Copyright © 2001, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

ALGORITHMS FOR ROUTING
WITH MULTIPLE CONSTRAINTS

by

Anyj Puri and Stavros Tripakis

Memorandum No. UCB/ERL M01/7

30 January 2001

ALGORITHMS FOR ROUTING
WITH MULTIPLE CONSTRAINTS

by

Anuj Puri and Stavros Tripakis

Memorandum No. UCB/ERL M01/7

30 January 2001

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Algorithms for Routing with Multiple

Constraints

Anuj Puri and Stavros Tripakis
Department of Electrical Engineering and Computer Science,
University of California, Berkeley, CA 94720

Abstract— In this paper, we study the problem of
routing under multiple constraints. We consider a
graph where each edge is labeled with a cost and a de-
lay. We then consider the problem of finding a path
from a source vertex to a destination vertex such that
the sum of the costs on the path satisfy the cost con-
straint and the sum of the delays satisfy the delay con-
straint. We study the complexity of this problem and
then present three different algorithms for solving the
problem. These algorithms have varying levels of com-
plexity and solve the problem with varying degrees of
accuracy. We present an implementation of these al-
gorithms and discuss their performance on different
graphs.

I. INTRODUCTION

Routing data from one node to another is among
the most basic problems in computer networking. A
model for such a problem is a graph where an edge
in the graph represents a physical link in the network.
Associated with each edge is its length. This length
could represent the delay of the physical link, or its
cost, or a summary of various properties of the link.
The routing problem is to find a path from the source
to the destination of minimum length.

This formulation requires us to summarize all
properties of a link with a single number, or to focus
only on a single property at the expense of others. For
example, we may have a choice between a low cost
link which has a high delay (such as a satellite link),
or ahigh cost link with a low delay (such as a fiber op-
tic link). It is not clear how to summarize these links
with a single number in the routing problem.

In this paper, we present a more general formula-
tion of the problem. We model a physical link with an
edge in the graph that is labeled with two numbers: a
delay and a cost. We are given a delay constraint D
and a cost constraint C. Our objectiveis to find a path
from the source to the destination such that the sum of

all delays on the path is less than D, and the sum of all
costs is less than C. We first show that this problem
is NP-Complete. We then present three different al-
gorithms for solving the problem. The first algorithm
is a pseudo-polynomial time algorithm which solves
the problem exactly in time O(|V||E|min{C, D})
where |V| is the number of vertices and |E| is the
number of edges in the graph. The algorithm either
reports back with a path satisfying the constraints or
states that no such path exists. The second algorithm
solves the problem approximately but with an error
of at most €. That is, either it states that no path satis-
fying the constraints exists, or it finds a path such that
the sum of costs on the pathis at most C' - (14 ¢), and
the sum of delays is at most D-(1+¢). The complex-
ity of this algorithm is O(|V|?| E|(1 + 1)). The third
algorithm finds a path with an error of at most ¢ = 1.
This algorithm requires a solution of the shortest path
problem on the given graph. Although most of the
paper is focused on dealing with two constraints, the
first two algorithms generalize in a straightforward
manner to more than two constraints.

In Section II, we define our problem more for-
mally and introduce our notation. In Section III, we
show the problem is NP-Complete. In SectionIV, we
present a pseudo-polynomial time algorithm for the
problem. In Section V, we present a polynomial time
approximation scheme. In Section VI, we present an
algorithm based on solving the shortest path prob-
lem on the graph. In Section VII, we present a linear
programming solution to a relaxed problem. In Sec-
tion VIII we discuss other possible extensions. Sec-
tion IX discusses the performance results for the dif-
ferent algorithms and Section X is the conclusion.

Relationship to other work

The routing problem with more than one con-
straint seems to have been studied by several re-

searchers. It seems to be well known that the
problem is NP-Complete [3] [2] [1]. An explicit
proof of this is provided in [5]. In [3], a pseudo-
polynomial time algorithm is presented for exactly
solving the problem. This algorithm is similar
to the algorithm presented in Section IV, how-
ever, [3] states that the complexity of the algorithm
is O(|V|°maz{C, D}log(|V|maz{C, D})). By a
more careful analysis and using the data structures
in a more clever manner, we can show the complex-
ity of our algorithm is O(|V || E|min{C, D}). In [3],
an approximation algorithm that solves the problem
with approximation error € 1 using the short-
est path algorithm is also presented. Although this
is similar to our algorithm in Section VI, our algo-
rithm in general will perform better because we solve
a series of shortest path problems, each obtaining a
better solution than the last one. In [2}, several al-
gorithms are presented for approximating the solu-
tion to the problem. Although the author restricts to
acyclic graphs, extensions to general graphs should
be straightforward. The complexity of the two
approximation algorithms are O(log,vlogB(lﬂelﬂ +
loglogB))and0(|E|1%Elog(%)) where ¢ is the error
of the approximation and B = maz{C, D}. Our ap-
proximation algorithm in Section V has complexity
O(JV!|E|(1 + 1). The algorithms also use some-
what different techniques. Our algorithm is essen-
tially a generalization of the Bellman-Ford algorithm
where we keep track of errors during the iteration.

