

Copyright © 2001, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

REPORT ON THE SOFTWARE

ARCHITECTURE OF PATH'S

AUTOMATED VEHICLE CONTROL

by

Stavros Tripakis

Memorandum No. UCB/ERL MOl/6

29 January 2001

REPORT ON THE SOFTWARE

ARCHITECTURE OF PATH'S

AUTOMATED VEHICLE CONTROL

by

Stavros Tripakis

Memorandum No. UCB/ERL MO1/6

29 January 2001

ELECTRONICS RESEARCH LABORATORY

College ofEngineering
University of California, Berkeley

94720

Report on the Software Architecture of
path's Automated Vehicle Control

Stavros Tripakis

January 29, 2001

Abstract

Wereport on the software architecture of PATH'sautomated vehicle control. The architecture is
responsible for the longitudinal and lateral controlof eachvehicle in a platoon(sequence of vehicles,
closely spaced, at high speeds). The architectiure consists of a set of processes running concurrently
on a PC, reading data from various sensors (e.g., radar, speedometer, accelerometer, magnetometer),
writing to actuators (throttle, brake and steering), and using radio to commimicate data to other
vehicles. The processes exchangedata with each other using a publish/auhscrihe scheme.

We describe the architecture, and identify chains of computation that can be seen as real-time
tasks. We estimate the task latencies and compute the total CPU utilization, which is foimd to be
less than 70%. We also perform a more sophisticated schedulability analysis to check whether the
deadlines of the tasks are met.

In the appendix, we describe the API for the Publish/Subscribe Library. We also give a list of
the control variables used in the current surchitecture.

1 Introduction

path's ^ Advanced Vehicle Control and Safety Systems (AVCSS) project involves the design and
implementation of automated vehicle control applications on a variety of vehicles, such as cars
(Ford's, Buick's), trucks, or snow-plows.

In this document, we focus on the platoon application, ^ where the architecture is responsible
for controlling a set of cars moving autonomously in a platoon formation (one car behind the other,
with a small distance, e.g., 4-6 meters, between them), on the highway and at high speed (e.g., 65
miles/hour). The supporting highway infrastructure consists ofa sequence ofmagnets placed on the
center of a lane (typically 1.2 meters apart).

The control functions can be divided into lateral and longitudinal control. The lateral control
is responsible for keeping the car in the center of the lane, by reading magnet relative position
information from the car's magnetometer and controlling the steering. The longitudinal control is
responsible for maintaining a safe but short distance betweenthe cars and for keeping the platoon
stable. It does this by controlling braking and acceleration, using input information from the car's
radar and other sensors, as well as information about the speed and acceleration of the car in front
and the lead car of the platoon. This information is distributed among cars in the platoon using
wireless communication.

^PATH (Partners for Advanced IVansit and Highways) is a research lab administered by the Institute of 'lY'ans-
portation Studies (ITS), University of Californiai, Berkeley, in collaboration with Caltrans [8].

^However, the pattern followed by this architecture is the same as for those of other types of vehicles and other
applications.) The parts that change are the control software modules and pieces of hardware which may be specific
to a particular application and type of vehicle.

Device drivers

Tzr.,
• Data I/O I

I Database

&
Controllers :

Figure1: Process tjrpes in the automated vehicle control software archite<;ture.

In this paper, we describe the software architecture ofthe above system, which consists ofa set
ofprocesses running onthe control computer (a PC)oneach vehicle. All thesoftwaro iswritten inC
and runson the QNX real-time operating system. The processes include: device driiers, controllers^
and data I/O processes. The device drivers interact directly with the hardware. The data I/O
processes transform data from the device drivers into high-level C structures to be read by the
controllers, and also transform high-level output data written by the controllers inb) low-level data
for the device drivers. The controllers read high-level sensor data and compute hig
data

i-level actuator

The controllersinteract with the data I/O processes via a publish/subscribe ini
munication library. This is essentially a centralized database, providing to its clients
possibility to register/deregister, create/destroy variables, read/write variables, and ask to receive
notifications when a variable is updated.

Figure 1 shows the interaction between the different types of processes and thd
The purpose of this paper is two-fold. First, to present a real embedded softw;

which has been successfully used to implement non-trivial control functions in no
tions. Our interest is not in the hybrid controllersthemselves, but rather in their
We believe that this implementation follows a pattern found in many similar cont
namely, the Publish/Subscribe scheme. This is not surprising, since this scheme '
features particularly attractivefor control applications, such as loose coupling ofpro
processes, automatic over-writing of old data and update notifications.

iter- process com-

(processes) the

database.

ixe architecture,
n-trivial applicar
implementation.
:^ol applications,

a number of

iucer/consumer

The second objective of the paper is to study the properties of the current im
particular, we are interested in verifying whether the architecture meets its real-tini
in terms of deadlines. We argue that an attempt to verify the architecture using
techniques, such as, for example, model checking, is extremely hard,mainly because
ity ofmodeling the operating system functions. Instead, we use a number ofsched
results from fixed-priority scheduling theory. We find that the CPU utilization is b
is only a necessary condition for correctness, since the architecture does not follow
odic task model. We therefore use more sophisticated types of schedulability analy;
synchronization constraints and var3ring priorities within a task. We identify a p
with the architecture, where the deadline of a task is not guaranteed.

