

Copyright © 2001, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

ALGORITHMS FOR ROUTING

WITH MULTIPLE CONSTRAINTS

by

Anuj Puri and Stavros Tripakis

Memorandum No. UCB/ERL MOl/7

30 January 2001

ALGORITHMS FOR ROUTING

WITH MULTIPLE CONSTRAINTS

by

Anuj Puri and Stavros Tripakis

Memorandum No. UCB/ERL MO1/7

30 January 2001

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of Califomia, Berkeley

94720

Algorithms for Routing with Multiple
Constraints

Anuj Puri and StavrosTripakis
Department ofElectrical Engineering andComputer Science,

University of California, Berkeley, CA 94720

Abstract—In this paper, we study the problem of
routii^ under multiple constraints. We consider a
graph where each edge Is labeled with a cost and a de
lay. We then consider the problem of finding a path
from a source vertex to a destination vertex such that

the sum of the costs on the path satisfy the cost con
straint and the sum of the delays satisfy the delay con
straint We study the complejdtyof this problem and
then present three different algorithms for solvingthe
problem. These algorithms have varying levelsofcom
plexityand solvethe problem with varying degreesof
accuracy. We present an Implementation of these al
gorithms and ^scuss their performance on different
graphs.

I. Introduction

Routing data from one node to another is among
the most basic problems in computer networking. A
model for such a problem is a graph where an edge
in the graphrepresentsa physicallink in thenetwork.
Associated with each edge is its length. This length
could represent the delay of the physical link, or its
cost, or a summary of various propertiesof the link.
The routing problem is to find a path from the source
to the destination of minimum length.

This formulation requires us to sununarize all
propertiesof a link with a single number, or to focus
only on a single property at the expense of others. For
example, we may have a choice between a low cost
link which has a high delay (such as a satellite link),
or a high cost link with a lowdelay (such as a fiberop
tic link). It is not clear how to summarize these links
with a single number in the routing problem.

In this paper, we present a more general formula
tion of the problem. Wemodel a physical link with an
edge in the graph that is labeled with two numbers: a
delay and a cost. We are given a delay constraint D
and a cost constraint C. Our objective is to finda path
from the source to the destination such that the sum of

alldelays onthepathislessthanD, andthesumofall
costs is less than C. We first show that this problem
is NP-Complete. Wethen present threedifferent al
gorithms forsolving theproblem. Thefirst algorithm
is a pseudo-polynomial timealgorithm which solves
the problem exactly in time 0{\V\\E\min{CyD])
where |V| is the number of vertices and |jB1 is the
number of edges in the graph. The algorithm either
reports backwitha pathsatisfying theconstraints or
statesthat no suchpathexists. The second algorithm
solvesthe problem approximately but with an error
of at most €. That is, either it states that no path satis
fying theconstraints exists,or it finds a pathsuchthat
thesumofcosts on thepathis atmostC ♦ (1-I- e),and
thesumofdelays isatmostD •(1-|- e). Thecomplex
ity ofthis algorithm is0(|Vp|i?|(l + 7)). The third
algorithm finds a path withan errorof at moste = 1.
Thisalgorithm requires a solutionof theshortestpath
problem on the given graph. Although most of the
paperis focused on dealing withtwoconstraints, the
first two algorithms generalize in a straightforward
manner to more than two constraints.

In Section II, we define our problem more for
mally and introduceour notation. In Section HI, we
showtheproblemis NP-Complete. In SectionIV, we
presenta pseudo-polynomial time algorithm for the
problem. In Section V, wepresenta polynomial time
approximationscheme. In Section VI, we present an
algorithm based on solving the shortest path prob
lem on the graph. In Section Vn, we presenta linear
programming solution to a relaxed problem. In Sec
tion Vin we discuss other possible extensions. Sec
tion IX discusses the performance results for the dif
ferent algorithms and Section X is the conclusion.

Relationship to other work

The routing problem with more than one con
straint seems to have been studied by several re-

searchers. It seems to be well known that the

problem is NP-Complete [3] [2] [1]. An explicit
proof of this is provided in [5]. In [3], a pseudo-
polynomial time algorithm is presented for exactly
solving the problem. This algorithm is similar
to the algorithm presented in Section IV, how
ever, [3] states that the complexity of the algorithm
is 0{\V\^max{C^D}log{\V\max{CyD})). By a
more careful analysis and using the data structures
in a more clever manner, we can show the complex
ityof ouralgorithm is 0(|y||E|min{C,i>}). In [3],
an approximation algorithm that solves the problem
with approximation error e = 1 using the short
est path algorithm is also presented. Although this
is similar to our algorithm in Section VI, our algo
rithmin generalwillperformbetterbecausewe solve
a series of shortest path problems, each obtaining a
better solution than the last one. In [2], several al
gorithms are presented for approximating the solu
tion to the problem. Although the author restricts to
acyclic graphs, extensions to general graphs should
be straightforward. The complexity of the two
approximation algorithms are 0{loglogB{^^^^^ +
loglogB))mdO(\E\^log{'̂)) whereeis theerror
of theapproximation and B = max{C, D}. Ourap
proximation algorithm in Section V has complexity
0(|Vpli?|(l + 7). The algorithms also use some
what different techniques. Our algorithm is essen
tiallya generalization of theBellman-Ford algorithm
where we keep track of errors during the iteration.

