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Abstract

Understanding the characteristics of physical I/O traffic
is increasingly important as the performance gap between
processor and disk-based storage continues to widen. More-
over, recent advances in technology, coupled with market
demands, have led to several new and exciting developments
in storage, including network storage, storage utilities, and
intelligent self-optimizing storage. In this paper, we em-
pirically examine the I/O traffic of a wide range of real PC
and server workloads with the intent of understanding how
well they will respond to these new storage developments.
As part of our analysis, we compare our results with his-
torical data and reexamine rules of thumb that have been
widely used for designing computer systems. Our results
show that there is a strong need to focus on improving I/O
performance. We find that the I/O traffic is bursty and ap-
pears to exhibit self-similar characteristics. In addition, our
analysis indicates that there is little cross-correlation in traf-
fic volume among the server workloads, which suggests that
aggregating these workloads will likely help to smooth out
the traffic and enable more efficient utilization of resources.
We also discover that there is a lot of potential for harnessing

Funding for this research has been provided by the State of
California under the MICRO program, and by AT&T Laboratories,
Cisco Corporation, Fujitsu Microelectronics, IBM, Intel Corpora-
tion, Maxtor Corporation, Microsoft Corporation, Sun Microsys-
tems, Toshiba Corporation and Veritas Software Corporation.

“free” system resources for purposes such as automatic opti-
mization of disk block layout. In general, the characteristics
of the I/O traffic are relatively insensitive to the amount of
caching upstream and our qualitative results apply when the
upstream cache is increased in size.

1 Introduction

Processor performance has been increasing at the rate
of 60% per year while disk access time, being limited by
mechanical delays, has been improving by less than 10%
per year [16, 39]. Compounding this widening performance
gap between processor and disk storage is the fact that
disk capacity has been improving by more than 60% per
year [16, 39] so that each disk is responsible for the stor-
age and retrieval of rapidly increasing amounts of data. The
overall result of these technology trends, which show no
signs of easing, is that computer systems are increasingly
bottlenecked by disk-based storage systems. The key step in
overcoming this bottleneck is to understand how storage is
actually used so that new optimization techniques and algo-
rithms can be designed.

In addition, new paradigms and developments have re-
cently emerged in the storage industry, and determining the
real effect of these requires a focused examination of the
I/O characteristics of real workloads. First, storage is in-
creasingly placed on some form of general network so that

1



it can be shared and accessed directly by several comput-
ers at the same time [48] (e.g.,Network Attached Storage
(NAS) for file storage and Storage Area Networks (SANs)
for block storage). The performance of such network stor-
age hinges on knowing the I/O traffic patterns and opti-
mizing the network for such patterns. Second, consolidat-
ing the storage now distributed throughout an organization,
for instance to storage utilities or Storage Service Providers
(SSPs), is expected to become increasingly popular [28].
Whether such an approach leads to more efficient pooling
of resources among different groups of users depends on the
characteristics of their workloads, specifically on whether
the workloads are independent. In practice, we will need
rules of thumb that describe the storage and performance re-
quirements of each group, as well as realistic traffic models.
Third, the rapid growth in available processing power in the
storage system [14, 19] makes it possible to build intelligent
storage systems that can dynamically optimize themselves
for the workload [22]. The design of these systems requires
a good understanding of how real workloads behave.

In this research, therefore, we empirically examine the
storage usage characteristics of real users and servers from
the perspective of evaluating these new storage opportuni-
ties. A total of 18 traces gathered from a wide range of envi-
ronments are examined. We focus in this paper on analyzing
the I/O traffic, specifically, (1) the I/O intensity of the work-
loads and the overall significance of I/O in the workloads,
(2) how the I/O load varies over time and how it will be-
have when aggregated, and (3) the interaction of reads and
writes and how it affects performance. We compare our re-
sults with historical data to note any trends and to revalidate
rules of thumb that are useful for systems design and sizing.
To make our results more broadly applicable, we also study
the effect of increased upstream caching on our analysis. In a
companion paper, we examine how these real workloads are
affected by disk improvements and I/O optimizations such as
caching and prefetching [18]. The insights gained from this
research are instrumental to the block reorganization tech-
nique outlined in [22].

The rest of this paper is organized as follows. Section 2
contains a brief overview of previous work in characterizing
I/O behavior. Section 3 discusses our methodology and de-
scribes the traces that we use. In Sections 4-7, we analyze
the I/O traffic of our various workloads in detail. Concluding
remarks appear in Section 8. Because of the huge amount of
data that is involved in this study, we present only a charac-
teristic cross-section in the main text. More detailed graphs
and data are presented in Appendix A. Some of the more
involved mathematical material appears in Appendix B.

2 Related Work

I/O behavior at the file system level has been character-
ized in some detail (e.g., [4, 8, 36, 42, 51]). There have

also been several studies of the logical I/O characteristics
of large database and scientific systems; see [20, 21] for a
brief bibliography. These studies provide valuable insights
for designing the file system and the database data manager
but they are not very useful for understanding what happens
at the physical or storage level. Because of the file system
cache or the database buffer pool, most of the logical ref-
erences never reach the physical storage. In addition, the
logical I/O behavior does not reflect the effects of file allo-
cation and mapping. Furthermore, many of these studies do
not account for system generated traffic such as paging and
metadata access, which can account for a significant fraction
of the total I/O [42, 45].

Compared to the analysis of I/O behavior at the logical
level, physical I/O characterization has received much less
attention in the research community. Part of the reason is
that storage level characteristics are sensitive to the file sys-
tem or buffer pool design and implementation so that the
results of any analysis are less broadly applicable. But this
is precisely the reason to analyze the physical I/O character-
istics of different systems. Traces collected from large IBM
mainframe installations [49] and production VAX/VMS sys-
tems [7, 24] have been used to study design issues in disk
caches. There has also been some analysis of the physical
I/O characteristics of Unix systems [45] and Novel NetWare
file servers [17] in academic/research environments. Even
though personal computers (PCs) running various flavors of
MS Windows are now an integral part of many office ac-
tivities, there has, to the best of our knowledge, been no
published systematic analysis of how storage is used in such
systems.

3 Methodology

Trace data can generally be gathered at different levels in
the system depending on the purpose of collecting the data.
For instance, to evaluate cache policies for the file system
buffer, I/O references have to be recorded at the logical level,
before they are filtered by the file system buffer. In general,
collecting trace data at the logical level reduces dependen-
cies on the system being traced and allows the trace to be
used in a wider variety of studies, including simulations of
systems somewhat different from the original system. For
instance, to study physical storage systems, we could filter a
logical trace through models of the file system layer to ob-
tain a trace of the physical I/Os. A commonly used method
for obtaining such a logical trace is to insert a filter driver
that intercepts all requests to an existing file system device
and records information about the requests before passing
them on to the real file system device.

However, this approach does not account for I/Os that
bypass the file system interface (e.g.,raw I/O, virtual mem-
ory paging and memory-mapped I/O). Recent results [42]
show that 15% of reads and nearly 30% of writes in Win-
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dows NT workloads can be attributed to paging by running
programs. In addition, 85% of processes now memory-map
files compared with 36% that read files and 22% that write
them. From a practical perspective, the approach of starting
with a logical trace to evaluate physical storage systems re-
quires that a lot of data be collected, which adds disturbance
to the systems being traced, and then painstakingly filtered
away by simulating not only the buffer cache and prefetcher
but also how the data is laid out and how the metadata is
referenced. For today’s well-tuned systems, each of these
components is complicated and the details of their operation
are seldom publicly available. For instance, the file system
buffer on many systems (e.g., Windows NT) is integrated
with the memory manager and dynamically sized based on
perceived workload characteristics. Therefore the net result
of taking a logical trace and filtering it through models of the
file system components is not likely to reflect the workload
seen by any real storage system. Since file systems today
are relatively stable and rarely undergo radical changes, we
believe that in general, for the purpose of studying physical
storage systems, analyzing traces collected at the physical
level is more practical and realistic. This is the method we
use in this paper.

In order to make our characterization more useful for
subsequent mathematical analyses and modeling by oth-
ers, we have fitted our data to various functional forms
through non-linear regression, which we solved by using
the Levenberg-Marquardt method [40]. When appropriate,
we also fitted standard probability distributions to our data
by using the method of maximum likelihood to obtain pa-
rameter estimates and then optimizing these estimates by the
Levenberg-Marquardt algorithm [40].

3.1 Trace Collection

The traces analyzed in this study were collected from
three different platforms, namely Windows NT, IBM AIX
and HP-UX. A different trace facility was used on each
platform. The Windows NT traces were collected by using
VTrace [29], a software tracing tool for Intel x86 PCs run-
ning Windows NT and Windows 2000. VTrace was primar-
ily developed to collect data for energy management studies
for portable computers. In this study, we are mainly inter-
ested in the disk activities, which are collected by VTrace
through the use of device filters. VTrace takes daily snap-
shots of the NTFS file system metadata. In addition, it col-
lects data on the file system as well as process and thread
activities. We have verified the disk activity collected by
VTrace by comparing it with the raw SCSI traffic obtained
by a SCSI analyzer. Details of VTrace and the special tech-
niques used to collect the relevant data with minimal intru-
sion can be found in [29].

After VTrace is installed on a system, each disk request
generates a trace record consisting of the time (based on the

Intel Pentium cycle counter), sequence number, file object
pointer, disk and partition numbers, start address, transfer
size, and flags describing the request (e.g.,read, write, syn-
chronous). After the disk request has been serviced, a com-
pletion record is written. In a post processing step, we match
up the sequence number recorded in the request and comple-
tion records to obtain the service times. To better understand
the I/O behavior of the system, it is useful to be able to as-
sociate each disk request with the name of the correspond-
ing file and process. In most cases, we are able to match
up the file object pointer with a file open record to obtain
the filename. When the match fails, we try to determine the
filename by looking up the block address in a reverse allo-
cation map that is constructed from the periodic metadata
snapshots.

Because VTrace is designed to collect data for energy
management studies, it also gathers data about process and
thread creations and deletions as well as thread switches. By
using the thread create and thread switch trace records, we
are able to match up I/O requests with the names of the re-
questing processes. In addition, the thread switch records
enable us to determine the overall significance of I/O in these
workloads. We will look at this in Section 4.1.

To keep the amount of data collected manageable, pro-
cess and thread trace records are gathered only for a span of
one and a half hours every three and a half hours. In addi-
tion, all trace collection is turned off ten minutes after the
cessation of user mouse and keyboard activity. Newer ver-
sions of VTrace collect some trace data all the time but in
order to have a consistent set of data, we have processed the
traces used in this study to delete trace records that occur af-
ter ten minutes of user idle time. In other words, we use only
the trace records that occur from the first user activity after
an idle period to the last user activity before an idle period;
we assume that there is no activity in the system during the
periods when the user is idle. We believe that this is a rea-
sonable approximation in the PC environment, although it is
possible that we are ignoring some level of activity due to
periodic system tasks such as daemons. This latter type of
activity should have a negligible effect on the I/O load, al-
though it might be important for other types of studies, such
as power usage.

Both the IBM AIX and HP-UX traces were collected us-
ing kernel-level trace facilities built into the operating sys-
tems. These trace facilities are completely transparent to the
user and adds no noticeable processor load. Among the in-
formation collected for each physical I/O are: timing infor-
mation, disk and partition numbers, start address, transfer
size and flags describing the request. More details about the
IBM AIX trace facility can be found in [23]. The HP-UX
trace facility is described in [45].
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System Configuration Trace Characteristics
Design-

ation User Type
System Memory

(MB) File Systems Storage
Usedi (GB) # Disks Duration Footprintii

(GB)
Traffic
(GB)

Requests
(106)

P1 Engineer 333MHz P6 64 1GB FATi 5GB NTFSi 6 1 45 days (7/26/99 - 9/8/99) 0.945 17.1 1.88

P2 Engineer 200MHz P6 64 1.2, 2.4, 1.2GB FAT 4.8 2 39 days (7/26/99 - 9/2/99) 0.509 9.45 1.15

P3 Engineer 450MHz P6 128 4, 2GB NTFS 6 1 45 days (7/26/99 - 9/8/99) 0.708 5.01 0.679

P4 Engineer 450MHz P6 128 3, 3GB NTFS 6 1 29 days (7/27/99 - 8/24/99) 4.72 26.6 2.56

P5 Engineer 450MHz P6 128 3.9, 2.1GB NTFS 6 1 45 days (7/26/99 - 9/8/99) 2.66 31.5 4.04

P6 Manager 166MHz P6 128 3, 2GB NTFS 5 2 45 days (7/23/99 - 9/5/99) 0.513 2.43 0.324

P7 Engineer 266MHz P6 192 4GB NTFS 4 1 45 days (7/26/99 - 9/8/99) 1.84 20.1 2.27

P8 Secretary 300MHz P5 64 1, 3GB NTFS 4 1 45 days (7/27/99 - 9/9/99) 0.519 9.52 1.15

P9 Engineer 166MHz P5 80 1.5, 1.5GB NTFS 3 2 32 days (7/23/99 - 8/23/99) 0.848 9.93 1.42

P10 CTO 266MHz P6 96 4.2GB NTFS 4.2 1 45 days (1/20/00 – 3/4/00) 2.58 16.3 1.75

P11 Director 350MHz P6 64 2, 2GB NTFS 4 1 45 days (8/25/99 – 10/8/99) 0.73 11.4 1.58

P12 Director 400MHz P6 128 2, 4GB NTFS 6 1 45 days (9/10/99 – 10/24/99) 1.36 6.2 0.514

P13 Grad. Student 200MHz P6 128 1, 1, 2GB NTFS 4 2 45 days (10/22/99 – 12/5/99) 0.442 6.62 1.13

P14 Grad. Student 450MHz P6 128 2, 2, 2, 2GB NTFS 8 3 45 days (8/30/99 – 10/13/99) 3.92 22.3 2.9

P-Avg. - 318MHz 109 - 5.07 1.43 41.2 days 1.59 13.9 1.67

(a) Personal Systems.

