
Efficient Reconstruction of Haplotype Structure via Perfect
Phylogeny

Eleazar Eskin Eran Halperin Richard M. Karp

Report No. UCB/CSD-2-1196

August 2002

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Efficient Reconstruction of Haplotype Structure via Perfect Phylogeny

Eleazar Eskin∗ Eran Halperin† Richard M. Karp‡

August 2002

Abstract

Each person’s genome contains two copies of each chromosome, one inherited from the father and the other
from the mother. A person’sgenotypespecifies the pair of bases at each site, but does not specify which base
occurs on which chromosome. The sequence of each chromosome separately is called ahaplotype. The determi-
nation of the haplotypes within a population is essential for understanding genetic variation and the inheritance of
complex diseases. The haplotype mapping project, a successor to the human genome project, seeks to determine
the common haplotypes in the human population.

Since experimental determination of a person’s genotype is less expensive than determining its component
haplotypes, algorithms are required for computing haplotypes from genotypes. Two observations aid in this
process: first, the human genome contains short blocks within which only a few different haplotypes occur;
second, as suggested by Gusfield, it is reasonable to assume that the haplotypes observed within a block have
evolved according to aperfect phylogeny, in which at most one mutation event has occurred at any site.

We present a simple and efficient polynomial-time algorithm for inferring haplotypes from the genotypes of a
set of individuals assuming a perfect phylogeny. Using a reduction to 2-SAT we extend this algorithm to handle
constraints that apply when we have genotypes from both parents and child. We also present a hardness result for
the problem of removing the minimum number of individuals from a population to ensure that the genotypes of
the remaining individuals are consistent with a perfect phylogeny.

Our algorithms have been tested on real data and give biologically meaningful results.

1 Introduction

Critical to the understanding of the genetic basis for complex diseases is the modeling of human genetic variation.
Most of this variation can be characterized by single nucleotide polymorphisms (SNPs) which are mutations at a
single nucleotide position that occurred once in human history and been passed on through heredity. Although
the two chromosomes of an individual can be separated and analyzed independently as in the study of [18], current
technology suitable for large scale polymorphism screening obtainsgenotypeinformation at each SNP. The genotype
gives the bases at the SNP for both copies of the chromosome, but does not identify the chromosome on which each
base appears. Consider a SNP where there are two common bases,A or G. There are four possible cases for the
genotype. Two of the cases are where either both chromosomes containA or both chromosomes containG. We refer
to these cases ashomozygousgenotypes. The other two cases are where the first chromosome containsA and the
second containsG and vice versa. We refer to these cases asheterozygousgenotypes. Thus, the genotype consists
of the mutual information on the two chromosomes. The sequence of each chromosome separately is called the
haplotype information. Consider a case where, at four successive SNPs, with possible valuesA or G, an individual
has a genotypeAHHG, whereH represents a heterozygous site. In this case, the individual’s haplotypes have two
possibilities: either one chromosome containsAAAG and the other containsAGGG or one chromosome contains
AAGG and the other containsAGAG.

∗Computer Science Department, Columbia University. E-mail:eeskin@cs.columbia.edu .
†CS Division, Soda Hall, University of California Berkeley, CA 94720-1776. E-mail:eran@eecs.berkeley.edu .
‡International Computer Science Institute, 1947 Center St., Berkeley, CA 94704. E-mail:karp@cs.berkeley.edu .

1

One of the first goals set by the NIH right after the completion of the human genome project is the haplotype mapping
project. The goal of the human genome project was to find the consensus genotype sequence of humans. In order
to achieve more information on genetic disease, one has to know not only the genotype data, but also the haplotype
data, and not only the consensus, but which are the common haplotypes. Recent studies [5, 18] have shown that
SNPs that are physically close to each other on the chromosome are usually correlated, and that our chromosomes
can be partitioned into blocks, so that in each block there is a strong correlation between all the SNPs contained in
it. These studies show that for each block, the number of possible variation is usually very small (3 or 4), while
the number of SNPs in the block could be as large as30. The goal of the haplotype mapping project is to gather
all the haplotype information, that is, for each block, to list all possible combinations of SNPs that appear in the
population. After having all this information, one could perform a more accurate case study to associate genes (and
maybe blocks) with diseases, and furthermore, one could sequence the human chromosomes much faster with high
accuracy. This paper takes the haplotype mapping project one step forward by finding an efficient way to infer the
haplotype data of a population by observing only the genotypes of the population.

Given a set ofn genotypes, each of lengthm, we address the problem of inferring the haplotype structure. Clearly,
in the absence of additional information, one cannot infer the haplotype structure, since there are many possible
solutions. Gusfield [10] suggested to add the constraint that the resulting set of haplotypes should correspond to a
phylogeny model known as the coalescent model, or perfect phylogeny. In this model we assume perfect Mendelian
heredity, that is, one of the chromosomes of each parent is transmitted to the child with some possible mutations.
Furthermore, we assume that in each SNP site, there has only been one mutation throughout the history represented
by the tree. We wish to find a directed phylogenetic tree that will correspond to these two assumptions, such that
each of the resulting haplotypes will be found in one of the leaves of that tree. The problem is referred to as the
Perfect Phylogeny Haplotype problem (PPH problem). We will formally state the problem in Section 2.1. Gusfield
[10] introduces a polynomial time algorithm for the PPH problem. His algorithm uses as a black box an algorithm to
recognize graphic matroids [21, 2]. This algorithm is very complicated and impractical. One of the open problems
mentioned in Gusfield’s paper is to find a simple and efficient algorithm to the PPH problem. In this paper we
introduce an efficient and simple solution to the problem, using no heavy machinery. The simplicity of our algorithm
sheds a new insight on the problem and allows us to cope with some extensions of the model. We show relations
between the extensions of the problem and other combinatorial problems such as2-satisfiability and minimum CNF
deletion.

We begin by presenting an extremely simple and elegant polynomial-time algorithm for the problem. Although this
algorithm may be effective in practice its time bound is unreasonably high. Therefore we go on to present our main
algorithm, which runs inO(nm2) time, and produces a simple linear size data structure which can be used to produce
all possible solutions to the problem. Each possible solution can be implicitly enumerated in timeO(m) (clearly,
to output the solution one needsO(mn) time). We furthermore extend our main algorithm to handle the additional
constraint that some of the individuals are related, and therefore, a parent must transmit one of its haplotypes to a
child, and each child has one haplotype transmitted from its father, and the other from its mother. We use the data
structure returned by our main algorithm for the PPH problem as a starting point for the algorithm, and reduce the
resulting problem to the2-SAT problem which can be solved in polynomial time [1, 4, 19, 16].