We start by briefiy presenting the hardware architecture (section 2). We tlin
Publish/Subscribe hbrary in section 3. We present the software architecture in
analysis is contained in section 5. Section 6 contains the conclusion.

plementation. In
e requirements,
formal method

of the complex-
illability analysis
(ilow 70%, wWch
the simple peri-
sis which cover

(j>tential problem

en describe the

section 4. The

Hardware Architecture: Buick Le Sabre

Vehicl6 acceleration, gyro, wheel
Sensors I X., engine manifold, etc speeds^^

X, etc/

* Vehicle

Sensors i

Vehicle

Sensors II

PCM/Cruise

Actuators

Radio

("Wireless
Ethernet")

HMI

Computer

ATMIO-16

Card (A/D)
PCTIO-10

Card (A/D)

steering wheel buttons^
magnetometBrs, et^

ATMIO-64

Card (A/D)

Control PATH-101 Throttle

CompLrter CThrottie) Actuator

-CAN bus

Brake Steering
Laptop Radar

Actuator Actuator

Figure 2: Automated vehicle control: hardware architecture

2 Hardware Architecture

For a better understanding of the software, we start bybriefly presenting the hardware equipment
ofthe Buick Le Sabre vehicles, which are the ones used for car automated control (Figure 2). The
boxes represent diflerent pieces of hardware. The arrows represent connections ofthese pieces, and
thedirection ofthe arrows represents dataflow: for example, thecontrol computer takes input from
the radar but not vice-versa.

The control computer is a 166 MHz Pentium PC. The "sensors" boxes I, II, III, are analog
circuits taking inputs from accelerometer, magnetometers, and so on. The ATMIO-16, ATMIO-
64 and PCTIO-10 cards are essentially digital/analog converter boards, equipped also with timers.
PATH-101 is a card developed at PATH to control the throttle actuator. The other two actuators,
brake and steering are connected to the control computer through a CAN bus, through which they
receive control messages and send back status information. The radar (installed in the front ofthe
vehicle) is also connected tothe CAN bus. The laptop is used for initialization. The Human Machine
Interface (HMI) computer provides statusdisplay to the passengers in the car.

3 The Publish/Subscribe Architecture

In this section we briefly describe the PubUsh/Subscribe architectmre, which is used for commumca-
tion between data I/O and control processes, asmentioned in the introduction. The architecture is
implemented as a Clibrary on top ofQNX. It has been used in various automated vehicle control
projects (however, it is generic enough to be used in other applications as well).

The library oSers the service of a centralized database to a set of processes running on the
same host. The processes using the database are called clients. The database is a means for
asynchronous inter-process communication, in the sense that a process producing data can write it
to the database without worrying who the potential consumers might be, and at what pace they

read the data. Consumers are also guaranteed to read the most recent value of
particular interest to control applications, where old data is often useless. Finally,
is modular, in the sense that different software components built separately can in
way through the database.

The name Publish/Subscribe was chosen because in addition to typical database operations
the library also offers the possibility for clients to request to be notified whenevsr a variable is
updated: these notifications are called triggers and can be seen as messagesthat are sent to a client
process firom the database. The messagesare buffered in FIFO order, until the client calls the QNX
primitive Receive() to retrieve the first message in the buffer. If there isno pendifig message, the
client blocks until a message arrives.

In summary, the services offered by the publish/subscribe library are:

• Register/deregister with the database (primitives cltJLoginO , clt_logout()

• Create/destroy a variable (primitives clt_create() , clt_destroy()).

• Read a variable (primitive clt_read()).

• Write a variable (primitive cltjipdateO).

• Set/unset triggers for variables (primitives clt_trig_set() , clt_trig_unset()), receive notifi
cation messages (QNXsystem call Receive()) and check which variable they are meant for.

which is of

i;he architecture

tcrface in a clear

3.1 Semantics and Properties of the Publish/Subscribe Libr UT

Wecan view the Publish/Subscribe primitives that interact with the database (e.g.,
clt_read() or cltJipdate) as requests that the clients of the service place to
database). These requests are atomic^ which means that the database will co:
request (receive the command, execute it, return the result) until it proceeds with
(that is, the database serializes the requests).

Atomicity ensures in particular database integrity^ for example, that the value
is not modified during the reading process.

Another property derived hrom atomicity is that clt.update always returns
value of the variable in question.

clt.createO,
the server (the

niplete serving a
i;he next request

read by a client

the most recent

fi ntees to clients,

scheduling policy.
is possible that

cjess starves (i.e..

Conceptually, the Publish/Subscribe library does not offer any fairness guar
This will generally depend on the underlying operating system and in particular its
For example, in a priority based scheduling policy (such as the one used in QNX), i\
some high priority processes monopolize the database, so that a low priority pro
never gets to place a request).

Another thing to notice is the possibility of having more than one trigger m(
Since process execution depends on the scheduler, a variable might be updated
before a process that has set a trigger for this variable is waken up. This means
process wakes up, it may have more than one trigger messages pending in its input

3.2 Implementation of tbe Pubiisb/Subscribe Library

The Publish/Subscribe library is implemented using the blocking message-passin
vided by the QNX microkernel, through the system calls SendO , Receive () , R
firom [11]:

(issages buffered,
more than once

that when this

buffer.

g facilities pro-
dplyC). Quoting

• A process that issues a SendO to another process will be blocked until the target process issues
a Receive(), processes the message, and then issues a Reply().

