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Abstract “free” system resources for purposes such as automatic opti-
mization of disk block layout. In general, the characteristics
Understanding the characteristics of physical I/O traffic of the I/O traffic are relatively insensitive to the amount of
is increasingly important as the performance gap betweencaching upstream and our qualitative results apply when the
processor and disk-based storage continues to widen. Moreypstream cache is increased in size.
over, recent advances in technology, coupled with market
demands, have led to several new and exciting developmentsl
in storage, including network storage, storage utilities, and

intelligent self-optimizing storage. In this paper, we em-  pyocassor performance has been increasing at the rate
pirically examine the I/O traffic of a wide range of real PC ¢ g0y per year while disk access time, being limited by
and server workloads with the intent of understanding how \,achanical delays, has been improving by less than 10%
well they will respond_to these new storage developmepts. per year [16, 39]. Compounding this widening performance
As part of our analysis, we compare our results with his- gap between processor and disk storage is the fact that
torical data and reexamine rules of thumb that have been gk capacity has been improving by more than 60% per
widely used for designing computer systems. Our results ye,y 16, 39] so that each disk is responsible for the stor-
show that there is a strong need to focus on improving /O 5qe and retrieval of rapidly increasing amounts of data. The
performance. We find that the 1/O traffic is bursty and ap- oyerall result of these technology trends, which show no
pears to exhibit self-similar characteristics. In addition, our signs of easing, is that computer systems are increasingly
analysis indicates that there is little cross-correlation in traf- | itjenecked by disk-based storage systems. The key step in
fic volume among the server workloads, which suggests that,ercoming this bottleneck is to understand how storage is
aggregating these workloads will likely help to smooth out 4¢tyally used so that new optimization techniques and algo-
the traffic and enable more efficient utilization of resources. |ithms can be designed.

We also discover that there is a lot of potential for harnessing |, addition. new paradigms and developments have re-

Funding for this research has been provided by the State of cently emerged in the storage industry, and determining the
California under the MICRO program, and by AT&T Laboratories, real effect of these requires a focused examination of the
Cisco Corporation, Fujitsu Microelectronics, IBM, Intel Corpora-  1/0O characteristics of real workloads. First, storage is in-

tion, Maxtor Corporation, Microsoft Corporation, Sun Microsys-  creasingly placed on some form of general network so that
tems, Toshiba Corporation and Veritas Software Corporation.
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it can be shared and accessed directly by several computalso been several studies of the logical I/O characteristics
ers at the same time [48f.@., Network Attached Storage of large database and scientific systems; see [20, 21] for a
(NAS) for file storage and Storage Area Networks (SANs) brief bibliography. These studies provide valuable insights
for block storage). The performance of such network stor- for designing the file system and the database data manager
age hinges on knowing the I/O traffic patterns and opti- but they are not very useful for understanding what happens
mizing the network for such patterns. Second, consolidat- at the physical or storage level. Because of the file system
ing the storage now distributed throughout an organization, cache or the database buffer pool, most of the logical ref-
for instance to storage utilities or Storage Service Providers erences never reach the physical storage. In addition, the
(SSPs), is expected to become increasingly popular [28]. logical I/O behavior does not reflect the effects of file allo-
Whether such an approach leads to more efficient pooling cation and mapping. Furthermore, many of these studies do
of resources among different groups of users depends on thenot account for system generated traffic such as paging and
characteristics of their workloads, specifically on whether metadata access, which can account for a significant fraction
the workloads are independent. In practice, we will need of the total I/O [42, 45].
rules of thumb that describe the storage and performance re- Compared to the analysis of I/O behavior at the logical
guirements of each group, as well as realistic traffic models. level, physical 1/0O characterization has received much less
Third, the rapid growth in available processing power in the attention in the research community. Part of the reason is
storage system [14, 19] makes it possible to build intelligent that storage level characteristics are sensitive to the file sys-
storage systems that can dynamically optimize themselvestem or buffer pool design and implementation so that the
for the workload [22]. The design of these systems requires results of any analysis are less broadly applicable. But this
a good understanding of how real workloads behave. is precisely the reason to analyze the physical I/O character-
In this research, therefore, we empirically examine the istics of different systems. Traces collected from large IBM
storage usage characteristics of real users and servers froomainframe installations [49] and production VAX/VMS sys-
the perspective of evaluating these new storage opportuni-tems [7, 24] have been used to study design issues in disk
ties. A total of 18 traces gathered from a wide range of envi- caches. There has also been some analysis of the physical
ronments are examined. We focus in this paper on analyzingl/O characteristics of Unix systems [45] and Novel NetWare
the I/O traffic, specifically, (1) the I/O intensity of the work-  file servers [17] in academic/research environments. Even
loads and the overall significance of 1/0 in the workloads, though personal computers (PCs) running various flavors of
(2) how the I/O load varies over time and how it will be- MS Windows are now an integral part of many office ac-
have when aggregated, and (3) the interaction of reads andivities, there has, to the best of our knowledge, been no
writes and how it affects performance. We compare our re- published systematic analysis of how storage is used in such
sults with historical data to note any trends and to revalidate systems.
rules of thumb that are useful for systems design and sizing.
To make our results more broadly apphcable, we also.studyg Methodology
the effect of increased upstream caching on our analysis. In a

companion paper, we examine how these real workloads are  Trace data can generally be gathered at different levels in
affected by disk improvements and I/O optimizations such as the system depending on the purpose of collecting the data.
caching and prefetching [18]. The insights gained from this For instance, to evaluate cache policies for the file system
research are instrumental to the block reorganization tech-pyffer, I/O references have to be recorded at the logical level,
nique outlined in [22]. before they are filtered by the file system buffer. In general,
The rest of this paper is organized as follows. Section 2 collecting trace data at the logical level reduces dependen-
contains a brief overview of previous work in characterizing cies on the system being traced and allows the trace to be
I/O behavior. Section 3 discusses our methodology and de-ysed in a wider variety of studies, including simulations of
scribes the traces that we use. In Sections 4-7, we analyzesystems somewhat different from the original system. For
the I/0 traffic of our various workloads in detail. Concluding instance, to Study physica| Storage Systemsy we could filter a
remarks appear in Section 8. Because of the huge amount ofogjical trace through models of the file system layer to ob-
data that is involved in this study, we present only a charac- tajn a trace of the physical 1/0Os. A commonly used method
teristic cross-section in the main text. More detailed graphs for obtaining such a logical trace is to insert a filter driver
and data are presented in Appendix A. Some of the morethat intercepts all requests to an existing file system device

involved mathematical material appears in Appendix B. and records information about the requests before passing
them on to the real file system device.
2 Related Work However, this approach does not account for 1/Os that

bypass the file system interfaced.,raw I/O, virtual mem-
I/O behavior at the file system level has been character-ory paging and memory-mapped 1/0). Recent results [42]
ized in some detaild.g.,[4, 8, 36, 42, 51]). There have show that 15% of reads and nearly 30% of writes in Win-



dows NT workloads can be attributed to paging by running Intel Pentium cycle counter), sequence number, file object
programs. In addition, 85% of processes now memory-map pointer, disk and partition numbers, start address, transfer
files compared with 36% that read files and 22% that write size, and flags describing the requesy(,read, write, syn-
them. From a practical perspective, the approach of startingchronous). After the disk request has been serviced, a com-
with a logical trace to evaluate physical storage systems re-pletion record is written. In a post processing step, we match
quires that a lot of data be collected, which adds disturbanceup the sequence number recorded in the request and comple-
to the systems being traced, and then painstakingly filteredtion records to obtain the service times. To better understand
away by simulating not only the buffer cache and prefetcher the 1/0 behavior of the system, it is useful to be able to as-
but also how the data is laid out and how the metadata is sociate each disk request with the name of the correspond-
referenced. For today’s well-tuned systems, each of theseing file and process. In most cases, we are able to match
components is complicated and the details of their operationup the file object pointer with a file open record to obtain
are seldom publicly available. For instance, the file system the filename. When the match fails, we try to determine the
buffer on many systems(g., Windows NT) is integrated  filename by looking up the block address in a reverse allo-
with the memory manager and dynamically sized based oncation map that is constructed from the periodic metadata
perceived workload characteristics. Therefore the net resultsnapshots.

of taking a logical trace and filtering it through models of the Because VTrace is designed to collect data for energy
file system components is not likely to reflect the workload management studies, it also gathers data about process and
seen by any real storage system. Since file systems todayhread creations and deletions as well as thread switches. By
are relatively stable and rarely undergo radical changes, weusing the thread create and thread switch trace records, we
believe that in general, for the purpose of studying physical are able to match up I/O requests with the names of the re-
storage systems, analyzing traces collected at the physicajuesting processes. In addition, the thread switch records
level is more practical and realistic. This is the method we enable us to determine the overall significance of I/O in these
use in this paper. workloads. We will look at this in Section 4.1.

In order to make our characterization more useful for To keep the amount of data collected manageable, pro-
subsequent mathematical analyses and modeling by oth-cess and thread trace records are gathered only for a span of
ers, we have fitted our data to various functional forms one and a half hours every three and a half hours. In addi-
through non-linear regression, which we solved by using tion, all trace collection is turned off ten minutes after the
the Levenberg-Marquardt method [40]. When appropriate, cessation of user mouse and keyboard activity. Newer ver-
we also fitted standard probability distributions to our data sions of VTrace collect some trace data all the time but in
by using the method of maximum likelihood to obtain pa- order to have a consistent set of data, we have processed the
rameter estimates and then optimizing these estimates by theéraces used in this study to delete trace records that occur af-

Levenberg-Marquardt algorithm [40]. ter ten minutes of user idle time. In other words, we use only
the trace records that occur from the first user activity after
3.1 Trace Collection an idle period to the last user activity before an idle period,;

we assume that there is no activity in the system during the

The traces analyzed in this study were collected from periods when the user is idle. We believe that this is a rea-
three different platforms, namely Windows NT, IBM AIX  sonable approximation in the PC environment, although it is
and HP-UX. A different trace facility was used on each possible that we are ignoring some level of activity due to
platform. The Windows NT traces were collected by using periodic system tasks such as daemons. This latter type of
VTrace [29], a software tracing tool for Intel x86 PCs run- activity should have a negligible effect on the 1/0 load, al-
ning Windows NT and Windows 2000. VTrace was primar- though it might be important for other types of studies, such
ily developed to collect data for energy management studiesgs power usage.
for portable computers. In this study, we are mainly inter- Both the IBM AIX and HP-UX traces were collected us-
ested in the disk activities, which are collected by VTrace jng kernel-level trace facilities built into the operating sys-
through the use of device filters. VTrace takes daily snap- tems. These trace facilities are completely transparent to the
ShOtS Of the NTFS f||e SyStem metadata. In addition, |t COI' user and adds no noticeab'e processor |0ad. Among the in_
lects data on the file system as well as process and threagormation collected for each physical I/O are: timing infor-
activities. We have verified the disk activity collected by mation, disk and partition numbers, start address, transfer
VTrace by comparing it with the raw SCSI traffic obtained sjze and flags describing the request. More details about the

by a SCSI analyzer. Details of VTrace and the special tech- |gm AIX trace facility can be found in [23]. The HP-UX
niques used to collect the relevant data with minimal intru- trace facility is described in [45].

sion can be found in [29].
After VTrace is installed on a system, each disk request
generates a trace record consisting of the time (based on the



