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Abstract

Responsible Frameworks for Heterogeneous Modeling and Design of Embedded

Systems
by
Jie Liu
Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California at Berkeley

Professor Edward A. Lee, Chair

This dissertation studies modeling and design frameworks for heterogeneous em-
bedded systems. Heterogeneity, in the sense that components in a system have diverse
interaction styles, complicates embedded system design and challenges understandability,
composability, and scalability of models. Hierarchical heterogeneous modeling approaches
tame the design complexity by hierarchically composing semantically different modeling
frameworks. Frameworks are software architectures that define component ontology and
interaction styles. Formal frameworks for embedded software make programming models
and software architectures reusable.

Embedded systems that engage the real world need to be reactive. This disserta-
tion focuses on studying reactivity and its composition in different frameworks. It introduces

the reactor model as an abstract operational semantics to capture interactions among com-



ponents and frameworks. Within a framework, a component execution is a precise reaction
if all the prerequisites for the reaction are satisfied before it is being triggered. A framework
that only triggers precise reactions is a responsible framework. Precise reactions and re-
sponsible frameworks allow us to capture compositionality of reactions, answering questions
such as how a composition of a framework and components can be treated as an atomic
component at a higher level. This compositionality is key for hierarchically composing
heterogeneous models.

Precise reactions and responsible frameworks are discussed for timed models. Hav-
ing a notion of time helps designers define timely reactions. But it also brings challenges to
timed frameworks to precisely determine the triggering time. In terms of modeling mixed-
signal and hybrid systems, the challenge is how to precisely control the progression of
modeling time. We present techniques for a responsible continuous-time framework to have
compositional precise reactivity. These techniques involve optimistic look-ahead execution
and possible rollback.

We further study precise reaction and responsible frameworks for priority-based
run-time embedded software. A timed multitasking (TM) model of computation is proposed
for programming reactive real-time embedded software. This model brings time determinism
to the programming model level. We sketch a responsible run-time system that preserves

the timing semantics of TM models.

Professor Edward A. Lee
Dissertation Committee Chair
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Chapter 1

Introduction

The main objective of this dissertation is to describe techniques that will help
modeling and design of real-time distributed embedded systems that engage the real world.
Embedded systems are computer systems that are embedded in other devices, which makes
them not first and foremost computers. A large class of these systems interact directly with
the real world and with other embedded systems. Examples are automatic control systems
(as in automobiles, airplanes, and industrial plants), test and measurement instruments, op-
tical network switches, office equipment, smart home appliances, intelligent toys, and so on.
These systems need to take physical inputs, react in real-time, and produce outputs at the
right time. The reactive nature and time criticality make computing in embedded systems
significantly different from computing in traditional data-processing and transaction-based
computer systems, which typically interact with humans and emphasize total throughput
and average performance.

Embedded systems are usually highly customized, since the systems are intended



only to perform a limited set of tasks, rather than target all possible applications. Thus,
when designing such systems, designers must consider constraints on the physical envi-
ronment, I/O devices, power consumption, code size, etc., which are typically not well
characterized by mainstream computer sciences. As a consequence, the majority of current
embedded systems are designed in a hand-crafted manner, which makes designing embed-
ded systems more like an art than an engineering discipline. Typically, designers pick a
hardware platform/architecture by guessing whether it will be sufficient for the system,
choose or not choose an operating system based on intuitions of the complexity of soft-
ware tasks, develop code using assembly or some customized high-level language (like C)
in order to have a better estimation of timing, and tweak the scheduling algorithms (like
the priorities of the tasks), until the system seems to work. Such a design methodology is
very time-consuming, fragile, and unscalable. A slight change of hardware platform, a small
addition of functionality, a minor miss-estimation of the working conditions, or even a bug
fixing, may break the whole system, and force a complete redesign from the beginning.

As embedded systems become ubiquitous with increasingly complicated function-
ality and networked communications, no single designer can manage a complete design cycle
with the time-to-market pressure. The whole system needs to be decomposed into small
pieces, and many designers have to work together. However, how to decompose a system
and how to compose the components to achieve desired functional and timing properties are
big challenges for system designers. Usually, due to the lack of system-level understanding
between domain experts and software engineers, the system integration cost at the end of

a project become very high.



Embedded systems usually consist of heterogeneous components. Typically, there
may be hydraulic and/or mechanical parts, analog circuits for sensors and actuators, com-
munication circuits, application specific digital circuits, micro-processors and/or micro-
controllers, memories, and embedded software. These components interact with very dif-
ferent styles, which leads the designers of these components to have very different ways of
thinking. In a sense, a key challenge of system-level design of embedded systems is how to
integrate all these ways of thinking.

My thesis works on modeling and design issues of embedded systems, particularly,
those systems that engage the physical world, have multiple modes of operation, involve
networked interactions, and react in real-time. The long term objective of this work is two

folds:

e to enrich computer sciences with heterogeneous modeling techniques, their interacting

semantics, and programming models, and

e to make state-of-the-art computer science theories and software engineering techniques
accessible to embedded system designers by providing computer-aided modeling and
design frameworks that allows domain experts to easily prototype ideas, reuse pre-
vious designs, and generate hardware and software implementations from high-level

specifications.

In this thesis, the approach to managing heterogeneous models is a component-
based one. A system is an aggregation of interacting components, and each component may
be decomposed further into smaller components with possibly different interaction styles.

The thesis studies reactivity properties in component-based frameworks. An abstract se-



mantics model, called the reactor model, is introduced to cover a wide variety of models
of computation. New concepts - precise reaction and responsible frameworks - are intro-
duced to systematically define reactivity and its composition. The concepts are applied
in both timed and untimed models. After studying precise reactions in real-time systems,
I propose a new programming model for priority-driven multitasking embedded software.
This programming model makes time explicit and resource management transparent to

Programiners.

1.1 Heterogeneity in Embedded System Modeling

The word “heterogeneity” referred to in this thesis is at the modeling level, rather
than at the implementation level. For example, although the interaction among mechanical
components and that among analog circuits are very different physically, as long as they
both can be modeled as ordinary differential equations, there is no heterogeneity. Thus, the
heterogeneity at the modeling level is in the sense of component interaction styles, logically
or mathematically.

Take an engine control system as an example, shown in Figure 1.1. A cylinder of
an internal combustion engine has four working phases: intake (I), compress (C), explode
(E), and exhaust (H). The engine generates torque that drives the power train and the car
body. Depending on the car body dynamics, the fuel and air supply, and the spark signal
timing, the engine works at different speeds, and thus makes phase transitions at various
time instances. The job of the engine controller is to control the fuel and air supplies as

well as the spark signal timing, corresponding to the drivers demand and available sensor



information from the engine and the car body.

Figure 1.1: An engine control system

When designing the engine controller, one wants to quickly validate the control
algorithms before considering the implementation details. So, one may start with modeling
and simulating the entire system, including the engine and car dynamics, at a high level
of abstraction. The engine and the car body are mechanical systems, which are naturally
modeled using differential equations. The four phases of the engine can be modeled as a
finite state machine, with a more detailed continuous dynamics for the engine in each of the
phases. While all the mechanical parts interact in a continuous-time style, the embedded
controller, which may be implemented by some hardware and software, works discretely.
In particular, sensor information and driver’s demands may arrive through some kind of
network. The controller receives this information, computes the control law, controls the
air and fuel valves, and produces spark signals, discretely. So, we want to use a model
that is suitable for handling discrete events for the network and the controller. Within the
discrete controller, the control algorithms may be implemented as software, and there may

be multiple software tasks sharing the same CPU and other resources. And, the real-time



scheduling policy may greatly affect the closed-loop performance.

In this not so complicated example, we have seen both continuous-time models and
several quite different discrete models - finite state machines, discrete events, and real-time
scheduling. All these models have distinct characteristics in terms of what the components
are and how those components interact. At an abstract level, we view components as
mathematical objects rather than physical devices, and call these characteristics models of
computation (MoC).

There are many useful models of computation for designing embedded systems.
Table 1 is extended from [43], in which Lee has an insightful discussion of several of them.
I will define some of them more precisely in later chapters.

Notice that many of the models in the table have various abstraction of time. Some
are continuous, like CT, DE, and PDM; some are discrete, like DT and SR; some abstract
time away, as in Kahn’s process networks and communicating sequential processes. The
different notions of time make programming for embedded systems significantly different
from programming in desktop, enterprise, and Internet applications.

A natural question to ask, after realizing the diversity of models of computation
and heterogeneity of system modeling, is how to use these models coherently in system
designs. Our approach is a component-based one. In particular, we use hierarchies to

integrate different models and keep models clean at each level.



Table 1.1: Briefs on Models of Computation

MoC

Brief

Possible Applications

Asynchronous
Message Passing
(e.g. Kahn’s Pro-
cess Networks)

Processes interact by
channels (e.g. FIFO
queues) that can buffer
messages.

May be used for loosely coupled dis-
tributed agents, data-centric algorithms,
like signal processing, system identifica-
tion, and streaming data application, etc.

Continuous-Time
(CT)

Functional and storage
components communi-
cate with continuous
waveforms.

Physical environment, analog circuits, and
continuous control laws, etc.

Components communi-
cate via signals that
carry events placed in
time, which is continu-
ous and globally known.

Digital circuits, communication network,
queuing systems, and embedded software
at the I/O level, etc.

Discrete Events
(DE)
Discrete Time
(DT)

Global notion of time,
periodical discretized.
Every signal has a value
at every clock tick.

Periodically sampled data systems and
cycle-accurate modeling.

Finite State Ma-
chines (FSM)

States and transitions
among them. Transi-
tions are triggered by
events.

Operational modes and control sequences.

Priority-Driven

Software tasks sharing

Embedded software modeled at the oper-

Multitasking resources. Tasks may | ating system level.

(PDM) be preempted.

Synchronous Processes rendezvous, | Concurrent processes accessing critical
Message Passing | communicating in | sections, resource management, etc.

(e.g. Communi- | atomic instantaneous

cating Sequential | actions.

Processes)

Synchronous/ Re- | Global clock triggers | High-level modeling for reactive real-time

active (S/R)

computations that are
conceptually simultane-
ous and instantaneous.
Signals may have well-
defined empty value.

hardware and software.




1.2 Component-Based Design in Embedded Software

The principle of component-based design is essential to engineering and has ex-
isted long before the invention of computers. It advocates designing components to fit a
wide range of applications, and building applications by assembling standard components
together with a small number of application-specific components. We have seen this in
mechanical engineering over centuries, where a wide variety of standard components has
been defined internationally. We have also seen these in electronics, especially in the per-
sonal computer (PC) industry, where many components such as processors, memories, disk
drives, and extension boards are standardized and highly interchangeable.

Components encapsulate expertise and induce certain formal properties. Component-
based design achieves the system qualities by inheriting the expertise, shortens the design
cycles by reusing building blocks, and reduces system cost by mass production. Modu-
larization and software reuse are always the main themes of software engineering. How-
ever, unlike mechanical systems and electronics hardware, which primarily have only one
interaction style among components (force/acceleration for mechanical components, and
current/voltages for electronics), software components can interact in much more abstract
forms and diverse styles. Thus, it is net immediately obvious how to define a software com-
ponent or to capture their interactions. Over the years, there have been many attempts to
define reusable components in software engineering. Examples include subroutines, objects,

software services, and frameworks.



1.2.1 Subroutines

Subroutines are probably the most common type of reusable software component.
A subroutine is a finite computation that processes (a predefined type of) input data and
produces final results. A big problem with subroutines is the weak management of internal
states and the lack of encapsulation. There could easily be unspecified requirements and/or

side effects.

1.2.2 Objects

Object orientation improves on subroutines by introducing well-defined boundaries
and encapsulation of states and behaviors. In [9], the Object Management Group (OMG)
defines an object in object-oriented design as:

An entity with a well-defined boundary and identily that encapsulates state and
behavior. State is represented by attributes and relationships; behavior is represented by
operations, methods, and state machines.

Object orientation matches well with system decomposition in many problem do-
mains, and raises the abstraction of programming by advocating object encapsulation and
class hierarchies. However, the basic object model only offers one mechanism of component
interactions — method calls. A method call immediately transfers the flow of control from
one object to another. It is up to the programiners to manage concurrency and persistence.
This issue becomes more cumbersome for multi-threading programs and distributed ob-
ject models, like Common Object Request Broker Architecture (CORBA) and Distributed

Component Object Model (DCOM). In these models, the only primitives — synchronous
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and asynchronous method calls — make it very hard to reason about flows of control, order

of events, and deadlock in distributed object-oriented systems.

1.2.3 Services

Software services are abstractions of one or more objects or procedures that to-
gether perform some functions. The main goal of building software services is reuse. Services
have a well-defined interface, and are composable with other services to build higher-level
systems. This seemingly small step from object orientation introduces a paradigm shift in

reusing software components, in the following senses:

o Software services usually impose programming models. For example, the CORBA
event service [57), Ninja [23], and JavaSpaces {19] all impose an event-driven pro-

gramming model. Thus, interaction among components becomes a first-level concern.
o Software services are usually distributed, and concurrency issues become explicit.

e Software services are active processes rather than passive subroutines or methods.
Services typically never terminate. They wait for requests, perform their computation,

and produce replies.

However, service-based programming leaves the integration of services completely
to programmers, and it is weak at managing resources when the service is used by many
clients. As a consequence, it is hard to analyze real-time performance of service-based

systems.
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1.2.4 Framework

In system design communities, the term “framework” generally refers to software
architectures that integrate components. Ralph Johnson defines frameworks in the object-
oriented programming context [37] as:

a reusable design ezpressed as a set of abstract classes and the way their instances
collaborate.

We use this term in a broader sense, which does not necessarily tie to object ori-
entation and “classes.” In this thesis, a framework is a software architecture that imposes
a set of constraints on the interactions of components, provides a set of services that com-
ponents may use, and may induce a set of benefits (e.g. formal properties) for the system.
A model of computation can be implemented as a framework, so are many ad hoc software
architectures. A “good” framework makes software architectures and programming models
reusable (as opposite to simply making code reusable). By solving meta-level problems, like
communication styles, scheduling, flow of control, and resource management, good frame-
works allow designers to focus on the development of individual components, which are
typically small and easy to manage.

Many software frameworks have been developed over years. Agha’s actor model
[1] is a framework. It defines distributed components (called actors) and their communi-
cation styles - unstructured event passing. Pree’s framelet [59] model is a framework. It
defines components as objects with call-back functions, and the framework provides real-
time scheduling services. Stewart’s port-based object (PBO) model [69] is anther example

of frameworks. It defines components as port-based objects interacting through buffers
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of length one, and schedules the execution of the components. The open control plat-
form (OCP) [80] is a framework that provides a component model, and extends real-time
scheduling techniques to a distributed system using a real-time CORBA [64] and its event
service [58]. There are also many commercial frameworks. Sometimes, designers use frame-
works without even realizing that. For example, Simulink [29] is 2 modeling and simulation
environment for continuous-time dynamic systems with discrete events. Like many other
timed frameworks, Simulink has a specific way of controlling the execution of components

(i.e. blocks) and a specific way of modeling time.

1.3 Hierarchical Heterogeneity

In many component-based design frameworks, hierarchy refers to the containment
relation, where as in object-orientation, hierarchy refers to the inheritance relation. In
a containment relation, an aggregation of components can be treated as a (composite)
component at a higher level. In general, hierarchies help manage the complexity of a model
by information hiding — to make the aggregation details invisible from the outside and
thus a model can be more modularized and understandable.

A framework, together with components contained by it, can be a component of a
bigger framework. If these frameworks represent heterogeneous models of computation, the
approach is called hierarchical heterogeneity. An example of modeling the engine control
system in the hierarchical heterogeneous approach is shown in Figure 1.2. The top-level is a
discrete event (DE) model, where a discrete controller interacts with a discrete abstraction

of the car model. Inside the controller, a priority-driven multitasking model is used to model
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multiple software tasks. The discrete car model is internally implemented by a continuous
dynamics of the engine model and the car body model. The engine is further modeled as
a finite state machine (FSM), and within each state, there is a continuous-time subsystem
modeling the engine working in that phase. In this hierarchical heterogeneous approach, the
model of computation within each layer is well-defined. The interface among layers can be
taken care of by the frameworks designers, instead of by component designers. If we can solve
the framework integration problem, component designers can work within their familiar
frameworks, and designs become highly manageable and understandable. So, the challenge

remains to study and implement frameworks that support hierarchical heterogeneity.

Figure 1.2: A hierarchical model for the engine control system

1.4 Thesis Outline

The remainder of this dissertation starts in Chapter 2 with an introduction of the

reactor model, which is an abstract operational semantics model that targets the study of
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reactivity and its compositionality. A distinctive feature of this model is the separation
of components and frameworks. Components exist in a framework, communicate with one
another through the framework, and react to the triggers sent by the framework. Such
a component is called a reactor. Within the reactor model, we develop the concepts of
reactions, precise reactions, responsible triggers, and responsible frameworks to formally
study reactivity across models of computation. A core concept — precise reaction - states
that the reaction solely depends on the triggers sent by the framework. A responsible
framework can guarantee that all executions within it are precise reactions. We compare
some models of computation for responsibleness, and argue that some are responsible, while
some are not.

The precise reaction problem may seem trivial for atomic reactors, which are re-
actors with a single thread of control and finite firings. However, since a reactor can be
implemented by a framework containing multiple other actors, and the framework may ex-
ecute these components concurrently, it is not trivial to make a concurrent reaction precise.
Chapter 3 studies the compositionality of reactions. A composite reactor implemented by
a responsible framework can easily achieve compositional precise reactions. This allows
hierarchical composition of models of computation to have a well-defined semantics. It also
becomes possible to precisely integrate concurrent models, like datafiow models, discrete-
event models, and continuous-time models, with sequential models like state machines.

The notion of time is very important for embedded systems interacting with the
real world. Chapter 4 focuses on a particular class of frameworks which have a continuous

notion of time. It shows how having a notion of time helps in defining precise reaction
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points. It presents techniques to implement responsible continuous-time frameworks and
to make a continuous-time framework precisely reactive. This study provides a semantic
insight to model and simulate two particularly useful models that integrate both continuous
and discrete dynamics — the mixed-signal model and the hybrid system model.

Chapter 5 studies the precise reaction and responsible frameworks issue in priority-
based multitasking real-time programs. It shows that having the notion of precise reaction
can avoid the priority inversion problem. With the precise reaction property, the response
time of a component is much easier to analyze and control. I also present a real-time
programming model, called timed multitasking (TM), which integrates the concept of precise
reaction with priority-based scheduling and preemptive execution. A real-time responsible
framework can help embedded software to achieve precise mode switches and both time-

and value-determinism.

1.4.1 Contribution

In summary, this dissertation makes the following primary contributions:

e introducing the reactor model and characterizing precise reaction and responsible

frameworks;

e analyzing the advantages of responsible frameworks in the context of compositional

reactivity and hierarchical heterogeneous design;

e studying the timed precise reaction problem and the integration of timed models and

presenting the implementation of timed responsible frameworks;
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e proposing a real-time programming model that allows run-time resource management

and prioritized precise reactions.



17

Chapter 2

Reactors and Frameworks

In this chapter, we present the basic structure of our component model — actors,
frameworks, and the interaction among them. This architecture, called the reactor model,
clearly distinguishes the activities among actors and frameworks in terms of computations,
communication, and control.