• If a process executes a Receive () without a message pending, it will block until another process
executes a SendO.

• These primitives copydata directly from process to process without queuing.

The database of the Publish/Subscribe library is implemented as a QNX process. This pro
cess executes the following loop: call Receive O and block waiting for requests from clients; upon
reception of a request, process that request; send back the result using Reply0 and return to the
beginning of the loop.

Arequest such asclt-login, clt.create, clt-read andsoon, is implemented, from the clients
side, as a SendO to the database process.

Triggers are implemented using the TriggerO system call of QNX. This is the non-blocking
version of SendO. That is, a process calling TriggerO sends a message to another process and
continues execution as normal. If the other process is in the Receive-blocked state, it will be waken
up, otherwise, the message will be buffered until that process calls Receive(). Whenever the
database receives a clt.update request, it updates the variable in question, and then goes through
the (possibly empty) list of processes that have set a trigger for this variable. For each process in
that list, it calls Trigger (). After going through the entire list, the database sends a Reply0 to
the process that originated the update.

4 Software Architecture

A first diagram of the set of processes and their interaction appearsin Figure3. The device drivers
are pctiolO (PCTTO-10 card), atmiolS (ATMIO-16 card), atmioe (ATMIO-64 card), pathlOl
(PATH-101 card), cani (CAN bus interface), and radiodriver (not shown in the figure).

The data I/O processes are the ones that deal with data acquisition, processing and output.
They retrievedata from the device drivers, process it and store it in the database in a format that the
controlprocesses can use(i.e., C structures). They alsoretrieve from the database the controloutput
produced by the control processes and write it to the device drivers. The data I/O processes talk
to the devicedrivers using synchronous message passing That is, the device driver blockswaiting
for a read/write message from a data I/O process, receives such a message, process it by writing
to the hardware, and replies back. One the other direction, some device drivers have associated
interrupt handlers which get invoked whenever a hardware interrupt is raised by the device, and
sendan as)mchronous (non-blocking) message to a data I/O process. The latter can then read data
from the device. The data I/O processes are veh_iols, canread, canbrake, cansteer, vehJ.at,
radio and hmi.

The control processes are eng.spdls (longitudinal control) and hst (lateral control). The
process buttons can also be seen as a control process, since it only interacts with the database.
This process retrieves steering-wheel button activation data and current button status data from
the database, computes new button status data and writes it back into the database.

Figure 3 also shows the variables exchanged by data I/O and control processes. These variables
are actually created and stored in the database. Each arrow labeled with a variable means that the
originator of the arrow updates the variable in the database, and the target of the arrow reads the
variable from the database. Notice that there is a single producer for (process that updates) each

^Implemented by SendO, ReceiveO, ReplyO system calls.

variable. The exact information contained in the variables is not important for thisi
example, long_radar contains the range (in meters) to the nearest object in the fro
(presumablycar in front), long_brake contains requested and achieved brake press
contains acceleration (in meters/sec^), engine speed (in rpm), and so on.

All processes are implemented following the same pattern: an infinite loop w
a blocking Receive call, waiting for a message; once the message is received, the p
performs its function, and then goes back at the beginning of the loop. The souroj
can be either a timer or the database. Accordingly, we classify processes into tirrn
periodic) and trigger-driven.

Time-driven processes wake upandperform theirfunction periodically. In Figu|r<
processes are labeledwith a period in msec. The periodicsourcecan be either the
(e.g., canbrake sets a software timer asking the operatingsystemto be sent a mesi
or external hardware that raises an interrupt (e.g., atmiol6 receives an interrupt
timer on the ATMIO-16 card every 20 ms), or the CAN bus or wireless interface (e.
a message on the CAN bus from the radar every 20 ms, from the steering actuator
from the brake actuator every 10 ms).

Trigger-driven processes wait for triggers foroneor morevariables in the datab
each trigger-driven process has a dashed-arrow pointingto it, labeledwith the nam
the process sets a trigger for. For example, eng-spdls sets triggersfor longJ.nput

Notice that the hmi process is both time driven and trigger driven: it s
hmijdisplay but also wakes up periodically every 200 ms.

Afinal important feature ofthesoftware architecture isprocess scheduling. Th^
system uses priority scheduling [10]. Each process is assigned a priority, from
(highest). At any time, a highest-priority process is chosen to run among the
blocked) processes The priorities are usually assigned as follows: The database
priority 25. canbrake and cansteer run at priority 25. Device driversrun at prior
interrupt handlers are part of the device drivers, so they inherit their priority). TIk
process hst runs at priority 18. All other processes run at priority 10 (default).

document. For

nt of the vehicle

ure, long-input

5 Analysis of the Software Architecture

The requirements of embedded software are typically described in the form of
must complete its execution at most x seconds after it becomes ready. In our
a task not as a single process, but as a time-triggered chain of execution, that
processes. Such tasls can be identified by looking at Figure 3. Forexample, the lat
initiatedby an interrupt from the ATMIO-64 cardevery 2 ms, and consists ofthe fo'
chain: the interrupt handler (running as part of atmioe) sends a message to V'
unblocks, reads the ATMIO-64 device, and computes and updates the lat_inpul
the database; this update triggers a message to be sent from the database to hst,
readsvariables lat.inputjnag, lat_input_sensors and button-status, and comp
variables lat-output and marker4)os.

