-T3

Ru

T4-T5

R45
= P4;

T5-T4

R45
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Figure 4.4: A typical data set for a dry oxidation furnace.
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Figure 4.5: Data set used for parameter extraction.
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Prom the above steady state equations we find that the thermal capacitance

parameters do not play a role at steady state. By me£isuring the temperature and

power delivery of the five zones at steady state and at various temperatures, we

are able to find the thermal resistances using the steady state equations. Fig

ure 4.6 shows cin example of two sets of steady state data of zone #1 at different

temperatures. All other zones have similar data trajectories.

It is also observed that when the measured temperature is higher than the

temperature setting by more than 10®C, the built-in controller would simply set

the power delivery to zero. With the power completely off, the system becomes:

T(k -H 1) = AT(A;) (4.16)

Although the exact control algorithm is unknown, the transient part of the

data (cooling down) could be used to estimate the thermal capacitances (assuming

the thermsd resistances are already obtained from the steady state data) since the

power output is exactly known. Figure 4.7 depicts an actual cooling transient for

zone #1.

After all the open loop system parameters are determined, we adjust the pa

rameters of the simulated PID-basedcontroller. The heating up part (cf. figure 4.8)

of the data is used for this purpose by adjusting controller parameters of the sim

ulated plant such that the simulated temperature and power profile best fit the

experimental profile.

In this way all the parameters needed by the thermal model and its simulated

controller are identified. Note that this is done imder the assumption that the

data we used for estimation are all fault-firee. In the next section, fault diagnostic
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methodologies will be discussed.

4.3 Furnace Diagnostics

In this work, the goal of fault diagnostics is to use all available information

(temperature settings, temperature sensor readings, power delivery readings) to

answer the following questions.

1. Is there any fault in the system?

2. What type of fault is it?

3. Which sensor or which zone is involved?

4. How serious is the fault?

To answer these questions, especially the last one, we need to model and pa

rameterize the faults. So, in the first part of this section we set up a model for the

faults and in the second part we discuss fault detection.

When the eidditive white Gaussian noise is taken into accoimt, we have the

fault-firee system model as

T(k + 1) = AppT(k) -hBP(k) + e(k -H 1) (4.17)

where App, B are the same as A, B in the last section (assuming all the parameters

are estimated correctly), and {e(k)} Af(0jO^Is) is IIND. Here subscript FF is

used for the fault-free system to distinguish it from faulty models.

There are three fault types of interest for this system. The first is the fault
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caused by bad insulation of the furnace system, which affects the system by chang

ing the values of the thermal resistance. We assume the errors are constant bi

ases {0 = [9i $2 9z $4 05 06 07 08 ^9]^) of the inverse of the thermal resistances

([l/i2i I/E12 I/E2 I/E23 ^/Es I/E34 l/E^ I/-R45 l/iis])-

The insulation errors cajo. be represented easily by introducing an additive ma

trix Ae to the system matrix App. The elements of As correspond to the errors of

the elements of the fault-free system matrix caused by 0. The second type of fault

is the temperature sensor (thermocouple) bias. A5-dvector ()9 = [Pi P2 Pz Pa PsV)

is used to denote the temperature biases (in **C) of the five zones. The third type of

fault is caused by power delivery inefficiency, which means that the power system

does not actually deliver the amount of power requested by the controller. A 5-d

vector (a = [ai a2 as Qa as]^) is used to represent power efficiency (in %) of the

five zones. We call the parameters a and P error parameters. Based on this

formulation, the task of fault diagnosis is equivalent to the estimation of the values

of the error paurameters.

When all the three types of errors of the five zones are included, we can get the

generalized system equation as follows:

T(A; +1) = (App -H A0)[T(k) -0- e(k)] + Bdiag{a)P{k) 4-/3 + e(A: +1) (4.18)

Note that the fault-free system corresponds to the case when all the elements

of As are zero, a is all at 100%, and p is all zero, diag{oL) is the matrix whose

diagonal elements are elements of a and all other elements are zeros.

So far the system fault model has been established. The next step is to in

vestigate the fault detection methodologies. One approach that can be used for
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Figure 4.9: Model classification method.

this problem is that of model classification, as illustrated in figure 4.9. For each

possible system fault, a corresponding model is set up amd simulated. When an

actual experiment is nm, the temperature setting of the experiment is the input to

all the simulated fault models along with the fault-free model. The output (mea

surement) of the actual experiment is compzired to the outputs of all the simulated

models. The model whose output is closest to the actual system is then selected.

If the fault-free model is chosen, we may conclude that the actual system is

functioning properly. When a certain fault model is chosen, we would conclude

that the actual system is suffering from the corresponding fault. To measure the

closeness ofthe outputs, different techniques can be used, as discussed in Chapter 2.
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D2

D1

Figure 4.10: Selection criterion.

The least squjure matching approach [13] is commonly used. The general idea is

illustrated in figure 4.10, assuming that the system output features fall in a two

dimensional space, and that the fault models are separable. D\ and D2 could

be linear combinations of important system parameters or any other significant

output features.

One drawback of the direct application of this approach is that it is difficult

to parameterize faults. For each value of a certain fault parameter am additional

fault model needs to be set up. In our case, all fault parameters take continuous

values, which makes this approach impractical. Also, this approach is not ideal for

the case of multiple faults. If all different combinations of faults are considered,

the total number of fault models that have to be considered is prohibitive.

Having these considerations in mind we developed a least square fault parame

ter estimation approach instead of using the model classification method directly.

This approach has the advantages that all different types of faults and different
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values of fault parameters could be represented in a general model.

T(A; + 1) = (Aff + Ae)T(k) + 3diag(a)'P{k)

+(l5 —Apf))3 + e{k + 1) —Appe(/:) (4'19)

The generalizedsystem (of. Eq 4.18) could be approximated by Eq 4.19, which

is linear in the fault parameters. Moving all the terms without fault parameters

on the right-hand side of Eq 4.19 to the left and rearranging the remaining terms

we get:

Yk = Mki+et, (4.20)

where

Yk = T(A; + l)-AFpT(*;), (4.21)

« = [«•' 0^^, (4.22)

Sk = e{k +1) - Appe(fc), (4.23)

Mk = [M^ Mck M^J (4.24)
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Eq 4.20 is equivalent to Eq 4.19. In the above equations, all the three types

offaults of the five zones are taken into account. Elements of [M^,^ Mak

correspond to the regressors of resistance, power and temperature respectively. Mk

can be a combination of any of subsets of them.

If we have a collection of n data points and all the data points are concatenated

into a single vector, we have

Y = (4.26)

where Y = [Y? Yj •••Yjp, M = [M? Mj ••• and e = [ef 4 ---elf.

Note that Y is 5n by 1, M is 5n by 19, $ is 19 by 1 and e is 5n by 1.

If e is white Gaussian, the least square (LS) matching can be used to get the

optimal estimation of the fault parameters:

4 = (M'^M)-^M'^Y (4.27)

and the variance-covariance matrix of the estimate is

V(4) = (M'^M)-V| (4.28)

where is the variance of e.

However, e is not white (cf.Eq 4.23). Its variance-convariancematrix (cotie can

still be calculated since {e(k)} are samples of IIND random variable with known

variance. We can then whiten e using the following approach. First czdculate

cove. Then find the Cholesky factorization [91] of cove such that:

R'^R = cove (4.29)

(RT)-ie is white since its variance-covariance matrix is an identity matrix.
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By multiplying at both sides of Eq 4.26, we get

(R^)-^Y = (R'^)-^M^ + (4.30)

By applying the above least square solution to Equation 4.30, we obtain the

new LS solution:

# = [((R'^)-^M)^((R'')-'M)]-^((R^)-^M)^((R'^)-^Y)

= (M'^R_i(R-^)'^M)-^M''R-^(R-^)''Y (4.31)

V($) = (M'^R-^(R-^)'^M)-V^ (4.32)

This concludes the basic idea of the LS approach. Theoretically, as long as our

model is accurate and the data used for diagnosis are rich enough, all those fault

parameters could be estimated accurately. But in practice we are dealing with a

real physical system. Our linear model is not exact, since there are some minor

non-linearities due to some known and unknown reasons. The fact that we cannot

collect arbitrary large data sets also makes the diagnosis more difficult.

In the next section, we discuss the experiments, the simulation and the strate

gies of choosing different data sets for different diagnostic purposes, as well as a

sensor fusion approach to enhance diagnostic reliability.

4.4 Results Analysis

4.4.1 Modeling Results

In previous sections we set up the structure of the linear model and discussed

how to extract the system parameters using different types of experimental data.
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Some typical experimental data sets were shown in figure 4.4. These normally

consist of three parts: heating up, steady state and coolingdown. As we mentioned

earlier, steady state data are used to solve for thenucd resistcince parsuneters {Ri,

/?i2, R2i R23i Rsi RsAi Raj -^45) -Rs}* cooUug dowu data are used to estimate

thermal capacity parameters {Ci, C2, C3, C4, C5}, and heating up data are used

for adjusting controller parameters. Figure 4.11 and figure 4.12 show the model

estimation results. After fixing the model structure, an experiment was run on the

tube and the furnace model was simulated with the same recipe. Comparing the

results, it can be seen that the estimated model is very accurate for steady state

and cooling down periods. However, for the heating up period, there are obvious

differences between the actual furnace and its models. In this work, we decide

not to put too much eflfort on decoding the vendor's controller design. The only

knowledge that has been used is that it is a modified PID type controller. There

is actually a tradeoff between model complexity and accuracy. A more complex

controller (with more parameters to adjust) may be adopted, but it would require

significantly more good experimental data to estimate the model. Therefore we

suggest using only the steady state and cooling down data to perform diagnostics.

