

Copyright © 2002, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

AN EXTENSIBLE TYPE SYSTEM

FOR COMPONENT-BASED DESIGN

by

Yuhong Xiong

Memorandum No. UCB/ERL M02/13

1 May 2002

AN EXTENSIBLE TYPE SYSTEM

FOR COMPONENT-BASED DESIGN

by

Yuhong Xiong

Memorandum No. UCB/ERL M02/13

1 May 2002

ELECTRONICS RESEARCH LABORATORY

College ofEngineering
University ofCalifornia, Berkeley

94720

An Extensible Type System for Component-Based Design

by

Yuhong Xiong

B.E. (Tsinghua University) 1990

M.S. (University ofWashington) 1993

A dissertation submitted in partial satisfaction of therequirements for the degree of

Doctor ofPhilosophy

in

Engineering — Electrical Engineering andComputer Sciences

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Edward A. Lee, Chair

Professor Thomas A. Henzinger

Professor Stuart E. Dreyfus

Spring 2002

An Extensible Type System for Component-Based Design

Copyright © 2002

by

Yuhong Xiong

All rights reserved

The dissertation of Yuhong Xiong is approved:

Chair Date

University of California at Berkeley

Spring 2002

Date

Date

Abstract

An Extensible Type System for Component-Based Design

by

Yuhong Xiong

Doctor of Philosophy in Engineering— ElectricalEngineering and Computer Sciences

University of California at Berkeley

Professor Edward A. Lee, Chair

Component-based design has been established as an important approach to designing

complex embedded systems, which often have many concurrent computational activi

ties and mix widely differing operations. A good type system is particularly important

for component-based design. A type system can improve the safety and flexibility of the

design environment, promote component reuse, and help simplify component develop

ment and optimization. Although type systems have been studied extensively in the pro

gramming language community, its research in component-based design isnot enough.

In this thesis, we present an extensible type system for component-based design. Fun

damentally, a type system detects incompatibilities at component interfaces. Incompat

ibility. may happen at two different levels: data types and dynamic behavior.

Accordingly, the type system presented in this thesis also has two parts. Fordata types,

our system combines static typing with run-time type checking. It supports polymorphic

t>T)ing of components, and allows automatic lossless type conversion at run-time. To

achieve this, we use a lattice to model the subtyping relation among types, and use ine

qualities defined over the type lattice to specify type constraints in components and

across components. By requiring the types to form a lattice, we can use a very efficient

algorithm to solve the inequality type constraints, with existence and uniqueness of a

solution guaranteed by fixed-point theorems. This type system can be extended in two

ways: by adding more types to the lattice, or by using different lattices to model differ

ent system properties.

Our type system supports both the primitive types and structured types, such as arrays

and records. The addition of structured types makes the type lattice infinite, and requires

an extension on the format of the inequality constraints. We present an analysis on the

issue of convergence on an infinite lattice, and add an unification step in the constraint

solving algorithm to handle the new inequality format. Our extension allows structured

types to be arbitrarily nested, and supports type constraints that involve the elements of

structured types.

The data-level type system has been implemented in Ptolemy II, which is a component-

based design environment. Our implementation is modular. In particular, the CPO and

lattice support, including the algorithm for solving inequality constraints, are imple

mented as a generic infrastructure that is not bound to one particular type lattice. Type

definition and type checking are implemented in separate packages and have been fully

integrated with Ptolemy II.

To describe the dynamic behavior of components and perform compatibility check, we

extend the concepts of conventional type system to behavioral level and capture the

dynamic interaction between components, such as the communication protocols the

components use to pass messages. In our system, the interaction types and the dynamic

behavior of components are defined using a light-weight formalism, interface automata.

Type checking, which checks the compatibility of a component with a certain interac

tion type, is conducted through automata composition. Our system is polymorphic in

that a component may be compatible with more than one interaction types. We show

that a subtyping relation exists among various interaction types and this relation can be

described using a partial order. This behavioral type order provides significant insight

into the relation among the interaction types. It can be used to facilitate the design of

polymorphic components and simplify type checking. In addition to static type check

ing, we also propose to extend the use of interface automata to the on-line reflection of

component states and to run-time type checking. We illustrate our framework using the

Ptolemy II environment, and discuss the trade-offs in the design of behavioral type sys

tem.

Professor Edward A. Lee, Chair Date

To my wife Bel, myson Michael
and myparents Erke Mao and RumeiXiong

Table of Contents

Acknowledgments viii

CHAPTER 1. Motivation 1

1.1 Embedded System Design 1
1.2 Type Systems for Component-Based Design 2

CHAPTER 2. Background 5

2.1 Data Types 8
2.1.1 Role of Type Systems 8
2.1.2 Issues in Type System Design 11
2.1.2.1 Static vs. Dynamic Type Checking 11
2.1.2.2 Polymorphism 12
2.1.2.3 Type Conversion 12
2.1.2.4 Type Inference 14
2.1.2.5 Extended Type Systems 14
2.1.3 Notable Type Systems 16
2.1.3.1 Typed Lambda Calculus 16
2.1.3.2 The ML Type System 28
2.2 Component-Based Design 33
2.2.1 Component 33
2.2.2 Advantages of Component-Based Design 35
2.2.3 Challenges ofComponent-Based Design 36
2.3 Models ofComputation 37
2.4 Mathematical Tools 40

2.4.1 CPO, Lattice, and Fixed Point Theorems 40
2.4.1.1 CPOs and Lattices 40

2.4.1.2 Fixed Point Theorem 42

2.4.2 Interface Automata 43

2.4.2.1 An Example 43
2.4.2.2 Composition and Compatibility 45
2.4.2.3 Alternating Simulation 47

CHAPTER 3. Data Types 49

3.1 Introduction 49

3.1.1 Abstract Syntax and High-level Semantics 49
3.1.2 Design Goal 50
3.1.3 Our Approach 51
3.2 Formulation 53

3.2.1 Tj^e Lattice 53
3.2.2 Type Constraints 54
3.2.3 Type Resolution Algorithm 56
3.2.4 Run-time Type Checking and Lossless Type Conversion 59

ii

3.3 Structured Types 60
3.3.1 Goals and Problems 60

3.3.2 Ordering Relation 62
3.3.2.1 Inequality Constraints 63
3.3.2.2 Infinite Lattice 64

3.3.3 Actors Operating on Structured Types 66
3.4 Using Monotonic Functions in Constraints 67
3.5 Discussion 71

3.5.1 T)q)e System for Block Diagram Based Languages 71
3.5.2 Type Lattice and Type Constraints 73
3.5.3 Most Specific Type 75
3.5.4 Tjqje Resolution in Modal Models 76

CHAPTER 4. Behavioral Types 78

4.1 Capturing the Dynamic Behavior of Components 78
4.2 Component Interaction in Ptolemy II 80
4.3 Behavioral Types 82
4.3.1 Type Definition 82
4.3.2 Behavioral Type Order and Polymorphism 87
4.3.3 Type Checking Examples 88
4.3.4 Reflection 91

4.4 Discussion 91

4.4.1 Top and Bottom 91
4.4.2 Trade-offs in Type System Design 93
4.4.3 Behavioral Typing 94
4.4.4 Component Interfacing 96

CHAPTER 5. Implementation in Ptolemy II 98

5.1 Overview ofPtolemy II 98
5.2 CPO and Constraint Solving Infrastructure 101
5.3 Data Types 104
5.3.1 Data Encapsulation and Type Representation 104
5.3.2 Type Checkingand Type Conversion 107
5.3.3 Structured Types Implementation 110
5.3.4 Fork Connection and Transparent Port 116
5.4 Interface Automata 119

5.4.1 Implementation Classes 119
5.4.2 Composition Algorithm 120

CHAPTER 6. Conclusions and Future Work 123

6.1 Summary 123
6.2 Future Work 125

6.2.1 Data Types 125
6.2.2 Behavioral T)q)es 126

iii

Bibliography 128

IV

List of Figures

CHAPTER 1 1

CHAPTER 2 5

Figure 2.1 Venndiagram of program errors 8
Figure 2.2 Function subtyping among Int and Double functions 26
Figure2.3 Multiple MoCscan share the same block diagram syntax 38
Figure 2.4 Hasse diagrams for two partially ordered sets 41
Figure 2.5 An interfaceautomaton modeling a communication component 44
Figure 2.6 An interface automaton modeling a user of the component Comp

45

Figure2.7 Composition of Userand Comp 45
Figure 2.8 Two channel models 46
Figure 2.9 Composition of User_Comp withtwo channel models 47

CHAPTERS 49

Figure 3.1 An abstract syntax for blockdiagram based language 49
Figure 3.2 Anexample of a type lattice 54
Figure3.3 A topology (interconnection of components) with types 56
Figure 3.4 The type lattice of Ptolemy II witharray andrecord types added.... 63
Figure 3.5 Anexample of a tj^e lattice with arrays 65
Figure 3.6 Using actors to construct and disassemble structured data 67
Figure 3.8 A RecordUpdater actor with anexample input and output 68
Figure 3.7 The AbsoluteValue actor and themonotonic function expressing its

type constraint 68
Figure 3.9 The Scale actor 70
Figure 3.10 Mixing FSM with SDF 76

CHAPTER 4 78

Figure 4.1 A simple model inPtolemy II 80
Figure 4.2 Interface automaton model foran SDF actor 83
Figure4.4 Type signature of the SDFdomain 84
Figure4.3 Interface automaton model for a domain-polymorphic actor 84
Figure4.5 Typesignature of the DE domain 85
Figure4.6 Type signature of the CSPdomain 86
Figure4.7 Type signature of the PN domain 86
Figure 4.8 An exampleofbehavioral type order 87
Figure 4.10 Composition of SDFDomain in figure 4.4 and SDFActor in figure

4.2 89

Figure 4.9 The bottom and top elements of the behavioral type order 89

V

Figure 4.12 Composition of DEDomain in figure 4.5 and PolyActor in figure
4.3 90

Figure 4.11 Composition ofDEDomain in figure 4.5 and SDFActor in figure
4.2 90

Figure 4.13 Composition of SDFDomain in figure 4.4 and PolyActor in figure
4.3 91