Finally, we address the problem of finding a minimal set of individuals such that by removing them from our data
set, we will be able to find at least one solution to the PPH problem. We show that finding anα-approximation
to this problem will imply anα-approximation algorithm for the Min UnCut problem, where a graphG = (V,E)
is given, and the goal is to remove the minimum number of edges inG such that the remaining graph is bipartite.
This problem has alog n-approximation algorithm by a reduction from the minimum2-CNF deletion [15]. On the
negative side it is only known that the problem is MAX-SNP hard, and therefore there is no PTAS for the problem
[17] unless P=NP.

We evaluate our algorithm over the data collected in the study of a 500 kilobase region of chromosome 5p31 con-
taining103 SNPs from the study of [5]. In this study, genotypes are collected from129 mother, father, child trios
and the correct child haplotypes are inferred from these genotypes. In our experiments, we use our method to make

2

01000

01001 11000

00000

11110

11100
4

3

15

2

Figure 1: The coalescent tree corresponding to the haplotypes00000, 01000, 01001, 11000, 11100, 11110

predictions of the child’s haplotypes from the child’s genotypes and then check our predictions against the cor-
rect haplotypes inferred from the trios. Our results indicate that the algorithm is practical and efficient, and gives
biologically meaningful results.

There are several previous approaches to determining the haplotype information from genotype data. These methods
include the parsimony approach of Clark [3] and related approaches [8, 9, 13], maximum likelihood methods [6, 12,
14, 7] and statistical methods such as PHASE [20]. These approaches use heuristics, but in practice they do not scale
to data that contains more than30 sites, while our algorithm could cope with large data sets.

2 Preliminaries

We first formally describe the coalescent model (perfect phylogeny) and the PPH problem. We assume that at each
polymorphism site there are two possible nucleotides that appear at any position in any one of the chromosomes. Let
us denote these nucleotides by0 and1. We note that although the assumption that there are only two possibilities at
any site seems artificial, it is the case in most polymorphism sites.

2.1 The Perfect Phylogeny Haplotype Problem

Given a{0, 1} matrixB = (bij) of sizen×m which represents a set of haplotypes, we say thatB fits the coalescent
model if there exists a rooted treeT (B) such that the following holds:

1. Each vertexv of T (B) is labeled by a row vectorl(v) of lengthm representing a possible haplotype that
existed through history.

2. For each vertexv and its parentu, the set of sites wherel(u) andl(v) differ is called the mutations fromu to
v.

3. In each of them sites, there is at most one parent-child pair in the tree, where there is a mutation in this site
from the parent to the child.

4. The set of rows ofB is contained in the set of labels ofT (B).

An example for a coalescent tree is given in Figure 1. We first introduce some notations. Given a pair of chromo-
somesch1, ch2, and a given sitej in the chromosome, we say that the haplotype configuration inch1, ch2 is (x, y),
if the nucleotides present in sitej in ch1 andch2 arex andy respectively. Throughout the paper, for a given integer
k, we denote the set{1, . . . , k} by [k]. For a matrixM , we denote thei-th row ofM by M(i, :).

We are now ready to define the Perfect Phylogeny Haplotype (PPH) problem.

The Perfect Phylogeny Haplotype Problem (PPH). An input to the PPH problem is ann×m matrixA = (aij),
whereaij ∈ {0, 1, 2} for eachi ∈ [n], j ∈ [m]. The goal is to construct a{0, 1} matrix B = (bij) of dimension

3

2n × m, such that for everyi ∈ [n], j ∈ [m], if aij 6= 2 thenb2i−1,j = b2i,j = aij, if aij = 2 thenb2i−1,j 6= b2i,j,
and thatB fits the coalescent model, or determine that such a matrixB does not exist.

The matrixA represents the genotypes ofn individuals, where the length of each genotype ism. For any individual
r ∈ [n], and sitec ∈ [m], the four possible haplotype states are(0, 0), (0, 1), (1, 0), (1, 1). The sequence observed
can only distinguish between the three states0, 1 and2. States0 and1 stand for the haplotype states(0, 0), (1, 1)
respectively. State2 stands for either the haplotype state(0, 1) or (1, 0). We are interested in constructing the
haplotype matrixB which will be consistent withA and with the coalescent model. We call such a matrix a legal
extension ofA.

Before introducing the algorithms we have to introduce some notations and definitions.

2.2 Some Useful Lemmas and Notations

Throughout the paper we will use the terms sites and columns alternatively to represent the columns of the matrix.
Let c1, . . . , cm be the set of sites. For a sitec ∈ [m] and a valuex ∈ {0, 1, 2}, let c(A,x) = {r ∈ [n] | arc = x},
andc(B,x) = {r ∈ [2n] | br,c = x}. For a matrixM and a columnc, we denote byM \ c the matrix generated by
truncating columnc from M .

We say that two sitesc, c′ are compatible in a matrixM if at least one of the following sets is empty:

• (c(M, 1) ∩ c′(M, 1)) ∪ (c(M, 2) ∩ c′(M, 1)) ∪ (c(M, 1) ∩ c′(M, 2)).

• (c(M, 1) ∩ c′(M, 0)) ∪ (c(M, 2) ∩ c′(M, 0)) ∪ (c(M, 1) ∩ c′(M, 2)).

• (c(M, 0) ∩ c′(M, 1)) ∪ (c(M, 0) ∩ c′(M, 2)) ∪ (c(M, 2) ∩ c′(M, 1)).

If c and c′ are not compatible then we say thatc and c′ have a conflict. The following lemma has been proven
independently by several authors:

Lemma 2.1. A {0, 1} matrixMm×n corresponds to a perfect phylogeny if and only if every two sites are compatible
in M . Furthermore,M corresponds to a perfect phylogenetic tree with root(x1, . . . , xm) if and only if for each pair
of sitesci, cj , one of the setsci(M, 1− xi) ∩ cj(M, 1− xj), ci(M,xi) ∩ cj(M, 1− xj), ci(M, 1− xi) ∩ cj(M,xj)
is empty.