4.4.2 Diagnostic Results

Table 4.2 summarizes the diagnostic results. In this table, the results of five

cases of fault combinations are listed as examples to show the diagnostic perfor

mance. The second colunm lists the number of fault parameters being considered

(any combinations of those parameters are possible) for each case. The third col

umn gives the specific fault parameters to be estimated for each case. The rest of

the table shows the types of the data sets used for estimation and performance of
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Figure 4.11: Comparison of experimental data and linear model simulation results
(temperature profile).
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Figure 4.12: Comparison of experimental data and linear model simulation results
(power profile).
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Data Used & LS Performance

Case # Number of Faults Parameters Steady Cooling Steady state-f
Faults to estimate state down Cooling down

(Parameters
to estimate)

data data data

1 19 ^li ^2j^3i^4) ^5i
^6) ^7j ^8» ^9

^1) ^2j ^3> ^4) ^5j

Pu ^4>

N/F
(5)

N/F

(11)

N/F

(11)

2 10 ^1} ^2j ®3> ^4) ^5}

A) )^3> ^4> 05

N/F
(5)

N/F
(7)

N/F
(7)

3 A 5 Good Good if

^2>^4»^6)^8
are known

Good

B 4 ^2j^4) ^6» ^8 N/A Good Good

4 5 ai, 012,0:3, Q!4, as Good N/A Good

5 5 0u 02i03i04i05 Good Good Good

Table 4.2: Performance of Least Square Method. N/A denotes "Not Applicable"
and N/F denotes "Not Feasible". nine thermal resis
tance faults, ai,Q!2,a3,a4,a5: five power inefliciency faults, fiup2iPsi^4^^5- five
temperature sensor bias faults. Number in parenthesis indicates number of data
dimensions, not shown when it equals or exceeds the number of parameters.

the LS estimation.

"Not feasible (N/F)" means the least square problem is not solvable due to the

limited degrees of freedom in the available data. The number in the parentheses

gives the number of dimensionsof the used data (number of non-zero eigenvalues of

the data matrix). The number ofdata dimension can help us determine whether the

least square problem is solvable for different cases. If the available number of data

dimensions is less than the number of the fault parameters, the problem cannot be

solved. "Good" means the data are rich enough to solve for the fault parameters.

Note that in case #3, both steady state and cooling down data are needed for the

estimation of the nine fault parameters. First, the steady state data is used for
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estimating fault parameters corresponding to the five self-resistances (resistances

linkingeach zone to ground in figure 4.2). Then the cooling down data is used for

estimating fault parameters correspondingto the four inter-resistances (resistances

linking the five zones in figure 4.2). Therefore, case #3A and case #3B need to be

done in sequence. When the system is at steady state, since normally all runs need

uniform temperature inside the tube, the influence of the fault of inter-resistances

is insignificant (these can be viewed as Miller resistances [87], that only play a

role if the system gain is other than unity). So we cam fix the value of inter-

resistances at nominal values and estimate the faults of the five self-resistances.

Then we can fix the values of self-resistances and use the cooling down data to

estimate faults of inter-resistances. This is possible because the cooling down

process would introduce non-uniformity to the temperature profile and make the

role of inter-resistances significant. For case #4, cooling down data cannot be used

to detect power inefficiency since power is shut down. During actual experiments,

we observed voltage fluctuations (up to about 5%) on the power line. This could

be a source of the power errors. A power monitor was used to track the fluctuation

and compensate the simulation for the power delivery fluctuations.

For case #5, both types of the data can be used for estimating temperature

sensor faults. Use of the cooling down data only in this case is not recommended

because the cooling down process is brief and its data set is limited.

The precision of the fault p2irameter estimation can be evaluated by the fol

lowing procedure (cf. figure 4.13). We first input the same temperature settings

to both the actual system and the simulated system. We then calculate modeling

error (including noise) by taking their difference. When simulating the detection
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Figure 4.13: Sensitivity test of diagnostic algorithm.

algorithm, we input the simulated fault-free system output added by the model

ing error and see the fault parameter estimation. The value (mean 2ind variance)

of the estimates would determine the precision of the detection. For example,

when we do this for case #5, we obtained means of the five estimates around zero

and their standard deviation less than 1.15®C. The 95% confidence interval is

(—2.3°C, 2.3®C). This means that if the actual temperature sensor bias is within

this interval, we would not be able to distinguish it firom the modeling error.

4.4.3 Data Fusion Applied in Diagnostics

While precision is important for fault detection, reliability is also crucial. We

can never rely on the results from one data set due to uncertainty in real operating

conditions. To improve the reliability of the diagnosis, we integrate information

from multiple data sets based on the concept of sensor fusion to make the final

decision about the fault estimation. Repetitive or complementary experiments may

be done to get multiple data sets for the purpose of fault detection reliability. Each

of them will provide a set of estimated fault parameter values. These data sets

can be treated as different "sensors" measuring fault parameters. Sensor fusion
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Figure 4.14: Data fusion to enhance diagnostic reliability.

techniques are then utilized to integrate the information into the best estimation

of the concerned fault parameters. The idea is shown in figure 4.14.

There are a variety ofways to perform the fusion [2,44, 64]. Themethod we are

using here is based on assigning a confidence value to each "sensor" and calculate

their weighted average usingthe confidence values as weights. The confidence value

depends on the variance of each estimatedfault parameter, which is a by-product

of the LS estimation algorithm. Estimates with smaller variances would deserve

larger confidence values. In this way, if oneset of the data were corrupted, a very

small or zero confidence value would be assigned to it. It will then not adversely

affect the final estimation. In summary, sensor fusion is performed as in Eq 4.33.

K

i=l

(4.33)

where i = 1,2,..., L, and L is the total number of parameters to be estimated,

i^j = [^ijj •••) iijVi is the estimation of parameters based on the
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set ofdata). K is the number of data sets, ^ij is the LS estimation of the

parameter based on the set of data, Wij is the weight for and is a function

of estimated variance of ^ij with Wij = 1, and is the fused estimation

of the parameter. Different methods can be used to calculate the confidence

values [44, 67). Various distance measures have been suggested to measure the

closeness between a sampled probability density function and the reference density

function [114]. There reference can be obtained by baselining good historical data

or predicting based on stochastic system model [44]. One example for calculation

of Wij is to use the inverse of the estimated variance of and then normalize it

so that Wij sum (over j) to one.

One thing that should be pointed out is that, when we implement sensor fusion

as we described in this section on a specific furnace system, it cannot be real-time,

since we need multiple data sets to perform fusion, which cannot be collected at

the same time. But slow dynamic faults can be diagnosed more reliably. Sensor

fusion does not necessarily increase the precision of the estimation, but it does

improve the reliability of the diagnostics effectively.

4.5 Summary

This chapter demonstrates diagnostic strategies for systems with physical mod

els, using a thermal dynamic system as an example. We show some experimental

and simulation results on a real furnace system in the Berkeley Micorfabrication

Laboratory. A Least Square (LS) estimation approach is used to extract model

parameters and to estimate fault parameters, based on a model classification di

agnostic framework.
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If we are able to accurately estimate the model parameters of a fault-free sys

tem, all different fault combinations can be diagnosed successfully (e.g., a 1°C

temperature sensor bias can be detected) through simulation. However, in reality,

system modeling is often inaccurate and the types of experimental data are limited.

Consequently, diagnostic performance is often sub-optimal. Single failures can be

evaluated if the fault type is known, and the accuracy of the evaluation depends on

the accuracy of the system parameter estimation. Some important failure combi

nations can be effectively diagnosed by our proposed approach using steady-state

data and/or cooling-down data sets, while the diagnosis of other failure combina

tions remains difficult given the currently available data sets. It is likely that more

accurate system modeUng through the studying of the system non-linearity may

provide better diagnostic performance. Finally, sensor fusion techniques may also

be used to enhance diagnostic reliability.
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Chapter 5

Lithography Process Diagnostics

As one of the most crucial processes in semiconductor manufacturing, pho

tolithography is used at almost every stage of production. Nearly one third of

the total cost of semiconductor manufacturing is spent on lithography processing.

Holding the chip size constant, a decrease in feature size by a factor of two would

result in an increase of the number of devices by a factor of four as well as a signif

icant performance increase. Naturally, manufacturers seek to reduce feature size

as much as possible. Only a couple of years ago, "submicron" was still an industry

buzzword, but now it has been replaced by "sub 0.1-micron". In the meantime,

increasing wafer size has been another major course of productivity improvement.

Currently, the industry is quickly transferring from 200mm technology to 300mm

technology. The ever decreasing device sizes and increasing wafer sizes result in

many more devices on each wafer than previously possible. Consequently, the

wafer cost has been rising. This economic risk has put great pressure on hthogra-

phy engineers and researchers to enhance small feature reproducibility and reduce

defects. Some improvements are evident: process equipment precision is higher,

fabs are cleaner, and the accumulated process experience has advanced. However,
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the problem of process variation remains. A process feature produced in the morn

ing may become quite diiferent in the afternoon even without anyone changing the

experiment setup. The environment (e.g., the temperature and humidity) could

have changed, the tool condition could have become different, and the production

settings could have drifted. Many things are subject to change due to the dynamic

nature of the world that we live in.

Scientists and engineers have worked very hard in trying to understand the

physics of every part of a photolithography process [58, 107]. Many advanced

metrology tools have been developed to collect process information timely and

accurately [60, 94]. All of these efforts aim to enable process control. The pur

pose of process control is to reduce process variation by monitoring critical process

parameters. Traditional Statistical Process Control (SPG) has been successfully

implemented in the semiconductor industry. Typically, SPG is used for monitor

ing process parameter trends, setting control limits, and generating alarms when

appropriate. Many fabs are shutting down equipment according to SPG results.

Current SPG methods have the advantage of implementation simplicity but, since

there is no feedback loop, they cannot make automatic adjustment to a process.

Much more is expected from process control and thus, Advainced Process Control

(APG) methods are receiving increasing attention [32], but the scope is not yet

well defined.

In this chapter, we propose a novel APG approach for diagnosing lithography

parameter drifts based on empirical modeling and statistical analysis of Critical

Dimension (CD) profile data.
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5.1 Lithography Process Diagnostics

5.1.1 Process Overview

Lithography is a process of transferring the desired pattern from the mask to

the surface of a wafer [57]. The process determines the line-width on the wafer

and therefore the overall size of the chips. In order to enhance product yield and

device speed, there is a continuous effort to scale down the pattern size. As the

image size becomes smaller, linewidth variations plot a critical role.