Althoughseveral algorithmshave been proposed
for solving the routing problem with multiple con
straints, there seems to be no results available about
the actual implementation or the performance of
these algorithms. In our work, we present several
new ideasfor solvingthe problem,a completeimple
mentation of these ideas and a comparison of the per
formance of these algorithms.

II. Problem Formulation

Fig. 1. A Sirapl e Network

A path is p = vi
(cn»<In) rr-11 j.

u„+i. The cost
Cf and its delay is dela;

Given a path p and cost constraint C > 1 and de
lay constraint D > 1, we sayr p isfeasible provided
cost(p) < C and delay(p) < D. The problem of
routing undertwo constraints is, given G = (V,E)^
cost constraint C and delay constraint D, a source
node 5 € V and a destination i G V, find a fea
sible path p from s to U or decide that no such path
exists.

Example 111: Consider thle 2-weightgraph ofFig
ure 1. Each edge is labeledwith (c, d) wherec is the
cost of the edge and d is the delay of the edge. For
example, the edge from vert(sx 1 to vertex 2 has cost

source vertex is 1, the

}st constraint is C = 5

(ci ,di I

3 and delay 1. Suppose the
destination vertex is 4, the c

and the delay constraint is Jp = 2. Then, the path
(3.1) o (2.1)

(C2.<l2)
V2 »• V3

of a path is cost(p) =

y(p) = E"=i di.

(cs.ds)

(1.2) (1.2)I 2 4 is feasible, whereas 1 3

not (since it violates the delay constraint).
The reader can check that

then there is no feasible path.
Rather than checking to seie if a graph has a feasi

ble path, it is sometimesusefal to try to minimizethe
following objective function

4 is

if C = 4 and jD = 3,

We consider a directed 2-weight graph G = M(p) = max{
(V,E), where V is thesetof vertices andE istheset
ofedges. Anedgee € Eise = {v,w,c,d)where the
edgegoes from v to ly, and has delay delay(e) = d

and cost(e) = c. We write this as v w. When
there is no confusion, we may also write the edge as
(u,w)and say theedge is labeled with (c,d).

max{cost{p] ,C} maz{delay(p), H}

Observe that for any
Af(p) = 1 iff p is feasible
path does not exist or is hard
imizing M(p) we can get a
to satisfying the constraints.

patli

D

p, M(p) > 1 and
But even if a feasible

:ofind,by trying to min-
aath that comes "close"

}•

Formally, we define the error of a path p as

M(p) - Mip")
error(p) =

M{p*)

where p* is the path which minimizes M (in case
more than one paths minimize M, we pickp* arbi
trarily among them, since the minimal value Af(p*)
is the same for all of them).

Notice that error(p) > 0 and error(p) = 0 iffp is
feasible. Alsonotethat if cost(p) < C •(1 -}- c) and
delay(p) < D'{l + €)thenerror(p) < e. Indeed,the
two above conditionsimply that M{p) < 1 + €and,
sinceM{p*) > 1, weget error(p) < e.

In case it is too difficult to find p*, we look for a
pathp for which error(p) is small. Wewillnextcon
sider the complexity of finding a feasible path, and
algorithms for finding a feasible path andfor finding
pathsfor whicherror(p) is small.

III. Complexity

We show that the routing problem with two con
straints is NP-Complete.

TheoremIII1: The routing problem with two con
straints is NP-Complete.
Proof: We will provide a reduction from the knap
sack problem. Recall that in the knapsack problem,
we are given positive integers ci, C2,..., Cn, and N,
andthe objective is to find a subset S C {1,..., n}
such that]C»€S c,- = N.

From the Imapsackproblem, we construct a graph
with vertices {1,..., n}. Thereare two edges from
vertex i to vertex i +1: edge(i, i -|-1, c,-, 0) andedge
(i, i -I-1,0,c,). Figure2 shows thescenario. Ourob
jective is to finda path from vertex 1 to vertexn with
cost constraint N and delay constraint Ci-N.
It is easy to check that there is a path that satisfies
the constraints iff there is a solution to the knapsack
problem. •

IV. An 0(\V\ . \E\ • Tnin{C,D})
PSEUDO-POLYNOMIAL ALGORITHM

In this section, we propose an algorithm for the
problem of routing under two constraints with worst-
case complexity 0{\V\ • \E\ • mm{C, D]), That is,
the algorithm is polynomial on the size of the graph
(quadratic on the number of vertices and linear on the
number of edges), but also linearly depends on the

smaller of the bounds C and D. Therefore, it is a
psewdo-polynomial algorithm.