Figure 4.14 Composition ofUNKNOWN in figure 4.9(a) and the SDFActor in
figure 4.2 or the PolyActor in figure 4.3 92

CHAPTER 5 98

Figure 5.1 The Java packages in Ptolemy II 99

Figure 5.2 Classes in the graph package 102
Figure 5.3 Classes in the data package 105

Figure 5.4 Classes in the data.type package 106
Figure 5.5 Classes in the actor package that support type checking 108
Figure 5.7 Run-time object structure during type resolution for the base type

system Ill

Figure 5.6 Run-time object structure ofa TypedOIPort with type Int Ill
Figure 5.8 Run-time object structure for two instances ofarray type 112
Figure 5.9 Run-time object structure during type resolution for structured

types 113

Figure 5.10 Two ports share the same instance of structured type 115
Figure 5.11 Two topologies in which one port is connected to two other ports

117

Figure 5.13 An empty transparent compositeactor in Ptolemy II with input and
output types displayed 118

Figure 5.12 A model with a transparent composite actor 118
Figure 5.14 Classes implementing interface automata 119
Figure 5.15 Frontier exploration in the product automaton. The black dots

represent illegal states 121

CHAPTER 6 123

VI

List of Tables

CHAPTER 1 1

CHAPTER 2 5

CHAPTERS 49

Table 3.1. Some example arguments and results for the monotonic function
that expresses the type constraint in RecordUpdater 69

Table 3.2. Some example arguments and results for the monotonic function
that expresses the type constraint in Scale 71

CHAPTER 4 78

CHAPTER 5 98

CHAPTER 6 123

Vll

Acknowledgments

I am deeplygrateful to ProfessorEdwardLee for being my advisor for this thesis. He led

me into this research area and his vision has directly guided my work over the past five

years. This thesis would havenever been written without his support and encouragement.

Furthermore, his wayof using intuition to understand complicated problems andhands-on

approach for research will have a lasting impacton my career in the future.

I would also like to thank Professor Thomas Henzinger and Professor Stuart Dreyfus for

serving on my thesis and qualifying exam committee. They have provided constructive

comments during myqualifying exam, which directly influenced thewriting of thisthesis.

In addition. Professor Henzinger has helped me understand some issues in automata the

ory. I amalso grateful to Professor David Messerschmitt forchairing my qualifying exam

committee and providing valuable comments onissues related tocomponent-based design.

I had the privilege ofworking with exceptional colleagues inthe Ptolemy group, including

Adam Cataldo, Chris Chang, Elaine Cheong, Jom Janneck, Bart Kienhuis, Bilung Lee, Jie

Liu, Xiaojun Liu, Steve Neuendorffer, John Reekie, Win Williams, Yang Zhao, and Haiy-

ang Zheng. Ourstimulating discussions and thefun group activities have enriched my life

at Berkeley. I wouldliketo gratefully acknowledge theirhelp on my workandtheirfnend-

ship. In particular, Xiaojun helped me in the implementation of interface automata. He is

a great partner to work with. Jie has influenced my work in several areas. Steve is

always quick in suggesting improvements. Discussions with Jom were always stimu

lating. The software practice shaped up by John has set a high standard for me to follow

and brought my understanding for software development to a new level. I would also

Vlll

like to thank Christopher Hylands and Mary Stewart for managing an excellent com

puting facility.

Many people outside the Ptolemy group have also helped a great deal with my research.

Among them, Freddy Mang assisted in clarifying the equivalence relations of automata.

The discussions with Luca de Alfaro on interface automata were very fhiitful. Manuel

Fahndrich pointed out the paper with the constraint solving algorithm to me. Zoltan

Kemenczy, Sean Simmons, and Ed Willinkhave suggested improvements to the type sys

tem.

During myintemship at IBMAlmaden Research Center, I benefitedinvaluably fromwork

ing with the people in the TSpaces project, including Marcus Fontoura, Toby Lehman,

Tom Truong, and Dwayne Nelson. They gave me the opportunity to work in an industry

research environment, and greatly influenced my attitude toward research.

Lastly, but most important, I thank my family — my wife Bei Wang, my son Michael

Xiong, my father Erke Mao, my mother Rumei Xiong, andmy brother Yuxing Mao. I am

extremely grateful for Bei's support over the years. Michael brings me happiness and

makes me proud. My parents always believe in me and have done all they can to support

theendeavor I choose. Yuxing is theonlyadultin the family who hasescaped froma pro

fession in electrical engineering. Heshowed meotherpossibilities in life.

IX

1 Motivation

1.1 Embedded System Design

Over the past 50 years, the center stage of computing has shifted from mainframe to PC

and is about to shift again to embedded computing. The invention of ENIAC in 1947

markedthe start ofmainframeera and computingwas focused on information processing.

In the 1980's,personalcomputers emerged andtookovermainframes as the driving force

incomputer industry. In recent years, many people believe thatweare at thecross line of

apost-PCera, in which communication and pervasive interaction arebecoming thefocus.

Inthisera, therole ofdesktop computing willbe greatlydiminishedby newcomputingpar

adigms, described by such terms as invisible computing, pervasive computing [38], or

handheld computing. From ourperspective, all of these new forms of computing fall into

the category ofembedded computing.

Embedded systems are computing systems that are not first-and-foremost computers [61].

They are everywhere, residing in cars, consumer electronics, appliances, networking

equipments, aircrafts, security systems, etc. Inaddition to the dozens of embedded systems

we interactwith everyday,networked embedded systems will play a largerrole in our life

in thepost-PC era. As painted vividlyby media, manyof the devicesin ourhomeand office

will be connected and will cooperate with each other. For example, our sprinkler will com

putethe optimalwatering schedulebasedon the sensordata and weatherforecast, our PDA

or mobile phone may display a coupon for Big Mac if we walk by a McDonald at lunch

time. Our cars will also become more intelligent; they can help us find out the best route

according to real-time traffic information, and the mechanical steering system will be

replaced by drive-by-wire technology, making the ride safer and more pleasant. These pre-

dictions may notbecome truein thenearfuture, butat least onething is evident:

and development ofembedded systems will continue to evolve for many years to co^

Besides consumer applications, embedded systems also play a big role in industry and

safety critical systems. For example, embedded software is an important part of the

flight control system in aircrafts. Research is also under way to use embedded software

to preventaircraftsfromenteringrestrictedspace [63]. There is littledoubt that embedded

systems are taking the center stage ofcomputing.

Embedded systems often mix technologies, such as hardware and software, analog and

digital circuits, and mechanical devices. They are heterogeneous in that they frequently

perform diverse operations, including signal processing, feedback control, sequential deci

sion making, anduser interfaces. In addition, they often have many parts thatare working

concurrently, and must meet some real-time requirements [62]. Unlike PCs, where most

systems follow de facto industry standards for system architecture, CPU instruction sets,

bus protocol, and operation systems, the vast majority of embedded systems are custom

designed. With the increasing complexity, and time to market and cost pressures, the

design ofembedded systems has become a challengingtask.

In recentyears, component-baseddesign has shown great promise in coping with the com

plexity in modem systems. At the system level, component-based design amounts to

wiring up pre-designed components to form the complete system. This approach has the

potential of increasing design productivity by reusing the same components in multiple

designs. At the same time, it also poses some new challenges. One of the fundamental

questions is: when we connect components to form a system, how can we ensure that

they will work together?

1.2 Type Systems for Component-Based Design

To make components work together, one of the prerequisites is that their interfaces

must be compatible in some sense. This thesis focuses on techniques to ensure interface

compatibility. For software components, interface mismatch can happen at (at least)

two different levels. One is the data type level. For example, if a component expects to

receive data encoded as integers, but another components sends it a string, then the first

component may not be able to function correctly. The second level of mismatch is the

djmamic interaction behavior, such as the communication protocols the components

use to exchange data. Since embedded systems often have many concurrent computa

tion activities and mix widely differing operations, components may follow widely dif

ferent communication protocols. Therefore, ensuring the compatibility of dynamic

behavior is also an important and non-trivial problem.

In the programming language community, the data type problem has been studied exten

sively over several decades. However, most of the type systems proposed are for con

ventional text based languages, and type systems for component-based design

environments, which are usually block diagram based languages, have not been studied

enough. In the first part of this thesis, we propose a type system for component-based

design environment that addresses the data type compatibility issue.

To address the compatibility of communication behavior, we extend the concept of type

systems to capture the dynamic aspects of component interaction. We call the result

behavioral types [69][69]. We will describe our framework for capturing and checking the

dynamic behavior ofcomponent interface, and show that it offers some ofthe same bene

fits as data typing.

By detecting mismatch at component interfaces and ensuring component compatibility,

a type system can greatly increase the robusmess of a system. This is particularly valu

able for embedded software. Unlike desktop computers, many embedded systems do

not enjoy the luxury of being able to be rebooted when things go wrong. Once the

system is deployed, it must continueto work withouthuman intervention.

In addition to providing safety guarantees, many modem type systems are also very

flexible in that they support polymorphic typing of programs. That is, they allow a pro

gram to have more than one type so that it can be used in different settings. Our type

system, at both the data level and system level, is also polymorphic. This feature

enables component reuse, which is a key benefit of component-based design.

The rest of this thesis is organized as follows. Chapter 2 reviews the background mate

rial, including type systems for conventional languages, the issues in component-based

design, and the mathematical tools used in this thesis. Chapter 3 presents our data type

system. Chapter 4 presents behavioral types. Chapter 5 discusses our implementation

of the type system in Ptolemy II - a component-based design environment. Chapter 6

concludes the thesis and points out future directions.