In total, we identify 11 periodic tasks: lateral input task, steering output t;
cansteer every 4 ms), brake output task (initiated by canbrake every 8 ms), stkt
(initiated by the steering actuator every 8 ms), brake input task (initiated by thj

;saj

hich starts with

ij-ocess wakes up,
of the message
driven (in ffiuit,

e 3, time-driven
cjperating S3rstem

ge every 8 ms),
generated by a

»., cani receives
every 8 ms, and

ase. In Figure 3,
e of the variable

and long-track.

ets a trigger for

QNX operating
(lowest) to 31

ready (i.e., non-
process runs at
ty 19 (hardware
e lateral control

deadlines', a task

case, we look at
hvolves multiple
zral input task is

1 owing execution
ch-lat; veh-lat
jnag variable in
which unblocks,

htes and updates

fsk (initiated by
cring input task

brake actuator

^If there are more than one ready processes with the same priority, then a selected scheduling
used to divide the CPU and all ready processes with the same priority. This algorithm is specih
can be one of the following three: FIFO scheduling, round-robin scheduling, or adaptive sched
See [10] for more details.

algorithm will be
3d per process, and
uling (the default).

2O111S f «
r-_ j

<canread ,atmiolo —

pctiolO

pathlOl

maneuver des
On^ hmi display,

•hmi \<
-ill

SjlO^Oms

fi edback

8miy
I 1i«canbrake«loiig_radar i j.-i

lcmg_ou^uT

aneuver ^ maricerjos

radio maneuver

4i|is

<cansteer 1 atmioe ~

lins

lat_ou^ut

^ hst
J--,lat_input_8ensar8 ^

1
lat_ou^ut

jveh_lat ^

button status
Kbuttons ' button status

HMI computer 3O11IS iat_mpui_mag

Figure 3: Automated vehicle control software architecture.

every 10 ms), radar input task (initiated by the radar every 20 ms), longitudinal task (initiated by
ATMIO-16 every 20 ms), communication input task (initiated by messages transmitted by the other
vehicles twice every 20 ms), communication output task (initiated by radio every 20 ms), buttons
task (initiated by buttons every 30 ms), human-machine interface (HMI) task (initiated by hmi
every 200 ms). Due to lack ofspace, we do not detail the operation ofthese tasks here. Looking at
Figure 3, one can derive most of the information. Notice that the same process might be invoked
twice in a task, e.g., vehJiols is invoked twice in the longitudinal task, first by a message fi:om
atmioie, then by a trigger for long_output.

Foreach of the above tasks, we impose a deadline equal to its period. Forexample, we require
that no interrupt be raised by the ATMIO-64 card before the lateral input task triggered by the
previous interrupt has fully executed

It is not obvious that the software architecture meets the deadline requirements we specified
above. Thequestion then arises, how canwe verify that the requirements are met? One possibility
could be to use a formal verification tool such as a model-checker. However, this would require
modeling the operating system scheduling, interrupt handling, message passing and other functions
in great detail. We believe this to be a very hard, if not impossible, task. It is also quite possible
for such an approach to suffer from the state-explosion problem. ®

Instead, we engage in different typesofschedulability analysis. First, we derive roughestimates
of the various latencies involved in the execution of the tasks. Based on that, we compute the

®In general, stricter deadlines might be required: for example, it might be important for a controller to read
inputs from sensors and output data to actuators immediately afterthe inputs become available, even if they become
available not very often.

^Although the operating system isdeterministic, the properties would have to be verified with respect to all initial
time phasings of tasks, which would introduce a high degree of non-determinism.

40

35

30

25

i|20
15

10

5

O 5000 PMdsAipd«tM
» 10000r»«0«ftipd«tt«

S®
10 15 20

NuiMrolprecMtM
25

Figure 4: Performance of the Publish/Subscribe library on a 166 MHz QIJX PC.

d that the CPU

to be met. We

Searchers in the

total CPU utilization induced by all tasks. This is merely a sanity check: we fin
utilization is less than 70%, which is only a necessary condition for the deadlines
then perform a fixed-priority schedulability analysis introduced by a number of r
real-time scheduling field, e.g., [6, 5, 2, 3, 4,12).

Estimating execution times and other latencies: We first estimate the performance of the
basicdatabase primitives, namely, clt_read and clt_update. Weconductthe foUov
on a 166 MHz Pentium PC."^ We run the database, then spawn a munber of clie

ing experiments,
nt processes (all

with the same priority, lower than that of the database). Each cfient executes 20 iterations, where
each iteration involves 10000 or 5000calls to clt jread or clt_update or both (ond after the other)
of a large database variable (approximately 120 bjrtes). The total time taken to es ecutethese calls
is then divided by 10000 and averaged among processes. The resultsare shown in Figure 4. We see
that performance grows almost linearly with the number of processes, although tlie slope is larger
than 1. The extra overhead is probably due to context switching.

Based on the above and other measurements for reads and writes separately,
performance of the database under largeload (number of clients) to be as follows:

• A clt_read() call takes approximately 35/xsecs.