By Lemma 2.1, in the PPH problem, we have to assign{0, 1} values to the2-entries inB so that there is no
conflict. Note that without loss of generality we may assume that the root of the tree is the all zeros vector for the
following reason. Change the values of the entries ofA such that in each sitec, either |c(A, 0)| > |c(A, 1)| or
|c(A, 0)| = |c(A, 1)| and the minimal indexi0 such thatai0,c = 0 is smaller then the minimal indexi1 such that
ai1,c = 1. In this case, it is easy to see that unless there are two identical columnsc, c′ wherec(A, 0) = φ, then every
two sitesc, c′ satisfy thatc(A, 0) ∩ c′(A, 0) 6= φ. Therefore,B must also satisfy thatc(B, 0) ∩ c′(B, 0). Thusc and
c′ are compatible inB if and only if one of the setsc(B, 1) ∩ c′(B, 1), c(B, 1) ∩ c′(B, 0) andc(B, 0) ∩ c′(B, 1) is
empty.

Thus, from now on we assume that the root of the tree is the all zeros vector. Ifc(B, 1) ∩ c′(B, 1) 6= φ thenc andc′

must lie on the same path from a leaf to the root, and thus, one must be an ancestor of the other. On the other hand,
if c(B, 1) ∩ c′(B, 0) 6= φ, then there is a path from the leaf to the root, wherec lies in the path whilec′ does not.
This implies thatc′ cannot be an ancestor ofc.

3 A Simple Algorithm for the PPH Problem

Let then×m matrixA be an input to the PPH problem, and let the2n×m {0, 1} matrixB be a legal solution to the
problem. Letc andc′ be two columns such thatc(A, 2)∩c′(A, 2) 6= φ. Let us say thatB resolvesthe pair of columns
(c, c′) unequallyif c(B, 1) ∩ c′(B, 1) = φ andequally if c(B, 0) ∩ c′(B, 1) = φ or c(B, 1) ∩ c′(B, 0) = φ. Then

4

B must resolve the pair(c, c′) either equally or unequally, and cannot resolve the pair both equally and unequally.
Solving the PPH problem is equivalent to deciding in a consistent way which pairs of columns to resolve equally and
which to resolve unequally. These decisions essentially determine the matrixB. In order to determine the constraints
on a consistent solution we classify the ordered pairs of columns.

Each ordered pair(c, c′) of columns is of one of four types.

Type A: c(A, 2) ∩ c′(A, 2) = φ. In this case the pair(c, c′) does not have to be resolved.

In the remaining three casesc(A, 2) ∩ c′(A, 2) 6= φ and the pair(c, c′) does have to be resolved. The cases are as
follows:

Type 0 (c(A, 1) ∩ c′(A, 1)) ∪ (c(A, 2) ∩ c′(A, 1)) ∪ (c(A, 1) ∩ c′(A, 2)) 6= φ. In this case the pair(c, c′) must be
resolved equally.

Type 1 (c(A, 0) ∩ c′(A, 1)) ∪ (c(A, 0) ∩ c′(A, 2)) 6= φ and(c(A, 1) ∩ c′(A, 0)) ∪ (c(A, 2) ∩ c′(A, 0)) 6= φ. In this
case the pair(c, c′) must be resolved unequally.

Type x (c, c′) is neither of Type 1 nor of Type 2. In this case(c, c′) may be resolved either equally or unequally.

Note that(c, c′) and(c′, c) are of the same type and must be resolved in the same way (either both equally or both
unequally). In completing the description of the algorithm we work with unordered pairs of columns.

A resolution of the pairs of Types0,1 andx can be represented by a symmetriclabeling functionL(c, c′) which is
equal to0 if (c, c′) is resolved equally, and to1 if (c, c′) is resolved unequally. A labeling function islegal if it yields
a legal solution to the PPH problem.

For any rowr let Vr = {c | A(r, c) = 2}. The proof of the following theorem will be given in the full version of the
paper.

Theorem 3.1. A labeling functionL is legal if and only if:

1. Every pair of columns is compatible inA.

2. If (c, c′) is of Type 0 thenL(c, c′) = 0;

3. If (c, c′) is of Type 1 thenL(c, c′) = 1

4. For eachr, Vr is partitioned into two parts such that, for allc andc′ in Vr, L(c, c′) = 0 if and only ifc andc′

are in the same part.

The last condition of this Theorem can be restated as follows. For each rowr choose areference columnc(r) ∈ Vr.
For every pair of columnsc1 ∈ Vr andc2 ∈ Vr such thatc(r), c1 andc2 are distinct,L(c1, c2) = L(c1, cr)+L(cr, c2),
where addition is modulo2.

With this restatement we see that all the constraints on a legal labeling function can be expressed as linear equations
over GF[2]. The number of variables is at most

(
m
2

)
and the number of equations is at mostnm2

2 . In polynomial
time, using Gaussian elimination, one can either determine that no solution exists or characterize the set of legal
solutions in terms of a set of variables that can be chosen freely, such that their values determine the values of the
remaining variables.

The polynomial time bound implied by this description is quite high, but in practice many of the pairs will be of
Type 1 or Type 0. The values of the corresponding variables are immediately determined, and further variables can
be eliminated easily by a forcing process which eliminates a variable whenever it encounters an equation with one
or two undetermined variables.

4 The Build-Tree algorithm

In this section we present an algorithm for the PPH problem which runs inO(nm2) time. In preparation for our main
algorithm we require some definitions and lemmas. Throughout the algorithm we assume thatB is an extension of

5

Strong domination Siblings Weak domination
c � c′ c ∼ c′ c � c′

11 10 10
12 20 20
10 01 22
20 02
22 22

Table 1: The table of the relations. Each column in the table represents a different relation. Each column contains a
list of pairs that are allowed to appear inB in this relation. Thus, we have (a)c � c′ if and only if c′(B, 1) = φ and
c′(B, 2) ⊆ c(B, 2). (b) c ∼ c′ if and only if c(B, 1) ∩ c′(B, 1) = c(B, 1) ∩ c′(B, 2) = c(B, 2) ∩ c′(B, 1) = φ and
c � c′. (c) c � c′ if and only if c(B, 2) ∩ c′(B, 1) = c(B, 0) ∩ c′(B, 1) = c(B, 0) ∩ c′(B, 2) = φ andc � c′.