Desi System Configuration Trace Characteristics
esign-
> User Type M - .
ation emory . Storage . . Footprint!  Traffic ~ Requests
System (MB) File Systems Used (GB) # Disks Duration (©B) (GB) (109
P1 Engineer 333MHz P6 64 1GB FAT 5GB NTFS! 6 1 45 days (7/26/99 - 9/8/99) 0.945 171 1.88
P2 Engineer 200MHz P6 64 1.2,2.4,1.2GB FAT 48 2 39 days (7/26/99 - 9/2/99) 0.509 9.45 115
P3 Engineer 450MHz P6 128 4,2GB NTFS 6 1 45 days (7/26/99 - 9/8/99) 0.708 5.01 0.679
P4 Engineer 450MHz P6 128 3,3GB NTFS 6 1 29 days (7/27/99 - 8/24/99) 4.72 26.6 2.56
P5 Engineer 450MHz P6 128 3.9,2.1GB NTFS 6 1 45 days (7/26/99 - 9/8/99) 2.66 315 4.04
P6 Manager 166MHz P6 128 3,2GB NTFS 5 2 45 days (7/23/99 - 9/5/99) 0.513 243 0.324
P7 Engineer 266MHz P6 192 4GB NTFS 4 1 45 days (7/26/99 - 9/8/99) 1.84 20.1 2.27
P8 Secretary 300MHz P5 64 1,3GB NTFS 4 1 45 days (7/27/99 - 9/9/99) 0.519 9.52 115
P9 Engineer 166MHz P5 80 15, 1.5GB NTFS 3 2 32 days (7/23/99 - 8/23/99) 0.848 9.93 1.42
P10 CTO 266MHz P6 96 4.2GB NTFS 42 1 45 days (1/20/00 — 3/4/00) 258 16.3 175
P11 Director 350MHz P6 64 2,2GB NTFS 4 1 45 days (8/25/99 - 10/8/99) 0.73 114 1.58
P12 Director 400MHz P6 128 2,4GB NTFS 6 1 45 days (9/10/99 - 10/24/99) 1.36 6.2 0.514
P13 Grad. Student | 200MHz P6 128 1,1,2GB NTFS 4 2 45 days (10/22/99 - 12/5/99) 0.442 6.62 113
P14 Grad. Student | 450MHz P6 128 2,2,2,2GBNTFS 8 3 45 days (8/30/99 - 10/13/99) 3.92 223 2.9
P-Avg. 318MHz 109 5.07 143 41.2 days 1.59 139 1.67
(a) Personal Systems.
. i System Configuration Trace Characteristics
Design- Primary
ation Function Memory . Storage # . Footprintt ~ Traffic ~ Requests
System (MB) File Systems Used (GB)  Disks Duration (GB) (GB) (109
File Server HP 9000/720 i FEQii A
FS1 (NFSi) (50MHz) 32 3 BSDii FFSii (3 GB) 3 3 45 days (4/25/92 - 6/8/92) 1.39 63 9.78
FSov F"(‘Zf:‘g;e’ IBM RS/6000 23 AIXii JFSii (99.1GB) 99.1 17 8am - 6pm (L1/6/2000) - 170
Time-Sharing | HP 9000/877 B
TS1 System (64MH2) % 12 BSD FFS (10.4GB) 104 8 45 days (4/18/92 - 6/1/92) 4.75 123 20
Database IBM RS/6000 8 AIX JFS (9GB), 3 paging
DS1 Server R30 SMPi 768 (1.4GB), 30 raw database 524 13 7 days (8/13/96 — 8/19/96) 6.52 317 6.64
(ERPii) (4X 75MHz) partitions (42GB)
S-Avg.v 299 - 185 8 32.3 days 4.22 746 121

i Sum of all the file systems and allocated volumes.
it Amount of data referenced at least once (using block size of 512 bytes)
i AFS — Andrew Filesystem, AIX — Advanced Interactive Executive (IBM's flavor of UNIX), BSD — Berkeley System Development Unix, ERP — Enterprise Resource Planning, FFS — Fast
Filesystem, JFS - Journal Filesystem, NFS — Network Filesystem, NTFS — NT Filesystem, SMP — Symmetric Multiprocessor

v Only per second I/0 statistics were collected.

v Excluding FS2.

(b) Servers.

Table 1: Trace Description.




Pl T S —-Y) primarily used for compilation and editing. It is referred to
. -_-;--_-Eg TE?O —_-E:Ezl o ifz as “Snake” in [45]. The second file server workload (FS2)

1l —o--P13 —o—PU  --o--PAg —%—FSI was taken off an Andrew File System (AFS) server at one of
the major development sites of a leading computer storage
vendor. The system was the primary server used to support
the development effort. For this system, only per-second ag-
gregate statistics of the 1/O traffic were gathered; addresses
for individual 1/Os were not collected. The trace denoted
TS1 was gathered on a time-sharing system at an indus-
trial research laboratory. It was mainly used for news, mail,
text editing, simulation and compilation. It is referred to as
“cello” in [45]. The database server trace (DS1) was col-
lected at one of the largest health insurers nationwide. The
system traced was running an Enterprise Resource Planning
(ERP) application on top of a commercial database.

—— Our traces capture the actual workloads that are pre-

0 05 1 5 2 25 3 sented to the storage system and are therefore likely to be
# Requests (Millons) sensitive to the amount of filtering by the file system cache
and/or the database buffer pool. However, we believe that
changing the amount of caching upstream will only affect
our characterization quantitatively and that the qualitative
3.2 Trace Description results still apply. To show that our characterization is rel-
. atively insensitive to the amount of caching upstream, we
In this study, we use traces collected from both SeIVer fiiared our traces through a Least-Recently-Used (LRU)
and personal computer (PC) systems. Table 1 summarizes, iso hack cache to obtain another set of traces on which to

the.charactensucs of the traces. Tioetprint of a trace is run our analysis. We denote these filtered traces by adding
defined as the amount of data referenced at least once in the, | « ¢4 the original designation. For instance, the trace ob-

trace. Figure 1 plots the trace footprint as a function of the tained by filtering P1 is denoted as P1f. We also denote the
number of references, which is a measure of the trace length.

- _ ) - average result for the filtered PC workloads as “Pf-Avg” and
_S|m_|lar plots fprthe read_ footprint and the write footprint are that for the filtered server workloads as “Sf-Avg”. Follow-
in Figure A-1 in Appendix A.

ing the design of most file systems, we allow a dirty block
The PC traces are denoted as P1, P2, ..., P14. The ter

; N he arithmeti th its for th 0 remain in the cache for up to 30 seconds. When a block
P-Avg.” represents the arithmetic mean of the results for the is written back, we write out, in the same operation, all the

,PC :races. These trac?]s Were”collecte'd over arﬁ)erlod rang'olirty blocks that are physically contiguous up to a maximum
ing from about a month to well over nine months on PCs ¢ 595 pocks. The size of the cache is chosen to be the size

running Windows NT. In this study, we utilize only the first ¢ 6 entire main memory in the original systems (Table 1).
45 days of the traces. In addition to engineers and graduate In Table 2, we present the faction of /O activity that is

students, the users of these systems also include a secretalyiiared out by such a cache. On average, over 50% of the
and several people in senior managerial positions. By hav-|,5 requests are removed by the cache, which shows that
ing users ranging from managers and a secretary to hard CO"¢he amount of caching has been significantly increased over

englneefrsr:n our sarrlllple,dwg believe tﬁh_at our trace_slflreh'”US'Wr]at was in the original traced systems. Observe further that
Fratl\lle(()j t epPC Wor: 0‘; Zm rrany oftices, esphema yt Oﬁe the traffic volume is reduced less significantly than the num-
involved in research and development. Note, however, thaty,q ot onerations. This is because the smaller requests tend

the traces should not be taken as typical or representative ot aye 4 higher chance of hitting in the cache. Furthermore,
any other system. Despite this disclaimer, the fact that many by delaying the writes, we are able to consolidate them into

pf our results cqrrespond tp those obtained previously, a!beit|arger sequential writes. In Table 3 and Figure 2, we present
in somewhat different environments, suggest that our find- y,¢"reqest size distribution for both the original and the fil-

ings are generalizable to a large extent. tered traces. Although the average request size of writes is

The servers examined include two file servers, a time- . oaseq; the request size distributions of the filtered traces
sharing system and a database server. Throughout this pag,cy those of the original traces remarkably well. That the

per, we use the term “S-Avg.” to denote the arithmetic mean fyoreq traces maintain the qualitative behavior of the origi-
of the results for the server workloads. The first file server

workload (FS1) was taken off a file server for nine clients
at the University of California, Berkeley. This system was

—%—TSl  —-DSl

6] x—x—-x—x—X—x—x—x-x—x—x—x—x—x—

Reference Footprint (GB)

Figure 1: Footprint Vs. Number of References.

nal traces is a result that we will see repeated in the rest of
the paper.
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20
Read Requests
0 Ak T ——
10
Request Size (# 512-byte Blocks)
Number of MBs Number of Requests

Read Write Overall Read Write Overall
P1 0.575 0.176 0.441 0.618 0.575 0.605
P2 0.503 0.173 0.385 0.547 0.495 0.525
P3 0.583 0.163 0.291 0.632 0.498 0.537
P4 0.301 0.175 0.219 0.358 0.630 0.527
P5 0.369 0.232 0.275 0.438 0.620 0.574
P6 0.831 0.190 0.436 0.821 0.548 0.617
P7 0.546 0.143 0.246 0.551 0.548 0.549
P8 0.592 0.239 0.426 0.629 0.657 0.642
P9 0.484 0.146 0.317 0.488 0.471 0.479
P10 0.216 0.162 0.192 0.316 0.537 0.436
P11 0.515 0.245 0.409 0.520 0.641 0.577
P12 0.416 0.179 0.290 0.450 0.721 0.601
P13 0.557 0.257 0.391 0.585 0.615 0.603
P14 0.356 0.221 0.282 0.415 0.683 0.596
P-Avg. 0.489 0.193 0.329 0.526 0.589 0.562
FS1 0.594 0.573 0.582 0.570 0.681 0.633
TS1 0.583 0.394 0.474 0.546 0.454 0.495
DS1 0.057 0.203 0.122 0.133 0.702 0.488
S-Avg. 0.412 0.390 0.393 0.416 0.612 0.539

Table 2: Fraction of I/O Activity that is Filtered.

10
Request Size (# 512-byte Blocks)

100

All Requests Read Requests Write Requests
Avg. [S)g\j, Min.  Max. | Avg. Sg/ Min. Max. | Avg. SS] Min.  Max.
P1 19.1 26.6 1 128 | 177 22 1 128 | 224 354 1 128
P2 17.2 274 1 1538| 191 244 1 128 146 30.9 1 1538
P3 155 248 1 128 | 155 194 1 128 | 155 26.8 1 128
P4 217 338 1 128 | 204 303 1 128 | 225 358 1 128
P5 16.3 25 1 298 | 208 283 1 129 | 148 236 1 298
P6 15.7 237 1 128 | 231 255 1 128 | 147 232 1 128
P7 185 30.3 1 128 | 191 239 1 128 | 184 319 1 128
P8 174 258 1 128 | 16.8 209 1 128 | 182 30.9 1 128
P9 147 211 1 128 | 154 202 1 128 | 139 218 1 128
P10 19.6 30.7 1 128 | 237 328 1 128 | 157 28 1 128
P11 15.2 231 1 128 | 194 247 1 128 | 117 211 1 128
P12 253 58.6 1 512 | 275 54.6 1 512 | 23.6 614 1 512
P13 12.3 18.2 1 180 | 145 18.8 1 128 11 17.7 1 180
P14 16.1 28.1 1 1539 206 312 1 128 14 26.2 1 1539
P-Avg. | 175 284 1 373 | 195 269 1 156 | 165 296 1 373
Pf-Avg.| 274 64.3 1 512 | 213 29.3 1 155 | 341 84.2 1 512
Fs1 | 135 508 2 512 | 125 547 2 64 | 142 465 2 512
TS1 129 .77 2 512 | 124 6.52 2 224 | 133 8.62 2 512
DS1 119 219 1 512 | 174 271 1 512 | 855 173 1 256
S-Avg. | 128 116 167 512 | 141 130 167 267 | 120 102 167 427
Sf-Avg.| 164 298 167 512 | 140 135 167 222 | 189 410 167 512

Table 3: Request Size (Number of 512-Byte Blocks).
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Figure 3: Disk and Processor Busy Time.

4 Intensity of I/O out having to deliberately leave the computer on when the
user is away In other words, significant resources are avail-
We begin our characterization by focusing on the I/O in- able without requiring additional power consumption. The
tensity of the various workloads. This is akin to understand- challenge is to harness these idle resources without affect-
ing the size of a problem so that we can better approach it.ing the foreground work. If this can be done unobtrusively,
The questions we seek to address in this section include howit will pave the way for sharing idle resources in collabo-
significant is the I/O component in the overall workload, rative computing, a paradigm commonly referred to as peer-
how many I/Os are generated, and how fast do the requestso-peer (P2P) computing [32]. In addition, the idle resources

arrive. can be used to optimize the system so that it will perform
better in future for the foreground tas&.§.,[22]). We will
4.1 Overall Significance of I/O characterize the disk idle periods in detail in Section 5.3.

I/O is known to be a major component of server work-

In Figure 3, we present the percent of tir.ne. the disk and |55 q €.9.,[43]). But if processors continue to increase in
processor are busy for the PC workloads. Similar results for performance according to Moore's Law (60% per year) as

the server workloads would be interesting but unfortunately, many believe they will)/O may also become the dominant
this analysis relies on information that is available only in the component of personal computer workloads in the next few
PC traces. The processor busy time is obtained by l0okingyears More memory will of course be available in the fu-
at the thread switch records to determine when the Processok ;e for caching but the PC systems in our study are already
is not in the idle loop. The disk busy time is taken to be the |, o|i_endowed with memory. A common way of hiding 1/0
duration during which one or more of the disks in the System |,tancy s to overlap it with some computation either through
are servicing reque_sts. R(_acall that_we only _hfave trace datamultiprogramming or by performing 1/0 asynchronously.
for the periods during which user input activity occurs at From Figure 3, this technique appears to be relatively in-

least once every ten minutes. In other words, we CO”Sidereffective for the PC workloads sinamly a small fraction
or_lly the periods during which the user is actively interacting (20% on average) of the disk busy time is overlapped with
with the system. _ computation In Figure 4, we compare the processor busy
From the figure, the processor is, on average, busy for e qyring the disk idle intervals with that during the disk
only about 10% of the time while the disk is busy for only 1 sy intervals. A disk idle interval refers to the time inter-

about 2.5% of the time. This low level of busy time is mis- 5| 4yring which all the disks are idle. A disk busy interval
I_eadlng, hovyever, because the user is mteresf[ed IN FESPONSES simply the period of time between two consecutive disk
time; CPU idle generally represents user think time, and jqje intervals. Reflecting the low average processor utiliza-
would occur in any case in a single user environment. Thus ;;on of the workloads, the processor is busy less than 20%
we cannot conclude that the processor and I/O system are ¢ iha time for the long intervals{ 0.1s), regardless of

"fast enough”. What the results do suggestis thateisa  hether any of the disks are busy. During the short inter-
lot of idle time for performing background tasks, even with- | o (< 0.1s), the processor is busy almost all the time when
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Figure 4: Processor Busy Time during Disk Busy/Idle Inter- Figure 6: Processor/Kernel Busy Time during Intervals be-
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chaur anhs tha daviatinn in Ana diractinn) tion. Bars indicate standard deviation (To reduce clutter, we

X3 show only the deviation in one direction).