2 Background

On a high level, the main goal of this thesis is to present techniques that help improve the

quality and productivity of embedded software development. As such, the techniques pre

sented in this thesis are closely related to other research in the general area ofsoftware. As

witnessed by the frequent crashes ofPCs and frequent delays in software projects, software

quality and development productivity have not reached the desired level. To solve this

problem, many solutions have been proposed by researchers and practitioners. Roughly

speaking, these solutions fall into three categories:good software practice, new languages

and tools, andformal method.

Good software practice includes design and code reviews, code rating, thorough testing,

good source code repository management, and complete documentation. They are very

effective in improving software quality. For example, in the Ptolemy II project, all of the

above are practiced and they have greatly improved the quality of software [111]. The

numberofbugs in the corepartsof PtolemyII is small andmost bugs can be trackeddown

within hours. Since the adoptionofgood practice does not require developers to learn new

languagesand tools basedon formal methods,good practice can make quicker impact than

otherapproaches. In addition, it also helps by boostingthe experienceofnoviceprogram

mers in a team setting. However,human factors may be the main hurdle in their adoption.

Some programmers may not be willing to have their code reviewed by peers. And some

business strategies give early availability ofproduct (even with a lot ofbugs) higher prior

ity than software quality, making some managers reluctant to enforce good practice

throughout the development cycle. We will not make further discussion on software prac

tice since it is outside the scope of this thesis.

At the beginning of their life span, widely accepted languages were usually adopted in a

new application domain, where they offer unique advantage over existing languages. For

example, Fortran offers the convenience of high level programming while maintaining

efficiency close to direct assembly language programming. Since this language was

originally designed for the IBM 704 computer, which had built-in floating point capa

bilities [10], it provides good support for floating point computation. Due to the ease of

high level programming and floating point support, Fortran has been widely used in the sci

ence and engineering community for decades after its introduction in 1954.

Another popular language is C, which was devised as a system implementation language

for the UNIX operating system [114]. C is "close to the machine" in that the abstractions

it introduces are readily grounded in the concrete data types and operations supplied by

conventional computers. This makes it simple and small, and allows engineers who under

stand how computers work to generate time- and space-efficient programs. This attribute

makes C suitable for system programming.

In recent years, Java has become the language of choice for many software developers.

While Java has many good features, the most important one that popularized the language

was the capability of Java applets to "move behavior" [19]. This makes it uniquely posi

tioned for web programming.

As can be seen, new languages can often enable or boost the massive software develop

ment activities in a new application area, because they offer an abstraction level and a set

offeatures that hit the bull's eye in that area. The high level notation and floating point sup

port in Fortran, the closeness to the machine of C, and the capability of moving behavior

in Java are all examples ofthis. Now ifwe consider embedded software, the characteristics

are quite different from other applications. As argued by Lee in [62], the principal role of

embedded software is the interaction with the physical world, so factors including timeli

ness, concurrency, liveness, interfaces, heterogeneity, and reactivity need to be considered.

The prevailing software engineering methods do not address these issues well, and a new

language is in order. This new language should take a component-based approach and be

based on formal Models of Computations. The type system proposed in this thesis is

designed for such languages. Later in this chapter, we will discuss component-based

design and models ofcomputation in more detail, in section 2.2 and 2.3.

Formal methods include theorem proving and model checking for verification, and formal

languages for specification [28]. Broadly, formal methods also include type systems since

many type systems have precise mathematical formulations. Theorem proving can be used

to verify properties or prove the correctness of programs. For example, it can be proved

that a division program computes the correct remainder and quotient. However, verifying

specific properties ofnon-trivialprograms is difficult. Very often, program proofs are more

detailed than the programs being verified, and the proving process requires human inter

vention. In practice, theoremproving is generallyapplied to safety-criticalapplicationsby

skilled experts [47].

Comparedwith theorem proving, traditional type systems in programming languages are

not used to verify arbitrary properties, but to prevent the occurrence of execution errors^

which means that during the execution of the program, the machine encounters a mean

ingless instruction, such as jumping to the wrong address, or adding an integer to a

boolean[21].Although the prevention ofexecution errors does not ensure the correctness

of a program, it does eliminate a largepercentage of the errors,or "bugs," in the program.

Furthermore, many program errors are multi-faceted, so some aspects of the problem are

exposed as type errors. This makes type systems oneof the mostsuccessful formal meth

ods in softwaredesign. The next section ofthis chapter reviews some ofthe results in type

system research.

Model checking is a technique thatrelies onbuilding a finite model of a system andcheck

ing that a desired property holds in that model [28], It has been applied successfully in

hardware and protocol verification. In recent years, it has also been used in software.

Modelchecking is relatedto ourbehavioral typesystem. Both use automataas a basic tool.

In section 2.4.2, we will present an overview of a particular form of automata used in

behavioral types - interface automata [34].

The above categorization of techniques is not clear cut. For example, type systems belong

to both language design and formal methods. Also, major advancement in software devel-

7

opment requires a successful combination of the techniques. As Meyer puts it, "Every

Little Bit Counts" [81].

2.1 Data Types

Research in type systems for programming languages dates back many decades. As early

as 1954,real and integer types are distinguished in Fortran. Due to the vastness ofthe field,

it is beyond reasonable hope to mention even a moderate part of the literature. In this sec

tion, we will examine some basic issues in type system design and some notable type sys

tems that have inspired our work. Section 2.1.1 discusses the role of type systems as

catching execution errors. Section 2.1.2 examines design issues for type systems. And

section 2.1.3 presents some notable type systems in programming languages.

2.1.1 Role of Type Systems

The Dictionary ofComputing [57] defines type, or data type as:

An abstract set ofpossible values that an instance of the data type may
assume, given either implicitly, e.g. INTEGER, REAL, STRING, or explic
itly as, for example, in Pascal:

TYPE color = (red, green, orange)
The data type indicates a class ofimplementationsfor those values.

Other sources [21][55][109] give similar definitions. A type system is the component ofa

language that keeps track of the types of objects in a program. In general, the type of an

object implicitly specifies a set of admitted operations of the object, and the type system

ensures that only those operations are applied during the execution of the program, which

prevents the occurrence of execution errors. To make this statement more precise, let's

look at figure 2.1, which shows a simple categorization of program errors. This figure

errors caught by a safe language

program error
execution error

untrapped error trapped error

Figure 2.1 Venn diagram ofprogram errors.

is generated based on the definitions in [21]. In this figure, execution error is a subset

of all program errors, or bugs. Very often, execution errors cause the program to crash,

while non-execution errors do not crash a program, but may cause the program to pro

duce a wrong result. Execution errors can be divided into two categories: trapped errors

and imtrapped errors. Trapped errors cause the execution to stop immediately, but

imtrapped errors may go unnoticed (for a while) and later cause arbitrary behavior.

Examples of trapped errors include divide by zero or dereferencing null. Examples of

untrapped errors include going over the boimdary of an array or jumping to the wrong

address. Obviously, untrapped errors are the most insidious form of execution errors,

so the type system of a languages should strive to detect as many imtrapped errors as

possible. Languages that rule out all untrapped errors are called safe languages. Exam

ples of safe languages are ML [124] and Java, and examples of unsafe languages

include C and various assembly languages. The lack of safety in language design is usu

ally driven by performance considerations, as the safety guarantee requires extra com

putation. However, safe languages can catch a larger fraction of routine programming

errors and eliminate many lengthy debugging sessions. In practice, many bugs reveal

themselves in multiple ways. For example, a buggy sorting routine may go over array

boundary and produce the wrong result. If this routine is written in a safe language, this

error will be caught in the first execution, at the latest. However, if this routine is writ

ten in an unsafe languages, this error may not be caught until the result of the program

is examined.

In addition to catching execution errors, type information can also be used for program

optimization. For example, type information was introduced in Fortran to improve code

generation and run timeefficiency fornumerical computations. More recently, type infor

mation has been used extensively in program analysis. Program analysis includes various

techniques to extract information from programs so that compilers can take advantage of

this information to produce optimized code. For example, common subexpressions are

expressions that were previously computed, and not later modified. The common subex

pression analysis identifies such expressions for each program point so that the compiler

can avoid recomputing them. Another example of program analysis is alias analysis. In

languages with side effects, a memory location has aliases ifit is denoted by more than one

expression, such as pointed to by more than one pointer. Alias information is useful in

compilers because, for instance, if a memory location does not have aliases, the compiler

can assume that it will not be modified through other pointers, so its value does not need

to be loaded every time it is used. This is called redundant-load elimination {RLE^.

Common subexpression analysis, alias analysis, and many other kinds of program anal

yses have been studied and used in optimizing compilers for a long time (see for exam

ple [5]). In recent years, type information is exploitedto make such analyses simpler and

more efficient [105]. For example, type-based alias analysis was performed on C++ [89]

and Modula-3 [36]. For object-oriented languages, class hierarchy analysis was used to

identify the virtual method calls that can be resolved at compile time, and possibly replace

those calls with method inlining [35]. The survey paper of Palsberg [105] examines the

state of the art of type-based analysis and contains many references ofwork in this area.

Type annotations in programs also serve as importantdocumentation and help clarify pro

gram interfaces. Compared with other form ofannotation, such as informal comments and

formal specifications for theorem proving, typesare more precise than program comments,

and easier to check than formal specifications.

The design of a good tj^e system is not a trivial task. To improve safety, a type system

defines a set ofrules, or type rules, regarding how objects with various types may interact.

These rules are enforced by a typechecking algorithm. Ideally, the type rules should enable

the tj^e checking algorithm to separate out all the "bad" expressions from the "good" ones

in a program. However, since type-checking must be theoretically decidable and practi

cally feasible, this perfect separation is usually not possible. As a result, some good expres

sions are sacrificed. For example, as we will see in section 2.1.3.2, the ML program

fun h(f) = (f{3), f(true));

is rejected by the type system, even thought it can be a good function definition ifthe argu

ment f is always a function that can be applied to both integer and boolean. In unsafe lan

guages, some bad expressions are also admitted.One direct consequence ofrejecting good

expressions is that the reusability of programs is compromised. So the trade-off between

10

safety guarantees and the flexibility ofthe language needs to be carefully evaluated in type

system design.