Let us begin by making a safehypothesis. Given
a 2-weight graph G = (V, E), where |V] = n,
let costmox = Tnax{c \ (-,-,c,_) € E] and
tlelayniax = max{d \ (.,_,d,-) € i?} be the
maximum cost and delay associated with any edge
of G. Now, assume that n • cost,„ax < C. Then,
given € V, there existsa feasible pathfrom u
to Viff there exists a path p from u to v such that
delay(p) < D. To see this, observe that if there is
a pathp from wto v such that delay(p) < D, then
there is a simplepath (i.e., with no cycles) from u to
V. Assuming p to be simple, p has length at most n,
thus, cost(p) < n' costTOox < C, which implies that
p is feasible. The inversedirection is trivial.

Giventhisobservation,findinga feasiblepathinG
from u to Vcomes down to finding the smallest-delay
path from u to v, that is, the path p that minimizes
delay(p). This can be easily done using a shortest-
pathalgorithm, withcostG(|F| • \E\). Since thisis
less than 0(\V\ • |£| • mm{G, D}), thiscase isnot
interesting. Thecasewhereri'deiay^oj. < D issym
metric.

So, from now on we assume that n • cost„»ox >
C and n • deiay^oa. > D. We also assumethat the
greatest common divisor of {G,cost(e) \ e e E}
is 1, andsimilarly for the delays(otherwise wecould
just divide all costs/delaysby their greatestcommon
divisor, without affecting the problem).

Informally, the algorithm works as follows. For
each vertex w, we compute a set of cost-delay pairs
F^. Each(c, d) € willrepresent thecostandde
lay of a possiblepath from w to the destination ver
tex V, To keep the size of Fw manageable, we elim
inate from Fy, all elementscorrespondingto infeasi-
ble paths (i.e., all (c, d) such that c > G or d > D).
Moreover, we eliminate from Fy, all redundant ele
ments, that is, all elements with both cost and delay
greater from some other element. Let us make these
more precise below.

A. Cost-delay sets

A cost-delayset for a vertex lo is a set C Nx N.
An element (c, d) of Fy, is called infeasibleif either
c > G or d > £). An element (c, d) of Fy, is called
redundant if there exists a different (c', d') € Fy,
such that c' < c and d' < d.

(CpO) (C2,0)

(O.Ci) (0,

Fig. 2. Graph obtained from the knapsack problem

A cost-delayset F is said to be minimal if it con
tains no infeasible or redundant elements. The fol

lowingpropertieshold (assuming C and D fixed):
Proposition IV.1: If F is minimal, then |jP| <

mtn{C, D}. Toeveiy cost-delay set F corresponds
a unique greatest minimal subset F' C F.
We write minimai(i^) to denote thegreatest minimal
subset of F.

Figure 3 displays the typical structure of a cost-
delayset and its minimal. Blackand greybulletsare
infeasible and redundant elements, respectively.

Minimal cost-delay sets admit an efficient canon
ical representation as sorted lists. Considera mini
mal setF = {(ci, di), (c2, d2)j (cn, dn)} and as
sume, without loss of generality, that ci < C2 <
•• • < Cn- Then, di > d2 > •• • > dn must hold,
otherwise there would be at least one redundant el

ement in F. Consequently, F can be representedas
the list (ci, di) (c2,d2) ••• (c„, dn), sorted using
cost as the"key". This representation is canonical in
the sense that two minimal sets Fi, F2 are equal iff
their list representations are identical.

The algorithm works with minimal cost delay sets
and uses two operations, namely, union and transla
tion with respect toa vector (c,d) € N^. We present
theseoperations and discusshowthey can be imple
mented using sorted-lists andpreserving thecanoni
cal representation.

Given minimal (i.e., feasible and non-redundant)

Fi,f2. the union Fi U F2 is always feasible, but
not necessarily non-redundant. In order to compute
F = minimal(J^i U F2) directly from the list rep
resentations ii, L2 of Fi, F2, we can use a simple
modification of a usual merge-sortalgorithmon lists.
The latter takes as input Li, L2 and produces Z-, the
listrepresentation of F. In ordertoguarantee theab
sence of redundantpoints in X, it compares at each
steptheheads (ci, di) and (c2, d2) of (theremaining

partsof)Li, L2. If ci < C2 aiiddi < d2 then(c2,d2)
is redundantand is skipped. If C2 < ci and d2 < di
then (ci, di) is skipped. Oth(;rwise, the pair withthe
smallest Ci is inserted in X an 1the head pointer move
one element ahead in the corresponding list Li. It is
easy to see that this algorithn is correct. The cost of
the algorithm is -f- 712, wiiere n,- is the length of
X,-. Therefore, from proposition IV.1, the worst-case
complexity of computing the
is 0(mm{C,X>}).