The reactor model is an abstract operational semantics model for component-based
computation. A fundamental distinction of this model is the concept of frameworks. Ac-
tors reside in frameworks and interact with other actors through frameworks. Frameworks
control the execution of actors by sending them triggers. An actor defines a set of partially
ordered computation and communication. A framework gives the semantics of communi-
cations and defines a set of partial order relations on communication and controls. When
triggered by a framework, the execution of an actor is constrained by the conjunction of
the two sets of partial ordering relations.

An actor is reactive, thus called a reactor, if the triggered execution is finite.
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Therefore, a reaction always finishes in a finite amount of time. However, this does not
necessarily mean that a response has been fully completed. For example, a reaction may
not be completed because of lack of enough inputs. Intuitively, a reaction is precise, if
it completes the desired computation and reaches a guiescent state. If a framework only
triggers an actor when the actor can perform a precise reaction, then the framework is said

to be responsible. A framework may need actors’ cooperation to be responsible.

2.1 Model Structure

In this section, we introduce the basic entities of the reactor model - actors,

connections, and frameworks.

2.1.1 Actors, Connections, and Frameworks

An actor A, as depicted in Figure 2.1, has a set of variables, denoted by X. We
write A.X if distinguishing of actors is needed. Variables contain values, which encapsulate
arbitrary data. We denote the set of values by V. Among the variables, some are called
interface variables, or ports, and partitioned into a set of input ports, P, and a set of output
ports, Q. Other variables are internal variables, S. That is, PNQ =0, PNS=0,QNS =0,
and PUQUS = X.

An evaluation of a variable is a function that gives the value contained by a
variable, i.e. ox : X = V. By definition, L € V, where L is the empty value. A variable
evaluating to L means that there is no meaningful value in that variable. We write [X — V]

for the set of all functions mapping X to V. Thus, ox € [X — V], which is also called the
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Figure 2.1: A framework that contains one actor.

state of an actor.
Let’s look at an example. AddMultiply is an actor that computes the sum and
product of two numbers. The actor has two input ports and two output ports, as shown in

Figure 2.2.

i
i

> sum

|
> product
j

T

a >
|
}

»

AddMultiply

Figure 2.2: An AddMultiply actor that reads two inputs and produces their sum and
product.

It has variables a and b as inputs, variables sum and product as outputs, and no

internal variables. le.

AddMultiply.P
AddMultiply.Q

AddMultiply.S

{a,b}
{sum, product}

0
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An actor is controlled by a framework. We write A € M, if the actor 4 is controlled
by the framework M. A framework can control many actors. We define M.Actors to be
the set of all actors controlled by M, i.e. M.Actors = {A]A € M}.

A framework has a set of variables, called framework variables, denoted by M.Z.
We similarly define the evaluation of framework variables 6z : Z — V and the set of all
possible evaluations [Z — V].

Actors in the same framework can be composed by connecting their ports. For
example, Figure 2.3 shows the output of an actor A connecting to the input of an actor B,
within a framework M. A connection is called a channel. A channel c is simply a pair of
ports. We write ¢ = (¢ ~» p) € A.Q x B.P for a channel that connect output port ¢ of actor

A to port p of actor B. A channel defines a set of communication variables, Z. CM.2Z.

(, '\\
i
I

q channel: ¢ P

i actor: A > > actor: B
t
|

framework: M

Figure 2.3: Composing two actors.

The aggregation of a framework, M, the actors under its control, M.Actors,
and the connections among these actors M.Connections, is called a composite, © =

(M, M.Actors, M.Connections).
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2.1.2 Operations

Over the framework variables, actor variables, and their evaluations, we define a
set of operations, Oper. Within the set Oper, some operations are performed by the actors
and some are performed by the framework. And, operations may be ordered.

Some operations capture the dataflow aspect of the computing. These operations
deal with how to compute new data and send data around. These operations typically
change the evaluation of some variables. Other operations do not directly change the value
in any variables, but they affect the order among other operations. This is the control
flow aspect of the computing, which deals with when (instead of how) computation and
communication happen. In the reactor model, control flow only takes place between actors

and frameworks, through sets of control-flow operations.

Dataflow Operations

Among the operations performed by an actor A, some serve for computing new
data from old data. These are called computational operations, A.Comp. Each element of

A.Comp is a partial function f : [X = V] = [X — V] satisfying:
f(@)p) = o[p), Vo € [X = V], (2.1)

where o|p) is the projection of function o on P C X. That is, the operations in Comp can
only change the values in internal variables and output ports, and must leave the values in
input variables unchanged. We write (y1,y2) = f(z1,%2,23) for a computation that uses
the values of variables z;, 2, and z3, and changes the values of variables y, and yo.

For example, for the AddMultiply actor, there may be two computational opera-
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tions: sum = add(a,b) and product = multiply(a,b).

Ports of an actor are the communication interface to other actors through its
framework. The value in an input port can only be changegl by the framework, while
the value in an output port can only be changed by the actor. Thus, we define a set of

communication operations for actor A with its framework M, called A.Comm, including:

e A set of read operations, denoted by A.Read. We write readp € A.-Read for an
operation that reads from input port p. And, read.p:[Z — V] = [{p} = V] x
[Z = V), which changes the value in an input port p € P based on the state of the
framework, and may change the state of the framework. Strictly speaking, a read
operation on p can only access and change values in the framework variables that are
connected to p, i.e. let Z; C M.Z be set of framework variables for channels that do

not connect to p, then read_p should satisfy,

read.p(0)(z; = 9(z;, Vo € [Z — V). (2.2)

e A set of write operations, denoted by A.-Write. We write write.q € A.-Write for an
operation that writes through output port g. The write operation cannot change the
values in g, nor any framework variables for channels that do not connect to g. So,

writeq: [{g} = V] x [Z = V] = [Z = V] satisfies:
write.q(o)(z,) = o(z,),Vo € (Z = V] (2.3)
The exact behaviors of read and write operations are determined by the framework.

e The set of communication operations, A.Comm = A.Read U A.Write.



23

For the AddMultiply actor, there may be four communication operations: read a,

read b, write_sum, and write_product.

Control-flow Operations

A framework M controls the activities of actors by a set of control operations,
M.Ctrl = ALcJM A.Ctrl, where A.Ctrl are the control operations for actor A € M. A key
for the reactor model is that the activities of actors are always triggered by frameworks.
For any interesting framework M containing an actor A, there is at least one element
A.trigger € A.Ctrl. Thus, the set M.Ctrl is never empty. The contents of M .Ctrl may
be enriched to enhance the capability of a framework. When to issue a control operation
to an actor is a key issue for a framework. We will discuss more about triggers in section
2.2.3, and about other control operations when we introduce them.

A framework also provides a set of callback operations, M.Clbk = A[CJM A.Clbk,
which the actors in it may use to affect the activities of the framework . The set A.Clbk
has at least one element A.finish_trigger, that actor A can use to indicate that it has no
more operations to perform for a trigger, trigger.

As shown in Figure 2.4, the operations that an actor A can perform are exactly

the computation, communication, and callback operations, i.e.
A.Oper = A.Comp U A.Comm U A.Clbk

And the operation that a framework M can perform are M.Oper = M.Ctrl. Recall that

these are all the operations that can be performed inside a composite, so

Oper = M.Ctrlu { U A.Oper} .
AEM
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Figure 2.4: Sets of operations between actors and frameworks.

2.1.3 Ordering among Operations

We use an ordering relation <C Oper x Oper to model the causality among
operations. For f,g € Oper, we say f preceeds g, denoted by f < g, if the operation f
must be performed before the operation g. With this relation, the set Oper is a partially
ordered set.

Partially Ordered Sets

Definition 2.1. For a (ground) set T, a relation <C I' xT" is called a strict partial order

relation if it satisfies (for any f,g,h €T):
o Irreflezive: f A f;
o Anti-symmelric: if f <g, theng & f;

o Transitive: if f < g,9 < h, then f <h.
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We also write g > f for f < g. A set with a partial order relation, (T', <), is called
a partially ordered set (or, poset for short). This relation is so called, because in a poset,
there may exist elements f and g, such that neither f < g nor g < f. These elements are
incomparable, denoted by fl|g. If all elements in the ground set are comparable, then the
set is called a totally ordered set, or a chain. In a poset I, we say g covers f, denoted by
fag, if f < g and there is no such element k € T, s.t. f <h <g. The partial order relation
is the transitive closure of the covering relations.

Posets can be visually represented by Hasse diagrams. In a Hasse diagram, as
depicted in Figure 2.5, nodes represent elements in a set, and arrows represent ordering
relations. An arrow is drawn from node f to node g if f < g in the set. For example, in

Figure 2.5, a < ¢, b < e, but c||d.

2@ @b

c “ % ,

B
€5

Figure 2.5: A Hasse diagram for a partially ordered set.

Synchronization point

Definition 2.2. For a poset (T, <), an element w € T is called a synchronization point

of T if for any f €T, f # w, either f <w orw < f.
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For example, in the poset shown in Figure 2.5, the node g is a synchronization
point. Obviously, synchronization points may not exist for arbitrary posets. But, if they do
exist, they give a total order to a subset of the poset. It is easy to show that the following

property holds:

Proposition 2.1. Let W be a set of synchronization points of (T, <), then (W,<') is a

chain, where <' is the projection of < on W.

Compatibility of partial ordering relations

The union and transitive closure of two sets of partial ordering relations on the
same ground set may not define a poset. It is not hard to conceive that, there may be a
conflict such that f < ¢ in one ordering relation and g < f in another ordering relation. In

order to define compatibility of posets, we introduce refinements of posets.

Definition 2.3. Let < and <' be two partial order relations on the same ground set I.

Then, <’ refines < if <C<'.

Definition 2.4. Two partial order relations are compatible if they have a common refine-

ment.

For two compatible partial or.der relations < and <’ on a ground set T', (T, Closure(<
U <')) is a poset, where Closure is the operator for transitive closure.

Two incompatible partial order relations may be made compatible by removing
elements from the ground set, which, apparently, also removes element pairs from the re-
lations. However, in general, there may not exist a minimum set of elements, such that

removing them from the ground set can make two incompatible relations compatible. For
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example, for ground set T' = {a,b,c,d} shown in Figure 2.6, prec, = {(a,b),(b,¢)}, and
precs = {(c,d), (d,a)}, removing either a or ¢ from I' will make prec; and prec; compati-

ble. However, neither {a} nor {c} contains the other.

.a

Figure 2.6: The union of two incompatible partial orders.

Indexing Operations

The set of all operations Oper is a poset, and we assume some basic ordering
relations on it. For example, in order to distinguish different executions of an operation
with the same name, we assign index numbers to these operations so that each execution
of the operation is a distinct element in Oper. For any operation with name £, we use
fi and £_j to denote the i*® and -the j* execution of f. Thus, if i < j € N, then
£_i < £_j. We denote this partial ordering by <o. This relation applies to all computation,

communication, and control operations. In particular, for actor A with input port p and
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output port q, trigger trigger,and i <j €N,

Atriggeri < Atrigger.j
Areadpi < Areadp.j

Avriteqi < Awriteq.j

Now, we can write down the full sets of operations for the AddMultiply actor:

AddMultiply.Comm = {read.a_i,read b_i,write_sum_i,write_product.i,i€ N}
AddMultiply.Comp = {sum = add.i(a,b),product =multiply.i(a,b),i € N}

AddMultiply.Clbk = {finish.i,i € N}

The control-operation set, which can only be used by a framework, could be:

AddMultiply.Ctrl = {trigger.,i € N}

2.2 Execution

The execution of an actor is a set of operations. For reactive executions, this set
of operation is finite. The execution of actors not only depends on the computation defined
by the actor designer, but also depends on the semantics and ordering relations that a

framework imposes on communication and control.

2.2.1 Firing Sets

A firing set of actor A, denoted as A.fire, is simply a partially ordered subset of

computation and communication performed by A, i.e. A.fire C A.Comp U A.Comm. It
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is the set of desired operations and their causality orders that the designer would like the
actor to perform. In the reactor model, the execution of a firing set must be triggered by
the framework. We write A.fire|; for a firing set triggered by r. The ordering relation <4,
among elements of A.fire|; defines the order that the operations should be performed.

A firing set A.fire|, is (designed to be) reactive if it contains finite operations.

And,

Definition 2.5. An actor is reactive, or is a reactor, if its firing sets are reactive for all

triggers.

So, a firing set defines a desired set of operations that the actor performs when it is
triggered. For a reactor, this set of operations is at most finite. The partial order relations
within a firing set should at least be compatible with the indexing relations among read,
write, and computational operations. An actor designer may add further ordering relations
depending on the algorithms that the actor implements.

For example, a firing set of AddMultiply for the kth trigger, r Xk from the framework

could be:

AddMultiply.fire|;x = {
read.a Xk,
read b.k,
sum = add k(a, b),
product = multiply k(a,b),
write_sumk,
write_product Kk,

Obviously, this firing set is finite for all triggers, and thus the actor AddMultiply is

a reactor. And one possible ordering relation <saamitipy OR this set may be the transitive
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closure of:
read ak < readbk
read bk =< sum= addk(a,b)
sum = add k(a,b) < product =multiplyk(a,b)
product = multiplyk(a,b) < write_sumk
write.sumk < write_productk

which essentially defines a chain. A Hasse diagram of this partial ordering relation, is shown

in Figure 2.7.

@ read_a k

x read_b_k

!

‘ sum = add_k(a, b)

‘ product = multiply_k(a, b)
|

; write_sum_k

i

‘ write_product_k
Figure 2.7: An ordering of operations in AddMultiply.fire.

If the firing set is totally ordered, we also write the firing set using a conventional
imperative language syntax (with “;” denoting sequencing of operations). Noticing that the
firing sets are essentially the same for all triggers, we omit the indexing on operations, and

have,



AddMultiply.fire = {

read.a;

read.b;

sum = add(a, b);

product = multiply(a,b);
vrite_sum;
write_product;
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The total order sometimes over-specifies the relations among operations. Suppose

that the AddMultiply is implemented using hardware; forcing the operations to be totally

ordered may not be the best choice. As depicted in Figure 2.8, the (transitive closure of

the) following ordering relations, denoted by <}gamuieipry> €xhibit the minimum causality

constraints among operations in AddMultiply. Any ordering relations of these operations

that refine <jaamuieipry is @ valid implementation. This specification allows many parallel

implementation choices.

read.ak
read b k
read.ak
read.b.k
sum = add k(a,b)

product = multiplyk(a,b)

< sum = addk(a,b)

< sum = addXk(a,b)

< product = multiplyXk(a,b)
< product = multiplyXk(a,b)
< write_sumk

< write_product k

A firing set of an actor by no means has to be finite. For example, an actor,

InfiniteAddMultiply, with the same variable and operation sets as AddMultiply, may
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read_a_k @ read b_k
sum = add_k(a, b) 8 product = multiply_k(a, b)
write_sum k ‘ ‘ write_product_k

Figure 2.8: Another ordering of operations in AddMultiply.fire.

have a firing set like:

InfiniteAddMultiply.fireleriggero = {
for(k = 0;true;k + +) {

read.a k;
read.b k;
sum = add_k(a, b);
product = multiply.k(a,b);
write_sum.k;
write_product.k;

So, InfiniteAddMultiply is not a reactor.

The execution of a firing set starts with a trigger. If an actor is reactive and the
execution of the firing set completes, the reactor sends a finish callback to the framework.
However, depending on the status of the framework, a firing may not always be completed
after it is triggered. If it does complete, we call the firing set, together with its trigger and

finish operations, a complete reaction.

Definition 2.8. A (complete) reaction of an actor A with respect to a irigger r €
M.Ctrl, and a firing set Afire|; is a partially ordered set Afire|, = {r} U A.fire| U

{finish.r} satisfying,



33
A. Afire|; is reactive;
B. for f,g € Afire|;, f < g in Afire|; if and only if f < g in Afire|y;
C. Vf € Afire|,,r < f;
D. Vf € Afire|;, f < finishr.

Since neither r nor finish_r belongs to A.fire|,, adding conditions C and D in
definition 2.6 does not introduce conflicts with condition B, and thus Afire|; is indeed a
poset. The partial order relation defined in m is denoted by <7|,. For the short of
notation, for any operation f € Afire|;, we also write f for the trigger 7, and f for the
corresponding finish operation finish r.

From the ordering defined in Definition 2.6, a complete reaction always has a shape
as in Figure 2.9, where all execution starts with the trigger, and stop at the finish. The

operations trigger and finish are synchronization points of A.fire|,.

@ trigger
T

. ! »’T
//) \»/—"-" o

7 Airely g,

y —

~—, r

L
? finish
Figure 2.9: The shape of a complete reaction.

Whether a reaction can complete within a framework depends on the semantics of
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communication and the triggering rules.

2.2.2 Communications

Communication Semantics

A framework provides communication semantics for read and write operations.
The semantics are achieved by the help of framework variables, which essentially record the

communication states.

/ - A A |
; ACtrl  ACIbk B.Ctl B.Clbk |
v 7 i |

q channet: ¢ P !

actor: A » > actor: B 5

framework: M

Figure 2.10: Composing two actors.

For example, suppose a channel ¢ = (g ~ p) in Figure 2.10, (which is essentially a
redraw of Figure 2.3,) implements a shared memory, such that a write operation performed
on port g overrides the old value in the memory, and the reader always reads the latest
value. Then, we need one framework variable, Z, = {z} for the channel. Suppose o(q) = v
when write_q is performed, then the result of the operation is o(z) = v. If a read operation
read_p is performed before any other write operations on g, then o(p) = v after the reading.

For another example, suppose ¢ = (¢ ~ p) in Figure 2.10 implements a first-in-
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first-out (FIFO) queue of size K, then we have Z. = {2[0], z[1], 2[2], ---, 2[K —1]}. The FIFO

queue semantics is enforced by the following partial functions:

e writeq(c) =o”": ifk = 0and o(2[0]) = L, or, k > 0, o(z[k]) = 1, and o(z[k—1]) # 1,
and o(g) = v, then o’(z[k]) = v, where o’(z[k]) is the evaluation of z[k] after the write

operation is performed;

o read p(c) = o’: if o(2[0]) = v # L, then o’(p) = v, and for k > 0,0'(z[k — 1]) =
o(z[k]), and o’(z[K]) = L. That is, the values inside the queue are shifted to the

front.

Ideally, this should implement a queue, such that for 0 < k < K, if a(z[k]) # L,
then o(z[k — 1]) # L. Obviously, extra constraints need to be imposed on the order of read

and write operations so that the queue does not overflow or underflow.

Communication Orders

The constraints on communication may be imposed by a framework in forms of
partial order relations on the read and write operations. Suppose in Figure 210, Z, =
{z[0], 2[1}, 2(2]} implements a FIFO queue of size three, actor A writes three values in a row
when it is triggered, and actor B rea:ds one value a time when it is triggered. Their firing
sets are shown in Table 2.1 and Table 2.2.

Then, in order for the communication channel to behave like a FIFO queue without
overflow or underflow, the k** writing to port g should be performed earlier than the kth

reading from port p, and the k& + 374 writing to port g should be later than the k" reading
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Table 2.1: The firing set of an actor that performs three write operations when fired.

Afire|;; = {
q = value;
writeq-(3(i — 1) +1);
write.q-(3(i — 1) +2);
write.q-(3(i — 1) + 3);

Table 2.2: The firing set of an actor that performs one read operations when fired.