Photolithography consists of a number of different physical and chemical pro

cesses and involves many equipment and materials. In such a complex sequence,

there are many sources of variation. Recipe drifts, equipment instability, and en

vironmental changes are all important sources for Critical Dimension (CD) profile

variations. In this study, we focus on the detection of recipe parameter drifts.

Many studies on underst2inding the physics of photolithography have been pre

sented previously [78, 100, 107, 111). In the current work, we propose a novel

approach for modeling and diagnosing of the photolithography processes, based on

statistical analysis of relationships between relevant input and output parameters.

A basic Deep-Ultra-Violet (DUV) lithography process consists of thin film

preparation, spin-coat of resist, pre-bake (soft bake), exposure, post-exposure bake

(PEB), and development as shown in figure 5.1. In this work, we are concerned

with controlling variations in the Critical Dimension (CD) profiles. A CD profile is

a two-dimensional representation of the CD, which we will describe in more detail

in section 5.1.3. Factors (and their combinations) that may cause variations in CD
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profiles include the properties of the light source (such as the exposure dose, focus

position, and partial coherence of light), photoresist parameters (such as Dill's A,

B, C parameters and other resist chemical parameters [107]), resist thickness, and

PEB process parameters (such as the PEB time and temperature). In real man

ufacturing lines, these input parameters may drift over time, which, in turn, may

result in CD profile variations. Some parameters can be measured and adjusted

easily, but many cannot. Direct measurement of parameters such as exposure dose

and focus position can be very costly and even impractical. Thus, the detection

of input parameter drifts based on CD profile measurements is of great potential

interest.

Figure 5.2 shows a typical layer structure of the silicon wafer that we use as

example. The Anti-Refiection Coating (ARC) layer is utilized to reduce refiectivity

in order to mitigate the effectof standing wavesin the side wall of the CD profile. In

a lithography process, the wavelength of light, in conjunction with the numerical

aperture of the lens, determines the image resolution. Deep Ultraviolet (DUV)

light is widely used nowadays to achieve small feature sizes.

In the following sub-sections, we will describe some input and output parame

ters that have been considered in this work. We will also describe Critical Dimen

sion metrology and the diagnostics structure. Although our modeling is purely

data-driven, it is essential to understand intuitively how each input parameter af

fects the CD profile. Such intuition will help us design efficient experiments and

decide what types of data are appropriate for modeling.
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5.1.2 Input and Output Parameters

Input pgurameters of a lithography process include at least the following: param

eters of the optical system; parameters of the resist material properties; process

parameters such as pre-bake temperature, PEB time and temperature, and de

velopment time; material thickness; and many other parameters associated with

various subprocesses. We therefore have a complex system where many parameters

can individually or in combination contribute to linewidth variations.

For most modeling and diagnosing efforts, computation complexity grows ex

ponentially with the number of input parameters. To make the problem more

tractable, and without loss of generality, we have chosen to consider only five in

put parameters to demonstrate the effectiveness of our approach to lithography

process diagnostics. These five parameters are: 1. Exposure dose (earp), 2. Focus

position (/oc), 3. Partial coherence (coh), 4. PEB time {tpEB)i and 5. PEB tem

perature {Tpeb)- All other input parameters are assumed fixed and known, but

a similar approach may be adopted when those parameters are also considered as

variables.

The optical system is a key component of the lithography process. The exposure

system projects an image, transferred through a mask with the desired pattern onto

the silicon wafer that is being processed. Many levels of such masking are often

required. For example, an advanced memory chip may undergo more than twenty

masking levels. A thin layer of resist material transfers the image in such a way

that the layers underneath the resist can form a permanent device after several

subprocesses, such as baJcing, development, and etching. The accuracy of this

image transformation determines the feature size that the process can achieve. It
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is thus essential to have very high stability in the optical system. Drifts in a number

of parameters associated with optics and lights can bring profile defects. Exposure

energy dose and focus position are the primary factors that have to be considered.

The exposure system is a highly complex optical system consisting of a projection

lens, the illumination subsystem, and the wafer positioning subsystem. Exposure

dose is the amount of light incident on wafers coated with resist on stepper, and it

is set according to the sensitivity of photoresist and the time allowed for exposure.

Variations in exposure dose can drastically affect the shape of features projected on

a wafer. Unfortunately, direct measurement of exposure dose remains very difficult

and costly. Focal position is another key parameter that has to be kept constant.

Images become blurred should focus get out of position. When high accuracy is

desired, it is often very difficult to directly measure the focus position.

Partial coherence {coh) is a figure that describes the range of angles used for

illumination. Although partial coherence is inherently stable, it is still useful to be

included in the modeling, since different coherence values determine a wide range

of optical effects. In our modeling and diagnostic activities, partial coherence is

assumed to be known.

Post-exposure bake (PEB) is an important thermal subprocess in lithography.

It "activates" the photoactive compounds, it reduces the standing wave effect and

thus increases linewidth control and resolution. Drifts in PEB temperature and

duration may significantly affect the shape of the resist CD profile.

We have also considered a few other parameters such as resist thickness and the

thickness of the ARC layer. However, empirical results suggest that CD profiles

are not very sensitive to variations in these parameters at least for the parameter
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ranges that we are concerned with. Hence, we focus on the aforementioned five

input parameters: Exposure Dose (exp), Focus (/oc), Partial Coherence (coh),

FEE Time (Ipeb) and PEE Temperature {^peb)-

Critical Dimension (CD) profile is a two-dimensional representation of the cross

section of a resist profile after lithography process(cf. figure 5.3). CD profile is the

most important measurement that lithographers rely upon. Although an entire

two-dimensional CD profile may be used for the purpose of process control, it is

often more convenient to use only certain features extracted from the profile. In

this study, we use features such as the 10%, 50% and 90% CD measurements and

the SideWall Angle (SWA), as system outputs. The Side WallAngle can actually

be calculated from the 10% and 50% CDs. Eut we choose to use this redundant

information because they may have different noise characteristics and looking at

both of them would provide us more stable information.

Resist thickness loss could have also been considered as an output parameter.

However, it is very difficult to measure resist thickness loss with high precision (on

the order of several nanometers in our simulations). Hence, since resist thickness

loss does not seem to be very sensitive to any of the five input parameters that we

have selected, we decided not to include it as an output parameter.

5.1.3 Critical Dimension Metrology

The rapidly decreasing linewidth has resulted in a corresponding decrease

in linewidth uncertainty tolerance, which, in turn, places a greater demand on

linewidth measurement tools. While the ciurrent generation device gate length is

on the order of 100 nanometers, only a few nanometers uncertainty is allowed for
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a CD metrology tool. There has been a number of diflferent CD metrology tools

applied to modern photolithography processes [100], e.g., optical linewidth metrol

ogy, electriced linewidth metrology [115], CD SEM (CD Scanning Electron Mi

croscopy) [82], and CD AFM (Atomic Force Microscopy) [79]. We are not directly

concerned with the physical principles of these tools since no physical experiments

are involved here. However, to understand their limitations, we do need to get

some sense of the accuracy and speed that current metrology tools can provide.

Optical tools had been popular historically due to their availability and low

costs. However, the accuracy of conventional (far-field) optical techniques is limited

by the wavelength of light, which makes them not applicable when the linewidth

dimension goes under 1.0 /^m. As a consequence, lithographers have been looking

for alternative techniques such optical scatterometry [83]. For example, the Spec

ular Spectroscopic Scatterometry (SSS), investigated by Xinhui Niu in his PhD

research [94, 92], is a promisingtechnique that provides reliablecross-sectional CD

profile information for current generation technology.

Electrical linewidth metrology can provide very precise measurements of the



Metrology Tools Accuracy Cost Speed Comment

IVaditional

Optical
unsuitable

for submicron

low high does not meet

current resolution

requirement
SSS high low high under development

Electrical very high low high only for some
conductive films

CD SEM high high slow has to cut wafer

CD AFM high high very slow speed is a
major problem
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Table 5.1: Compjurison of CD metrology tools.

average linewidth of a conductive film through electrical tests. It has been an

invaluable tool to manysemiconductorapplications. However, it can only be used

on conductive film and it does not provide cross-sectional CD profile information.

Also it can only be used after all processes are finished.

CD SEM technology iscurrently the most popular metrologytool for CD profile

measurements. Two types of CD SEM are available, one for cross-sectional profile

and the other for top-down measurements. Highresolutionmay be achieved by CD

SEM even though it is often time-consuming and expensive. The cross-sectional

CD SEM requires physically cutting the wafer, which is obviously undesired.

CD AFM technology has beenreceiving increasing attention in the lithography

community. CD AFM can also provide very accurate cross-sectional profile infor

mation without cutting the wafer, but currently it is relatively slower than CD

SEM.

Table 5.1 summarizes the comparison among the major CD metrology tools.
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5.1.4 Model-based Diagnostics

Traditionally, test wafers have often been used to adjust process parameters in

fabs while there are msmy problems associated with them. Due to the extremely

small device size, ever increasing wafer size and high complexity of modem pro

cesses, test wafers can be very expensive. This means that engineers have to rely

upon the sparse information obtained from a small number of test wjders. Natu

rally, the laws of statistics leave us in doubt about the reliability of control decisions

made under those conditions.

Recently, people have started looking at process parauneter adjustment methods

that adjust parameters automatically by monitoring process parameter drifts [12,

74]. In this study, we perform diagnostics of the lithography processes by moni

toring the drifts in the input parameters through observations made on CD profile

measurements. This is not an easy task due to the non-linearity and high dimen

sionality of lithography processes. Figure 5.4 shows the basic idea of automatic

feedback parameter adjustment. Similar efforts have been made in the area of

detecting some lithography process parameter drifts using empirical methods [16],

but they do not provide a general diagnostics framework. They only focus on

a couple of important parameters, for example, exposure dose and focus. The

approach proposed in this work is not limited to specific parameters.