• A clt-updateO call takes approximately llS^secs.

We denote these latencies r and w respectively.

Apart firom reads and updates to the database, tasks involve also the following latencies ®:

• h'. latency to handle a hardware interrupt.

• p: latency to send a synchronous message betweenprocesses.

^Infact,the experiments were doneon a PC runningthe TCP/IP protocol stack,which adds
This stack does not run on the control computer in the car.

®We ignore floating point computation, since it is very small. In experiments we conducted
point operations took approximately 0.12 seconds on the 166 MHz Pentium machine. This av* ii
microsecond for 1000 operations.

we estimate the

CO nsiderable overhead.

20 million floating
irages to less than 1

• t: latency to send an asynchronous trigger from the database to a client.

• c: context switching delay (includes scheduling).

• hw. hardware write (this includes sending a message to the device driver).

• hr: hardware read (this includes sending a message to the device driver).

We use the following estimates ®: h = 5/xs, p = 50^s, t = 50^s, c = 30/us, hw —50/iS, hr = 50/is.
Notice that r and w already include context switching overhead, so this is not added for these
operations.

CPU utilization: Based on the above estimates, we compute the total latency induced by each
task. For example, let xn be the total latency induced by the lateral input task. Since this task
includes one hardware interrupt handler, three reads, three updates, one message sent from atmioe
to veh-lat, one trigger, and three context switches, we have xh = /i4- 3r 4- 3u; + p+1 + 3c= 635|is.
Since this task is invoked every 2000 ^s, the partial CPU utilization induced byit is = 0.3175.
Similarly, we find the latencies induced byall other tasks: Xgo = ^bo = r + hw +p-\-2c, Xai = Xbi =
Xri = h4-iy4-/ir4-p4-2c, xion = 5r4-3iu4-2/ir4-p4-2t4-2/iiy4-4c, Xd = /i4-2/ir4-3ty4-2r4-/iu;4-8p4-t+9c,
Xco = 5r4-5/iit;4-7p4-t4-8c, Xbut = 2r + w+p-\-c, Xhmi = p + hw + c.

Then, we can compute the total CPU utilization:

TT _ in-3 + ^ 4- 4- — 4- — 4- ^^) « 0.691U-10 2 4 8 8 10 20 20 20 20 30 200 ^

We see that U < 1. In fact, U < 0.693, which a suflBcient condition for a set of periodic tasks
scheduled according to the rate-monotonic algorithm not to miss their deadlines [6]. However, our
tasks do not fit the simple model ofthe rate-monotonic algorithm. First, they consist ofprocesses
(subtasks) which run atdifferent priorities. Second, they synchronize (block) during their execution
on a shared resource: the database. Therefore, the above condition is merely a necessary condition
for schedulability, and not a suflacient one.

Schedulability analysis: We now perform a more sophisticated schedulability analysis, taking
into account the s3mchronization of the tasks, as well as the fact that each task is a sequence of
subtasks running at different priorities. For example, the lateral input task can be viewed as a
sequence of 13 subtasks, with priorities: 19 —♦ 10 —> 25 —♦ 18 ^ 25 ^ 18 -+ 25 —»18 —♦ 25 18 —»
25 -♦ 18 -» 25. The subsequence 18 25 -»•••-» 25 represents the interaction ofhst with the
database, namely reading three variables and updating two variables.

As far as sjmchronization is concerned, we observe the following. Since the priority of the
database is set to the highest value, the database clients execute essentially the priority ceUing
protocol [13]. In this protocol, the priority of a process that accesses amutually-exclusive resource is
temporarily raised tothe priority of the resource. Here, the resource is the database, which can serve
only one request at a time (hence themutual exclusion). And the fact that when a process executes
a read orupdate, control is passed to the database process, is equivalent to raising temporarily the
priority of the task to 25.

It was shown in [13] that the priority ceiling protocol ensures absence ofdeadlocks, and dso
that a process can be blocked by a lower-priority process for at most the duration of one critical
section (in our case, at most max{r,ty}).

Regarding the fact that a task consists of subtasks, we will use the so-called HLK analysis [2].
This technique extends the completion time test introduced in [5] for the basic rate-monotonic model.

®We believe these to be conservative. They are basedon information from [11].

Due to lack of space, we will not present these techniques in detail, but only explain the intuition
through our case study.

The completion time test is a necessary and sufficient conditionfor a set of tas.
lable. Consider first the simple case of n periodic tasks with periods ri,...,Tn,
Ci,...,C„, blocking times {Bi is the longest duration of blocking that
ence by task i due to sjmchronization on a mutually-exclusive resource) and decre
Define Wi{t) = Intuitively, Wi{t) represents the cumulative demanc.
by all tasks up to i, in the time interval [0,t]. Given task i, define the series Sq
<5^+1 = Wi(iS'ifc) + Bi. Then, the completion time test says that if for some fc, Sk =
task i meets its deadline. If instead, T, < Sk for some k, then task i is not schedul

ils to be schedu-

execution times

can be experi-
asing priorities,

for processing

= Sj=iC7j, and
Sk+i < Ti, then

able.