B.fire|, ; =

}

read.p.j;

from port p. This can be expressed as the following partial order relations: Vk € N,

Avriteqk < B.readpk (24)

Breadpk < Awriteq.(k+3). (2.5)

Obviously, we need cooperations between the framework and the actors to satisfy
these communication orders. The contributions of the framework are the triggers, and the
contributions of actors are the contents of their firing sets. The cooperation is reflected in

triggering rules.

2.2.3 Triggers

A framework can only issue triggers based on its own activities and the observable

activities of actors, which are their communication operations and callback operations. A
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trigger may also depend on the states of the framework, (but not the states of actors),
which can be expressed as a predicate on framework variables. In general, a trigger 7 may
be conditionally activated by an operation and a predicates. A triggering rule for r is a pair
(9, p(02)), also written as:

g ploz) r, (2.6)

where,

g € M.Ctrlu { U (4.Commu A.Clbk)} ,
AEM

is an operation that is observable by the framework M; and p(oz) is a predicate on the
values of variables in Z. The interpretation is that after the operation g is performed, the
predicate p(oz) will be evaluated on the current state of the framework. If the evaluation
is true, then the trigger r is performed immediately, ie gar.

Notice that, a trigger may be activated by more than one rule. In this case, we

write:

r 2 {(91,m(02)), (g2, p2(02)), --.}-

If any one of these rules is satisfied, then r is activated. Also notice that an operation g may
activate multiple triggers. These triggers must be incomparable, such that for any r among
them, g <r. In essence, triggering rules define a set of (conditioned) ordering relations <p
on operations.

Sometimes, an singleton initial operation Init is needed for a framework to start
all the activities in it. This initial operation is a framework operation, and actors may built

their triggering rules using it. For example, if an actor A is triggered at the beginning of
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the execution without any preconditions, then the actor may have a triggering rule:

Init =5 Atrigger-1.

Static Scheduling

In some models, the triggers are simply unconditioned on finish callbacks from

another reactor. That is, the triggering rules may look like:
Afinish_j == B.trigger.i

for some actor A, B € M, (possibly A = B) and some indices ¢ and j. If all triggering rules
in the framework have this form, then the framework is called siatically scheduled.

A static schedule may be sequential, which can be represented as a list of reactors,
SequentialSchedule = {4, & A2 — A3 — ...}. The meaning of this list is the following

triggering rules:

Init ——% A;.trigger

A;.finish 2% Ay, trigger

If actors are repeated in this list, then corresponding indices can be added to trigger and
finish operations.

If there are multiple lists of sequential schedules in parallel, or a finish operation
can activate multiple triggers, then a static schedule can have more complex structures.
In these cases, a list is not sufficient for representing the schedule. And we will keep the

triggering rule representations.
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2.3 Precise Reactions and Responsible Frameworks

2.3.1 Composite Execution

Summarizing the discussions in the last section, for a composite © = (M, A, C),
there are the following sets of partial ordering relations that constrain the operations within

it:
® <y : operation index orders;
e <4, reaction orders, imposed by firing sets and reactions of actors;
e <) communication orders, imposed by frameworks

e <p: triggering rules, imposed by frameworks in cooperation with actors.

The execution of a composite © is well-defined if all of the above partial ordering
relations are compatible, i.e. there exist a maximum ground set and a common refinement
that refines all the partial order relations. In this case, we say that the actors are compatible
with the framework, and define the firing set of © to be the maximum subset of the union
of reactor and framework operations.

More precisely, we define an ezxecution of © be,

B.exec C U {A.fire|,}
reRAEGM

satisfying:
(1. ] Ordering relations: <= Closure (*0 u=mMU=r U {< Alr})
TER,

[2. ] Trimming rules: if f < g and f ¢ B.exec, then g ¢ B.exec
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where R is the set of all triggers activated by the triggering rules during the execution. We
denote by B.EXEC the set for all executions of ©. Since all elements in 8.EXEC satisfy the
above two rules, the union of any two elements also belongs to 8.EXEC. We define the firing
set of ©, B.fire, to be the union of all elements in 8.EXEX. That is, 8.fire € 6.EXEC, and
if ezec € B.EXEC then ezec C 8.fire.

If the four sets of ordering relations introduces conflicts, then the set of actors is
not compatible with the framework, and the firing of © is not well-defined. In fact, for an
incompatible composition of actors and a framework, there may not exist a unique way to
remove a subset from the union of operations to make the firing set a poset. That is, it
may not be precisely defined by the set of ordering relations which element is in the firing
set and which element is not.

Even when the composite execution is well-defined, it is not necessarily true that
a reaction of an individual reactor is completed in the composite execution. An incomplete
reaction forces the designer to understand where exactly the reaction stops within a reaction,
and how to resume the reaction later. This violation of information hiding not only brings
difficulty in the understandability of a model, but also destroys the compositionality of
actors and models of computation.

For example, suppose we have the following triggering rules

Schedule = {A - B = B — A} 2.7

for the system shown in Figure 2.10, where the actor A performs three writes in its firing
set and actor B performs one read in its firing set, as shown in Table 2.1 and Table 2.2.

Also, suppose that we have a FIFO queue communication with buffer size 3, and use the
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communication constraints in (2.4).

Atrigger_1 @
{
A.write_q_1 ‘
Awrite_q_2 ‘
Awrite_q 3 ‘
Afinish 1@ % "
Y g Butrigger_1
~ ‘ B.read_p_1
@ Bfinish_1
' ‘ B.trigger_2
‘ B.read_p_2
B.finish_2
Atrigger_2 .‘
A.write_q 4 x Z: B.read_p_3
Awrite_q_5 : e
A.write_q_6 8
A finish_2 E

Figure 2.11: An execution trace of the example.

Then, the poset of oeprations in this composite can be represented by Figure
2.11. In the figure, the solid arrows shows the ordering relations imposed by the firing
sets of actor A and B, and the dashed arrows show the ordering relations imposed by the
framework, including triggering rules and communication constraints. The circles represent
some operations that are not performed under this particular schedule. It is obvious that
actor A cannot finish its second reaction, since B.read p_3 is not performed. Unless we
know exactly the content of actor A, it is imposible to know where exactly the execution

stops. For this reason, we define precise reactions as a property for composable reactivities.
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2.3.2 Precise Reactions

A reaction is activated by a trigger. If a trigger is “smart” enough to summarize
all the prerequisites for an actor to complete its reaction, then the reaction can always be

completed in the composite execution.

Definition 2.7. For a composite © = (M, A, C), actor A € A, and a lrigger v € 8.fire,

the reaction A.fire|. is precise if Vf € Afire|;, Vg ¢ A.fire|;, g < f = g < 7. A irigger

for a precise reaction is called a responsible trigger.

Definition 2.8. The state of an actor A, when the £inish operation is performed, is called
a quiescent state of A. By definition, the state of A is also quiescent if it has never been

triggered.

Figure 2.12 illustrates the shape of a precise reaction activated by a responsible
trigger.
A responsible trigger guarantees that all the preconditions for an actor to finish

the firing have been satisfied. In terms of the partial ordering relations among operations,

this means that for any f € A.fire|;, g ¢ A.fire|;, and g < f, adding the relation g < r
does not create any conflicts in the execution of the composite. The concept of precise
reaction guarantees that a reaction, once triggered, can be finished within the composite

execution. And when it finishes, it is at a quiescent state. So, we have,

Proposition 2.2. For a composite © = (M,A,C) and actor A € A, if r € B.fire is a

responsible trigger, then A.fire|, C 8.fire.

The proof is straightforward by the definitions of precise reaction and responsible
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7
\\ E
. ' T A
N—— . ) ~——
N—
quiescent state > ? r
4

Figure 2.12: The shape of a precise reaction. Note that there can be causality relations
pointing out of the firing set, but all the prerequisites of the firing are summarized by the
trigger.

trigger. By these definitions, in our previous example, B.fire|crigger1 and B.fire|irigger.2
are precise reactions, but A.fire|yrigger.2 is not. The actor A, at the end of the composite

execution is not at a quiescent state.

2.3.3 Responsible Frameworks

Since triggers are operations of a framework, the responsibleness of triggers reflects

certain properties of frameworks. We define,

Definition 2.9. A framework is responsible if it requires all triggering rules to be respon-

sible and it respects these triggering rules.

That is, the execution within a responsible framework consists solely of precise

reactions, as shown in Figure 2.13.
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Figure 2.13: The execution within a responsible framework consists only of precise reactions.

Responsible frameworks gives many useful properties. For example, let © be a
composite with a responsible framework and precise reactors. We have the following prop-
erties,

Properties:

[1. ] Whenever the framework stops sending triggers, all reactors will settle at their

quiescent states within finite operations.

[2. ] © is deadlocked only if the framework cannot send more triggers. So, deadlocks can

be detected by monitoring triggering rules.

[3. ] Even when © deadlocks, all reactors are at their quiescent states.
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The proofs are all straightforward. So, a responsible framework can easily control
the progress of execution by sending and holding triggers. And it can detect deadlocks by
monitoring triggers.

2.3.4 Atomicity

For a composition of reactors, there is a stronger notion than precise reactions,

called atomic reactions.

Definition 2.10. A reaction Afire|; with callback r* is atomic, if it is precise, and

Vf € Afire|,, Vg ¢ Afire|;, f <g=>T<g.

So, the atomicity of a reaction states that not only all the prerequisites have been
satisfied before the reaction, but also, once the reaction is started, all other activities within
the composite can wait until the reaction has finished. We will see that, for responsible

frameworks, precise reactions are compatible with atomic reactions.

Theorem 2.1. Under a responsible framework, precise reactions are compatible with atomic

reactions.

Proof. Let © = (M,A,C) bea comgosite with a responsible framework M. Let A€ A, r
be a (responsible) trigger for Afire|;, and 3f € Afire|;, g € Oper,and g ¢ Afire|s, s.t.
f < g. We want to show that addingr < g does not create any conflicts in the execution
of ©.

Since all the activities in a responsible framework are precise reactions, and f < g,

there must exist A’ € A and r', s.t. g € A" .fire|,s. By the definition of firing sets, it is

1Recall that r is the finish operation for reactor A.fire|: corresponding to trigger r.
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sufficient to show that adding r < 7' does not create any conflicts. Suppose to the contrary
this is not true, then 3k € Oper s.t. © < h < r, as shown in Figure 2.14. Since the
framework M is responsible, h < £ = h <r = h < f. But ' is responsible, and f<g,s0
f < 7' < h. Thus, the existence of h creates a conflict in Oper. By contradiction , r < g

should not create any conflict. O

Figure 2.14: Proof of Theorem 2.1. Adding operation & creates a contradiction.

During the proof of Theorem 2.1, we actually showed a slightly stronger result,
which is that we can always start triggering a reactor after the finish of another reaction.

So, we have,

Corollary 2.1. The ezecution of reactors in a responsible framework can be sequentialized.

The sequentializable execution makes responsible frameworks very easy to under-

stand, in the sense that a complete reaction can be abstracted into one operation without
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affecting the overall execution of a composite. This property also provides a semantics
foundation for information hiding and component refinements in component-based designs.
An abstract atomic operation at a high level can be refined into a composite execution as
long as the composite execution is a precise reaction that has the same prerequisites (i.e.

triggering rules) as the atomic operation.

2.4 Examples of Untimed Frameworks

In this section, we give some examples of frameworks. These frameworks are called
untimed to distinguish themselves from timed frameworks, which have a notion of time. We

will discuss timed frameworks in Chapter 4.

2.4.1 Communicating Sequential Processes (CSP) Frameworks

In the CSP model of computation [32], each component is a process. A process is
a conceptually unbounded sequence of operations. The communications between processes
are atomic exchange of data, called rendezvous. We consider a simple CSP model, where
each rendezvous only involves two processes.

In theory, a CSP framework, CSP, can have actors with an unbounded firing set,
like the InfiniteAddMultiply actor in section 2.2. A reactor A can be made into an infinite
sequential process, if the firing set A.fire|, has totally ordered operations w.r.t. all triggers,

and the framework adopts the following triggering rules for all A € M:

initial trigger: Init =5 A.trigger.1 (2.8)

self-trigger: Afinish k =% Atrigger.(k + 1), for k > 1. (2.9)



48

Thus, a CSP framework triggers a reactor whenever its last reaction is finished,
regardless whether the new reaction can be completed. In this sense, CSP frameworks are
not responsible.

The communication on each channel has a shared variable semantics. That is,
for each communication channel ¢ = (g ~ p),q € A.Q,p € B.P, there is one framework
variable z., such that write.q will assign o(g) to z., and read_p will assign o(z) to p.
The rendezvous style of communication also requires ordering relations on corresponding
read and write operations. Suppose actors A and B in Figure 2.3 communicate via atomic
rendezvous. Then the framework imposes the following constraints to implement atomic

rendezvous: for k € N,

e Awvrite_qk < B.read.p.k;

e VA.f € A.Oper,(A.f < Avriteqk) = (A.f < B.readpk), (Awriteqk <

A.f) = (B.read_pk < A.f).

e VB.g € B.Oper,(B.g < B.readpk) = (B.g < Awriteqk), (B.readpk <

B.g) = (Awrite_qk < B.g).

Visually, Figure 2.15 shows a communication section in CSP models.
In summary, for a framework CSP with actors A and connections C, we have the

following ordering relations:
o Initialization: VA € A, Init — A.trigger_1;
e Sequential processes: VA € A,Vf,g € A.Oper, either f < g, or g < f;

e Self-triggering rules: A.finish k == A.trigger_(k + 1), for k > 1;
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Figure 2.15: Ordering relation of rendezvous communication.

e Rendezvous communication: as shown above.

A CSP composite may deadlock, depending on the connections of ports and or-
dering relations inside each actor. And when it deadlocks, the actors may not at their

quiescent states. This deadlock is identified by observing conflicts when composing partial

orders. Le. 3f,g9 € Oper,s.t. f <gandg< f.

2.4.2 Process Network (PN) Frameworks

In a process network model of computation (39), as in CSP models, components are
processes. But, unlike CSP models, the communication style on each channel has a FIFO
queue semantics. That is, for each channel ¢ = (g ~ p), there is a (potentially infinite) set

of framework variables Z, = {z;,i € N}. The k'* writing to port g will assign the value to
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the kit variable in Z.; the k** reading from port g will return the value of the & variable
in Z,. The communication requires that writing to a variable preceeds, but not necessarily

immediately preceeds, the corresponding reading from it, as shown in Figure 2.16.

Figure 2.16: Ordering relation of FIFO queue communications.

Together with the irresponsible triggering strategy shown in (2.8) and (2.9), we
have the following ordering relations for a PN framework PN with actors A and connections

C:

o Initialization: VA € A, Init = Atrigger.i;
e Sequential processes: VA € A,Vf,g € A.Oper, either f <g, or g < f;
e Self-triggering rules: A.finish.k 2% Atrigger(k +1),for k> 1;

e FIFO communication: for A,B € A, ¢ € A.Q,p € B.P,and c = (g ~ p) € C,
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Avrite.qk < BreadpXk,Vk € N.

2.4.3 Dataflow (DF) Frameworks

In dataflow with firing [46], components are reactors with finite firing sets, and the
communication channels are FIFO queues. A reactor A may have one or more firing rules,
each having the form of a predicate on framework variables associated with the channels
connected to the input ports of the actor, i.e. p(Z(g..p)), for p € A.P and any port g. These
firing rules precisely specify the requirements for the actor to finish the execution of one
firing. That is, if the one the rules is satisfied, and the actor is triggered accordingly, then
the actor can always execute to the finish of the firing set. Thus, DF frameworks are
responsible.

For example, Figure 2.17 shows a Select actor, with ports inputO, inputi,
control, and output. For the simplicity of representation, we call the channel connected to
input0 the channel input0, and so on. Depending on the value, true or false, of the first
variable in the control channel, the actor transfers the first value of the inputl or input0

to the output channel.

input0

output

npur | Select  Pp—

—» |
control f

Figure 2.17: A Select actor in dataflow models.
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We also assume that the framework shifts the contents in the variables to the front
when the first variable is read by the consumer of the channel. The firing rules in this case
is

po : (0(zcontrat) == £alse) A (0(zinputo) # L) (2.10)
p1 : (0(Zcontrot) == true) A (0(Zinput1) # L) (2.11)
where, Zcontrot is the first variable in channel control, zinputo is the first variable in channel

input0, and Zinpyy is the first variable in channel inputl. These firing rules map cleanly to

the triggering rules in the reactor model. For example,

where pg and p; are the predicates in (2.10) and (2.11), and g is any write or finish

operation observed by the framework. The corresponding firing sets (omitting the indices)

are:
Select.fire|,, = {
read_control;
read_inputO;
output = o(input0);
write_output;
}
and,

Select.fire|,, = {
read_control;
read.inputl;
output = o(inputl);
write_output;

}
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2.4.4 Synchronous Dataflow (SDF) Framework

The synchronous dataflow model [45] is a special case of dataflow models. The
actors in this model are so regular that the number of reads and writes in each firing is
fixed and known for all triggers. For example, the AddMultiply actor is a SDF actor, but
the Select actor is not.

Because of this regularity, each SDF actor only have one firing rule, and the firing
rule depends totally on the non-emptiness of framework variables. As a consequence, a SDF
composite can be statically scheduled, such that the triggering of one actor only depends
on the finishing of the actor proceeds it in the schedule [45]. We have met a SDF model in
section 2.2.2 with two actor, one performing three writes in its firing and one performing
one read in its firing. In general, for a SDF composite Ospr = (SDF, A, C), a sequential
schedule of a SDF model? is SDFSchedule = {4, — 42 = A3 = ... = Ag}, where 4;
refer to an actor in A. Note that depending on the number of reads and writes for each
actor, an actor may appear multiple times in S. The sequence S is called one iteration of

an SDF model. For each iteration, the triggering rule of the SDF model may look like:
A;.finish iLLN Ajy.trigger

And this rule simply repeats for more iterations.

2For simplicity, we assume the firing of actors is sequentialized. In general, the schedules are partially
ordered sets rather than sequences. For multiple CPU scenarios, the partial ordering can be exploited to
introduce parallelism in the execution.
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2.5 Implementation

In this section, we briefly discuss the implementation of the reactor model in the
Ptolemy II software environment. In Ptolemy II, each model of computation is imple-
mented as a domain, and a director controls the component interaction in that domain.
Ptolemy II models can be hierarchical, where different models of computations are nested
through composite actors. However, the reactor model we discussed in this chapter does
not support hierarchy yet. We will study hierarchical frameworks in Chapter 3. Thus, the
implementation discussed in this section only covers “flat” models in Ptolemy II.

In Ptolemy II, the basic building blocks are atomic actors, which are reactors
that have totally ordered firing sets. Actors have ports, which can connect to other ports
through relations. Relations do not have semantic properties other than keeping track of
connections. The communication mechanisms among ports are provided by directors and
implemented as receivers. In the Ptolemy II model, receivers always reside in input ports.
Receivers may implement rendezvous points, FIFO queues, buffers, or proxies to a global
queue.