Although several algorithms have been proposed
for solving the routing problem with multiple con-
straints, there seems to be no results available about
the actual implementation or the performance of
these algorithms. In our work, we present several
new ideas for solving the problem, a complete imple-
mentation of these ideas and a comparison of the per-
formance of these algorithms.

II. PROBLEM FORMULATION

We consider a directed 2-weight graph G
(V, E), where V is the set of vertices and E is the set
ofedges. Anedgee € Eise = (v, w, c,d)where the
edge goes from v to w, and has delay delay(e) = d
and cost(e) = c¢. We write this as v 4 . When

there is no confusion, we may also write the edge as
(v, w) and say the edge is labeled with (c, d).

3.1 (2,1)

o

Fig. 1. A Simple Network

(1,2)

(cndy (c2,d2) va (c3.,d3)

Apathisp = 1y V2
ndn .
. (endp) vny1- The cost jof a path is cost(p) =

Y-, ¢i and its delay is delay(p) = 37, d;.

Given a path p and cost cgnstraint C > 1 and de-
lay constraint D > 1, we say p is feasible provided
cost(p) < C and delay(p) |[< D. The problem of
routing under two constrainis is, given G = (V, E),
cost constraint C' and delay|constraint D, a source
node s € V and a destinationnode t € V, find a fea-

sible path p from s to ¢, or
exists.

Example 11.1: Consider
ure 1. Each edge is labeled
cost of the edge and d is the

ecide that no such path

2-weight graph of Fig-
ith (¢, d) where c is the
delay of the edge. For

example, the edge from vert¢x 1 to vertex 2 has cost

3 and delay 1. Suppose the
destination vertex is 4, the ¢
and the delay constraint is]
1 82 9 B 4 is feasible, w
not (since it violates the del

source vertex is 1, the
hst constraintis C = 5
) = 2. Then, the path

Jereasl(l-—'zz3(l—'2>)4is

constraint).

The reader can check thatif C = 4and D = 3,

then there is no feasible pa
Rather than checking to s

e if a graph has a feasi-

ble path, it is sometimes useful to try to minimize the

following objective function|

maz{cost(p

M(p) = maz{ C

Observe that for any pat
M(p) = 1iff p is feasible]
path does not exist or is hard
imizing M (p) we can get a
to satisfying the constraints.

,C} maz{delay(p), D},
, D M

hp, M(p) > 1 and
But even if a feasible
o find, by trying to min-
path that comes “close”

Formally, we define the error of a path p as

M(p) — M(p*)
M(p*)

where p* is the path which minimizes M (in case
more than one paths minimize M, we pick p* arbi-
trarily among them, since the minimal value M (p*)
is the same for all of them).

Notice that error(p) > 0 and error(p) = 0iff pis
feasible. Also note that if cost(p) < C - (1 + ¢) and
delay(p) < D (14 ¢) thenerror(p) < €. Indeed, the
two above conditions imply that M(p) < 1+ € and,
since M(p*) > 1, we get error(p) < e.

In case it is too difficult to find p*, we look for a
path p for which error(p) is small. We will next con-
sider the complexity of finding a feasible path, and
algorithms for finding a feasible path and for finding
paths for which error(p) is small.

error(p) =

III. COMPLEXITY

We show that the routing prcblem with two con-
straints is NP-Complete.

Theorem I11.1: Therouting problem with two con-

straints is NP-Complete.
Proof: We will provide a reduction from the knap-
sack problem. Recall that in the knapsack problem,
we are given positive integers ¢1,¢2,...,¢q, and N,
and the objective is to find a subset § C {1,...,n}
suchthat), cg¢c; = N.

From the knapsack problem, we construct a graph
with vertices {1,...,n}. There are two edges from
vertex i to vertex ¢ + 1: edge (4,4 + 1, ¢;, 0) and edge
(%,2+ 1,0, ¢;). Figure 2 shows the scenario. Our ob-
jective is to find a path from vertex 1 to vertex n with
cost constraint N and delay constraint -, ¢; — N.
It is easy to check that there is a path that satisfies
the constraints iff there is a solution to the knapsack
problem.]

IV. ANO(|V|:|E|- min{C,D})
PSEUDO-POLYNOMIAL ALGORITHM

In this section, we propose an algorithm for the
problem of routing under two constraints with worst-
case complexity O(|V| - | E| - min{C, D}). That is,
the algorithm is polynomial on the size of the graph
(quadratic on the number of vertices and linear on the
number of edges), but also linearly depends on the

3
smaller of the bounds C and D. Therefore, it is a
pseudo-polynomial algorithm.