Why is it important to diagnose each of the input parameters? To answer this

question, let us first take a look at the alternatives. Recall that the ultimate goal

of diagnostics is to ensure the system's ability to reproduce the desired features

over a sustained period. When one or more input pjirameters start drifting, the

output feature is likely to deviate from the desired values. In many cases, it may
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be possible to adjust some input parameters (not necessarily the drifting ones)

to bring the system output closer to the desired features, where the parameters

and amount to adjust are chosen through experience or trial-and-error. This is in

fact the most common engineering practice in the semiconductor industry today,

although there are several fundamental flaws with this approach. First of all, ad

justing one or several input parameters that are not exactly the drifting ones can

compensate for output deviation only to a limited degree since the highly complex

parameter space makes it very difficult to find alternative mappings from the in

put to the desired output features. Secondly, since each system parameter has its

own range, adjusting certain parameters to their extreme values for compensat

ing other parameter drifts may bring adverse and often catastrophic effect to the

overall system state. In such cases, even if the system were able to compensate

for some parameter drifts and produce desired output features in a short term,

performance often cannot be sustained and more serious problems may arise due

to the undesired system state. For example, if only the focus position is adjusted

while both exposure dose and PEB temperature are drifting, we may easily place

focus position over its physical limit and still not fully obtain the desired features.

Therefore, a truly principled solution must be one that monitors every parameter

and has it under control whenever a drift from its specified setting occurs. This is
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precisely what we hope to achieve with statistical diagnostics. Of course, for each

particular statistical model we develop, we have to make the assumption that cer

tain states of the system, such as the recipe, equipment and environment, remain

unchanged. Although it is possible to also include those intrinsic system states in

a statistical model, it is beyond the scope of our current study.

In this work, we propose two different approaches for diagnosing input param

eter drifts. We define forward model as a model from input recipe parameters to

output CD measurements (cf. figure 5.5) and inverse model as a model from CD

measurements to recipe parameters (cf. figure 5.6). Each of the two basic diagnos

tic approaches that we propose in this study employs a different lype of model. We

call the diagnostics based on an explicit inverse model (a function that maps CD

measurements to input recipe parameters) the inverse model approach. In cases

where explicit inverse models do not exist, we rely on forward-model simulation

to build a library of input-output data pairs. Estimation of input parameters can

then be accomplished by searching in the library for the matching output. We call

this methodology the library searching approach [121].

Regardless of the diagnostic approach we take, the success of the overall frame-
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work largely depends on appropriate system modeling. As we pointed out at sev

eral occasions, lithography is an extremely complex process with many interacting

subcomponents.

The field of optical lithography modeling was pioneered by Rick Dill of IBM

in the early 1970s. In a series of papers around 1975, now known as the "Dill Pa

pers" [27, 28, 29], Dilland colleagues presented a simple modelfor image formation

with incoherent illmnination (the first order kinetic "Dill model" of exposure) and

an empirical model for development with a photoresist profile calculation program.

In the late 1970s, Andy Neureuther and Bill Oldham advanced state-of-the-art

lithography modeling by including partial coherence and more sophisticated dis

solution calculation algorithms in their SAMPLE package [95], the first widely

accessible lithography modeling program. Since 1985, first introduced by Chris

Mack of FINLE Technologies [78], PROLITH was the first lithography simulation

package running on personal computers 2ind its subsequent commercial versions,

PROLITH/2 and PR0LITH/3D, became widely used in the industry. The PRO

LITH family not only includes comprehensive physical modeling of lithography

processes based on the most current understanding but also provides a very user-
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friendly graphical interface.

Although these packages are able to accurately perform fairly large lithography

process simulation, the prohibitively racpensive computational complexity prevents

their application in msiny important tasks, such as real-time fault detection. This

has been one of the major motivations for us to develop statistical models for

process diagnostics.

Figure 5.7 summarizes the entire diagnostic framework in a cascade fashion.

Empirical data collection is essential for any modehng effort. A large amount

of training data are required for accurate process modeling. However, physical

experiments are often too time-consuming and not cost-effective for data collection

purposes. Fortunately, physical-model based mathematical simulators are now

able to simulate experiments at a small fraction of the real cost. Nevertheless,

in practice, physical experiments are still necessary for tuning certain parameters

in simulators (e.g., the resist chemical parameters in PROLITH) to account for a

pairticular fab setup [93, 113]. Sinceour primary purpose is to develop diagnostic

approaches through statistical modeling, in this study, we may safely assume that

the PROLITH simulator is well tuned without performing any expensive physical

experiments, which will only be necessary when the approach is to be used on real

applications.
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5.2 Empirical Modeling of Lithography Process

In this section, we first describe the procedure for generating modeling data

with PROLITH. Then, we show modeling results by linear regression (LR) and

neural networks (NN) for forward/inverse models of different cases. Although

we did not use linear regression models ultimately in diagnostics, we found that

linear regression was a good starting point for data analysis due to its simplicity

and transparency. Applications of forward/inverse models in diagnostics will be

discussed in subsequent sections.

5.2.1 Modeling Data from PROLITH

The training and testing data that we use for modeling the lithography process

were obtained through PROLITH simulations. The simulation runs were designed

in such a way that the five input parameters were distributed evenly in the par

rameter space. Each of the five parameters took on between five and nine values

and a total of 11,340 data points were generated, which we believe is sufi&cient for

our purpose. The simulation runs took about five hours on a 500MHz Pentium III

PC.

Table 5.2 shows the ranges of input parsuneters and their numbers of values

that we chose to simulate. Two thirds of zdl generated data were randomly selected

as the training set and the remaining as the test set to ensure no overlap between

the two sets. For comparability, the same training and test data sets were used

for all modeling cases and all performgmce results that we report are based on

the test data set unless specified otherwise. To accommodate measurement noise.



Input Parameters Input Parameter Ranges # of Values taken
in simulation

Exposure Dose 10 ^ 15 mJ/cm^ 6

Focus Position —0.3 0.5 /zm 9

Partigd Coherence 0.4 0.7 7

PEB Time 54 66 sec 5

PEB Temperature 130 'N/136 "C 6

Table 5.2: Input parameters and their ranges.

CD Profile Features Measurement Noise Range

10%CD 1 nm

50%CD 1 nm

90%CD 1 nm

SideWall Angle o.r
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Table 5.3: Output measurement noise range.

commonly observed in realistic environments, we have introduced Gaussian noises

in the data we used for diagnostics. Table 5.3 shows the 95% ranges (two folds of

the standard deviations) of the white Gaussian noises we added to the simulation

output data.

The high dimensionality of the data set makes it very difficult to visualize. To

get a sense of the relationship among various input and output variables, we plot a

subset of all variables at a time while keeping other variables constant. Figure 5.8

shows CDs versus focus for different exposure values while partial coherence, PEB

time and temperature are fixed. Figure 5.9 shows CDs versus PEB temperature

for different PEB time values while exposure, focus and partial coherence are fixed.
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Figure 5.8: CD vs. focus for different exposure, when coh = 0.55, tpEB = 60s, and
TpEB — 132®C.
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Figure 5.9: CD vs. PEB temperature for different PEB time, when exp
12mJ/cm^, foe = O.l/im, and coh = 0.55.



Response Adj. RMSE Mean of Response

CDo.1 0.964185 9.165574 nm 248.0956 nm

CDo.5 0.972881 7.108201 nm 225.1709 nm

CDo.9 0.964005 7.952275 nm 220.6018 nm

SWA 0.476337 0.564782® 87.96233®

Table 5.4: First order linear regression.

Response R? Adj. RMSE Mean of Response

CD^a 0.992834 4.099669 nm 248.0956 nm

CDo.5 0.994200 3.287385 nm 225.1709 nm

CDo.9 0.991919 3.768042 nm 220.6018 nm

SWA 0.938786 0.193099® 87.96233®
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Table 5.5: Second order response surface model linear regression.

5.2.2 Linear Regression

Linear regression is perhaps the most popular statistical modeling method and

is widely used in the semiconductor industry. Although linear regression may

not be as powerful as some non-linear modeling methods, it is certainly helpful

in gaining insights from data with relatively little computational overhead. The

simple and transparent nature of linear models can often make good suggestions

of what more complicated models to try next.

Table 5.4 gives the fitting results of a first order linear regression model. The

Root Mean Squared Errors (RMSE) of CDs range between 7.11 and 9.17nm. A

second order response surface model fits the data much better then first order

model, but the RMSEs of CDs could still be as high as 4.10nm. Neither the first

order nor the second order linear models fit the data very accurately.
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5.2.3 Neural Network Modeling

Compared to linear regression, neural networks are much more flexible and

powerful in modeling highly non-linear mappings. The number of active parame

ters (which is usually the number of link weights) determines the function space

a neural network cam approximate as well as its modeling accuracy. For the two-

layer Multilayer Perceptron (MLP) networks that we have used in this study (cf.

section 2.2.3), the number of hidden nodes essentially determines the number of

active link weights. More hidden units an MLP has leads to higher modeling ac

curacy at the cost of longer training time. When there are only a limited amount

of training data, too many hidden units may also lead to overfitting the network

parameters, in which case, network performance seems extremely good on training

data but much poorer on unseen test data. Therefore, some strategy of regular-

ization, such as early-stopping using cross-validation, may be necessary. All MLPs

in this study were trained using the Scaled Conjugate Gradient algorithm [11],

a commonly used second-order quasi-Newton method, where the gradients were

estimated via the standard back-propagation procedure.

The first case is forward modeling from the five input parameters to the four

output CD measurements. The architecture of the MLP is shown in figure 5.10.

Table 5.6 shows the results of MLP forward modeling where the RMSEs of CDs

range between 1.11 and 1.62nm when an MLP with 10 hidden nodes were trained

for 5,000 iterations. Clearly, when sufficient number of hidden nodes were used,

the MLP model fits the data much more accurately than the second order linear

regression model.