In the more complicatedmodel, where tasks are sequences ofvarying-prioritysu'jtasks, a similar
test applies, but with some modification in the definition of the above parameters;. We illustrate
that by performingthe test for the steering output task. This task involves the sequence 25 25
25 —»19. [2] showed that the completion time of such a task is always the same as the completion
time of its normalized form, which has unique priority 19 (intuitively, this means that since the task
can be blocked while it is executing its last subtask of priority 19, it does not matter whether the
previous subtasks have higher priority).

Now, weexamine the relativepriorities ofeach of the other tasks with respect t(>the normalized
form of steering output. For example, the lateral input task has relative priorities} H —* L H,
where H denotes higher or equal and L lower priority. Similarly, the brake output task (25 25 -+
25 —> 19) has relative priorities H, the radar input task (19 —♦ 10 —» 25) has nilative priorities
H L H, the longitudinal task has relative priorities H —* L H, and so on.

[2] showed that the maximum blocking time B for a task is the sum of the execution times of
the first subtask for all tasks of the form H -* L---, plus the maximum of the exjcution times of
subtasks for all tasks of the form L H In the case of steering output, its bbcking time Bgo
is computed as follows: Bao = max{/i, 3r + 2w} + 3max{h,w} + max{h,hw,hr} -I max{/i,r, w) -|-
max{r,hw}-H max{r, it;} -f max{r, u;} = 1125/xs.

Having computed the blocking time, we can perform the completion time test: Sb = Xbo+Xao +
Bgo = 1495/is. 5i = 5o < 4 ms, therefore, the steering output task meets its deadliae.

We can perform the above analysis for other tasks as well. Doing that, we find
input task does not meet its deadline. This is because vehJLat has priority 10, thu

that the lateral

s all other tasks

have high relative priority, which means that the blocking time for lateral input is high. Notice that
this is the worst-case blocking time, with respect to all possible phasings of tasks Ithus, it is likely
that it arises only once every several periods), and also, that it depends on latency estimates that
may be too conservative.

In practice, missing this deadline has two implications. First, it means that
output might not be updated in time. Second, that there might be more than one
input buffer of veh-lat, corresponding to multiple interrupts: veh-lat will consum e
one after the other, resulting in a series of executions of the lateral input chain, wl
be enough. We do not know how often the above situation arises, and how negath
the control of the vehicle. It is certain that a noticeable effect on the behavior of

only debugging technique typically used) has not been observed to date.

tl(e lateral control

messages in the
these messages

ereas one would

e its effect is on

the vehicle (the

^^The first term represents the blocking effect due to lateral input task (bst interacting with
second term the blocldng effect due to brake, steering and radar input, and so on.

10

the database), the

6 Conclusion

We have described the software architecture of a real automated vehicle control application, devel
oped at PATH. We believe that it is necessary for such architectures to be studied carefully, if the
implementation ofhybrid controllers is to become tightly integrated to the design process from the
early steps on, so that the properties of the design are maintained throughout the development of
embedded software.

We have presented here preliminary schedulability analysis results, which identified potential
problems in the architecture. We plan to continue ourinvestigation in order to confirm the results.

We would also like to develop a general methodology (e.g., automatically assigning priorities)
for developing software of the above kind, such that certain real-time requirements are met.

Finally, we would like toinvestigate other models and languages for embedded software develop
ment, andtest how suitable they are for the type ofcontrol applications like the above. In particular,
we would like to compare the Publish/Subscribe scheme which relies on run-time scheduling bythe
operating system, with compile-time scheduling schemes such as the ones used by Esterel [1], Lus
tre [7], or the time-triggered architecture [15].

Acknowledgments. I am grateful to Paul Kretz from PATH who provided much help in under
standing the architecture. Alarge partofthecode has been written by him. The rest ofthesoftware
has been written byother engineers at PATH. I would like to thankthem all for theirclearly written
code. I am also grateful to Raj Rajkumar, who has suggested to me the literature on extended
fixed-priority schedulability analysis.

References

[1] Esterel: http://www.esterel.org.

[2] Harbour, Lehoczky, and Klein. Analysis of Tasks with Varying Fixed Priorities. Proc. 12th
IEEE Real-Time Systems Symposium, 1991.

[3] M.G. Harbour, M.H. Klein, R Obenza, B. PoUak, T. Ralya. A Practitioner's Handbook for
Real-Time Analysis: Guide to Rate-Monotonic Analysis for Real-Time Systems. Kluwer, 1993.

[4] Klein, Lehoczky, and Rajkumar. Rate-Monotonic Analysis for Real-Time Industrial Computing.
IEEE Computer, Jan. 1994.

[5] J. Lehoczky, L. Sha, and Y. Ding. The Rate Monotonic Scheduling Algorithm: Exact Character
ization andAverage Case Behavior. In Proceedings of8thIEEEReal-Time Systems Symposium,
pages 166-171. IEEE Computer Society Press, December 1989.

[6] C. L. Liu and J. Layland. Scheduling Algorithm for Multiprogramming in a Hard Real-Time
Environment. Journal of the ACM, 20(1) pp 46-61, January 1973.

[7] Lustre: http: //www-verimag. imag. fr/SYNCHRONE/lustre-english. html.

[8] PATH: http://www.path.berkeley.edu/.

[9] Mobies: http: //vehicle.me. berkeley. edu/mobies/.

[10] QNX doc: http://www.qnx.com/literature/qnxj5ysarch/index.html.