—

X2 X5
e X4 an I/O request (the’s in Figure 5). We are interested in
Request Issued RL__R2R3 R4 RS oo the processor busy time during such intervals to model what
Request Completed RO Rl 3 happens when the processing time is reduced through faster
processors.

Figure 5: Intervals between Issuance of /0O Requests and

; From Figure 6, we find that for the PC workloads, the
Most Recent Request Completion.

processor utilization during the intervals between 1/O is-
suance and the last I/O completion is related to the length
all the disks are idle but the processor utilization drops to of the interval by a reciprocal function of the forfi{z) =
less than 50% when one or more of the disks are busy. Suchl/(az +b) wherea = 0.0857 andb = 0.0105. The recipro-
results imply thafittle processing can be overlapped with ~ cal function suggests that there is a fixed amount of process-
/0 so that 1/0 response time is important for these kinds of ing per I/O. To model a processor thatigimes faster than
workloads. was in the traced system, we would scale only the system
That only a small amount of processing is overlapped Processing time by, leaving the user think time unchanged.
with I/0 suggests that there is effectively little multiprocess- Specifically, we would replace an interval of lengthy one
ing in the PC workloads. Such predominantly single-process of z[1 — f(x) + f(z)/n]. We believe that for the PC work-
workloads can be modeled by assuming that after complet-loads, this is considerably more realistic than simply scaling
ing an 1/0, the system has to do some processing and thethe inter-arrival time between 1/O requestsibyas is com-
user, some “thinking”, before the next set of I/Os can be is- monly done. In Figure 6, we also plot the percent of time
sued. For instance, in the timeline in Figure 5, after request that the kernel is busy during the intervals between when an
R0 is completed, there are delays during which the system is /O request is issued and the previous I/O completion. We
processing and the user is thinking before requ&dtsRk2 consider the kernel to be busy if the kernel process (process
andR3 are issued. Becaugel, R2 andR3 are issued after  ID = 2 in Windows NT) is allocated the CPU. As shown in
RO has been Comp|eted' we consider them to be dependenthe figure, the kernel busy time is also related to the Iength
on RO. Similarly, R4 and R5 are deemed to be dependentof the interval by a reciprocal function, as we would expect
on R1. Presumably, if RO is completed earlier, R1, R2 and When there is some fixed kernel cost per I/O.
R3 will be dragged forward and issued earlier. If thisinturn ~ This workload model is based on the assumption that
causes R1 to be finished earlier, R4 and R5 will be similarly 1/Os tend to be synchronous, meaning that the system has
moved forward in time. In Figure 6, we plot the percent of to wait for I/Os to be completed before it can continue with
time the processor is busy during the interval between whenits processing. As shown in Table 4, this is a reasonable
an /O request is issued and the most recent completion ofassumption, especially for the PC workloads where, despite



Read Write Overall P-Avg. Pf-Avg. FS1 TS1 DS1  S-Avg. Sf-Avg.

P1 0.974 0.667 0.887 o | Read | 246 124 927 190 344 200 137

P2 0.970 0.627 0.825 @ § write | 370 145 129 246 564 313 113

P3 0.931 0.701 0.770 é <| tota | 616 269 222 4% 98 52 25

P4 0829 0731 0.768 o Read | 815 482 285 577 125 530 446

P 0.921 0776 0814 | | wie 102 300 3% 393 833 527 162

PG 0.967 0.849 0.864 =

o7 0878 0723 0758 Total 183 78 64l 970 1558 1056 609

P8 0.968 0.835 0.909 g | Read 234 131 568 1152 3017 1579 1161

P9 0.800 0.605 0.699 g g | Wit 205 23 895 1604 2407 1635 1090

P10 0.763 0.749 0.756 S o 520 368 1462 2756 5425 3214 2250

P11 0.926 0.705 0.805 E Read 973 701 1677 3613 4508 3266 2731

P12 0.961 0566 0736 2| 8| wie |108¢ 8% 2446 2573 5159 333 2403

P13 0610 0695 0.664 Total | 2057 1557 4124 6186 9667 6659 5134

P14 0.733 0.714 0.720
P-Avg. 0.874 0.710 0.784

= 0.854 0.254 0.505 Table 5: Daily 1/0 Traffic.

TS1 0.835 0.671 0.744

DS1 - - - . . .
A s 2 o2 thumb states that a typical data processing system requires

approximately 1Mb/s of 1/O bandwidth for every million

instructions per second (MIPS) of processing power. This
rule of thumb dates back to the sixties before buffering and
caching techniques were widely used. It was recently reval-

the fact that Windows NT provides a common convenient in- idated for the logical I/O of database workloads in the pro-
terface for performing both synchronous and asynchronousduction environments of some of the world's largest corpo-
I/0, nearly 80% of the I/0O requests are flagged as syn- rations [20]. Due to the advent of caching, however, the ratio
chronous on average. Metadata updates account for mostof physical I/O bandwidth to MIPS was found to be on the
but not all, of the synchronous writes. Excluding metadata order of 0.05. [20] It would be interesting and very helpful
writes, about half of the writes are synchronous. In the FS1 to system designers to see if the same figure for Amdahl's
and TS1 traces, some I/O requests are not explicitly flaggedfactor applies to the current set of workloads.

as synchronous or asynchronous. For these traces, we as- 10 this end, we calculated the ratio of I/O intensitg,,
sume that 1/Os are Synchronous unless they are exp||c|t|y the rate of /0 activity, to processor SDGEd for our workloads.

flagged otherwise. The trace DS1 does not contain such in-Unlike the traces in [20] which cover only the peak peri-
formation. ods of the workloads as identified by the system administra-

tor, the traces in the current study span periods of days and
weeks, and includes the relatively idle periods in the work-
loads. Therefore, in calculating the 1/O intensity normalized
Table 5 presents the average and maximum amount ofby processor speed in Table 6, we consider the busiest one-
I/0 traffic generated per day by the various workloads. Note hour interval, which we define as the one hour interval with
that the average is taken over the days when there is somehe highest I/O bandwidth requirement. The I/O intensity
I/0 activity recorded in the traces. This means that for the averaged over various time intervals ranging from 100 mil-
PC workloads, the weekends are, for the most part, ignored.liseconds to the trace length is presented in Table 7. No-
We find that the maximum daily 1/O traffic is about two to tice from Table 6 that the filtered traces have significantly
four times higher than the average. The server workloadsfewer 1/O operations during the busiest one-hour interval.
are clearly more 1/O intensive than the PC workloads and However, because the request sizes for the filtered traces are
we expect that servers today will have even higher rates of much larger during this period (see Table 8), the bandwidth
I/O activity. Nevertheless, it should still be the case twdt figures for the filtered traces are just slightly lower than those
lecting a daily trace of the disk blocks referenced for later for the original workloads. Our focus in this section is on de-
analysis and optimizatiore(g.,to optimize disk block place-  termining a rough estimate for how intense the I/O is in our
ment [22]) is very feasible For instance, for the database various workloads. The effect of filtering the workloads is
server workload, logging eight bytes of information per re- not large enough to significantly affect any of our findings.
quest will create just over 12MB of data on the busiest day. From Table 6, the server workloads turn out to be fairly
When designing the IBM System/360, Amdahl observed consistent, generating about 0.02-0.03 Mb/s of I/O for every
that the amount of I/O generated per instruction tends to be MHz of processing power. The PC workloads are less 1/O
relatively constant [3]. More specifically, Amdahls’ rule of intensive generating about 0.007Mb/s/MHz on average. In

Table 4: Fraction of I/O Requests that are Synchronous.

4.2 Amdahl’s Factor and Access Density



Avg. Number of Mbs of I/0 Avg. Number of 1/0s 0.1s 1s 10s 1min 10min lhr  Trace Len.
o IsIMHz ISIMIPS ISIGB | (PO IsIMHz ISIMIPS 15 /GB PLI 15 %53 273 863 213 0588 00366
P2 64.8 268 209 7.54 2.35 0.557 0.0234
P1 0.588  0.00177 0.00177  0.0980 5.80 0.0174  0.0174  0.967 P3 50.3 272 159 13.1 419 0.811 0.0129
P2 0.557  0.00278 0.00278  0.116 725 0.0363  0.0363 151 P4 121 995 80.0 56.1 346 6.84 0.0893
P3 0.811  0.00180 0.00180  0.135 6.42 0.0143  0.0143 1.07 P5 40.2 28.0 263 176 132 3.50 0.0674
P4 6.84 0.0152  0.01520 114 61.0 0.135 0.135 10.2 P6 450 233 8.51 2.81 0.44 0.106 0.00549
P5 3.50 0.00778 0.00778  0.583 147 0.0326  0.0326 2.45 P7 61.3 471 185 104 4.78 2.84 0.0463
P6 0.106  0.000639 0.000639 0.0212 1.44 0.00866 0.00866  0.287 P8 519 36.4 19.8 118 3.60 1.08 0.0204
P7 2.84 0.0107  0.0107 0.711 285 0.107 0.107 7.13 P9 50.0 27.0 111 5.99 37 111 0.0306
P8 1.08 0.00361 0.00361  0.270 8.65 0.0288  0.0288 2.16 P10 85.0 75.0 485 349 171 571 0.0358
P9 111 0.00671 0.00671  0.371 154 0.0929  0.0929 5.14 P11 133 464 290 127 2.06 0.852 0.0266
P10 571 0.0215  0.0215 1.36 448 0.168 0.168 10.7 P12 90.0 48.7 26.2 201 10.7 4.63 0.0139
P11 0.852  0.00243 0.00243 0.213 109 0.0310  0.0310 2.72 P13 45.0 215 .77 4.39 1.26 0.385 0.0148
P12 4.63 0.0116  0.0116 0.771 228 0.0570  0.0570 3.80 P14 716 515 325 29.0 124 4.14 0.0476
P13 0.385  0.00193 0.00193 0.0963 8.03 0.0401  0.0401 201 P-Avg. 731 438 26.6 16.8 8.04 2.37 0.0337
P14 414 0.00919 0.00919  0.517 51.8 0.115 0.115 6.47 Pf-Avg. 109 45 24.0 15.0 6.66 1.92 0.0237
P-Avg. 2.37 0.00697 0.00697  0.457 205 0.0632  0.0632 4.04 FS1 382 411 26.1 119 2.05 1.26 0.133
Pf-Avg.| 192 0.00569 0.00569  0.372 9.24 0.0312  0.0312 1.94 TS1 264 96.3 149 10.8 4.88 1.99 0.260
FS1 | 126 00252 00503 0419 | 268 053 107 894 D1 | 1s6 08 919 81 197 611 0515
TSt | 199 00311 00621 0191 | 390 0610 122 375 SAvg.| 267  8L7 443 359 887 312 0302
DSL | 611 00204 00407 0117 | 724 0241 0482 138 StAvg.| 262 76 429 %20 ri1 298 0213
S-Avg.| 312 0.0255  0.0511 0.242 46.1 0.462 0.925 4.69
StAvg.| 296 00234 00467 0207 | 205 0375 0780 399 Table 7: 1/0 Intensity (Mb/s) Averaged over Various Time

Intervals, showing the peak or maximum value observed for
Table 6: Intensity of 1/0O during the Busiest One-Hour Pe- each interval size.
riod.

used utilized MIPS [30] or the processing power actually

order to determine an order of magnitude figure for the ratio consumed by the workload. This is computed by factoring
of I/O bandwidth to MIPS, we need a rough estimate of the in the processor utilization when the workload is running.
Cycles Per Instruction (CPI) for the various workloads. We Our calculations are based on the MIPS rating of the system,
use a value of one for the PC workloads because the CPI forwhich is what we have available to us. Ultimately though,
the SPEC95 benchmark on the Intel Pentium Pro processomwe believe that intrinsic workload differences account for
has been found to be between 0.5 and 1.5 [6]. For the servera major portion of the discrepancy between our results and
workloads, we use a CPI value of two in view of results in those from the mainframe surveys.
[2, 25]. Based on this estimate of the CPI, we find that the  Another useful way of looking at I/O intensity is with re-
server workloads generate around 0.05 bits of real /0O per spect to the storage used (Table 1). In this paper, the storage
instruction which is consistent with the estimated Amdahl's used by each of the workloads is estimated to be the com-
factor for the production database workloads in [20he bined size of all the file systems and logical volumes defined
figure for the PC workloads is seven times lower at about in that workload. This makes our calculations comparable to
0.007 bits of I/O per instruction. historical data and is a reasonable assumption unless storage