In the second case, we tried inverse modeling using MLP as a precursor for
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Figure 5.10: Forward MLP model.
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MLP Simulation Root Mean Square Error CPU Time

#of #of CDo.1 cr>o.5 CD^.9 SWA C) (minutes)
Hidden Nodes Iterations (nm) (nm) (nm)

5 1000 3.2679 2.4374 2.8299 0.1795 6.8

5 5000 4.1680 3.5641 3.5147 0.1458 33.0

10 1000 1.4818 1.2408 1.7034 0.1230 11.7

10 5000 1.1828 1.1071 1.6219 0.1190 56.5

Table 5.6: Forward MLP modeling results.
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Figure 5.11: Inverse MLP model.
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the diagnostic approach using explicit inverse model. Figure 5.11 shows the net

work architecture and table 5.7 gives the modeling results. Unfortunately, the

poor results indicate that the model was not sufficiently accurate for the purpose

of process diagnostics. This is not surprising given the intrinsic ambiguity of the

inverse mapping from output variables to input parameters. Further analysis sug

gests that much better modeling performance may be expected if we would limit

the estimation to only one input parameter (instead of all five), assuming others

were known, especially if the output parameters were monotonic with respect to

that input parameter. As a proof of concept, we show in figure 5.12 and table 5.8

the network architecture and modeling performance when only exposure dose is

unknown. In next section, we describe the explicit inverse model approach with

more details.
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MLP Simulation Root Mean Square Error CPU

#of #of Exposure Focus Partial PEB PEB Time

Hidden Iterations {mJ/cm^) (/xm) Coherence Time Temp {mins)
Nodes is) rc)

5 1000 0.5254 0.0804 0.0789 4.1968 1.6431 7.0

5 5000 0.5017 0.0843 0.0714 4.1955 1.6308 33.9

10 1000 0.5086 0.0809 0.0761 4.1902 1.6009 12.0

10 5000 0.4940 0.0771 0.0699 4.1805 1.5892 57.3

Table 5.7: Inverse model from four outputs to five inputs.
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Figure 5.12: Inverse MLP model for exposure dose.
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MLP Simulation Root Mean Square Error CPU Time

(minutes)# of Hidden Nodes # of Iteration Exposure (mJ/cm^)
5 1000 0.0689 5.7

5 5000 0.0654 28.3

10 1000 0.0242 10.5

10 5000 0.0205 51.1

Table 5.8: Inverse model from four outputs and four inputs to one input.
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5.3 Inverse Modeling for Process Diagnostics

If a unique, accurate inverse model exists for a process, the diagnostics will

be simple. In such cases, for each set of CD measurements, we can estimate the

corresponding inputs directly from the inverse model.

A unique inverse model does not exist in cases where outputs are non-monotonic

functions of certedninput parameters (e.g., focus position as shown in figure 5.8) or

the effects of some parameters are highly coupled (e.g., PEB time and temperature

as shown in figure 5.9). In the highly non-linear lithography process that we are

studying, a one-to-one mapping firom the outputs to the inputs often does not

exist. This means that each set of input parameters uniquely determines a CD

profile, but the same CD profile may be generated by different combinations of

input parameters, and diagnostics are therefore non-trivial.

In many cases where an explicit inverse model is difficult to obtain or simply

does not exist, we have to rely on forward models to simulate input-output pairs

and seek alternative strategies to identify possible inputs for a given output (e.g.,

the library-search approach that we will introduce in the next section). In other

cases, although a universal inverse model does not exist, some local ones do. That

is, if we are able to properly divide the parameter space into subspace segmen

tations, an inverse model would exist for each segmentation. For a given output

measurement, if we have the knowledge of which segmentation the input parame

ters fall in, an estimation of the input parameters can be made using local inverse

models. Clearly, an important task for this approach is the space segmentation,

which may be quite challenging due to the non-linearity and high-dimensionality
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of the problem.

For this five-input, four-output process that we are stud3dng, the CD measure

ments are non-monotonic functions of the five input paraimeters due to, specifically,

the focus position parauneter and also efiects of some input parameters to CD are

highly coupled, such as PEB time and temperature. In the following subsections,

we will first show that when the focus position and some of the interacting pa

rameters are known, we can perform diagnostics reasonably well using the explicit

inverse model approach. We will then consider how to perform space segmentation

when the focus position is unknown. Decoupling PEB time and temperature is a

very difficult problem, for which we do not have a viable solution yet.

5.3.1 Application of Explicit Inverse Model

If we know the precise mapping from outputs to input parameters, we can

apply the inverse model directly to perform diagnostics as shown in figure 5.4.

Unfortunately, in our problem, a unique analjdiical solution for the inverse model

does not exist due to the non-linearity of the process. We can build statistical in

verse models using the same techniques as in forward modeling. However, because

the outputs £md inputs are not related in a one-to-one fashion, we cannot expect

optimal performance from the explicit inverse modeling. In the following series of

figures (figure 5.13 through figure 5.24), the estimation results are shown for all

possible modeling cases (cf. Tabel 5.9). Each of the models uses an MLP(m, 10,n)

where m is the number of model inputs (5 to 8) and n is the number of model

outputs (1 to 4). For all the models, ten hidden nodes are used. The data we use

for inverse modeling are the same as that for the forward modeling. For all the



Case # Exposure Focus PEB Time PEB Temperature

I

(1 unknown,
3 known)

1 N Y Y Y

2 Y N Y Y

3 Y Y N Y

4 Y Y Y N

II

(2 unknown,
2 known)

1 N N Y Y

2 Y Y N N

3 Y N N Y

4 N Y Y N

5 N Y N Y

6 Y N Y N

III

(3 unknown,
1 known)

1 N N N Y

2 N N Y N

3 N Y N N

4 Y N N N

IV

(4 unknown)
1 N N N N

92

Table 5.9: Simulation cases for all diagnostic approaches. Y: known; N: Unknown

results, an estimate of each parameter is calculated based on the statistics of 1000

simulated data samples normally distributed with standard deviation 0.5nm for all

CDs (so that 95% confidence interval is ±lnm) and 0.05® (so that 95% confidence

interval is ±0.1®) for Side Wall Angle.

Figure 5.13 shows the parameter estimation performances of the inverse-model

approach when only one parameter is unknown. Under such conditions, the ex

posure can be estimated accurately while the other three parameters have large

estimation variances. This is largely due to the inaccuracy of the inverse mod

els. When more hidden nodes are included in the MLP, the estimation results

improve slightly. However, as the number of hidden nodes increases, the problem

of overfitting worsens.

Figure 5.14 through figure 5.19 show the results when different combinations
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of two parameters are unknown. Figure 5.20 through figure 5.23 show the cases

when different combinations of three parameters are unknown. Finally, figure 5.24

shows the results when all four parameters are unknown. These results are gen

erally unsatisfactory and the performance degrades as the number of unknown

parameters increases. Next, we show how space segmentation improves estima

tion performances when the universal explicit inverse models do not yield good

solutions.

5.3.2 Space Segmentation

From section 5.2.1 (cf. figure 5.8) we notice that the CDs are non-monotonic

functions of focus. However, it may be possible to divide the parameter space

into segments such that the CD outputs within each segment are monotonic with

respect to all input parameters. If a separate model is developed for each of these

segments, it should give a better fit to the data than a single model for the entire

parameter space. Since the non-monotonicity of focus is an important cause of the

inaccuracy of the inverse modeling, addressing this problem is likely to improve

the parameter estimation performance.

Of course, the high dimensionality and non-linearityof the lithography process

lead to a very difficult segmentation problem if we were to find an optimal segmen

tation involving all input parameters. So as a first step, we consider a simplified

situation where the parameter space is only subdivided along the dimension of

the focus position, and propose the following approach as a rough input parame

ter space segmentation. We take the sign change of the first derivative of output

function with respect to input as an indication of non-monotonicity. For certain
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Figure 5.13; Explicit inverse model approach case I results: the estimated
parameter is the only unknown.
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Figure 5.14: Explicit inverse model approach case II #1 results: exposure, focus
unknown; PEB time and temperature known.
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Figure 5.15: Explicit inverse model approach case II #2 results: PEB time and
temperature unknown; exposure, focus known.
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Figure 5.16: Explicit inverse model approach case II #3 results: PEB time, focus
unknown; PEB temperature, exposure known.
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Figure 5.17: Explicit inverse model approach case II #4 results: PEB temperature,
exposure unknown; PEB time, focus known.
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Figure 5.18: Explicit inverse model appro2w:h case II #5 results: PEB time, expo
sure unknown; PEB temperature, focus known.
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Figure 5.19: Explicit inverse model approach case II #6 results: PEB temperature,
focus unknown; PEB time, exposure known.
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Figure 5.20: Explicit inverse model approach case III #1 results: exposure, focus,
PEB time unknown; PEB temperature known.
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Figure 5.21: Explicit inverse model approach case III #2 results: exposure, focus,
PEB temperature unknown; PEB time known.
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Figure 5.22: Explicit inverse model approach case III #3 results: exposure, PEB
time and temperature unknown; focus known.
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Figure 5.23: Explicit inverse model approach case III #4 results: focus, PEB time
2ind temperature unknown; exposure known.
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Figure 5.24: Explicit inverse model approach case IV results: exposure, focus, PEB
time and temperature all unknown.
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modeling methods, such as the neural network modeling, it is very difficult to cal

culate the first derivative since an amalytical expression between input and output

is extremely complex. Recall however, that the second order response surface linear

regression model gives reasonable performance while offering an analjrtical expres

sion for calculating the first derivative of output with respect to input parameters.

Thus, we may take the second order response surface linear regression model as a

compromise between accurate segmentation and computation plausibility.

By observing the data collected from PROLITH, we realize that due to the

different values other parameters take, the location of the first derivative sign

change is not necessarily a single point but rather a small range, over which the

sign of the first derivative of focus position also depends on other parameters.