[11] QNX doc: http: //www. qnx.com/literature/whitepapers/archoverview.html.

11

[12] Sha, Rajkumar and Sathaye. Generalized Rate-Monotonic Scheduling Theory
for DevelopingReal-Time Sjrstems. IEEE Proc., Jan 1994.

[13] Sha, Rajkumar andLehoczky. Priority Inheritance Protocols: An Approach to
chronization. IEEE Trans. Computers, Sep 1990.

[14] Teja: http://www.teja.com.

[15] Time-triggered architecture: http://www.tttech.com.

[16] P.Varaiya. Smart Carson Smart Roads: Problems ofControl. IEEE Transactio
Control, 38(2):195-207, February 1993.

A Framework

Real-Time Syn-

IS on Automatic

A The Publish/Subscribe Library Primitives

A.l Registering and deregistering

Each process that wants to use the database must register first. This is done by calling:

db_clt_typ *clt_login(char *pname, char *phost, char *pserv, COMM_QNX_XPORT);

where:

• pname is the name of the process requesting to register (need not be unique, used

• pserv is the database process name.

for debugging).

phost is the hostname where the database runs (or NULL if this is the local host).

If the call returns NULL, then the call has failed. Otherwise, a handle to the data
to be used with the other primitives below.

To deregister, a process calls:

bool.typ clt_logout(db_clt_typ *pclt);

where:

• pelt is the handle to the database obtained upon registering.

TRUE is returned if the call succeeds, and FALSE if it fails.

A.2 Creating and destroying variables

What are variables: The database is a place that stores and allows access to
publish/subscribe library,variables are tuples of the form

(id, type, value),

where id is the variable identifier, type is the type of the variable and value is th<i
the variable.

The id of a variable is a number (an unsignedinteger). The type of a variabk
size) where typeid is the tjrpe identifier (an unsigned integer) and size is the size o:

12

base is returned,

variables. In the

current value of

is a pair (typeid,
flthe type in bytes

(an unsigned integer). The value of a variable is an array of bytes, of length size. Notice that the
type of a variable is used only for identification purposes. As far as the database is concerned, the
value of each variable is simply an array of bytes. It is the responsibility of the client to interpret
this array of bytes as a meaningful data structure (usually this is done by casting, see below the
description of clt_read).

For the current automated vehicle control implementation at PATH, the following is to be noted
(quoted from clt.vars.h):

/*
* As a convention, the variable name/type space is partitioned as
* follows:

*

* 0 to 99 Used by the system.
* 100 to 199 Reserved.

* 200 to 299 Permanent longitudinal variables.
* 300 to 399 Permanent lateral variables.
* 400 to 499 Permanent communications variables.
* 1000 to 1099 Temporanry variables.
*/

Dynamic creation and destruction of variables: Initially, the database is empty, i.e., contains
no variables. Variables can be created and destroyed on-the-fiy, by any process. To create a variable
with id var, type id type and type size size, in the database with handle pelt, a process calls:

bool_typ clt_create(db_clt_typ *pclt, unsigned var,
unsigned type, unsigned size);

TRUE is returned if the call succeeds, and FALSE if it fails.

To destroy a variable, a process calls:

bool_typ clt.destroy(db.clt.typ ♦pelt, imsigned var, imsigned type);

TRUE is returned if the call succeeds, and FALSE if it fails.

A.3 Reading a variable

To read a variable with id vax and type id type, from the database with handle pelt, a process
calls:

bool.typ clt_read(db.clt.typ ♦pelt, unsigned var,
imsigned type, db_data_typ ♦pbuff);

TRUE is returned if the call succeeds, and FALSE if it fails. If successful, the call will fill-in the
variable pointed to by pbuff, which is a generic db_data_typ structure. This C structure contains
the current value of the variable, plus other information such as variable id and type id, last time
the variable was updated, last command applied to the variable (e.g., create, read, or update). The
value of the variable is contained in the field value.user of the db_data_typ structure.

13

Example: Assume the client wants to read a variable ofid id and type id type
and that the real value of the variable is a C structure mytype. Then, the client's p

db_data_typ db_data;
mytype ♦myvalue;

if (clt_read(db, id, type, &db_data) != FALSE) {
myvalue = (mytype *) db_data.value.user;

>
else ...

Notice that in the above example, myvalue is an active pointer onlywithin the scoJ)e that db_data
lives.

A.4 Writing a variable

To write a variable with id var, type id type and type size size, in the database w th handle pelt,
a process calls:

bool^typ clt^updateC db_clt_typ *pclt, unsigned var,
unsigned type, imsigned size, void ^t^pvalue);

fro:m database db,
dogram includes:

where pvalue is a pointer to a byte array of size at least size, containing the
written. TRUE is returned if the call succeeds, and FALSE if it fails.

:iew value to be

Example: Assume the client wants to update a variable of id id and tjrpe id typ
db, and that the real value of the variable is a C structiure mytype. Then, the
includes:

e from database

client's program

mytype newval;

if (clt.update(db, id, type, sizeof(mytype), (void *) fenewval) != [FALSE)

A.5 Triggers

Triggers are notifications that a process requests for variable changes. A "variable change" is syn
onymous to the variable being updated (by a call to cltjupdate). That is, it does not necessarily
mean that the new value of the variable is different than its old value.