System Configuration Trace Characteristics
Design-

ation
Primary
Function System Memory

(MB) File Systems Storage
Usedi (GB)

#
Disks Duration Footprintii

(GB)
Traffic
(GB)

Requests
(106)

FS1 File Server
(NFSiii)

HP 9000/720
(50MHz)

32 3 BSDiii FFSiii (3 GB) 3 3 45 days (4/25/92 - 6/8/92) 1.39 63 9.78

FS2iv File Server
(AFSiii)

IBM RS/6000 - 23 AIXiii JFSiii (99.1GB) 99.1 17 8am – 6pm (11/6/2000) - 1.70 -

TS1 Time-Sharing
System

HP 9000/877
(64MHz)

96 12 BSD FFS (10.4GB) 10.4 8 45 days (4/18/92 - 6/1/92) 4.75 123 20

DS1
Database

Server
(ERPiii)

IBM RS/6000
R30 SMPiii

(4X 75MHz)
768

8 AIX JFS (9GB), 3 paging
(1.4GB), 30 raw database

partitions (42GB)
52.4 13 7 days (8/13/96 – 8/19/96) 6.52 37.7 6.64

S-Avg.v - - 299 - 18.5 8 32.3 days 4.22 74.6 12.1

i Sum of all the file systems and allocated volumes.
ii Amount of data referenced at least once (using block size of 512 bytes)
iii AFS – Andrew Filesystem, AIX – Advanced Interactive Executive (IBM’s flavor of UNIX), BSD – Berkeley System Development Unix, ERP – Enterprise Resource Planning, FFS – Fast
Filesystem, JFS – Journal Filesystem, NFS – Network Filesystem, NTFS – NT Filesystem, SMP – Symmetric Multiprocessor
iv Only per second I/O statistics were collected.
v Excluding FS2.

(b) Servers.

Table 1: Trace Description.
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Figure 1: Footprint Vs. Number of References.

3.2 Trace Description

In this study, we use traces collected from both server
and personal computer (PC) systems. Table 1 summarizes
the characteristics of the traces. Thefootprint of a trace is
defined as the amount of data referenced at least once in the
trace. Figure 1 plots the trace footprint as a function of the
number of references, which is a measure of the trace length.
Similar plots for the read footprint and the write footprint are
in Figure A-1 in Appendix A.

The PC traces are denoted as P1, P2, ..., P14. The term
“P-Avg.” represents the arithmetic mean of the results for the
PC traces. These traces were collected over a period rang-
ing from about a month to well over nine months on PCs
running Windows NT. In this study, we utilize only the first
45 days of the traces. In addition to engineers and graduate
students, the users of these systems also include a secretary
and several people in senior managerial positions. By hav-
ing users ranging from managers and a secretary to hard core
engineers in our sample, we believe that our traces are illus-
trative of the PC workloads in many offices, especially those
involved in research and development. Note, however, that
the traces should not be taken as typical or representative of
any other system. Despite this disclaimer, the fact that many
of our results correspond to those obtained previously, albeit
in somewhat different environments, suggest that our find-
ings are generalizable to a large extent.

The servers examined include two file servers, a time-
sharing system and a database server. Throughout this pa-
per, we use the term “S-Avg.” to denote the arithmetic mean
of the results for the server workloads. The first file server
workload (FS1) was taken off a file server for nine clients
at the University of California, Berkeley. This system was

primarily used for compilation and editing. It is referred to
as “Snake” in [45]. The second file server workload (FS2)
was taken off an Andrew File System (AFS) server at one of
the major development sites of a leading computer storage
vendor. The system was the primary server used to support
the development effort. For this system, only per-second ag-
gregate statistics of the I/O traffic were gathered; addresses
for individual I/Os were not collected. The trace denoted
TS1 was gathered on a time-sharing system at an indus-
trial research laboratory. It was mainly used for news, mail,
text editing, simulation and compilation. It is referred to as
“cello” in [45]. The database server trace (DS1) was col-
lected at one of the largest health insurers nationwide. The
system traced was running an Enterprise Resource Planning
(ERP) application on top of a commercial database.

Our traces capture the actual workloads that are pre-
sented to the storage system and are therefore likely to be
sensitive to the amount of filtering by the file system cache
and/or the database buffer pool. However, we believe that
changing the amount of caching upstream will only affect
our characterization quantitatively and that the qualitative
results still apply. To show that our characterization is rel-
atively insensitive to the amount of caching upstream, we
filtered our traces through a Least-Recently-Used (LRU)
write-back cache to obtain another set of traces on which to
run our analysis. We denote these filtered traces by adding
an “f” to the original designation. For instance, the trace ob-
tained by filtering P1 is denoted as P1f. We also denote the
average result for the filtered PC workloads as “Pf-Avg” and
that for the filtered server workloads as “Sf-Avg”. Follow-
ing the design of most file systems, we allow a dirty block
to remain in the cache for up to 30 seconds. When a block
is written back, we write out, in the same operation, all the
dirty blocks that are physically contiguous up to a maximum
of 512 blocks. The size of the cache is chosen to be the size
of the entire main memory in the original systems (Table 1).

In Table 2, we present the faction of I/O activity that is
filtered out by such a cache. On average, over 50% of the
I/O requests are removed by the cache, which shows that
the amount of caching has been significantly increased over
what was in the original traced systems. Observe further that
the traffic volume is reduced less significantly than the num-
ber of operations. This is because the smaller requests tend
to have a higher chance of hitting in the cache. Furthermore,
by delaying the writes, we are able to consolidate them into
larger sequential writes. In Table 3 and Figure 2, we present
the request size distribution for both the original and the fil-
tered traces. Although the average request size of writes is
increased, the request size distributions of the filtered traces
track those of the original traces remarkably well. That the
filtered traces maintain the qualitative behavior of the origi-
nal traces is a result that we will see repeated in the rest of
the paper.
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Figure 2: Distribution of Request Size.

Number of MBs Number of Requests

Read Write Overall Read Write Overall

P1 0.575 0.176 0.441 0.618 0.575 0.605

P2 0.503 0.173 0.385 0.547 0.495 0.525

P3 0.583 0.163 0.291 0.632 0.498 0.537

P4 0.301 0.175 0.219 0.358 0.630 0.527

P5 0.369 0.232 0.275 0.438 0.620 0.574

P6 0.831 0.190 0.436 0.821 0.548 0.617

P7 0.546 0.143 0.246 0.551 0.548 0.549

P8 0.592 0.239 0.426 0.629 0.657 0.642

P9 0.484 0.146 0.317 0.488 0.471 0.479

P10 0.216 0.162 0.192 0.316 0.537 0.436

P11 0.515 0.245 0.409 0.520 0.641 0.577

P12 0.416 0.179 0.290 0.450 0.721 0.601

P13 0.557 0.257 0.391 0.585 0.615 0.603

P14 0.356 0.221 0.282 0.415 0.683 0.596

P-Avg. 0.489 0.193 0.329 0.526 0.589 0.562

FS1 0.594 0.573 0.582 0.570 0.681 0.633

TS1 0.583 0.394 0.474 0.546 0.454 0.495

DS1 0.057 0.203 0.122 0.133 0.702 0.488

S-Avg. 0.412 0.390 0.393 0.416 0.612 0.539

Table 2: Fraction of I/O Activity that is Filtered.

All Requests Read Requests Write Requests

Avg. Std.
Dev. Min. Max. Avg. Std.

Dev. Min. Max. Avg. Std.
Dev. Min. Max.

P1 19.1 26.6 1 128 17.7 22 1 128 22.4 35.4 1 128

P2 17.2 27.4 1 1538 19.1 24.4 1 128 14.6 30.9 1 1538

P3 15.5 24.8 1 128 15.5 19.4 1 128 15.5 26.8 1 128

P4 21.7 33.8 1 128 20.4 30.3 1 128 22.5 35.8 1 128

P5 16.3 25 1 298 20.8 28.3 1 129 14.8 23.6 1 298

P6 15.7 23.7 1 128 23.1 25.5 1 128 14.7 23.2 1 128

P7 18.5 30.3 1 128 19.1 23.9 1 128 18.4 31.9 1 128

P8 17.4 25.8 1 128 16.8 20.9 1 128 18.2 30.9 1 128

P9 14.7 21.1 1 128 15.4 20.2 1 128 13.9 21.8 1 128

P10 19.6 30.7 1 128 23.7 32.8 1 128 15.7 28 1 128

P11 15.2 23.1 1 128 19.4 24.7 1 128 11.7 21.1 1 128

P12 25.3 58.6 1 512 27.5 54.6 1 512 23.6 61.4 1 512

P13 12.3 18.2 1 180 14.5 18.8 1 128 11 17.7 1 180

P14 16.1 28.1 1 1539 20.6 31.2 1 128 14 26.2 1 1539

P-Avg. 17.5 28.4 1 373 19.5 26.9 1 156 16.5 29.6 1 373

Pf-Avg. 27.4 64.3 1 512 21.3 29.3 1 155 34.1 84.2 1 512

FS1 13.5 5.08 2 512 12.5 5.47 2 64 14.2 4.65 2 512

TS1 12.9 7.77 2 512 12.4 6.52 2 224 13.3 8.62 2 512

DS1 11.9 21.9 1 512 17.4 27.1 1 512 8.55 17.3 1 256

S-Avg. 12.8 11.6 1.67 512 14.1 13.0 1.67 267 12.0 10.2 1.67 427

Sf-Avg. 16.4 29.8 1.67 512 14.0 13.5 1.67 222 18.9 41.0 1.67 512

Table 3: Request Size (Number of 512-Byte Blocks).
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Figure 3: Disk and Processor Busy Time.

4 Intensity of I/O

We begin our characterization by focusing on the I/O in-
tensity of the various workloads. This is akin to understand-
ing the size of a problem so that we can better approach it.
The questions we seek to address in this section include how
significant is the I/O component in the overall workload,
how many I/Os are generated, and how fast do the requests
arrive.

4.1 Overall Significance of I/O

In Figure 3, we present the percent of time the disk and
processor are busy for the PC workloads. Similar results for
the server workloads would be interesting but unfortunately,
this analysis relies on information that is available only in the
PC traces. The processor busy time is obtained by looking
at the thread switch records to determine when the processor
is not in the idle loop. The disk busy time is taken to be the
duration during which one or more of the disks in the system
are servicing requests. Recall that we only have trace data
for the periods during which user input activity occurs at
least once every ten minutes. In other words, we consider
only the periods during which the user is actively interacting
with the system.

From the figure, the processor is, on average, busy for
only about 10% of the time while the disk is busy for only
about 2.5% of the time. This low level of busy time is mis-
leading, however, because the user is interested in response
time; CPU idle generally represents user think time, and
would occur in any case in a single user environment. Thus
we cannot conclude that the processor and I/O system are
”fast enough”. What the results do suggest is thatthere is a
lot of idle time for performing background tasks, even with-

out having to deliberately leave the computer on when the
user is away. In other words, significant resources are avail-
able without requiring additional power consumption. The
challenge is to harness these idle resources without affect-
ing the foreground work. If this can be done unobtrusively,
it will pave the way for sharing idle resources in collabo-
rative computing, a paradigm commonly referred to as peer-
to-peer (P2P) computing [32]. In addition, the idle resources
can be used to optimize the system so that it will perform
better in future for the foreground task (e.g.,[22]). We will
characterize the disk idle periods in detail in Section 5.3.

I/O is known to be a major component of server work-
loads (e.g.,[43]). But if processors continue to increase in
performance according to Moore’s Law (60% per year) as
many believe they will,I/O may also become the dominant
component of personal computer workloads in the next few
years. More memory will of course be available in the fu-
ture for caching but the PC systems in our study are already
well-endowed with memory. A common way of hiding I/O
latency is to overlap it with some computation either through
multiprogramming or by performing I/O asynchronously.
From Figure 3, this technique appears to be relatively in-
effective for the PC workloads sinceonly a small fraction
(20% on average) of the disk busy time is overlapped with
computation. In Figure 4, we compare the processor busy
time during the disk idle intervals with that during the disk
busy intervals. A disk idle interval refers to the time inter-
val during which all the disks are idle. A disk busy interval
is simply the period of time between two consecutive disk
idle intervals. Reflecting the low average processor utiliza-
tion of the workloads, the processor is busy less than 20%
of the time for the long intervals (> 0.1s), regardless of
whether any of the disks are busy. During the short inter-
vals (< 0.1s), the processor is busy almost all the time when
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Figure 4: Processor Busy Time during Disk Busy/Idle Inter-
vals. Bars indicate standard deviation (To reduce clutter, we
show only the deviation in one direction).
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Figure 5: Intervals between Issuance of I/O Requests and
Most Recent Request Completion.

all the disks are idle but the processor utilization drops to
less than 50% when one or more of the disks are busy. Such
results imply thatlittle processing can be overlapped with
I/O so that I/O response time is important for these kinds of
workloads.

That only a small amount of processing is overlapped
with I/O suggests that there is effectively little multiprocess-
ing in the PC workloads. Such predominantly single-process
workloads can be modeled by assuming that after complet-
ing an I/O, the system has to do some processing and the
user, some “thinking”, before the next set of I/Os can be is-
sued. For instance, in the timeline in Figure 5, after request
R0 is completed, there are delays during which the system is
processing and the user is thinking before requestsR1, R2
andR3 are issued. BecauseR1, R2 andR3 are issued after
R0 has been completed, we consider them to be dependent
on R0. Similarly, R4 and R5 are deemed to be dependent
on R1. Presumably, if R0 is completed earlier, R1, R2 and
R3 will be dragged forward and issued earlier. If this in turn
causes R1 to be finished earlier, R4 and R5 will be similarly
moved forward in time. In Figure 6, we plot the percent of
time the processor is busy during the interval between when
an I/O request is issued and the most recent completion of
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Figure 6: Processor/Kernel Busy Time during Intervals be-
tween Issuance of I/Os and Most Recent Request Comple-
tion. Bars indicate standard deviation (To reduce clutter, we
show only the deviation in one direction).

an I/O request (thex′s in Figure 5). We are interested in
the processor busy time during such intervals to model what
happens when the processing time is reduced through faster
processors.

