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Abstract

Each person’s genome contains two copies of each chromosome, one inherited from the father and the other
from the mother. A person'genotypespecifies the pair of bases at each site, but does not specify which base
occurs on which chromosome. The sequence of each chromosome separately isteabliedygpe The determi-
nation of the haplotypes within a population is essential for understanding genetic variation and the inheritance of
complex diseases. The haplotype mapping project, a successor to the human genome project, seeks to determine
the common haplotypes in the human population.

Since experimental determination of a person’s genotype is less expensive than determining its component
haplotypes, algorithms are required for computing haplotypes from genotypes. Two observations aid in this
process: first, the human genome contains short blocks within which only a few different haplotypes occur;
second, as suggested by Gusfield, it is reasonable to assume that the haplotypes observed within a block have
evolved according to perfect phylogenyin which at most one mutation event has occurred at any site.

We present a simple and efficient polynomial-time algorithm for inferring haplotypes from the genotypes of a
set of individuals assuming a perfect phylogeny. Using a reduction to 2-SAT we extend this algorithm to handle
constraints that apply when we have genotypes from both parents and child. We also present a hardness result for
the problem of removing the minimum number of individuals from a population to ensure that the genotypes of
the remaining individuals are consistent with a perfect phylogeny.

Our algorithms have been tested on real data and give biologically meaningful results.

1 Introduction

Critical to the understanding of the genetic basis for complex diseases is the modeling of human genetic variation.
Most of this variation can be characterized by single nucleotide polymorphisms (SNPs) which are mutations at a
single nucleotide position that occurred once in human history and been passed on through heredity. Although
the two chromosomes of an individual can be separated and analyzed independently as in the study of [18], current
technology suitable for large scale polymorphism screening olgeimstypanformation at each SNP. The genotype
gives the bases at the SNP for both copies of the chromosome, but does not identify the chromosome on which each
base appears. Consider a SNP where there are two common Hase&,. There are four possible cases for the
genotype. Two of the cases are where either both chromosomes cdraalroth chromosomes contaif We refer
to these cases dm@wmozygougenotypes. The other two cases are where the first chromosome cofitaimsthe
second contain& and vice versa. We refer to these casebeterozygougenotypes. Thus, the genotype consists
of the mutual information on the two chromosomes. The sequence of each chromosome separately is called the
haplotype information. Consider a case where, at four successive SNPs, with possibledvatygésan individual
has a genotypel H HG, whereH represents a heterozygous site. In this case, the individual’s haplotypes have two
possibilities: either one chromosome contaihd AG and the other containd GGG or one chromosome contains
AAGG and the other containd GAG.
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One of the first goals set by the NIH right after the completion of the human genome project is the haplotype mapping
project. The goal of the human genome project was to find the consensus genotype sequence of humans. In order
to achieve more information on genetic disease, one has to know not only the genotype data, but also the haplotype
data, and not only the consensus, but which are the common haplotypes. Recent studies [5, 18] have shown that
SNPs that are physically close to each other on the chromosome are usually correlated, and that our chromosomes
can be patrtitioned into blocks, so that in each block there is a strong correlation between all the SNPs contained in
it. These studies show that for each block, the number of possible variation is usually very3sorad) (while

the number of SNPs in the block could be as larg8(asThe goal of the haplotype mapping project is to gather

all the haplotype information, that is, for each block, to list all possible combinations of SNPs that appear in the
population. After having all this information, one could perform a more accurate case study to associate genes (and
maybe blocks) with diseases, and furthermore, one could sequence the human chromosomes much faster with high
accuracy. This paper takes the haplotype mapping project one step forward by finding an efficient way to infer the
haplotype data of a population by observing only the genotypes of the population.

Given a set ofr genotypes, each of length, we address the problem of inferring the haplotype structure. Clearly,

in the absence of additional information, one cannot infer the haplotype structure, since there are many possible
solutions. Gusfield [10] suggested to add the constraint that the resulting set of haplotypes should correspond to a
phylogeny model known as the coalescent model, or perfect phylogeny. In this model we assume perfect Mendelian
heredity, that is, one of the chromosomes of each parent is transmitted to the child with some possible mutations.
Furthermore, we assume that in each SNP site, there has only been one mutation throughout the history represented
by the tree. We wish to find a directed phylogenetic tree that will correspond to these two assumptions, such that
each of the resulting haplotypes will be found in one of the leaves of that tree. The problem is referred to as the
Perfect Phylogeny Haplotype problem (PPH problem). We will formally state the problem in Section 2.1. Gusfield
[10] introduces a polynomial time algorithm for the PPH problem. His algorithm uses as a black box an algorithm to
recognize graphic matroids [21, 2]. This algorithm is very complicated and impractical. One of the open problems
mentioned in Gusfield’s paper is to find a simple and efficient algorithm to the PPH problem. In this paper we
introduce an efficient and simple solution to the problem, using no heavy machinery. The simplicity of our algorithm
sheds a new insight on the problem and allows us to cope with some extensions of the model. We show relations
between the extensions of the problem and other combinatorial problems suishtesiability and minimum CNF
deletion.