Actors are executable. As shown in Figure 2.18, there are seven methods in the

Executable interface:

e preinitialize(): performs structural and pre-type-resolution initialization. This

method is called exactly once at the beginning of an execution.

e initialize(): performs scheduling- and type-dependent initialization. This method
is called once at the beginning of an execution. It may be called again to reset an

actor to its initial state.
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Figure 2.18: Ptolemy II execution.

o prefire(): returns true if the fire() method can successfully finish.
e fire(): performs the fire function without updating persistent states.

e postfire(): updates states, and return true if the actor can be further fired. This

method is designed for models that use fixed-point iterations.

e wrapup(): releases resource and wrap up. This method is called exactly once at the

end of an execution.

e stopFire(): interrupts the firing and requests that the actor to return the flow of

control to the director.

The reactor model captures the structural and execution properties of Ptolemy II

models in the following senses:

e Ptolemy actors are reactors. In particular, they are reactors that have at least two fir-

ing sets: fire() and postfire(). In Ptolemy II, ports are objects instead of variables,
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so that they can contain receivers and keep track of connections. 3

e Directors, Receivers, and Relations implement a framework. Receivers are frame-
work variables, and their evaluations and assignments are performed through get()
and put() methods. Relations capture the connections among ports. Directors issue

triggers to actors, by calling their execution methods.

o The prefire() method helps directors to provide precise iriggers. In Ptolemy 1I, the
fire() and postfire() methods are called only if the prefire() method returns true,
i.e. the actor can successfully proceed for one iteration. Responsible frameworks can
use these methods to achieve responsible triggers. There are also ways to hide these
preconditions for irresponsible frameworks. Typically, the hiding is performed by

receivers that may always inform an actor that there are enough input data.

2.6 Related Work

A distinctive semantic characteristic of embedded software is reactivity. A pioneer
work in this area is the study of reactive systems in the formalism of statecharts [27],
[28] and its variants [78]. The statecharts model uses hierarchical finite state machines to
formulate reactive systems. The transitions among states are triggered by input events,
and transitions are always atomic. For every triggering event, the system has exactly one
transition to take, from a well-defined state to another. Although the statecharts model is

a big step of improvement from traditional flat state machines, in terms of hierarchy and

3Ptolemy 11 ports can be multiports, meaning that one port can contain many channels. From the reactor
model point of view, they are simply many ports.
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some concurrency, it lacks the notion of abstraction to handle large-scale designs and may
not be intuitive to model computational intensive systems.

Synchronous languages, like Esterel [7], Lustre [26], Signal [25], and Argos [54],
make the synchrony assumption in the modeling of reactive systems. The synchrony as-
sumption states that all reactions take no time to execute. This extreme abstraction allows
designers to separate functional properties from timing concerns. However, it also brings
semantic subtitles like zero-delayed feedback loops, which requires the introduction of “non-
strict” components? and fixed-point semantics to make a model well-defined. The reactive
modules formalism [2] also takes the synchronous assumption of reactivity, and focuses on
nondeterminism and verifiability. One advantage of synchronous languages is that they can
be compiled into sequential programs, such that the concurrency at the modeling level are
compiled away. On the other side, it introduces difficulties when used in distributed sys-
tems. Although many work has been done on distributing synchronous models [6], using
these models at large-scale multitasking systems remains challenging.

The reactor model presented in this chapter is greatly influenced by event struc-
ture [82] and the dataflow process model [46]. Winskel’s event structure inspires the idea
of using partially ordered sets and precedence relations to capture concurrent actions in
a system. The dependency-based action refinements [62] implies the feasibility of model-
ing compositional action semantics using event structures. In a sense, a precise reaction
is refined to a composition of individual actions in a firing set. The dataflow model with
firing inspires me to study the significance of firing rules. In dataflow models, like SDF [45],

DDF [12], and the Moses’ actor model [36], the firing rules are restricted to be patterns in

4 A non-strict component does not require all the inputs to be present to produce outputs.
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terms of the presence of data. As will be seen in later chapters, we relaxed this restriction

in reactor models to include time and physical events which are closer to the interaction

with the real world.
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Chapter 3

Compositional Precise Reaction

As discussed in the last chapter, reactors and frameworks can implement models
of computation. Hierarchical heterogeneity requires that a composite itself be an actor and
be controlled by a higher-level framework. This chapter claims that an open composite is
an actor but compositional reactions may not always be precise. Responsible frameworks

help reactivize composite actors.

3.1 Composite Actor

Recall that a composite, @ = (M, A, C), is an aggregation of a framework M, the
actors A controlled by the framework, and the connections C among the actors. Abstracting
the activities of actors and frameworks into partially ordered operations allow us to treat a

composite as an actor.
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3.1.1 Open Composite

An open composite  extends a composite © = (M, A, C) with ports. These ports
are called composite ports, which are variables of £2. These ports also introduce additional
connections, which require more framework variables for the additional communication
channels. A framework within an open composite is called an open framework.

Figure 3.1 shows an open composite { with two components A and B. It has an
open framework O, three composite ports, p}, p5, and g5, four channels, ¢; = (p] ~ p1),
2 = (ph ~ p2), €3 = (g1 ~ p3), and ¢4 = (g2 ~ g), and four sets of framework variables

Zeyy Zeyy Zey, and Ze,.

A A

Py

Control, Callback, Controlg Callback,
C, . : .

open framework: O

Figure 3.1: An open composite with two actors.

All these framework variables and the variables of actor A and B are the internal
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variables of §2. So,

Q.8 = AXUB.XUZUZ,UZ,U Z,
Q.P = {p},ph}
2.Q = {g}

All the operations of O, A, and B are operations on these internal variables of
Q, and thus they belong to 2.Comp. Notice that the control-flow operations between
the framework O and the actors are also parts of the computational operations of (2, even
though they do not change the evaluation of any variables. So, in general. we have the

following proposition:

Proposition 3.1. An open composite is an actor, and thus is called a composite actor.

Being an actor, an open composite can be put into a framework. Thus, a composite
actor involves two frameworks, as shown in Figure 3.2. The one outside the composite actor
is called the composite actor’s ezecutive framework. The executive framework controls the
composite actor. The one inside the composite actor is called the composite actor’s local
framework. The local framework controls the actors contained by the composite actor. This
formalism hides the operations inside a composite actor from other actors in the executive
framework. A composite actor will be triggered by its executive framework, and in response
to that, it consumes inputs, invokes its local framework for reactions, and produces outputs.

Obviously, when the two frameworks are not the same, we obtain hierarchical heterogeneity.
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Figure 3.2: A composite actor can have a local framework and an executive framework.

3.1.2 Boundary Operations

In order for a composite actor to communicate with its executive framework, read
and write operations must be defined on composite ports. Since these operations happen at
the boundaries of composite actors, we call them boundary operations. Boundary operations
need to be integrated with other operations of the local framework.

When a composite actor  performs a read on its port p, it communicates with
the executive framework and may change the evaluation of variable p. The value in p must
be transferred to the channel that connects the inside of this port to an input port of an
inside actor. For example, in Figure 3.2, after read_p, the value in p must be transferred
to one of the variables in Z,, so that actor A can use it later. We call this operation
transferInput.p : [{p} = V] = [{p} = V] x [0.Z — V]. This operation is an internal

operation for €, and is performed by the local framework.
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Similarly, after some inside actors, say B in Figure 3.1, performing a write op-
eration, the value in the framework variable on the channel from the output of B and
port g needs to be transferred to the composite output port g. We call this operation
transferOutput.q : [0.Z — V] = [{g} = V] x [0.Z = V], and it is also performed by
the local framework. A write_q operation can then be performed to emit the value to the
executive framework.

How to order these boundary operations with local and executive framework trig-
gers is critical for integrating models, and sometimes could be framework/application de-
pendent. One way of doing it, which certainly is not the only way, is to transfer the inputs
at the beginning of a reaction of the composite actor, and transfer output after the internal
execution has “settled”. In this case, we have the ordering relation in the firing set of a
composite actor that is shown in Figure 3.3.

However, defining the settlement of a composite execution may not be easy. De-
pending on the framework activities, the transferQutput part of the firing set, and thus the
finish operation of the composite actor, may not always be reachable. In some cases, even
these operations are reachable in finite steps, or the framework inserts transferOutput
operations at some point of the execution, the internal actors’ reaction may not be precise

within the composite reaction.

3.2 Compositional Precise Reaction

As we know from chapter 2, depending on the triggering rules, the firing set of a

composite actor with respect to a trigger may not be finite, even though all internal actors
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Figure 3.3: A general structure of a composite firing.

are reactive. In addition, even the composite firing is finite, it is not necessarily true that,
when the composite finishes firing, all the actors in it are at their quiescent states. Thus,

we characterize the following properties for compositional reaction,

Definition 3.1. An open composite Q = (O, A, C) is reactive with respect to a irigger
r, if .fire|, is finite. The reaction is (compositionally) precise, if at the end of the

reaction, all the actors A € A are in quiescent states.

So, a reactive composite actor can be treated as a reactor by its executive frame-
work, and a quiescent state of such a composite actor is the aggregation of all the quiescent
states of the actors contained in it.

The reactiveness of a composite actor may not be obvious, even when all the
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actors are reactive and the local framework is responsible. For example, Figure 3.4 shows
a composite actor C' connecting to an actor A within a dataflow framework DF1. The

composite actor also contains a dataflow framework DF2, and a reactor B.

compoé‘rleractbr. C

dataflow framework: DF2

dataflow framework: DF1

Figure 3.4: A composite actor containing a reactor and a dataflow framework.

Let the firing of reactor A perform one write operation and then finish, and the
reactor B first reacts to an input at port p; and later reacts to inputs at pp. That is, B has

the following firing sets:

B.fire|crigger.s = {
read_p;-1;
q: = a(p1);
write_g;_1;

and for 7 > 1,
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B.fire|erigger.i = {
read.p;-i;

a1 = o(p2);
write_q;-i;

Let Actor A have an initial trigger Init 1, A.trigger,, the composite actor C

have a triggering rule

Afinish.1 z—[‘m]ﬁ) C.trigger.1

and the triggering rules for reactor B are:

[/} M) B.trigger.1

B.finish (i — 1) M} B.triggeri, fori > 1

where g is any operation observable by the framework DF2.

During the execution of this model, reactor A is first triggered and writes one
value to z[cg], then the composite actor C is triggered. Suppose the boundary operations
shown in Figure 3.3 are taken, so the value of z[co] is transferred to z[ci] by performing a
read operation and a transferInput operation. Reactor B is then triggered and it reads
the value from 2[c;] and writes it to both z[cz] and z[c3). Since z[c;] is not empty now,
the reactor B can be triggered again. And the composite actor can keep this loop without
reaching an end point. So, C is not reactive. A firing set for the composite actor C is shown
in Figure 3.5.

A non-reactive composite actor may be made reactive if its local framework inserts

a termination point into the infinite firing set to stop the execution of the internal model
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Figure 3.5: An ordering relation for the firing set of composite actor C.

and forces it to transfer outputs. This processes is called reactivization of a composite actor.
In general, this “termination” of execution may lead the composite actor to a non-quiescent
state. However, if the framework is responsible and the actors are precisely reactive, then
it is relatively easy for the local framework to restrict the number of triggers for each actor
so that the total firing set of the composite actor is finite. And it guarantees that the
composite will reach a quiescent state when all the reactions to these triggers are finished.
Thus, a responsible framework can precisely reactivize a composite actor.

For example, the DF2 framework in the previous example can restrict the number
of triggers for actor B to be one for each firing of composite actor C. By doing this, C
becomes reactive, and at the end of the reaction, reactor B is at its quiescent state. The
firing set with respect to C.trigger.1 is shown in Figure 3.6

Notice that reactivization may not always be unique. For example, in the above
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Figure 3.6: A precisely reactive firing set of composite actor C.

model, triggering reactor B twice per firing of C can equally make composite actor C
reactive. A more systematic way may rely on the knowledge of the local framework and
actors under its control. For example, the framework can keep track on the output data
items produced, and, say, restricts the number of output data to be at most (or at least)
one at each output port.

There are certain computational models whose precise reactivity can be well-
defined. For example, a synchronous dataflow (SDF) actor consumes a fixed amount of
data once triggered, and produces a fixed amount of data when it finishes. This property
makes a composition of SDF reactors under a SDF framework a SDF composite reactor.

Such a composite reactor can specify triggering rules that guarantee that there are at least
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enough input data for one internal SDF iteration. In other cases, the notion of time can be

used to define reactivity. We will discuss more on that in Chapter 4.

3.3 Modal Models

Some modeling techniques have the notion of operation modes and mode switch-
ings. That is, the system operates in a certain configuration until some mode switching
event occurs, then the system enters another configuration. A different operation mode,
in terms of the reactor model, could be a different set of actors, connections, framework
variables, communication semantics, and triggering rules.

. A systematic way of constructing modal models is to hierarchically combine con-
current models with state-machine-based sequential models [21]. The states in the state
machine represent operation modes, and the mode switching events trigger the state transi-
tions. These combinations are called modal models. Figure 3.7 shows an example of a modal
model, where at the top-level, the composite actor Cp contains a state machine framework
FSM with two states, s; and sp. Each of the states further contains a sub-composite actor
C, and Cs, which are called the refinements of the states. In general, the frameworks inside
each refinements may not be of the same kind. The meaning of the model is that, when
FSM is at one of its states, the composite actor Cp is functionally replaced by the refine-
ment of that state. The transition from one state to another may depend on the values of

the input of Cp as well as the output from the current refinement.
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Figure 3.7: A modal model with three levels of hierarchy.

3.3.1 Precise Mode Switching

A key requirement of building modal models is to precisely define the mode switch-
ing points. Mode switching may not be safe to perform at arbitrary execution points. Some
reactors may not exist after the mode switching, communication channels may change,
semantics of communication operations may vary, and the triggering rules may be different.

Suppose, in Figure 3.7, Cp is triggered to execute and its current state is 51, s0
the refinement C is triggered to execute respectively. If C} is not compositionally precisely
reactive, and an output at port e triggers a state transition to sp, then when the transition

is taken, it is not obvious what states the internal actors of C, are in. Moreover, if later the
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finite state machine switches back from sz to state sy, it is not clear what states C) should
start with.

Ideally, a mode switching operation should be a synchronization point (as defined
in section 2.1.3) of the entire execution of the composite. Mode switchings should only be
performed when all the reactors are at their quiescent state in the current operation mode.
In this circumstance, there is a well-defined and consistent semantics of the framework
during the time that an reactor executes its firing set. For this reason, we introduce the

notion of precise mode switching,

Definition 3.2. A mode switching operation w is precise if all the reactions before w are

precise, i.e. if f <w, then f <w.

Given the properties described in section 2.3.3, precise mode switching are rela-
tively straightforward to achieve in responsible frameworks. The framework can hold its
triggers when receiving a mode switching event. Then all the reactors will eventually finish
execution and reach a quiescent state. At this point, the framework can perform the mode
switching. Notice that, since no more triggers are sent after the mode switching request, the
execution before the mode switching point is well-defined. Furthermore, if the refinement
of a state is compositionally precisely reactive, then the FSM composite actor, say Cp in

the example, is also precisely reactive.

3.4 Implementation

In Ptolemy II, the compositional execution is achieved by the CompositeActor

and the Director classes. A composite actor is an actor that contains other actors. A
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composite actor can have a local director, which makes it opaque. An opaque composite
actor is executable. Thus, an opaque composite actor involves two director, a local director
and an executive director, just like in our framework model.

As discussed in section 2.5, the Ptolemy II Executable interface has seven meth-
ods. An opaque composite actor implements these methods and delegates them to its local
director. The local director, depending on the model of computation it implements, may
implement these execution method differently. In general, in the fire() method of the com-
posite actor, it first transfers inputs for all input ports, if there is any data in them, then
calls the fire() method of its local director, and after the director finishes its execution,
it transfers the data in its output ports to the outside model.

A key concept to achieve compositional execution is the notion of “iteration” for
a model of computation. An iteration is one compositional precise reaction that start with
trigger of the composite actor and finishes at a compositional quiescent state. Obviously,
as we shown in previous discussions, for an irresponsible framework, an iteration may not

be well-defined.

3.5 Related Work

Compositionality is a big challenge for modeling paradigm and languages. Some
models lose properties once composed. For example, a finite sequential processes can always
execute to its end, but two finite sequential processes, composed under the CSP model, may
never reach their end points, and thus deadlock. Composable medels are useful in two ways:

top-down or bottom up. The top-down view of compositionality advocates modeling and
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design of a system through refinement. A system is first modeled at a high abstraction
level, typically with nondeterminism. Then, a module of a high level model is refined
into a more concrete implementation. Semantics studies, like structured programming [83],
action refinement [76], assume-guarantee model checking [31], and interface theories [17], are
based on this point of view. A bottom-up approach advocates composing existing modules
into a larger-scale module, through the notion of containment. This has been practiced in
circuit design for many years. Diposet [33] is a semantics model to study concurrency and
containment relations in models of computation.

Many design languages support homogeneous compositionality. For example, a
composition of automata yields another automaton [67]; a composition of statechart mod-
els yields another statechart [28]; a composition of reactive modules is another reactive
module (2], and so on.

Complex engineering systems are heterogeneous, and some design methodologies
advocate heterogeneous compositionality. One example is the globally asynchronous and
locally synchronous (GALS) approach, like implemented in POLIS [5] and distributed syn-
chronous languages [6]. These approaches typically integrate two kinds of models, and they
have a fixed containment relation. A more aggressive approach is taken by systems like
Ptolemy Classic [11], Ptolemy II [44], and El Greco [13], which advocate the integration
of multiple sequential and concurrent models. The work presented in this chapter follows
the hierarchical heterogeneous modeling approach and focuses on the compositionality of

reactivity.
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Chapter 4

Timed Responsible Frameworks

In this chapter, we focus on frameworks that have a continuous notion of time.
In particular, we study continuous-time models, discrete-event models, and the interaction

among them, and with some untimed models.

4.1 Time

Time in the physical world is continuous and evolves at a constant rate. Embedded
systems with timing constraints usually need to be modeled in a timed framework to reflect
their timing behavior. A timed framework is a framework with a notion of time, represented
by a framework variable ¢ € Z. In this chapter, we consider the evaluation o(t) € R, a real
number. With this variable, all operations are tagged with a value of t. We say that an
operation is performed at time 7, if when the operation is performed, o(t) = 7. We define
T : Oper — R to be the function that gives the time stamp of an operation.

Although time in the physical world only increases, it is not necessary to be so in
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modeling frameworks. The value of ¢ can only be set by the framework though an operation
setTime : R — [{t} — K], which set a value v € R to the variable £. The value of ¢ can
be observed by both the framework and the actors, and actors can build its triggering rules
and change their firing set based on the evaluation.

The notion of time loosely sequentializes the operations in a timed model. If an
operation f is performed at ¢ = ¢), and operation g is performed at t = 3 > ¢, then f < g.
Only when ¢, = 5, there may be parallelism between the two operations. Two operations

fllg only if T(f) = T(g) and neither f < g nor g < f.

4.2 Continuous-Time Frameworks

A continuous-time (CT) framework models continuous dynamic systems that can

be represented by ordinary differential equations (ODEs).

4.2.1 Conceptual View

ODE-based continuous-time models can be expressed as

i = F(z,u,t) 4.1)
y = G(z,u,t) (4.2)
z(to) = o (4.3)

where,

e t€R, t >t is continuous time;

e z: R — R" is the n-dimensional state trajectory;
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e u: R — R™ is the m-dimensional input signal;
e y: R — R is the l-dimensional output signal;
e & = dz/dt is the derivative of z w.r.t. ¢;
e x5 € R® is the initial state.