A which is partially assigned, that is, for everyr ∈ [n], c ∈ [m], if arc ≤ 1, thenb2r−1,c = b2r,c = arc, and if
arc = 2, then eitherb2r−1,c = b2r,c = 2, or b2r−1,c 6= b2r,c andb2r−1,c, b2r,c ∈ {0, 1}.
We now define relations on the set of columns. The definitions of the relations strong domination, weak domination
and siblings are given by table 1. Ifc andc′ are identical, andc(B, 1)∩ c′(B, 1) 6= φ, we must equally resolvec and
c′, and thus we can remove one of them from the matrix. It is easy to verify that for any pair of columnsc, c′, one of
the relation holds.

Note that ifc � c′, thenc andc′ must be equally resolved, and in the phylogenetic tree,c must be an ancestor of
c′. If c ∼ c′, thenc andc′ must be unequally resolved, and they must be siblings in the phylogenetic tree. The only
ambiguous case is whenc � c′. Furthermore, note that ifB can be legally extended, then strong domination must
be a transitive and asymmetric relation, and thus it must induce a partial order on the columns. Weak domination
must also induce a partial order on the columns.

For any sitec, let Wc, Sc and Dc be the set of sites that are weakly dominated byc, siblings toc or strongly
dominated byc (and therefore must be descendants ofc) respectively, that isWc = {c′ | c � c′}, Sc = {c′ | c ∼ c′}
andDc = {c′ | c � c′}.

4.1 The Main Algorithm

We begin by removing any identical columnsc, c′ in A, wherec(A, 1) ∩ c′(A, 1) 6= φ. We then compute all the
pairwise relations between the sites, and we determine that there is no legal extension toA if one of the properties in
Lemma 5.1 is violated. and verify that there is no conflict inA. We then generateB from A by duplicating each row
of A twice. Next, we assign values toB using the algorithm Build-Tree given in Figure 2. The input to Build-Tree
is the matrixB2n×m which is assumed to be a partial extension ofA. The algorithm is recursive. It either returns an
assignment for the2 values inB such that the resulting matrix corresponds to a perfect phylogeny, or it determines
that there is no such assignment.

Let M = {c|∀c′ eitherc � c′, c ' c′ or c ∼ c′} be the set of maximal columns. Note that if there is no maximal
element, there must be a conflict and no legal extension. Chooseĉ ∈ M . The algorithm proceeds by considering
separately the setsWĉ,Dĉ, andSĉ. Note that there can only be a conflict between a sitec andĉ if the values assigned
to c andĉ in c(B, 2) are assigned incorrectly. When considering the rows ofĉ(B, 2), it is easy to see that the entries
of Dĉ andSĉ are uniquely determined assumingB can be legally extended. Each site inWĉ may either be a sibling
or a descendant of̂c. In order to determine which are the siblings and which are the descendants, we construct a
graphGĉ, with the set of sites as the set of vertices excludingĉ, and the set of edges as the set of pairs of sibling
sitesc, c′, for which ĉ(B, 2) ∩ c(B, 2) ∩ c′(B, 2) 6= φ. It is easy to see that(c, c′) share an edge if they cannot both
be either descendants or siblings ofĉ. We check if this graph is bipartite. In Lemma 4.1 we prove that if the graph
is not bipartite, then there is no legal extension toA. If it is bipartite, we color it using two colors, where one color
corresponds to sites that are siblings toĉ, and the other one to sites that are descendants ofĉ. We check that the

6

ALGORITHM Build-Tree(B)

Input: A {0,1,2} matrixB which is a partial extension toA.
Output: A legal assignment to the2 values ofB.

1. LetM = {c | ∀c′ eitherc � c′, c ' c′ or c ∼ c′} be the set of maximal columns. IfM = φ, then
there is no legal extension. Otherwise chooseĉ ∈ M .

2. Let Gĉ = (V,Eĉ) be a graph withWĉ ∪ Dĉ ∪ Sĉ as the vertices, and the set of edges isEĉ =
{(c, c′) | c ∼ c′, ĉ(B, 2) ∩ c(B, 2) ∩ c′(B, 2) 6= φ}.

3. For each rowr ∈ ĉ(B, 2), assignb2r−1,ĉ = 1, b2r,ĉ = 0.

4. If Gĉ is not bipartite report infeasibility and exit.

5. For each connected componentC of Gĉ do:

(a) ColorC in two colors,C = C0 ∪ C1.
(b) If for some j ∈ {0, 1}, Dĉ ∩ Cj 6= φ, then setL(Cj , ĉ) = 0 (equally resolved), and

L(C1−j , ĉ) = 1 (unequally resolved).
(c) If for somej ∈ {0, 1}, Sĉ ∩ Cj 6= φ, then setL(Cj , ĉ) = 1 andL(C1−j , ĉ) = 0.
(d) If L(C0, ĉ) is assigned both1 and0, report infeasibility and exit.
(e) If L(C0, ĉ) is not set at all, arbitrarily setL(C0, ĉ) = 0, andL(C1, ĉ) = 1.

6. For eachr ∈ ĉ(B, 2), c ∈ [m], c 6= ĉ we do:

(a) If arc = 2, andL(c, ĉ) = 1 then setb2r−1,c = 0, b2r,c = 1.
(b) If arc = 2, andL(c, ĉ) = 0 then setb2r−1,c = 1, b2r,c = 0.

7. Update the relations�,∼,� that were changed in step 6, and remove identical columnsc, c′ such
thatc(B, 1) ∩ c′(B, 1) 6= φ.

8. Solve Build-Tree(B \ (Wĉ ∪ {ĉ}).

Figure 2: Algorithm Build-Tree

colors are consistent withSĉ andDĉ. If they are not, then there is no legal extension, and if they are, we assign the
values induced bŷc to the entries in the rows of̂c(B, 2), and removêc andWĉ from the matrix, recursively calling
to the algorithm with the rest of the sites. Note that by doing that, we assign values to all the entries ofB, since each
column that is removed was fully assigned (the nonzero values of the sites inWĉ are only in the rows of̂c(B, 2)).

We now prove that the algorithm finds an extension if one exists. Clearly, for everyc′ ∈ Sĉ ∪Dĉ, there is a unique
way to assign the values toc′ in the rows ofc(B, 2), since we are certain whetherc andc′ have to be equally or
unequally resolved. after assigning values to the entries ofB in columnĉ, the assignment to the entries in every site
c whereĉ � c is uniquely determined, sincec must be a descendent ofc′ in the tree, and thereforeB must satisfy
that for every rowr such thatbrc = 1, then alsobrĉ = 1. From the same reason, ifr ∈ Sĉ (that isarĉ = 2), and
c ∼ ĉ, then the assignment tob2r−1,c, b2r,c is uniquely determined.