Translation is defined on s

pair (c,d) G

F+ (c,d) {(c' + c,d

union ofcost-delay sets

cost-delay set F and a

+ d)|(c',d')ef}

If F is minimal, then F -H (
however, it may contain infejis
be easily eliminated, howeve
L' for min{F -H (c,d)): thci
adding(c, d) to each of its el
c < D and d,- + d < X> then
serted at the end of X', others
is skipped. At the end, L' wil
complexity of translation is

c, d) is non-redundant,
ible points. These can

; while building the list
list of F is traversed,

ments, (c,-, d,); if c,- -|-
(cj + c,di -f d) is in-

ise it is infeasibleand it

be sorted by cost. The
mm{C, jD}).

B. The algorithm

The algorithm iteratively
cost-delaysets of all vertices
note thecost-delayset for vert(
tially, all vertices have emptj
0, except u, for which Xj =
ation, each vertex updates its
spect to all its successor vertii:
when no cost-delay set is upd
present the operations perfoi
each vertex w

Let wi,...jWkhQ the succ

IS, ly ly,-,fore = 1,.

might not be distinct). Then,

0(

computes the (minimal)
n thegraph. LetFi de-
ex w at iteration j. Ini-
cost-delay sets, Xj =
{(0,0)}. At each iter-
cost-delay set with re-
es. Computation stops

;ited any more. We now
lined at each iteration at

qssor vertices of ly, that

k (note that wi^..., lyjt
the cost-delay set of w

delay

D '

delay

D •
b..

..

b..
..

b
>

A

b.

b
>>

C cost(a) ^ (b)
Fig.3. A cost-delay set (a)and its minimal (b)

cost

at iteration j + 1 will be:

k

fi+i =minimal(fi U[j (F^ +(c.-, d.))) (D
»=1

That is, we add to the possiblecost-delay valuesfor
w all values obtained by taking an edge to some suc
cessor vertexly,-, and then continuingwith a possible
cost-delay value for Wi.

The followingpropositionproves terminationand
correctness of the algorithm.

PropositionIV.2: (Termination) The updating of
the cost-delay sets willstabilize afterat most |V |̂ it
erations, that is, for any vertex ty, = fIT'.
(Correctness) A feasible path from w to v exists iff
Fi ' ^ 0. Forany(c,d) € Fi ',there exists apath p
from wtov suchthatcost(p) = c anddelay(p) = d,

C. Worst-casecomplexityofthe algorithm

Proposition rv.2 implies that the algorithm stops
after at most |V| iterations. At each iteration, the
cost-delay set of each vertex is updated with respect
to all its successor vertices. Thus, there are at most

\E\ updatesat each iteration. Eachupdateinvolvesa
translation and a union, both of which have complex
ity 0(min{C,D}). Therefore, the overall worst-
case complexity of the algorithm is 0{\V\ • \E\ •
mm{C, D}).

D. Incorporating routing information

As defined,cost-delay sets do not contain any rout
ing information, that is, at the end of the algorithm,
we know that a point in F„, represents the cost-delay

valueof a possiblefeasiblepathfrom w to v, but we
do not know which path. This information is easy
to incorporate, at the expense of associating to each
(c,d) € F^y, the edge e = (iy,wi,c',d'), and a
pointer to theelement (ci, di) € from which
(c,d) was generated. The edge and (ci,df) element
are unique, and come from theoperation F«,U(Fu,i +
(c\ d')). Inorder toreconstruct thepath from wwith
cost-delay (c, d) we follow the edge e to wi, then
look for the path from wi with cost-delay (ci,di),
and so on.

V. A BOUNDED-ERROR APPROXIMATIVE

ALGORITHM

In thissection wegiveanapproximative algorithm
fortheproblem of routingundertwoconstraints. The
algorithm isapproximative in thesense that,it might
not yielda feasible path, even if sucha path exists.
However, the error in the path p returned by the al
gorithm canbe bounded: error(p) < e, where c is an
input parameter. The algorithmhas worst-case com
plexity 0(|Fp • \E\ ' (1 -1- 7)), which implies that
it is worth using only when |V| is (much) smaller
than • min{Cy D}, Otherwise, the algorithm of
sectionIV, being exact and less expensive,wouldbe
preferable. In the rest of this section we assume that

1^1 <

A. Minimal-distance cost-delay sets

The approximativealgorithm is similar to the one
of section IV, with the additional fact that it elim
inates elements of cost-delay sets which are '̂too
close" to some other element. More formally, for

(ci,di),(c2,rf2) € N^, define:

||(ci,di),(c2,d2)|| max{\ci - C2|,|di - ^2!}

Then, a cost-delay set F is said to have minimal
distance 6 iff for all distinct (ci, di), (c2,^2) € F,
Il(ci,di),(c2,d2)ll >

Given a cost-delay set F and some 6 > 2, we
would like to find a subset F' C F, such that:

1. F'has minimal distance and

2. for all a: G - F\ there exists y € F' such
that 11®, 2/11 < S.