We define the boundary range so that within that range, at least one output

is not a monotonic function (i.e., we require that the first derivative of at least

one output over an input changes sign) of the parameter to be examined (i.e.,

focus). In general, the dimension of this type of boundary ranges depends on the

number of parameters involved in the non-monotonicity. In our case, focus is the

only parameter involved, therefore the boimdary ranges are just one-dimensional

intervals of focus. When the focus position has a value that is far from any of the

boundary ranges, we should expect to find a good inverse model. However, when

the focus position is in the vicinity of a boundciry range, it becomes considerably

more difficult to find an accurate inverse model. One possible remedy is to generate

more data close to the boundary ranges in order to refine modeling; another is to

use a more complex modeling structure (e.g., to use more hidden nodes in the MLP

network). Figure 5.26 is an example of how this boundary range of focus position

is determined. This figure gives the scatterplots of all data points in 2-d planes.
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where the horizontal axis is always the focus and the vertical axes are the first

order partial derivatives of the three CDS over focus respectively. The "vertical

bar" for each focus value is made up of a large number of data points that share

the common focus value when all other variables take different values. The black

arrows on the plots in figure 5.26 show the range over which the change of sign

of the first derivatives takes place for each output CDs. [-O.l^m, 0.2//m] is the

common subset, within which zero derivative lines of all three outputs over focus

lie. This range is thus the boundary range that we are seeking.

This boundary range [-0.1/Am, 0.2|im] for focus is used in simulations in this

work. Three MLP models axe developed for the three segments (according to the

range of focus: [-0.3/im, -0.1//m], the left segment; [-O.l^m, 0.2/zm], the boundary

segment; [0.2/im, 0.5;zm], the right segment). For the left and right segments, we

use MLPs with 10 hidden nodes, just as we did for the universal inverse models. For

the boundary segment, we use MLPs with 15 hidden nodes. Figure 5.27 through

figure 5.34 are the simulation results for all unknown parameter combinations for

the case when focus is unknown. Compared to the results for the universal inverse

models, there are some obvious improvements in these results. In most of cases,

we observe clear decreases in estimation variances.

However, the results are still not completely satisfactory as we still observe some

high estimation variances. However, we have demonstrated that space segmenta

tion is potentially usefiil if a reliable method is found to perform the segmentation

systematically. In the next section, we investigate a different approach - the library

searching approach, which is shown to perform much better.
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Figure 5.27: Segment inverse model approach case I #2 results: the estimated
parameter is the only unknown.
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Figure 5.28: Segment inverse model approach case II #I results: exposure, focus
unknown; PEB time and temperature known.
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Figure 5.29: Segment inverse model approach case II #3 results: PEB time, focus
unknown; PEB temperature, exposure known.
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Figure 5.30: Segment inverse model approach case II #6 results: PEB temperature,
focus unknown; PEB time, exposure known.
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Figure 5.31: Segment inverse model approach case III #1 results: exposure, focus,
PEB time unknown; PEB temperature known.
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Figure 5.32: Segment inverse model approach case III #2 results: exposure, focus,
PEB temperature unknown; PEB time known.
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Figure 5.33: Segment inverse model approach case III #4 results: focus, PEB time
and temperature unknown; exposure known.
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Figure 5.34: Segment inverse model approach case IV results: exposure, focus,
PEB time and temperature all unknown.
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5.4 Library Searching Approach

This section describes an alternative diagnostic approach that may be used

when obtaining an explicit inverse model is not prjicticsd. In this approach, we

build a library of input-output pairs by running the neural-network-based forward

system model. The elements in the librjiry have inputs uniformly distributed in the

parameter ranges that we are interested in and the size of the hbrary is determined

by the number of the input parameters to detect. In theory, when a set of new

CD me£isurements become available, we search in the library to find a match to

the outputs and record the corresponding inputs. However, reality is not always

so simple. In many cases, there may not exist an exact match since the library

elements are generated randomly and we allow a certain amount of measurement

error on the outputs. A cost function has to be defined to evaluate the closeness

of the new measurements to the library elements, and a threshold is imposed for

deciding which elements match the new CD measurements. In most cases, we get

a set of close matches instead of a single unique solution. In this work, we use

the following weighted sum of squared-error cost functions to evzduate the match

between new measurements and library elements:

Cost(i) = wi[CDaA-CD^i{i)f + W2[CDo^-CDf^S)?

+tD3[CDo.9 - CDjSWf + Wi[SWA - (5.1)

where CUo.ii CDoji, CD0.9 and SWA are the new CD measurements and CD^i(i),

CDgi(i), CDg^(i), and SWA''''(i) are the output values of the corresponding

library elements. The weights can be determined according to the desired matching

accuracy for CD profiles and noise level of each output variable measurements.
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To find candidate solutions with matching costs below the threshold, we use

an exhaustive search method that evaluates the closeness of each element in the

library to the new measurements. Other search algorithms may also be applicable,

but exhaustive search provides an upper bound on search performance and remains

computational feasible when the size of the library is not too large. After obtaining

the candidate solution set, we calculate the input parameter estimate by a weighted

sum of all solutions in the set. The weight for each solution is determined primarily

by its cost value £md a lower cost value corresponds to a greater weight. More

specifically, we use a Gaussian weight curve as shown in figure 5.35 as the mapping

from cost values to weights for each solution. The parameter a of the Gaussian

function is determined by the error ranges of parameters. Any bell-shaped curve

can serve as the mapping for the weights, the Gaussian curve is just one example.

In practice, different curves can be tried and compared in order to find a curve

suitable for a specific problem.

Figures 5.37~5.48 give the simulation results of the library-searching approach

for all different unknown parameter combinations. We can see that this approach

is suitable for accurate estimation of each individual parameter. For the com

binations of two unknown parameters, it does well for estimating exposure and

focus, focus and PEB time, as well as focus and FEE temperature. For the com

binations of three and four unknown parameters, it can estimate some parameters

extremely accurately but less well for others. Table 5.10 gives a summary of the

library searching results, which shows how well the approach fares on each of the

parameter combinations. A "Y" indicates that the parameter is known; an "N"

indicates that the parameter is unknown and needs to be estimated; a "Good"

or a "Bad" after an "N" tells whether the estimation result is good or bad, re-
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-2a

Cost Values
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Figure 5.35: Determining weights using a Gaussian curve.
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Figure 5.36: Diagnosis using a librjuy searching approach.

116



117

Case # Exposure Focus PEB Time PEB Temperature

I

(1 unknown,
3 known)

1 N (Good) Y Y Y

2 Y N (Good) Y Y

3 Y Y N (Good) Y

4 Y Y Y N (Good)

II

(2 unknown,
2 known)

1 N (Good) N (Good) Y Y

2 Y Y N (Bad) N (Bad)
3 Y N (Good) N (Good) Y

4 N (Good) Y Y N (Bad)
5 N (Good) Y N (Bad) Y

6 Y N (Good) Y N (Good)

III

(3 unknown,
1 known)

1 N (Good) N (Good) N (Bad) Y

2 N (Bad) N (Good) Y N (Bad)
3 N (Good) Y N (Bad) N (Bad)
4 Y N (Good) N (Bad) N (Bad)

IV

(4 unknown)
1 N (Bad) N (Good) N (Bad) N (Bad)

Table 5.10: Library searching approach results summary. Y: known; N: Unknown

spectively. In this problem, the cases with mean square root estimation errors less

than O.lmJ/cm^ for exposure, 0.02/im for focus, 0.2sec for PEB time and 0.1®C

for PEB temperature are "good". Otherwise, the results are considered "bad".

These results serve dual purposes. On one hand, they illustrate the performance

of the estimation approach. On the other hand, they provide us the important

information that in order to use this approach to estimate certain parameter(s),

what other parameters need to be measured. For example, according to our results,

in order to estimate PEB time accurately, we need to be able to measure PEB

temperature and exposure dose.
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Figure 5.37: Library searching approach case I #1~#4 results: the estimated
parameter is the only unknown.
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Figure 5.38: Library searching approach case II #1 results: exposure, focus un
known; PEB time and temperature known.
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Figure 5.39: Library searching approach case II #2 results: PEB time and tem
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Figure 5.40: Library searching approach case II #3 results: PEB time, focus
unknown; PEB temperature, exposure known.
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Figure 5.44: Library searching approach case III #1 results: exposure, focus, PEB
time unknown; PEB temperature known.
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Figure 5.45: Library searching approach case III #2 results: exposure, focus, PEB
temperature unknown; PEB time known.
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Figure 5.46: Library searching approach case III #3 results: exposure, PEB time
and temperature unknown; focus known.
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Figure 5.47: Library searching approach case III #4 results: focus, PEB time and
temperature unknown; exposure known.
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Figure 5.48: Library searching approach case IV results: exposure, focus, PEB
time and temperature all unknown.
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5.5 Estimation of the Time-Series Model of In

put Variations

Estimates of input variables at any particular time, whether measured directly

or inferred from output variables through the diagnostic techniques that we have

been discussing, can almost never be noise-free. One common approach to allevi

ate the adverse effect of noise is to postulate a stochastic model of the variables

of interest and noises endowed with appropriate probability distributions. Com

puting the expectation of the true parameters based on their estimates and the

stochastic model is likely to improve the estimation accuracy. In a photolithogra

phy process, the estimates of input parameters, when taken sequentially in time,

can be considered as time series. In this section we consider the application of the

stochastic time-series modeling techniques [14, 17] to photolithography processes

and how this relates to our statistical process modeling.

First, we describe in the simple cases where the input variables are following

a known time-series model, how we could make use of the diagnostic results to

obtain more accurate estimation 2md prediction of the input parameters. Next, we

consider the cases where the time-series model structure is known but the model

parameters have to be estimated. Finally, we consider the most difficult cases

where both the model structure and parameters are unknown. In particular, we

make assumptions on only the general family of model structures and study how

inaccurate model structures affect estimation and prediction. In all these cases, we

use the following two conditions as examples: first, the focus is the only unknown

drifting parameter; second, both the exposure and focus are unknown and drifting.

Under both conditions, the diagnostic results from the library searching technique
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are used as the noisy measurements of the input parameters.

Autoregressive and Moving Average models [14, 39, 70] are two commonly

used basic time-series models. Their mixture, the Autoregressive Moving Average

model, is a typical time-series model used to represent linear stationary stochastic

processes, denoted by ARMA(p,5) where p is the order of autoregression and q is

the order of moving average. In practice, many time series do not have fixed means.