We call F the right-hand side (RHS) of the ODE, and G the output map. We as-
sume that F is globally Lipschitz continuous on z for any bounded and piecewise-continuous
input u, such that, by the existence and uniqueness theorems of ODEs (see e.g. [70]), for
any t; € R, t; > tp, there is a unique trajectory z on [to, t/] satisfying the system dynamics
(4.1) and initial condition (4.3) for that input u, except on finitely many discontinuous
points. Such an ODE system is called well-formed. We only consider well-formed ODE
systems in this dissertation.

A set of ODEs can be built using components as shown in Figure 4.1. Conceptually,
components in this framework communicate via (piecewise-)continuous waveforms, which
are functions on a closed interval of R. The components are piecewise-continuous maps
from input waveforms to output waveforms. A special component, the integrator, makes a
feedback loop an ODE. The output of the integrator is the state trajectory z, and the input
of the integrator is the derivative . The functions F and G can consist of a feed-forward
composition of components that implement the piecewise-continuous maps. High-order
ODEs may involve multiple integrators connected in serial or parallel.

Strictly speaking, the conceptual view of differential systems does not fit in our

actor and framework concepts. In this model, variables change their values continuously,
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Figure 4.1: A component-based construction of ODEs.

and concepts of read and write operations do not apply. To build continuous-time frame-
works in computers, time must be discretized into discrete instants, and ODEs must be
solved numerically at these time instants. Nevertheless, the implementation of a CT frame-
work should stay as close as possible to the conceptual semantics of the CT models. For
example, the continuous notions of time and waveforms make it proper to ask for the value
of any signal at any time instant. The continuous-time framework should be able to find it

computationally.

4.2.2 Operational View

The execution of a continuous-time model involves solving the ODEs numerically.
A widely used class of algorithms, called time-marching algorithms, discretize the contin-
uous time line into an increasing sequence of time instants, and numerically computes the
state variable values at these time instants in that increasing order. The discretization of
time usually reflects the speed and accuracy trade-offs of a numerical algorithm, and is

determined based on the error tolerance of the solutions and the “order” of the algorithm’.

!Different classes of numerical algorithms may define “order” differently. But roughly, an ODE solution
algorithm has order n if the numerical error e = O(h"), where h is the step size.
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To compute the values of state variables at each time instant, the right-hand side
of the ODE needs to be evaluated with different z and u values. For example, the simplest
ODE solver is possibly the forward Euler (FE) algorithm,

z(t + h) = z(t) + h - F(z(t),u(t), 1), (4.4)

where £ is the last time instant where the solution is computed, so z(t) and F(z,u,t) are
known; h is the integration step size; and z(t + h) is the to-be-computed value of z at ¢ +h.
This algorithm can be achieved by making the integrator implement (4.4), and
scheduling the components in Figure 4.1 by sending triggers properly. More precisely, an
integrator, FEIntegrator, which implements the FE algorithm, has the following variables:
FEIntegrator.P = {input}
FEIntegrator.Q = {z}

FEIntegrator.S = {lastTimelnstant},

the firing set for time io:

FEIntegrator.fire|,, = {
X = Xo;
lastTimeInstant = o(t);
writex;

}

and for any ¢ > &,

FEIntegrator.fire|; = {
read_input;
h = o(t) — lastTimeInstant;
lastTimeInstant = o(t);
x = x + h * input;
write.x;
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The scheduling resembles a data-driven style, where the triggers are sent to actors
according to their data-dependency order, using integrators to break the feedback loops.

For example,
ODESchedule = {Integrator — u = F(z,u)} (4.5)

is a proper schedule for the system in Figure 4.1 for the FE algorithm.
Under this ODE solver, the communication channels between the ports represent
the values of the continuous waveforms at a particular time. A framework variable for a

channel is a buffer of size one.

Multi-iteration algorithms

More advanced ODE solvers may require firing the integrators and the actors that
build the RHS of (4.1) multiple times at several intermediate time instants for a single

integration step. For example, a 27d order Runge-Kutta method (RK2) [66] has the form:

ko = F(:l:, u, t) (46)
h h h
kk = F (.’L' + Ek‘o,'u(t + 5),t + -2-) 4.7
3h 3h 3h
ke = F (fB + —Zkl,u(t + T),t + T) (4.8)
2 1 4
z(t+h) = z(t)+h- (§k0 + §k1 + 5]62) (4.9)

This algorithm requires that the framework iterate the schedule like (4.5) four
times before the integrator can complete the computation of z(¢ + h). During the four

iterations, the value of ¢ needs to be increased accordingly, and the integrator needs to
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implement different firing functions, (4.6) - (4.9) accordingly. As a consequence, there are
several intermediate values appear in the framework variables.

Algorithms like FE and RK2 are called ezplicit algorithms, which have a fixed
number of iterations for each time instant. There are also implicit algorithms, which reduce
the ODEs to a set of algebraic equations, and rely on fixed-point or Newton iterations
to find the solution. For certain ODE problems, implicit algorithms may provide better
numerical stability, and thus allow larger step sizes [20]. Choosing what ODE algorithm to
use is largely application dependent.

An example of implicit algorithms is the backward Euler (BE) algorithm,

z(t + h) = z(t) + h - F(z(t + h),u(t + h),t + h) (4.10)

Obviously, this is an algebraic equation, which involves computing F(z(t+h), u(t+h),t+ h)
without knowing (¢ + h). A fixed-point iteration to solve this algebraic equation starts

with a guess of z(t + h), say zo(t + h) = z(t), then iterates

Zrp1(t + h) = z(t) + h - F(zi(t + h),u(t + h),t +h), for k>0 (4.11)

until for some m, ||Zm41(t + h) — Tm(t + h)|| < €, where ¢ is a small positive number that
measures the convergence of the sequence {zx(t + h)}x>0, and || o || is some norm. If the
sequence converges, then (¢ + h) = Tm41(¢ + h) is the numerical solution of z at time ¢ + h.

Fixed-point iterations (and Newton iterations) may not converge for arbitrary
step size h. However, the contraction mapping theorems [10] implies that if the trajectory
is continuous on (¢, + k], and h is small enough, then the fixed-point iteration always

converges. Computationally, this implies that we start with a guessed step size, and an
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upper bound for the number of iterations, M. If the fixed-point iteration does not converge
in up to M iterations, then we reduce the step size, say by half, and try again, until the
process converges. The convergence can be observed by the framework by looking at the

values in framework variables that represent the states of the ODE system.

Fixed-point semantics

For a continuous-time framework, both explicit and implicit ODE solvers should
be thought of in terms of fixed-point semantics. The framework starts with a known state
of the ODE system, it performs a finite (either known or unknown) number of scheduled
firing of actors, and reaches a fixed-point, which gives the state of the ODE system at the
new time instant. During the scheduled firing of the actors, the values of the framework
variables and the actor variables may be inconsistent, the value of the time variable may
increase or decrease, and their values may not be used by the rest of the system (e.g. the
output map). For this reason, we introduce an operation for a CT framework to indicate the
successful resolution of the state at a time instant — stateResolved. This is a framework
operation, and actors (e.g. those that construct the output map) can build triggering rules
using it.

After the state values at time ¢+ h have resolved, the output value y can be com-
puted by triggering the reactors that construct the output map G in their data-dependency
order. After that, the computation at time ¢+ h has completed. We introduce an operation
commit to indicate the finishing on the computation at one time instant. The framework
can then advance time to the next step, and repeat the ODE solution process again.

So, in general, the operations in a CT framework may look like Figure 4.2, where
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Figure 4.2: Illustrating the fixed-point semantics of CT frameworks.

stateResolved and commit at each time instant are synchronization points for this model.
There is a discrete set of time points {to, ...,t,¢ + h,...t;}, and the values of = at these time
points are computed by the ODE solvers. In the process of solving the ODE and producing
the output, there may be some partially ordered operations, but the stateResolved and

the commit operations are always in a total order.
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4.2.3 Hybrid Components in CT Frameworks

A timed event (or, event for short) is a tuple e = (1,v) € T x V, where T C R
is the set of time stamps, and V is the set of values. The time stamps make timed events
totally comparable. For e = (7,v) and €’ = (7/,v'), wesay e < €' if 7 < 7'.

A set of events is discrete if they are ordered isomorphic to a (subset) of integers?.
This means that there is an 1-1 and onto function that maps the events to the subset of
the integers, and the mapping preserves the ordering relation among the events.

Some continuous-time frameworks embrace discrete events on a subset of commu-
nication channels3. A communication channel that represents discrete events will have an
empty value at all but those event times. That is, let E be a set of discrete events on a
channel ¢ = (p ~ g), and Tg be the set of time stamps for those events, then z # L only
when o(t) € Te. These events may trigger components that only reacts to events, rather
than involves in the computation of continuous-time waveforms.

A discrete actor is an actor that only has discrete events at its input and output
channels. The firing of a discrete actor is triggered by the presence of an input event. A
precisely reactive discrete actor is a discrete actor whose firing set is finite and the presence
of any input event is a responsible trigger. That is, the reaction does not have to wait for
more than one input event.

Discrete actors are special cases of hybrid actors, which are actors that may have
both continuous and discrete inputs and outputs. Hybrid actors fundamentally increase

the expressiveness of ODEs. For example, they can be used to model discontinuous inputs,

2This definition is due to W.T. Chang (42].
3These frameworks are better called mized-signal frameworks. But for consistency reasons, we keep calling
them continuous-time frameworks.
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discontinuities on the RHS of ODE, A/D and D/A converters, and event detectors.

Since a discrete event is defined by both a time stamp 7 and a valuev = Y(z(7), u(7),7),
which may depend on the state and the input at 7, it is important to determine both of
them in a continuous-time framework. An event generator, E, is a reactor that has con-
tinuous waveform input and discrete event output. An event generator implements the
function ¥(z(7),u(7), ), and is triggered only when time is equal to the event time, by the
stateResolved operation.

In a continuous-time framework, there are two ways to define the time stamp of

an event:

e One way is to give the time stamps 7 directly. Events of this type are called timed
events. A triggering rule of an event generator EG that produces this type of event

can be written as,

==7

stateResolved ——2 EG.trigger

e Another way is to give a predicate B(z,u,t) == 0 on the value of the state variables,
the input variables, and time. We assume (-) to be continuous on its arguments. For
example, an event e can be defined as occuring whenever the state trajectory crosses
zero, i.e. z == 0. Events of this type are called state events. A triggering rule of an

event generator EG’ that produces this type of event can be written as,

stateResolved 2Z0==0, g’ trigger

It is the responsibility of the framework to trigger such reactors at the correct

time, no matter how they specify the rules.
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Reactors that respond to discrete events are relatively easy to handle. The write
operation of an event is an observable operation to the framework. And a discrete actor D

can be triggered by that write operation. Le. the triggering rule may look like,
write.q — D.trigger v

for some output port q.

Sometimes, a hybrid actor may decide to produce a discrete event in the future
time. This can be achieved by allowing discrete actors to register their triggering rules
dynamically during the execution. For example, a discrete actor D that is expected to be

triggered at time 7/ > ¢, can register a triggering rule,

stateResolved ==, D.trigger.

4.2.4 Responsible Continuous-Time Frameworks

A CT framework controls the progression of time. A responsible continuous-time
framework not only needs to keep the computational results close to the real solution of a
CT model in terms of acceptable numerical errors, but also needs to trigger the hybrid actors
according to the rules they specify. In general, to achieve correct computation of continuous-
time models, a responsible CT framework must control the modeling time according to the

following three issues:

(A.) Numerical performance: The numerical errors of ODE solvers significantly de-
pends on the choice of step sizes. Although choosing smaller step sizes always im-

proves accuracy, it may elongate the computational time. So, how to choose the step
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sizes to achieve maximum computation speed subject to tolerable numerical errors

must be considered.

(B.) Unsmoothness: Numerical ODE solvers assume a certain order of smoothness on
the RHS function F. If this assumption is broken, then the numerical algorithm
should not cross the non-smooth point in one step. For example, if

1 : t>1

F(z,u,t) =
-1 : t<1

then the numerical algorithm should not cross the time instant 1 in one step.

(C.) Event generation: Event generators need to be triggered at specified time instants.
Timed event generators are easy to handle, since the framework can examine the
rules to adjust the increase of time instant so that no events are missed. State events
are much harder, since the framework cannot predict exactly when a predicate that

involves the state of the ODE is true.
To implement responsible CT frameworks, we define the concept of breakpoints.

Definition 4.1. A breakpoint in a continuous-time model is a time instant when the

right-hand side F of the ODE or the output map G are not sufficiently smooth.

The “sufficiency” of smoothness may depend on the ODE solvers used. By the
nature of ODE problems, breakpoints should not be crossed in one integration step. In fact,
the values of the state variables may not be well-defined at these points. The numerical
algorithms should instead compute the left and right limits of the state values.

Depending on whether a breakpoint is known before the modeling time reaches

that instant, we classify predictable and unpredictable breakpoints. All unsmooth points
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that explicitly depend on time are predictable breakpoints, while the unsmooth points that
depend on the values of the state variables are unpredictable.

Predictable breakpoints are easy to handle. They can be stored in a table by the
framework. Before the framework chooses the next integration step size, it can look at
the table and possibly reduce the step size to make sure that no predictable breakpoints is
crossed in this step. Unpredictable breakpoint can only be detected after an integration step
has finished. Actors, whose behaviors depend on unpredictable breakpoint, may register
predicates, like 8(z,u,t) == 0, to the framework. After a tentative numerical integration
step, the framework can examine these predicates, and see whether any predicate is true.
If so0, an unpredictable breakpoint is found. It may also check if any predicate has changed
sign in this step. Typically, by the continuity of function B(e) on z, this change of sign
means there is an unpredictable breakpoint that has just been crossed by the integration
step. Thus, the result at ¢ + h is not valid. The framework should roll back to time ¢,
reduce the step size to some A’ (probably by examining the property of S(e)), and start the
integration from ¢ to ¢ + A’ again.

Strictly speaking, there is always a risk of missing unpredictable breakpoints if
B(z,u,t) crosses zero twice in one integration step. Restricting the rate of change of 5(-)
may reduce the risk. Specifying high numerical accuracy requirements, which essentially

reduce general step sizes, may also help.
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4.3 Discrete-Event Frameworks

A discrete-event framework has a continuous notion of time but only discrete ac-
tors. Since there are no continuous waveforms, no ODE solvers and fixed-point semantics
are needed. Conceptually, a discrete actor responds to a set of discrete-event inputs and
produces a set of discrete events as outputs. These events are time stamped, so the frame-
work knows exactly when to trigger reactors to process the (next) events. The reactors are
required to be causal, which roughly means that time stamps of output events should be
no earlier in time than the corresponding input events. This requirement, although intu-
itive, has profound semantics implication on the existence and uniqueness of “behaviors” of
discrete event systems. A formal discussion of this causality is given in [42]. We will only
use the intuitive definition in this dissertation, and restrict all actors to be causal in our

discussion.

4.3.1 Operational View

Recall that a discrete reactor is conceptually triggered by time-stamped input
events. It has a precise reaction for any input. That is, it does not wait for another input
once an input is available. As shown in Figure 4.3, suppose an output port g of a DE
reactor D is connected to an input port p’of a reactor D', then the triggering rules of D

may simply be,
write.q —% D'.trigger.p'. (4.12)

Suppose that the reactor D’ implements a time delay, which delays its input events

by time duration & and produces the same value. That is, if the reactor D’ is triggered by
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, framework: DE

Figure 4.3: Three reactors in a2 DE framework.

the rule (4.12) at time 7, and it reads a value v from the channel (g ~ p'), then it should
assign v to port ¢/, and do a write.q' at time 7 + 8. This can be achieved by allowing
reactor D’ to register for a trigger at the time it wishes to produce an output. We use the

syntax:
fireAt(D', 7 +6)
for this registration, which registers the following triggering rule with the framework,
setTime(r + 0) —> D'.trigger ¢,

so that it can be triggered again when time reaches 7 + §. In respouse to that trigger, it
can perform write_q’, and reactor D" can be triggered accordingly. So, suppose that the
minimum interval between two successive events produced by D is greater than the time

delay 4, then D' may have the following firing sets?: for trigger D'.trigger.p’,

4A general time delay reactor may need to implement a queue to locally store the timed events to be
produced.
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D'.firelt,isse,_Pr = {
read p’;
q =o(p');
= o(t)
fireAt(D', 7 + 4);

and for trigger D'.trigger q/,

D'.firelu.iggcr.q, = {
writeq’;
}

This mechanism of registering a triggering rule in the future to trigger the reactor
itself is called self-triggering. It is also a useful mechanism for source reactors, which are
reactors that have no input port, like D in Figure 4.3. Source reactors have no input events
to trigger them, but by using self-triggers, they can be triggered according to the progression
of time. For example, suppose reactor D implements a Poisson processes. At the beginning

of the execution, it can request a trigger trigger.-to,
Init <5 trigger_to.

In response to that trigger, it computes a Poisson-distributed random time value

t; at which it produces the next output. It then registers a seli-triggering rule:
setTime(t;) —— D.triggerq

to emit the output at time ¢; from port g, and at the same time register a self-trigger at
the next random time.
So, the job of a DE framework is to iteratively look at all the triggering rules

and find the smallest value 7 it should assign to the time variable, and trigger all reactors
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that are activated at time 7. We also introduce a commit operation in the DE framework
to indicate the completion of activities at a specific time. Because of the causality of all
reactors, after the commit operation at 7, no timed event earlier than 7 can occur. The
framework can then increase the time variable value to the next smallest value, and repeat

the triggering process.

4.3.2 Precise-Reactive CT Composite

Discrete event reactors may be implemented compositionally. In particular, it can
be implemented by an open composite with a continuous-time framework. The situation
is not trivial, since time in the CT framework conceptually progresses continuously. As a
composite actor, the CT composite actor is only triggered by the DE framework at discrete
time instants. Furthermore, the CT composite actor should be reactive and causal to obey
the discrete event semantics, which implies that time in the CT framework should always
be ahead of the DE framework time, and the CT time should not progress beyond the time
stamp of the “next” input event.

More precisely, let’s consider the configuration shown in Figure 4.4, where a CT
composite actor is controlled by a DE framework. So, there are two time variables involved,

t4 for the DE framework and t. for the CT framework. We have the following theorem.

Theorem 4.1. Let C be a CT composite actor with time variable t.. In order for C to be
a causal discrete-event reactor, whenever C is triggered by the DE framework, the following

relation must hold:

o(ta) < ofte). (4.13)
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Figure 4.4: A CT composite actor inside a DE framework.

Proof. By contradiction. Suppose on the contrary, when C is triggered and o(tq) > o(tc).
Let o(tq) — o(t.) = 6. By the continuous-time semantics of the CT framework, it will
start execute from f{¢ continuously. It is possible that, for some e < §, an event generator
produces an output, which is also an output of C, at o(t.)+€ < o(tq). Then, the composite

actor C is not a causal DE reactor. O

Theorem 4.1 indicates that when a CT composite actor is controlled by a DE
framework, the CT composite must run ahead of the DE time. This optimistic execution
has further implications. There are two cases when the composite actor C is triggered by
an input event, o(t.) = o(tg) or o(tc) > o(tg). The situation o(t.) = o(ts) is desirable,
which means that the input event makes effect at the time it happens. Now, the question

is how far in advance should the CT composite actor execute, or, in other words, is a CT
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composite actor reactive?