From Figure 6, we find that for the PC workloads, the
processor utilization during the intervals between I/O is-
suance and the last I/O completion is related to the length
of the interval by a reciprocal function of the formf(x) =
1/(ax + b) wherea = 0.0857 andb = 0.0105. The recipro-
cal function suggests that there is a fixed amount of process-
ing per I/O. To model a processor that isn times faster than
was in the traced system, we would scale only the system
processing time byn, leaving the user think time unchanged.
Specifically, we would replace an interval of lengthx by one
of x[1− f(x) + f(x)/n]. We believe that for the PC work-
loads, this is considerably more realistic than simply scaling
the inter-arrival time between I/O requests byn, as is com-
monly done. In Figure 6, we also plot the percent of time
that the kernel is busy during the intervals between when an
I/O request is issued and the previous I/O completion. We
consider the kernel to be busy if the kernel process (process
ID = 2 in Windows NT) is allocated the CPU. As shown in
the figure, the kernel busy time is also related to the length
of the interval by a reciprocal function, as we would expect
when there is some fixed kernel cost per I/O.

This workload model is based on the assumption that
I/Os tend to be synchronous, meaning that the system has
to wait for I/Os to be completed before it can continue with
its processing. As shown in Table 4, this is a reasonable
assumption, especially for the PC workloads where, despite
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Read Write Overall

P1 0.974 0.667 0.887

P2 0.970 0.627 0.825

P3 0.931 0.701 0.770

P4 0.829 0.731 0.768

P5 0.927 0.776 0.814

P6 0.967 0.849 0.864

P7 0.878 0.723 0.758

P8 0.968 0.835 0.909

P9 0.800 0.605 0.699

P10 0.763 0.749 0.756

P11 0.926 0.705 0.805

P12 0.961 0.566 0.736

P13 0.610 0.695 0.664

P14 0.733 0.714 0.720

P-Avg. 0.874 0.710 0.784

FS1 0.854 0.254 0.505

TS1 0.835 0.671 0.744

DS1 - - -

S-Avg. 0.845 0.462 0.624

Table 4: Fraction of I/O Requests that are Synchronous.

the fact that Windows NT provides a common convenient in-
terface for performing both synchronous and asynchronous
I/O, nearly 80% of the I/O requests are flagged as syn-
chronous on average. Metadata updates account for most,
but not all, of the synchronous writes. Excluding metadata
writes, about half of the writes are synchronous. In the FS1
and TS1 traces, some I/O requests are not explicitly flagged
as synchronous or asynchronous. For these traces, we as-
sume that I/Os are synchronous unless they are explicitly
flagged otherwise. The trace DS1 does not contain such in-
formation.

4.2 Amdahl’s Factor and Access Density

Table 5 presents the average and maximum amount of
I/O traffic generated per day by the various workloads. Note
that the average is taken over the days when there is some
I/O activity recorded in the traces. This means that for the
PC workloads, the weekends are, for the most part, ignored.
We find that the maximum daily I/O traffic is about two to
four times higher than the average. The server workloads
are clearly more I/O intensive than the PC workloads and
we expect that servers today will have even higher rates of
I/O activity. Nevertheless, it should still be the case thatcol-
lecting a daily trace of the disk blocks referenced for later
analysis and optimization (e.g.,to optimize disk block place-
ment [22]) is very feasible. For instance, for the database
server workload, logging eight bytes of information per re-
quest will create just over 12MB of data on the busiest day.

When designing the IBM System/360, Amdahl observed
that the amount of I/O generated per instruction tends to be
relatively constant [3]. More specifically, Amdahls’ rule of

P-Avg. Pf-Avg. FS1 TS1 DS1 S-Avg. Sf-Avg.

Read 24.6 12.4 92.7 190 344 209 137

Write 37.0 14.5 129 246 564 313 113

Av
er

ag
e

Total 61.6 26.9 222 436 908 522 251

Read 81.5 48.2 286 577 725 530 446

Write 102 30.0 355 393 833 527 162#
I/O

Re
qu

es
ts

M
ax

.

Total 183 78 641 970 1558 1056 609

Read 234 131 568 1152 3017 1579 1161

Write 295 236 895 1604 2407 1635 1090

Av
er

ag
e

Total 529 368 1462 2756 5425 3214 2250

Read 973 701 1677 3613 4508 3266 2731

Write 1084 856 2446 2573 5159 3393 2403I/O
Tr

af
fic

(M
B)

M
ax

.

Total 2057 1557 4124 6186 9667 6659 5134

Table 5: Daily I/O Traffic.

thumb states that a typical data processing system requires
approximately 1Mb/s of I/O bandwidth for every million
instructions per second (MIPS) of processing power. This
rule of thumb dates back to the sixties before buffering and
caching techniques were widely used. It was recently reval-
idated for the logical I/O of database workloads in the pro-
duction environments of some of the world’s largest corpo-
rations [20]. Due to the advent of caching, however, the ratio
of physical I/O bandwidth to MIPS was found to be on the
order of 0.05. [20] It would be interesting and very helpful
to system designers to see if the same figure for Amdahl’s
factor applies to the current set of workloads.

To this end, we calculated the ratio of I/O intensity,i.e.,
the rate of I/O activity, to processor speed for our workloads.
Unlike the traces in [20] which cover only the peak peri-
ods of the workloads as identified by the system administra-
tor, the traces in the current study span periods of days and
weeks, and includes the relatively idle periods in the work-
loads. Therefore, in calculating the I/O intensity normalized
by processor speed in Table 6, we consider the busiest one-
hour interval, which we define as the one hour interval with
the highest I/O bandwidth requirement. The I/O intensity
averaged over various time intervals ranging from 100 mil-
liseconds to the trace length is presented in Table 7. No-
tice from Table 6 that the filtered traces have significantly
fewer I/O operations during the busiest one-hour interval.
However, because the request sizes for the filtered traces are
much larger during this period (see Table 8), the bandwidth
figures for the filtered traces are just slightly lower than those
for the original workloads. Our focus in this section is on de-
termining a rough estimate for how intense the I/O is in our
various workloads. The effect of filtering the workloads is
not large enough to significantly affect any of our findings.

From Table 6, the server workloads turn out to be fairly
consistent, generating about 0.02-0.03 Mb/s of I/O for every
MHz of processing power. The PC workloads are less I/O
intensive generating about 0.007Mb/s/MHz on average. In
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Avg. Number of Mbs of I/O Avg. Number of I/Os

Per
Second /s /MHz /s /MIPS /s /GB Per

Second /s /MHz /s /MIPS /s /GB

P1 0.588 0.00177 0.00177 0.0980 5.80 0.0174 0.0174 0.967

P2 0.557 0.00278 0.00278 0.116 7.25 0.0363 0.0363 1.51

P3 0.811 0.00180 0.00180 0.135 6.42 0.0143 0.0143 1.07

P4 6.84 0.0152 0.01520 1.14 61.0 0.135 0.135 10.2

P5 3.50 0.00778 0.00778 0.583 14.7 0.0326 0.0326 2.45

P6 0.106 0.000639 0.000639 0.0212 1.44 0.00866 0.00866 0.287

P7 2.84 0.0107 0.0107 0.711 28.5 0.107 0.107 7.13

P8 1.08 0.00361 0.00361 0.270 8.65 0.0288 0.0288 2.16

P9 1.11 0.00671 0.00671 0.371 15.4 0.0929 0.0929 5.14

P10 5.71 0.0215 0.0215 1.36 44.8 0.168 0.168 10.7

P11 0.852 0.00243 0.00243 0.213 10.9 0.0310 0.0310 2.72

P12 4.63 0.0116 0.0116 0.771 22.8 0.0570 0.0570 3.80

P13 0.385 0.00193 0.00193 0.0963 8.03 0.0401 0.0401 2.01

P14 4.14 0.00919 0.00919 0.517 51.8 0.115 0.115 6.47

P-Avg. 2.37 0.00697 0.00697 0.457 20.5 0.0632 0.0632 4.04

Pf-Avg. 1.92 0.00569 0.00569 0.372 9.24 0.0312 0.0312 1.94

FS1 1.26 0.0252 0.0503 0.419 26.8 0.536 1.07 8.94

TS1 1.99 0.0311 0.0621 0.191 39.0 0.610 1.22 3.75

DS1 6.11 0.0204 0.0407 0.117 72.4 0.241 0.482 1.38

S-Avg. 3.12 0.0255 0.0511 0.242 46.1 0.462 0.925 4.69

Sf-Avg. 2.98 0.0234 0.0467 0.217 29.5 0.375 0.750 3.99

Table 6: Intensity of I/O during the Busiest One-Hour Pe-
riod.

order to determine an order of magnitude figure for the ratio
of I/O bandwidth to MIPS, we need a rough estimate of the
Cycles Per Instruction (CPI) for the various workloads. We
use a value of one for the PC workloads because the CPI for
the SPEC95 benchmark on the Intel Pentium Pro processor
has been found to be between 0.5 and 1.5 [6]. For the server
workloads, we use a CPI value of two in view of results in
[2, 25]. Based on this estimate of the CPI, we find that the
server workloads generate around 0.05 bits of real I/O per
instruction, which is consistent with the estimated Amdahl’s
factor for the production database workloads in [20].The
figure for the PC workloads is seven times lower at about
0.007 bits of I/O per instruction.

Interestingly, surveys of large data processing mainframe
installations between 1980 and 1993 [33] found the number
of physical I/Os per second per MIPS to be decreasing by
just over 10% per year to 9.0 in 1993. This figure is about
ten times higher than what we are seeing for our server work-
loads. A possible explanation for this large discrepancy is
that the mainframe workloads issue many small I/Os but this
turned out not to be true. Data reported in [33] show that the
average I/O request size for the surveyed mainframe instal-
lations was about 9KB, which is just slightly larger than the
8KB for our server workloads (Table 8). Of course, main-
frame MIPS and Reduced Instruction Set Computer (RISC)
MIPS are not directly comparable and this difference could
account for some of the disparity, as could the inconsistent
methods used to calculate MIPS. The mainframe surveys

0.1s 1s 10s 1min 10min 1hr Trace Len.

P1 115 55.3 27.3 8.63 2.13 0.588 0.0366

P2 64.8 26.8 20.9 7.54 2.35 0.557 0.0234

P3 50.3 27.2 15.9 13.1 4.19 0.811 0.0129

P4 121 99.5 80.0 56.1 34.6 6.84 0.0893

P5 40.2 28.0 26.3 17.6 13.2 3.50 0.0674

P6 45.0 23.3 8.51 2.81 0.44 0.106 0.00549

P7 61.3 47.1 18.5 10.4 4.78 2.84 0.0463

P8 51.9 36.4 19.8 11.8 3.60 1.08 0.0204

P9 50.0 27.0 11.1 5.99 3.71 1.11 0.0306

P10 85.0 75.0 48.5 34.9 17.1 5.71 0.0358

P11 133 46.4 29.0 12.7 2.06 0.852 0.0266

P12 90.0 48.7 26.2 20.1 10.7 4.63 0.0139

P13 45.0 21.5 7.77 4.39 1.26 0.385 0.0148

P14 71.6 51.5 32.5 29.0 12.4 4.14 0.0476

P-Avg. 73.1 43.8 26.6 16.8 8.04 2.37 0.0337

Pf-Avg. 109 45 24.0 15.0 6.66 1.92 0.0237

FS1 382 41.1 26.1 11.9 2.05 1.26 0.133

TS1 264 96.3 14.9 10.8 4.88 1.99 0.260

DS1 156 108 91.9 85.1 19.7 6.11 0.515

S-Avg. 267 81.7 44.3 35.9 8.87 3.12 0.302

Sf-Avg. 262 76 42.9 32.0 7.71 2.98 0.213

Table 7: I/O Intensity (Mb/s) Averaged over Various Time
Intervals, showing the peak or maximum value observed for
each interval size.

used utilized MIPS [30] or the processing power actually
consumed by the workload. This is computed by factoring
in the processor utilization when the workload is running.
Our calculations are based on the MIPS rating of the system,
which is what we have available to us. Ultimately though,
we believe that intrinsic workload differences account for
a major portion of the discrepancy between our results and
those from the mainframe surveys.

Another useful way of looking at I/O intensity is with re-
spect to the storage used (Table 1). In this paper, the storage
used by each of the workloads is estimated to be the com-
bined size of all the file systems and logical volumes defined
in that workload. This makes our calculations comparable to
historical data and is a reasonable assumption unless storage
can be allocated only when written to, for instance by us-
ing storage virtualization software that separates the system
view of storage from the actual physical storage. Table 6
summarizes, for our various workloads, the number of I/Os
per second per GB of storage used. This metric is commonly
referred to as access density and is widely used in commer-
cial data processing environments [33]. The survey of large
data processing mainframe installations cited above found
the access density to be decreasing by about 10% per year to
2.1 I/Os per second per GB of storage in 1993. Notice from
Table 6 that the access density for DS1 appears to be consis-
tent with the mainframe survey results. However, the access
density for FS1 and TS1 is about two to four times higher.
The PC workloads have, on average, an access density of 4
I/Os per second per GB of storage, which is on the order of
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All Requests Read Requests Write Requests

Avg. Std.
Dev. Min. Max. Avg. Std.

Dev. Min. Max. Avg. Std.
Dev. Min. Max.