Let us begin by making a safe hypothesis. Given
a 2-weight graph G = (V, E), where |V| = n,
let costpez = maz{c | (--¢,-) € E}and
delay,.,, = maz{d | (--,d,-) € E} bethe
maximum cost and delay associated with any edge
of G. Now, assume that n « costye, < C. Then,
given u,v € V, there exists a feasible path from u
to v iff there exists a path p from » to v such that
delay(p) < D. To see this, observe that if there is
a path p from u to v such that delay(p) < D, then
there is a simple path (i.e., with no cycles) from u to
v. Assuming p to be simple, p has length at most =,
thus, cost(p) < n - costper < C, which implies that
p is feasible. The inverse direction is trivial.

Given this observation, finding a feasible path in G
from u to v comes down to finding the smallest-delay
path from u to v, that is, the path p that minimizes
delay(p). This can be easily done using a shortest-
path algorithm, with cost O(|V| - | E|). Since this is
less than O(|V| - | E| - min{C, D}), this case is not
interesting. The case where n-delay,,, ., < D issym-
metric.

So, from now on we assume that n - costy,,; >
C and n - delay,,,,, > D. We also assume that the
greatest common divisor of {C,cost(e) | ¢ € E}
is 1, and similarly for the delays (otherwise we could
just divide all costs/delays by their greatest common
divisor, without affecting the problem).

Informally, the algorithm works as follows. For
each vertex w, we compute a set of cost-delay pairs
F,,. Each (¢, d) € F,, will represent the cost and de-
lay of a possible path from w to the destination ver-
tex v. To keep the size of F,, manageable, we elim-
inate from F,, all elements corresponding to infeasi-
ble paths (i.e., all (¢,d) such thatc > C ord > D).
Moreover, we eliminate from F,, all redundant ele-
ments, that is, all elements with both cost and delay
greater from some other element. Let us make these
more precise below.

A. Cost-delay sets

A cost-delay set fora vertex wisaset I, C NxN.
An element (¢, d) of F,, is called infeasible if either
¢ > Cord > D. Anelement (¢, d) of F, is called
redundant if there exists a different (¢/,d’) € F,
such that¢’ < cand d’' < d.

©.0) (c.0)

@ TRy

©.c,) 0, ¢y)

Fig. 2. Graph obtained from the knapsack problem

A cost-delay set F is said to be minimal if it con-
tains no infeasible or redundant elements. The fol-
lowing properties hold (assuming C' and D fixed):

Proposition IV.1: If F' is minimal, then |F| <
min{C, D}. To every cost-delay set F’ corresponds
a unique greatest minimal subset F C F.

We write minimal(F') to denote the greatest minimal
subset of F'.

Figure 3 displays the typical structure of a cost-
delay set and its minimal. Black and grey bullets are
infeasible and redundant elements, respectively.

Minimal cost-delay sets admit an efficient canon-
ical representation as sorted lists. Consider a mini-
mal set F' = {(c1,d1), (¢2,d2), ..., (¢n, dn)} and as-
sume, without loss of generality, that ¢; < ¢2 <
..+ < ¢p. Then, dy > dy > -+ > d,, must hold,
otherwise there would be at least one redundant el-
ement in . Consequently, F' can be represented as
the list (¢1,d1) (¢c2,d2) -+ (cn,dy), sorted using
cost as the “key”. This representation is canonical in
the sense that two minimal sets F, F are equal iff
their list representations are identical.

The algorithm works with minimal cost delay sets
and uses two operations, namely, union and transla-
tion with respect to a vector (c,d) € N2. We present
these operations and discuss how they can be imple-
mented using sorted-lists and preserving the canoni-
cal representation.

Given minimal (i.e., feasible and non-redundant)
F,, F5, the union F; U F; is always feasible, but
not necessarily non-redundant. In order to compute
F = minimal(F; U F3) directly from the list rep-
resentations Lq, L, of Fy, F3, we can use a simple
modification of a usual merge-sort algorithm on lists.
The latter takes as input L;, L, and produces L, the
list representation of F'. In order to guarantee the ab-
sence of redundant points in L, it compares at each
step the heads (¢;, d1) and (c2, d2) of (the remaining

(¢

—

©,

,0)
_/

Cp)

parts of) Ly, Ly. If ¢; < ¢2

d d; < d,then (62, dg)

is redundant and is skipped. [If ¢; < ¢; and d2 < d;
then (c1, d) is skipped. Othgrwise, the pair with the

smallest ¢; is inserted in L an

one element ahead in the cor
easy to see that this algorithn

the algorithm is 7 + n2, W

L;. Therefore, from proposit,

complexity of computing the
is O(min{C, D}).