We begin by presenting an extremely simple and elegant polynomial-time algorithm for the problem. Although this
algorithm may be effective in practice its time bound is unreasonably high. Therefore we go on to present our main
algorithm, which runs i (nm?) time, and produces a simple linear size data structure which can be used to produce
all possible solutions to the problem. Each possible solution can be implicitly enumerated i@ (ime(clearly,

to output the solution one need¥mn) time). We furthermore extend our main algorithm to handle the additional
constraint that some of the individuals are related, and therefore, a parent must transmit one of its haplotypes to a
child, and each child has one haplotype transmitted from its father, and the other from its mother. We use the data
structure returned by our main algorithm for the PPH problem as a starting point for the algorithm, and reduce the
resulting problem to the-SAT problem which can be solved in polynomial time [1, 4, 19, 16].

Finally, we address the problem of finding a minimal set of individuals such that by removing them from our data
set, we will be able to find at least one solution to the PPH problem. We show that findimgaproximation

to this problem will imply anc-approximation algorithm for the Min UnCut problem, where a gréphk- (V, E)

is given, and the goal is to remove the minimum number of edgéssnch that the remaining graph is bipartite.
This problem has &g n-approximation algorithm by a reduction from the minim@rCNF deletion [15]. On the
negative side it is only known that the problem is MAX-SNP hard, and therefore there is no PTAS for the problem
[17] unless P=NP.

We evaluate our algorithm over the data collected in the study of a 500 kilobase region of chromosome 5p31 con-
taining 103 SNPs from the study of [5]. In this study, genotypes are collected fre@@mother, father, child trios
and the correct child haplotypes are inferred from these genotypes. In our experiments, we use our method to make



Figure 1: The coalescent tree corresponding to the haplogfg¥®, 01000,01001, 11000, 11100,11110

predictions of the child’s haplotypes from the child’s genotypes and then check our predictions against the cor-
rect haplotypes inferred from the trios. Our results indicate that the algorithm is practical and efficient, and gives
biologically meaningful results.

There are several previous approaches to determining the haplotype information from genotype data. These methods
include the parsimony approach of Clark [3] and related approaches [8, 9, 13], maximum likelihood methods [6, 12,
14, 7] and statistical methods such as PHASE [20]. These approaches use heuristics, but in practice they do not scale
to data that contains more tha sites, while our algorithm could cope with large data sets.

2 Preliminaries

We first formally describe the coalescent model (perfect phylogeny) and the PPH problem. We assume that at each
polymorphism site there are two possible nucleotides that appear at any position in any one of the chromosomes. Let
us denote these nucleotides(gnd1. We note that although the assumption that there are only two possibilities at
any site seems artificial, it is the case in most polymorphism sites.

2.1 The Perfect Phylogeny Haplotype Problem

Given a{0, 1} matrix B = (b;;) of sizen x m which represents a set of haplotypes, we saykhfits the coalescent
model if there exists a rooted tr@& B) such that the following holds:

1. Each vertex of T'(B) is labeled by a row vectai{v) of lengthm representing a possible haplotype that
existed through history.

2. For each vertex and its parent., the set of sites whergu) andi(v) differ is called the mutations from to
V.

3. In each of then sites, there is at most one parent-child pair in the tree, where there is a mutation in this site
from the parent to the child.

4. The set of rows oB is contained in the set of labels 81 B).

An example for a coalescent tree is given in Figure 1. We first introduce some notations. Given a pair of chromo-
someschy, chy, and a given sitg in the chromosome, we say that the haplotype configuratiehiinchs is (z,y),

if the nucleotides present in sijen ch; andchy arex andy respectively. Throughout the paper, for a given integer

k, we denote the sdtl, ..., k} by [k]. For a matrix)/, we denote the-th row of M by M (i, :).

We are now ready to define the Perfect Phylogeny Haplotype (PPH) problem.

The Perfect Phylogeny Haplotype Problem (PPH). Aninput to the PPH problem is anx m matrix A = (a;;),
wherea;; € {0,1,2} for eachi € [n],j € [m]. The goal is to construct §0,1} matrix B = (b;;) of dimension



2n x m, such that for every € [n],j S [m], if Qij 75 2 thenbgi,u = b2i,j = G4, if Qjj = 2 thenbgi,u 75 bgi’j,
and thatB fits the coalescent model, or determine that such a matdoes not exist.

The matrixA represents the genotypesroindividuals, where the length of each genotyperisFor any individual

r € [n], and sitec € [m], the four possible haplotype states &be0), (0,1),(1,0),(1,1). The sequence observed
can only distinguish between the three stdtesand2. States) and1 stand for the haplotype statés, 0), (1,1)
respectively. Stat@ stands for either the haplotype stdte 1) or (1,0). We are interested in constructing the
haplotype matrixB which will be consistent wittd and with the coalescent model. We call such a matrix a legal
extension ofA.

Before introducing the algorithms we have to introduce some notations and definitions.

2.2 Some Useful Lemmas and Notations

Throughout the paper we will use the terms sites and columns alternatively to represent the columns of the matrix.
Letey,...,cn be the set of sites. For a sitec [m] and a valuer € {0, 1,2}, letc(A,z) = {r € [n] | are = z},
andc(B,z) = {r € [2n] | b, = z}. For a matrix}/ and a columre, we denote by\/ \ ¢ the matrix generated by
truncating columre from M.