Condition 2 ensures that no elements of F are

droppeduimecessarily (were condition2tobemissed,
the trivial subset = 0 would satisfy condition 1).
A subsetF' C F satisfying the aboveconditions is
called a maximal 6-distance subset ofF. In general,
there may bemore than onemaximal ^-distance sub
setsofa givenF (anyoneofthemisgoodforourpur
poses). We nowgivea procedure to compute, given
F, a maximal ^-distance subset F' C F,

The procedure takes as input the list representa
tion L of F and generates as output a list i'. As
sume i = (a;i, ...,a;n)' Initially, X' = (a;i). Let
y denotethe last element of L\ at each pointduring
the execution of the procedure. For each i > 2, if
11®« j3/11 > ^ then isappended atthe end ofL' and
y is updated to x,-, otherwise, Xi is skipped. It canbe
shown thatthe list builtthat wayrepresents a legal^-
distance subset of F, From now on, we denote this
setby min_dist(^, F).

Definition VI: We define thesteperror, ^c» tobe

min{C,D} •e

IV^I

B. The algorithm

Theapproximativealgorithmisobtainedbytheal
gorithm of section IVbythefollowing modification.
Given €G[0,1], instead ofkeeping a minimal setFtw
for each node w, we keep a set such that:

1. Bw has no redundant elements,

2. for each (c,d) G c < (1 + c) • C,
d < {1 + e) ' D (that is, thefeasibility region
is extended by (e •C, €•D),
3. Bxu has minimal distance 6f

qtive algorithm, the fix-
s:

That is, in the approxim
point equations are as follow

Bit' ='w

minin_dist^6e, minimalU U?=i
gorithm, termination of
is ensured in IVl steps.

As in the case of the exact a]

the approximative algorithm:
Proposition VI: Considei a graph G, nodes v

of G, and cost-delay constiaints C,D. Then, for
given e:

(1) If Bu =0 at the end df the approximative al
gorithm, thenno feasible patli fromu to v exists.

(2) If Bu ^ 0» thenfor each (c, d) G there
exists a path p from u to v such that cost(p) = c,
delay(p) = d anderror(p) < €.
Proof (sketch):

Let u? be a node and Fyj^B j,be the finalcost-delay
setscomputed for w by theexactandapproximative
algorithms, respectively. Ths result is based on the
fact that, for any (c,d) G there exists (c',d') G
Bu,, such that l|(c,d),(c',d'lll < IVI • 6^. This is
because at most 6^ "error" accumulates at each step
of the algorithm, when eliminating pairsduring the
min-dist operation.

Bydefinitionof6^, wehavtsthat ||(c, d), {cf, d')\\ <
min{C,D] •e. Then, assunoing (c,d) tobe thecost
and delay of an optimal path p* and (c', d') thecost
anddelay ofa pathp compuhsd by theapproximative
algorithm, it is easy to prove thaterror(p) < c. For
(1), notice thatif p* is feasib ie thenc' < (1 + c) •C
and d' < (1 + e) -D, This means that (c',d') is in
deed "inside" the extendedfeasibilityregion, thus, is
not eliminated from Bu, durirlj
gorithm.

C Worst-case complexity

The only difference from
tion IV is in the worst-case si

Bu,. Since the latter have mi
boundedby thefeasibility rei
D), we have \Bu,\ <

of 6^, we get \Bu,\ <
tion and min-dist operations
ingsortedliststo representthb
representation is not affectec
The cost of the operations is.

g the approximative al-

the algorithm of sec-
ike of the cost-delay sets
n imal distance 6^and are
|ion((l-|-€)-C,(l-i-e)

By definition

/\. The union, transla-
I;an be implemented us-

sets Bu, (the canonical
by minimal distance),

as previously, linear on

(0.6,0.5) (0.4,0.5)

3 / (0.2,1)

Fig.4. A network with normalized costs anddelays

the size of the lists, which yields an overall worst-
case complexity of0{\V\^ • \E\•(1 -I- 7)).

VI. Satisfying constraints by using the

SHORTEST PATH ALGORITHM

In this section, we consider an algorithm for find
ingapathwhich satisfies thetwoconstraintsbyusing
the shortest path algorithm. Our objective will be to
use theshortestpath algorithm to finda pathp which
minimizes M{p).

For the rest of this section we assume that we have

normalized the costs and delays by dividing the costs
by C andthedelays by D. Figure 4 shows thefigure
fromExample n.l where the costconstraint is 5 and
the delay constraint is 2.