Furthermore, from the programmers' point ofview, tj^e rules should be easily understand

able so that they can predict easily whether a program will typecheck. If it fails to

typecheck, the compiler or the run-time environment should be able to provide a clear

explanation of the problem. Also, type checking should not require excessive type annota

tion. To meet these requirements, we need to look into some issues in type system design.

2.1.2 Issues in Type System Design

2.1.2.1 Static vs. Dynamic Type Checking

Typecheckingcan be performedat eithercompiletime or run time.Compiletime checking

is also called static checking. Static checking has the key advantages of early error detec

tion and not incurringrun-time overhead. However, static checkingoften requires the pro

grammer to declare the type ofvariables\ slows down compilation, and limits the reuse

of programs to some degree. On the other hand, run time, or dynamic type checking

usually requires much less annotation in the program and permits more program reuse,

but slows down the execution of program. Full dynamic type checking is often

employed in languages that are intended for interactive use, such as scripting lan

guages. These languages are often labeled typeless since the source program does not

contain type annotation. The choice between static and dynamic type checking is still

subject to some debate. For example, Ousterhout argues that system programing lan

guages shouldbe typeless to support a compact coding styleandreuse [103]. However, for

languages thatare intended for developing large scale applications, static type checking is

favoredby most researchers. Muchofthe research in this area has beendriven by the desire

to combine the flexibility ofdynamically typed languages with the security and early error-

detection potentialofstatically typedlanguages [ICQ]. Modemtypesystemshave achieved

this goal to a large extent by making program componentspolymorphic.

1. Ofcourse, there are exceptions. For example, the language ML uses type inference to automatically
infer the type ofvariables. The ML type system will be discussed in section 2.1.3,2.

11

2.1.2.2 Polymorphism

In polymorphic languages, some values and variables may have more than one type. Poly

morphic functions are functions whose operands can have more than one type [22].

Cardelli and Wegner [22] distinguished two broad kinds of polymorphism: universal and

ad hoc polymorphism. Universal polymorphism is further divided into parametric and

inclusion polymorphism. Parametric polymorphism is obtained when a function works

uniformly on a range of types. Inclusion pol3miorphism appears in object oriented lan

guages when a subclass can be used in place of a superclass. Examples of these kinds of

polymorphism will be discussed in section 2.1.3. In terms of implementation, a univer

sally polymorphic function will usually execute the same code for different types,

whereas an ad hoc polymorphic function will execute different code.

Ad hoc polymorphism is also further divided into overloading and coercion. Overloading

refersto the reuse ofthe same operator or function name to denote differentoperations,and

the context is used to decide which operation should be invoked. This kind of polymor

phismcan be viewed as a convenient syntacticabbreviation, since the compiler can elim

inate overloading by giving different names to different operations. On the other hand,

coercion is instead a semanticoperation that convertsan argument to the type expectedby

a function.

The distinction between overloading and coercion is not always clear. For example, the

operation 3.0 + 4 can be interpreted as either overloading or coercion. That is, we can

either view the + operator as overloaded for integer and floating point addition, or only

used for floating point addition but the integer4 is converted to a floating point number

through coercion. Obviously, coercion is one kind of type conversion.

2.1.2.3 Type Conversion

Frequently, a value ofone type needs to be converted to another type before it can be used.

The most common case is the conversion between integer and floating point numbers.

Type conversion can be implicit, in which case it is carried out automatically by the com

piler or the run-time system, or explicit, in which case it is specified by the programmer.

Many languages provide ways to cast values or variables of one type to another, which is

12

a form of explicit conversion. The coercion discussed in the last section is the same as

implicit type conversion. Type conversions can also be categorized into lossless and lossy

conversions. For example, converting the integer 3 to the floating point number 3.0 is loss

less, but converting the floating point number 3.5 to an integer by removing the fractional

part loses information. In practice, the amount of implicit conversion varies widely among

languages, reflecting the different view on type conversion by different language design

ers. Some people believe that type conversions should be explicit [10], or at least that com

plicated rules that define implicit conversions should be avoided [53]. Other people

implement complicated conversion rules in languages. For example, in ALGOL 68, a type

proc refbool can be coerced to proc [] union (real, proc union (int, boot)) [73]^ Since
the conversion rules in ALGOL 68 are very complex, some of the coercions in a pro

gram may actually arise from programming errors, rather than intention. After the

ALGOL 68 experience, many later languages have greatly reduced the amount of

implicit coercions [22].

Type conversion can alsobe performed on objects in systems with subtyping. In this con

text, the conversion not only affects data layout, but also the behavior of the objects. An

example of the objecttype converter is the respectful type converter [125]. In a type hier

archy where Tis a supertypeof bothA andB, a converter C:A-^Bthatconverts an object

of typeAto typeB respects Tif a typeAobject anda typeB objecthavethe samebehavior

when both are viewed as a type Tobject, i.e., from Ts point of view, the objectsA and B

lookthe same. Intuitively, Tcapturesthe information preservedaftertype conversion.The

formal definition oirespect is based on behavioralsubtyping [125].Respectful converters

areusedin the TypedObjectModel(TOM)that is used for document type conversion.For

example, PNG image and GIF image types are both subtypes ofbitmap image type. Con

verters that respectbitmapimage type can be designedto convertPNG to GIF image.

1. Types are called modes in [73].

13

2.1.2.4 Type Inference

Type inference is the process of finding a type for all the expressions and variables in a

program without requiring the programmer to declare the types. Type inference reduces the

burden ofprogrammers by allowing them to omit most of the type annotations while still

providing the benefit of static type checking. Type inference in polymorphic type systems

is in general a difficult problem. The most successful inference system is the one used in

the ML family of languages [85]. This system will be discussed in section 2.1.3.2.

2.1.2.5 Extended Type Systems

In most languages, the types defined by the type system include the primitive types

such as integer and float, function types, structured types such as arrays and records,

and user defined types. Many researchers have proposed various extended type systems

to broaden the information carried by types, so as to provide more guarantee through

type checking or more opportunity for program optimization through type-based anal

ysis. The following are some examples of this work.

In [127], Xi and Pfenning proposed to assign more accurate types to programs, with the

objective of catching more errors at compile time. The more accurate type information is

represented by dependent types, which allows types to be indexed by terms. The index

object is drawn from a certain domain, and type checking for the refined property ofa pro

gram is reduced to constraint satisfaction in that domain. For example, to do array bounds

checkingstatically, an integer index object is attached to an array type. The index object is

a singleton type, such as int(n) for the type of integer n. Array bounds checking is reduced

to linear inequality solving in the integer domain. Their approach requires some additional

annotation by programmers.

Although most of the work on type checking is done on high-level languages, some is

aimedat safety guarantees at the binary executable level. An exampleofthese is the proof-

carrying code (FCC) [96], which can also be viewed as work on type system extensions.

FCC is a mechanism by which a system can verify that an executable provided by an

untrusted source adheres to some safety policy. The safety policy can be viewed as typing

rules and the validation processing as typing checking. For this to be possible, the

14

untmsted code producer must supply with the code a safety proof, either manually or

through a certifying compiler. The host can then easily and quickly validate the proof

without using cryptography and without consulting any external agents. In the imple

mentation of PCC that ensures memory safety for the DEC Alpha machine code, the

safety proof is represented in such a way that the validity of a proof is implied by the

well typedness of the proof representation. Thus, proof validation amounts to type

checking [95]. The PCC approach is promising for distributed and web computing, when

mobile code is deployed, or when an operating system kernel needs to determine the safety

ofuser supplied applications.

A more drastic extension to conventional type systems is to capture some of the dynamic

behavior of programs. One area of research in this direction is the effect systems [77]. In

conventional type systems, types abstract the values that an expression may return, but they

do not carry any informationabout the execution behavior of the program. The effect sys

tems augment types with effects, which describe the side-effects that an expression may

have, such as read/write effects on the store, or exceptions that may be raised by the expres

sion.The scope ofeffectsare represented by regions, which abstracta set of memory loca

tions in which side-effects may occur. The effects of expressions can be analyzed and

inferred using techniques similarto the one used in the ML type system,with some exten

sions. One application of effectanalysisis in parallel computers. Iftwo expressions do not

haveinterfering effects,thena compilercan schedule themin parallel. Effectsystemswere

firstproposed in the Ph,D. thesis of Lucassen[76]. Sincethen,a lotof research wascarried

out in this area. A summary of more recent research can be found in [98], and in

Fahndrich's lecture notes [43], which provides a very accessible tutorial.

Another example of an extended type system that captures the dynamic behavior of pro

grams is the work of Nielson, et al., who analyzed the communication topology of a

concurrent language [99]. They extended the effect system to capture the commimication

behavior of programs, such as the sending ofa value, the receivingofa value, the alloca

tion of a new communication channel, or the spawning of a new process. Their work is

based on the language Concurrent ML (CML) [113], which is an extension of the func

tional language Standard ML. In their system, behaviors can be included in the type infer-

15

ence system, and the inference result indicates whether a program only spawns a finite

number of processes, or only creates a finite number of channels. In these cases, the com

piler may allocate the processes to available processors or allocate commimication

resources statically.

In addition to the ML family oflanguages, extended type systems have also been proposed

for object and actor based languages [3]. In [29], Colaco et al. presented a type inference

system for a primitive actor calculus. In the actor model, the communication topology is

dynamic, so some messages sent out by actorsmay never be handled. The aim ofthe infer

ence system is to detect these orphan messages. This system is based on set constraints [6].

It can detect many orphan messages statically and the remaining messages djmamically

based on the static type information.

The issues discussed in this section represent a set oftrade-offs in type system design. Each

type system represents a set of decisions on these issues. The following section discusses

some notable type systems that have influenced the design of our system.

2.1.3 Notable Type Systems

2.1.3.1 Typed Lambda Calculus

To study type system features without being encumbered by non-type system details,

such as the syntax of a language, researchers often use an abstract, or bare bone lan

guage. ^.-calculus [11] is such a language that has been used widely in literature. The orig

inal A.-calculus is untyped, but type annotation can be added to form typed ^.-calculus. In

this section, we will first review the basic syntax and operational semantics ofA.-calculus,

then add type annotations and type rules to build progressively more complex type sys

tems.