We say that two sites, ¢’ are compatible in a matrid/ if at least one of the following sets is empty:
o (c(M,1)Nd(M,1))U (e¢(M,2) N (M,1))U (e(M,1) N (M,2)).
e (c(M,1)Nc(M,0))U (c(M,2) N (M,0))U (e¢(M,1) N (M,2)).
e (¢(M,0)Nc(M,1))U (e¢(M,0)Nc(M,2)U (e¢(M,2) N (M,1)).

If ¢ and¢’ are not compatible then we say thaand ¢’ have a conflict. The following lemma has been proven
independently by several authors:

Lemma 2.1. A{0, 1} matrix M,,«,, corresponds to a perfect phylogeny if and only if every two sites are compatible
in M. Furthermore,M corresponds to a perfect phylogenetic tree with reat, . . . , z,,,) if and only if for each pair

of SiteSCi,Cj, one of the setg;(M,1 — x;) N Cj(M, 1-— xj), ¢i(M,z;)N Cj(M, 11— xj), CZ'(M, 1—x)N Cj(M, xj)

is empty.

By Lemma 2.1, in the PPH problem, we have to assjgnl} values to the2-entries inB so that there is no
conflict. Note that without loss of generality we may assume that the root of the tree is the all zeros vector for the
following reason. Change the values of the entriesidduch that in each site, either|c(A4,0)| > |c(A,1)| or

lc(A,0)] = |c(A,1)| and the minimal index, such thatu;, . = 0 is smaller then the minimal index such that

a;, . = 1. Inthis case, itis easy to see that unless there are two identical columimgherec(A, 0) = ¢, then every

two sitesc, ¢ satisfy thate(A,0) N ¢/(A,0) # ¢. Therefore,B must also satisfy that{ B,0) N ¢/ (B, 0). Thusc and

¢ are compatible imB if and only if one of the sets(B,1) N (B, 1),¢(B,1) N (B,0) ande(B,0) N (B, 1) is

empty.

Thus, from now on we assume that the root of the tree is the all zeros veectR,If) N ¢/(B, 1) # ¢ thenc andd

must lie on the same path from a leaf to the root, and thus, one must be an ancestor of the other. On the other hand,
if ¢(B,1)Nd(B,0) # ¢, then there is a path from the leaf to the root, whelies in the path while’ does not.

This implies that’ cannot be an ancestor af

3 A Simple Algorithm for the PPH Problem

Let then x m matrix A be an input to the PPH problem, and let taex m {0, 1} matrix B be a legal solution to the
problem. Letc andc’ be two columns such thatA, 2)Nc' (A, 2) # ¢. Let us say thaB resolveshe pair of columns
(¢, ) unequallyif ¢(B,1) N (B,1) = ¢ andequallyif ¢(B,0) N (B,1) = ¢ or¢(B,1) N (B,0) = ¢. Then
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B must resolve the paifc, ¢’) either equally or unequally, and cannot resolve the pair both equally and unequally.
Solving the PPH problem is equivalent to deciding in a consistent way which pairs of columns to resolve equally and
which to resolve unequally. These decisions essentially determine the fBatriorder to determine the constraints

on a consistent solution we classify the ordered pairs of columns.

Each ordered paifc, ¢’) of columns is of one of four types.
Type A: ¢(A,2) N (A,2) = ¢. In this case the paiic, ¢’) does not have to be resolved.

In the remaining three casegA, 2) N ¢(A,2) # ¢ and the pail(c, ¢’) does have to be resolved. The cases are as
follows:

Type 0 (¢(A,1) N (A1) U (c(A,2) Nd(A,1) U (c(A,1) N (A,2)) # ¢. In this case the paifc, ¢') must be
resolved equally.

Type 1 (¢(A,0) N (A 1)) U (e(A,0)Nd(A,2)) #¢and(c(4,1) N (A,0))U(c(A,2) N (A,0)) # ¢. In this
case the paifc, ¢') must be resolved unequally.

Type x (¢, ) is neither of Type 1 nor of Type 2. In this cagec’) may be resolved either equally or unequally.

Note that(c, ¢') and(c/, ¢) are of the same type and must be resolved in the same way (either both equally or both
unequally). In completing the description of the algorithm we work with unordered pairs of columns.

A resolution of the pairs of Type1 andx can be represented by a symmetabeling functionL(c, ¢') which is
equal ta0 if (¢, ') is resolved equally, and tbif (¢, ') is resolved unequally. A labeling functionlegal if it yields
a legal solution to the PPH problem.

For any rowr let V. = {c¢ | A(r,c) = 2}. The proof of the following theorem will be given in the full version of the
paper.

Theorem 3.1. A labeling functionL is legal if and only if:

1. Every pair of columns is compatible ih

2. If (¢,d) is of Type O ther(c, ¢') = 0;

3. If (¢,d) is of Type 1 ther (¢, ') =1

4. For eachr, V,. is partitioned into two parts such that, for alland¢’ in V., L(c,¢’) = 0 if and only ifc and ¢/
are in the same part.

The last condition of this Theorem can be restated as follows. For eachebwoose aeference columa(r) € V.
For every pair of columns, € V. andce € V, such that(r), ¢; andes are distinct,L(c1, ¢2) = L(c1, ¢ )+L(cyp, c2),
where addition is modul@.

With this restatement we see that all the constraints on a legal labeling function can be expressed as linear equations
over GF[2]. The number of variables is at m¢§t) and the number of equations is at m@%ﬁ. In polynomial

time, using Gaussian elimination, one can either determine that no solution exists or characterize the set of legal

solutions in terms of a set of variables that can be chosen freely, such that their values determine the values of the
remaining variables.