Interestingly, surveys of large data processing mainframe can be allocated only when written to, for instance by us-
installations between 1980 and 1993 [33] found the number ing storage virtualization software that separates the system
of physical I1/0Os per second per MIPS to be decreasing by view of storage from the actual physical storage. Table 6
just over 10% per year to 9.0 in 1993. This figure is about summarizes, for our various workloads, the number of 1/0Os
ten times higher than what we are seeing for our server work- per second per GB of storage used. This metric is commonly
loads. A possible explanation for this large discrepancy is referred to as access density and is widely used in commer-
that the mainframe workloads issue many small I/Os but this cial data processing environments [33]. The survey of large
turned out not to be true. Data reported in [33] show that the data processing mainframe installations cited above found
average I/O request size for the surveyed mainframe instal-the access density to be decreasing by about 10% per year to
lations was about 9KB, which is just slightly larger than the 2.1 1/0Os per second per GB of storage in 1993. Notice from
8KB for our server workloads (Table 8). Of course, main- Table 6 that the access density for DS1 appears to be consis-
frame MIPS and Reduced Instruction Set Computer (RISC) tent with the mainframe survey results. However, the access
MIPS are not directly comparable and this difference could density for FS1 and TS1 is about two to four times higher.
account for some of the disparity, as could the inconsistent The PC workloads have, on average, an access density of 4
methods used to calculate MIPS. The mainframe surveys|/Os per second per GB of storage, which is on the order of
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All Requests Read Requests Write Requests Inter-Arrival Time (s) | P-Avg.  PfAvg.  FS1 TS1 DSI  S-Avg. | SfAvg.
Std. . Std. . Std. .
Avg. Min. Max. | Avg. Min. Max. | Avg. Min.  Max.
R T A TR 1% Moment 3.5 723 0398 0194 00903 0227 | 0561
P1 26 329 1 128 | 204 229 1 128 | 423 485 1 128 2nd Moment 7.79E+05 1.86E+06 368 231 2.00 131 363
P2 [ 197 %0 1 1586 165 207 1 128 443 631 1 1536 39Moment | 646E+11 160E+12 202E+07 B.0OE+03 674  6.74E+06 | 1.88E+07
P3 323 435 1 128 18.6 285 1 128 389 477 1 128
P4 287 40.2 1 128 155 211 1 128 298 412 1 128
Ps | 61 589 1 120| 964 531 1 129| 13 187 1 128 Table 10: First, Second and Third Moments of the 1/O Inter-
P6 189 294 1 128 216 29 1 128 16.8 29.1 1 128 ArriVaI T|me
P7 255 36.1 1 128 219 25 1 128 274 405 1 128
P8 32 42.6 1 128 212 315 1 128 55.3 52.9 1 128 100 e
P9 185 217 1 128 193 279 1 128 16 26.7 1 128 1 “ep Avg S-Avg -Exp Fit v ,:
P10 | 326 444 1 128| 37 464 1 128 | 231 378 1 128 1 PEA Exp(0.0914) R %
—e—Pf-Avg. ' D O
P11 20.1 29 1 128 21.6 27.3 1 128 174 315 1 128 1 9 4
80| |+ SAvg :
P12 51.9 120 1 512 96.4 144 1 512 38.2 107 1 512 .
P13 123 18.8 1 128 146 209 1 128 105 16.7 1 128 1 Sf'AVg' !
P14 205 38.6 1 128 137 29.1 1 128 72 58.3 1 128 1 .
» d S-Avg.-Fitted
P-Avg. | 28.6 423 1 256 315 37.7 1 156 318 443 1 256 < 60 Lognorm(O 315.0 227)
= 60 .315,0. . K
Pf-Avg.| 555 93.3 1 512 342 382 1 155 91 141 1 512 ;C: & N
FS1 | 12 55 2 18 | 116 561 2 18 | 144 415 2 16 S A S
TS1 13 987 2 512 | 126 552 2 64 | 149 199 2 512 % ] 5 ]
DS1 216 35.3 1 128 254 38.6 1 108 19 325 1 128 2 - i N
E 40 1 P-Avg.-Fitted Py S
S-Avg. | 155 169 167 219 16.5 166 167 633 | 16.1 189 167 219 (&) 4 Lognorm(0,175,7.58) ‘ !
Sf-Avg.| 25.8 127 200 213 27 873 200 513 131 134 267 213 1 ," 3
; . 20 L .
Table 8: Request Size (Number of 512-Byte Blocks) during ] A A
. . Lt 7 ‘,' K _ ~ .
the Busiest One-Hour Period. 1 g7 0 P-Avg.-Exp.Fit
J > T Exp(0.233)
Bandwidth Processing Power (GH2) Storage (GB) (1JE Osﬁrﬁlmgm et ‘15";03‘ — Hlug 0 —T— ‘1! o — Hlué »
(Mb/s) Ip.avg. PR-Avg. S-Avg. Sf-Avg.| P-Avg. PRAVG. S-Avg. Sf-Avg. = = = = = B
V9 9 V9 V9 v9 9 V9 v9 Inter-Arrival Time (s)
Ethernet 10 0.718 0.879 0.196 0.214 10.9 134 20.6 23.0
Fast Ethernet 100 718 879 196 214 109 134 206 230 i . i i X
Gigabit Ethernet 1000 71.8 87.9 19.6 214 1093 1344 2063 2302 Flgure 7 DIStrIbUtlon Of I/O Inter'Ar”VaI Tlme'
Ultra ATA-100 800 574 70.3 15.7 171 875 1075 1650 1842
Serial ATA 1200 86.1 105 235 25.7 1312 1613 2475 2763 § i i
Ultrascsis2o | 2560 | 184 225 501 548 | 2709 3441 5281 5894 ethernet and fiber channel, have newer versions with even
FiberChannel | 1000 | 718 879 196 214 | 1093 1344 2063 2302 higher data rates. For the kinds of workloads that we have,
nfiniband | 2500 | 179 220 490 S35 | 2733 3360 5157 5756 the 1/0 interconnect is not expected to be a bottleneck any

time soon. However, we would expect to see much higher
Table 9: Projected Processing Power and Storage Needed t®andwidth requirements for workloads that are dominated
Drive Various Types of I/O Interconnect to 50% Utilization. by large sequential 1/0se(g., scientific and decision sup-

port workloads [21]). In such environments, and especially

the figure for the server workloads even though the serverWhen many workloads are consolidated into a large server

workloads are several years older. Such results suggest tha‘i?Ind many disks are 'consohdgted into a sizeable outboard
PC workloads may be comparable to server workloads in controller, the bandwidth reqwrementg have to be carefqlly
terms of access density. Note, however, that as disks becomgValuated to ensure that the connection between the disks
a lot bigger and PCs have at least one disk, the density of and the host does not become the bottleneck.

access with respect to the available storage is likely to be

much lower for PC workloads. 4.3 Request Arrival Rate

Table 6 also contains results for the number of bits of In Table 10, we present the first, second and third mo-
/O per second per GB of storage used. The PC work- ments of the inter-arrival time distribution. The distribution
loads have, on average, 0.46 Mb of I/O per GB of storage. js piotted in Figure 7. Since the distribution of I/O inter-
By this measure, the server workloads are less 1/10 intense, ival time is often needed in modeling I/O systems, we fit-
with an average of only 0.24 Mb of I/O per GB of storage. o4 standard probability distributions to it. As shown in the
Based on these results, we project the amount of processing;g e the commonly used exponential distribution, while
power and storage space that will be needed to drive vanouseasy to work with mathematically, turns out to be a rather
types of 1/0 interconnect to 50% utilization. The results are poor fit for all the workloads. Insteadhe lognormal dis-
summarized in Table 9. Note that all the modern I/O inter- tribution (denotedZognorm(u, o) wher'eu and o are re-

connects offer Gb/s bandwidth. Some of them, specifically gyectively the mean and standard deviation) is a reasonably
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#1/0s Outstanding # Reads Outstanding # Writes Outstanding
Avg.  Avg.>0 Ste?/ 93;)/90' Max. | Avg. Avg.|>0 gs] 93;)2' Max. | Avg. Avg.]>0 ng/ QSIZU' Max.
P1 0.377 173 0.937 1 24 | 0273 1.66 0.802 1 23 | 0.104 1.36 0.407 0 10
P2 0.421 19 1.01 2 13 0.28 1.93 0.864 1 12 | 0.141 1.45 0.473 0 6
P3 0.553 2.52 151 2 20 | 0177 2.34 0.856 0 14 | 0.376 241 1.23 1 20
P4 0.796 2.67 1.96 3 74 | 0.332 2.15 11 1 27 | 0.464 2.33 1.55 1 74
P5 0.304 1.92 0.958 1 22 00985 197 0.601 0 20 | 0.206 17 0.704 1 22
P6 0.27 1.52 0.684 1 10 | 0.0169 1.36 0.181 0 8 0.253 1.52 0.66 1 8
P7 0.47 2.09 1.26 2 55 | 0.139 1.92 0.766 0 54 | 0.331 191 0.967 1 22
P8 0.365 1.96 1.07 1 26 | 0.196 1.65 0.699 1 14 | 0.168 1.82 0.673 0 16
P9 0.718 277 241 2 73 | 0.233 172 0.837 1 24 | 0484 33 227 1 73
P10 0.573 2.33 181 2 60 | 0.252 1.62 0.766 1 19 | 0321 2.53 1.62 1 60
P11 0.454 222 1.29 1 37 | 0.251 2.06 0.948 1 17 | 0.204 1.73 0.728 1 35
P12 0.341 1.99 1.06 1 19 | 0.201 237 0.897 0 17 0.14 1.35 0.464 1 8
P13 0.664 2.26 1.47 2 24 | 0393 2.33 117 1 17 | 0.272 17 0.859 1 24
P14 0.541 211 1.28 2 23 | 0.184 1.62 0.677 1 17 | 0.358 1.98 1.05 1 23
P-Avg. | 0.489 2.14 134 164 343 | 0.216 191 0.797 0.643 20.2 | 0.273 1.94 0975 0.786 28.6
FS1 149 4.19 4.62 3 181 | 0.186 1.38 0.538 1 13 13 474 4.56 3 181
TS1 9.98 272 411 12 1530| 0.214 1.42 0.574 1 20 9.76 364 411 11 1530
DS1 313 8.68 15.9 5 257 | 0.203 1.95 0.904 1 9 2.93 8.93 15.7 5 256
S-Avg. | 4.87 134 205 6.67 656 | 0.201 1.58 0.672 1 14 4.66 16.7 205 6.33 656

Table 11: Queue Depth on Arrival.

good fit Recall that a random variable is lognormally dis-
tributed if the logarithm of the random variable is normally
distributed. Therefore, the lognormal distribution is skewed
to the right or towards the larger values, meaning that there
exists long intervals with no 1/O arrivals. The long tail of
the inter-arrival distribution could be a manifestation of dif-
ferent underlying behavior such as correlated arrival times
but regardless of the cause, the net effect islkatequests
seldom occur singly but tend to arrive in groulpscause if
there are long intervals with no arrivals, there must be in-
tervals that have far more arrivals than their share. We will
analyze the burstiness of the I/O traffic in greater detail in
the next section.

Another interesting way to analyze the arrival process of
I/O requests is relative to the completion of preceding re-
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quests. In particular, if the workload supports multiple out-

standing I/O requests, there will be more potential for im- e PAvg.
proving the average 1/O performance, for instance, through 701 :j:g
request scheduling. Figure 8 presents the distribution of — %—DS1
gueue depth, which we define to be the length of the request 3 —+SA

gueue as seen by an arriving request. In Table 11 and Fig-
n+——nn—————

ure A-2 in Appendix A, we break down the outstanding re-
. . . 0 2 4 6 8 10 12 14 16 18

quests into reads and writes. Note that we consider a request Queue Depth on Arrival
to be in the queue while it is being serviced.

We find that across all the workloads, the read queue Figure 8: Distribution of Queue Depth on Arrival
tends to be shallow - more than 85% of the requests arrive todicate standard deviation.
find the queue devoid of read requests, and the average num-
ber of reads outstanding is only about 0.2. Nevertheless, the
read queue can be deep at times. If there are read requests
in the queue, the average number of them is almost 2 (de-
noted Avg.| > 0 in Table 11). In addition, the maximum
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read queue depth can be more than 90 times higher than the
average. Notice thdhe server workloads do not appear to
have a deeper read queue than the personal system work-
loads. This finding suggests that read performance in per-
sonal system workloads could benefit as much from request
scheduling as in server workloadg/e will examine this in
greater detail in [18]. Observe further from Table 11 tinet
write queue is markedly deeper than the read queue for all
the workloadsas we would expect given that a greater frac-
tion of writes are asynchronous compared to reads (Table 4).
The PC workloads appear to have a significantly shallower
write queue than the other workloads but in most cases, there
are still enough outstanding write requests to benefit from
request scheduling.