Lambda Calculus

Lambda calculus was invented by Church in the 1930s. Since the 1960s, it has been used

extensively in the programminglanguagecommunityfor the specification oflanguage fea

tures and the study oftypesystems. Lambdacalculus is a mathematical system that defines

a syntax for terms and a set of rewrite rules for transforming terms. It captures one's intu-

16

ition about the behavior of functions. A comprehensive treatment of lambda calculus can

be found in [11]. The following introduction is mainly drawn from [7], [106] and [56].

Let jc,y, z denote variables, e, ey, ^2 denote lambda expressions. The syntax ofA,-calculus

is:

ev.= x\ ^x.e I^7^2

A variable x by itself is a lambda expression. Expressions of the form Xx.e are called

abstractions. It denotes a function with argument jc and function body e. eie2 is an applica

tion of eyto £2- A lambda expression is also called a term.

Informally, the meaning ofapplying a function /U.ey to a term e2» is to bind x to

^2, evaluate ey, andreturntheresultof this evaluation. To definethisoperational semantics

more precisely, we need the notions of free variables and substitution.

The free variables of an expression e, denoted/v(e), is defined by:

/v(x) = {X}

Me^e^) =/v(ei)u/v(e2)

fv{Xx.e) = fv(e)-{x}

Thesubstitution [ej/x]e2 is then defined inductively by:

r e, if i = J

=W if/.y
[e,/jc](e2e3) = ([el/x]e2)([e^/x]e3)

Xxj.ej, if i = j
Xxj. [e1/xj^2, if I j and Xj ^fv(e{)

Xxi^. [eJ/x,] ([x,^/xj] e2)y otherwise,

where k^i,k^j\ x^ ^ ^/v(^2)

lei/Xi](.'Kxj.e2) = <

The last rule handles the situation where the variable Xj has aname conflict with a free vari

able iney. This conflict is resolved byrenaming Xy toXf^.

In general, bound variables can be renamed by an operation called a-conversion:

17

XXf.e = Xxj.[xj^xi]ey where Xj ^fv(e)

Intuitively, a-conversion says that the names of the formal parameters in a fimction in a

programming language do not affect the operation. For example, the following two Java

programs are the same:

int plusOne (int foo) {
return (foo + 1) ;

}

int plusOne (int bar) {
return (bar + 1) ;

}

Computation in A.-calculus is carried out by function application. The rule for function

application is called ^-reduction:

{7uc.6^)62 => [^2

For example, (hc.xy)(uv) reduces to uvy.

Given the above simple definition ofA.-calculus, much more involved computation can be

carried out. For example, we can define multi-argument functions using higher orderfunc

tions, which are functions that yield functions as results. A function F with arguments x

andy can be written as F = Xx.Xy.e. That is, F is a function that given a value for x, yields

a function that, given a value fory, yields the desired result. This transformation of multi-

argument functions into higher order functions is called currying.

The pure ^.-calculus does not have constants. But they can be encoded as A,-expressions.

For example, the booleanvalues true andfalse can be encoded as:

triie = Xt.Xf.t

false - Xt.Xff

We can also define a ^.-expression ifso that ifeje2e^ reduces to ife; is true and reduces

to e2 lieI isfalse:

if= Xl.Xm.Xn.lmn

This function takes three arguments. When applying it to e/, e2» the result is

(eye^ej). When ey is true orfalse, we have {true e2 ef) and {falsee2 ef), respectively. In

18

fact, true andfalse are conditionals, they each take two arguments, and choose the first or

the second, respectively. To show the computation in term of p-reduction, let's compute if

true e2 ej:

if true e2 ^3 = (Xl.Xm.Xn. I m n) true e^ 63 definition of if

•=> (Xm.Xn.true m n) e^ p-reduction

=> {Xn.true ej n) e^ P-reduction

=> true ^2 ^3 P-reduction

= (Xt.Xft) 62 ^3 definition of true

=> iXfe2) ^3 p-reduction

=> ^2 p-reduction

This computation assumes thatw, /, and/are not free in e2 andej. Otherwise, someextra

renaming steps are required.

We can also encode numbers usingthe Church Numerals Cq, C/, C^, etc., as follows:

Cq ~ Xz.Xs.z

Cj = Xz.Xs.sz

C2 - Xz.Xs.s{sz)

C„ = XzXs,s{s{..\sz)),..)

That is, each number n is represented by a function with two arguments, z and s ("zero'

and "successor"), and applies n copies of5toz.Given these numerals, we candefine some

common arithmetic operations as follows:

plus - Xm.Xn.Xz.Xs.m(nzs)s

times = Xm.Xn.mCQ^Plus n)

isZero = Xm.m True {Xx.False)

For thefunction isZero^it applies a Church numeral to two arguments true and{Axfalse).

If the numeral isCq, itwill choose the first argument true. If the numeral isC„ («>0), itwill

apply n copies of thesecond argument {Ax.false) to true. Since the function (Ax.false) just

throws away its argument and always returns false, the result isfalse. For the intuition

19

behind plus and times, as well as the encoding for otherdata types and operations, please

see [106] and the reference therein.

In addition to P-reduction, there is also an rj-reduction and a notionof normalform in X-

calculus. A ^-expression is in normal form if it cannot be further reduced using p- or t]-

reduction. The normal form is what we intuitively think of as the value of an expression.

The Church-Rosser theorems ensure that the normal form is unique, and there is a way to

find it whenever it exists. Another important result is Church's thesis, which establishes

the equivalence between Turing computability and ^.-definability. These results have

enabled A.-calculus to be the foundation offunctional languages and have profound impacts

on progranuning languages in general. However, since these results are not central to

the discussion of the type systems below, they are skipped here. Details can be found

in [56].

First-Order Type System

In the above introduction to ^.-calculus, we have actually defined a tiny progranuning lan

guage with booleans and natural number constants. For example, we can write a program:

Xy.if (isZero y) Cq C,

that has an argument y. Ify is zero, the program returns 0; otherwise, it returns 1.

Notice however, that we can also write programs that do not make sense, such as:

Xy.ifplus {true y) times

When provided with an argument, this program can be translated into a X-expression, but

the result is meaningless because some operations are applied to unintended arguments. To

solve this problem, we need to introduce a type system to make the intended interpretations

explicit. Type systems can be formalized by defining a syntax of types and a set of type

rules using that syntax. In the rest of this section, we will add t)q)es to the untyped X-cal-

culus and build three type systems, including afirst-order typesystem, a second-order type

system, and a system with subtyping. First-order type systems include a set ofbase types,

structured types, and function types. Second-order type systems add type parameterization

20

and type abstraction. The material in this section is based on [21], [7], and [97]. We now

start with the first-order type system.

Each language has a set of base types. For example, the base types for our tiny language

are boolean and natural number. Using K to denote the base types, and x to denote a type,

we have the following in a first order type system:

x::=K \ T—^x

A type Xi->X2 stands for the set of functions that map arguments of type X] to results of

typex2.

To add types to the untypedA.-calculus, we assigntypes to bound variables:

e'.:=x\ ^x'.x.e \eie2

This is analogous to declaring the type of function parameters in a real programming lan

guage. To express "e has type x", we write e:x. For example,

Xx:i.x'. X —> X

'kx'.x-^.Xy'.X2.x'. Xj —> X2 —>• Xj

true: Bool

CqI Nat

Where Bool and Nat stand for the boolean and natural number data types, respectively.

They are names for sets of ^.-expressions.

Toperform type checking, wealso needthe types for free variables. Thisis given in a type

environment, which is a function from variables to types. The syntax of the environments

is:

r::=0ir,;c:x

where 0 is the empty environment. The meaning off, x:x is:

/I- X/ X ifx=y(F, j::x)(y) =
[r(y)

In real compilers, the type environment is implemented by a symbol table.

A typingjudgment, which asserts that an expression e has a type x with respect to a type

environment for the free variables of e, has the form:

21

r 1- e:x

For example,

0 |- trueiBool true has type Bool

0, x:Nat |- plus x Cj: Nat x + 1 hastype Nat, provided that x has type Nat

Typerules assert the validity ofcertain judgments based on the validity ofother judgments.

The general form ofa type rule is:

r|-3

The judgments above the line are the premises, the one below the line is the conclusion.

Two fundamental type rules regarding function abstraction and application are:

r, jc:x2 |-e:T2 r|-e|:xj^X2 r|-e2:xj
r |-Aj[::xj.c: Xj —> X2 r|-eje2:x2

The first rule says that if we can deduce that the expression e has type X2, given that its free

variables has type X], then the expression hcixi.e is a function of type xi->X2. The second

rule says that if Cy is a functionoftype xi->X2, and has type Xj, thenthe resultofapplying

ey to e2 has type X2.

Using the type rules, we can perform type checking by deriving the types of expressions

under a type environment. A derivation is a tree ofjudgments with leaves at the top and a

root at the bottom, where each judgment is obtained from the ones immediately above it

by some type rule. For example, given that e has type Xi->X2, and x has type xj, we can

derive that hc:Ti.{ex) has type xi^X2 as follows:

e:X| -> X2, x:xi |- e:X| ->• X2 eix^ X2, x:x^ \- xix^
e:Xj ->• X2, x:xj [- (ex):x2

e:xj —> X2 \- Xx:xj.(ex):xj -> X2

The first step uses the function application rule, the second step uses the function abstrac

tion rule.

A tjTje rule is associated with each basic construct of a language. For example, the type

rules for the ifconstruct and the isZero function are:

22

r|-e,:goo/ ri-g;:! ri-gj:! rh e:Nat
r \- if 62 Sy X r |- isZero e: Bool

Now that we have established the basic structure of a simple first-order type system, we

can enriching it with more type constructs. We will add another base type Unit and two

structured types Record and Array,

The Unit type is calledvoidin languages like C and Java. It is used as a filler for uninter

esting arguments and results. There is no operation on this type, and it only has one legal

value, unit. So unit'.Unit. We will use this type in one ofthe type rules for array type.