P1 26 32.9 1 128 20.4 22.9 1 128 42.3 48.5 1 128

P2 19.7 30 1 1536 16.5 20.7 1 128 44.3 63.1 1 1536

P3 32.3 43.5 1 128 18.6 28.5 1 128 38.9 47.7 1 128

P4 28.7 40.2 1 128 15.5 21.1 1 128 29.8 41.2 1 128

P5 61 58.9 1 129 96.4 53.1 1 129 13 18.7 1 128

P6 18.9 29.4 1 128 27.6 29 1 128 16.8 29.1 1 128

P7 25.5 36.1 1 128 21.9 25 1 128 27.4 40.5 1 128

P8 32 42.6 1 128 21.2 31.5 1 128 55.3 52.9 1 128

P9 18.5 27.7 1 128 19.3 27.9 1 128 16 26.7 1 128

P10 32.6 44.4 1 128 37 46.4 1 128 23.1 37.8 1 128

P11 20.1 29 1 128 21.6 27.3 1 128 17.4 31.5 1 128

P12 51.9 120 1 512 96.4 144 1 512 38.2 107 1 512

P13 12.3 18.8 1 128 14.6 20.9 1 128 10.5 16.7 1 128

P14 20.5 38.6 1 128 13.7 29.1 1 128 72 58.3 1 128

P-Avg. 28.6 42.3 1 256 31.5 37.7 1 156 31.8 44.3 1 256

Pf-Avg. 55.5 93.3 1 512 34.2 38.2 1 155 91 141 1 512

FS1 12 5.52 2 18 11.6 5.61 2 18 14.4 4.15 2 16

TS1 13 9.87 2 512 12.6 5.52 2 64 14.9 19.9 2 512

DS1 21.6 35.3 1 128 25.4 38.6 1 108 19 32.5 1 128

S-Avg. 15.5 16.9 1.67 219 16.5 16.6 1.67 63.3 16.1 18.9 1.67 219

Sf-Avg. 25.8 12.7 2.00 213 27 8.73 2.00 51.3 13.1 13.4 2.67 213

Table 8: Request Size (Number of 512-Byte Blocks) during
the Busiest One-Hour Period.

Processing Power (GHz) Storage (GB)Bandwidth
(Mb/s) P-Avg. Pf-Avg. S-Avg. Sf-Avg. P-Avg. Pf-Avg. S-Avg. Sf-Avg.

Ethernet 10 0.718 0.879 0.196 0.214 10.9 13.4 20.6 23.0

Fast Ethernet 100 7.18 8.79 1.96 2.14 109 134 206 230

Gigabit Ethernet 1000 71.8 87.9 19.6 21.4 1093 1344 2063 2302

Ultra ATA-100 800 57.4 70.3 15.7 17.1 875 1075 1650 1842

Serial ATA 1200 86.1 105 23.5 25.7 1312 1613 2475 2763

UltraSCSI 320 2560 184 225 50.1 54.8 2799 3441 5281 5894

Fiber Channel 1000 71.8 87.9 19.6 21.4 1093 1344 2063 2302

Infiniband 2500 179 220 49.0 53.5 2733 3360 5157 5756

Table 9: Projected Processing Power and Storage Needed to
Drive Various Types of I/O Interconnect to 50% Utilization.

the figure for the server workloads even though the server
workloads are several years older. Such results suggest that
PC workloads may be comparable to server workloads in
terms of access density. Note, however, that as disks become
a lot bigger and PCs have at least one disk, the density of
access with respect to the available storage is likely to be
much lower for PC workloads.

Table 6 also contains results for the number of bits of
I/O per second per GB of storage used. The PC work-
loads have, on average, 0.46 Mb of I/O per GB of storage.
By this measure, the server workloads are less I/O intense
with an average of only 0.24 Mb of I/O per GB of storage.
Based on these results, we project the amount of processing
power and storage space that will be needed to drive various
types of I/O interconnect to 50% utilization. The results are
summarized in Table 9. Note that all the modern I/O inter-
connects offer Gb/s bandwidth. Some of them, specifically

Inter-Arrival Time (s) P-Avg. Pf-Avg. FS1 TS1 DS1 S-Avg. Sf-Avg.

1st Moment 3.25 7.23 0.398 0.194 0.0903 0.227 0.561

2nd Moment 7.79E+05 1.86E+06 368 23.1 2.00 131 363

3rd Moment 6.46E+11 1.60E+12 2.02E+07 8.09E+03 67.4 6.74E+06 1.88E+07

Table 10: First, Second and Third Moments of the I/O Inter-
Arrival Time.
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Figure 7: Distribution of I/O Inter-Arrival Time.

ethernet and fiber channel, have newer versions with even
higher data rates. For the kinds of workloads that we have,
the I/O interconnect is not expected to be a bottleneck any
time soon. However, we would expect to see much higher
bandwidth requirements for workloads that are dominated
by large sequential I/Os (e.g., scientific and decision sup-
port workloads [21]). In such environments, and especially
when many workloads are consolidated into a large server
and many disks are consolidated into a sizeable outboard
controller, the bandwidth requirements have to be carefully
evaluated to ensure that the connection between the disks
and the host does not become the bottleneck.

4.3 Request Arrival Rate

In Table 10, we present the first, second and third mo-
ments of the inter-arrival time distribution. The distribution
is plotted in Figure 7. Since the distribution of I/O inter-
arrival time is often needed in modeling I/O systems, we fit-
ted standard probability distributions to it. As shown in the
figure, the commonly used exponential distribution, while
easy to work with mathematically, turns out to be a rather
poor fit for all the workloads. Instead,the lognormal dis-
tribution (denotedLognorm(µ, σ) whereµ and σ are re-
spectively the mean and standard deviation) is a reasonably
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# I/Os Outstanding # Reads Outstanding # Writes Outstanding

Avg. Avg.|>0 Std.
Dev.

90%-
tile Max. Avg. Avg.|>0 Std.

Dev.
90%-
tile Max. Avg. Avg.|>0 Std.

Dev.
90%-
tile Max.

P1 0.377 1.73 0.937 1 24 0.273 1.66 0.802 1 23 0.104 1.36 0.407 0 10

P2 0.421 1.9 1.01 2 13 0.28 1.93 0.864 1 12 0.141 1.45 0.473 0 6

P3 0.553 2.52 1.51 2 20 0.177 2.34 0.856 0 14 0.376 2.41 1.23 1 20

P4 0.796 2.67 1.96 3 74 0.332 2.15 1.1 1 27 0.464 2.33 1.55 1 74

P5 0.304 1.92 0.958 1 22 0.0985 1.97 0.601 0 20 0.206 1.71 0.704 1 22

P6 0.27 1.52 0.684 1 10 0.0169 1.36 0.181 0 8 0.253 1.52 0.66 1 8

P7 0.47 2.09 1.26 2 55 0.139 1.92 0.766 0 54 0.331 1.91 0.967 1 22

P8 0.365 1.96 1.07 1 26 0.196 1.65 0.699 1 14 0.168 1.82 0.673 0 16

P9 0.718 2.77 2.41 2 73 0.233 1.72 0.837 1 24 0.484 3.3 2.27 1 73

P10 0.573 2.33 1.81 2 60 0.252 1.62 0.766 1 19 0.321 2.53 1.62 1 60

P11 0.454 2.22 1.29 1 37 0.251 2.06 0.948 1 17 0.204 1.73 0.728 1 35

P12 0.341 1.99 1.06 1 19 0.201 2.37 0.897 0 17 0.14 1.35 0.464 1 8

P13 0.664 2.26 1.47 2 24 0.393 2.33 1.17 1 17 0.272 1.7 0.859 1 24

P14 0.541 2.11 1.28 2 23 0.184 1.62 0.677 1 17 0.358 1.98 1.05 1 23

P-Avg. 0.489 2.14 1.34 1.64 34.3 0.216 1.91 0.797 0.643 20.2 0.273 1.94 0.975 0.786 28.6

FS1 1.49 4.19 4.62 3 181 0.186 1.38 0.538 1 13 1.3 4.74 4.56 3 181

TS1 9.98 27.2 41.1 12 1530 0.214 1.42 0.574 1 20 9.76 36.4 41.1 11 1530

DS1 3.13 8.68 15.9 5 257 0.203 1.95 0.904 1 9 2.93 8.93 15.7 5 256

S-Avg. 4.87 13.4 20.5 6.67 656 0.201 1.58 0.672 1 14 4.66 16.7 20.5 6.33 656

Table 11: Queue Depth on Arrival.

good fit. Recall that a random variable is lognormally dis-
tributed if the logarithm of the random variable is normally
distributed. Therefore, the lognormal distribution is skewed
to the right or towards the larger values, meaning that there
exists long intervals with no I/O arrivals. The long tail of
the inter-arrival distribution could be a manifestation of dif-
ferent underlying behavior such as correlated arrival times
but regardless of the cause, the net effect is thatI/O requests
seldom occur singly but tend to arrive in groupsbecause if
there are long intervals with no arrivals, there must be in-
tervals that have far more arrivals than their share. We will
analyze the burstiness of the I/O traffic in greater detail in
the next section.

Another interesting way to analyze the arrival process of
I/O requests is relative to the completion of preceding re-
quests. In particular, if the workload supports multiple out-
standing I/O requests, there will be more potential for im-
proving the average I/O performance, for instance, through
request scheduling. Figure 8 presents the distribution of
queue depth, which we define to be the length of the request
queue as seen by an arriving request. In Table 11 and Fig-
ure A-2 in Appendix A, we break down the outstanding re-
quests into reads and writes. Note that we consider a request
to be in the queue while it is being serviced.

We find that across all the workloads, the read queue
tends to be shallow - more than 85% of the requests arrive to
find the queue devoid of read requests, and the average num-
ber of reads outstanding is only about 0.2. Nevertheless, the
read queue can be deep at times. If there are read requests
in the queue, the average number of them is almost 2 (de-
notedAvg.| > 0 in Table 11). In addition, the maximum
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read queue depth can be more than 90 times higher than the
average. Notice thatthe server workloads do not appear to
have a deeper read queue than the personal system work-
loads. This finding suggests that read performance in per-
sonal system workloads could benefit as much from request
scheduling as in server workloads.We will examine this in
greater detail in [18]. Observe further from Table 11 thatthe
write queue is markedly deeper than the read queue for all
the workloads, as we would expect given that a greater frac-
tion of writes are asynchronous compared to reads (Table 4).
The PC workloads appear to have a significantly shallower
write queue than the other workloads but in most cases, there
are still enough outstanding write requests to benefit from
request scheduling.

Note that we are looking at the number of outstanding
requests from the perspective of the operating system layer
at which the trace data were collected. This reflects the po-
tential for request scheduling at any of the levels below, and
not just at the physical storage system, which is typically not
handed hundreds of requests at a time. Some of the differ-
ences among the workloads could be the result of collecting
the traces at different levels on the different platforms. In
general, the operating system and/or the disk device driver
will queue up the requests and attempt to schedule them
based on some simple performance model of the storage sys-
tem (e.g.,minimize seek distance). There is a tendency for
the operating system and/or device driver to hold back the
requests and issue only a small number of them at any one
time so as to avoid overloading the storage system. In real-
ity, modern storage systems, specifically modern disks, have
the ability to do more elaborate and effective [54] request
scheduling based on whether a request will hit in the disk
cache, and on the seek and rotational positions.

5 Variability in I/O Traffic over Time

When I/O traffic is smooth and uniform over time, system
resources can be very efficiently utilized. However, when the
I/O traffic is bursty as is the case in practice (Section 4.3),
resources have to be provisioned to handle the bursts so that
during the periods when the system is relatively idle, these
resources will be wasted. There are several approaches to
try to even out the load. The first is to aggregate multiple
workloads in the hope that the peak and idle periods in the
different workloads will tend to cancel out one another. This
idea is one of the premises of the storage utilities model.
Whether the aggregation of multiple workloads achieves the
desired effect of smoothening the load depends on whether
the workloads are dependent or correlated. We will examine
the dependence among our workloads in Section 5.1.

The second approach to smoothening the traffic is to try
to shift the load temporally. For instance, by deferring or
offloading some work from the busy periods to the relative
lulls (e.g.,write buffering and logging disk arrays [9, 50])
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Figure 9: Daily Volume of I/O Activity.

or by eagerly or speculatively performing some work in the
hope that such work will help improve performance during
the next busy period (e.g.,prefetching and reorganizing data
based on access patterns [22]). The effectiveness of these
attempts at time-shifting the load to even out the traffic de-
pends on the extent to which the traffic is autocorrelated.
We will analyze the autocorrelation of I/O traffic to deter-
mine whether they are long-range dependent or self-similar
in Section 5.2. In Section 5.3, we characterize in detail the
idle periods to help in the design of mechanisms that try to
exploit idle time.

5.1 Dependence among Workloads

In general, two processes are said to be dependent or cor-
related if the value a process takes on constrains the possible
values that the other process can assume. In Figure 9, we
plot the daily volume of I/O activity for FS1 and TS1 as a
function of the day of week (0 = Sunday). If the two work-
loads are positively correlated, we should see the peaks in
the two workloads appearing on the same day so that if the
two workloads are aggregated, the resulting workload will
have higher peaks. If the workloads are negatively corre-
lated, the peaks of one will occur when the other workload
is relatively idle. If the workloads are independent, there
should be no relation between the volume of activity for the
two workloads. When many independent workloads are ag-
gregated, the resulting traffic will tend to be smooth.

To more formally characterize the dependence among
the workloads, we calculate the cross-correlation. The
cross correlation between two processes X(i) and Y(i) where
i=0,1,2...n-1 is defined as
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Figure 10: Distribution of I/O Traffic Averaged over Various Time Intervals.

rXY =
∑

i (X(i)−X)(Y (i)− Y )√∑
i(X(i)−X)2

√∑
i(Y (i)− Y )2

(1)

The possible values ofRXY range from -1 to 1 with -1 in-
dicating perfect negative correlation between the two work-
loads, 0 no correlation, and 1 perfect positive correlation.
For each workload, we consider the I/O arrival process ag-
gregated over fixed intervals that range from one minute to
a day. We synchronize the processes by the time of day and
the day of week. The results are available in Tables A-1 -
A-4 in Appendix A.

To summarize the dependence among a set of workloads
W , we define the average cross-correlation asrXY where
X ∈ W , Y ∈ W andX 6= Y . In Figure A-3, we plot the
average cross-correlation for the PC workloads as a function
of the time interval used to aggregate the arrival process. In
the same figure, we also plot the average cross-correlation
among the server workloads. We find that, in general,there
is little cross-correlation among the server workloads, sug-
gesting that aggregating them will likely help to smooth out
the traffic and enable more efficient utilization of resources.
Our PC workloads are taken mostly from office environ-
ments with flexible working hours. Neverthelessthe cross-
correlation among the PC workloads is still significant ex-
cept at small time intervals. This suggests that multiplexing
the PC workloads will smooth out the high frequency fluctu-
ations in I/O traffic but some of the time-of-day effects will
remain unless the PCs are geographically distributed in dif-

ferent time zones.Note that the filtered workloads tend to be
less correlated but the difference is small.