the head pointer move
responding list L;. It is
n is correct. The cost of
here n; is the length of
jon IV.1, the worst-case
union of cost-delay sets

Translation is defined on 4 cost-delay set F' and a

pair (¢, d) € N%

def

F+(c,d)= {(c+¢,d

(+ d)|(c',d) € F}

If F is minimal, then F + (¢, d) is non-redundant,

however, it may contain infe

sible points. These can

be easily eliminated, however, while building the list
L' for min(F + (c,d)): the list of F' is traversed,
adding (c, d) to each of its elements, (c;, d;); if ¢; +

¢ < Dandd; +d < D the

(¢i + ¢,d; + d) is in-

serted at the end of L', otherwise it is infeasible and it

is skipped. Atthe end, L' will

be sorted by cost. The

complexity of translation is O (min{C, D}).

B. The algorithm

The algorithm iteratively qomputes the (minimal)
cost-delay sets of all vertices jn the graph. Let F3, de-
note the cost-delay set for verfex w at iteration j. Ini-

tially, all vertices have empty

0, except v, for which F? =
ation, each vertex updates i
spect to all its successor verti
when no cost-delay set is up

cost-delay sets, F2 =
{(0,0)}. At each iter-
cost-delay set with re-
es. Computation stops
ted any more. We now

present the operations performed at each iteration at

each vertex w.

Let wy, ..., wi be the successor vertices of w, that

(ci di)

is,w — w;, forz = 1,...

might not be distinct). Then,

k (note that w;, ..., wg
the cost-delay set of w

delayA :

D efseccceces !....; E
o.--:) E
[SN

Qi @i
[SO,

C cost
@

Fig. 3. A cost-delay set (a) and its minimal (b)

at iteration j + 1 will be:

k
Fit = minimal(Fj U | J (L, + (crdi))

i=1

That is, we add to the possible cost-delay values for
w all values obtained by taking an edge to some suc-
cessor vertex w;, and then continuing with a possible
cost-delay value for w;.

The following proposition proves termination and
correctness of the algorithm.

Proposition IV.2: (Termination) The updating of
the cost-delay sets will stabilize after at most | V| it-
erations, that is, for any vertex w, Fiy *! = Fl/l.
(Correctness) A feasible path from w to v exists iff
F,!,,Vl # 0. Forany (¢, d) € F,LVI, there exists a path p
from w to v such that cost(p) = ¢ and delay(p) = d.

C. Worst-case complexity of the algorithm

Proposition IV.2 implies that the algorithm stops
after at most |V/| iterations. At each iteration, the
cost-delay set of each vertex is updated with respect
to all its successor vertices. Thus, there are at most
| E| updates at each iteration. Each update involves a
translation and a union, both of which have complex-
ity O(min{C, D}). Therefore, the overall worst-
case complexity of the algorithm is O(|V] - |E]| -
min{C, D}).

D. Incorporating routing information

As defined, cost-delay sets do not contain any rout-
ing information, that is, at the end of the algorithm,
we know that a point in F, represents the cost-delay

value of a possible feasible path from w to v, but we
do not know which path. This information is easy
to incorporate, at the expense of associating to each
(c,d) € F,, theedgee = (w,ws,¢,d'), and a
pointer to the element (¢;,d;) € Fy,, from which
(¢, d) was generated. The edge and (¢;,d;) element
are unique, and come from the operation F, U(Fy, +
(¢, d")). In order to reconstruct the path from w with
cost-delay (c,d) we follow the edge e to w,, then
look for the path from w; with cost-delay (c;,d;),
and so on.

V. A BOUNDED-ERROR APPROXIMATIVE
ALGORITHM

In this section we give an approximative algorithm
for the problem of routing under two constraints. The
algorithm is approximative in the sense that, it might
not yield a feasible path, even if such a path exists.
However, the error in the path p returned by the al-
gorithm can be bounded: error(p) < €, where € is an
input parameter. The algorithm has worst-case com-
plexity O(|V|? - |E| - (1 + L)), which implies that
it is worth using only when |V| is (much) smaller
than 1% - min{C, D}. Otherwise, the algorithm of
section IV, being exact and less expensive, would be
preferable. In the rest of this section we assume that
V| < 15 - min{C, D}.