Note that we are looking at the number of outstanding
requests from the perspective of the operating system layer

Number of I/Os (100,000s)

1 X
at which the trace data were collected. This reflects the po- ° 6012345601234560123456010234560123456012345601
tential for request scheduling at any of the levels below, and Day of Week
not just at the physical storage system, which is typically not
handed hundreds of requests at a time. Some of the differ- Figure 9: Daily Volume of /O Activity.

ences among the workloads could be the result of collecting
the traces at different levels on the different platforms. In

general, the operating system and/or the disk device driverhope that such work will help improve performance during

\tl)w” q(;Jeue up th_e reiques;s and attemgt Itof tsr(]:heflule themthe next busy periode(g.,prefetching and reorganizing data
ased on some simplé pertormance model ot the storage Sysp ;56 o aecess patterns [22]). The effectiveness of these
tem (.g.,minimize seek distance). There is a tendency for

: . i attempts at time-shifting the load to even out the traffic de-
the operating _system andfor device driver to hold back the pends on the extent to which the traffic is autocorrelated.
rgquests and ISsue only a small number of them at any on e will analyze the autocorrelation of I/O traffic to deter-
time so as to avoid overloading th_e_storage system. In real'mine whether they are long-range dependent or self-similar
1y, mogl_ern storage systems, specifically quern disks, havein Section 5.2. In Section 5.3, we characterize in detail the
the ab'“.ty to do more elaborate and effect_lve _[5_4] requt_ast idle periods to help in the design of mechanisms that try to
scheduling based on whether a request will hit in the disk

. . exploit idle time.
cache, and on the seek and rotational positions. P

or by eagerly or speculatively performing some work in the

o _ ) 5.1 Dependence among Workloads
5 Variability in 1/0 Traffic over Time

In general, two processes are said to be dependent or cor-

When 1/O traffic is smooth and uniform over time, system related if the value a process takes on constrains the possible
resources can be very efficiently utilized. However, when the values that the other process can assume. In Figure 9, we
I/O traffic is bursty as is the case in practice (Section 4.3), plot the daily volume of 1/O activity for FS1 and TS1 as a
resources have to be provisioned to handle the bursts so thafunction of the day of week (0 = Sunday). If the two work-
during the periods when the system is relatively idle, these loads are positively correlated, we should see the peaks in
resources will be wasted. There are several approaches tahe two workloads appearing on the same day so that if the
try to even out the load. The first is to aggregate multiple two workloads are aggregated, the resulting workload will
workloads in the hope that the peak and idle periods in the have higher peaks. If the workloads are negatively corre-
different workloads will tend to cancel out one another. This lated, the peaks of one will occur when the other workload
idea is one of the premises of the storage utilities model. is relatively idle. If the workloads are independent, there
Whether the aggregation of multiple workloads achieves the should be no relation between the volume of activity for the
desired effect of smoothening the load depends on whethentwo workloads. When many independent workloads are ag-
the workloads are dependent or correlated. We will examine gregated, the resulting traffic will tend to be smooth.
the dependence among our workloads in Section 5.1. To more formally characterize the dependence among

The second approach to smoothening the traffic is to try the workloads, we calculate the cross-correlation. The
to shift the load temporally. For instance, by deferring or cross correlation between two processes X(i) and Y (i) where
offloading some work from the busy periods to the relative i=0,1,2...n-1 is defined as
lulls (e.g.,write buffering and logging disk arrays [9, 50])
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Figure 10: Distribution of I/O Traffic Averaged over Various Time Intervals.

ferent time zonedNote that the filtered workloads tend to be
less correlated but the difference is small.

_ > (X () - X)(Y(i) - Y) )
rxy = — —
VX () - X2/ (v () - V)2 5.2 Self-Similarity in /O Traffic

The possible values By range from -1 to 1 with -1 in- In many situations, especially when outsourcing storage,

dicating perfect negative correlation between the two work- W€ need rules of thumb to estimate the 1/O bandwidth re-
loads, 0 no correlation, and 1 perfect positive correlation. qU|rement ofaworklogd without having to analyze the work-

For each workload, we consider the /O arrival process ag- 1029 Inddef‘tall.dlnhSec?]on 4.2, we Coli?puéed the access den-
gregated over fixed intervals that range from one minute to S @nd found that the server workloads average about 5

a day. We synchronize the processes by the time of day ano“o_s or about 30KB worth of /10 per second per GB.of data.
the day of week. The results are available in Tables A-1 - This result can be used to provide a baseline estimate for
A-4 in Appendix A. the 1/0 bandwidth required by a workload given the amount

To summarize the dependence among a set of workloadsOf storage it uses. To account for the variability in the I/O

W, we define the average cross-correlatior@s where traffic, Figure 10(a) plots the distribution of I/O traffic aver-
X 'e W,Y € WandX # Y. In Figure A-3, we plot the aged over one-second intervals and normalized to the aver-

age bandwidth over the entire trace. The plot showstthat
satisfy the bandwidth requirement for 99% of the 1-second
intervals, we would need to provision for about 15 times the
ong-run average bandwidthNotice that for all the work-
loads, there is an abrupt knee in the plots just beyond 99%
of the intervals, which means thatsatisfy requirements be-
yond 99% of the time will require disproportionately more
resources.

In analyzing the data, we noticed that for many of the
workloads, the distribution of I/O traffic is relatively insen-
sitive to the size of the interval over which the traffic is aver-
aged. For instance, in Figure 10(b), the distributions for time
intervals of 0.1s, 1s, 10s, 100s for the database server are
very similar. This scale-invariant characteristic is apparent

average cross-correlation for the PC workloads as a function
of the time interval used to aggregate the arrival process. In
the same figure, we also plot the average cross-correlation
among the server workloads. We find that, in gendhare

is little cross-correlation among the server workloads, sug-
gesting that aggregating them will likely help to smooth out
the traffic and enable more efficient utilization of resources.
Our PC workloads are taken mostly from office environ-
ments with flexible working hours. Neverthelgb® cross-
correlation among the PC workloads is still significant ex-
cept at small time intervals. This suggests that multiplexing
the PC workloads will smooth out the high frequency fluctu-
ations in I/O traffic but some of the time-of-day effects will
remain unless the PCs are geographically distributed in dif-
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in Figure A-5, which shows the traffic variation over time for P-Avg. PfAvg. FSL  FS2 TSI  DSL S-Avg. SfAvg.
different time scales for the time sharing and database server H 081 079 08 092 091 091 09 080
workloads. The topmost plot shows the throughput averaged  usss) 188 916 108 229 1000 445 367 1000
over time intervals of 0.3s. In the second plot, we zoom out| oz(keisp |769080 528538 122544 345064 1256360 627261 528439 1256360
by a factor of ten so that each data point is the average traffic

volume over a three-second interval. The third plot zooms Tgpje 12: Hurst Parameter. Mean and Variance of the Per-
out further by a factor of ten. Observe that rescaling the time ggcond Traffic Arrival Rate during the High-Traffic Period.
series does not smooth out the burstiness. Instead the three

plots look similar. It turns out that for these workloads, such S _ _
plots look similar for time scales ranging from tens of mil- of self-similarity for our various workloads. Here, we sim-
liseconds to tens of seconds. ply summarize the Hurst parameter values we obtained (Ta-

Many of the statistical methods used in this section as- ble 12) and state the finding tHar time scales ranging from
sume that the arrival process is stationary. In order to avoid tens of milliseconds to tens and sometimes even hundreds of

potential non-stationarity, we selected two one-hour periods seconds, the 1/O traffic is well-represented by a self-similar
from each trace. The first period is chosen to be a high- ProcessNote that filtering the workloads does not affect the
traffic period, specifically one that contains more /O traffic Self-similar nature of their I/O traffic.

than 95% of other one-hour periods in the trace. The second

period is meant to reflect a low traffic situation and is chosen 5.2.2 Implications of Self-Similar 1/O Traffic

to be one that contains more 1/O traffic than 30% of other
one-hour periods in the trace.

That the 1/O traffic is self-similar implies that the bursti-
ness exists over a wide range of time scales and that attempts
o S at evening out the traffic temporally will tend to not remove
52.1 Definition of Self-Similarity all the variability. In addition, the I/O system may experi-

The phenomenon where a certain property of an object €nce concentrated periods of congestion with associated in-
is preserved with respect to scaling in space and/or time crease in queuing time and that resoureg (buffer, chan-

is described by self-similarity and fractals [31]. L&t nel) requirements may skyrocket at much lower levels of uti-
be the incremental process of a procassi.e., X (i) = lization than expected with the commonly assumed Poisson
Y (i+ 1) — Y(i). In our caseY counts the number of /O model in which arrivals are mutually independent and are
arrivals andX (i) is the number of I/O arrivals during the separated by exponentially distributed intervals. This behav-
time interval. Y is said to be self-similar with paramefér ~ ior has to be taken into account when designing storage sys-
if for all integersm, tems, especially when we wish to isolate multiple workloads
so that they can coexist peacefully in the same storage sys-
X = mi~Hxm (2) tem, as is required in many storage utilities. Such burstiness
should also be accounted for in the service level agreements
where (SLAs) when outsourcing storage.
km More generally, I/O traffic has been known to be bursty
XM(k) = (1/m) Z X(i), k=1,2,.. but describing this variability has been difficult. The concept
i=(k—1)ym+1 of self-similarity provides us with a succinct way to char-

) ) L _acterize the burstiness of the traffic. We recommend that
is the aggregated sequence obtained by dividing the orig-|/0 traffic be characterized by a three-tuple consisting of the
inal series into blocks of size: and averaging over each  mean and variance of the arrival rate and some measure of
block, andk is the index that labels each block. In this pa-  the self-similarity of the traffic such as the Hurst parameter.
per, we focus on second-order self-similarity, which means The first two parameters can be easily understood and mea-
thatm!~# X (") has the same variance and autocorrelation gyred. The third is more involved but can still be visually
asX. The interested reader is referred to [5] for a more de- eypjained. Table 12 summarizes these parameter values for
tailed treatment. our various workloads.

The single parameteH expresses the degree of self- It turns out that self-similar behavior is not limited to
similarity and is known as the Hurst parameter. For smooth |/ traffic or to our workloads. Recently, file system ac-
Poisson traffic, the H value is 0.5. For self-similar series, ijyities [15] and /O traffic [13] have been found to ex-
0.5 < H < 1,andasH — 1, the degree of self-similarity  pjpjt scale-invariant burstiness. Local and wide-area net-
increases. Mathematically, self-similarity is manifested in \yqrk traffic may also be more accurately modeled using sta-
several equivalent ways and different methods that exam-tistically self-similar processes than the Poisson madg(
ine specific indications of self-similarity are used to esti- 27]). However, analytical modeling with self-similar in-

mate the Hurst parameter. The interested reader is referredyts has not been well developed yet. (See [38] for some
to Appendix B for details about how we estimate the degree
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Figure 11: Length of On/Off Periods for the Five Most I/O-Active Processes.

recent results on modeling network traffic with self-similar workload into the I/O traffic generated by the individual pro-
processes). This, coupled with the complexity of storage cesses. As in [13], we define an off period for a process as
systems today, means that most of the analysis has to beany interval longer than 0.2s during which the process does
performed through simulations. Generating I/O traffic that not generate any 1/0. All other intervals are considered on
is consistent with the self-similar characteristic observed in periods for the process. This analysis has been shown to be
real workloads is therefore extremely important and useful. relatively insensitive to the threshold value used to distin-
In Appendix B, we present a recipe that can be used to gen-guish the on and off periods [53].

erate self-similar traffic using the parameters in Table 12. Taking logarithm on both sides of Equation 3, we get

5.2.3 Underpinnings of Self-Similar I/O Traffic logP(X > ) ~ log(c) — adog(z), as  — oo. (4)

Therefore, ifX is heavy-tailed, the plot dP(X > x) versus
e = on log-log scale should yield a straight line with slape
for large values of:. Such log-log plots are known as com-

We have seen that 1/O traffic is self-similar but self-
similarity is a rather abstract concept. To present a mor
compelling case and provide further insights into the dy- ; - e
namic nature of the traffic, we try to relate this phenomenon Plémentary cumulative distribution plots or “qg-plots” [26].
to some underlying physical cause, namely the superposition!n Figure 11, we present the qg-plots for the lengths of the
of 1/0 from multiple processes in the system where each pro- ©" and off periods for the five processes that generate the

cess behaves as an independent source of I/O with on period&§10St /O traffic in each of our PC workloads. Unfortunately,
that are heavy-tailed. none of our other workloads contain the process informa-

A random variable X, is said to follow a heavy-tailed tion that is needed for this analysis. As shown in the figure,
distribution if the on periods appear to be heavy-tailed but not the off peri-
ods. This is consistent with results reported in [13] where the

P(X >zx)~cx % asx —00,c>0,1<a<2. (3) lack of heavy-tailed behavior for the off periods is attributed

Such a random variable can give rise to extremely large val- FO periodic activity such as the sync daemon traffic. Hav-

. - - " ing heavy-tailed on periods is sufficient, however, to result
ues with non-negligible probability. The superposition of a . 7 )
large number of independent traffic sources with on and/or in self-similar aggregate traffic.
off periods that are heavy-tailed is known to result in traffic
that is self-similat [53]. In this section, we break down each

INot Poisson; assumptions of Palm-Khintchine theorem are not ~ As discussed earlier, when the I/O load is not constant
satisfied. but varies over time, there may be opportunities to use the

5.3 The Relative Lulls
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Figure 12: Distribution of Idle Period Duration. For the weighted distribution in (b), an idle period of dukaarounteds
times,i.e.,it is the distribution of idle time.