The polynomial time bound implied by this description is quite high, but in practice many of the pairs will be of
Type 1 or Type 0. The values of the corresponding variables are immediately determined, and further variables can
be eliminated easily by a forcing process which eliminates a variable whenever it encounters an equation with one
or two undetermined variables.

4 The Build-Tree algorithm

In this section we present an algorithm for the PPH problem which ru@g:im»?) time. In preparation for our main
algorithm we require some definitions and lemmas. Throughout the algorithm we assumBadtzat extension of



Strong domination Siblings| Weak domination
c>c c~c c>c
11 10 10
12 20 20
10 01 22
20 02
22 22

Table 1: The table of the relations. Each column in the table represents a different relation. Each column contains a
list of pairs that are allowed to appearfhin this relation. Thus, we have (a)- ¢ ifand only if ¢/(B,1) = ¢ and

d(B,2) C ¢(B,2). (b)c ~ ¢ ifandonly if¢(B,1) N (B,1) = ¢(B,1) N (B,2) = ¢(B,2) N (B,1) = ¢ and
c#d.(c)e= difandonlyifc(B,2) N (B,1) = ¢(B,0) N (B,1) =¢(B,0) N (B,2) = ¢ andc ¥ .

A which is partially assigned, that is, for everye [n],c € [m], if a,. < 1, thenby,_1 . = bar. = ay., and if
are = 2, then eitheerrfl,c = b2r,c =2,0r b2r71,c 7é b2r,c andeT*l,Cu b2r,c € {0, 1}

We now define relations on the set of columns. The definitions of the relations strong domination, weak domination
and siblings are given by table 1.dfand¢’ are identical, and(B,1) N (B, 1) # ¢, we must equally resolveand

c, and thus we can remove one of them from the matrix. It is easy to verify that for any pair of caturhrane of

the relation holds.

Note that ifc = ¢/, thenc and¢’ must be equally resolved, and in the phylogenetic tremust be an ancestor of

. If ¢ ~ ¢, thenc andc’ must be unequally resolved, and they must be siblings in the phylogenetic tree. The only
ambiguous case is when> ¢. Furthermore, note that B can be legally extended, then strong domination must

be a transitive and asymmetric relation, and thus it must induce a partial order on the columns. Weak domination
must also induce a partial order on the columns.

For any sitec, let W,, S. and D, be the set of sites that are weakly dominatedcpwiblings toc or strongly
dominated by: (and therefore must be descendants)atspectively, that i$V,. = {¢ | ¢ = '}, Sc = {d | ¢ ~ '}
andD. = {cd | ¢ > }.

4.1 The Main Algorithm

We begin by removing any identical columas’ in A, wherec(A4,1) N c(A,1) # ¢. We then compute all the
pairwise relations between the sites, and we determine that there is no legal extensibarie of the properties in
Lemma 5.1 is violated. and verify that there is no conflicdinWe then generat® from A by duplicating each row

of A twice. Next, we assign values 18 using the algorithm Build-Tree given in Figure 2. The input to Build-Tree

is the matrixBa, x,» Which is assumed to be a partial extensiomofThe algorithm is recursive. It either returns an
assignment for the values inB such that the resulting matrix corresponds to a perfect phylogeny, or it determines
that there is no such assignment.

Let M = {c|Vc eitherc - ¢,c Z ¢ orc ~ '} be the set of maximal columns. Note that if there is no maximal
element, there must be a conflict and no legal extension. Chiogs&/. The algorithm proceeds by considering
separately the setd;, D;, and.S;. Note that there can only be a conflict between acsitedé if the values assigned

to c and¢ in ¢(B, 2) are assigned incorrectly. When considering the ron& 8, 2), it is easy to see that the entries
of D; andS; are uniguely determined assumifgcan be legally extended. Each sitelify may either be a sibling

or a descendant @ In order to determine which are the siblings and which are the descendants, we construct a
graphGg, with the set of sites as the set of vertices excludingnd the set of edges as the set of pairs of sibling
sitesc, ¢, for whiché(B,2) N¢(B,2) N (B,2) # ¢. Itis easy to see thdt, ¢’) share an edge if they cannot both
be either descendants or siblingscofWe check if this graph is bipartite. In Lemma 4.1 we prove that if the graph
is not bipartite, then there is no legal extensiomtolf it is bipartite, we color it using two colors, where one color
corresponds to sites that are siblingstt@and the other one to sites that are descendants We check that the
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ALGORITHM Build-Tree(B)

Input: A {0,1,2} matrix B which is a partial extension td.
Output: A legal assignment to thzvalues of B.

1. LetM = {c |V eitherc > ¢/,c Z ¢ orc ~ '} be the set of maximal columns. M = ¢, then
there is no legal extension. Otherwise chobdseM.

2. LetG: = (V, E;) be a graph withV: U D: U S; as the vertices, and the set of edge&is=
{(e,d) | e~ é(B,2)Ne(B,2)N(B,2) # ¢}.