A. Minimal-distance cost-delay sets

The approximative algorithm is similar to the one
of section IV, with the additional fact that it elim-
inates elements of cost-delay sets which are “too
close” to some other element. More formally, for

(e1,d1), (c2,d2) € N2, define:

ll(e1, d1), (c2, d2)|| % maz{le; — s, |d1 — dal}

Then, a cost-delay set F' is said to have minimal
distance § iff for all distinct (c1,d1),(c2,d2) € F,

|I(e1, 1), (€2, d2)l| 2 6.
Given a cost-delay set F' and some § > 2, we
would like to find a subset F/ C F, such that:

1. F’ has minimal distance §, and
2. forall z € F — F', there exists y € F’ such
that ||z, y|| < 6.

Condition 2 ensures that no elements of F are

dropped unnecessarily (were condition 2 to be missed,

the trivial subset F' = @ would satisfy condition 1).
A subset F' C F satisfying the above conditions is
called a maximal é-distance subset of F. In general,
there may be more than one maximal §-distance sub-
sets of a given F' (any one of themis good for our pur-
poses). We now give a procedure to compute, given
F, a maximal é-distance subset F' C F.

The procedure takes as input the list representa-
tion L of F and generates as output a list L. As-
sume L = (z1,...,2p). Initially, L' = (z1). Let
y denote the last element of L, at each point during
the execution of the procedure. For each ¢ > 2, if
||z, || > 6 then z; is appended at the end of L’ and
y is updated to z;, otherwise, z; is skipped. It can be
shown that the list built that way represents a legal -
distance subset of F'. From now on, we denote this
set by min_dist(6, F).

Definition V.1: We define the step error, é, to be

min{C,D} ¢
v

B. The algorithm

The approximative algorithm is obtained by the al-
gorithm of section IV by the following modification.
Given ¢ € [0, 1), instead of keeping a minimal set F,
for each node w, we keep a set B,, such that:

1. B, has no redundant elements,

2. for each (c,d) € By, ¢ < (1+¢)-C,
d < (1 + €) - D (that is, the feasibility region
is extended by (¢ - C, ¢+ D),

3. B, has minimal distance é..

6
That is, in the approximzjtive algorithm, the fix-
point equations are as follows:

i+1
B =

min_dist (.se, minimaI(B’ U, (Bl + (c.-,d,-))))
As in the case of the exact algorithm, termination of
the approximative algorithm|is ensured in [V| steps.
Proposition V.1: Consider a graph G, nodes u,v
of G, and cost-delay constraints C, D. Then, for
given €:
(1) If B, = 0 at the end of the approximative al-
gorithm, then no feasible path from u to v exists.
() If B, # 0, then for each (¢,d) € B,, there
exists a path p from u to v such that cost(p) =
delay(p) = d and error(p) <|e.
Proof (sketch):
Let w be anode and F,,, B}, be the final cost-delay
sets computed for w by the exact and approximative
algorithms, respectively. The result is based on the
fact that, for any (c,d) € F,, there exists (¢/,d’) €
By, such that ||(c,d),(c,d')|| £ |V]: 6. Thisis
because at most &, “error” accumulates at each step
of the algorithm, when elimjnating pairs during the
min_dist operation.
By definition of 8, we have that ||(c, d), (¢, &")|| <
min{C, D} - €. Then, assuming (¢, d) to be the cost
and delay of an optimal path p* and (c’, d') the cost
and delay of a path p computed by the approximative
algorithm, it is easy to prove] that error(p) < e. For
(1), notice that if p* is feasible thenc’ < (1+¢€)-C
and &’ < (1 + €) - D, This means that (¢, d’) is in-

deed “inside” the extended feasibility region, thus, is
not eliminated from B,, during the approximative al-
gorithm.]

C. Worst-case complexity

The only difference from| the algorithm of sec-
tion IV is in the worst-case size of the cost-delay sets
B,,. Since the latter have minimal distance §, and are
bounded by the feasnbllltyre 1on ((1+¢€)-C,(1+¢)-
D), we have |B,| < C.D} By definition

of &, we get | B,| < Q?H |. The union, transla-
tion and min_dist operations ¢can be implemented us-
ing sorted lists to represent the sets B,, (the canonical
representation is not affected by minimal distance).
The cost of the operations is,|as previously, linear on

@ (0.4,0.5)

(0.6,0.5)

0.2,1)

Fig. 4. A network with normalized costs and delays

the size of the lists, which yields an overall worst-
case complexity of O(|V|? - | E| - (1 + 1)).

VI. SATISFYING CONSTRAINTS BY USING THE
SHORTEST PATH ALGORITHM

In this section, we consider an algorithm for find-
ing a path which satisfies the two constraints by using
the shortest path algorithm. Our objective will be to
use the shortest path algorithm to find a path p which
minimizes M(p).

For the rest of this section we assume that we have
normalized the costs and delays by dividing the costs
by C and the delays by D. Figure 4 shows the figure
from Example II.1 where the cost constraint is 5 and
the delay constraint is 2.