relatively idle periods to do some useful work. The reader time. This is consistent with previous results and implies that
is referred to [12] for an overview of idle-time processing a system that exploits idle time can get most of the potential
and a general taxonomy of idle-time detection and prediction benefit by simply focusing on the long idle peri§tiz].
algorithms. Here, we characterize in detail the idle periods,

focusing on specific metrics that will be helpfulin designing 531  Inter-idle Gap

mechanisms that try to exploit idle time. _ _ o .

ber of 1/0s per second during the interval is less than somelidle periods is the frequency with which suitably long idle
valuek. The term idle period refers to a sequence of inter- Periods can be expected. In addition, the amount of activity
vals that are idle. The duration of an idle period is simply that occurs between such long idle periods also determines
the product of the number of idle intervals it contains and the effectiveness and even the feasibility of exploiting the
the interval size. In this study, we use a relatively long in- idle periods. For instance, a log-structured file system or
terval of 10 seconds because we are interested in long idle@rray [34, 44] where garbage collection is performed peri-
periods during which we can perform a substantial amount odically during system idle time may run out of free space

of work. Note that storage systems tend to have some pe_if there is a lot of write activity between the idle periods. In
riodic background activity so that treating an interval to be the disk block reorganization scheme proposed in [22], the

idle only if it contains absolutely no /O activity would be inter-idle gapi.e., the time span between suitably long idle
far too conservative. Since disks today are capable of sup-Periods, determines the amount of reference data that has to
porting in excess of 100 I/Os per second [18], we select b€ accumulated on the disk. _

to be 20 for all our workloads except DS1. DS1 contains [N Figure 13, we consider this issue by plotting the aver-

several times the allocated storage in the other workloads so?g€ inter-idle gap as a function of the duration of the idle pe-
its storage system will presumably be much more powerful. riod. The results show that for the PC workloads on average,

Therefore, we use Avalue of 40 for DST. idle periods lasting at least an hour are separated by busy
Figure 12 presents the distribution of idle period duration Periods of about an hour and with just over 17,000 refer-
for our workloads. We fitted standard probability distribu- €nces. These results indicate tirethe personal systems en-
tions to the data and found that the lognormal distribution is Vironment, there are long idle periods that occur frequently
a reasonably good fit for most of the workloads. Notice that €hough to be interesting for offline optimizations such as
although most of the idle periods are short (less than a hun-block reorganizatiorf22]. As we would expect, the server
dred seconds), long idle periods account for most of the idle Workloads have longer busy periods separated by shorter idle
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Figure 13: Average Duration of Busy Periods.

periods. In these server environments, we have to be more ration given that the system has already been idle fanits
meticulous in using the available idle time. For instance, of time. More formally,
we may have to divide the task of analyzing the reference
patterns to optimize block placement [22] into several finer- ElI(z)] = i (i —)l(3) ©)
grained steps that can be scheduled whenever a short idle ‘
period presents itself. =
wherel(-) is the probability distribution of the idle period
5.3.2 Idle Length Prediction duration,i.e.,l(j) is the probability that an idle period has a
duration ofj andL(-) is the cumulative probability distribu-
Nion of the idle period duratiori.e., L() = 37 i(i). Ob-
serve from Figure 14 that E[I(x)] is generally increasing. In
other words, the longer the system has been idle, the longer it
is likely to remain idle. This phenomenon suggests predic-
tion policies that progressively raise the predicted duration
as the idle duration increases. Note that the plot is logarith-
mic so the rate of increase in E[I(x)] is higher than it appears.
To better understand how such prediction policies should
be designed, we also calculated the hazard rate of the idle
period duration (Figure A-6 in Appendix A). The hazard
rate is simply the probability that an idle period ends with
a duration< k + r given that it is already: units long. In
other words, given that the system has been idlé:fonits,
H(k,r) is the chance that a task initiated now and requir-
ing r units of time will not be completed before the system
becomes busy again. More formally,

In some cases, there is a recovery cost associated wit
stopping an offline task before it is completed. Therefore,
it is important to be able to predict how long an idle pe-
riod will last so that the system can decide whether a task
should be initiated. In Figure A-4 in Appendix A, we plot
the autocorrelation of the sequence of idle period duration
at different lags. For all the workloads, there is little corre-
lation between the length of one idle period and the lengths
of the immediately preceding periods. In other worasw
long the system will remain idle is not predictable from the
lengths of its recent idle period3his is in stark contrast to
the strong correlation that has previously been observed for
a personal Unix workstation [12]. In that study, the idle pe-
riod was taken to be an interval during which there was no
I/O activity. We conjecture that because the personal UNIX
workstation in the previous study was not heavily used, the
idle periods are determined primarily by the periodic back-

ground activity that exists in the system and hence the strong r
autocorrelation. > ik + 1)

In Figure 14, we plot the expected future idle duration, H(k,r) = i=0 6)
E[I(z)], which is defined as the expected remaining idle du- ' 1—-L(k-1)
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Figure 14: Remaining Idle Duration.

We find that the hazard rate is generally declining as the the read-to-write ratio also depends a lot on how much of
idle period duration increasesThis result again supports  the reads and writes have been filtered by caching, and on
the idea of predicting idle period duration by conditioning the kinds of I/Os €.g.,user data, paging, file system meta-
on the amount of time the system has already been idle. data) that are tabulated. Because main memory is volatile,
addition, the hazard rate increases withvhich is what we the amount of write buffering performed by the file system
would expect. In other words, the chances that a task will cache is typically limited. For example, UNIX systems have
not be completed before the system becomes busy again intraditionally used a policy of periodically (once every 30s)

creases with the length of the task. flushing the dirty blocks in the file cache to disk so as to
limit the amount of data that will potentially be lost in a sys-
6 Interaction of Reads and Writes tem failure. In Windows NT, one quarter of the dirty data

in the file cache is written back to disk every second [46].
In general, the interaction between reads and writes com- Therefore, more of the reads than writes are filtered by the

plicates a computer system and throttles its performance_f”e system cache. The file system also adds metadata writes
For instance, static data can be simply replicated to improve Which can account for more than half of the physical writes
not only the performance of the system but also its scalability (more than 72% in [45] and more than 53% in our PC work-
and durability. But if the data is being updated, the system loads). Therefore, at the logical level, the read/write ratio is
has to ensure that the writes occur in the correct order. Ingenerally much higher than at the physical level.

addition, it has to either propagate the results of each write ~ For instance, the ratio of logical read to write traffic has
to all possible replicated copies or to invalidate these copies.been reported to be between 3.7 and 6.3 for desktop work-
The former usua"y makes sense if the updated data is un_station workloads [42], and the ratio of Iogical read to write
likely to be updated again but is likely to be read. The latter operations has been found to be between 3 and 4.5 in var-
is useful when it is highly likely that the data will be updated ious office environments [41]. At the physical level, the
several more times before it is read. In cases where the datdead/write ratio has been observed to range from about 0.4 to
is being both updated and read, replication may not be use-1 for Novell NetWare file servers [17] and from about 0.7 to
ful. Thus the read-write composition of the traffic, together 0.8 for several HP-UX systems [45]. These figures are com-
with the flow of data from writes to reads, is an extremely Pparable to the read/write ratio we obtained, which are pre-
important workload characteristic. This is the focus of this sented in Table 13. Observe tfansistently across all the

section. server workloads and the PC workloads, on average, writes
account for about 60% of the requestaterestingly, main-
6.1 Read/Write Ratio frame data processing workloads appear to have a higher

read/write ratio. For example, measurements conducted at
A wide range of read/write ratio has been reported in the physical level at 12 moderate-to-large MVS installations
the literature. In addition to intrinsic workload differences, running mainly data processing applications (circa 1993)
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P14 0.481 0.710 0.770 0 T T T T T T T T T T T T
P-Avg. 0.816 0.932 0.988 0 64 128 192 256
PAVg. 0.965 0.607 0.888 Memory Size (MB)
FS1 0.718 0.633 1.50 . . . . .
Ts1 079 0740 15 Figure 15: Read/Write Ratio as Function of Memory Size.
DS1 0.607 1.24 1.06
SAvG. 0706 0870 124 If writes become increasingly dominant, a pertinent ques-
StAvg. 112 0.843 118 tion to ponder is whether physical read performance really
matters. In Figure 16, we plot the read and write cache miss
Table 13: Read/Write Ratio. ratios assuming a write-back cache with the least-recently-

used (LRU) cache replacement policy. We define the miss

found the read/write ratio to be about 3.5 [33]. Analysis ratio to be the fraction of requests that are not filtered by the
of the logical I/O traffic of the production database work- cache but that result in a request to the underlying storage
loads of ten of the world's largest corporations of about system. Observe that the plots for the filtered workloads are

the same period found the read/write ratio to average aboutSiMPly a translation of those for the original workloads; the
10 [20, 21]. behavior is qualitatively similar. Note that we are in essence
Obéerve from Table 13 that for the PC workloads. the simulating a second level cache. The upstream file system
read/write ratio does appear to be negatively correlated with €ache and/or the database buffer pool have captured signifi-
the memory size of the system. Unfortunately, we do not cant portions of any read reuse but because they are volatile,
have enough data points to observe any trends for the servefhey cannot safely cache the ertgs: Therefore, wines
workloads. In Figure 15, we plot the read/write ratio for the OPServed at the storage level exhibit much stronger local-
PC workloads as a function of the memory size. As shown Iy than the reads. In other words, although read caching
in the figure, the read/write ratio is approximately related PY the file system or the database buffer can eliminate most
to the memory size by an exponential function of the form ©f the reads, if writes are delayed long enough by using
f(z) = ae’/* wherea andb are constants. The model is non-volatile memory, write requests can similarly be very
limited by the few data points we have but it predicts that significantly reduced. In fact, for practically all the work-
with an infinitely large memory,e.,asz — oo, there will loads, a small cache of 1MB eliminates more than half the

be about 6 writes for every read. Such results support to the W/ tes. Furthermore, unlike reads which tend to be syn-
prediction that almost all reads will be absorbed by the larger Chronous, writes can be effectively rendered asynchronous
buffer caches in the future so that physical /0 will become through the use of write caching. In addition, the effec-
dominated by writes [36, 37, 44]. However, that the read tive latency of ertgs can often be reduced.by Wr!tlng data
ratio remains relatively consistent across all our workloads, aSynchronously or in a log [44, 52] or by using write-ahead
which span a time period of eight years, suggests that work-099ing [35]. Recent resulte(g.,[10]) also suggest that be-
load changes may have a counter effect. Also, the fact thatC@use Of the widening performance gap between processor
the ratio of read footprint to write footprint decreases, albeit 2nd disk-based storage, file system read response times may
slowly, with memory size, suggests that effeetsy(,work- be dominated by disk accesses even at very hlgh cache hit
load differences) other than an increase in caching, could "ates. Thereforehe performance of read 1/Os continues to

also be at work here. be very important.
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Figure 16: Miss Ratio with LRU Write-Back Cache (512B Blocks).

6.2 Working Set Overlap

The working setV (¢, 7) is defined as the set of blocks
referenced within the last units of time [11]. More for-

mally,
W(t,7) = {b: Count(b,t — 7,t) >=1} (7) 8 ”
] DBoth ] DBoth
whereCount (b, t — 7,t) denotes the number of times block 7] O Witten ] Dwiitten
b is referenced between— 7 andt. In Figure 17, we plot 1 M Read 51 B Read

the average and maximum daily working set size for our %61
workloads. Note that we define the working set of degs

W (t=midnight of dayz, 7=1 day). To understand the inter-
action between reads and writes, we differentiate the blocks g
referenced into those that are read, written, and both reau

and written. Specifically,

3]
L

w
L

Ave. Working Set Size (% Storage Used)
i
Max. Working Set Size (% Storage Used)

N
L

Wread(t7 T) =
{b: ReadCount(b,t — 1,t) >= 1} (8)
Wwv'itte'rL(t7 T) =

-
L

o
I

{b: WriteCount(b,t — 7,t) >=1} 9) ER- I I - 22833 22
o & 2 5 a & D5
Wboth (t, T) = Workload Workload

Wrea t? mVVwri,/en t7 10 . . . .
alt,7) tten(t,7) (10) Figure 17: Daily Working Set Size.

Observe that on average, the daily working set for the
various workloads range from just over 4% (PC workloads)
to about 7% of the storage used (FS1). The size of the work-
ing set is not constant but fluctuates day to day so that the
maximum working set can be several times larger than the
average. Notice further from Figure 17 that the read working
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Figure 18: Average Daily Generalized Working Set Size.

30

gesting that it is probably a good idea to identify the blocks

gfivvg that are in use and to optimize their layout as in [2R]otice
23 | el also thathe amount of data that is both actively read and up-

TSl dated is clearly very smalWe will examine this further by
— % — DS1 looking at the dependencies between reads and writes in the

—a—S-Avg. ¥ next section.
—a— Sf-Avg. 7{ k
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6.3 Read/Write Dependencies

Dependencies are generally classified into three cate-
gories -true dependencigfkead After Write or RAW)put-
put dependencie@VNrite After Write or WAW) andanti de-
pendenciegWrite After Read or WAR). A RAW is said to
exist between two operations if the first operation writes a
block that is later read by the other operation and there is
no intervening operation on the block. WAW and WAR are

Write-After-Reads (% Reads)

100 1000 10000 100000 1000000 similarly defined.