5.2 Self-Similarity in I/O Traffic

In many situations, especially when outsourcing storage,
we need rules of thumb to estimate the I/O bandwidth re-
quirement of a workload without having to analyze the work-
load in detail. In Section 4.2, we computed the access den-
sity and found that the server workloads average about 5
I/Os or about 30KB worth of I/O per second per GB of data.
This result can be used to provide a baseline estimate for
the I/O bandwidth required by a workload given the amount
of storage it uses. To account for the variability in the I/O
traffic, Figure 10(a) plots the distribution of I/O traffic aver-
aged over one-second intervals and normalized to the aver-
age bandwidth over the entire trace. The plot shows thatto
satisfy the bandwidth requirement for 99% of the 1-second
intervals, we would need to provision for about 15 times the
long-run average bandwidth.Notice that for all the work-
loads, there is an abrupt knee in the plots just beyond 99%
of the intervals, which means thatto satisfy requirements be-
yond 99% of the time will require disproportionately more
resources.

In analyzing the data, we noticed that for many of the
workloads, the distribution of I/O traffic is relatively insen-
sitive to the size of the interval over which the traffic is aver-
aged. For instance, in Figure 10(b), the distributions for time
intervals of 0.1s, 1s, 10s, 100s for the database server are
very similar. This scale-invariant characteristic is apparent
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in Figure A-5, which shows the traffic variation over time for
different time scales for the time sharing and database server
workloads. The topmost plot shows the throughput averaged
over time intervals of 0.3s. In the second plot, we zoom out
by a factor of ten so that each data point is the average traffic
volume over a three-second interval. The third plot zooms
out further by a factor of ten. Observe that rescaling the time
series does not smooth out the burstiness. Instead the three
plots look similar. It turns out that for these workloads, such
plots look similar for time scales ranging from tens of mil-
liseconds to tens of seconds.

Many of the statistical methods used in this section as-
sume that the arrival process is stationary. In order to avoid
potential non-stationarity, we selected two one-hour periods
from each trace. The first period is chosen to be a high-
traffic period, specifically one that contains more I/O traffic
than 95% of other one-hour periods in the trace. The second
period is meant to reflect a low traffic situation and is chosen
to be one that contains more I/O traffic than 30% of other
one-hour periods in the trace.

5.2.1 Definition of Self-Similarity

The phenomenon where a certain property of an object
is preserved with respect to scaling in space and/or time
is described by self-similarity and fractals [31]. LetX
be the incremental process of a processY , i.e., X(i) =
Y (i + 1) − Y (i). In our case,Y counts the number of I/O
arrivals andX(i) is the number of I/O arrivals during theith
time interval. Y is said to be self-similar with parameterH
if for all integersm,

X = m1−HX(m) (2)

where

X(m)(k) = (1/m)
km∑

i=(k−1)m+1

X(i), k = 1, 2, ...

is the aggregated sequence obtained by dividing the orig-
inal series into blocks of sizem and averaging over each
block, andk is the index that labels each block. In this pa-
per, we focus on second-order self-similarity, which means
thatm1−HX(m) has the same variance and autocorrelation
asX. The interested reader is referred to [5] for a more de-
tailed treatment.

The single parameterH expresses the degree of self-
similarity and is known as the Hurst parameter. For smooth
Poisson traffic, the H value is 0.5. For self-similar series,
0.5 < H < 1, and asH → 1, the degree of self-similarity
increases. Mathematically, self-similarity is manifested in
several equivalent ways and different methods that exam-
ine specific indications of self-similarity are used to esti-
mate the Hurst parameter. The interested reader is referred
to Appendix B for details about how we estimate the degree

P-Avg. Pf-Avg. FS1 FS2 TS1 DS1 S-Avg. Sf-Avg.

H 0.81 0.79 0.88 0.92 0.91 0.91 0.90 0.80

ÿ (KB/s) 188 91.6 108 229 1000 445 367 1000

� 2 (KB/s)2 769080 528538 122544 345964 1256360 627261 528439 1256360

Table 12: Hurst Parameter, Mean and Variance of the Per-
Second Traffic Arrival Rate during the High-Traffic Period.

of self-similarity for our various workloads. Here, we sim-
ply summarize the Hurst parameter values we obtained (Ta-
ble 12) and state the finding thatfor time scales ranging from
tens of milliseconds to tens and sometimes even hundreds of
seconds, the I/O traffic is well-represented by a self-similar
process.Note that filtering the workloads does not affect the
self-similar nature of their I/O traffic.

5.2.2 Implications of Self-Similar I/O Traffic

That the I/O traffic is self-similar implies that the bursti-
ness exists over a wide range of time scales and that attempts
at evening out the traffic temporally will tend to not remove
all the variability. In addition, the I/O system may experi-
ence concentrated periods of congestion with associated in-
crease in queuing time and that resource (e.g.,buffer, chan-
nel) requirements may skyrocket at much lower levels of uti-
lization than expected with the commonly assumed Poisson
model in which arrivals are mutually independent and are
separated by exponentially distributed intervals. This behav-
ior has to be taken into account when designing storage sys-
tems, especially when we wish to isolate multiple workloads
so that they can coexist peacefully in the same storage sys-
tem, as is required in many storage utilities. Such burstiness
should also be accounted for in the service level agreements
(SLAs) when outsourcing storage.

More generally, I/O traffic has been known to be bursty
but describing this variability has been difficult. The concept
of self-similarity provides us with a succinct way to char-
acterize the burstiness of the traffic. We recommend that
I/O traffic be characterized by a three-tuple consisting of the
mean and variance of the arrival rate and some measure of
the self-similarity of the traffic such as the Hurst parameter.
The first two parameters can be easily understood and mea-
sured. The third is more involved but can still be visually
explained. Table 12 summarizes these parameter values for
our various workloads.

It turns out that self-similar behavior is not limited to
I/O traffic or to our workloads. Recently, file system ac-
tivities [15] and I/O traffic [13] have been found to ex-
hibit scale-invariant burstiness. Local and wide-area net-
work traffic may also be more accurately modeled using sta-
tistically self-similar processes than the Poisson model(e.g.,
[27]). However, analytical modeling with self-similar in-
puts has not been well developed yet. (See [38] for some

15



-3

-2

-1

0

-2 -1 0 1 2
log10(Length of On-Periods (s))

lo
g 1

0(1
-C

um
ul

at
iv

e
%

/1
00

)

1

2

3

4

5

slope=-2

slope=-1

I/O Rank of Process

P-Avg.

(a) On-Periods.

-4

-3

-2

-1

0

-1 0 1 2 3
log10(Length of Off-Periods (s))

lo
g 1

0(1
-C

um
ul

at
iv

e
%

/1
00

)

1

2

3

4

5

slope=-2

slope=-1

I/O Rank of Process

P-Avg.

(b) Off-Periods.

Figure 11: Length of On/Off Periods for the Five Most I/O-Active Processes.

recent results on modeling network traffic with self-similar
processes). This, coupled with the complexity of storage
systems today, means that most of the analysis has to be
performed through simulations. Generating I/O traffic that
is consistent with the self-similar characteristic observed in
real workloads is therefore extremely important and useful.
In Appendix B, we present a recipe that can be used to gen-
erate self-similar traffic using the parameters in Table 12.

5.2.3 Underpinnings of Self-Similar I/O Traffic

We have seen that I/O traffic is self-similar but self-
similarity is a rather abstract concept. To present a more
compelling case and provide further insights into the dy-
namic nature of the traffic, we try to relate this phenomenon
to some underlying physical cause, namely the superposition
of I/O from multiple processes in the system where each pro-
cess behaves as an independent source of I/O with on periods
that are heavy-tailed.

A random variable,X, is said to follow a heavy-tailed
distribution if

P (X > x) ∼ cx−α, as x →∞, c > 0, 1 < α < 2. (3)

Such a random variable can give rise to extremely large val-
ues with non-negligible probability. The superposition of a
large number of independent traffic sources with on and/or
off periods that are heavy-tailed is known to result in traffic
that is self-similar1 [53]. In this section, we break down each

1Not Poisson; assumptions of Palm-Khintchine theorem are not
satisfied.

workload into the I/O traffic generated by the individual pro-
cesses. As in [13], we define an off period for a process as
any interval longer than 0.2s during which the process does
not generate any I/O. All other intervals are considered on
periods for the process. This analysis has been shown to be
relatively insensitive to the threshold value used to distin-
guish the on and off periods [53].

Taking logarithm on both sides of Equation 3, we get

logP (X > x) ∼ log(c)− αlog(x), as x →∞. (4)

Therefore, ifX is heavy-tailed, the plot ofP (X > x) versus
x on log-log scale should yield a straight line with slopeα
for large values ofx. Such log-log plots are known as com-
plementary cumulative distribution plots or “qq-plots” [26].
In Figure 11, we present the qq-plots for the lengths of the
on and off periods for the five processes that generate the
most I/O traffic in each of our PC workloads. Unfortunately,
none of our other workloads contain the process informa-
tion that is needed for this analysis. As shown in the figure,
the on periods appear to be heavy-tailed but not the off peri-
ods. This is consistent with results reported in [13] where the
lack of heavy-tailed behavior for the off periods is attributed
to periodic activity such as the sync daemon traffic. Hav-
ing heavy-tailed on periods is sufficient, however, to result
in self-similar aggregate traffic.

5.3 The Relative Lulls

As discussed earlier, when the I/O load is not constant
but varies over time, there may be opportunities to use the
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Figure 12: Distribution of Idle Period Duration. For the weighted distribution in (b), an idle period of durations is counteds
times,i.e., it is the distribution of idle time.

relatively idle periods to do some useful work. The reader
is referred to [12] for an overview of idle-time processing
and a general taxonomy of idle-time detection and prediction
algorithms. Here, we characterize in detail the idle periods,
focusing on specific metrics that will be helpful in designing
mechanisms that try to exploit idle time.

We consider an interval to be idle if the average num-
ber of I/Os per second during the interval is less than some
valuek. The term idle period refers to a sequence of inter-
vals that are idle. The duration of an idle period is simply
the product of the number of idle intervals it contains and
the interval size. In this study, we use a relatively long in-
terval of 10 seconds because we are interested in long idle
periods during which we can perform a substantial amount
of work. Note that storage systems tend to have some pe-
riodic background activity so that treating an interval to be
idle only if it contains absolutely no I/O activity would be
far too conservative. Since disks today are capable of sup-
porting in excess of 100 I/Os per second [18], we selectk
to be 20 for all our workloads except DS1. DS1 contains
several times the allocated storage in the other workloads so
its storage system will presumably be much more powerful.
Therefore, we use ak value of 40 for DS1.

Figure 12 presents the distribution of idle period duration
for our workloads. We fitted standard probability distribu-
tions to the data and found that the lognormal distribution is
a reasonably good fit for most of the workloads. Notice that
although most of the idle periods are short (less than a hun-
dred seconds), long idle periods account for most of the idle

time. This is consistent with previous results and implies that
a system that exploits idle time can get most of the potential
benefit by simply focusing on the long idle periods[12].

5.3.1 Inter-idle Gap

An important consideration in attempting to make use of
idle periods is the frequency with which suitably long idle
periods can be expected. In addition, the amount of activity
that occurs between such long idle periods also determines
the effectiveness and even the feasibility of exploiting the
idle periods. For instance, a log-structured file system or
array [34, 44] where garbage collection is performed peri-
odically during system idle time may run out of free space
if there is a lot of write activity between the idle periods. In
the disk block reorganization scheme proposed in [22], the
inter-idle gap,i.e., the time span between suitably long idle
periods, determines the amount of reference data that has to
be accumulated on the disk.

In Figure 13, we consider this issue by plotting the aver-
age inter-idle gap as a function of the duration of the idle pe-
riod. The results show that for the PC workloads on average,
idle periods lasting at least an hour are separated by busy
periods of about an hour and with just over 17,000 refer-
ences. These results indicate thatin the personal systems en-
vironment, there are long idle periods that occur frequently
enough to be interesting for offline optimizations such as
block reorganization[22]. As we would expect, the server
workloads have longer busy periods separated by shorter idle
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Figure 13: Average Duration of Busy Periods.

periods. In these server environments, we have to be more
meticulous in using the available idle time. For instance,
we may have to divide the task of analyzing the reference
patterns to optimize block placement [22] into several finer-
grained steps that can be scheduled whenever a short idle
period presents itself.

5.3.2 Idle Length Prediction

In some cases, there is a recovery cost associated with
stopping an offline task before it is completed. Therefore,
it is important to be able to predict how long an idle pe-
riod will last so that the system can decide whether a task
should be initiated. In Figure A-4 in Appendix A, we plot
the autocorrelation of the sequence of idle period duration
at different lags. For all the workloads, there is little corre-
lation between the length of one idle period and the lengths
of the immediately preceding periods. In other words,how
long the system will remain idle is not predictable from the
lengths of its recent idle periods.This is in stark contrast to
the strong correlation that has previously been observed for
a personal Unix workstation [12]. In that study, the idle pe-
riod was taken to be an interval during which there was no
I/O activity. We conjecture that because the personal UNIX
workstation in the previous study was not heavily used, the
idle periods are determined primarily by the periodic back-
ground activity that exists in the system and hence the strong
autocorrelation.

In Figure 14, we plot the expected future idle duration,
E[I(x)], which is defined as the expected remaining idle du-

ration given that the system has already been idle forx units
of time. More formally,

E[I(x)] =
∞∑

i=x+1

(i− x)l(i)
1− L(i)

(5)

wherel(·) is the probability distribution of the idle period
duration,i.e., l(j) is the probability that an idle period has a
duration ofj andL(·) is the cumulative probability distribu-
tion of the idle period duration,i.e.,L(j) =

∑j
i=1 l(i). Ob-

serve from Figure 14 that E[I(x)] is generally increasing. In
other words, the longer the system has been idle, the longer it
is likely to remain idle. This phenomenon suggests predic-
tion policies that progressively raise the predicted duration
as the idle duration increases. Note that the plot is logarith-
mic so the rate of increase in E[I(x)] is higher than it appears.