To request notification for variable changes is to set a trigger for that variably
request is to unset the trigger. To receive notification means to receive a message:
has requested notification can receive the related messages by calling a QNXsysti:
(see below). In casea process is not waiting to receive a notification message (having
the messagewill be queued. For each variable, the database keeps track of the
a trigger set on this variable. Whenever this variable is written (by clt_update
sends a message to all processes above.

^^TViggers are implemented using the qnx_proxy.attach() and Trigger() QNX operating systsm calls. The QNX
C-library manual says that up to 65535 notification messages can be pending.

pr>

To cancel that

the process that
m call. Receive
called Receive)
cesses that have

the database<))

14

Requesting/canceling notifications: Setting/unsetting a trigger for variable with id var and
type id type in database with handle pelt is done by the following calls:

bool_typ clt_trig_set(db_clt_typ *pclt, unsigned var, unsigned type);
bool_typ clt_trig_unset(db_clt_typ *pclt, unsigned var, unsigned type);

In both cases, TRUE is returned if the call succeeds, and FALSE if it fsdls.

Receiving notifications: Notifications are received through the QNX system call Receive(),
using a special type ofmessages, trig_info_typ, defined in the library. The client calls:

trig_info_typ trig_msg; /» declaore a placeholder for trigger messages ♦/

ReceiveC 0, &trig_msg, sizeofC trig_msg)); /♦ block waiting for message */

and blocks waiting for a message. That is, the call does not return until a message is received.
Notice that this message might be something other than a trigger, in case the client process uses
other features of QNX inter-process communication through messages.

Checking which variable the trigger is for: Since a process may have set triggers for many
different variables, it generally needs to check which variable the notification was for. This is done
by a call to the macro DB_TRIG_VAR, which gives the id ofthe variable the notification was for.

if(DB_TRIG_VAR(&trig_msg) == VAR_1) /* test which variable the message is for */

else if(DB_TRIG_VAR(&trig_msg) == VAR_2)

B Control Variables

The data I/O and control processes communicate through the following variables stored in the
database:

• long-radar: contains range (in meters) to nearest object (presumably car in front, except for
lead vehicle), range rate (in meters/sec), acceleration (in meters/sec^), diagnostics (TBD), a
wrap-around counter (1-1024) counting CAN messages from radar.

• long-brake; contains brake pressure requested (in psi), pressure achieved (in psi), mode and
system status, error codes, a wrap)-around counter (1-1024) counting CAN messages from brake.

• long-track: contains information for theleader (first car in the platoon) andthe preceding vehi
cle. This information includes position in the platoon, time, distance, velocity and acceleration.

• long-input: contains sampling/control interval (in sec), platoon position, longitudinal acceler
ation (in meters/sec^), measured manifold pressure (in kpa), master cylinder pressure (in psi),
engine speed (in rpm), six wheel speeds (one for each wheel in meters/sec divided by 10, plus
one for each of left-front and right-rear wheels, in meters/sec divided by 1), measured throttle
angle (indegrees), decoded transmission position, overall transmission ratio,system status,mode
status, car id, maneuver description id, counters for brake and radar (as above).

15

lat_input_sensors: contains measured steering angle in degrees of handwheel,
tion (in meters/sec^), yawrate (in meters/sec), longitudinal velocity (in meters
nal velocity count (number of clock pulses between two gear teeth), error codes,
counter (1-1024) counting CAN messages of type 5 from steering actuator.

• lat_input_mag: contains voltage readings from the six magnetometers' (left,
front or back) x, y and z axes, magnetometer health status monitor, voltage fr3m the steering
wheel buttons, and tail light voltage.

• lat.output: contains desired steering angle in degrees of handwheel (17 degrees of handwheel
equal 1 degree of roadwheel), steer status, lateral position, time and distance to destination.

• latjsteerl: contains steer status, error code from steering actuator, handwieel position in
degrees, analog roadwheel position (notused currently), a wrap-around counter (] -1024) counting
CAN messages of type 5 from steering actuator.

• lat.steer2: contains steering actuator motor current (in amps), analog roadwheel position
(in degrees), a wrap-around coimter (1-1024) counting CAN messages of type
actuator.

long-output: contains desired throttle angle ([0.0 - 85.0 degrees]), optional user cutputs to panel
meters, a set of user defined data to be broadcast, car id, maneuver feedback i i, a boolean to
setthebeeper on/off, throttle status, radar status, brake status, desired spacing gap (in meters),
present spacing gap (in meters).

ateral accelera-

'sec), longitudi-
a wrap-aroimd

center or right.

6 from steering

• marker4>os: contains marker number (most recently seen marker), counter ofnumber ofmarkers,
lane number, direction (south/north). Lateral error in cm, lateral controller mjineuver id, time
at marker position.

• button^tatus: contains current statusofbuttons for turning onlateral andlon^tudinal control,
and of button for turning off both controls.

• maneuver.feedback: contains car id, number of maneuver feedback.

• maneuverjdes: contains car id, number of requested maneuver.

• faultJeedback: contains car id, number of cars in platoon, type of fault.

• hmijdisplay: contains display state, positionof car inside platoon, fault status
tions.

16

for commimica-

	Copyright notice 2001
	ERL-01-6