Note that ifc ∈ Wĉ, thenc(B, 1) = φ for the following reason. Sincêc ' c, thenĉ is either identical toc in which
casec(B, 1) = φ since otherwise we removec, or ĉ � c. In the latter, ifc(B, 1) 6= φ, then eitherc ∼ ĉ or c and ĉ
are identical. The following lemma captures the essence of the algorithm.

Lemma 4.1. If B has a legal extension thenGĉ is bipartite.

Proof. By definition (c1, c2) ∈ Eĉ, c1 andc2 must be unequally resolved. Thus,Gĉ cannot contain an odd cycle,
and is therefore bipartite.

By similar arguments to the ones given in Lemma 4.1, we show that the following lemma holds:

7

Lemma 4.2. If the algorithm reports infeasibility then there is no legal extension toB.

Proof. Assume by contradiction thatB has a legal extensionB′. By Lemma 4.1,Gĉ must be bipartite. In step 5 we
first color the connected componentC using two colors, inferring a partition ofC into two setsC1 andC2. By the
same argument given in the proof of Lemma 4.1, two sitesc1, c2 have different colors if and only if one of them is a
descendant of̂c and the other is sibling tôc in the phylogenetic tree. Since all sites inSĉ must be siblings of̂c in the
tree, and all sites inDĉ must be descendants ofĉ, it follows thatSĉ ∩ C must be assigned one color, whileDĉ ∩ C
must be assigned a different color. The algorithm outputs that there is no extension if this is not the case.

In order to complete the analysis of the algorithm, we show that the algorithm assigns a legal assignment toB.

Lemma 4.3. If B can be legally extended, then algorithmBuild-Treelegally extendsB into a matrixB′.

Proof. Assume by contradiction that we have a pair of sitesc, c′ which have a conflict. By induction, we may assume
that eitherc = ĉ, or c ∈ Wĉ, c

′ ∈ Wĉ, or c ∈ Wĉ, c
′ ∈ Dĉ ∪ Sĉ. We note first that for any of these cases, ifc andc′

satisfy thatB(c, 2) ∩ B(c′, 2) = φ, thenc andc′ are compatible in any extension ofB (assuming thatc andc′ are
compatible inA). We therefore assume thatB(c, 2)∩B(c′, 2) 6= φ. Clearly, ifc = ĉ, thenc andc′ are compatible in
B′. Assume now thatc ∈ Wĉ. Note thatc(B, 1) = φ. Therefore, ifr ∈ c(B′, 1) ∩ c′(B′, 1), then one of two cases
can be true:

1. r ∈ c(B, 2) ∩ c′(B, 2). In this case, we must have thatc andc′ has the same color, and therefore cannot share
an edge. Thus,c andc′ cannot be sibling. It is then easy to see thatc andc′ are compatible inB′.

2. r ∈ c(B, 2)∩c′(B, 1). In this case we get thatr ∈ ĉ(B, 1), and therefore,r ∈ c(B, 0) which is a contradiction.

In order to implement the algorithm efficiently, we first pre-compute all the relations between every pair of sites,
which takesO(nm2) time. After the preprocessing, each time we call the algorithm, we have to compute the edges
of the graph and to update the relations, which takesO(|ĉ(B, 2)|m2) time, but since the setŝc(B, 2) are disjoint, the
sum of these is at mostO(nm2). Furthermore, we have to find the maximal siteĉ, and color the graph using two
colors. This may takeO(|Eĉ|) time, which might be as large asO(m2), but since we only do that at mostm times,
the total running time isO(m2(m + n)).

In order to get all the possible extensions, we can change the algorithm as follows. Note that the only times where
the assignment is not uniquely determined is when we have a connected componentC which is fully contained in
Wĉ. We introduce a boolean variablexC for any connected component. LetC0, C1 be the two color sets ofC. Let
c ∈ C0, c

′ ∈ C1. For everyr ∈ ĉ(B, 2) ∩ c(B, 2), setb2r−1,c = x, b2r,c = x̄, and everyr ∈ ĉ(B, 2) ∩ c′(B, 2)
setb2r−1,c′ = x̄, b2r,c′ = x. It is easy to see that every possible solution corresponds to a{0, 1} assignment to
the boolean variablesxC , for every connected componentC.This gives a non-trivial bound of2m−1 to the number
of possible solutions. This bound is tight since when all the entries ofA equal2, we have exactly2m−1 possible
solutions (up to symmetry).

5 Adding Families to the Data

In many cases, the experimental studies are done on related individuals, such as a set of trios of mother, father and
a child. In this case, in addition to the coalescent model, we have the additional constraint that each of the parents
transmits exactly one of its haplotypes to the child. In this section we show that this extension to the PPH problem
can be solved in polynomial time. Formally, we solve the following problem:

8

The Trios PPH problem (TPPH). The input is a{0, 1, 2} matrix A = (aij) of sizen × m and a set of triplets
T ⊆ [n]3. Every triplet(r1, r2, r3) ∈ T represents a mother father and child trio. We need to determine if there is a
legal extensionB = (bij) to A such that for every triplet(r1, r2, r3) ∈ T , one of the rowsB(2r3 − 1, :), B(2r3, :) is
a duplicate of one of the rowsB(2r1 − 1, :), B(2r1, :), and the other is a duplicate of one of the rowsB(2r2 − 1, :
), B(2r2, :). This correspond to the fact that one of the haplotypes is transmitted from the mother and the other from
the father.

5.1 Solving TPPH

Recall that the output of algorithmBuild-Tree is a matrixB which corresponds to all possible solutions to the
coalescent model. For eachi ∈ [2n], j ∈ [m], eitherbij ∈ {0, 1}, or bij ∈ {x1, . . . , xk, x̄1, . . . , x̄k}, wherexi is a
boolean variable for eachi ∈ [k]. We have to set the values of the variables, so that the solution will be consistent
with the trios.

For ease of notation, for every triplett = (r1, r2, r3) ∈ T , and every columni, we say that the(t, i) configuration
is (z1, z2, z3, z4, z5, z6) if z1 = b2r1−1,i, z2 = b2r1,i, z3 = b2r2−1,i, z4 = b2r2,i, z5 = b2r3−1,i, z6 = b2r3,i, that is,
the valuesz1, z2, z3, z4, z5 andz6 represent the values of the mother, father and child’s haplotypes. We first need the
following lemma. Its proof will be given in the final version of the paper.