Suppose that when C is triggered, we have o(t;) = o(tq) = 7. The reactiveness
of discrete reactors seems to imply that the CT composite actor should execute until it
generates an output event. However, this may not always be possible. What if there is no
more discrete events for output? Futher more, even if it generates an output o = (7', v)
at time o(t;) = 7" = 7 + € for some positive ¢, and requests a self-trigger at 7' to the DE
framework, what if the next input event for C is earlier than 7 + e. That is, the next time
C is triggered, it finds that the time value of the DE framework o(ty) = 7" < 7', which
means that the optimistic execution last time was partly wrong. Thus, the CT framework
should not blindly execute until generating an output event. It should restrict the optimistic
execution to a certain length, and check with the outside DE framework for the next input.
And if the input event time, say at 7", is earlier than the stop time 7' of the optimistic
execution, the CT framework should roll back part of its last execution, to 7"/, and recompute
the trajectory after 7”. The amount of look-ahead execution is an application-dependent
design parameter. A section of interaction between CT and DE frameworks is shown in
Figure 4.5.

In summary, a precise-reactive CT framework needs to perform optimistic execu-

tion and support rollback.

4.4 Timed Precise Mode Switching

The notion of time naturally provides a set of synchronization points in timed

models. These points are the commit operations at a particular time instants. These



9

1. optimistic execution

PN
: ? kP >
. 4. rollback
; 2. register
'3, next trigger ; : self-trigger
, ' " : 7 »
T T T t,

Figure 4.5: A situation that requires the CT framework to roll back its optimistic execution
within a DE framework.

synchronization points make mode switching in timed model relatively easy to be defined
precisely.

Mode switching in timed models can be defined in terms of the value of the timed
variable. Of course, in continuous-time frameworks, it can also be defined in terms of the
values of continuous waveforms, like state events. The framework can activate all the triggers
before the mode switching time, and make sure that it performs the commit operation at
the mode switching time. Then, the mode switching can take place.

One situation that needs additional attention is the “zero delay” semantics of the
mode switching operation. Conceptually, mode switching takes no time. At the mode
switching time 7, all operations before T are finished. However, the mode switching may
activate triggers at exactly time 7 again. So, time cannot be advanced immediately after
the mode switching. One way of looking at this is the 7~ — 7 — 77 interpretation. That is,
the commit operation before the mode switching only completes the operations up to 77;

the mode switching happens at time 7; and the new starting time is r+. Although 7~, 7,
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and 7+ take the same value, they indicate an ordering relation among operations.

4.5 Implementation

We implement the CT and DE frameworks as corresponding domains in Ptolemy
IL A detailed documentation of these implementation can be found in [34] and [52]. We
only highlight some of the features in the implementation that reflects the discussions in

this chapter.

e CT domain scheduling. The CT domain in Ptolemy II implements a responsible
CT framework. It allows the existence of discrete signals and hybrid actors. The
scheduling for a CT model is based on clustering. A model is clustered into a contin-
uous part and a discrete part. The boundary between the two parts are hybrid actors,
like event generators and waveform generators. A signal type system, discussed in the
next bullet, performs this clustering. In the continuous part, the actors are further
partitioned into the state transition actors, which implement the F function in the
ODE 4.1, and the output actors, which implement the output map G in 4.2. Initial
conditions of the ODE are parameters of the integrators. Within each partition, we
use a demand-driven topological sort algorithm to schedule the actors. The state
transition actors are all the actors whose outputs are needed by the integrators. The
topological sort starts with the input ports of the integrators, and backtracks to source
actors or the outputs of integrators. The output actors are all actors that are needed
by the sink actors, like plotters. The topological sort starts with the sink actors, and

backtracks to source actors or integrators. Actors in the discrete cluster are scheduled
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in a data-driven manner. These discrete actors cannot introduce delays from their
inputs to their outputs, and there cannot be feedback. If these features are needed, a

DE composite actor can be used.

Signal type system. When a continuous-time system contain discrete components,
the signals at the boundaries have to be converted accordingly. For example, the
output of event generators should connect to the input of discrete actors, and the
output of waveform generators should connect to continuous actors. In addition,
many components can be used in both continuous and discrete parts of a CT system.
For example, a Scale actor can be used to scale a waveform by a factor, or it can
scale all the event values in a set of discrete events. In order to properly cluster actors
into continuous and discrete parts and schedule them accordingly, we develop a signal

type system.

The signal type system resolves the signal type for each port in a CT system. The
possible types are UNRESOLVED, CONTINUOUS, DISCRETE, and NOT-A-TYPE, forming a
lattice in Figure 4.6. A type that is lower in the lattice is more specific than the type
that is higher in the lattice. This means that the type UNRESOLVED can be resolved
to either CONTINUOUS or DISCRETE, and the types CONTINUOUS or DISCRETE can be

resolved to NOT-A-TYPE.

Some components have fixed signal types at their ports. For example, an inte-
grator has a CONTINUOUS input and a CONTINUOUS output; a periodic sampler has
CONTINUOUS inputs and DISCRETE outputs; a zero-order-hold actor has DISCRETE in-

puts and CONTINUOUS outputs, and many actors only works for DISCRETE inputs and
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Figure 4.6: The signal type lattice for mixed-signal continuous-time models.

outputs. But for actors that can be used in both continuous and discrete clusters,
their signal types are UNRESOLVED. The role of the signal type system is to resolve all
the UNRESOLVED types by converting them to either CONTINUOUS or DISCRETE. And

the rules are simple:

— If a port p is connected to another port g with a more specific type, then the

type of p is resolved to the type of the port g.

— If a port p of type CONTINUOUS is connected to a port g of type DISCRETE, then

both of them are resolved to NOT-A-TYPE.

— Unless otherwise specified, the types of the input ports and output ports of an

actor are the same.

At the end of the signal-type resolution, if any port is of type UNRESOLVED or NOT-A-TYPE,

then the topology of the system is illegal, and the execution is denied.

Step size control mechanisms. The CT domain in Ptolemy II controls the pro-

gression of time by the three mechanisms discussed in section 4.2.4. The step size
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control mechanisms are achieved by the fireAt() method in the Director class and
a CTStepSizeControlActor interface. Actors can use fireAt() method to register
predictable breakpoint, the CTDirector will make sure that the entire system is exe-
cuted on that time instant. Actors that can only affect step sizes after the new CT
states has been resolved should implement the CTStepSizeControlActor interface.
These actors includes integrators, which controls the numerical accuracy and conver-
gence, and state event generators, which produces unpredictable breakpoints. After
resolving the states, the CTDirector will query these actors for the successfulness of
the last step. If any of these actors disagree the resolved states, either because of
intolerable numerical error or missing of events, the director will recompute the last
step with a smaller step size. The smaller step size is also obtained by asking these

step size control actors.

4.6 Mixed-Signal and Hybrid System Modeling

The compositional precise reactivity of CT and DE frameworks allow us to build
models that hierarchically compose continuous and discrete dynamics. This section gives

the modeling structure for such systems, as well as some examples built in Ptolemy II.

4.6.1 Mixed-Signal Models

A mixed-signal system can be built by hierarchically composing CT and DE mod-
els. For example, Figure 4.7 shows a scenario where a DE model is embedded in a CT

system. This is a natural model for systems like computer-based control application, where
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discrete controllers are embedded within continuous plants. An event generator produces
discrete events that trigger the execution of the DE subsystem. The response, another set

of events, is fed through the waveform generator and converted back to waveforms.

CT

“ _:j(x,u)ki—l“ J‘ y‘-—F—}S(X-H)F—f y

waveform |§ ¢ event |
_‘ generalor ‘ 1 DE % | generalor 4
L2 1 \ P, forasie

Figure 4.7: A DE composite actor inside a CT model.

Figure 4.8 shows a scenario where a CT model is embedded in a DE system. This is
a natural model for systems like mixed-signal circuits and micro-electromechanical (MEM)
devices. These systems have large portion of discrete parts and typically provide a discrete
interface to larger applications. Event generators and waveform generators are used again

at the boundaries of these models.

DE ‘
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Figure 4.8: A CT composite actor inside a DE model.



100

4.6.2 Mixed-Signal Examples
Controller with time delay

This example models a discrete controller that controls a continuous plant, as
shown in Figure 4.9. The control algorithm is simply a proportional feedback controller.
Presumably the controller is implemented in software and it introduces a computational
delay from the receiving of input samples to the production of the control values. Depending
on whether there are other software tasks running, this delay may vary from sample to

sample.

CTDlrector

SqareWave

L L

AddSubtract  TransferFunction
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ZeroOrderHold - PerlodicSempler OiscreteControiler
I x [

L 4
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RandomNumber
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Figure 4.9: A Ptolemy II model for a control system with time delay.

The model has two levels of hierarchy, a CT top-level containing a DE composite

actor. A TransferFunction actor® is used to model the differential equations. The output

5This is a syntactic sugar for high order differential equations. Internally, it is built using integrators,
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of that actor is periodically sampled and fed into the discrete controller. Inside the discrete
controller, the control law is applied. The event also triggers a random number generator,
and a variable delay actor, which delays its input events by the amount of time indicated by
the value of the second input. We model the delay as a random number that takes two values

0.05 and 0.1 with equal probability, 50%. One execution trace is shown in Figure 4.10.
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Figure 4.10: The execution result for the model in Figure 4.9.

Micro-accelerometer

Sigma-delta (Z/A) modulation [14], also called pulse density modulation, is a Bang-
Bang controlled over sampling A/D conversion technology. An analog input is over sampled
N times faster than the requested digital output frequency, and quantized to one bit, 1.
The quantized value is fed back to the analog part, as well as accumulated by a digital

accumulator. For every N samples, the convertor produces the digital output and reset

adders, and scale actors.
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the accumulator. Due to its robustness, ¥/A modulated A/D convertors have been ex-
tensively developed. Recently, this technique has been applied to micro-electromechanical
accelerometers to reduce noise, enhance stability, and improve sensing range [49].

Figure 4.11 illustrates the physical structure of a £/A modulated micro-accelerometer.
The three beams and the gaps between them create a structure that convert acceleration
at the vertical direction to changes of capacitance. By sampling and accumulating the

capacitance, a digital representation of the acceleration can be computed.

—
l__ﬁ_‘

Figure 4.11: A physical structure illustrating a micro-accelerometer.

Figure 4.12 shows a model for the modulated micro-accelerometer. A CT compos-
ite actor, CTSubsystem, is used to model the capacitance dynamics of the accelerometer,
which is simplified to 2" order ODE. The sensing signal is sampled by the periodic sampler,
filtered by a lead compensator (FIR filter), and fed to an one-bit quantizer. A delay actor
is used to model the time delay introduced by filtering and quantization. The outputs of
the quantizer are fed back to the analog part. The quantized signal is filtered again by the
moving average (MA) filter, and accumulated. A digital clock, which produces a trigger

every N sampling period, triggers the accumulator to produce the digital output, as well
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as resets the accumulator.
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Figure 4.12: A Ptolemy II model for £/A modulated accelerometer.

Figure 4.13 shows an execution result of the model for a sine wave acceleration
input. The upper plot in the figure shows the discrete signals. The dense events, with values
+1, are the quantization result. The sparse events are the final output of the accumulator,
i.e. the digital outputs, and as expected, they have a sinsoidal shape. The lower plot shows
the continuous signals, where the low frequency sine wave is the acceleration input, the high
frequency waveform is the analog sensing signal, and the square wave is the zero-order hold

of the feedback from the digital part.
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Figure 4.13: An execution result for the model shown in Figure 4.12.

4.6.3 Hybrid System Modeling

A hybrid system is a modal model that consists of finite state machines and
continuous-time models, as shown in Figure 4.14, where each state is refined into another
CT composite actor. Notice that by adopting the event generation facilities in CT models,
a CT subsystem that refines an FSM state can produce discrete events as their outputs, like
the port e in the figure. State machine transition triggers can be built using these events,

as well as continuous signals from the inside and the outside domains.
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Figure 4.14: A hybrid system is a modal model with hierarchies of FSM and CT.

Hybrid System Example: Sticky Point Masses

This example shows a hybrid system with two states. As shown in Figure4.15,
there are two point masses on a frictionless surface with two springs attaching them to

fixed walls.

."1“)

JX0)

Figure 4.15: A sticky point mass system.
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Let y1(t) denote the right edge of the left mass at time ¢, and y2(t) denote the
left edge of the right mass at time ¢. Let p, and p; denote the neutral positions (i.e.
the equilibrium points) of the two masses, so the force is zero. For an ideal spring and
frictionless surface, the force at time ¢ on the mass is proportional to p; — y1(¢) for the left
mass and ps — y2(t) for the right mass, assuming the force is positive to the right. Let the
spring constants be k; and k2, and the masses be m, and ma. Then, by Newton’s law, we

have

#(t) ki(pr — n(t))/mu (4.14)

#2(t) ka(p2 — y2(t))/m2 (4.15)

Now, giving initial positions other than the equilibrium points, the point masses
oscillate. The distance between the two walls is small enough that the two point masses
may collide. The point masses are sticky. And, when they collide, the situation changes.
With the masses stuck together, they behave as a single object with mass m, + my. This
single object is pulled in opposite directions by two springs. While the masses are stuck
together, y;(t) = ya(2).

Let y(t) = y1(t) = y2(t), the dynamics are now given by:

kipy + kapa — (k1 + k2)y(t)
(my + m2)

§(t) = (4.16)

We also assume the stickiness decays exponentially after the collision, such that
eventually the pulling force between the two springs is big enough to pull the point masses
apart. This gives the two point masses a new set of initial positions and speeds, and they

oscillate freely until they collide again.
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The system model, as shown in Figure 4.16, has three levels of hierarchy - CT,

FSM, and CT. The top level is a continuous-time model with two actors, a composite actor,

SPM dynamics, which outputs the position of the two point masses, and a plotter that

simply plots the trajectories. The composite actor is a finite state machine with two modes,

Apart and Together.
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Figure 4.16: A Ptolemy II model for the sticky point mass system.

In the Apart state, there are two ODEs modeling two independently oscillating

point masses, as in (4.14) and (4.15). An event detector, implemented by subtracting one

position from the other and detecting the zero crossing, is used to generate the collision
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event, c. This event will trigger a FSM transition from the Apart state to the Together
state. Besides transferring the point mass position, the actions on the transition set the

velocity of the stuck point mass based on law of conservation of momentum:

v = vim) + vamy

4.17
my + mp ( )

where v; and v are the velocities of the point masses before the collision, and v is the
velocity of the stuck point mass, after the collision.

In the Together state, there is one differential equation implementing (4.16), and
another first order differential equation modeling the exponentially decaying stickiness. An
expression computes the pulling force between the two springs. The trigger on the transition
from the Together state to the Apart state compares the pulling force to the stickiness. If
the pulling force is bigger than the stickiness, then the transition is taken. The positions
and velocities of the two separated point masses are equal to those before the separation.

An execution result is shown in Figure 4.17.

EIRIHE]

Displzcement of Masses

Figure 4.17: An execution result of the sticky point mass model.
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4.7 Related Work

Modeling and simulation of timed systems was one of the first applications of com-
puter systems. The work presented in this chapter is greatly influenced by circuit (analog,
digital, and mixed-signal) simulation technologies, discrete event simulation technologies,
control system simulation technologies, and hybrid system theories.

Early computer simulation tools typically deal with a single model of computa-
tion and application domain. For example, SPICE (77] is particularly tuned for analog
circuit simulation, VHDL [3] and Verilog [73] simulators are tuned for digital circuits, and
Simulink® v1.0 is designed for simulating continuous control systems. Heterogeneous sys-
tems, like mixed-signal circuits, micro-electromechanic systems (MEMS), and computer
control systems, have boosted the theory and practice of integrating continuous and dis-
crete modeling and simulations [65], [56], [74), in particular, mechanisms for event detec-
tion [55] and step-size controls [38]. Early tools, like SPLICE [63], only perform a coarse
event prediction and cannot handle tight feedback among continuous and discrete parts
of a circuit. Hybrid system modeling tools like SHIFT [18] and Teja also simply perform
coarse-grained event prediction. Saber [15] and its successive VHDL-AMS [24] and Verilog-
AMS [35] simulator VeriasHDL [16] have very sophisticated step-size control mechanisms
and handle much complicated circuits. Later versions of Simulink [29] also implemented
event detection mechanisms to support the existence of discrete blocks, including finite state

machines.

$Simulink is a software package of The Mathworks, Inc..
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Chapter 5

Real-Time Responsible

Frameworks

The ultimate goal of designing embedded systems is to deploy them into the phys-
ical world and let them function. This chapter discusses frameworks that interact directly
with the physical world. Such frameworks are called run-time frameworks in contrast to
design-time frameworks that at most only have simulated physical world models. A run-
time framework needs to operate with respect to the physical time, respond and produce
physical events, and manage the computation and communication resources within the em-
bedded system. While design-time frameworks may freely adjust the notion of time and
events to achieve computational efficiency, a run-time framework needs to strictly respect
the law of physics in the real world. In cases where reactivity cannot be completely fulfilled,
it may sacrifice precise reactions of some components for obtaining timely reaction of some

other components. A common way to specify criticality of reactions is to assign priorities
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to software components. However, blindly applying priority-driven execution may intro-
duce many problems, including priority inversion. In this chapter, we formulate prioritized
precise reaction and responsible run-time framework to solve the priority inversion prob-
lem. After introducing the concepts of time determinism, value determinism, and real-time
responsible frameworks, we propose a real-time model of computation — timed multitask-
ing (TM), which makes time explicit at the programming level and leverages a real-time

responsible framework to achieve deterministic timing behavior of embedded software tasks.

5.1 Run-Time Composite Actor

The real world is a framework with its laws of physics. In the physical framework,
time, called the real time, is continuous and flows at a constant rate independent of-anything
else!. The physical framework is like a conceptual continuous-time framework discussed in
section 4.2.1, where components (here called physical processes) do not need triggers. They
evolve continuously and concurrently with respect to the time continuum.

An entire embedded system in the physical world can be viewed as an actor,
namely a run-time actor, which is “managed” by the physical framework. All operations
within the run-time actor are stamped by a value of real time. The triggers and inputs of
a run-time actor are typically obtained from sensors; and its outputs are made available
to the physical world by actuators. A run-time actor may be a composite actor, with a
run-time framework as its local framework.

For a run-time actor, it is important to distinguish data I/O from triggering of

!We do not consider the relativity effects.
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reactions. Not all data acquisition triggers immediate reactions. A trigger creates a thread

of execution in the run-time actor, while data inputs do not.

5.1.1 Physical Data I/O

The physical world changes continuously. In order for the embedded system to
respond and control the physical processes, some states of the physical world must be
acquired by the embedded system, discretely. Similarly, discrete outputs from the embedded
system need to be converted to physical activities. These jobs are performed by sensors and

actuators, as shown in Figure 5.1.
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Figure 5.1: The physical world as a framework.