A path is feasible in the new graph if cost(p) <
1 and delay(p) < 1. Note that a path is feasible in
the new graph iff it was feasible in the original graph.
Furthermore, M (p) is the same in both graphs.

To find a path satisfying two constraints by using
the shortest path algorithm, we choosean0 < o <1
and replace the cost ¢ and the delay d associated with
an edge with the weight ac + (1 — a)d. We then
use the shortest path algorithm to find a path with the
smallest weight. We refer to this path as SP(G, c).
As the next lemma shows, p = SP(G, a) has an er-
ror error(p) of at most 1 for o = 1.

Lemma VL1: Foragraph G = (V, E), M(p*) <
M(p) < 2M(p*), where p = SP(G,a) and p* is
the path which minimizes M.

Proof: Recall that for all paths p/, M(p’) > 1. If
M(p) = 1, then clearly M(p) < 2M(p*). So as-

sume M(p) > 1. Then

< cost(p) + delay(p)
< cost(p*) + delay(p™)
< 14+1< M(p7)+ M(p*) = 2M(p).

M(p)

n

The previous lemma shows that by choosing a =
1, we can obtain a path p with error(p) < 1. We now
present an algorithm that minimizes M(SP(G, @))
by choosing the appropriate o

The algorithm uses binary search: assume we
know that the optimal value of « lies in the inter-
val [I,u); we find p = SP(G,e)fora = 4%
if cost(p) < delay(p), we eliminate the interval
(%‘i , u] from consideration, otherwise, we eliminate
[, 15%). Thealgorithm terminates when S P(G,1) =
SP(G,u).

The reason that half of the interval can be elimi-
nated follows from the following lemma.

Lemma VI.2: Suppose p = SP(G,a) and
cost(p) < delay(p). Then foro’ > aandp’ =
SP(G,a'), cost(p') < cost(p) and delay(p’) >
delay(p).

Proof: There are four cases:

1. cost(p') > cost(p) and delay(p’) > delay(p).

2. cost(p') < cost(p) and delay(p’) < delay(p).

3. cost(p') > cost(p) and delay(p’) < delay(p).

4. cost(p') < cost(p) and delay(p’) > delay(p).

Case 1 is not feasible because then path p improves
onp = SP(G,e). Case 2 is not feasible be-
cause then path p’ improves on p = SP(G,a).
Case 3 is not feasible because acost(p’) + (1 —
a)delay(p’) > acost(p) + (1 — a)delay(p) and
(o — @)cost(p') + (a — a')delay(p’) > (o' —
a)cost(p)+(a—a')delay(p), and hence o' cost(p')+
(1 - a')delay(p’) > o/cost(p) + (1 — a’)delay(p) —
a contradiction since p' = SP(G,a’). Therefore, 4
is the only feasible case. n

Now assume we found p = SP(G,a) and
delay(p) > 1 and cost(p) < delay(p). Then from
Lemma V12, fora’ > a, forp’ = SP(G,d),
cost(p) < cost(p) and delay(p) > delay(p).
Therefore M(p') > M(p), and hence the interval
(, u] can be eliminated from consideration. By sim-
ilar reasoning, if delay(p) < cost(p), then the inter-
val [/, &) can be eliminated.

Here is a more formal statement of the algorithm:

(2-¢,0)

(1,1)

(0

0,2-¢)

Fig.5. A graph for which the error is error(SP(G, a)) =
l-cforall0<a<l

Algorithm to find o to minimize M(SP(G, a)):
I1=0
u=1
o= SP(Ga I)
P = SP(G,u)
Repeat
o= b
2
Pa = SP(G,a)
if (cost(p) < delay(p))
l=a
Pl = Pa
else
u=a
Pu = Pa
Until (7 = pu)

Theorem VI.1: The above algorithm terminates
in polynomial number of steps, and the a* com-
puted by the algorithm satisfies M(SP(G,o*)) <
M(SP(G,a))fora € [0,1].

Notice that, although error(SP(G,a*)) < 1
(lemma VI.1), there are “bad” examples where the er-
ror can be arbitrarily close to 1.

Example VI.1: Consider the example in Figure 5
where the cost constraint is C = 1 and the delay
constraint is D = 1. It is easy to check that for any
0<a<lerror(SP(G,a))=1-¢

VII. A LINEAR PROGRAMMING SOLUTION TO A
RELAXED PROBLEM

In this section, we relax the requirements of our
problem. Rather than asking for a single path that sat-
isfies the cost and delay requirements, we allow for
the data to be routed over multiple paths. But we re-
quire the average delay and average cost to satisfy the
constraints.

Let us define f. to be fraction of the data from the

8
source to the destination thaL flows over the edge e.