Lemma 5.1. For every triplett ∈ T and every columnc ∈ [m], the following(t, c) configurations never appear in
B:

1. (1, 1, ∗, ∗, x, x̄) for x ∈ {x1, . . . , xk, x̄1, . . . , x̄k}, where∗ represent an arbitrary value. Any permutations of
the values between the mother, father and child does not appear either.

2. (x, x̄, y, ȳ, ∗, ∗) wherex ∈ {x1, . . . , xk, x̄1, . . . , x̄k}, andx 6= y. Any permutations of the values between the
mother, father and child does not appear either.

Proof. 1. If the (t, i) configuration is(1, 1, ∗, ∗, x, x̄), thenc(1) 6= φ, c(2) 6= φ. Assume thatx = xC for some
connected component, wherêc is the maximal site at that point in the algorithm. Then,ĉ ' c, and thus,
c(1) = φ, which is a contradiction.

2. Since each variable correspond to a color in a connected component, and every site belongs only to one color
in one connected component throughout, then ify ∈ {x1, . . . , xk, x̄1, . . . , x̄k}, we must have thatx = y.
Since all the2-values ofi are assigned at the time wheni is weakly dominated bŷc, then it is impossible that
y ∈ {0, 1}.

For each triplett = (r1, r2, r3) ∈ T we introduce three additional boolean variablesp(t), y1(t), y2(y) which have
the following values:

• p(t) = 1 if and only if the haplotypeB(2r3 − 1, :) = B(2r1, :) or B(2r3 − 1, :) = B(2r1 − 1, :). In other
words,p(t) = 1 if and only if the first haplotype ofr3 is transmitted from the mother.

• y1(t) = 1 if and only if B(2r3 − 1, :) = B(2r1 − 1, :) or B(2r3 − 1, :) = B(2r2 − 1, :), that is, if the first
haplotype of the child is transmitted from a first haplotype of one of the parents.

• y2(t) = 1 if and only if B(2r3, :) = B(2r1−1, :) or B(2r3, :) = B(2r2−1, :), that is, if the second haplotype
of the child is transmitted from a first haplotype of one of the parents.

Whenever it is clear from the context, we will omitt, and just writep, y1, y2 instead ofp(t), y1(t), y2(t). It is
easy to see that any{0, 1} assignment to the variablesp(t), y1(t), y2(t) corresponds to one of the eight possible
transmissions of the haplotypes from the parents to the child. We thus get that the TPPH problem is equivalent
to assigning{0, 1} values to the variablesx1, . . . , xk, and the variablesp(t), y1(t), y2(t) for t ∈ T . Every triplet
t ∈ T , and every columnj ∈ [m], impose a constraint on the variables. For example, if the mother has0 values in

9

1 (z, z, z, z, z, z) No constraint
2 (0, 0, x, x̄, 0, 0) (x̄ ∨ p ∨ y2) ∧ (x̄ ∨ p̄ ∨ y1) ∧ (x ∨ p ∨ ȳ2) ∧ (x ∨ p̄ ∨ ȳ1)
3 (x, x̄, 0, 0, 0, 0) (x̄ ∨ p̄ ∨ y2) ∧ (x̄ ∨ p ∨ y1) ∧ (x ∨ p̄ ∨ ȳ2) ∧ (x ∨ p ∨ ȳ1)
4 (z, z̄, z, z, z, z) (p̄ ∨ y1) ∧ (p ∨ y2)
5 (z, z̄, z, z̄, z, z) y1 = y2 = 1
6 (x, x̄, x, x̄, 0, 0) y1 = y2 = x̄
7 (z, z̄, z̄, z, z, z) p = y1 = ȳ2

8 (z, z, z̄, z̄, z, z̄) p = 1
9 (x, x̄, 0, 0, x, x̄) (x ∧ p ∧ y1) ∨ (x̄ ∧ p̄ ∧ ȳ2)
10 (z, z, z, z̄, z, z̄) p ∧ ȳ2

11 (z, z̄, z, z̄, z, z̄) y1 ∧ ȳ2

12 (x, x̄, x, x̄, x, x̄) y1 ∧ ȳ2

13 (z̄, z, z, z̄, z, z̄) y1 = y2 = p̄

Table 2: The possible constraints up to symmetry.z represents any value in{0, 1}. x represents a literal, that is,
x ∈ {x1, . . . , xk, x̄1, . . . , x̄k).

both haplotypes, the father has1 in both haplotypes, and the child has1 in the first haplotype, and0 in the second
haplotype, then clearly,p(t) = 1. We will now show that almost all these constraints can be represented as a2-CNF
formula, and thus, can be solved using any polynomial algorithm known for2-SAT. The cases where the constraints
cannot be represented by a2-CNF formula will be considered separately. In Table 5.1 we list all possible constraints
which follow from the(t, c) configurations. It is easy to verify by Lemma 5.1, that all the possible configurations are
listed in the table, up to symmetry. Note that apart from constraints2 and3, all other constraints can be expressed
by a2-CNF formula, that is, the logical and of clauses, where each clause is the logical or of two literals.

For a triplet t ∈ T and a columni ∈ [m], we say that the configuration(t, i) is of type j for j ≤ 15 if the
configuration corresponds to thej-th row in Table 5.1. We denote it bytype(t, i) = j. The following claim is
proved by case analysis:

Claim 5.2. Let t ∈ T , and leti, j ∈ [m]. If type(t, i) ∈ {2, 3}, and type(t, j) > 3. then one can express an
equivalent constraint to the constraint inferred by(t, i) using a2-CNF formula.

We need the following definition.

Definition 5.3. We call a triplett ∈ T specialif one of the following hold:

1. For everyi ∈ [m], type(t, i) ∈ {1, 2, 4, 6, 8}. In this caset is special of type1.

2. For everyi ∈ [m], type(t, i) ∈ {1, 3, 5, 7, 9}. In this caset is special of type2.

3. For everyi ∈ [m], type(t, i) ∈ {1, 2, 3}. In this caset is special of type3.

We now describe an algorithm for solving the TPPH problem. We first use algorithm Build-Tree to get all possible
solutions to the PPH problem. We call a triplett ∈ T specialif type(t, i) ∈ {1, 2, 3} for everyi ∈ [m]. We now
construct a setC of constraints in the following way. We initializeC to be the set of constraints induced by all the
triplets that are not special. We then consider each special triplet and add constraints toC. Let t ∈ T be special
triplet. First note that ifi, j ∈ [m], x, y ∈ {x1, . . . , xk} such that the configuration in(t, i) is (x, x̄, 0, 0, 0, 0) and the
configuration in(t, j) is (y, ȳ, 0, 0, 0, 0) then necessarilyx = y. Therefore, in this case we add the constraintx = y
to C.