Following [41], we define two kinds of semantics for the I/O data between the

embedded system and the physical world — event semantics and state semantics.

o Event semantics requires that the receiver of the data process every event exactly
once. The loss of a single event may lead to a misunderstanding between senders and
receivers. If there is a mismatch between the production and consumption rates of

events, a blocking mechanism or a queuing mechanism may be introduced to force
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synchronization.

e State semantics reflects the current state of the physical world. It is reasonable to
only keep the most recent samples of physical states. The rate mismatch between
senders and receivers can be solved by preserving and/or overwriting data samples.
State data are usually seen in control-oriented real-time systems, where controllers

only deal with the latest state of plants.

5.1.2 Run-Time Triggers

Conceptually, computing in a run-time embedded system never terminates. This
infinite computing can be segmented into an (infinite) aggregation of finite computation.
We view these pieces of finite computation as reactions, and the starting point of each
reaction is a trigger. These triggers may or may not directly associate with physical events.

We classify three kinds of triggers for a run-time composite actor.

o Self-triggered. Self-triggered embedded software has a single thread of control, typi-
cally implemented as an infinite outer loop. Once it starts execution, it repeats some
computation and communication activities over and over again. Sensor information is
pulled from sensors to internal actors. Timing properties of reactions totally depend
on the operations performed within the loop, and may differ significantly from time

to time.

e Time-triggered. Timed-triggered embedded software starts its reaction in response
to some (predefined) clock signals. All other sensor information may be pulled from

sensors in order not to block the reaction. Time-triggered models have the advantage
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that all triggers are predictable in terms of time, and reactions potentially have precise

starting times, so that timing analysis may be easy.

e Event-triggered. Event-triggered embedded software responds to changes in some
physical variables. There are master events that trigger responses, and other sensor
information may be pulled. Physical events may sometimes be highly unpredictable. It
may be that a second trigger comes before the reaction of the first trigger is finished.
But in many cases, the physical dynamics actually guarantees that certain kinds
of events do not repeat beyond a particular frequency. Understanding the physical
dynamics and choosing what physical event to use as triggers is a important design

decision to make for event-triggered systems.

Self-triggered embedded software does not need interrupts of any kind, but it
also suffers slow reaction to some events and non-predictable response time. Both time-
triggered and event-triggered execution requires interrupts to the system. Time-triggered
execution sacrifices promptness of response in favor of predictable timing behavior, while

event-triggered execution takes another choice.

5.1.3 Run-Time Frameworks

The internals of a run-time composite actor may be an aggregation of software
components and a framework that schedules their execution. Following the real-time pro-
gramming communities, we call these software components tasks. The framework that
manages these tasks is a run-time framework. In most embedded systems, the run-time

framework is implemented as a real-time operating system (RTOS).
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Although time-triggered and event-triggered run-time composite actors can be
viewed as reactors from the outside, their internal reactions are seldom sequential. Some
internal tasks may have a long execution time and a late deadline to finish, while some
other tasks may have to be finished promptly.

It is worthwhile to emphasize that digital embedded systems only interact with
the physical world at some discrete time instants. From the physical effect point of view,
only those discrete inputs and outputs affect the computation and the physical dynamics.
The operations inside the framework, and their ordering are not visible by other physical
processes. This information hiding gives run-time frameworks the flexibility to arrange
internal actor’s operations based on reactivity constraints, as long as it preserves timing
properties of its I/O operations.

For example, an embedded controller shown in Figure 5.2 has two tasks: the
controller task computes control outputs, and the supervisor task monitors the control

algorithm and updates the controller’s parameters.
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Figure 5.2: Two tasks in a controller.

Suppose that the controller is triggered by periodic samples, say every 2ms, and
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for each sampling input, the controller produces an output with a (fixed) delay, say 1ms.
The supervisor task is only triggered once in a while, e.g. every second, and it takes much
more time to compute a new set of parameters to update the control algorithm. Since both
tasks are implemented on the same embedded system, they share the computing resources.
It is unacceptable that once the supervisor task is started, the controller stop producing
any output for a long time. A better strategy is shown in Figure 5.3, where the controller
task preempts the long run supervisor task. In the figure, each box represents the execution
of a task. The shaded parts in the supervisor task indicate that its execution is preempted

by the controller task.
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Figure 5.3: Timing diagram of a controller with two tasks.

Preempting long-running tasks to grant resources to a more “important” task
is a powerful concept. It may provide better reactivity than nonpreemptive execution. In
practice, many real-time operating systems support preemptive execution of tasks. However,
preemptivity also brings another level of complexity to real-time programming. It may make

real-time programs hard to understand, analyze, and maintain.
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Resource Management

Typical embedded systems usually only have limited resources for its multiple
tasks. These resources include computing resources, like CPU and memory, and commu-
nication resources, like buses, networks, and physical 1/0. Sometimes, resources may be
simply logical. For example, a critical data section can be viewed as a resource. At any
time, there is at most one task that is allowed to write to it.

In order to understand the preemptive execution of tasks, we need to further
characterize the preemptability of resources. Some resources are arbitrarily preemptable, to
a certain granularity. After granting the resource to a task, it can be taken back at any time
without waiting for the task to complete. A typical example of preemptable resources is
the CPU resource. Some resources may not be arbitrarily preemptable. Once the resource
is occupied, its use cannot be interrupted until the task actively release it. During the time
that a task is using the resource, the resource is nonpreemptable. For example, a shared
communication medium is nonpreemptable during the time that a task is sending a packet.

Managing multiple resources is not trivial. For example, a task A may first need
resource a, and before releasing a, need resource b. Another task B may first need resource
b, and before releasing it, need resource a. Without carefully managing their execution, it
may occur that each reactor occupies one resource and waits for the other resource — a
typical deadlock situation.

Some resources may be preemptable for some tasks, but none preemptable for
another set of tasks. We call them partially preemptable resource. For example, writing

to a critical data section is nonpreemptable for tasks that share the same data section but
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preemptable for other tasks. This partial preemptability may introduce priority inversion

problems, which will be discussed further in the next section.

5.2 Real-Time Computing: Common Practice

A common practice of embedded systems programming is to adjust priorities
among the tasks to fulfill timing constraints. Intuitively, priorities represent the relative
importance of tasks at run time. Resources should first be granted to high priority tasks
in order for it to produce faster response. Priorities can be assigned to tasks statically at

design time, or they may be dynamically assigned at run time.

Real-Time Scheduling

How to assign priorities to multiple tasks is the real-time scheduling problem and
has been an active research area for more than 20 years, starting with the seminal work by
Liu and Layland [50]. The goal of real-time scheduling is to come up with a set of priority
assignment rules to fulfill timing requirements.

Real-time scheduling algorithms typically make some assumptions on tasks and

resources. For example, Liu and Lay!and’s original work makes the following assumptions:
e a single and arbitrarily preemptabe resource (CPU);
¢ independent tasks;
e fixed and known task execution time;

e periodic task triggers;
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e run-ability constraints — i.e. each task must be completed before receiving the next

trigger.

Under these assumptions, they derived rate-monotonic scheduling (RMS) and
earliest-deadline-first (EDF) algorithms. These algorithms are shown to be optimal (in
terms of CPU utilization) for static and dynamic priority assignments. Further work in this
area developed more sophisticated timing analysis theories and have relaxed many assump-
tions in their algorithms [48], [4], [75] [68], [79]). However, most of them still rely on tasks’
worst case execution time (WCET) and arbitrary preemptability. Optimal scheduling for
multiple resources has also been shown to be NP-complete [8].

In reality, many of these assumptions in scheduling theories do not hold. Tasks
may require multiple resources to execute, and they can be strongly coupled. Priority-based
real-time programming can be very subtle. One problem example is the priority inversion

phenomena.

Priority Inversion

The intuition of assigning priorities to tasks is to prioritize resource utilization and
obtain fast response for more critical tasks. However, because of the partial preemptablilty
of some resources, blindly following the priority assignment and triggering high priority
tasks may cause problems. The priority inversion problem breaks the independent task
assumption such that a high priority task may be preempted by low priority tasks indefi-
nitely.

Consider the following situation where there are four tasks, 4, B, C, and D with



120

decreasing priorities, i.e A has the highest priority, while D has the lowest one. Tasks A and
D share a critical data section s. Suppose at some time instant, D is the only eligible task,
and starts to execute. During its execution, it grabs a lock on s and writes to it. Suppose
now that the task A is triggered. Since s is locked by D, the execution of A is blocked.
Mean while, task B, which does not require resource s, may be triggered. From the view
point of task B, D’s writing to s is merely some CPU, bus, and memory operations, thus it
is preemptable. So, B may preempt D and start executing, which in turn preempts task A.
In fact, B and C can be alternatively triggered, and their executions can preempt D from
releasing s for an arbitrarily long time. The result is that A is blocked for an arbitrarily
long time, even though A has a higher priority than B and C, and A does not share a
critical section with B and C.

Priority inversion problems are usually solved by the priority inheritance and
priority ceiling protocols [60). The basic ideas of these protocols are to look into the
content of each tasks, analyze shared critical data sections at compile time, and for each
data section, find the highest priority task that may access it. Call this highest priority
value 7. Then, if a lower priority task enters this section, the priority of the task inherits =,
so that no task of priority lower than m can preempt it. When the task leaves the critical
section, its priority drops back to its normal value. Priority inheritance and priority ceiling
protocols successfully solve the priority inversion problem. And by adding a constraint that
all tasks need to grab resources in the same order, it also solves the deadlock problem caused
by cross waiting for resources. Thus, these protocols are widely implemented in real-time

operating systems, like VxWorks [81], QNX [40], and resource kernel [61]. On the downside,
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the priority inheritance protocol may be hard to implement, and it adds run-time overhead
to monitor priorities and critical data sections. So, some light-weight real-time kernels omit
them and ask software designers to take care of avoiding the priority inversion and deadlock

problems themselves.

More Pitfalls

Using priorities as the only tuning factor and brute-force applying priority-driven
preemptive run-time rules without considering the status of other tasks introduce many
problems. Besides priority inversion problems, other pitfalls exist when the assumptions of

real-time scheduling theories do not hold.

o Preemptive executions, especially with static priority assignment, are fundamentally
fragile. Timing behavior of tasks may be very sensitive to the task triggering time
and the accuracy of WCET estimation. An early arrived higher priority task can have

a domino effect and make all subsequent low priority tasks miss their deadlines.

e Chasing fast response may not be optimal. Some hard-real-time algorithms may have
strict requirements on the output time. An optimal result may only be achieved by
emitting the output at a particilar time. Early outputs may result in a sub-optimal
(maybe even disastrous) result, as well as late outputs. This is particular the case for

multimedia applications and some control systems.

e The results from schedulability analysis may not be very useful. The typical answer
from schedulability analysis is the worst case response time between the triggering

and the finish of the task. This value is required to be less than the deadline to
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pass the schedulability test. However, schedulability analysis does not tell how often
the worst case response time is met, what distribution it has, and what happens if
it is bigger than the deadline. In many applications, missing a deadline occasionally
may not cause catastrophic results. Schedulability theories are no longer applicable

in these cases.

e The worst case execution time may not be the best representation of the execution
time of a task. It could be much larger than the average execution time. And by using
WCET for scheduling analysis, the real-time schedule could be very conservative. As

a consequence, the resources are not best utilized.

An example illustrating these pitfalls is the situation called Rechard’s anomalies
described in [22]. It shows that for a particular set of (precedence-)dependent tasks and an
optimal schedule, adding more processors, decreasing task execution times, or reducing the

number of precedence constraints will all increase the overall response time.

5.3 Real-Time Responsible Frameworks

Two things make real-time programs different from non-real-time programs; one is
prioritized execution and the other is the sensitivity of timing behavior. Of course, the first
factor is merely an operational decision to achieve the latter. This section studies precise
reactions in prioritized execution, and defines real-time responsible frameworks in terms of

time determinism.
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5.3.1 Prioritized Reactors

Whether or not an operation should be performed at run time may depend on two

factors, which essentially impose partial ordering relations among operations:

e Data dependency: A reactor may require inputs from the physical world or results
from other operations. These dependencies impose ordering relations such that some
communication and computation must be performed before some others, as discussed
in Chapter 2. In a run-time framework, some physical inputs are unpredictable. They
are controllable by neither the framework nor any reactors. Waiting on these inputs

may take arbitrarily long time.

o Resource dependency: Reactors need computational and communication resources
to execute. For example, in a single CPU system, all the tasks must share the same
CPU, which essentially sequentialize all the executions. In a multi-CPU or distributed
system, the communication resource, either the bus or the network, must also be
shared by some tasks. Choosing what operation to perform is a decision made by a
framework. As stated before, resources can be preemptable, partially preemptable,
or nonpreemptable. Arbitrarily preemptable resources impose no constraints on the
operations that need them, while nonpreemptable resources impose ordering relations
like the first occupant must release the resource before another occupant can get it.
We will see that partially preemptable resources may introduce conflicts in ordering

relations.

Granted with data and resources, a reactor can execute its firing set, which takes

time to finish. To bias resource allocation to fulfill timing constraints, priorities can be
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assigned to the firing set of a reactor. We consider a priority to be a natural number, such
that the smaller the number is, the higher priority it represents. We denote by II : Oper —
N a function that gives the priorities of to operations. Assigning priority to a firing set
essentially assigns this number to all operations in that firing set. So, for fy, f2 € A.fire;,
II(f,) = II(f2)- A reactor, whose firing sets are assigned with priorities, is called a prioritized

reactor.

5.3.2 Prioritized Precise Reactions

Priorities define ordering relations for operations that share the same resource. For
example, let A and B be two reactors, competing for a preemptable resource. Let trigger
r, activated at time ¢, be a responsible trigger for reactor A in the data dependency sense
(as discussed in Chapter 2), and trigger r/, activated at ¢ < ¢’ < T(r), be a responsible
trigger for reactor B in a data dependency sense?. Also, assume that firing set A.fire|; has
priority 74, and firing set B.fire| has priority #g < w4. Thus, reaction B.fire|y has a
higher priority. Since all operations in a real-time execution are associated with real time
stamps, the time instant ¢’ essentially partitions the operations in A.fire|; into two subsets:
A; and Ay, such that Vf € A, T(f) < t' and Vf € Ay, T(f) > t'. Then, the preemptive

execution, depicted in Figure 5.4, has the following ordering relation:

Vf € A; and Vf' € B.fire|y, f < f'

VgeA?ar_,<g

Suppose that the resource shared by A.fire|, and B.fire| is not preemptable,

2Recall that r is the finish operation in A.fire|,.



Figure 5.4: An ordering diagram for preemptive execution. The dashed arrows indicate
the ordering relation without the preemption. Numbers d and d' are the execution time of
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reactor A and B, without preemption.

then the execution of B.fire|y cannot start before the finish of A.fire|,. This ordering

relation, shown in Figure 5.5, can be written as:

Now we show that partially preemptable resources may introduce conflicts in the
execution order. Suppose reactor A and C needs resource a and b, and reactor B needs
resource a only. In addition, suppose b is nonpreemptable for A and C, but is preemptable

for B. Let priorities m4 > mp > 7¢, and triggering time T'(r) < T(r') < T(r"). As shown

Vf' € Bfire|y,r < f'

in Figure 5.6, we get a set of ordering relations like:

7
r <r,
<,

£'<r_")

since B.fire|y preempts A.fire|,

since C.fire|,» preempts B.fire|,s

since resource b is not preemptable for A and C.
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Figure 5.5: An ordering diagram for nonpreemptive execution.

Obviously, these indicate a conflict. So, we have,

Proposition 5.1. Partially preemptive resources may introduce conflict in prioritized re-

actions.

Thus, in order to guarantee that a set of reactors are prioritized precise reactive,
the resources they use must either be disjoint, arbitrarily preemptable, or nonpreemptable,

but cannot be partially preemptable. This also implies the following corollary.

Corollary 5.1. In a single CPU system, resources should either be arbitrarily preemptive

or nonpreemptive to guarantee prioritized precise reaclions.
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Figure 5.6: An ordering diagram for partially preemptive execution that introduces a
conflict.

5.3.3 Time Determinism and Value Determinism

Although priorities order the operations within a run-time composite actor, they
do not directly determine the timing properties of reactions. A fundamental problem of
common real-time programming models is the isolation of functionality and timing concerns.
It assumes that designers can first code the functionality of all tasks, and rely on later

priority tuning to achieve timing properties.
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Timing should be considered as an intrinsic property for real-time algorithms.
When designing algorithms for embedded systems, designers usually expect that result of the
computation to make effect at certain time instants. The time instants are defined as either
absolute points or relative to some other events and reactions. To formally characterize
the behavior of real-time actors, we introduce the concepts of time determinism and value
determinism.

A run-time composite actor can be viewed as a discrete-event system, which re-
sponds to a set of (real-)timed events and produces a set of (real-)timed events. Since it is
not always possible to view the computation of a run-time actor as reactors, we characterize
their real-time behaviors in terms of inputs and outputs.

Intuitively, a composite actor should “produce right values at right time.” These
“right value” and “right time” are denotational requirements imposed by the physical dy-
namics and the algorithms, instead of the computing resource utilization and scheduling

strategies. In order to capture these intuitions, we introduce the following definitions.

Definition 5.1. Let A be a real-time actor, and, in response to a input signal I = {(£;,7;),1 €
N}, A should conceptually produce outpuis E = {(t;,v;),i € N}. In reality, an ezecution of
A may produce outputs E' = {(t},v),i € N}. Then, the ezecution is called time deter-

ministic if t; = t.,Vi. The ezecution is called value deterministic if v; = v}, Vi.

According to this definition, E is a set of “desired” outputs that is defined de-
notationally by the physical constraints, and E' is the set of operational outputs, subject
to computing resources and task scheduling. Ideally, an execution should be both time

and value deterministic, then the operational semantics is consistent with the denotational
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semantics. However, a real execution may only approximate the denotational semantics, in
the sense that it may sacrifice one or two aspects of the desired results. For example, in typ-
ical best-effort execution models in RTOS, time determinism is probably always sacrificed.

But there are also other models that take different trade-offs.

5.3.4 Real-Time Responsible Frameworks

The activity of a run-time composite actor is a composition of the run-time frame-
work and the reactors under its control. This inevitably requires that the value and timing
constraints of the composite actor be transferred into the value and time constraints in
individual reactors and requirements on the framework.

In order to make timing properties part of the semantics of reactors, we give
each reactor time stamps for their triggers and corresponding finish operations. So, at the
programming model level, a real-time reaction is a reaction whose trigger and finish oper-
ations are associated with time stamps, called the baseline and the deadline, respectively.
These time stamps are declarative properties of the reaction, and their values are typi-
cally resolved from the physical constraints and the algorithms implemented. A run-time
framework should allocate resources and triggers so that reactions are executed between
corresponding baselines and deadlines. Figure 5.7 shows that the reaction of an actor is
bounded by its baseline and deadline.

At run-time, depending on the resources and task priorities, these declared timing
constraints may not always be fulfilled. We call a reaction real-time precise, if the real time
stamps of its trigger and finish coincide with the declared baseline and deadline. If the

outputs are produced just before the finish of the task, real-time precise reactions make
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Figure 5.7: A real-time reaction is bounded by its baseline and deadline.

time and value determinism of a program relatively easy to analyze. If all the executions
in a run-time framework are precise, in terms of data and resource dependencies, then
the timing constraint of the composite actor can be translated into the constraints on the
baseline and deadline of individual reactors.