A path is feasible in thenew graph if cost(p) <
1 anddelay(p) < 1. Note thata path is feasible in
thenewgraphiff it wasfeasible in theoriginal graph.
Furthermore, M{p) is the samein both graphs.

To find a path satisfying two constraints by using
the shortestpath algorithm,we choosean 0 < a < 1
andreplace thecostc andthedelay d associated with
an edge with the weight ac -1- (1 —oi)d. We then
use theshortestpathalgorithm to find a pathwiththe
smallest weight. We refer to this path as SP(G^a).
As the next lemmashows,p = SP(Ct, a) has an er
ror error(p) of at most 1 for o; =

Lemma VIA: For a graphG —(V,E\ M(p*) <
M(p) < 2M(p*), where p = 5P(G,a) andp* is
the path which minimizes M.
Proof: Recall that for all paths p', M(p') > 1. If
M(p) = 1, thenclearly M(p) < 2M(p*). So as

sumeM(p) > 1. Then

M(p) < cost(p) + delay(p)
< cost(p*) + delay(p*)
< 1 -H 1 < M{p*) -1- M(p*) = 2M(p*).

Theprevious lemma shows thatbychoosing a =
5,we can obtain apath pwith error(p) < 1. We now
present an algorithm that minimizes M{SP{G,a))
by choosing the appropriate a.

The algorithm uses binary search: assume we
know that the optimal value of a lies in the inter
val [/,u]; we find p = SP{Gya) for a =
if cost(p) < delay(p), we eliminate the interval
(^, u] from consideration, otherwise, we eliminate
[/, ^). The algorithm terminates when SP(G, /) =
5P(G,u).

The reason that half of the interval can be elimi
nated follows from the following lemma.

Lemma Vl.2: Suppose p = 5P(G,a) and
cost(p) < delay(p). Then for a' > a and p' =
5P(G, a')' cost(p') < cost(p) and deiay(pO >
delay(p).
Proof: There are four cases:

1. cost(p') > cost(p) and delay(p') > delay(p).
2. cost(p') < cost(p) and delay(p') < delay(p).
3. cost(p') > cost(p) and delay(p') < delay(p).
4. cost(p') < cost(p) and de!ay(p') > delay(p).
Case 1 is not feasible because then pathp improves

on p' = 5P(G, a'). Case 2 is not feasible be
cause then path p' improves on p = iS'P(G,a).
Case 3 is not feasible because acost(p') + (1 -
a)delay(p') > acost(p) + (1 - a)delay(p) and
(q' - ci!)cost(p') + (a —a')delay(p') > {a' -
Q:)cost(p)+(a-a')deiay(p), and hence a'cost(p')+
(1—a')delay(p') > Q!'cost(p) + (1 —a')delay(p) —
a contradiction sincep' = SP{G,a'). Therefore, 4
is the only feasible case. •

Now assume we found p = SP(G,a) and
delay(p) > 1 and cost(p) < delay(p). Then from
Lemma VI.2, for a' > a, for p' = SP{G,oc')^
cost(p') < cost(p) and delay(p') > delay(p).
Therefore M{p') > M{p), and hence the interval
(a, u]canbeeliminated from consideration. Bysim
ilar reasoning, if delay(p) < cost(p), then theinter
val [/, a) can be eliminated.

Here is a more formal statement of the algorithm:

(2-e ,0)

(0.2-e)

Fig.5. A graph forwhich theerroriserror(5P(Cj, a)) =
1 — c for all 0 < a < 1

Algorithm to find a to minimize M{SP(G, a)):
/ = 0

u = 1

PI = 5P(G,/)
Pu = SP{GfU)
Repeat

a = ^
p« = 5P((?,a)
if (cost(p) < deiay(p))

I = a

Pl = Pa

else

u = a

Pu= Pa

Until {pi = Pu)

Theorem VLl: The above algorithm terminates
in polynomial number of steps, and the a* com
puted by the algorithm satisfies M{SP{G^ a*)) <
M(5P(G,a))fora6[0a].

Notice that, although error(5P(G,a*)) < 1
(lenuna VI.1), there are "bad" examples where the er
ror can be arbitrarily close to 1.

Example VLl: Consider the example in Figure 5
where the cost constraint is C = 1 and the delay
constraint is D = 1. It is easy to check that for any
0 < a < 1, error(5'P(G, a)) = 1 —e.

VII. A Linear Programming solution to a

RELAXED PROBLEM

In this section, we relax the requirements of our
problem. Ratherthanaskingfora singlepaththatsat
isfies the cost and delay requirements, we allow for
the data to be routed over multiple paths. But we re
quiretheaverage delay andaverage costtosatisfy the
constraints.