By Claim 5.2 we can express all the constraints inC by a2-CNF formula. We can therefore find a legal assignment
to the subproblem induced byC by using any of the algorithms known for 2-SAT [1, 4, 19, 16]. If there is no feasible

10

solution, we report that the problem is infeasible. Otherwise, the solution induces an assignment for a subsetX of
the variables{x1, . . . , xk}. We arbitrarily set the values of the set{x1, . . . , xk} \X to zero.

We now show that we can extend this solution to a feasible solution on the special triplets. Lett ∈ T be a special
triplet. It is easy to see that if we find a feasible solution toC, then the set of possible configurations int contains
at most four possible configurations out of(1, 1, 1, 1, 1, 1), (0, 0, 0, 0, 0, 0), (0, 0, z, z̄ , 0, 0) and(z′, z̄′, 0, 0, 0, 0) for
fixed z, z′ ∈ {0, 1}. It is easy to verify that for each such four configurations one could find a valid assignment to
p(t), y1(t) andy2(t).

6 Minimum Genotype Removal

In practice, the biological data does not exactly fit the coalescent model. We therefore pose the problem of removing
the minimal number of individuals from our data set so that the remaining data fits the coalescent model. Formally,
we introduce the following problem:

The Minimum Genotype Removal Problem . The input is a{0, 1, 2} matrix A = (aij) of dimensionsn × m.
The goal is to remove the minimal number of rows fromA such that the remaining rows fit the coalescent model,
with the all zeros root.

Clearly, algorithm Build-Tree shows that one can determine in polynomial time if the minimal number of rows is
zero. In fact, if the input to the problem is a{0, 1} matrix A, then the problem can be approximated within a factor
of 3 by a local ratio argument. Note that since we know that the root is the all zeros vector, then the matrix fits the
model if and only if there is no sub-matrix defined by three rows and a pair of columns such that the rows of the sub-
matrix contain the pairs(1, 1), (1, 0), (0, 1). While there is such a sub-matrix, we simply remove the corresponding
three rows. Eventually we will be left with a matrix with no conflict. Since for every three rows that we removed at
least one of them should be removed by the optimal solution, we get that this is a3-approximation to the problem.

6.1 The Hardness Result

In this section we show that the minimum genotype removal problem is at least as hard to approximate as the min
UnCut problem, which is a well studied optimization problem. In the minimum UnCut problem we are given a graph
G = (V,E), and we wish to find a minimum size set of edges such that by their removal we are left with a bipartite
graph. This problems has alog n approximation algorithm [15], wheren is the number of vertices inG. It is only
known to be MAX-SNP hard [17]. We now prove the following theorem:

Theorem 6.1. If the minimum genotype removal problem has anα-approximation algorithm, then one can find an
α-approximation algorithm for the minimum UnCut problem.

Proof. If α > log n, then the theorem trivially holds. We thus assume thatα ≤ log n. LetA be anα-approximation
algorithm for the minimum genotype removal problem. LetG = (V,E) be a graph, whereV = {1, . . . , n},
E = {e1, . . . , em}. We construct the following matrixA = (aij) as an input toA. A will be of dimension
m(n + 1)α× (n + 1). The entries ofA will have the following values:

1. For everyi ∈ [m(n + 1)α], ai,n+1 = 2. (The last column contains only values of2).

2. For everyi ∈ [n], j ∈ [mα− 1], ai·m·α−j,i = 2.

3. For everyi ∈ [m], if ei = (j, k), thenai+mn,j = 2, ai+mnα,j = 2.

4. Any other entry ofA is zero.

By property 2, for everyi 6= j, i, j ∈ [n], we have thati andj are siblings. By property 1, columnn + 1 is the
maximal column. It is easy to see that the graphGn+1 constructed in algorithm Build-Tree is isomorphic toG. From
that, it is easy to see that the solution returned byA corresponds to anα-approximation to the Min UnCut problem.

11

A more detailed proof will be given in the final version of the paper. there is a one to one correspondence between
the Each of the lastm rows ofA corresponds to an edge inG. Furthermore, by removing a subset of the rows ofA
so thatGn+1 becomes bipartite, we are left with a matrix which fits the coalescent model.

Let R be the set of rows ofA. LetOPT ⊆ E be the optimal solution to the min UnCut problem, and letOPT ′ ⊆ R
be the optimal solution for the minimum haplotype removal problem. Clearly, given a solutionS ⊆ E to the min
UnCut problem onG one can construct a solution to the minimum haplotype removal simply by removing the rows in
R that correspond toS. Thus,|OPT ′| ≤ |OPT | ≤ m. A returns a setS′ ⊆ R of size at most|OPT ′|α ≤ m log n.
Thus, since every row inR apart from the lastm rows appearsm log n times, we can assume thatS′ is a subset of
the lastm rows ofA. We now remove fromG every edge which corresponds to a row inS′, and it is easy to see that
the resulting graph is bipartite, and that the number of edges removed is|S′| ≤ |OPT ′|α ≤ |OPT |α, and thus we
get anα-approximation algorithm to the minimum haplotype removal problem.

7 Experimental Results

We performed our experiments over the data presented in Daly et al., 2001 [5]. In their study they predicted11
blocks over the103 SNPs they examined. They used a set of129 mother-father child trios, and thus, most of the
haplotype bases are uniquely determined by these relations under the assumption of perfect Mendelian heredity.
We examined the predictions of algorithm Build-Tree over their blocks by only using the children genotypes (see
Table 3). We used the methods in [11] to fit the model to the coalescent model whenever needed. Our results show
an extremely small error rate. This experiment proves that using our algorithm, the study presented in [5] could
have been done using the children alone. A more concise experimental work based on our algorithms and some
extensions can be found in [11].