A record type is a named collection of types, like thestructure in theC language. A record

is denoted by record{l]=xj,..., l„=x„), where /y,..., l„ are labelSy anda:;, ...,x^ are values.

The type of this record isdenoted byRecord{ly.xi^..., /„:Xn)- Th® operation e./y extracts the

fieldwhose label is /y from the record e. Two rules for record type are:

ri-gpTi ••• r|-e„:T„
r |- record(ti = e,, /„ = e„): Record{li:z^,

r |- e:Record{lyXy ..., i g 1..«

r I-

The record type is immutable (although mutable record can be defined). That is, once a

record is constructed, itscontents cannot be changed. Compared withrecord. Array type is

mutable. We use arrayin^ ej) todenote anarray of length n with allthe elements set tothe

value ej. The type ofthis array is denoted by Array(x). The operation bound e retums the

length of the array e, the operation e\n\ return the w'th element of the array, and e\n\=ei

assigns the n'th element of the array to value ey. The rules for array construction and the

operations are:

T\-n\Nat ri-gpi F |- c.Arrayjx)
F |- array{n, e{)'. Array(x) F |- bound e: Nat

F |- n'.Nat F |- e:Array{x) F |- niNat F |- e:Array{x) F |- e^.x
F |- e[n]: x F |- e[n] = Unit

23

In addition to record and array types, other structured types, such as product, union, vari

ant, and list types, can also be added. Details can be found in [21]. The resulting first-order

typed A.-calculus is called system Fi. This system is monomorphic in that each expression

has only one type. For example, the identity function TuciBooIjc has type Bool-^Bool, and

the function kxiNatJc has type Nat->Nat. Ifwe want an identity function for another type,

we need to write a new function. Obviously, this is inconvenient. To reuse the same func

tion on different types, we can parameterize the type of the variable x, and instantiate the

type parameter to different types. By doing this, we obtain a second-order type system F2.

Second-Order Type System

To accommodate type parameters, we need to add a new kind of expression in our typed

^.-calculus: Xa.e. This expression can be viewed as a program e that is parameterized with

respect to a type variable a. In this thesis, we will use a, p, and y to denote type variables.

By using type variables, we can turn some monomorphic functions to polymorphic ones.

For example, the identity function for a fixed type x, Xjc:xjc, can be turned into a polymor

phic identity function by abstracting over x: ^a.Xjc:ajc. This is parametric polymorphism

discussed in section 2.1.2.2.

In parametric polymorphism, type variables can be instantiated to any given type. So we

use universally quantified types to denote the type of the expression Xa.e\ Va.x. This

means thatforall a, the body e has type x. Here e and x may contain occurrences ofa. For

example, the type of the polymorphic identity function is Va.a^a.

To complete the treatment of type parameterization, we need to add two new rules in the

second-order system F2 to handle the abstraction and application of type variables:

r. g I- e:z F |- e:Va.T T |- x,
r |-A,a.e: Va.x F |-e x^: [X|/a]x

In the second rule for the applicationoftype expression, [xj/ajx stands for the substitution

of Xj for all the free occurrences of a in x.

24

In addition to universally quantifiedtypes, the second-order type system also has existen-

tiallyquantified types, which is used to model data abstraction. This extension is skipped

here since it is not directly related to the system that we will present in chapter 3.

Subtyping

Subtyping is a feature found in almost all of the object-oriented languages. In these lan

guages, an element of a typecanbe considered also as an element of anyof its supertypes,

thusallowing an objectto be used wherever a supertype element is expected.

One of the simplest type systems with subtyping is an extension of calledFi<. In Fi<,

we add a new judgment

r|-Ti<X2

stating that xj is a subtype of X2.

Wealso needsome additional type rules regarding subtyping. Thefollowing tworules say

that the subtypingrelation is reflexive and transitive:

n-X ^|-X^<X2 r|-X2<X3
r|-x<x ri-xj<x3

The subsumption rule says that if an expression e has type Xj, and X2 is a supertype ofx^,

then e also has X2:

ri-e:xj r|-xj<x2

r I- e: X2

The subtyping relation for function types is a little bit involved. If we want a function e

with type Tj—>^X2 tobe a subtype ofXi'—>X2', e must be able toaccept all the arguments of

type Xi', so the argument type ofe must be a supertype of Also, the return type ofe

must be acceptable when a value of type X2' is expected, so X2 must be a subtype of X2'.

Therefore, the subtyping rule for function types is:

^|-x^-<x^ r|-x2<x2^
r|-Xi^X2<Xi'-^X2'

25

Notice that the subtyping relation is inverted (contravariant) for function arguments, while

it goes in the same direction (covariant) for function results.

In addition to the subt)^ing relation between objects in object-oriented languages, ad hoc

subtyping for base types can be defined. For example, if we add two base types Int and

Double to the typed ^.-calculus, we can define Int < Double. If we consider the four func

tion types whose argument and result types areInt or Double^the subtyping relation among

them can be shown in figure 2.2, where a type at the lower end of a line is a subtype of

the one at the upper end.

Subtyping rules can also be defined for some structured types. The rule for record subtyp

ing is:

r|-Ti<T|' ... r|-T„<T„' r|-T„^, r|-T„^.^
r \- Record(l^:z^,

This rule actually specifies two kinds of subtyping for record. A subtype record may

have more fields than a super type record, and the field types of the subtype record may

be subtypes of the corresponding fields in the supertype record. The former condition

is called width subtyping, and the latter depth subtyping.

Subtyping for mutable types, such as array, is neither covariant nor contravariant. For

example, given xi <12, we cannot define Airay('z{) < Array{X'̂ or Arrayix'^ <

Array(Ti) and ensure type consistency through static checking alone. In both cases, we

can write programs that cause functions to be applied to wrong tjqje of argument. To

illustrate this, let's define a function/with argument type xj, two arraysAj and A2 with

Int->Double

Double

Int—^Int Double->Double

Double-^Int

Figure 2.2 Function subtyping among Int and Double functions.

26

element types Ti and X2, and two values Xj and X2 of types X] and T2, respectively. That

is:

/;x,-^x

A^: Array(Zi)

A2: Array(x2)

x-s'. X2- '2

Now consider these two cases:

Case 1: Assuming that array type is covariant with the element type:

r|-xi<x2
r |- Array{x{) < Array{x2)

Wecan write an illegalprogramthat assignsX2 to the first entry of^42 (assuming

array index startsfrom 0):A2[fi\ =X2. Since the type of^7 {Array{x{)) is a sub

type of that of^2 replace A2 on the left side of the above

assignment with A7, which results in theassignment: Aj[fi\ =X2. Thiscauses the

first entry of.47 to contain an element of type X2! Now if we apply/to AjlQ],

we cause the function to be applied to the wrong type.

Case 2: Assuming that array type is contravariantwith the element type:

r 1-x, <Xo

r \- Array{X'^ < Array{x{)

Wecan writea program that applies/to the firstelement ofAy.fiA7[0]). Since

the typeof ^42 is a subtype of thatof^ 7now, we canreplace A7withA2 in this

application:/y42[0]). Once again, wehavecaused thefunction/to be applied to

the wrong type.

In Java, arrays are covariant. For example, an Object array reference can point to a String

array. To avoid the problem in case 1 above, Java performs run-time checking when the

27

array elements are set, and the exception java.lang.ArrayStoreException is

thrown if the check fails.

In addition to the type systems discussed in this section, more complex ones can be

defined. For a classification of type systems, see [22]. The systems in this section have

ample type annotations, so type checking is relativelysimple. Iftj^e declaration is omitted

in the program, type inference must be used to reconstruct type information. In the second-

order type system, type parameters are declared explicitly in polymorphic functions. This

is called explicitpolymorphism. If we omit all the type parameters and type applications,

we achieve implicitpolymorphism. Type inference for polymorphic type systems is in gen

eral a hard problem. So far, the most successful inference algorithm is the Hindly-Milner

algorithm used in ML.

2.1.3.2 The ML Type System

ML (Metalanguage) was originally conceived as an interactive programming language for

conducting proofs in a logical system [49], and later became one ofthe most popular func

tional languages. ML supports parametric polymorphism and type inference. In most pro

grams, type declarations can be omitted and the type inference algorithm will infer the

types for program expressions. The following overview of the ML type system is mostly

based on [7][20] [85].

Let's start with a ML program that computes the length ofa list:

fun length(x) = if (x=nil) then 0 else 1+length(tl (x));

Here, fun can be viewed as the Xbinder. In A.-calculus syntax, the above function defini

tion can be viewed as length = Ax.if(x=nil) then 0 else l+length(tl(x)). Notice that this is

a recursive function. In this program, nil is a constant representing an empty list of any

type, tlQ is a function that returns the tail of a list. To resolve the types in this program, a

type variable is assigned to each unknown type. For example, we can denote the type of

length by a, and the type ofx by p. By inspecting this program, we can write down the

expressions and their types as:

28

length: a

x: p

nil: Y list

X = nil: 6

0: Int

1: Int

tl: K list^ K list

tl{x): 8

length{tl{x)): ^

1 + length{tl(x)): t|

if (a: = nil) then 0 else\ + length(tl{x)): 0

Thena systemof typeconstraints canbe setupaccording to the type rulesof language con

structs. For example, by the function abstraction rule, the type of the function length is

p->0. By the function application rule, the type ofx in tl(x) mustbe the same as the argu

ment typeof ^/, and the type of tl(x) mustbe thesame as the resulting type of tl That is, P

= Klist, and e = k list. By the rule of the if... then ... else construct, the type of x=nil is

h=Boolean, and the typeof 0 and 1+length (tl{x)) must be thesame. The important

type constraints in this program can be summarized as follows:

a = p —> 0

P = y list

p = K list

8 = K list

8 = P

C = 0

C = Int

Tj = Int

6 = Boolean

Int = r\

Nowthe problem of type resolution has become the problemof solving a set of type equa

tions. What we want is to find substitutions for variables so that all the equations are satis

fied. This is a unification problem, which was first studied by Robinson [115]. For our

program, we can solvethe problem by repeatedly applyingfive simple rules. LetS denote

29

the set of equations, and C denote a constant, such as Boolean, and v denote the vari

ables, such as a, p, and x denote either a constant or a variable. The five rules are:

S^{C=C}^S (1)

5u{v = v}=>5 (2)

S^{v = x}=>S[t/v] u {v^ t} (3)

Su {Xj X2 = X3 -> T4} =>.SU {Xj = X3, X2 = X4} (4)

Su {a list = P list} =:> Skj {a = P} (5)

Rules 1 and 2 eliminate trivial constraints. In rule 3, [x/v] means replacing all occurrences

ofVwith X, and v = x means marking this equation as solved. This rule eliminates a variable

from all equations but one. Rules 4 and 5 apply structural equality to function and list types.