Let us define/« to be fractionof the data from the

source to the destination that flows over the edge e.
We then have the following
theoutgoingedgesand in(v]
of a node v):

For each e €

E

E/e
e€»n(0

For V^ s and v /

:onstraints (out{v) are
are the incoming edges

EJe>0

= 1 (2)

= 1 (3)

E /e= E
e€ in{v) eGott<(v)

;t(^) < C
(4)

(5)

(6)

^ fe COS
e^E

e)<D^ /c delay(

Equation 2- 4 are the balance equations for the
nodes. Equation5 statesthat1heaverage costmustbe
less than the cost constraint (7, and equation 6 states
that the average delay must
constraint D.

A feasible solution of the

tells us how the data should b(routedfrom the source

to the destination so that avei age cost and delay con
straints are satisfied.

Example VII.1: Consider again Example n.l and
Figure 1 with cost constraint
3. If we formulate the above

for this problem, wenote that /e = ^ for each edge
e is a solution. This means that half of the data from

the source is routed to node 2, and the other half to
node 3. The averagedelayccuresponding to this so-

be less than the delay

above linear program

4 and delay constraint
set of linear constraints

_ 1

and the average cost islutionis 5(2-f2-l-H-l) = 3
1(3+ 2+ 1-1-1) = 3.5. Notice that even though the
average cost and delay satisly the constraints, indi
vidual paths may not (e.g., thepath (1,3)(3,4) does
not satisfy the delay constraint).

If we restrict ourselves to integer solutions of
the above linear program (i
ming problem), then each so
gle path that satisfies the delay and costconstraints.
Of course,checkingfeasibilii y of integer linearpro
grams is NP-complete.

e, a integer program-
ution represents a sin-

VIII. Other Extensions

In this section we discuss the extension of the

problem to thecasewith more than twoconstraints.
We also discuss a somewhat different, but sometimes
more useful problem in practice, where weminimize
the cost subject to a delay constraint.

A. More than two constraints

In a problem with k constraints, wearegiven a k-
weight graph, where each edge is labeled with a k-
tuple (ci, C2,..., Cife). We arerequired to find a path
such that the sum of the tth weight along the path is
less than a bound C,-.

By a straightforward extension of the algorithms
in Section IV and Section V, it is easy to show
that we can get an exact algorithm with complex
ity OdVlIf?! nLi ^»)' and abounded-error approx
imative algorithm with complexity 0{\V\^\E\{1 +

where c is the maximum error allowed. The ba

sic idea of the extension is that cost-delay sets now
become general Pareto sets containing A;-tuples of
the form (ai,..., ak). Sucha tuple in the Paretoset
associated with some vertex w means that it is pos
sible to get from w to the destination vertexalong a
pathin which the sumof the ith weight is ai.

It is also possible to extend someparts of the al
gorithm in Section VI. It is possible to obtain a path
witherrorat most e = A:—1 for a problemwithk con
straintsby solvingtheshortestpathalgorithm. Also,
it seems possible to extendthealgorithm which iter
ates over shortest path problems to the case of three
constraints [4].

B. An alternativeformulation

An alternative and sometimes more useful formu

lation is when a bound is given on the delay, and
subject to this, we are required to minimizethe cost.
The algorithms of Section IV and Section V can be
straightforwardly extended to solve this problem. In
the final cost-delaysetof the sourcenode,we findthe
pair (ci, di) withthe smallest Cf. Thiscorresponds to
an optimal path to the destination with minimal cost
Ci.

To be able to solve this altemate formulation, we

also augmentedthe algorithmof SectionVI. To find
a path which meets the delay constraint D and has
minimum cost C, we solve a problem with delay con

straint D and cost constraint C where C is initially
chosen to be large. Wethen find the minimum cost
byperforming a binary search onC.

In the experimental results presented in Sec
tion IX, this alternative formulation of the problem
is solved.

IX. Experimental results

Wehave implemented in C thebounded-error ap
proximative algorithm (section V) and the shortest-
pathbased algorithm (section VI). Inthissection, we
report results obtainedbyapplying thealgorithms on
a numberof multi-weight graphs. Ourobjective was
to see how well the algorithms perform on graphs
of medium to large size. Also, to check how sensi
tive the algorithmswere to differentparameters(e.g.,
number of weights, source/destination pairs, step-
error).

Thegraphs were obtained by translating elevation
maps ofphysical landscapes ^. A landscape of di
mension n\ X 712 resulted in a graph with tii • 7i2
vertices andapproximately 4 •rii • 7i2 edges(central
vertices having four successors, "north, south, east,
west"). The cost c of an edge was taken to be the
difference in elevation between the destination and
source vertices. The "delays" d\ and ^2 (the second
delaywasusedonly in 3-weightgraphs) weregener
ated randomly according to a Gaussian distribution.
Tables H,IE, andIVpresenttheresults. Thenotation
used in these tables is explained in table I.