SNPs Actual Predicted Frequency Error Rate
Common Common
Haplotypes Haplotypes

1-8 GGACAACC GGACAACC 215 0
AATTCGTG AATTCGTG 38

10-14 TTACG TTACG 217 0
CCCAA CCCAA 35

16-24 CGGAGACGA CGGAGACGA 139 0.005780
GACTGGTCG GACTGGTCG 52
CGCAGACGA CGCAGACGA 34

CGGATACGA 15

25-35 CGCGCCCGGAT CGCGCCCGGAT 142 0
CTGCTATAACC CTGCTATAACC 39
TTGCCCCGGCT* CTGCCCCGGCT 35
CTGCCCCAACC* TTGCCCCAACC 25

36-40 CCAGC CCAGC 146 0
CCACC CCACC 51
GCGCT GCGCT 30
CAACC CAACC 12

41-45 CCGAT CCGAT 152 0.011561
CTGAC CTGAC 63
ATACT ATACT 31

78-84 CGTTTAG CGTTTAG 142 0
TGTT*GA TGTTTGA 53
TGATTAG TGATTAG 20
CGTCTAG CGTCTAG 12

TGTTGGA 10

86-91 ACAACA ACAACA 145 0.007353
GCGGTG GCGGTG 71
ACGGTG ACGGTG 14
GTGACG GTGACG 13

92-98 GTTCTGA GTTCTGA 142 0.004132
TGTGTAA TGTGTAA 49
TG*GCGG TGTGCGG 32

TGCGTAA 15

99-103 CGGCG CGGCG 112 0.003448
TATAG TATAG 105
TATCA TATCA 35

Table 3: Predictions over data from Daly et al. 2001, [5]. The second column shows the common haplotypes as
presented in Daly et al. 2001 as well as their frequencies. The third column shows the predictions and the fourth
gives their frequencies. The fifth column shows the error ratio in our predictions.

12

8 Concluding Remarks

We presented a practical and efficient algorithm to infer haplotype structure from genotype data. We furthermore
extended our algorithm to cope with further constraints. We presented relations between classical combinatorial
problems and the suggested biological problem. Our experiments show that our algorithms are practical, and could
save time and money in biological experiments. We believe that further extensions to this problem could lead to
even more accurate haplotype reconstruction on a larger scale. Specifically, coping with errors in the data and with
missing data is left as an open problem.

References

[1] M.F. Plass B. Aspval and R.E. Tarjan. A linear time algorithm for testing the truth of certain quantified boolean formulas.
Information Processing Letter, 8:121–123, 1979.

[2] R. E. Bixby and D. K. Wagner. An almost linear time algorithm for graph realization.Mathematics of Operations
Research, 13:99–123, 1988.

[3] AG Clark. Inference of haplotypes from pcr-amplified samples of diploid populations.Journal of Molecular Biology and
Evolution, 7(2):111–22, Mar 1990.

[4] S. A. Cook. The complexity of theorem-proving procedures. InSTOC, pages 151–158, 1971.

[5] MJ Daly, JD Rioux, SF Schaffner, TJ Hudson, and ES Lander. High-resolution haplotype structure in the human genome.
Nature Genetics, 29(2):229–32, Oct 2001.

[6] L Excoffier and M Slatkin. Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population.
Molecular Biology and Evolution, 12(5):921–7, Sept 1995.

[7] D Fallin and NJ Schork. Accuracy of haplotype frequency estimation for biallelic loci, via the expectation-maximization
algorithm for unphased diploid genotype data.American Journal of Human Genetics, 67(4):947–59, Oct 2000.

[8] D. Gusfield. A practical algorithm for optimal inference of haplotypes from diploid populations. InProceedings of the
Eighth International Conference on Intelligent Systems for Molecular Biology, 2000.

[9] D. Gusfield. nference of haplotypes from samples of diploid populations: complexity and algorithms.Journal of Compu-
tational Biology, 8(3):305–23, 2001.

[10] D. Gusfield. Haplotyping as perfect phylogeny: Conceptual framework and efficient solutions (extended abstract). In
Proceedings of the 6th International Conference on Computational Molecular Biology (RECOMB 2002), 2002.

[11] E. Halperin and E. Eskin. Large scale recovery of haplotypes from genotype data using imperfect phylogeny.Unpublished
Manuscript, 2002.

[12] ME Hawley and KK Kidd. Haplo: a program using the em algorithm to estimate the frequencies of multi-site haplotypes.
Journal of Heredity, 86(5):409–11, Sep-Oct 1995.

[13] G. Lancia, V. Bafna, S. Istrail, R. Lippert, and R. Schwartz. Snps problems, algorithms and complexity, european sym-
posium on algorithms. In Springer-Verlag, editor,Proceedings of the European Symposium on Algorithms (ESA-2001),
Lecture Notes in Computer Science, volume 2161, pages 182–193, 2001.

[14] J.C. Long, R.C. Williams, and M. Urbanek. An e-m algorithm and testing strategy for multiple-locus haplotypes.Ameri-
can Journal of Human Genetics, 56(3):799–810, Mar 1995.

[15] V.V. Vazirani N. Garg and M. Yannakakis. Approximate max-flow min-(multi)cut theorems and their applications.SIAM
J. Comp, 25:235–251, 1996.

[16] C.H. Papadimitriou. On selecting a satisfying truth assignment.FOCS, pages 163–169, 1991.

[17] C.H. Papadimitriou and M.Yannakakis. Optimization, approximation and complexity classes.JCSS, 43:425–440, 1991.

[18] N Patil, AJ Berno, DA Hinds, WA Barrett, JM Doshi, CR Hacker, CR Kautzer, DH Lee, C Marjoribanks, DP McDonough,
BT Nguyen, MC Norris, JB Sheehan, N Shen, D Stern, RP Stokowski, DJ Thomas, MO Trulson, KR Vyas, KA Frazer,
SP Fodor, and DR Cox. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome
21. Science, 294(5547):1719–23, Nov 23 2001.

13

[19] A. Itai S. Even and A. Shamir. On the complexity of timetable and multicommodity flow problems.SICOMP, 5:691–703,
1976.

[20] M. Stephens, N. Smith, , and P. Donnelly. A new statistical method for haplotype reconstruction from population data.
American Journal of Human Genetics, 68:978–989, 2001.

[21] W.T. Tutte. An algorithm for determining whether a given binary matroid is graphic.Proc. of Amer. Math. Soc., 11:905–
917, 1960.

14