For the set of type equations for the length function, we can apply rule 3 to the equations

C^=Int, r]=Int, and b=Boolean, we obtain a new set ofequations:

a = p 0

P = y list

P = K list

8 = K list

8= P

0 = Int

We can apply rule 3 again on Q=Int, and 8=p, and obtain:

a = p->Int

P = y list

p = K list

P = K list

Here, we can remove one of the duplicate constraints p= k list, and apply rule 3 again on

the remaining one, we obtain:

a = K list -> Int

K list = y list

Now, applying rule 5, we obtain:

a = K list —> Int

K = y

By applying rule 3 one more time, we obtain the type of the length function a:

30

a = y list Int

In the process, we have also found the solution for other type variables: ^=r|=0=/n^,

b-Boolean, 8=p=y list, and K=y. This solution is a substitutor from variable to expression

that satisfies the equations. This substitutor is also called a unifier.

Notice that the solution for the type of the length function contains a type variable y. This

means that this function is polymorphic. Tjqie variables can be viewed to be universally

quantified. So the function length canbe applied to a list of anytype,and it returns an inte

ger. This is parametric polymorphism.

Also notice that the solutionfor the type constraints is not unique. Other solutions include

a = Int List -> Int, a = Boolean List List Int, and a = k List -> Int. In fact, there are

infinite number of solutions. Nevertheless, the solution we have obtained is the most gen

eralunifier inthatallthe other solutions aresubstitution instances ofthemost general solu

tion. Forexample, bysubstituting ywithInt,Boolean List, andk, weobtain theabove three

solutions, respectively. Inthis sense, theMLtype system computes themost general types.

This most general type is also called the principal type. It is unique up to a renaming of

type variables.

The algorithm wejustused to find the most general unifier isnotthe optimal one. A faster

algorithm can be found in [7]. For a comprehensive discussion on unification theory,

please see [8].

The type system discussed above was first proposed by Hindley and later independently

rediscovered by Milner [85][20]. In addition, Milner introduced a crucial extension to

Hindley's work: thenotion of generic and non-generic type variables. To understand this

notion, consider the following program:

fun h(f) = {f(3), f(true));

In ML syntax, (a, b) is a tuple withelements a and b. Tuples canbe viewed as records

without labels. The above program definesa function h that takes an argument/ which is

alsoa function. The body of h applies/to twoarguments, 3 andtrue, and returns the result

31

as a tuple. This program cannot be typed in ML. For example, in the Standard ML ofNew

Jersey compiler^ the following error is reported:

- fun h(f) = (f(3)/ f{true));-
stdin;13.12-13.27 Error: operator and operand don't agree [liter
al]

operator domain: int
operand: bool
in expression:

f true

This is because the type inference algorithm cannot unify the types for the two occurrences

of f. Suppose the type of the function f is denoted by a^p. Based on the first occurrence

of f in f (3), the type inference algorithm unifies a with Int. However, the second occur

rence f (true) requires a to be Bool, which cannot be unified with Int.

Type variables appearing in the type of a fun-bound identifier like f are called non-

generic. In this example, a is non-generic. It is shared among all the occurrences of f and

its instantiations may conflict. Therefore, heterogeneous occurrences of fun-bound iden

tifiers cannot be typed in ML.

However, ifwe know what f is, we should be able to do better. Indeed, ML has a construct

let ... in ... end that can be used for this purpose. Suppose we first define an

identity function g:

fun g(x) = X;

Then we can write:

let

val f=g
in

(f (3), f(true))

end;

Here, we specify that f is equal to the identity function g, then apply f to 3 and true.

This program can be complied and executed with the correct result (3 , true). In this

case, f has type a->a. Type variables which, like this a, occur in the type of let-bound

identifiers are called generic. They can assume different values for different instantiations

I. Standard ML ofNew Jersey, version 110.0.7. (http://cm.bell-labs.coni/cm/cs/what/smlnj/)

32

of the let-bound identifier. This is achieved by making a copy of the type of f for every

distinct occurrence.

The let polymorphism discussed above is considered one ofthe most important advances

in many years. The type system in ML in general has made great impact. Many people have

proposed extensions. For example, Mitchell extended the system with coercion [87], Hall,

et al. extended the system with type classes to handle overloading [50], and Fuh and

Mishra extended the system with subtypes [45]. The technique is also applied outside func

tional languages. In the visual languagearea, the type systemsofseveral languages, includ

ing Forms/3 [18], ESTL [91], and CUBE [92] are based on the ML type system. A survey

ofthe type systems for visual languages can be found in [15].The basic idea has also been

applied to the logic programming language Prolog [90].

2.2 Component-Based Design

2.2.1 Component

Component-based design hasbeenestablished as an important approach to designing com

plexsystems. In hardware design, people have long been assembling systems from com

mercial off-the-shelf (COTS)components. In recentyears, with the adoptionof system-on-

a-chip (SoC) design, systems are often assembled from virtual components, which are

intellectual property (IP) blocks. Some industry organizations, such as the Virtual Socket

Interface Alliance (VSIA) [71] were formed duringthis trend to standardize the specifica

tion, interface, and protection of the virtual components.

In software, an industry that produces commercial software components (routines) was

envisioned as early as 1968 [80]. However, the concept of software components did not

catch on until recent years, after the widespread acceptance of object-oriented program

mingand the emergenceofindustry backedcomponentarchitectures. Today thereare three

major forces in industry in the component software arena: the CORBA-based standards

backedby the Object Management Group, the COM-basedstandardsbackedby Microsoft,

and the JavaBeans-based standards backed by Sun. Component software also attracted

many researchers in academia. The book by Szyperski [119] provides an excellent cover-

33

age on various aspects of component software, from both the technology and market per

spective.

Although component-based design has become a widely used term in both industry and

academic research community, there is no standard definition for the word component. It

seems that every group has their own definition. In the Workshop on Component-Oriented

Programming [122], a software component is defined as "a unit of composition with con

tractually specified interfaces and explicit context dependencies only. A software compo

nent can be deployed independently and is subject to composition by third parties." The

OMG UML specification [101] defines component as "a physical, replaceable part of a

system that packages implementation and provides the realization ofa set of interfaces. A

component represents a physical piece of a system's implementation, including software

code (source, binary or executable) or equivalents, such as scripts or command files." The

component description model in Microsoft Repository [13] defines component as "a soft

ware package that offers services through interfaces." A list of other definitions can he

found in [119]. People have also discussed the importance of various aspects of compo

nents. For example, Meyer and Szyperski engaged in a series of discussions on topics

related to software components, including information hiding, binary vs. source, contracts

between components [82][83][84][120][121]. Meyer also gave seven criteria for compo

nents [83]. Other people have given definitions for components with slightly different

emphasis [37].

Although these definitions emphasize different aspects of components, at an abstract

level, most of these definitions boil down to two basic points:

• Encapsulation: a component encapsulates behavior and state.

• Interface: a component interact with its environment through an interface.

In this thesis, we will view components at this abstract level, and largely ignore the other

aspects, such as their function, complexity, implementation, and source. For example, a

component can be as simple as an adder, or as complex as a video encoder. Components

can be implemented either by software, or hardware, and can be developed in-house or pro

vided by a third party.

34

In the Ptolemy II software, which is the experimental platform for the type system pre

sented in this thesis, components are called actors. In this context, component and actor are

used interchangeably.

2.2.2 Advantages of Component-Based Design

In component-based design, a system is developedby composing components. Some well

recognized benefits of this approach include:

• Reuse. By reusing pre-designed components, companies can save development cost,
significantly reducethe time to market, andaddress the shortage of good software and
hardware developers.

• Clarify system structure.

• Simplify verification.

• Platform or language independence (for somesoftware components).

• Permit dynamic system re-configuration.

• Protect the intellectual propertyassociated with the componentsthrough encapsula
tion.

Fundamentally, components raise the level ofabstraction in the design process. If we look

at theevolution of programming languages thatpredates the adoption of software compo

nents, weseea process of increasing the levels of abstraction. In theearly days of comput

ers, people performed all the programming tasks using assembly languages, which reflect

thestructure of theunderlying machines. This low level ofabstraction makes programming

tedious and error-prone. High-level languages such as FORTRAN raised the abstraction

level from machine instruction to algebraic formulae, greatly improved the productivity.

However, the FORTRAN family of imperative languages still follow the von Neumann

model of computation. Backus and many other researchers proposed to use functional

abstraction [9][56], and argue that functional programs are easier to understand, and their

correctness can be justified by strict mathematics. In recent years, object abstraction,

embodied in object-oriented languages, has received widespreadadoption. However, nei

ther functionalnor object abstraction alone is enoughfor the design ofheterogeneouscon

current systems. Lee proposed to raise the abstraction level by adopting actor-oriented

design [62]. His actor model emphasizes concurrency and conununication abstractions,

and admits time as a first-class concept.