To better understand how such prediction policies should
be designed, we also calculated the hazard rate of the idle
period duration (Figure A-6 in Appendix A). The hazard
rate is simply the probability that an idle period ends with
a duration≤ k + r given that it is alreadyk units long. In
other words, given that the system has been idle fork units,
H(k, r) is the chance that a task initiated now and requir-
ing r units of time will not be completed before the system
becomes busy again. More formally,

H(k, r) =

r∑
i=0

l(k + i)

1− L(k − 1)
(6)
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Figure 14: Remaining Idle Duration.

We find that the hazard rate is generally declining as the
idle period duration increases.This result again supports
the idea of predicting idle period duration by conditioning
on the amount of time the system has already been idle.In
addition, the hazard rate increases withr, which is what we
would expect. In other words, the chances that a task will
not be completed before the system becomes busy again in-
creases with the length of the task.

6 Interaction of Reads and Writes

In general, the interaction between reads and writes com-
plicates a computer system and throttles its performance.
For instance, static data can be simply replicated to improve
not only the performance of the system but also its scalability
and durability. But if the data is being updated, the system
has to ensure that the writes occur in the correct order. In
addition, it has to either propagate the results of each write
to all possible replicated copies or to invalidate these copies.
The former usually makes sense if the updated data is un-
likely to be updated again but is likely to be read. The latter
is useful when it is highly likely that the data will be updated
several more times before it is read. In cases where the data
is being both updated and read, replication may not be use-
ful. Thus the read-write composition of the traffic, together
with the flow of data from writes to reads, is an extremely
important workload characteristic. This is the focus of this
section.

6.1 Read/Write Ratio

A wide range of read/write ratio has been reported in
the literature. In addition to intrinsic workload differences,

the read-to-write ratio also depends a lot on how much of
the reads and writes have been filtered by caching, and on
the kinds of I/Os (e.g.,user data, paging, file system meta-
data) that are tabulated. Because main memory is volatile,
the amount of write buffering performed by the file system
cache is typically limited. For example, UNIX systems have
traditionally used a policy of periodically (once every 30s)
flushing the dirty blocks in the file cache to disk so as to
limit the amount of data that will potentially be lost in a sys-
tem failure. In Windows NT, one quarter of the dirty data
in the file cache is written back to disk every second [46].
Therefore, more of the reads than writes are filtered by the
file system cache. The file system also adds metadata writes
which can account for more than half of the physical writes
(more than 72% in [45] and more than 53% in our PC work-
loads). Therefore, at the logical level, the read/write ratio is
generally much higher than at the physical level.

For instance, the ratio of logical read to write traffic has
been reported to be between 3.7 and 6.3 for desktop work-
station workloads [42], and the ratio of logical read to write
operations has been found to be between 3 and 4.5 in var-
ious office environments [41]. At the physical level, the
read/write ratio has been observed to range from about 0.4 to
1 for Novell NetWare file servers [17] and from about 0.7 to
0.8 for several HP-UX systems [45]. These figures are com-
parable to the read/write ratio we obtained, which are pre-
sented in Table 13. Observe thatconsistently across all the
server workloads and the PC workloads, on average, writes
account for about 60% of the requests. Interestingly, main-
frame data processing workloads appear to have a higher
read/write ratio. For example, measurements conducted at
the physical level at 12 moderate-to-large MVS installations
running mainly data processing applications (circa 1993)
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Requests

RequestsWrite#

RequestsRead#

Traffic

WrittenMB

ReadMB

Footprint

WrittenBlocksUnique#

ReadBlocksUnique#

P1 2.51 1.99 1.05

P2 1.37 1.79 1.55

P3 0.429 0.430 0.563

P4 0.606 0.550 0.585

P5 0.338 0.475 1.02

P6 0.147 0.231 0.322

P7 0.288 0.299 0.399

P8 1.23 1.14 0.941

P9 0.925 1.02 1.38

P10 0.937 1.41 2.17

P11 0.831 1.38 0.787

P12 0.758 0.883 0.904

P13 0.566 0.744 1.40

P14 0.481 0.710 0.770

P-Avg. 0.816 0.932 0.988

Pf-Avg. 0.965 0.607 0.888

FS1 0.718 0.633 1.50

TS1 0.794 0.740 1.15

DS1 0.607 1.24 1.06

S-Avg. 0.706 0.870 1.24

Sf-Avg. 1.12 0.843 1.19

Table 13: Read/Write Ratio.

found the read/write ratio to be about 3.5 [33]. Analysis
of the logical I/O traffic of the production database work-
loads of ten of the world’s largest corporations of about
the same period found the read/write ratio to average about
10 [20, 21].

Observe from Table 13 that for the PC workloads, the
read/write ratio does appear to be negatively correlated with
the memory size of the system. Unfortunately, we do not
have enough data points to observe any trends for the server
workloads. In Figure 15, we plot the read/write ratio for the
PC workloads as a function of the memory size. As shown
in the figure, the read/write ratio is approximately related
to the memory size by an exponential function of the form
f(x) = aeb/x wherea andb are constants. The model is
limited by the few data points we have but it predicts that
with an infinitely large memory,i.e., asx → ∞, there will
be about 6 writes for every read. Such results support to the
prediction that almost all reads will be absorbed by the larger
buffer caches in the future so that physical I/O will become
dominated by writes [36, 37, 44]. However, that the read
ratio remains relatively consistent across all our workloads,
which span a time period of eight years, suggests that work-
load changes may have a counter effect. Also, the fact that
the ratio of read footprint to write footprint decreases, albeit
slowly, with memory size, suggests that effects (e.g.,work-
load differences) other than an increase in caching, could
also be at work here.
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Figure 15: Read/Write Ratio as Function of Memory Size.

If writes become increasingly dominant, a pertinent ques-
tion to ponder is whether physical read performance really
matters. In Figure 16, we plot the read and write cache miss
ratios assuming a write-back cache with the least-recently-
used (LRU) cache replacement policy. We define the miss
ratio to be the fraction of requests that are not filtered by the
cache but that result in a request to the underlying storage
system. Observe that the plots for the filtered workloads are
simply a translation of those for the original workloads; the
behavior is qualitatively similar. Note that we are in essence
simulating a second level cache. The upstream file system
cache and/or the database buffer pool have captured signifi-
cant portions of any read reuse but because they are volatile,
they cannot safely cache the writes. Therefore, thewrites
observed at the storage level exhibit much stronger local-
ity than the reads. In other words, although read caching
by the file system or the database buffer can eliminate most
of the reads, if writes are delayed long enough by using
non-volatile memory, write requests can similarly be very
significantly reduced. In fact, for practically all the work-
loads, a small cache of 1MB eliminates more than half the
writes. Furthermore, unlike reads which tend to be syn-
chronous, writes can be effectively rendered asynchronous
through the use of write caching. In addition, the effec-
tive latency of writes can often be reduced by writing data
asynchronously or in a log [44, 52] or by using write-ahead
logging [35]. Recent results (e.g.,[10]) also suggest that be-
cause of the widening performance gap between processor
and disk-based storage, file system read response times may
be dominated by disk accesses even at very high cache hit
rates. Therefore,the performance of read I/Os continues to
be very important.
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Figure 16: Miss Ratio with LRU Write-Back Cache (512B Blocks).

6.2 Working Set Overlap

The working setW (t, τ) is defined as the set of blocks
referenced within the lastτ units of time [11]. More for-
mally,

W (t, τ) = {b : Count(b, t− τ, t) >= 1} (7)

whereCount(b, t− τ, t) denotes the number of times block
b is referenced betweent − τ andt. In Figure 17, we plot
the average and maximum daily working set size for our
workloads. Note that we define the working set of dayx as
W (t=midnight of dayx, τ=1 day). To understand the inter-
action between reads and writes, we differentiate the blocks
referenced into those that are read, written, and both read
and written. Specifically,

Wread(t, τ) =
{b : ReadCount(b, t− τ, t) >= 1} (8)

Wwritten(t, τ) =
{b : WriteCount(b, t− τ, t) >= 1} (9)

Wboth(t, τ) =
Wread(t, τ) ∩Wwritten(t, τ) (10)

Observe that on average, the daily working set for the
various workloads range from just over 4% (PC workloads)
to about 7% of the storage used (FS1). The size of the work-
ing set is not constant but fluctuates day to day so that the
maximum working set can be several times larger than the
average. Notice further from Figure 17 that the read working
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Figure 17: Daily Working Set Size.
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Figure 18: Average Daily Generalized Working Set Size.

0

5

10

15

20

25

30

100 1000 10000 100000 1000000
Window Size (# References)

W
rit

e-
Af

te
r-R

ea
ds

(%
R

ea
ds

)

P-Avg.

Pf-Avg.

FS1

TS1

DS1

S-Avg.

Sf-Avg.

Figure 19: Write after Read (WAR).

set is larger than the write working set for all the workloads,
especially for the server workloads. In addition, the working
set of blocks that are both read and written is small, repre-
senting less than 25% of the total working set size for all the
workloads.

To better understand the interaction between the blocks
that are read and those that are written, we introduce the
idea of the generalized working setW (t, τ, c) = {b :
Count(b, t − τ, t) >= c}. The working set first introduced
in [11] is simply the special case wherec = 1. Figure 18
presents the average daily generalized working set size for
our workloads. The figure shows that for all the workloads,
only a small fraction of the data stored is in active use, sug-

gesting that it is probably a good idea to identify the blocks
that are in use and to optimize their layout as in [22]. Notice
also thatthe amount of data that is both actively read and up-
dated is clearly very small.We will examine this further by
looking at the dependencies between reads and writes in the
next section.

6.3 Read/Write Dependencies

Dependencies are generally classified into three cate-
gories -true dependencies(Read After Write or RAW),out-
put dependencies(Write After Write or WAW) andanti de-
pendencies(Write After Read or WAR). A RAW is said to
exist between two operations if the first operation writes a
block that is later read by the other operation and there is
no intervening operation on the block. WAW and WAR are
similarly defined.

In Figure 19, we plot the percentage of reads for which
there is a write withinτ references that constitute a WAR.
We refer toτ as the window size. Observe that even for a
large window size of 100,000 references, less than 25% of
the reads fall into this category for all the workloads. In other
words,blocks that are read tend not to be updated so that
if disk blocks are reorganized or replicated based on their
read access patterns, write performance will not be signifi-
cantly affected.Notice from Figures 20 and 21 that all the
workloads contain more WAW than RAW. This implies that
updated blocks are more likely to be updated again than to
be read. Therefore, if we do replicate blocks, we should only
update one of the copies and invalidate the rest rather than
update all the copies.In other words, a write-invalidate pol-
icy will work better than a write- broadcast policy. Again,
we see that the results for the filtered traces are quantita-
tively different from those for the original traces but they
lead to the same conclusions.
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Figure 20: Read after Write (RAW).

7 Conclusions

In this paper, we empirically analyze the I/O traffic of a
wide range of real workloads with an emphasis on under-
standing how these workloads will respond to new storage
developments such as network storage, storage utilities, and
intelligent self-optimizing storage. As part of our analysis,
we also study the effect of increased upstream caching on
the traffic characteristics seen by the storage system and dis-
cover that it affects our analysis only quantitatively. Our ma-
jor findings include:

• Importance of I/O Innovation/Optimization

I/O is known to be a major component of server work-
loads and improving the I/O performance for these
workloads is critical. Our results suggest that if pro-
cessors continue to increase in performance according
to Moore’s Law, I/O is likely to also become a domi-
nant component of personal computer workloads in the
next few years. Our data show that consistently across
all the workloads, writes account for about 60% of the
requests. However, just as read caching by the file sys-
tem or the database buffer can eliminate most of the
reads, if writes are delayed long enough by using non-
volatile memory, write requests can similarly be very
significantly reduced. In fact, for practically all the
workloads, a small write-back cache of 1MB eliminates
more than half the writes. We believe that the perfor-
mance of read I/Os is likely to continue to have a di-
rect impact on application performance. As part of our
analysis, we re-examined Amdahl’s rule of thumb for
a balanced system and found that our server workloads
generate on the order of 0.05 bits of physical I/O per
instruction, consistent with our earlier work using the
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Figure 21: Write after Write (WAW).

production database workloads of some of the world’s
largest corporations [20]. The figure for the PC work-
loads is seven times lower at about 0.007 bits of physi-
cal I/O per instruction.

• Burstiness of I/O Traffic

Across all the workloads, read and write I/O requests
seldom occur singly but tend to arrive in groups. We
find that the write queue is very much deeper than the
read queue. Our analysis also indicates that there is lit-
tle cross-correlation in traffic volume among the server
workloads, suggesting that aggregating them will likely
help to smooth out the traffic and enable more efficient
utilization of resources. As for the PC workloads, mul-
tiplexing them will remove the high frequency fluctua-
tions in I/O traffic but some of the time-of-day effects
are likely to remain unless the PCs are geographically
distributed in different time zones. In addition, our re-
sults also show that to satisfy I/O bandwidth require-
ments 99% of the time, we will need to provision for
15 times the long-run average bandwidth. Going be-
yond 99% of the time will require disproportionately
more resources. It turns out that for time scales ranging
from tens of milliseconds to tens and sometimes even
hundreds of seconds, the I/O traffic is well-represented
by a self-similar process. This implies that the I/O sys-
tem may become overwhelmed at much lower levels of
utilization than expected with the commonly assumed
Poisson model. Such behavior has to be taken into ac-
count when designing storage systems, and in the ser-
vice level agreements (SLAs) when outsourcing stor-
age. We recommend that I/O traffic be characterized by
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a three-tuple consisting of the mean and variance of the
arrival rate, and the Hurst parameter.