We then have the following onstraints (out(v) are
the outgoing edges and in(v) are the incoming edges
of anode v):

Foreach e€|E,fe >0

> fd=1 @
e€out(s)
Y fef=1 3)
e€in(t)
For v# s and v #1, Z fe= z fe
egin(v) e€out(v)
C))
Y fecost(e) < C)
e€E
Z fe delay(e) < D ©6)
eeE

Equation 2- 4 are the balance equations for the
nodes. Equation 5 states that the average cost must be
less than the cost constraint (', and equation 6 states
that the average delay must|be less than the delay
constraint D.

A feasible solution of th
tells us how the data should b
to the destination so that ave:
straints are satisfied.

Example VII.1: Consider
Figure 1 with cost constrain
3. If we formulate the above
for this problem, we note th
e is a solution. This means
the source is routed to node 2, and the other half to
node 3. The average delay corresponding to this so-
lutionis $(2+2+ 1+ 1) = 3} and the average cost is
1(3+2+1+1) = 3.5. Notice that even though the
average cost and delay satisfly the constraints, indi-
vidual paths may not (e.g., the path (1, 3)(3, 4) does
not satisfy the delay constraint).

If we restrict ourselves to integer solutions of
the above linear program (ile, a integer program-
ming problem), then each soiution represents a sin-
gle path that satisfies the delay and cost constraints.
Of course, checking feasibility of integer linear pro-
grams is NP-complete.

above linear program
routed from the source
ge cost and delay con-

gain Example II.1 and
4 and delay constraint
et of linear constraints
fe = } for each edge
t half of the data from

VIII. OTHER EXTENSIONS

In this section we discuss the extension of the
problem to the case with more than two constraints.
We also discuss a somewhat different, but sometimes
more useful problem in practice, where we minimize
the cost subject to a delay constraint.

A. More than two constraints

In a problem with & constraints, we are given a k-
weight graph, where each edge is labeled with a k-
tuple (c1,¢2, . . ., k). We are required to find a path
such that the sum of the ith weight along the path is
less than a bound C;.

By a straightforward extension of the algorithms
in Section IV and Section V, it is easy to show
that we can get an exact algorithm with complex-
ity O(|V|| E| TI:., C:), and a bounded-error approx-
imative algorithm with complexity O(|V|F|E|(1 +
1)k), where ¢ is the maximum error allowed. The ba-
sic idea of the extension is that cost-delay sets now
become general Pareto sets containing k-tuples of
the form (ay, . .., ax). Such a tuple in the Pareto set
associated with some vertex w means that it is pos-
sible to get from w to the destination vertex along a
path in which the sum of the ith weight is a;.

It is also possible to extend some parts of the al-
gorithm in Section VI. It is possible to obtain a path
with error at most ¢ = k—1 for a problem with & con-
straints by solving the shortest path algorithm. Also,
it seems possible to extend the algorithm which iter-
ates over shortest path problems to the case of three
constraints [4].

B. An alternative formulation

An alternative and sometimes more useful formu-
lation is when a bound is given on the delay, and
subject to this, we are required to minimize the cost.
The algorithms of Section IV and Section V can be
straightforwardly extended to solve this problem. In
the final cost-delay set of the source node, we find the
pair (¢;, d;) with the smallest ¢;. This corresponds to
an optimal path to the destination with minimal cost
Ci.

To be able to solve this alternate formulation, we
also augmented the algorithm of Section V1. To find
a path which meets the delay constraint D and has
minimum cost C, we solve a problem with delay con-

straint D and cost constraint C where C is initiall;
chosen to be large. We then find the minimum cost
by performing a binary search on C..

In the experimental results presented in Sec-
tion IX, this alternative formulation of the problem
is solved.

IX. EXPERIMENTAL RESULTS

We have implemented in C the bounded-error ap-
proximative algorithm (section V) and the shortest-
path based algorithm (section VI). In this section, we
report results obtained by applying the algorithms on
a number of multi-weight graphs. Our objective was
to see how well the algorithms perform on graphs
of medium to large size. Also, to check how sensi-
tive the algorithms were to different parameters (e.g.,
number of weights, source/destination pairs, step-
error).

The graphs were obtained by translating elevation
maps of physical landscapes !. A landscape of di-
mension n; X ng resulted in a graph with n; - ng
vertices and approximately 4 - n; - nz edges (central
vertices having four successors, “north, south, east,
west”). The cost ¢ of an edge was taken to be the
difference in elevation between the destination and
source vertices. The “delays” d; and d; (the second
delay was used only in 3-weight graphs) were gener-
ated randomly according to a Gaussian distribution.
Tables I, IT1, and IV present the results. The notation
used in these tables is explained in table I.

From tables II and I, the following observations
can be made:

o The shortest-path algorithm is two or more or-
ders of magnitude faster than the bounded-error
approximative algorithm, while at the same time
producing paths which are both feasible (w.r.t.
d;) and as good as the paths produced by the
bounded-error algorithm (w.r.t. ¢).