Windoy Size (% References) In Figure 19, we plot the percentage of reads for which

there is a write withinr references that constitute a WAR.
We refer tor as the window size. Observe that even for a
large window size of 100,000 references, less than 25% of
set is larger than the write working set for all the workloads, the reads fall into this category for all the workloads. In other
especially for the server workloads. In addition, the working words,blocks that are read tend not to be updated so that
set of blocks that are both read and written is small, repre- if disk blocks are reorganized or replicated based on their
senting less than 25% of the total working set size for all the read access patterns, write performance will not be signifi-
workloads. cantly affected.Notice from Figures 20 and 21 that all the
To better understand the interaction between the blocksworkloads contain more WAW than RAW. This implies that
that are read and those that are written, we introduce theupdated blocks are more likely to be updated again than to
idea of the generalized working s&t(t,7,c) = {b : be read. Therefore, if we do replicate blocks, we should only
Count(b,t — 7,t) >= c}. The working set first introduced  update one of the copies and invalidate the rest rather than
in [11] is simply the special case whete= 1. Figure 18 update all the copiedn other words, a write-invalidate pol-
presents the average daily generalized working set size foricy will work better than a write- broadcast policy. Again,
our workloads. The figure shows that for all the workloads, we see that the results for the filtered traces are quantita-
only a small fraction of the data stored is in active use, sug- tively different from those for the original traces but they
lead to the same conclusions.

Figure 19: Write after Read (WAR).
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7 Conclusions

In this paper, we empirically analyze the I/O traffic of a
wide range of real workloads with an emphasis on under-
standing how these workloads will respond to new storage
developments such as network storage, storage utilities, and
intelligent self-optimizing storage. As part of our analysis,
we also study the effect of increased upstream caching on
the traffic characteristics seen by the storage system and dis-
cover that it affects our analysis only quantitatively. Our ma-
jor findings include:

¢ Importance of I/0O Innovation/Optimization

I/O is known to be a major component of server work-
loads and improving the 1/O performance for these
workloads is critical. Our results suggest that if pro-
cessors continue to increase in performance according
to Moore’s Law, I/O is likely to also become a domi-
nant component of personal computer workloads in the
next few years. Our data show that consistently across
all the workloads, writes account for about 60% of the
requests. However, just as read caching by the file sys-
tem or the database buffer can eliminate most of the
reads, if writes are delayed long enough by using non-
volatile memory, write requests can similarly be very
significantly reduced. In fact, for practically all the
workloads, a small write-back cache of 1MB eliminates
more than half the writes. We believe that the perfor-
mance of read I/Os is likely to continue to have a di-
rect impact on application performance. As part of our
analysis, we re-examined Amdahl’s rule of thumb for
a balanced system and found that our server workloads
generate on the order of 0.05 bits of physical I/O per
instruction, consistent with our earlier work using the

23

Write-After-Writes (% Writes)

100

—e— Pf-Avg.
— % —FS1
—+—TS1
— % — DS1
—&— S-Avg.

—a— Sf-Avg.

100 1000 10000 100000 1000000
Window Size (# References)

Figure 21: Write after Write (WAW).

production database workloads of some of the world’s
largest corporations [20]. The figure for the PC work-
loads is seven times lower at about 0.007 bits of physi-
cal I/O per instruction.

Burstiness of 1/0 Traffic

Across all the workloads, read and write 1/0O requests
seldom occur singly but tend to arrive in groups. We
find that the write queue is very much deeper than the
read queue. Our analysis also indicates that there is lit-
tle cross-correlation in traffic volume among the server
workloads, suggesting that aggregating them will likely
help to smooth out the traffic and enable more efficient
utilization of resources. As for the PC workloads, mul-
tiplexing them will remove the high frequency fluctua-
tions in I/O traffic but some of the time-of-day effects
are likely to remain unless the PCs are geographically
distributed in different time zones. In addition, our re-
sults also show that to satisfy I/O bandwidth require-
ments 99% of the time, we will need to provision for
15 times the long-run average bandwidth. Going be-
yond 99% of the time will require disproportionately
more resources. It turns out that for time scales ranging
from tens of milliseconds to tens and sometimes even
hundreds of seconds, the 1/O traffic is well-represented
by a self-similar process. This implies that the 1/0O sys-
tem may become overwhelmed at much lower levels of
utilization than expected with the commonly assumed
Poisson model. Such behavior has to be taken into ac-
count when designing storage systems, and in the ser-
vice level agreements (SLAs) when outsourcing stor-
age. We recommend that I/O traffic be characterized by
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Figure A-1: Footprint Vs. Number of References.
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Average

v

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 Avgi| FS1  TS1  DS1  Avgi
P1 1 00692 00459 00784 00773 0027 0097 00798 0074 00393 00419 00329 00262 0.0368 0.0558 [0.00962 0.0219 0.00331

P2 |o00692 1 00244 00533 00759 00251 00834 00423 059 00195 00285 00116 00283 00544 00519 |0.00249 0.046 0.00056

P3 |o00450 00244 1 00115 00518 00263 00324 00272 00371 00428 00487 00132 00192 00447 00327 | 0.0285 00192 0.0175

P4 |o00784 00533 00115 1 00399 00262 00496 00484 00994 00278 00593 0.0109 00742 00446 00480 | 0.0247 0.0376 0.0144

p5 | 00773 00759 00518 00399 1 00342 00939 00512 00765 00281 00349 00118 0048 004 00510 | 0.021 00263 0.00529

P6 | 0027 00251 00263 00262 00342 1 00673 00333 00615 00538 00352 00299 00434 00528 00397 | 0.0197 00201 0.0331

p7 | 0097 00834 00324 0049 00939 00673 1 0105 00857 00475 00532 00317 00431 00722 00663 | 0.0303 00315 0.0776

ps | 00798 00423 00272 00484 00512 00333 0105 1 00509 0038 00294 00431 00309 00362 00474 | 0.015 00248 0.0463

P9 | 0074 0159 00371 00994 00765 00615 00857 00509 1 00497 00731 00233 00366 00941 00708 | 0.0288 0.0576 0.0196

P10 | 00393 00195 00428 00278 00281 00538 00475 0038 00497 1 00353 00143 00209 00429 0.0354 |0.00701 0.0149 0.0134

P11 | 00419 00285 00487 00593 00349 00352 00532 00294 00731 00353 1 00077 00311 0057 00412 | 0.0404 0.0456 0.0164

P12 | 00320 00116 00132 00109 00118 00209 00317 00431 00233 00143 00077 1 00112 00149 0.0197 [0.000939 0.00489 0.00926

P13 | 00262 00283 00192 00742 0048 00434 00431 00309 00366 00209 00311 00112 1 00625 0.0366 | 0.0368 0.0216 0.0246

P14 | 00368 00544 00447 00446 004 00528 00722 00362 00941 00429 0057 00149 00625 1 00502 | 0.0129 0.0614 0.0775

Avg | 0.0s58 00519 00327 00480 00510 00397 00663 00474 00708 00354 00412 00197 00366 0.0502  0.0462

Fs1 000962 0.00249 00285 00247 0021 00197 00303 0015 00288 000701 0.0404 0.000939 0.0368 0.0129 1 00242 00222 00232
Ts1 | 00219 0046 00192 00376 00263 00201 00315 00248 00576 00149 0.0456 000489 0.0216 0.0614 00242 1 0042 00331
DS1 [0.00331 0.00056 00175 00144 000529 00331 00776 00463 00196 00134 00164 000926 0.0246 0.0775 00222 0042 1 00321
Avgi - | 00232 00331 00321 00295

i Average of cross correlation with other PC workloads, excluding self.

il Average of cross correlation with other server workloads, excluding self.

Table A-1: Cross-Correlation of Per-Minute Volume of I/O Activity.

Average J

Average

P1 P2 P3 P4 P5 P6 P7 P8 P9 PI0 Pl P12 P13 P14 Avgi | FS1 TSl  DS1  Avg.i
P1 1 016 0108 0129 0228 0118 0233 022 016 0106 0123 008 00812 00832 0141 | 00262 0.0505 0.0179
P2 0.16 1 00807 0132 0217 00925 0183 0126 035 00486 00898 00392 00858 0.125 0.133 [0.00882 0.078 -0.00217
P3 | 0108 0087 1 00311 0141 0111 0101 00788 011 0113 031 0026 0.0619 00944 0091 | 0.0619 0.0356 0.0549
P4 | 0129 0132 00311 1 012 0072 0115 0107 0194 0061 0113 0035 0176 00743 0.105 | 0.0481 0.0706 0.0321
P5 | 0228 0217 0141 012 1 0137 0216 0167 0211 00959 0107 00321 0147 0107 0148 | 0.0579 0.0506 0.0397
P6 | 0118 00925 0111 0072 0.37 1 0187 014 0.83 0141 0129 00743 0142 0145 0127 | 0.0524 00486 0.0885
P7 | 0233 0183 0101 0115 0216 0187 1 0255 0.201 00971 0.119 00667 00945 0136 0154 | 0.0608 0.0569 0.141
P8 022 0126 00788 0107 0167 0114 0255 1 0.115 0.0825 0.0906 0.0947 0.0832 00819 0.124 ] 0.0338 0.0518 0.106
P9 016 035 011 0194 0211 0183 0201 0115 1 0108 0.143 00441 00962 0173 0161 | 0.059 0108 0.0323
P10 | 006 00486 0.13 0061 00959 0141 00971 0.0825 0.108 1 00771 00344 00546 0.0914 0085 | 0.0184 0.0392 0.0394
P11 | 0123 00898 0131 0113 0107 0129 0119 00906 0.143 00771 1 00193 0108 0.108 0.104 | 0.0869 0.0993 0.0294
P12 | 008 00392 0026 0035 00321 00743 00667 00947 00441 00344 00193 1 00229 00248 0.046 [0.000372 0.00633 0.03
P13 | 00812 00858 00619 0176 0147 0142 00945 00832 00962 0.0546 0.108 00229 1 0.145  0.100 | 0.0815 0.0424 0.0513
P14 | 00832 0125 00944 00743 0107 0145 0136 00819 0.173 00914 0108 0.0248 0.145 1 0.107 | 0.0267 0.106  0.119
Avgi | 0141 0133 0091 0105 0.148 0127 0154 0124 0161 0085 0.104 0046 0100 0107 0116
FS1 | 0.0262 0.00882 0.0619 0.0481 00579 0.0524 00608 0.0338 0.059 0.0184 0.0869 0.000372 0.0815 0.0267 1 00462 0.0405 0.0434
TSL | 00505 0078 00356 00706 00506 0.0486 00569 00518 0108 0.0392 0.0993 0.00633 0.0424 0.106 00462 1 0.04 00431
DS1 | 00179 -0.00217 0.0549 0.0321 00397 00885 0.41 0106 00323 00394 00294 003 00513 0119 0.0405  0.04 1 0.0403
Avgii - | 00434 00431 0.0403 0.0422

i Average of cross correlation with other PC workloads, excluding self.

it Average of cross correlation with other server workloads, excluding self.

Average —f

Table A-2: Cross-Correlation of Per-10-Minute Volume of 1/0 Activity.
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Average

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 Avg.i FS1 TS1 DS1 Avg.i
P1 1 0376 0298 0262 0484 0329 039 0434 0292 0215 0207 0126 0199 0202 0293 |0.0413 0.147 0.071
P2 0.376 1 0.244 0258 0479 0302 0384 0344 0418 0.138 0.186 0.15 0.233 0342 0.296 | 0.0272 0.145 0.058
P3 0298  0.244 1 0.106  0.306 0.29 0181 0199 0295 0206 0.242 0.0813 0.151 0207 0.216 | 0.142 0.121 0.062
P4 0.262 0.258  0.106 1 0231 0168 0278 0271 0323 0154 0249 00963 0347 0165 0.224 | 0.0812 0.55 0.11
P5 0484 0479 0306 0231 1 0.38 0372 0344 0384 0227 0223 0.0619 0.296 0.22 0.308 ] 0.0903 0.131  0.082
P6 0329 0302 029 0168 038 1 0376 0258 035 0252 0213 014 0327 0201 0283 | 011 0142 0241
P7 0.39 0384 0181 0278 0372 0376 1 0454 0361 0177 0171 0.156 0.187 0241 0.287 | 0.121 0.119 0.188
P8 0434 0344 0199 0271 0344 0258 0.454 1 0255 0.164 0183 0157 0193 0187 0.265 | 0.0764 0.129  0.267
P9 0292 0418 0295 0323 0384 0356 0361 0.255 1 0.263 0216 0126 0197 0331 0294 | 0.088 0.169 0.0909
P10 0215 0.138 0206 0.154 0227 0252 0.177 0.164 0.263 1 015 00763 0.136 0209 0.182 | 0.0247 0.144  0.107
P11 | 0207 0186 0242 0249 0223 0213 0171 0183 0216 0.15 1 00297 019 0244 0193 | 0.145 0.187 0.0627
P12 0.126 0.15 0.0813 0.0963 0.0619 0.14 0.156  0.157 0.126 0.0763 0.0297 1 0.0355 0.0485 0.099 |-0.00785 0.0473  0.06
P13 | 0199 0233 0151 0347 0296 0327 0187 0193 0197 0136 019 0.0355 1 0298 0215 | 016 0131 012
P14 0.202 0.342 0207 0.165 0.22 0291 0241 0187 0331 0209 0.244 0.0485 0.298 1 0.230 ] 0.0355 0.243  0.161
Avgi | 0293 0296 0216 0224 0308 0283 0287 0265 0294 0182 0.193 0099 0215 0.230 = 0.242
Fs1 | 00413 00272 0142 00812 00903 011 0121 00764 0088 00247 0.145 -000785 0.16  0.0355 1 0.076  0.0832 0.0796
TS1 | 0147 0145 0121 0155 0131 0142 0419 0129 0169 0144 0187 00473 0131 0.243 0.076 1 00422 0.0591
DSt | 0071 0058 0062 011 0082 0241 0.188 0267 00909 0.07 00627 006 012  0.161 0.0832 00422 1 00627
Avg.ii - 0.0796 0.0591 0.0627 0.0671