• Potential for Harnessing “Free” Resources

We find that our PC workloads contain a lot of pro-
cessor idle time for performing background tasks, even
without having to deliberately leave the computer on
when the user is away. The storage system is also rela-
tively idle. For all the workloads, a system that exploits
idle time can get most of the potential benefit by simply
focusing on the long idle periods. In the personal sys-
tems environment, there are idle periods that are both
long enough and that occur frequently enough to be in-
teresting for offline optimizations such as block reorga-
nization. In the server environment, we have to be more
meticulous in using the available idle time, for instance,
by dividing an idle-time task into several finer-grained
steps that can be scheduled whenever a short idle pe-
riod presents itself. Our results suggest that the length
of an idle period can be predicted more accurately by
conditioning on the amount of time the system has al-
ready been idle than from the lengths of the recent idle
periods.

• Opportunity for Block Reorganization

In general, I/O traffic is low enough for it to be feasi-
ble to collect a daily trace of the blocks referenced for
later analysis and optimization. We discover that only
a small fraction of the data stored is in active use, sug-
gesting that it is probably a good idea to identify the
blocks that are in use and to optimize their layout. In
addition, the amount of data that is both actively read
and updated is very small. Moreover, blocks that are
read tend not to be updated so that if blocks are reor-
ganized or replicated based on their read access pat-
terns, write performance will not be significantly af-
fected. Because updated blocks are more likely to be
updated again than to be read, if blocks are replicated,
a write-invalidate policy will tend to work better than a
write-broadcast policy.
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Figure A-1: Footprint Vs. Number of References.
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Figure A-2: Average Queue Depth on Arrival. Bars indicate standard deviation.
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i Average of cross correlation with other PC workloads, excluding self.
ii Average of cross correlation with other server workloads, excluding self.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 Avg.i FS1 TS1 DS1 Avg.ii

P1 1 0.0692 0.0459 0.0784 0.0773 0.027 0.097 0.0798 0.074 0.0393 0.0419 0.0329 0.0262 0.0368 0.0558 0.00962 0.0219 0.00331 -

P2 0.0692 1 0.0244 0.0533 0.0759 0.0251 0.0834 0.0423 0.159 0.0195 0.0285 0.0116 0.0283 0.0544 0.0519 0.00249 0.046 0.00056 -

P3 0.0459 0.0244 1 0.0115 0.0518 0.0263 0.0324 0.0272 0.0371 0.0428 0.0487 0.0132 0.0192 0.0447 0.0327 0.0285 0.0192 0.0175 -

P4 0.0784 0.0533 0.0115 1 0.0399 0.0262 0.0496 0.0484 0.0994 0.0278 0.0593 0.0109 0.0742 0.0446 0.0480 0.0247 0.0376 0.0144 -

P5 0.0773 0.0759 0.0518 0.0399 1 0.0342 0.0939 0.0512 0.0765 0.0281 0.0349 0.0118 0.048 0.04 0.0510 0.021 0.0263 0.00529 -

P6 0.027 0.0251 0.0263 0.0262 0.0342 1 0.0673 0.0333 0.0615 0.0538 0.0352 0.0299 0.0434 0.0528 0.0397 0.0197 0.0201 0.0331 -

P7 0.097 0.0834 0.0324 0.0496 0.0939 0.0673 1 0.105 0.0857 0.0475 0.0532 0.0317 0.0431 0.0722 0.0663 0.0303 0.0315 0.0776 -

P8 0.0798 0.0423 0.0272 0.0484 0.0512 0.0333 0.105 1 0.0509 0.038 0.0294 0.0431 0.0309 0.0362 0.0474 0.015 0.0248 0.0463 -

P9 0.074 0.159 0.0371 0.0994 0.0765 0.0615 0.0857 0.0509 1 0.0497 0.0731 0.0233 0.0366 0.0941 0.0708 0.0288 0.0576 0.0196 -

P10 0.0393 0.0195 0.0428 0.0278 0.0281 0.0538 0.0475 0.038 0.0497 1 0.0353 0.0143 0.0209 0.0429 0.0354 0.00701 0.0149 0.0134 -

P11 0.0419 0.0285 0.0487 0.0593 0.0349 0.0352 0.0532 0.0294 0.0731 0.0353 1 0.0077 0.0311 0.057 0.0412 0.0404 0.0456 0.0164 -

P12 0.0329 0.0116 0.0132 0.0109 0.0118 0.0299 0.0317 0.0431 0.0233 0.0143 0.0077 1 0.0112 0.0149 0.0197 0.000939 0.00489 0.00926 -

P13 0.0262 0.0283 0.0192 0.0742 0.048 0.0434 0.0431 0.0309 0.0366 0.0209 0.0311 0.0112 1 0.0625 0.0366 0.0368 0.0216 0.0246 -

P14 0.0368 0.0544 0.0447 0.0446 0.04 0.0528 0.0722 0.0362 0.0941 0.0429 0.057 0.0149 0.0625 1 0.0502 0.0129 0.0614 0.0775 -

Avg.i 0.0558 0.0519 0.0327 0.0480 0.0510 0.0397 0.0663 0.0474 0.0708 0.0354 0.0412 0.0197 0.0366 0.0502 0.0462 - - - -

FS1 0.00962 0.00249 0.0285 0.0247 0.021 0.0197 0.0303 0.015 0.0288 0.00701 0.0404 0.000939 0.0368 0.0129 - 1 0.0242 0.0222 0.0232

TS1 0.0219 0.046 0.0192 0.0376 0.0263 0.0201 0.0315 0.0248 0.0576 0.0149 0.0456 0.00489 0.0216 0.0614 - 0.0242 1 0.042 0.0331

DS1 0.00331 0.00056 0.0175 0.0144 0.00529 0.0331 0.0776 0.0463 0.0196 0.0134 0.0164 0.00926 0.0246 0.0775 - 0.0222 0.042 1 0.0321

Avg.ii - - - - - - - - - - - - - - - 0.0232 0.0331 0.0321 0.0295

Average

Average

Table A-1: Cross-Correlation of Per-Minute Volume of I/O Activity.

i Average of cross correlation with other PC workloads, excluding self.
ii Average of cross correlation with other server workloads, excluding self.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 Avg.i FS1 TS1 DS1 Avg.ii

P1 1 0.16 0.108 0.129 0.228 0.118 0.233 0.22 0.16 0.106 0.123 0.08 0.0812 0.0832 0.141 0.0262 0.0505 0.0179 -

P2 0.16 1 0.0807 0.132 0.217 0.0925 0.183 0.126 0.35 0.0486 0.0898 0.0392 0.0858 0.125 0.133 0.00882 0.078 -0.00217 -

P3 0.108 0.0807 1 0.0311 0.141 0.111 0.101 0.0788 0.11 0.113 0.131 0.026 0.0619 0.0944 0.091 0.0619 0.0356 0.0549 -

P4 0.129 0.132 0.0311 1 0.12 0.072 0.115 0.107 0.194 0.061 0.113 0.035 0.176 0.0743 0.105 0.0481 0.0706 0.0321 -

P5 0.228 0.217 0.141 0.12 1 0.137 0.216 0.167 0.211 0.0959 0.107 0.0321 0.147 0.107 0.148 0.0579 0.0506 0.0397 -

P6 0.118 0.0925 0.111 0.072 0.137 1 0.187 0.114 0.183 0.141 0.129 0.0743 0.142 0.145 0.127 0.0524 0.0486 0.0885 -

P7 0.233 0.183 0.101 0.115 0.216 0.187 1 0.255 0.201 0.0971 0.119 0.0667 0.0945 0.136 0.154 0.0608 0.0569 0.141 -

P8 0.22 0.126 0.0788 0.107 0.167 0.114 0.255 1 0.115 0.0825 0.0906 0.0947 0.0832 0.0819 0.124 0.0338 0.0518 0.106 -

P9 0.16 0.35 0.11 0.194 0.211 0.183 0.201 0.115 1 0.108 0.143 0.0441 0.0962 0.173 0.161 0.059 0.108 0.0323 -

P10 0.106 0.0486 0.113 0.061 0.0959 0.141 0.0971 0.0825 0.108 1 0.0771 0.0344 0.0546 0.0914 0.085 0.0184 0.0392 0.0394 -

P11 0.123 0.0898 0.131 0.113 0.107 0.129 0.119 0.0906 0.143 0.0771 1 0.0193 0.108 0.108 0.104 0.0869 0.0993 0.0294 -

P12 0.08 0.0392 0.026 0.035 0.0321 0.0743 0.0667 0.0947 0.0441 0.0344 0.0193 1 0.0229 0.0248 0.046 0.000372 0.00633 0.03 -

P13 0.0812 0.0858 0.0619 0.176 0.147 0.142 0.0945 0.0832 0.0962 0.0546 0.108 0.0229 1 0.145 0.100 0.0815 0.0424 0.0513 -

P14 0.0832 0.125 0.0944 0.0743 0.107 0.145 0.136 0.0819 0.173 0.0914 0.108 0.0248 0.145 1 0.107 0.0267 0.106 0.119 -

Avg.i 0.141 0.133 0.091 0.105 0.148 0.127 0.154 0.124 0.161 0.085 0.104 0.046 0.100 0.107 0.116 - - - -

FS1 0.0262 0.00882 0.0619 0.0481 0.0579 0.0524 0.0608 0.0338 0.059 0.0184 0.0869 0.000372 0.0815 0.0267 - 1 0.0462 0.0405 0.0434

TS1 0.0505 0.078 0.0356 0.0706 0.0506 0.0486 0.0569 0.0518 0.108 0.0392 0.0993 0.00633 0.0424 0.106 - 0.0462 1 0.04 0.0431

DS1 0.0179 -0.00217 0.0549 0.0321 0.0397 0.0885 0.141 0.106 0.0323 0.0394 0.0294 0.03 0.0513 0.119 - 0.0405 0.04 1 0.0403

Avg.ii - - - - - - - - - - - - - - - 0.0434 0.0431 0.0403 0.0422

Average

Average

Table A-2: Cross-Correlation of Per-10-Minute Volume of I/O Activity.
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i Average of cross correlation with other PC workloads, excluding self.
ii Average of cross correlation with other server workloads, excluding self.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 Avg.i FS1 TS1 DS1 Avg.ii

P1 1 0.376 0.298 0.262 0.484 0.329 0.39 0.434 0.292 0.215 0.207 0.126 0.199 0.202 0.293 0.0413 0.147 0.071 -

P2 0.376 1 0.244 0.258 0.479 0.302 0.384 0.344 0.418 0.138 0.186 0.15 0.233 0.342 0.296 0.0272 0.145 0.058 -

P3 0.298 0.244 1 0.106 0.306 0.29 0.181 0.199 0.295 0.206 0.242 0.0813 0.151 0.207 0.216 0.142 0.121 0.062 -

P4 0.262 0.258 0.106 1 0.231 0.168 0.278 0.271 0.323 0.154 0.249 0.0963 0.347 0.165 0.224 0.0812 0.155 0.11 -

P5 0.484 0.479 0.306 0.231 1 0.38 0.372 0.344 0.384 0.227 0.223 0.0619 0.296 0.22 0.308 0.0903 0.131 0.082 -

P6 0.329 0.302 0.29 0.168 0.38 1 0.376 0.258 0.356 0.252 0.213 0.14 0.327 0.291 0.283 0.11 0.142 0.241 -

P7 0.39 0.384 0.181 0.278 0.372 0.376 1 0.454 0.361 0.177 0.171 0.156 0.187 0.241 0.287 0.121 0.119 0.188 -

P8 0.434 0.344 0.199 0.271 0.344 0.258 0.454 1 0.255 0.164 0.183 0.157 0.193 0.187 0.265 0.0764 0.129 0.267 -

P9 0.292 0.418 0.295 0.323 0.384 0.356 0.361 0.255 1 0.263 0.216 0.126 0.197 0.331 0.294 0.088 0.169 0.0909 -

P10 0.215 0.138 0.206 0.154 0.227 0.252 0.177 0.164 0.263 1 0.15 0.0763 0.136 0.209 0.182 0.0247 0.144 0.107 -

P11 0.207 0.186 0.242 0.249 0.223 0.213 0.171 0.183 0.216 0.15 1 0.0297 0.19 0.244 0.193 0.145 0.187 0.0627 -

P12 0.126 0.15 0.0813 0.0963 0.0619 0.14 0.156 0.157 0.126 0.0763 0.0297 1 0.0355 0.0485 0.099 -0.00785 0.0473 0.06 -

P13 0.199 0.233 0.151 0.347 0.296 0.327 0.187 0.193 0.197 0.136 0.19 0.0355 1 0.298 0.215 0.16 0.131 0.12 -

P14 0.202 0.342 0.207 0.165 0.22 0.291 0.241 0.187 0.331 0.209 0.244 0.0485 0.298 1 0.230 0.0355 0.243 0.161 -

Avg.i 0.293 0.296 0.216 0.224 0.308 0.283 0.287 0.265 0.294 0.182 0.193 0.099 0.215 0.230 0.242 - - - -

FS1 0.0413 0.0272 0.142 0.0812 0.0903 0.11 0.121 0.0764 0.088 0.0247 0.145 -0.00785 0.16 0.0355 - 1 0.076 0.0832 0.0796

TS1 0.147 0.145 0.121 0.155 0.131 0.142 0.119 0.129 0.169 0.144 0.187 0.0473 0.131 0.243 - 0.076 1 0.0422 0.0591

DS1 0.071 0.058 0.062 0.11 0.082 0.241 0.188 0.267 0.0909 0.107 0.0627 0.06 0.12 0.161 - 0.0832 0.0422 1 0.0627

Avg.ii - - - - - - - - - - - - - - - 0.0796 0.0591 0.0627 0.0671

Average

Average

Table A-3: Cross-Correlation of Hourly Volume of I/O Activity.

i Average of cross correlation with other PC workloads, excluding self.
ii Average of cross correlation with other server workloads, excluding self.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 Avg.i FS1 TS1 DS1 Avg.ii