3. For each row € ¢(B,2), assignby,_1 ¢ = 1, by, s = 0.

4. If G¢ is not bipartite report infeasibility and exit.

5. For each connected componéhbf G, do:

(a) ColorC intwo colors,C = Cy U (4.
(b) If for somej € {0,1}, D: N C; # ¢, then setL(C;,¢é) = 0 (equally resolved), and
L(Cy—;,¢) =1 (unequally resolved).
(c) Ifforsomej € {0,1}, Se N C; # ¢, then setl(C;,¢) = 1andL(Cy—;,¢) = 0.
(d) If L(Cy, ¢) is assigned botth and0, report infeasibility and exit.
(e) If L(Cy,¢) is not set at all, arbitrarily set(Cy, ¢) = 0, andL(C4,¢) = 1.
6. Foreach € é(B,2),c € [m], ¢ # ¢ we do:
(@) Ifa,. =2,andL(c, ¢) = 1then seby, 1. =0, by = 1.
(b) If ay. =2, andL(c,¢) = 0 then seby, 1 . =1, by, . = 0.
7. Update the relations, ~, = that were changed in step 6, and remove identical columtisuch
thate(B,1) N (B, 1) # ¢.
. Solve Build-TreeB \ (W, U {¢}).

(o]

Figure 2: Algorithm Build-Tree

colors are consistent with; and D;. If they are not, then there is no legal extension, and if they are, we assign the
values induced by to the entries in the rows @ B, 2), and remove and W, from the matrix, recursively calling

to the algorithm with the rest of the sites. Note that by doing that, we assign values to all the enffjesnaie each
column that is removed was fully assigned (the nonzero values of the sitésane only in the rows of(B, 2)).

We now prove that the algorithm finds an extension if one exists. Clearly, for everys; U D;, there is a unique
way to assign the values 0 in the rows ofc(B, 2), since we are certain whetherand ¢’ have to be equally or
unequally resolved. after assigning values to the entrids iofcolumné, the assignment to the entries in every site
c whereé = c is uniquely determined, sinegemust be a descendent dfin the tree, and thereforB must satisfy
that for every rowr such that,. = 1, then alsa,; = 1. From the same reason,sife S; (that isa,: = 2), and

¢ ~ ¢, then the assignment g, ., b2, is uniquely determined.

Note that ifc € W, thenc(B, 1) = ¢ for the following reason. Sincéz ¢, thené is either identical ta: in which
casec(B, 1) = ¢ since otherwise we remove or ¢ = c. In the latter, ife(B, 1) # ¢, then either ~ ¢ or c and¢
are identical. The following lemma captures the essence of the algorithm.

Lemma 4.1. If B has a legal extension the®; is bipartite.

Proof. By definition (¢1,c2) € Eg, ¢1 andca must be unequally resolved. Thus; cannot contain an odd cycle,
and is therefore bipartite. O

By similar arguments to the ones given in Lemma 4.1, we show that the following lemma holds:

7



Lemma 4.2. If the algorithm reports infeasibility then there is no legal extensioito

Proof. Assume by contradiction thd has a legal extensioR’. By Lemma 4.1(: must be bipartite. In step 5 we
first color the connected componetitusing two colors, inferring a partition @ into two setsC; andCs. By the
same argument given in the proof of Lemma 4.1, two sites, have different colors if and only if one of them is a
descendant of and the other is sibling téin the phylogenetic tree. Since all sitesSpmust be siblings of in the
tree, and all sites iD; must be descendants gfit follows that.S; N C must be assigned one color, while N C
must be assigned a different color. The algorithm outputs that there is no extension if this is not the casel]

In order to complete the analysis of the algorithm, we show that the algorithm assigns a legal assigrnent to

Lemma 4.3. If B can be legally extended, then algorittBuild-Treelegally extends3 into a matrix B’.

Proof. Assume by contradiction that we have a pair of site$ which have a conflict. By induction, we may assume
that eitherc = ¢, orc € Wy, € Ws, orc € We,d € D: U S:. We note first that for any of these cases; #ndc’
satisfy thatB(c,2) N B(c,2) = ¢, thenc and¢’ are compatible in any extension 8f (assuming that and¢’ are
compatible inA). We therefore assume thB{(c,2) N B(¢/, 2) # ¢. Clearly, ifc = ¢, thenc and¢’ are compatible in
B’. Assume now that € W;. Note thatc(B, 1) = ¢. Therefore, ifr € ¢(B’,1) N (B’, 1), then one of two cases
can be true:

1. r € ¢(B,2) N (B,2). In this case, we must have thaandc’ has the same color, and therefore cannot share
an edge. Thus; andc’ cannot be sibling. It is then easy to see thahdc’ are compatible ir3’.

2. r € ¢(B,2)Nd (B, 1). Inthis case we get thate ¢(B, 1), and therefore; € ¢(B, 0) which is a contradiction.

O

In order to implement the algorithm efficiently, we first pre-compute all the relations between every pair of sites,
which takesO(nm?) time. After the preprocessing, each time we call the algorithm, we have to compute the edges
of the graph and to update the relations, which tak€g(B, 2)|m?) time, but since the set§ B, 2) are disjoint, the

sum of these is at mogd(nm?). Furthermore, we have to find the maximal siteand color the graph using two
colors. This may take& (| E;|) time, which might be as large &(m?), but since we only do that at most times,

the total running time i€ (m?(m + n)).