« The bounded-error approximative algorithm
is sensitive to the step-error parameter, 6. Re-
ducing 6, by one or two orders of magnitude re-
sulted in dramatic increases in running time.

« The algorithms are not very sensitive on the
particular source/destination pair.

1].e., 2-dimensional arrays, the §, j-th element giving the alti-
tude of the longitude-latitude point corresponding to coordinates
ij.

10

n | Number of vertices
m | Number of edges
t | Execution time (CPU) in seconds
¢ | “Cost” of path
dy | “Delay 1” of path
d2 | “Delay 2” of path
8. | Step-error for bounded-error approximate algorithm
TABLEI
NOTATION FOR TABLES II AND III.
1st source/dest. pair 2nd source/dest. pair
" 6.=10"7 [6,=10"" [6 =10"° | 6.,=10"% | 6, =10[" | 6 =10""
|| graph 1 t="T0 t =413 t=1274 13 51 118
n = 4641 c = 1532 c = 124
me4d-n dy =2.15% d; = 0.2% d = 0.14%
graph 2 t=56 | t=1278 [t=16740 t =153 1=4668 | t = 32477
n = 36417 c = 4152 c=117
m=ax4-n dl =0.2% dl =0.15% dl = 0.3%
graph 3 t=725 t=3503 | t=9971 =193 | t=419 | ¢t=1387
n = 225680 c = 9409 c = 4298
ma4-n dl = 0.01% | dl = 0% dl = 0.02% I 1i1 = 0% II

TABLE II
RESULTS OF THE BOUNDED-ERROR APPROXIMATIVE ALGORITHM ON 2-WEJGHT GRAPHS.

1st source/dest. pair | 2nd source/dest. pair

graph 1 t=0.94 t=0.48
n = 4641 ¢ = 1564 c=1723
mx4-n d1=127% dy =0.14%
graph 2 t=17.16 t=3.48

I' n = 36417 c =4220 c=1184
m=x4.n d, = 0.04% dy = 0%
graph 3 t = 47.96 t = 31.56

“ n = 225680 c=9411 c = 4487
max4-n d1=0% d1=0%

TABLE III

RESULTS OF THE SHORTEST-PATH ALGORITHM ON 2-WEIGHT GRAPHS.

From table IV, we see that adding one more
weight/constraint to the problem dramatically in-
creases the execution time of the bounded-error
approximative algorithm, with respect to 2-weight
graphs. Whereas we have been able to execute the al-
gorithm in 2-weight graphs of size up to 225680 ver-
tices, why we could only treat 3-weight graphs of rel-
atively small sizes (up to 1700 vertices).

X. CONCLUSION

In this paper, we have pr
uting problem with mul-
tiple constraints. These algrgn
plexity and the accuracy of
implemented these algorith

algorithms for solving the

performance on different

we will look to turning th

esented several different

ithms vary in their com-
their solutions. We have
ims and compared their
phs. In our future work
e algorithms into a dis-

11

6. =107% be = 10—° 6, =107°
graph 4 t =149 =1.80 t=1.85
n="T77 c="720
m=x~4-n d; = 5.6%

ds = 6.43%
graph 5 t=425 | {=153.97 | {=06095.42
n=1178 c =994
ma4-n d, =1.79%

ds = 5.39%
graph 6 t = 1352.54 | t=17631.51 I 1 =29274.12
n=1722 c= 1024
ma4.n d, = 3.68%

d» = 4.66%

TABLE IV

RESULTS OF THE BOUNDED-ERROR ALGORITHM ON 3-WEIGHT GRAPHS.

[3] J. M. Jaffe, Algorithms for Finding Paths with Multiple
Constraints, Nerworks, Vol. 14, 1984, pp. 95-116.

[4] R.Ogier. Personnal communication.

[S] Z. Wang and J. Crowcroft, Quality-of-Service Routing
for Supporting Multimedia Applications, IEEE Journal on
Fig. 6. An output of the bounded-error approximative al- Selected Areas in Communications, Vol. 14, No. 7, Sept.
gorithm on a map translated into a 2-weight graph: the 1996.
solid black line depicts the path; red dots are “high-
delay” zones; the grey scale background represents
the elevation variations of the landscape (white: high,
black: low).

tributed protocol for QOS routing.

REFERENCES

[11 M.R.Garey and D.S. Johnson, Computers and Intractabil-
ity — A Guide to the theory of NP-Completeness, Freeman,
San Francisco, 1979.

[21 R. Hassin, Approximation Schemes for the Restricted
Shortest Path Problem, Mathematics of Operations Re-
search, Vol. 17, No. 1, Feb. 1992,

	Copyright notice 2001
	ERL-01-7