P1 1 0.579 0.241 0.488 0.659 0.647 0.492 0.684 0.544 0.38 0.116 0.205 0.315 0.18 0.425 0.065 0.341 -0.0254 -

P2 0.579 1 0.115 0.319 0.631 0.513 0.628 0.736 0.565 0.317 0.243 0.253 0.537 0.464 0.454 -0.118 0.445 0.184 -

P3 0.241 0.115 1 0.136 0.312 0.26 -0.0361 0.201 0.37 0.354 0.249 -0.0782 0.171 0.12 0.186 0.288 0.401 0.176 -

P4 0.488 0.319 0.136 1 0.323 0.277 0.219 0.516 0.502 0.35 0.434 0.224 0.469 0.203 0.343 0.0703 0.552 -0.466 -

P5 0.659 0.631 0.312 0.323 1 0.592 0.507 0.618 0.566 0.452 0.0851 -0.0555 0.382 0.17 0.403 0.135 0.344 -0.0191 -

P6 0.647 0.513 0.26 0.277 0.592 1 0.569 0.406 0.619 0.426 0.141 0.25 0.591 0.321 0.432 0.0314 0.476 0.414 -

P7 0.492 0.628 -0.0361 0.219 0.507 0.569 1 0.597 0.563 0.162 0.0476 0.373 0.455 0.324 0.377 0.0792 0.204 0.278 -

P8 0.684 0.736 0.201 0.516 0.618 0.406 0.597 1 0.542 0.224 0.132 0.266 0.369 0.22 0.424 -0.0358 0.333 0.23 -

P9 0.544 0.565 0.37 0.502 0.566 0.619 0.563 0.542 1 0.728 0.0909 0.352 0.404 0.376 0.479 0.175 0.629 -0.0133 -

P10 0.38 0.317 0.354 0.35 0.452 0.426 0.162 0.224 0.728 1 0.116 0.0664 0.431 0.584 0.353 0.062 0.472 -0.0131 -

P11 0.116 0.243 0.249 0.434 0.0851 0.141 0.0476 0.132 0.0909 0.116 1 0.0112 0.272 0.387 0.179 0.163 0.518 0.387 -

P12 0.205 0.253 -0.0782 0.224 -0.0555 0.25 0.373 0.266 0.352 0.0664 0.0112 1 0.23 0.11 0.170 -0.163 0.0531 -0.201 -

P13 0.315 0.537 0.171 0.469 0.382 0.591 0.455 0.369 0.404 0.431 0.272 0.23 1 0.586 0.401 0.0261 0.59 0.133 -

P14 0.18 0.464 0.12 0.203 0.17 0.321 0.324 0.22 0.376 0.584 0.387 0.11 0.586 1 0.311 -0.297 0.523 0.13 -

Avg.i 0.425 0.454 0.186 0.343 0.403 0.432 0.377 0.424 0.479 0.353 0.179 0.170 0.401 0.311 0.353 - - - -

FS1 0.065 -0.118 0.288 0.0703 0.135 0.0314 0.0792 -0.0358 0.175 0.062 0.163 -0.163 0.0261 -0.297 - 1 0.133 -0.343 -0.105

TS1 0.341 0.445 0.401 0.552 0.344 0.476 0.204 0.333 0.629 0.472 0.518 0.0531 0.59 0.523 - 0.133 1 0.18 0.157

DS1 -0.0254 0.184 0.176 -0.466 -0.0191 0.414 0.278 0.23 -0.0133 -0.0131 0.387 -0.201 0.133 0.13 - -0.343 0.18 1 -0.0815

Avg.ii - - - - - - - - - - - - - - - -0.105 0.157 -0.0815 -0.0100

Average

Average

Table A-4: Cross-Correlation of Daily Volume of I/O Activity.
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Figure A-3: Cross-Correlation of Volume of I/O Activity
vs. Time Interval Used to Aggregate Volume.
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Figure A-4: Autocorrelation of the Sequence of Idle Pe-
riod Duration.
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Figure A-5: I/O Traffic at Different Time Scales during the High-Traffic Period (One-hour period that contains more I/O traffic
than 95% of other one-hour periods).

29



P-Avg.

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000 7000
Idle Duration, k (s)

H
az

ar
d

H
(k

,r)

60

180

600

1800

3600

Remaining Idle Duration, r (s) S-Avg.

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000 7000
Idle Duration, k (s)

H
az

ar
d

H
(k

,r)

Pf-Avg.

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000 7000
Idle Duration, k (s)

H
az

ar
d

H
(k

,r)

Sf-Avg.

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000 7000
Idle Duration, k (s)

H
az

ar
d

H
(k

,r)

Figure A-6: Hazard Rate for the Distribution of Idle Period Duration.
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Appendix B

B-1 Estimating the Degree of Self-Similarity

The degree of self-similarity is expressed using a single parameter, the Hurst parameter H. For a self-similar series,1/2 <
H < 1, and asH → 1, the degree of self-similarity increases. For smooth Poisson traffic,H is 1/2. Mathematically, self-
similarity is manifested in several equivalent ways and different methods that examine specific indications of self-similarity are
used to estimate the Hurst parameter. In this paper, we focus on the R/S method and the variance-time plot. Newer inference
methods that are more sensitive to different types of scaling phenomena (e.g.,[1]) have been developed but are beyond the
scope of the current paper.

B-1.1 The R/S Method

One of the manifestations of the self-similar property is that the autocorrelations of the process decay hyperbolically rather
than exponentially. This behavior is known as long-range dependence and it provides an explanation for an empirical law
known as the Hurst effect [27].

The R/S or rescaled adjusted range statistic for a set of observationsXk : k = 1, 2, ..., n having meanX(n) and sample
varianceS2(n) is defined by

R(n)
S(n)

=
1

S(n)
[max(0, w1,W2, ...,Wn)−min(0,W1,W2, ...,Wn)] (B-1)

where

Wk = (X1 + X2 + ... + Xk)− kX(n), k ≥ 1.

It turns out that

E

[
R(n)
S(n)

]
∼ cnH (B-2)

whereH = 0.5 for short-range dependent processes and0.5 < H < 1 for long-range dependent processes. This difference
between short and long-range dependent processes is known as the Hurst effect and forms the basis for the R/S method of
inferring the Hurst parameter.

Taking logarithm on both sides of Equation B-2,

log

(
E

[
R(n)
S(n)

])
∼ Hlog(n) + log(c) (B-3)

Therefore, we can estimate H by plottinglog(E[R(n)/S(n)]) versuslog(n) for different values of n. In practice, we divide a
set ofN observations intoK disjoint subsets each of lengthN/K and computelog(E[R(n)/S(n)]) for each of these subsets
using logarithmically spaced values ofn. The resulting plot oflog(E[R(n)/S(n)]) versuslog(n) is commonly referred to as a
pox plot. For a long-range dependent time series, the pox plot should fluctuate in a straight street of slopeH, 0.5 < H < 1 [5].

In Figure B-1, we present the pox plots for our various workloads for the high-traffic period. Observe that the pox plots
for all the workloads appear to fluctuate around straight streets with slope ranging from 0.6 to almost 0.9. In other words,all
the workloads exhibit long-range dependence and self-similarity in their I/O traffic patterns.In Figure B-2, we present the
corresponding pox plots for the filtered traces. The same behavior is observed.

B-1.2 Variance-Time Plot

Another manifestation of self-similarity is that the variance of the aggregated processX(m) decrease more slowly than the
reciprocal ofm, where

X(m)(k) = (1/m)
km∑

i=(k−1)m+1

X(i), k = 1, 2, ....
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Figure B-1: Pox Plots to Detect Self-Similarity.
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Figure B-2: Pox Plots to Detect Self-Similarity (Filtered Traces).
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Figure B-3: Variance-Time Plots to Detect Self-Similarity.

More formally,

V ar(X(m)) ∼ cm−β , 0 < β < 1. (B-4)

Taking logarithm on both sides,

log(V ar(X(m))) ∼ log(c)− βlog(m). (B-5)

Thus for a self-similar process, the variance-time plot,i.e., the plot oflog(V ar(X(m))) againstlog(m), should be a straight
line with a slope between -1 and 0. The degree of self-similarity is given byH = 1− β/2.

The variance-time plots for our various workloads are presented in Figures B-3 and B-4. Observe that for the high-traffic
period, the variance-time plots for all the workloads are very linear with slopes that are more gradual than -1. This indicates
that the I/O traffic for the workloads is self-similar in nature. Notice though thatthe self-similarity does not span all time scales
but appears to break down beginning just beyond 10s for the database server. In other words, for time scales ranging from tens
of milliseconds to tens and sometimes even hundreds of seconds, the I/O traffic is well-represented by a self-similar process but
not beyond that.Interestingly, the filtered traces appear to be self-similar to larger time scales although some of them have a
steeper slope, meaning that they are less self-similar.

For the low-traffic period, all the plots again have linear segments with slope of less than -1 but these segments are shorter
than in the high-traffic case, particularly in the case of the database server. In addition, the slope of the linear regions is
noticeably steeper than for the high-traffic period. This means thatI/O traffic during the low-traffic period is self-similar
but less so and over a smaller range of time scales than during the high-traffic period.As discussed in the main text, the
self-similarity could be caused by the superposition of I/O generated by different processes in the system where each process
behaves as an independent I/O source with heavy-tailed on periods. During the low-traffic period, we would expect that there
are fewer processes running in the system and therefore fewer independent sources of I/O so that the aggregated traffic is less
self-similar. This is in line with observations in [13].

Table B-1 summarizes the Hurst parameter values that we obtained using the R/S method and the variance-time plot. These
two methods provide independent estimates of the degree of self-similarity and discrepancies between their results can be
expected. In view of this, the figures we obtained are reasonably consistent, which adds confidence to our analysis and results.

B-2 Generating Self-Similar I/O Traffic

There are several ways to generate self-similar traffic but models such as those based on F-ARIMA and Fractional Guassian
Noise processes are generally computationally expensive. An alternative traffic generator based on the superposition of inde-
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Figure B-4: Variance-Time Plots to Detect Self-Similarity (Filtered Traces).

High Traffic P-Avg. Pf-Avg. FS1 FS2 TS1 DS1 S-Avg. Sf-Avg.

Slope of
Fitted Line -0.35 -0.40 -0.17 -0.12 -0.11 -0.053 -0.11 -0.38

Var.-
Time Hurst

Parameter 0.83 0.80 0.92 0.94 0.94 0.97 0.94 0.81

Slope of
Fitted Line 0.80 0.79 0.84 0.90 0.88 0.85 0.86 0.80

Pox
Hurst

Parameter 0.80 0.79 0.84 0.90 0.88 0.85 0.86 0.80

(a) High Traffic.

High Read Traffic P-Avg. Pf-Avg. FS1 FS2 TS1 DS1 S-Avg. Sf-Avg.

Slope of
Fitted Line -0.26 -0.29 -0.20 -0.10 -0.13 -0.10 -0.14 -0.13

Var.-
Time Hurst

Parameter 0.87 0.85 0.90 0.95 0.94 0.95 0.93 0.93

Slope of
Fitted Line 0.77 0.74 0.85 0.92 0.79 0.76 0.80 0.77

Pox
Hurst

Parameter 0.77 0.74 0.85 0.92 0.79 0.76 0.80 0.77

(b) High Read Traffic.

High Write Traffic P-Avg. Pf-Avg. FS1 FS2 TS1 DS1 S-Avg. Sf-Avg.

Slope of
Fitted Line -0.50 -0.55 -0.29 -0.12 -0.28 -0.068 -0.21 -0.49

Var.-
Time Hurst

Parameter 0.75 0.73 0.85 0.94 0.86 0.97 0.89 0.76

Slope of
Fitted Line 0.79 0.78 0.81 0.76 0.88 0.82 0.83 0.79

Pox
Hurst

Parameter 0.79 0.78 0.81 0.76 0.88 0.82 0.83 0.79

(c) High Write Traffic.

Table B-1: Degree of Self-Similarity.
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pendent and identical fractal renewal processes is attractive because it has a physical correspondence to the superposition of
I/O traffic generated by different processes, and is relatively easy to construct. The Superposition of Fractal Renewal Processes
model is completely characterized byM , the number of fractal renewal processes, andp(τ), the inter-arrival probability den-
sity function. A convenient probability density function is the following where the parameterA serves as a threshold between
exponential behavior and power-law behavior:

p(τ) =
{

γ
Ae

−γτ
A , τ ≤ A,

γe−γAγτ−(γ+1), τ > A
(B-6)

The interested reader is referred to [47] for more details about the model.

B-2.1 The Inputs

The inputs to the traffic generator are:

1. H, the Hurst parameter which measures the degree of self-similarity [5].

2. µ, the average number of arrivals during intervals of durationTs.

3. σ2, the variance in the number of arrivals during intervals of durationTs.

B-2.2 Model Setup

The three inputs described above were chosen to be relatively easy to measure and understand. Before we begin to generate
the traffic, however, we need to convert the inputs into a more convenient form:

1. Calculate

α = 2H − 1 (B-7)

2. Calculate

γ = 2− α (B-8)

3. Calculate

λ =
µ

Ts
(B-9)

4. Calculate

To =
Ts

( σ2

λTs
)

1
α − 1

(B-10)

5. Calculate

A =
[

Tα
o 2γ2(γ − 1)eγ

(2− γ)(3− γ)[1 + (γ − 1)eγ ]2

] 1
α

(B-11)

6. Calculate

M =
⌈

Aλ

γ

[
1 +

1
(γ − 1)eγ

]⌉
(B-12)
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B-2.3 The Algorithm

Let T
(j)
i denote theith inter-arrival time for processj. The following algorithm calculates theT (j)

i by spawningM
independent threads. This multi-threaded approach is useful when actual I/Os are to be issued. For pure simulations or where
I/O calls return immediately after they have been issued, a single-threaded version can be easily constructed.

1. Spawn M threads

2. For each thread

3. Generate a random variableU uniformly distributed in [0,1)

4. Calculate

V =
1 + (γ − 1)eγ

γ
U (B-13)

5. Calculate

τ (j)
o =

{
−γ−1A ln[U γV−1

γV−U ], V ≥ 1,

AV
1

1−γ , V < 1
(B-14)

6. Repeat

7. Generate a random variableU uniformly distributed in [0,1)

8. Calculate

τ
(j)
i =

{
− 1

γ A ln[U ], U ≥ e−γ ,
1
eAU

−1
γ , U < e−γ

(B-15)

9. Until enough arrivals are generated
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