Average J
i Average of cross correlation with other PC workloads, excluding self.
il Average of cross correlation with other server workloads, excluding self.
Table A-3: Cross-Correlation of Hourly Volume of I/O Activity.
Average

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 Avg.i FS1 TS1 DS1 Avg.i
P1 1 0579 0241 0488 0659 0647 0492 0684 0544 038 0116 0205 0315 018 0425 | 0065 0341 -0.0254
p2 | 0579 1 0115 0319 0631 0513 0628 0736 0565 0317 0243 0253 0537 0464 0454 | -0.118 0445 0.184
P3 0241  0.115 1 013 0312 026 -0.031 0201 037 0354 0249 -00782 0171 012 0186 | 0.288 0401 0.176
P4 0488 0319 0.136 1 0323 0277 0219 0516 0502 035 0434 0224 0469 0203 0.343 | 0.0703 0.552 -0.466
P5 0.659 0.631 0312 0323 1 0592 0507 0.618 0.566 0.452 0.0851 -0.0555 0.382 0.17 0.403 | 0135 0.344 -0.0191
P6 0.647 0513 026 0277 0592 1 0569 0406 0619 0426 0141 025 0591 0321 0432 | 0.0314 0476 0414
P7 0492 0.628 -0.0361 0219 0507 0.569 1 0597 0563 0162 0.0476 0373 0455 0324 0.377 | 0.0792 0.204 0.278
P8 0684 0736 0201 0516 0618 0406 0.597 1 0542 0224 0132 0266 0369 022 0424 |-0.0358 0.333 023
P9 0.544  0.565 0.37 0502 0566 0.619 0.563 0.542 1 0.728 0.0909 0.352 0404 0376 0479 | 0.175 0.629 -0.0133
P10 0.38 0317  0.354 0.35 0452 0426 0.162 0224 0.728 1 0.116 0.0664 0431 0584 0353 | 0.062 0472 -0.0131
P11 | 0116 0243 0249 0434 00851 0.141 00476 0132 0.0909 0.116 1 00112 0272 0387 0179 | 0163 0518 0.387
P12 0.205 0.253 -0.0782 0.224 -0.0555 0.25 0.373 0266 0.352 0.0664 0.0112 1 0.23 0.11 0.170 | -0.163 0.0531 -0.201
P13 | 0315 0537 0171 0469 0382 0591 0455 0369 0404 0431 0272 023 1 0.586 0401 | 0.0261 0.59  0.133
P14 0.18 0.464 0.12 0.203 0.17 0321 0.324 0.22 0.376  0.584 0.387 0.11 0.586 1 0.311 ] -0.297 0.523 0.13
Avg.i | 0425 0454 0.186 0.343 0403 0432 0377 0424 0479 0353 0179 0170 0401 0311 = 0.353
FS1 | 0.065 -0.118 0288 00703 0135 00314 00792 -0.0358 0.175 0062 0163 -0.163 00261 -0.297 1 0.133 -0.343 -0.105
TS1 | 0341 0445 0401 0552 0344 0476 0204 0333 0629 0472 0518 0.0531 059 0523 0.133 1 018  0.157
DS1 |-0.0254 0.184 0176 -0.466 -0.0191 0414 0.278 0.23 -0.0133 -0.0131 0.387 -0.201 0.133 0.13 -0.343 018 1 -0.0815
Avg.ii - -0.105 0.157 -0.0815 -0.0100

i Average of cross correlation with other PC workloads, excluding self.

it Average of cross correlation with other server workloads, excluding self.

Table A-4: Cross-Correlation of Daily Volume of I/O Activity.
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Appendix B
B-1 Estimating the Degree of Self-Similarity

The degree of self-similarity is expressed using a single parameter, the Hurst parameter H. For a self-similaferies,
H < 1, and asH — 1, the degree of self-similarity increases. For smooth Poisson tréffis, 1/2. Mathematically, self-
similarity is manifested in several equivalent ways and different methods that examine specific indications of self-similarity are
used to estimate the Hurst parameter. In this paper, we focus on the R/S method and the variance-time plot. Newer inference
methods that are more sensitive to different types of scaling phenoragnd(]) have been developed but are beyond the
scope of the current paper.

B-1.1 The R/S Method

One of the manifestations of the self-similar property is that the autocorrelations of the process decay hyperbolically rather
than exponentially. This behavior is known as long-range dependence and it provides an explanation for an empirical law
known as the Hurst effect [27].

The R/S or rescaled adjusted range statistic for a set of observafions: = 1,2, ...,n having meanX (n) and sample
varianceS?(n) is defined by

% = ﬁ[max(&wl,Wg,...,Wn)—min(O,Wl,Wg,...,Wn)] (B-1)

where
Wi = (Xl + Xo+ ...+ Xk) — kY(n), k> 1.
It turns out that

R(n) H
E| =1 ~ B-2
S| > (®2)
whereH = 0.5 for short-range dependent processes@Ad< H < 1 for long-range dependent processes. This difference
between short and long-range dependent processes is known as the Hurst effect and forms the basis for the R/S method of
inferring the Hurst parameter.
Taking logarithm on both sides of Equation B-2,

log (E {?Eg}) ~ Hlog(n) + log(c) (B-3)
Therefore, we can estimate H by plottifigy( E[R(n)/S(n)]) versusog(n) for different values of n. In practice, we divide a

set of N observations intds disjoint subsets each of lengiti/ K and computéog(E[R(n)/S(n)]) for each of these subsets
using logarithmically spaced values:af The resulting plot ofog(E[R(n)/S(n)]) versudog(n) is commonly referred to as a

pox plot. For a long-range dependent time series, the pox plot should fluctuate in a straight street/df Slépe H < 1 [5].

In Figure B-1, we present the pox plots for our various workloads for the high-traffic period. Observe that the pox plots
for all the workloads appear to fluctuate around straight streets with slope ranging from 0.6 to almost 0.9. In othexdiwords,
the workloads exhibit long-range dependence and self-similarity in their 1/O traffic pattémriSigure B-2, we present the
corresponding pox plots for the filtered traces. The same behavior is observed.

B-1.2 Variance-Time Plot

Another manifestation of self-similarity is that the variance of the aggregated préi¢&@3slecrease more slowly than the
reciprocal ofm, where

km

X(k)y=(1/m) > X(i), k=1,2,...

i=(k—1)m+1
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Figure B-1: Pox Plots to Detect Self-Similarity.
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Figure B-2: Pox Plots to Detect Self-Similarity (Filtered Traces).
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(a) High-Traffic Period.

(b) Low-Traffic Period.

Figure B-3: Variance-Time Plots to Detect Self-Similarity.

More formally,

Var(X™) ~ em™ 0<p< 1. (B-4)

Taking logarithm on both sides,

log(Var(X(m))) ~ log(c) — Blog(m).

Thus for a self-similar process, the variance-time flet, the plot oflog(Var(X (™)) againstiog(m), should be a straight
line with a slope between -1 and 0. The degree of self-similarity is giveH by 1 — 3/2.

The variance-time plots for our various workloads are presented in Figures B-3 and B-4. Observe that for the high-traffic
period, the variance-time plots for all the workloads are very linear with slopes that are more gradual than -1. This indicates
that the I/O traffic for the workloads is self-similar in nature. Notice thoughttieself-similarity does not span all time scales
but appears to break down beginning just beyond 10s for the database server. In other words, for time scales ranging from tens
of milliseconds to tens and sometimes even hundreds of seconds, the 1/O traffic is well-represented by a self-similar process but
not beyond thatinterestingly, the filtered traces appear to be self-similar to larger time scales although some of them have a
steeper slope, meaning that they are less self-similar.

For the low-traffic period, all the plots again have linear segments with slope of less than -1 but these segments are shorter
than in the high-traffic case, particularly in the case of the database server. In addition, the slope of the linear regions is
noticeably steeper than for the high-traffic period. This meanslt®atraffic during the low-traffic period is self-similar
but less so and over a smaller range of time scales than during the high-traffic pekediscussed in the main text, the
self-similarity could be caused by the superposition of I/O generated by different processes in the system where each process
behaves as an independent I/O source with heavy-tailed on periods. During the low-traffic period, we would expect that there
are fewer processes running in the system and therefore fewer independent sources of I/O so that the aggregated traffic is less
self-similar. This is in line with observations in [13].

Table B-1 summarizes the Hurst parameter values that we obtained using the R/S method and the variance-time plot. These
two methods provide independent estimates of the degree of self-similarity and discrepancies between their results can be
expected. In view of this, the figures we obtained are reasonably consistent, which adds confidence to our analysis and results.

(B-5)

B-2 Generating Self-Similar 1/0 Traffic

There are several ways to generate self-similar traffic but models such as those based on F-ARIMA and Fractional Guassian
Noise processes are generally computationally expensive. An alternative traffic generator based on the superposition of inde-
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(a) High-Traffic Period. (b) Low-Traffic Period.
Figure B-4: Variance-Time Plots to Detect Self-Similarity (Filtered Traces).
High Traffic P-Avg. Pf-Avg. FS1 FS2 TS1 DS1  S-Avg. Sf-Avg.
Slopeof | 435 040 017 012 011 0053 -011 -0.38
Var.- | Fitted Line
Time
Hurst 083 080 092 094 094 097 094 081
Parameter
Slopeof | 460 079 084 09 088 08 08 080
Fitted Line
Pox
Hurst 080 079 084 090 08 08 08 080
Parameter
(a) High Traffic.
High Read Traffic | P-Avg. Pf-Avg. FS1 FS2 TS1 DS1  S-Avg. Sf-Avg. High Write Traffic | P-Avg. Pf-Avg. FS1 FS2 TS1 DS1  S-Avg. Sf-Avg.
Slopeof 456 020 020 010 013 010 014 013 Slopeof | 450 055 020 012 028 0068 -021 -049
Var.- | Fitted Line Var.- | Fitted Line
Time Time
Hurst 087 08 090 095 094 095 093 093 Hurst 075 073 08 094 08 097 08 076
Parameter Parameter
Slope of Slope of
Fiedline | 077 074 08 0% 079 076 08 077 Fiedline | 079 078 081 07 088 08 08 079
Pox Pox
Hurst 077 074 08 092 079 076 080 077 Hurst 079 078 081 076 08 08 083 079
Parameter Parameter
(b) High Read Traffic. (c) High Write Traffic.
Table B-1: Degree of Self-Similarity.
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pendent and identical fractal renewal processes is attractive because it has a physical correspondence to the superposition of
I/0 traffic generated by different processes, and is relatively easy to construct. The Superposition of Fractal Renewal Processes
model is completely characterized By, the number of fractal renewal processes, afid, the inter-arrival probability den-

sity function. A convenient probability density function is the following where the parameserves as a threshold between
exponential behavior and power-law behavior:

Y oA
x€ A TSAa

p(7) = { ye YAyr— (D s A (B-6)

The interested reader is referred to [47] for more details about the model.

B-2.1 The Inputs
The inputs to the traffic generator are:
1. H, the Hurst parameter which measures the degree of self-similarity [5].
2. i, the average number of arrivals during intervals of durafipn

3. o2, the variance in the number of arrivals during intervals of durafign

B-2.2 Model Setup

The three inputs described above were chosen to be relatively easy to measure and understand. Before we begin to generate
the traffic, however, we need to convert the inputs into a more convenient form:

1. Calculate
a=2H-1 (B-7)
2. Calculate
Yy=2—-« (B-8)
3. Calculate
A= Tﬁs (B-9)
4. Calculate
T, = s (B-10)
(/\UTS )E -1
5. Calculate
. [ T2y (y — 1)e? } - (B-11)
2=7)B=L+(y—De]?
6. Calculate
=2 |+ =] (12
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B-2.3 The Algorithm

Let Ti(j ) denote theith inter-arrival time for procesg. The following algorithm calculates th@i(j) by spawningM

independent threads. This multi-threaded approach is useful when actual 1/0Os are to be issued. For pure simulations or where

I/O calls return immediately after they have been issued, a single-threaded version can be easily constructed.

. Spawn M threads
. For each thread

1
2
3.
4

Generate a random varialifeuniformly distributed in [0,1)

Calculate
1 —1)e”
yo 1t =Y,
y
Calculate
_ V-1
) — — tAln[U;vaUL V>1,
° AV, V<l
Repeat

Generate a random varialifeuniformly distributed in [0,1)

Calculate

G) _ —%A}IE[U], U>e,
' LAUS,  U<e

Until enough arrivals are generated
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