In order to get all the possible extensions, we can change the algorithm as follows. Note that the only times where
the assignment is not uniquely determined is when we have a connected comPomkitth is fully contained in

Wa. We introduce a boolean variahle; for any connected component. L@&g, C; be the two color sets af'. Let

c € Cy,d € Cy. Foreveryr € ¢(B,2) Nc(B,2), setby,—1,. = z,by . = &, and everyr € ¢(B,2) N d(B,2)

setby, 1, = Z,by» = x. Itis easy to see that every possible solution corresponds{@1g assignment to

the boolean variables., for every connected componeftThis gives a non-trivial bound &' to the number

of possible solutions. This bound is tight since when all the entries efjual2, we have exactl2”~! possible
solutions (up to symmetry).

5 Adding Families to the Data

In many cases, the experimental studies are done on related individuals, such as a set of trios of mother, father and
a child. In this case, in addition to the coalescent model, we have the additional constraint that each of the parents
transmits exactly one of its haplotypes to the child. In this section we show that this extension to the PPH problem
can be solved in polynomial time. Formally, we solve the following problem:



The Trios PPH problem (TPPH). The input is a{0, 1,2} matrix A = (a;;) of sizen x m and a set of triplets

T C [n]3. Every triplet(ry, 2, 73) € T represents a mother father and child trio. We need to determine if there is a
legal extensiorB = (b;;) to A such that for every tripletri, 2, 73) € T, one of the rows3(2rs — 1,:), B(2rs,:) is

a duplicate of one of the rowB(2r, — 1,:), B(2ry,:), and the other is a duplicate of one of the ra#&r, — 1,:

), B(2r3,:). This correspond to the fact that one of the haplotypes is transmitted from the mother and the other from
the father.

5.1 Solving TPPH

Recall that the output of algorithrBuild-Treeis a matrix B which corresponds to all possible solutions to the
coalescent model. For eacke [2n],j € [m], eitherb;; € {0,1}, orb;; € {x1,..., 2, T1,...,7}, Wherez; is a
boolean variable for eache [k]. We have to set the values of the variables, so that the solution will be consistent
with the trios.

For ease of notation, for every triplet= (r1,r2,73) € T, and every column, we say that thet, ) configuration

is (21, 22, 23, 24, 25, 26) If 21 = bop 1,4, 22 = bop 4,23 = bary—14, 24 = b2py i, 25 = bapy_14, 26 = bapy i, that s,

the values:, 29, 23, 24, 25 andzg represent the values of the mother, father and child’s haplotypes. We first need the
following lemma. Its proof will be given in the final version of the paper.

Lemma 5.1. For every triplett € T' and every columm € [m], the following(¢, ¢) configurations never appear in
B:

1. (1,1,%,*,z,2) forz € {x1,...,z, 71, ..., 7%}, Wwherex represent an arbitrary value. Any permutations of
the values between the mother, father and child does not appear either.

2. (z,2,y,y,*,%) wherez € {z1,..., x5, 21,...,2x}, andz # y. Any permutations of the values between the
mother, father and child does not appear either.

Proof. 1. If the (¢,) configuration iS(1, 1, x, %, z, ), thenc(1) # ¢,¢(2) # ¢. Assume that: = x for some
connected component, whetds the maximal site at that point in the algorithm. Théng ¢, and thus,
¢(1) = ¢, which is a contradiction.

2. Since each variable correspond to a color in a connected component, and every site belongs only to one color

in one connected component throughout, thep & {z1,...,zx, 71,...,2%}, we must have that = y.
Since all the2-values ofi are assigned at the time wheis weakly dominated by, then it is impossible that
y € {0,1}.

]

For each triplet = (r1,72,7r3) € T we introduce three additional boolean varialés), v (t), y2(y) which have
the following values:

e p(t) = 1if and only if the haplotypeB(2r; — 1,:) = B(2ry,:) or B(2rs — 1,:) = B(2r; — 1,:). In other
words,p(t) = 1 if and only if the first haplotype ofs is transmitted from the mother.

e yi(t) = 1lifand only if B(2rs — 1,:) = B(2r; — 1,:) or B(2rs — 1,:) = B(2ry — 1,:), that is, if the first
haplotype of the child is transmitted from a first haplotype of one of the parents.

e yo(t) =1lifandonly if B(2rs,:) = B(2r; —1,:) or B(2rs,:) = B(2rs—1,:), thatis, if the second haplotype
of the child is transmitted from a first haplotype of one of the parents.

Whenever it is clear from the context, we will omtit and just writep, y1, yo instead ofp(t), y1(¢), y2(t). Itis

easy to see that anf0, 1} assignment to the variablegt), y1(¢), y2(¢) corresponds to one of the eight possible
transmissions of the haplotypes from the parents to the child. We thus get that the TPPH problem is equivalent
to assigning{0, 1} values to the variables, ..., zx, and the variablep(t),y:(t), y2(t) for t € T. Every triplet

t € T, and every colump € [m], impose a constraint on the variables. For example, if the mothey tasies in
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1| (2,2,2,2,2,2) No constraint

2 (0,0,x,a‘c,0,0) (i’\/p\/yg)/\(a‘c\/ﬁ\/yl)/\(x\/p\/y_g)/\(w\/ﬁ\/y_l)
3 (m,f,0,0,0,0) (i“\/ﬁ\/yg)/\(i\/p\/yl)/\(mVﬁ\/y})/\(anp\/yj)
4 | (2,2,2,2,2,2) (PVy)A(pVya2)