This non-stationary behavior can be approximated by assuming that some differ

ence of the process is stationary, which can be captured by an ARMA model. The

original process can then be represented by an Autoregressive Integrated Moving

Average model AR[MA(p, d, q) where d is the order of difference (cf. Eq 5.3).

y{t) = Ei=i Oi2/(i - i) + e{t) -f E?=1 bjeit - j) (5.2)

yit) = V^z{t) (5.3)

where V is the difierence operator and V* meems the order difference. For

example, when d = 1, y{t) = ^(f) —z{t —1); when d = 2, y{t) = [z(t) —z{t—1)] —

[z(t—1) —z(t —2)]; and so on. It is typically assumed that {e(t)} ~ A/'(0, al) for

all f > 1 (IIND).

In this section, we focus on the ARIMA models since they are appropriate for

modeling input parameter drifts in lithography processes, and for simplicity, we

choose ARIMA(1,1,1) for all our examples, which has the form as in Eq 5.5.

y(t) = ay(t - 1) + e(t) - be{t - 1) (5.4)

y{t) = z{t) - z{t - 1) (5.5)

where {e(f)} ~ ^7(0,a^) for alH > 1 (IIND). z(t) couldbe either focus or exposure

dose.
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In this section, our chief concern is using time series models to do prediction

and model estimation, but not control. Thus, we omit terms related to controls

in the model. Interested readers can refer to the book by Kumar 2uid Varaiya [70]

for control algorithms.

5.5.1 Prediction and Estimation

At each time step (i.e., at each time when a new observation of CD outputs is

obtained), the input parjuneters estimated by either of the diagnostic approatches

are treated as a measurement for the ARIMA model. Since the library-searching

approach gives more accurate results, we use it in all our simulations in this section.

When the time series model of a drifting parameter is known, we can use the model

and the current-step measurement to perform current-step estimation and next-

step prediction. This can be performed using a Kalman filter approach [47]. To

use the Kalman filter, we first need to transfer £q 5.5 to its state space formulation

as shown in Eq 5.7.

x{t + 1) = Ax{t) -H Gv{t) (5.6)

y(t) = Cx{t) -H w{t) (5.7)

wherea;(t) = [a;i(f),a;2(t)] , A =
0 1

0 a
.G =

1 0

0 1
, v{t) = [e(t), (a-6)e(t)f,

C = [1,0], {w(t)} ~ Af(0, al) for aU t > 1 (IIND).

The Kalman filter equations are as follow [47]:

x{t 11) = x{t —1 11)

+P(t 11 - l)Cf^lCP{t 11 - 1)C^+ ai]-'[y(t) - Cx{t 11 -1)] (5.8)

P(t|t) = P(t|f-l)
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-Pit 11 - l)C^[CP(t 11 - l)Cf^ + (Tl]-^CP{t \t-l) (5.9)

x{t + 1 11) = Ax(t 11) (5.10)

P(i + 1 11) = APit It)A^+ GQG'̂ (5.11)

where Q is the covariance matrix of z;(t). The initial state of the recursions are

x(0) = xo and P(0 | —1) = Pq. In our simulation, we assume that the initial

state is known. i(t 11) (Eq 5.8) is the estimation and f (t H-1 11) (Eq 5.10) is the

one-step prediction. P(t [ t) and P{t -M 11) are the covariance estimates.

Figure 5.49 shows the Kalman filter estimation and one-step prediction results

for focus when it is the only unknown parameter. Figure 5.50 shows the results for

the case when both focus and exposure are unknown. We can see that the Kalman

filter estimation and prediction are good when the measurements (estimated by

the library-searching approaches) are accurate.

5.5.2 Time Series Model Estimation

When the time series model structure is known but with some unknown pa

rameters, we need to estimate the model parameters from measurements, which

are in turn estimated by the library-searching approaches presented earlier. Stan

dard time series model parameter estimation methods can be found in many time

series textbooks [14, 39, 70]. In this section, we assume that parameters a and b in

Eq 5.5 are both unknown. Their estimations can be calculated from Eq 5.12 and

Eq 5.13 [39].
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Figure 5.49: Time series simulation: estimation and prediction using Kalman fil
tering, when focus is the only unknown parameter. Actual model: ARIMA(1,1,1),
a = 0.8, b = 0.5.



<0 0.08

12.55

12.45

<9 12.4

12.35

Actual Value
Estimates by Ubrary Approach
Kalman Filtering Estimation
Kalman RItering Prediction

10 15 20

Time Step

10 15 20

Time Step

132
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ing, when focus and exposure are the only unknown parameters. Actual model for
focus: ARIMA(1,1,1), a = 0.8, b = 0.5; actual model for exposure: ARIMA(1,1,1),
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m =

' [2a(t)]-'[l - - 4o2(t)], 0<1 o(t) |< 0.5
-1, a(t) < -0.5
1, a(t) > 0.5
0, a{t) = 0
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(5.13)

where y{t) = (1/t) E'=i y(i).

Figure 5.51 shows the model parameter estimation at ezudi time step, as well as

the estimation and one-step prediction using Kalman filtering based on the esti

mated time series model, when focus is the only unknown parameter. Figure 5.52

and figure 5.53 show the results of focus and exposure when both are unknown.

From these figures, we can see that it takes some time for the estimates of pa

rameters to converge to the true values. It is also shown that even if the model

parameters a and b have not yet fully converged, a Kalman filter can still produce

reasonable accuracy on estimation and prediction.

5.5.3 Model Mismatch Problem

In practice, we often face the problem that some parameters 2ire drifting but it

is uncleau: what a correct time series model structure should be. In other words, the

model is completely unknown. In these cases, we have to make assumptions on the

model structure. In most occasions, simple models are adopted for computational

convenience. However, if we make incorrect assumptions on the model structure,

would it be a big problem? In this section, we nm simulations using a higher-order

ARIMA model (ARIMA(3,1,2)) in conjunction with the library-searching approach

to obtain a set of data, which is then used to estimate model parameters of a lower-

order ARIMA model (ARIMA(1,1,1)). Figure 5.54 gives the simulation results for

the case when focus is the only drifting parameter. Figure 5.55 and figure 5.56
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Figure 5.51: Time series simulation: model parameter estimation, estimation and
prediction using Kalman filtering, when focus is the only unknown parameter.
Actual model: ARIMA(1,1,1), a = 0.8, b = 0.5.
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Figure 5.52: Time series simulation: model parameter estimation, estimation and
prediction of focus using Kalman filtering, when focus and exposure are the only
unknown parameters. Actual model: ARIMA(1,1,1), a —0.8, h = 0.5.



13.5

13

"i
112.5

s
m
o

12

g-
UJ

11.5

11

— Actual Value
— Estimates by Library Approach
— Kalman RItering Estimation

Kalman Rltering Prediction

100 200 300 400

Time Step
500 600

— Estimated a

Estimated b

0 100 200 300 400 500 600

Time Step

136

Figure 5.53: Time series simulation: model parameter estimation, estimation and
prediction of exposure using Kalman filtering, when focus and exposure are the
only unknown parameters. Actual model: ARIMA(1,1,1), a = 0.6, b = 0.3.
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Cases Actual

Model

Estimated

Model

Root Mean Square Error
Measure

ment

KF

Estimation

KF

Prediction

1. Time Series

Model is

known

ARJMA

(1,1,1)
0 = 0.8

5 = 0.5

NA 0.0007 0.0008 0.0013

2. Time Series

Model

parameters

are unknown

ARIMA

(1,1,1)
a = 0.8

6 = 0.5

ARIMA

(1,1,1)
0.0007 0.0013 0.0021

3. Time Series

Model is

unknown

ARIMA

(3,1,2)
a =

[0,0.12, -0.016]
6= [0,0.01]

ARJMA

(1,1,1)
0.0008 0.0015 0.0019

Table 5.11: Time series simulation summary when focus is the only unknown
parameter.

show the case that both focus and exposure are drifting. For each of the simulation

results, the relationship between the estimated model parameters a and b and the

actual higher-order model parameters is not obvious. The fact that the estimation

of a and b do not converge very well as shown in these figures could be an indication

that the approximation does not fit the actual model.Fortunately, this does not

fundamentally affect the performance of the Kalman filter. Therefore we may

conclude that model mismatch is not necessarily a big problem for estimation and

prediction by the Kalman filter approach. Of course, it remains to be investigated

whether this is still true when feedback control is considered, but it is not our focus

in this thesis.
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Figure 5.54: Time series simulation: mismatched model approximation, estimation
and prediction using Kalman filtering, when focus is the only unknown parameter.
Actual model: ARIMA(3,1,2), a = [0,0.12,0.016], b = [0,0.01]. Approximate
model: ARIMA(1,1,1).
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Figure 5.55: Time series simulation: mismatched model approximation, estimation
and prediction of focus using Kalman filtering, when focus and exposure are the
only unknown parameters. Actual model: ARIMA(3,1,2), a = [0,0.12,0.016],
6= [0,0.01]. Approximate model: ARIMA(1,1,1).
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and prediction of exposure using Kalman filtering, when focus and exposure are
the only unknown parcimeters. Actual model: ARJMA(3,1,2), o = [0,0.07,0.006],
5 = [0.1,0.02]. Approximate model: ARIMA(1,1,1).
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Cases Actual

Model

Estimated

Model

Root Mean Square Error (tim)
Measure

ment

KF

Estimation

KF

Prediction

1. Time Series

Model is

known

ARIMA

(1.1.1)
a = 0.8

6 = 0.5

NA 0.0021 0.0019 0.0028

2. Time Series

Model

parameters

are unknown

ARIMA

(1.1.1)
a = 0.8

6 = 0.5

ARIMA

(ia,i)
0.0023 0.0039 0.0044

3. Time Series

Model is

unknown

ARIMA

(3,1,2)
a =

[0,0.12,-0.016]
6 =[0,0.01]

ARIMA

(ia,i) 0.0018 0.0062 0.0068

Table 5.12: Time series simulation summary for focus when focus and exposure
are the unknown parameters.