From tables II and IE, the following observations
can be made:

• The shortest-pathalgorithmis twoor moreor
ders of magnitude fasterthanthebounded-error
approximativealgorithm, whileatthesame time
producing paths which are both feasible (w.r.t.
di) and as good as the paths produced by the
bounded-error algorithm (w.r.t. c).

• The bounded-error approximative algorithm
is sensitive to the step-error parameter, 6^. Re
ducing by one or two ordersof magnitude re
sulted in dramatic increases in running time.

• The algorithms are not very sensitive on the
particularsource/destination pair.

M.e., 2-dimensional arrays, the», j-th element giving the alti
tudeof the longitude-latitude pointcorresponding to coordinates

n

m

t

c

di
6,2
6e

Number of vertices

Number of edges
Execution time (CPU) in seconds
"Cost" of path
"Delay 1" ofpath
"Delay 2" of path
Step-error for bounded-error approximate algorithm

TABLEI

Notation for tables II and III.

1st source/dest. pair 2nd source/de »t. pair
6, = 10"^ 6e = lO-'' 6, = 10-^ 6e = lO-'' 6c = 10 -b 6c = 10-"

graph 1
n = 4641

m « 4 • n

f = 70 < = 413 < = 1274 13 51 118

c = 1532 c = 725 1

di = 2.15% di = 0.2% di = 0.14%

graph 2
n = 36417

m « 4 • n

t = 56 t = 1278 t = 16740 < = 153 t = 46{18 < = 32477

c = 4152 c= 117 2

di = 0.2% di = 0.15% di = 0.3 %

graph 3
n = 225680

m « 4 • n

< = 725 < = 3503 < = 9971 < = 193 < = 41 9 < = 1387

c = 9409 c = 429 3

di = 0.01% di = 0% di = 0.02% ^1 = 0%
TABLE II

Results of the bounded-error approximative algorithm on 2-we1ght graphs.

1st source/dest. pair 2nd source/dest. pair
graph 1
n = 4641

m « 4 • n

< = 0.94

c = 1564

di = 1.27%

< = 0.48

c = 723

di = 0.14%
graph 2
n = 36417

m « 4 • n

< = 7.16

c = 4220

di = 0.04%

< = 3.48

c= 1184

di = 0%
graphs
n = 225680

m « 4 • n

< = 47.96

c = 9411

di = 0%

< = 31.56

c = 4487

di = 0%

TABLEm

Results of the shortest-path algorithm on 2-weight gr/ PHS.

X. Conclusion

10

From table IV, we see that adding one more
weight/constraint to the problem dramatically in
creases the execution time of the bounded-error

approximative algorithm, with respect to 2-weight
graphs. Whereas wehavebeenabletoexecute theal
gorithmin 2-weightgraphs of sizeup to 225680 ver
tices,whywecouldonlytreat3-weightgraphsof rel
atively small sizes (up to 1700 vertices).

In this paper, we have p:
algorithms for solving the n
tiple constraints. These alg
plexity and the accuracy of
implemented these algori
performance on different grh]
we will look to turning then

resented several different

cuting problem with mul-
orithms vary in their com-

their solutions. We have

and compared their
iphs. In our future work
e algorithms into a dis-

tlms

graph 4
n = 777

m « 4 • n

graph 5
n = 1178

m as 4 • n

graph 6
n = 1722

m « 4 • n

= 10"^

t = 1.49

t = 4.25

i = 1352.54

= 10"^

t = 1.80

c = 720

di = 5.6%

do = 6.43%

t = 153.97

c = 994

di = 1.79%
d2 = 5.39%

(= 17631.51

c = 1024

di = 3.68%
do = 4.66%

6, = 10"^
t = 1.85

t = 6095.42

(= 29274.12

TABLE IV

Results of the bounded-error algorithm on 3-weight graphs.

Fig. 6. An output of thebounded-error approximative al
gorithm onamap translated into a2-weight graph: the
solid black line depicts the path; red dots are "high-
delay" zones; the grey scale background represents
the elevation variations of the landscape (white: high,
black: low).

tributed protocol for QOS routing.

References

[1] M.R. Garey andD.S.Johnson. ComputersandIntractabil
ity—AGuideto the theoryofNP-Completeness, Freeman,
San Francisco, 1979.

[2] R. Hassin, Approximation Schemes for the Restricted
Shortest Path Problem, Mathematics of Operations Re
search. Vol. 17, No. 1. Feb. 1992.

[3] J. M. Jaffe, Algorithms forFinding Paths with Multiple
Constraints, Networks, Vol. 14,1984, pp. 95-116.

[4] R. Ogier. Personnal communication.

[5] Z. Wang and J. Crowcroft, Quality-of-Service Routing
forSupporting Multimedia Applications, IEEE Journalon
Selected Areas in Communications, Vol. 14, No. 7, Sept.
1996.

r'•:>

;•

• !V • ;• . • • - ^

	Copyright notice 2001
	ERL-01-7