51 (2,2,2,2,2,2) Y1 =1y =1

6 | (z,7,2,7,0,0) N=Ys=7T

7| (2,2,2,2,2,2) pP=y1 =1

8 | (2,2,2,2,2,2) p=1

9 (x,f,o,o,x,f) (m/\p/\yl)\/(f/\ﬁ/\y})

10| (z,2,2,%2,2,2) DAY

11| (2,2,2,2,2,2) Y1 A Yo

12 | (z,z,x,T,2,T) Y1 N\ Y2

13| (z,2,2,%,2,2) Y1=Y2=p

Table 2: The possible constraints up to symmetryepresents any value 0, 1}. = represents a literal, that is,
S {512‘1,... s Thy L1y .- ,(L‘_k).

both haplotypes, the father hasn both haplotypes, and the child han the first haplotype, and in the second
haplotype, then clearly(¢) = 1. We will now show that almost all these constraints can be represente2t@bsl&
formula, and thus, can be solved using any polynomial algorithm know2r&AT. The cases where the constraints
cannot be represented b2-&NF formula will be considered separately. In Table 5.1 we list all possible constraints
which follow from the(¢, ¢) configurations. It is easy to verify by Lemma 5.1, that all the possible configurations are
listed in the table, up to symmetry. Note that apart from constrairatisd 3, all other constraints can be expressed
by a2-CNF formula, that is, the logical and of clauses, where each clause is the logical or of two literals.

For a triplett € T and a columni € [m], we say that the configuratioft, ) is of typej for j < 15 if the
configuration corresponds to theth row in Table 5.1. We denote it byype(t,i) = j. The following claim is
proved by case analysis:

Claim 5.2. Lett € T, and leti,j € [m]. If type(t,i) € {2,3}, andtype(t,j) > 3. then one can express an
equivalent constraint to the constraint inferred @y:) using a2-CNF formula.

We need the following definition.

Definition 5.3. We call a triplett € T" specialif one of the following hold:

1. Foreveryi € [m], type(t,i) € {1,2,4,6,8}. In this case is special of typd.
2. For every: € [m], type(t,i) € {1,3,5,7,9}. In this casée is special of type.

3. Foreveryi € [m], type(t,i) € {1,2,3}. In this case is special of type.

We now describe an algorithm for solving the TPPH problem. We first use algorithm Build-Tree to get all possible
solutions to the PPH problem. We call a tripte€ T specialif type(t,i) € {1,2,3} for everyi € [m]. We now
construct a sef’ of constraints in the following way. We initializ€' to be the set of constraints induced by all the
triplets that are not special. We then consider each special triplet and add constrdintbdb: < T be special
triplet. First note thatif, j € [m|,z,y € {x1,...,zx} such that the configuration i, ) is (x, z,0,0,0,0) and the
configuration in(¢, 7) is (y, 7,0, 0,0,0) then necessarily = y. Therefore, in this case we add the constraint y

toC.

By Claim 5.2 we can express all the constraint€’iby a2-CNF formula. We can therefore find a legal assignment
to the subproblem induced lay by using any of the algorithms known for 2-SAT [1, 4, 19, 16]. If there is no feasible
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solution, we report that the problem is infeasible. Otherwise, the solution induces an assignment for A safbset
the variableq zy, ...,z }. We arbitrarily set the values of the det;, ..., x;} \ X to zero.

We now show that we can extend this solution to a feasible solution on the special tripletsc lZebe a special
triplet. It is easy to see that if we find a feasible solutiorCtothen the set of possible configurationst ioontains

at most four possible configurations out(af1,1,1,1,1),(0,0,0,0,0,0), (0,0, 2, Z,0,0) and(2, 2,0, 0,0, 0) for

fixed z, 2’ € {0,1}. Itis easy to verify that for each such four configurations one could find a valid assignment to
p(t), y1(t) andya (2).

6 Minimum Genotype Removal

In practice, the biological data does not exactly fit the coalescent model. We therefore pose the problem of removing
the minimal number of individuals from our data set so that the remaining data fits the coalescent model. Formally,
we introduce the following problem:

The Minimum Genotype Removal Problem . The input is &{0, 1,2} matrix A = (a;;) of dimensionsa x m.
The goal is to remove the minimal number of rows frahsuch that the remaining rows fit the coalescent model,
with the all zeros root.

Clearly, algorithm Build-Tree shows that one can determine in polynomial time if the minimal number of rows is
zero. In fact, if the input to the problem is{@, 1} matrix A, then the problem can be approximated within a factor

of 3 by a local ratio argument. Note that since we know that the root is the all zeros vector, then the matrix fits the
model if and only if there is no sub-matrix defined by three rows and a pair of columns such that the rows of the sub-
matrix contain the pairél, 1), (1,0), (0, 1). While there is such a sub-matrix, we simply remove the corresponding
three rows. Eventually we will be left with a matrix with no conflict. Since for every three rows that we removed at
least one of them should be removed by the optimal solution, we get that thisapproximation to the problem.

6.1 The Hardness Result

In this section we show that the minimum genotype removal problem is at least as hard to approximate as the min
UnCut problem, which is a well studied optimization problem. In the minimum UnCut problem we are given a graph
G = (V, E), and we wish to find a minimum size set of edges such that by their removal we are left with a bipartite
graph. This problems haslagn approximation algorithm [15], whene is the number of vertices i&. It is only

known to be MAX-SNP hard [17]. We now prove the following theorem:

Theorem 6.1. If the minimum genotype removal problem hascaapproximation algorithm, then one can find an
a-approximation algorithm for the minimum UnCut problem.