The job of a real-time responsible framework is to manage resources and triggers
such that each reactor fulfills its baseline and deadline. A real-time responsible framework
needs to interrupt at the output time and perform write operation for the composite
actor. These timed interrupts should have the highest priority and preempt any on going
tasks. Ideally, the reaction that produces the output should have finished by this time.
A responsible framework may enforce this by properly allocating resources and forcing
all component to complete by their deadlines. By the compositionality of deadlines, the
response time of the composite actor is guaranteed.

However, the real execution time may vary from reaction to reaction, and the
physical event may not happen exactly at the expected time. Thus, the baselines and
deadlines of some reactions may inevitably be violated. There are different approaches
to reconcile these problems. We describe two models in this section and introduce a new

programming model in the next section.
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Giotto

Giotto [30] is a time-triggered programming model, where each task has a well-
defined (usually periodic) starting time (baseline) and stopping time (deadline). So all
triggers are defined with respect to the real time. Between the starting time and the
stopping time, the execution of the task shares the resources with other tasks. But the
output are only produced when the deadline is reached. A Giotto scheduler, using an
estimated WCET of each task, makes sure that all tasks can finish before the deadline,
otherwise it will reject the set of tasks. So, if the WCET time is accurate or loose enough,

a Giotto program will always be time-and-value deterministic at run time.

Port-based object

The port-based object (PBO) [69] model is also time triggered. But unlike the
Giotto model, it only has time-triggered starting point, but does not have time-triggered
outputs. It uses shared variables and state semantic communications to solved the exe-
cution time miss-matching. For example, there are three tasks shown in Figure 5.8 —
the sensor task, the computation task, and the actuator task. Suppose that all tasks are
triggered at 10Hz, but there is a phase difference. That is, the sensor task is triggered at
0, 100ms, 2007ns, ...; the computation task is triggered at 10ms, 110ms, 210ms, ...; and the
actuator task is triggered at 70ms, 170ms, 270ms, ....

The communication represented by the arcs are shared variables. Ideally, the
sensor has 10ms to update its output, so that it can be used by the computation. The

computation task has 60ms to compute the actuation, so the output task can read a new
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Figure 5.8: Three tasks in the PBO model.

value for every 100ms. However, if the sensor task misses it 10ms deadline, the computation
task will use the sensor reading from the last cycle. Similarly, if the computation task misses
it deadline, the actuator will simply repeat its last output. Thus, a PBO model is time
deterministic—since it always produces something at the output time. But it may not be

value deterministic.

5.4 Timed Multitasking Model of Computation

In this section, we introduce a real-time model of computation that embraces
the concepts of real-time precise reaction and real-time responsible frameworks. By using
this programming model, designers think in terms of both functionalities and I/O time
requirements. These I/O timing requirements are preserved by a run-time system — a
real-time responsible framework. Tl-lus the execution is time-and-value deterministic, as
long as there are sufficient system resources. If there are not enough resources at run time,

it preserves time determinism.
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5.4.1 Programming Concepts

The basic concepts in this programming model are reactors, resources, and overrun
handlers. The data dependencies in a program is handled by tasks and responsible triggers.
The resource dependencies in a program are handled by resource and schedulability analysis.

The possible misses of deadlines are handled by overrun handlers.

Reactors

The software components in this model are prioritized precise reactors, i.e. their
triggering rules allow them to perform a finite computation without further requirements.
The communication among the reactors have the event semantics and are typically imple-
mented by FIFO queues. The output side of a communication is never blocked on writing,.
And a trigger is only activated when there are enough data to complete a reaction. If state
semantics is needed by the application, the reactor developers need to code it within the
reactor code, like consuming all the inputs and using the last one.

The triggers are the baselines for the reactions. Triggers can be expressed in
terms of (possibly combinations of) real time, physical events, and internal operations.
Tasks have deadlines, expressed in terms of absolute real time. A trigger of a reactor must
be responsible, so that once the execution of the task starts, it does not wait on further
unpredictable inputs.

By annotating the timing information, designers know exactly what time delays

their programs will introduce at run-time. And this delay will be preserved at run time.
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Resources

A reactor may need one or more resources — preemptable or nonpreemptable —
to execute. In a TM program, these resources are annotated to the tasks to help schedu-
lability analysis. Following the discussion of prioritized precise reactions in section 5.3.2,
we treat the execution of a reactor to be preemptable only if all the resources it needs are
preemptable by all other reactors with overlapping resource requirements. So, reactions
are either arbitrarily preemptable or nonpreemptable. This essentially prevents partially
preemptable resources and avoids priority inversion problems.

A reaction has an execution time, which is the declared nonpreempted execution
time when all the resources required by the reaction are available. This execution time may
not necessarily be the worst case execution time, if the task can provide meaningful overrun

handlers.

Over-run Handling

Overrun handlers are nonpreemptable piece of codes that are triggered by the
run-time framework when the corresponding tasks are about to miss deadlines. Unlike the
Giotto model, the execution of a TM model is event triggered. In general, it is impossible
to guarantee that all deadlines of all tasks can be met. By having these overrun handlers,
the TM model can preserve time determinism when resources are not sufficient at run time.

Providing overrun handlers also gives the TM models the possibility of better
resource utilization than traditional WCET-based models. In many applications, the WCET

may be much longer than typical execution time. Real-time scheduling based on WCET
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may lead to a very low resource utilization. The TM scheduling based on typical execution
time can improve resource utilization on the average cases, and the overrun handlers deal
with exceptional long executions.

In summary, the semantics of the model is that if there are enough resources at
run-time, then each reactor will be granted with the declared resources for at least the
declared execution time, before the deadline is reached. The output of the execution is
only made available to other tasks and the outside physical world when the deadline is
reached. This is also called faster-than-real-time computation in some literatures [71]. If
a task has not finished by the deadline, the task will be stopped and the overrun handler
will be triggered. Notice that this semantics does not directly specify the priorities of any
tasks. Typically, there may be multiple priority assignment policies that can fulfill the
timing requirements. And for any feasible scheduling policy, the execution result of a model
is exactly the same, in terms of time and value determinism. In this sense, the TM model

is immune to scheduling policies.

5.4.2 Execution Model

The execution model of TM programs is a stylized use of priority-based multitask-
ing execution, as seen in most real-ti-me kernels.

Through compilation, the reactors in the TM model are classified (and possibly
merged) into a set of preemptable and nonpreemptable tasks, depending on their resource
requirements and triggering rules, similar to the techniques described in [72]. A task may
be in one of three states: idle, ready, or active. A task is idle if it is not triggered. After

being triggered, a task is ready to execute, but may wait for resources. When there are
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resources available, a ready task may start executing and become an active task. An active
task may be preempted by another ready task if the ready task has a higher priority and the
active task is preemptable. A run-time system typically manages three pools, corresponding

to the three states of the tasks, as shown in Figure 5.9.
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Figure 5.9: Three tasks pools in typical RTOS kernels.

The triggering rules of the reactors are the guards that bring tasks from the idle
pool to the ready pool. The predicates on the triggering rule tells the run-time framework
when these rules should be examined. At run time, some of these predicates, like those
regarding physical events, are implemented as interrupts for the run-time framework.

The priorities of tasks in the ready pool and the preemptiveness of the tasks inside
the active pool determine which task will be moved to the active pool. Typically, as long
as the tasks are in the ready pool, their priorities never change. The priorities may change
for each time a task is moved from the idle pool to the ready pool. Priorities can be
statically or dynamically assigned. Dynamic priority assignment usually introduces more

run-time overhead than static priority assignment.
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The run-time system for TM programs strictly obeys the deadlines for each task.
It keeps track of the deadlines for all tasks. And when the deadline is reached, it asks the
task to produce its outputs. If at the deadline time, the task is still in the ready or active
pools, the run-time framework will terminate the task and call its overrun handler. The
overrun handler’s execution are nonpreemptable. A terminated task is put back to the idle

pool.

5.4.3 Implementation

The TM domain in Ptolemy II implements a very preliminary version of the timed
multitasking model of computation. In this domain, actors (conceptually) execute as con-
current threads in reaction to inputs. Actors need to be designed in the way that each
input event is a responsible trigger in the data dependency sense. Resources are assumed
to be arbitrarily preemptable and actors are statically assigned with priorities. An actor
specifies a executionTime, which is the amount of time for the reaction to complete. Spec-
ification of deadline and scheduling analysis have not been implemented, and we assume
that actors can always finish their execution within the specified execution time.

The TMDirector provides an event dispatcher, which maintains a prioritized event
queue. The execution of an actor is triggered by the event dispatcher by invoking first its
prefire() method. The actor may begin execution of a concurrent thread at this time.
Some time later, the director will invoke the fire() and postfire() methods of the actor
(unless prefire() returns false).

The current implementation only supports one shared resource, the CPU. At one

particular time, only one of the actors can get the resource and execute. Execution of one
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actor may be preempted by another eligible actor with a higher priority input event. If
an actor is not preempted, then the amount of time that elapses between pref ire() and
fire() equals the declared executionTime. Ifit is preempted, then it equals the sum of the
executionTime and the execution times of the actors that preempt it. The current imple-
mentation of the TM domain in Ptolemy II only simulates the execution of a TM model of
computation, under ideal assumptions. An implementation of a programming environment,
together with a run-time framework, that fully support real-time precise reactions is part

of future work.

5.5 Examples

We give two examples in this section to illustrate the use of the TM domain. The
first example is a simulated control system, where the controller is implemented in the

TM model. The second example shows a multitasking execution under the JavaTM

virtual
machine (JVM)3. It uses thread schedulers within the JVM to approximate a TM run-time

environment.

5.5.1 Shared Resource Controllers

This example, as shown in Figure 5.10, shows two independent controllers sharing
the same computation resource.

The top level is a CT model, implementing two continuous dynamic systems,

3javaT™ is a trademark of Sun Microsystems, Inc.
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Figure 5.10: Two controllers sharing a computation resource.

Plant1 and Plant2. In this case, the Laplace transfer functions of both plants are,

pebt (5.1)

The sampling rates are different, so that the triggers of the two controllers are not perfectly
aligned.

Two discrete controllers, implemented in the TM domain, share a resource — the
CPU. Due to the priorities of the tasks, and the execution policies, each controller may
introduce a delay in its reaction. So, the actual delay of a task may not be the execution
time it has specified, unless it has the highest priority and the execution is preemptive.

The continuous plants have well adjusted parameters such that if the delay is too long, the



Table 5.1: Experimental parameters for the shared resource controllers
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plots priorityl priority2 preemptiveness
(a) high low preemptive
(b) low high preemptive
(c) high low nonpreemptive
(d) low high nonpreemptive

system becomes unstable.

The executions, whose parameters are listed in Table 5.5.1, are shown in Figure

5.11. The results indicate the following observations:

e Real-time execution policies may have big impact on the closed-loop performance of an

embedded system. Suppose that the execution times specified are the real execution

times of a controller, then depending on the implementation, like priority assignment,

we actually get dramatically different results.

e Preemptive execution policies are not necessarily better than nonpreemtive execution.

Real-time systems have to be considered in terms of overall performance, rather than

sacrificing one control loop for the other.

e For a TM model, given that there are enough resources for tasks to finish before

the specified execution time, then a TM run-time can guarantee that the run-time

behavior of the system is the same as the ones simulated. This is not true in general

real-time programs, where the output delay depends on the finish time of the task,

rather than the specified execution time.
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Figure 5.11: For preemptable executions, the control loop with low priority is unstable.
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5.5.2 Background Processes

This example, Figure 5.12 shows the use of preemptable and nonpreemptable tasks
in the TM domain. The model simply generates a noisy sine wave and performs spectrum

analysis using an FFT algorithm.

RealTimePlotter
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Figure 5.12: Preemptable and nonpreemptable tasks in a TM model.

There are two composite actors in the model. The one labeled signal generator
is a nonpreemptable task, and the other labeled FFT thread is a preemptable task. The
nonpreemptable task is executed in the event dispatcher thread, while the preemptable task

is executed in a separate thread. Both of these composite actors are internally implemented
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using the SDF model. In the example, the signal generator actor has priority 5 and
execution time 0.0001, which can basically be ignored. The FFT thread composite actor
has the execution time set to 0.25 seconds, and we explore the effect of its priority and the
JVM thread scheduling. The execution is preemptive

The execution results with simulated time are shown in Figure 5.13, where FFT
thread has a high priority, and in Figure 5.14, where FFT thread has a low priority. Re-
member that the logging may be affected by the FFT process, which contains a large chunk
of computation. It is obvious that when FFT thread has a low priority, it does not block

the logging process.

Figure 5.13: Execution result of the background process example, when FFT thread has a
high priority.
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Figure 5.14: Execution result of the background process example, when FFT thread has a
low priority.
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How to map the modeling time to real time in a run-time framework is the next
question. A correct run-time framework for this model should arrange system facilities such
as timers, locks and semaphores, and scheduling policies to produce exactly the same be-
haviors at run time. There are possibly many choices to implement such a run-time system.
An obvious one is to build the run-time system on top of a hard-real-time operating system,
which already provides high-accuracy timers, preemptive multitasking, and resource locks.
For resource-rich systems, where the computation power is cheap but the operating system
is not so “real-time”, a faster-than-real-time strategy may be more applicable. Accurate

timing behavior can be achieved by the help of smart sensors and actuators.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This dissertation studies modeling and design of heterogeneous embedded systems.
The approach taken to tame heterogeneity in embedded systems is a component-based
hierarchical one. An embedded system is considered as an aggregation of components under
a framework. Frameworks can be hierarchically composed to combine different semantic
models. I focus on abstract semantic properties related to reactivity and its composition.

The key issue I address in the dissertation is
what frameworks are “good”?

Given the reactive nature of embedded systems, a good framework should preserve the re-
activity of each component, and make this reactivity composable. These ideas are captured

in the concepts of precise reactions and responsible frameworks.
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In Chapter 2, I present the reactor model and define precise reactions, atomic re-
actions, responsible triggers, and responsible frameworks. The reactor model is an abstract
operational semantic model that uses partial order relations among operations to capture
computation, communication, and flow of control in component-based frameworks. Oper-
ations may be grouped into reactions, which are triggered by the framework according to
some triggering rules. A reaction is precise if it can be finished completely in a compositional
execution. A responsible trigger, which summarizes all the preconditions for a reaction, can
always guarantee a precise reaction. A framework is responsible if it requires all triggering
rules to be responsible and triggers reactions accordingly. Responsible frameworks have
many good properties, like preservation of quiescent states, detectable deadlocks, and se-
quentializable execution. I also show that among commonly used frameworks, like CSP,
PN, and dataflow, some are responsible, while some are not.

In Chapter 3, I consider the compositionality of precise reactions. The goal is to
allow a composition of actors in a framework to behave like an atomic actor in a higher level
model. I show that responsible frameworks help achieve compositional precise reactions and
precise mode switching.

Embedded systems typically have a notion of time, and need to be modeled in
timed frameworks. Chapter 4 is devoted to responsible timed frameworks. In fact, the
notion of a continuous time helps define precise reactions. In the study of continuous-time
frameworks, I recognize the importance of precisely controlling the integration step sizes to
obtain responsible triggers to all continuous, discrete, and hybrid components. The study

yields simulation techniques for mixed-signal systems, which are compositions of CT and
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DE frameworks, and hybrid systems, which are compositions of CT and FSM frameworks.
The results in these three chapters also provide insights to formally integrate modeling and
simulation tools. In [53], we have claimed that not all tools can be integrated in ad hoc
ways. Tools need to expose enough semantic information to be used by other tools. The
study in these chapters indicates that this semantic information is exactly how an invocation
of one tool can finish a precise reaction.

In Chapter 5, I further apply responsible frameworks to real-time systems, where
the reactions not only have a physical notion of time, but also have a notion of priority. 1
show that irresponsible triggers in a priority based execution environment may introduce
the priority inversion problem. After analyzing time determinism and value determinism
in run-time frameworks, I proposed a timed multitasking (TM) model of computation for
real-time embedded software. This model has the notion of time and resources at the
programming level and relies on a responsible real-time framework to preserve it at run

time.

6.2 Future Work

6.2.1 Formal Semantics for Component-Based Design

Component-based approaches, with promising properties like composability, scal-
ability, and reusability, have great potential in modeling and design technologies for em-
bedded systems. To understand these promising properties, formal semantic models are
required. Among various recent achievements, interface theories [17] formalize component

interfaces and their refinements, and behavior type systems [47] formalize dynamic behavior



148

of components and frameworks into a type system. This work is a starting point towards

framework theories, which will formalize the dynamics and compositionality of frameworks.

6.2.2 Run-Time Frameworks

The studies of time determinism, value determinism, and real-time responsible
frameworks suggest that we can have better approaches to ensure timing properties in em-
bedded software than the current RTOS-based methodologies. Essentially, from high-level
models, we can generate real-time frameworks that meet the specific timing and resource
constraints in the application. Furthermore, the idea of run-time frameworks should not be
limited by computer boundaries. A run-time framework may cross many distributed com-
putation platforms and communication channels to achieve coordinations among large-scale
systems. The compositionality studied in this dissertation will help hierarchically manage
these frameworks to achieve further scalability and determinism [51]. Hierarchical run-
time frameworks may be particularly useful in applications like distributed control systems,

sensor networks, and real-time information processing.

6.2.3 Software Synthesis for TM Models

A next step for the work on timed multitasking models is to synthesis run-time
software from TM specifications. Some ideas are highlighted in the following.
We only consider single processor platforms at this time. The software synthesis

has three steps — trigger analysis, resource analysis, and timing analysis.
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Trigger analysis

The trigger analysis step looks at the triggering rules of each reactors. It separates
physical events, including timers, from internal triggers. It builds an interrupt table for
physical events and maps the interrupts to trigger predicates. It also builds a table of what

operations should be monitored, together with the corresponding trigger predicates.

Resource analysis

The resource analysis step looks at the resource annotation on each reactor, and
analyzes the preemptability of its execution. The results of resource analysis are a set of
arbitrarily preemptable tasks and a set of nonpreemptable tasks. In addition, the overrun

handlers for the reactors are treated as nonpreemptable tasks.

Timing analysis

The timing analysis step looks for a real-time scheduling policy, static or dynamic,
to fulfill the timing requirement of the run-time composite actor, based on the execution
time and deadlines of individual reactors. In general, finding an optimal schedule may be
an NP-hard problem. However, since the semantics of the model relies on the denotational
timing properties instead of task exec-ution times, a sub-optimal scheduling is acceptable as

long as it fulfills the timing requirements.

Optimization

Further optimization may be performed to improve timing properties and reduce

run-time overhead. For example, it is desirable to merge strongly connected tasks. Strongly
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connected tasks are a set of preemptive tasks that can be assigned the same priority, and
where only one of these tasks are triggered by external events. It is sometimes desirable to
split a task into smaller tasks to improve reactivity, since in the TM model, the outputs are

only made available at the deadline time.

6.3 Final Words

=18, #—&, 5L, FEZA.
SEERINE, ZHE, AL,
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Thirty spokes meet at a nave;
Because of the hole we may use the wheel.
Clay is molded into a vessel;
Because of the hollow we may use the cup.
Walls are built to make a house;
Because of the emptiness we may use the room.
Therefore, what is present is used for profit;
But it is in absence that there is usefulness.
— Lao Zi, Dao De Jing,
dates uncertain. Speculations

ranges from 600 BC to 200 BC.
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