Cases Actual

Model

Estimated

Model

Root Mean Square Error {mJ/cm^)
Measure

ment

KF

Estimation

KF

Prediction

1. Time Series

Model is

known

ARIMA

(1.1.1)
a = 0.6

6 = 0.3

NA 0.0010 0.0011 0.0025

2. Time Series

Model

parameters

are unknown

ARIMA

(1.1.1)
a = 0.6

6 = 0.3

ARIMA

(1,1,1)
0.0012 0.0024 0.0034

3. Time Series

Model is

unknown

ARIMA

(3,1,2)
a =

[0,0.07,0.006]
6= [0.1,0.02]

ARIMA

(1,1,1)
0.0009 0.0031 0.0038

Table 5.13: Time series simulation summary for exposure when focus and exposure
are the unknown parameters.
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5.6 Summary

Using a photolithography process as an example, this chapter shows two em

pirical approaches for process input parameter estimation. The first approach is

to develop either a universal explicit inverse model or a set of inverse models, each

for a segment of the input parameter space. Multi-layer Perceptron Neural Net

works are adopted for all inverse models. An accurate universal inverse model is

often difficult to obtain due to the high complexity of the problem. Using separate

models in different segments shows potential improvement, and the performance of

this approach largely depends on whether the parameter space can be segmented

so that in each segment, parameters are effectively decoupled. The method de

scribed in this chapter considers focus as the only dimension for segmentation.

More complex segmentation may be required to obtain better estimation results.

The second approach is to generate large samples of input-output pairs and

perform input-output matching based on accurate forward models using neural

networks. This library-searching approach can be applied to any parameter sets.

In general, this approach performs better than the explicit inverse approach on

problems of high complexity. Results of this approach can also be used to delineate

what parameters must be measured in order to obtain accurate estimations ofsome

other parameters.

Finally, we also demonstrate how to improve parameter estimation by consid

ering parameter drifts as time series. Integrated autoregressive moving average

models are simulated for focus and exposure. We use Kalman filter techniques to

perform estimation and prediction when parameter estimates obtained firom the
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library searching approach are taken as the time-series measurements. We also dis

cuss time series model parameter estimation and the potential problem of model

structure mismatching.
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Chapter 6

Conclusions and Future Work

6.1 Summary and Conclusions

Semiconductor manufacturing is stepping into the new era of extremely fine

features and the control of variations has become more critical than it was ever

before. Due to the highly complex nature of most semiconductor manufacturing

equipment and processes, variations czm come from a large variety of sources and

the diagnostics of the variations are often very difficult. In this thesis, we have

developed advanced statisticed techniques to perform efficient and accurate diag

nostics for semiconductor manufacturing, demonstrated on two important systems

with different characteristics.

For a furnace system, we developed an approximate physical model. System

parameters were estimated by a least-squares approach using experimental data.

A model classification approach was investigated for estimating faulty parameters

and a sensor fusion technique was discussed for enhancing diagnostic reliability.

For a lithography process, a more sophisticated diagnostic framework was pro-
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posed. Instead of using experimentsd data, we suggested to use simulation data

(obtained from a fine-tuned software simulator) for process modeling. Different pa

rameter estimation methods were investigated, including the explicit inverse model

approach and the library searching approach based on forward modeling. Their

performances were compared empirically on the simulation results. The library

searching approach performed very well in general and showed many advantages

over the explicit inverse model approach. In particular, the results of the library

searching approach could give us useful recommendations on what parameters to

measure, what to estimate, and the required precision. The results of the explicit

inverse model approach were less ideal in this work, maiinly due to the lack of an

effective method for space segmentation. Time series models were considered for

modeling parameter drifts. We showed that accurate estimation and prediction

could be obtained with Kalmem filtering using an ARIMA model, in conjunction

with the library searching approach for generating measurements. We also stud

ied the estimation of the ARIMA model parameters and discussed the problem of

model mismatch.

6.2 Future Work

For the furnace system, an interesting future research direction is to refine

the model. We used a linear dynamic model in our analysis, but observed some

non-linearity in the experiments. For example, we observed a slight variation of

the thermal insulation parameters as a function of the temperature. If the non-

linearity is taken into account in system modeling, the diagnostics may become

more accurate. In addition, some fault detection methods for nonlinear dynamic
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systems [36, 106] can be considered.

In testing the diagnostics methodologies on lithography processes, one weakness

of the current work is that only simulated data but not true experimental data

were used. If access to real lithography processes were available, it is desired to

verify the effectiveness of the proposed approach on true experimental data, with

the following procedure:

1. Design and run experiments, and collect data;

2. Divide the data into a training set and a test set;

3. Ibne PROLITH using only the training set data;

4. Run simulation in PROLITH to collect data for process modeling;

5. Train neural network models for forward modeling using simulated data;

6. Run Monte Carlo simulation using trained models to set up a data library;

7. Perform diagnostics (i.e., estimate input parameters) on the test set data;

8. Compare estimates with actual experimental input parameter values for the

test set data.

Research can also be expanded in a number of other directions for the lithog

raphy processes. For the explicit inverse model approach, we described finding

local inverse models by performing space segmentation with an ad-hoc method.

However, we recognize that more systematic methods for space segmentation need

to be developed. For the library searching approach, the size of the library may

become very large as the number of parameters grows, and, thus, an efficient and
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accurate search algorithm needs to be developed. When parameter drifts are con

sidered as time series, control can be performed using existing stochastic control

algorithms [70]. Finally, besides neural networks, other modeling methods, such

as those described in Chapter 2, cam be applied.

In general, the diagnostic approaches developed in this thesis can be applied

to other processes. For example, the model estimation and fault classification

methodologies for the furnace problem can be applied to any system that has

a relative simple mathematical model based on known physics. The techniques

that we have developed for lithography processes can also be applied to other

processes, such as plasma etching and the CMP processes. For plasma etching,

no mathematical model based on physics has been fully developed, so we are

not able to collect data through a simulator. Fortunately, experimental data of

plasma etching is much easier to obtain than that of lithography processes so that

a simulator may not even be necessary. However, since plasma etching processes

are even more complex, techniques of dimension reduction might be needed to

simplify diagnostics.
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Appendix A

List of Symbols

Symbol Description Units

(♦)^ matrix transpose

(•)fc or '{k) value at time step k

diag{') diagonal matrix with diagonal elements contained in vec
tor •

normal distribution

V* the d^h order difference operator

a fault parameters for furnace power elements percentage

0 fault parameters for furnace temperature measurements

e general system error

s noise for the least square fault detection model of the

furnace system

0 biases of the inverse of the thermal resistance parameters %power/°C
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variance of e in Chapter 4

o\ variance ofe in Chapter 4

o\ variance of e{t) in Chapter 5

aj, variance of w{t) in Chapter5

^ij LS estimation of the parameter base on the data
set

^ fused estimation ofthe parameter

^ fault parameter matrix for the least square fault detection
model of the furnace system

4 fault parameters estimation by least square approach for
the furnace system

a model parameter

a(t) estimation of a at time step t

ci ttp time series model parameters for autoregressive terms

i4, B state space matrices of the furnace system model

A, Gy C state space matrices of the ARIMA(1,1,1) model

errors in state space matrix caused by 0

Aff state space matrice of fault-free furnace system model

ARIMA{p,d, g) integrated autoregressive moving average time series
model with order autoregressive terms, order in
tegration terms and order moving average terms

b model parameter



m

bi bq

coh

cove

Ci C5

CD0.1

CDo.5

CDo.9

CD^»

Cost

D

DuDi

e{k)

exp

E

foe
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estimation of b at time step t

time series model parameters for moving average terms

Partial Coherence

variance-covariance matrix of e

thermal capacity for each zone of the furnace system minute/^C

10% level Critical Dimension measurement nm

50% level Critical Dimension measurement nm

90% level Critical Dimension measurement nm

10% level Critical Dimension measurement stored in data nm

library

50% level Critical Dimension measurement stored in data nm

library

90% level Critical Dimension measurement stored in data nm

library

Cost function for library searching approach of lithogra
phy process

system observations (data) in general

dimension 1 and 2 for a two-dimensional space

Gaussian white noise

Exposure Dose mJ/crn^

error function for neural networks

Focus Position fim



h3

In

k

K

M

M

Mak

M

P(-)

P{- I •)

Po

P{t 11)

P(t+l|t)

P

Pi 'N' P5

dummy index numbers

n X n identity matrix

discrete time step

total number of data sets

total number of parameter to be estimated

system model in general

predictor variable data matrix for the least square fault
detection model of the furnace system

predictor variable data associated with a for the least
square fault detection model of the furnace system at

time k

predictor variable data associated with /3 for the least
square fault detection model of the furnace system at
time k

predictor variable data associated with 6 for the least
square fault detection model of the furnace system at
time k

probability density function

conditional probability density function

initial state covariance matrix for Kalman filtering

Kalman filter state estimation covariance matrix

Kalman filter state prediction covariance matrix

power vector of the furnace system

power for each zone of the fiimace system
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%power

%power
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R

Ri Rs

Ri2 R45

SWA

SWA^^

t

tpEB

T

Ti 'N' Tg

Ta

TpEB

v(t)

V(#)

lOl ^ W4

w(t)

w.ij
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covariance matrix of v{t)

factor matrix of cove by Cholesky factorization

thermal resistance for each zone of the furnace system °C/%power

thermal resistance between adjacent zones of the furnace ^C/%power
system

side wall angle measurement of Critical Dimension profile degree

side wall angle measurements of Critical Dimension pro- degree
file stored in data library

continuous time/discrete time step

Post-Exposure Bake time

temperature vector of the furnace system

temperature for each zone of the furnace system

2uiibient temperature

Post-Exposure Bake temperature

process noise in the state space form of the ARIMA(1,1,1)
model

variance-covariance matrix estimation of estimated fault

parsuneters by least square approach for the furnace sys
tem

weights of CDs and SWA for cost function calculation

measurement noise in the state space form of the

ARIMA(1,1,1) model

fusion weight for ^ij

sec

''C
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W link weights for neural networks

xo initial states for Kalman filtering

x(t) states in the state space form ofthe ARIMA(1,1,1) model

x(t 11) Kalman filter state estimation

11) Kalman filter state prediction

X system input in general

y{t) ARMA sequence

y(t) average value of y{i) for z= 1, •••, t

Y system output in general

Y response variable data matrix for the least square fault
detection model of the furnace system

z{t) ARIMA sequence
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