Proof. If o > logn, then the theorem trivially holds. We thus assume that log n. Let A be ana-approximation
algorithm for the minimum genotype removal problem. két= (V,E) be a graph, wher®& = {1,... ,n},
E = {ei1,...,em}. We construct the following matrid = (a;;) as an input tad. A will be of dimension
m(n + 1)a x (n 4+ 1). The entries ofd will have the following values:

1. Foreveryi € [m(n + 1)al, a; ,+1 = 2. (The last column contains only valuesdy.

2. Foreveryi € [n],j € [ma — 1], tim.a—j,i = 2.

3. Foreveryi € [m], if e; = (j,k), thena; s pmnj = 2, ditrmna,j = 2.

4. Any other entry of4 is zero.
By property 2, for every # j, ¢,j € [n], we have thai andj are siblings. By property 1, columm + 1 is the

maximal column. It is easy to see that the gréph.; constructed in algorithm Build-Tree is isomorphio®o From
that, it is easy to see that the solution returneddbgorresponds to an-approximation to the Min UnCut problem.
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A more detailed proof will be given in the final version of the paper. there is a one to one correspondence between
the Each of the last rows of A corresponds to an edge @ Furthermore, by removing a subset of the rowsiof
so thatG,, ;1 becomes bipartite, we are left with a matrix which fits the coalescent model.

Let R be the set of rows ofl. LetOPT C FE be the optimal solution to the min UnCut problem, and¥t7’ C R

be the optimal solution for the minimum haplotype removal problem. Clearly, given a sokitfon®' to the min
UnCut problem orgZ one can construct a solution to the minimum haplotype removal simply by removing the rows in
R that correspond t§'. Thus,|OPT’| < |OPT| < m. Areturns a set’ C R of size at mostOPT’|a < mlogn.

Thus, since every row i apart from the lastn rows appearsn log n times, we can assume théitis a subset of

the lastm rows of A. We now remove frondz every edge which corresponds to a rowsinand it is easy to see that

the resulting graph is bipartite, and that the number of edges remoy&d is |OPT’|a < |OPT|«, and thus we

get ana-approximation algorithm to the minimum haplotype removal problem. O

7 Experimental Results

We performed our experiments over the data presented in Daly et al., 2001 [5]. In their study they predicted
blocks over thel03 SNPs they examined. They used a set25f mother-father child trios, and thus, most of the
haplotype bases are uniquely determined by these relations under the assumption of perfect Mendelian heredity.
We examined the predictions of algorithm Build-Tree over their blocks by only using the children genotypes (see
Table 3). We used the methods in [11] to fit the model to the coalescent model whenever needed. Our results show
an extremely small error rate. This experiment proves that using our algorithm, the study presented in [5] could
have been done using the children alone. A more concise experimental work based on our algorithms and some
extensions can be found in [11].

SNPs Actual Predicted Frequency | Error Rate
Common Common
Haplotypes Haplotypes
1-8 GGACAACC GGACAACC 215 0
AATTCGTG AATTCGTG 38
10-14 TTACG TTACG 217 0
CCCAA CCCAA 35
16-24 CGGAGACGA CGGAGACGA 139 0.005780
GACTGGTCG GACTGGTCG 52
CGCAGACGA CGCAGACGA 34
CGGATACGA 15
25-35 CGCGCCCGGAT CGCGCCCGGAT 142 0
CTGCTATAACC CTGCTATAACC 39
TTGCCCCGGCT* | CTGCCCCGGCT 35
CTGCCCCAACC* | TTGCCCCAACC 25
36-40 CCAGC CCAGC 146 0
CCACC CCACC 51
GCGCT GCGCT 30
CAACC CAACC 12
41-45 CCGAT CCGAT 152 0.011561
CTGAC CTGAC 63
ATACT ATACT 31
78-84 CGTTTAG CGTTTAG 142 0
TGTT*GA TGTTTGA 53
TGATTAG TGATTAG 20
CGTCTAG CGTCTAG 12
TGTTGGA 10
86-91 ACAACA ACAACA 145 0.007353
GCGGTG GCGGTG 71
ACGGTG ACGGTG 14
GTGACG GTGACG 13
92-98 GTTCTGA GTTCTGA 142 0.004132
TGTGTAA TGTGTAA 49
TG*GCGG TGTGCGG 32
TGCGTAA 15
99-103 | CGGCG CGGCG 112 0.003448
TATAG TATAG 105
TATCA TATCA 35

Table 3: Predictions over data from Daly et al. 2001, [5]. The second column shows the common haplotypes as
presented in Daly et al. 2001 as well as their frequencies. The third column shows the predictions and the fourth
gives their frequencies. The fifth column shows the error ratio in our predictions.
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8 Concluding Remarks

We presented a practical and efficient algorithm to infer haplotype structure from genotype data. We furthermore

extended our algorithm to cope with further constraints. We presented relations between classical combinatorial
problems and the suggested biological problem. Our experiments show that our algorithms are practical, and could
save time and money in biological experiments. We believe that further extensions to this problem could lead to

even more accurate haplotype reconstruction on a larger scale. Specifically, coping with errors in the data and with
missing data is left as an open problem.
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