35

In component-based design, a system is often represented as a block diagram. One key

advantage of the block diagrams is that they reflect the topology of component communi

cation. In other approaches, such as implementing the whole system using a concurrent

language, the communication topology may not be readily available. For example, if a

system is implemented in Concurrent ML (CML) [113], a sophisticated algorithm must be

used to infer the topology from the source program [99].

2.2.3 Challenges of Component-Based Design

When assembling components to form a system, an obvious question arises: "Can the com

ponents work together?"

By analogy, ifwe assemble a stereo system from components such as CD players, tuners,

and amplifiers, we need to first ensure that the connectors between components have

matching shape and size. And then we need to ensure that the connected boxes use the same

signal protocol. For analog systems, this means that the source component must supply a

signal within the voltage range expected by the receiver, and other circuit specifications,

such as impedance, must be compatible. For digital systems, the commimication protocol,

encoded by the bit sequence flowing through the connection, must also be compatible

between the source and the receiver.

For software components to work together, they also have to be compatible in at least two

levels. One is the data type level. For example, ifa component expects to receive an integer

at its input, but another component sends it a string, then the first component may not be

able to function correctly. The other level ofmismatch is the dynamic interaction behavior,

such as the communication protocol the components use to exchange data. Since embed

ded systems often have many concurrent computational activities and mix widely differing

operations, components may follow widely different communication protocols. Ensuring

compatibility at component interfaces is one of the major challenges in component-based

design, and is the main goal of this thesis. These two levels of compatibility are also

observed by other researchers [30].

The existing component software standards, such as CORBA, COM, and JavaBeans,

are not good match for embedded system design. CORBA is oriented toward corporate

36

enterprise computing, COM was bom out of a desktop environment, and Java-based

standards are oriented toward internet computing. These standards are basically distrib

uted object-oriented models, and they do not address the heterogeneity and concur

rency issues in embedded systems. We should point out that the development of

CORBA services such as event service, is moving in the right direction. Another reason

that these standards are not good match for embedded systems is that they are mostly

wiring standards that define the interconnection of components [119]; and they do not

directly support the specification of the dynamic properties and constraints of component

interface. As Meyer says, "we badly need more expressive Interface Definition Languages

for both CORBA and COM to support the expression of semantic constraints" [81].

Because of this, many desired properties for embedded systems, such as determinacy,

bounded memory usage, and deadlock freedom, are hard to verify in these standards. To

design systems with some of these properties, a good approach is to use computation

models that inherently offer these properties, or allow easy verification of them.

2.3 Models of Computation

In [61], Lee defines Model of Computation as:

A model of computation is the "laws ofphysics" of concurrent compo
nents, including what they are (the ontology), how they communicate and
how theirflows ofcontrol are related (theprotocols), and what informa
tion they share (the epistemology).

For embedded system design, we need to use modelsof computation that support concur

rencyand combine different models in a structured way to cope with the heterogeneity and

complexity of the system. In the rest of this section, we will review some examples of

models of computation that are suitable for embedded system design. This material is

drawn from [62] and the references therein.

As discussed earlier, systems designed using a component-based approach are often

depicted using block diagrams, like the one in figure 2.3. We will use this figure as the

common syntax for the models of computation below. In the spirit of actor-oriented

design [62], the components A, B, and C are also called actors.

37

Figure 2.3 Multiple MoCs can share the same block diagram syntax.

Dataflow

In dataflow models, actors implement atomic computations that are driven by the avail

ability of input data, and the connections between actors represent data streams. Certain

restrictions on the general dataflow models can yield extremely useful properties. In

synchronous dataflow (SDF), the number of data samples produced or consumed by

each actor on each invocation is specified a priori, and the actors can be scheduled stat

ically onto single or multiple processors [64][65]. As a result, deadlock and boundedness

are decidable.These properties make SDF an excellent model for specifying digital signal

processing systems. Boolean dataflow (BDF) models sometimes yield to deadlock and

boundedness analysis, although fundamentally these questions are undecidable [17].

Dynamicdataflow (DDF) uses only run-time analysis, and thus makes no attempt to stati

cally answer questions about deadlock and boundedness.Dataflow Process Networks [66]

encompass both possibilities.

Discrete Events

In discrete-event (DE) models of computation, the actors communicate via sequences

of events placed along a real time line. An event consists of a value and time stamp. This

and severalother models can be formallydescribedusing the tagged signal model [60][67].

The DE model is the basis for many simulation environments and hardware description

languages, including VHDL and Verilog.

Although DE models are excellent for specifying digital hardware and for simulating

telecommunication systems, the notion of global time in the model often causes diffi

culty in describing distributed systems. It is also relatively expensive to implement in

software.

38

Asynchronous Message Passing

In this model, the actors are processes that communicate with each other through asynchro

nous message passing. The connections between actors are channels that can buffer mes

sages. After an actor sends out a message to the channel, it can start other computations

without waiting for the receiver to receiver the message. Kahn process networks [58] are a

particular case of asynchronous message passing, where the connections represent

sequences of data values, and the actors implement functions that map input sequences

into output sequences. With certain technical restrictions on these functions, this model

is deterministic, meaning that the sequences are fully specified. The dataflow models

discussed above are special cases ofprocess networks [66].

Process network (PN) models are natural for describing signal processing applications

[72]. They can be implemented efficiently in both hardware and software. However, they

are weak in specifying complicated control logic.

Synchronous Message Passing

In this model, the actors are processes that communicate with each other through rendez

vous. If a process wants to send a message, it blocks until thereceiving process is ready to

accept it.Similarly, ifa process wants to receive a message, itblocks until thesending pro

cess is ready to send it. When both processes are ready, the communication is conducted

in a single uninterrupted step. An example ofa rendezvous-based model is Hoare's com

municating sequential processes (CSP) [54]. This model isnon-deterministic asit includes

conditional communication constructs. This model of computation is well suited for

resource management problems.

Synchronous/Reactive

In thesynchronous/reactive (SR) model of computation [12], the connections between the

actors represent signals whose valuesare aligned with global clock ticks. The actors rep

resent relations between the input and output signals at each clock tick. A signal need not

be present at everyclock tick, and the actors areusually implemented as partial functions

with certain technical constraints to ensure determinacy.

39

The SR models are good for applications withconcurrent and complex control logic. The

tightsynchronization in the modelmakes it suitable for designing safety-critical real-time

applications. However, the tight synchronization requirement makes it hard to model dis

tributed systems, and compromises modularityin the design.

In addition to the models discussed above, there are many other models, such as time trig

gered,publishand subscribe,continuoustimeandfinite state machines. They are described

in [62].

2.4 Mathematical Tools

2.4.1 CPO, Lattice, and Fixed Point Theorems

The type system that will be presented in the next few chapters is based on the mathematics

of lattices, continuous functions, and fixed point theorems. This is a standard set ofmath

ematical tools in the study of programming language semantics and type systems. For

example, in the denotational semantics ofprogramming languages [117][126], the denota

tion ofa command is the least fixed point ofa continuous function on a CPO. The elements

ofthe CPO are functions that map one state to another. In concurrent programming models,

the process network [58] and the s5mchronous reactive [39] models also have fixed point

semantics. Fixed point theorems are handy in dealing with "circular systems", such as the

while construct in general purpose languages, and circular graphs in PN and SR. We

briefly review some basic definitions and results here, mostly for establishing notation.

This review is based on [32][39].

2.4.1.1 CPOs and Lattices

Let P be a set. A partial order relation on P is a binary relation < such that, for all x, y,

z e P,

• X< X(reflexive)

• x<y andy<x implyx=y (antisymmetric)

• x<y andy<z implyx<z (transitive)

A set P equipped with such a relation is said to be apartially ordered set, or poset.

40

A finite partially ordered set can be depicted by a Hasse diagram, such as the ones in

figure 2.4. The lines in the diagram represent the order relation, where the element at

the lower end of the line is less than the one at the higher end of the line. For example,

in figure 2.4(a), A is less than B and C, and E is greater than B and C. Two elements can

be incomparable. For example, D and E are incomparable.

IfP is a poset and 5 c P, an element x e 5 is the least element of 5 ifx < 5 for all s ^ S.

The greatest element is defined dually. The least and greatest elements of a set may not

exist, but if they do, they are unique. For example, for the set {B, D, E) in figure 2.4(a),

the least element is B, and there is no greatest element.

The bottom element of a partially ordered set, if it exists, is the least element of the

whole set. Similarly, the top element, if it exists, is the greatest element of the whole

set. The bottom element is denoted by JL, and the top element is denoted by T. In figure

2.4(a), A is the bottom element, and there is no top element. In 2.4(b), A is the bottom

element, and G is the top element.

Lattices and CPOs are posets with some special structure. Before we give their definitions,

we need to define the upper bound and lower boimd of a subset.

Let 5 be a subset of a partially ordered set P. An elementx e P is an upper bound of S

if 5 < Xfor all s &S. The least upper bound of S, denoted by v5, is an upper bound / of

S such that / < mfor all upper bounds u of S. The lower bound and greatest lower bound

are defined dually. The greatest lower bound of a set S is denoted by /\S. The least upper

bound and greatest lower bound of two elements x and y can also be denoted by x v y

D E 1 ^

IXI

^ A

(a) (b)

Figure 2.4 Hasse diagrams for two partially ordered sets.

41

and XAy, respectively. In figure 2.4(a), D and E are upper bounds of the subset {5, C},

but there is no least upper bound for this subset. In 2.4(b), F and G are upper bounds of

the subset {B, C}, and F is the least upper bound.

Consider the case where the set P has a bottom and a top element. If the set S in the

above definition is P itself, it is easily seen that the least upper bound of S is the top

element ofP, and the greatest lower bound of S is the bottom element. Now let S be the

empty subset of P. Then every element x e P vacuously satisfies 5 < x for all s e S.

Therefore, every element of P is an upper bound of 5, and the least upper bound is the

bottom element of P. Dually, the greatest lower bound of the empty set S is the top ele

ment ofP.

A non-emptypartially ordered set P is a lattice ifa: v y and x r\y exist for all jc, y € P. If

vS and /\S exist for all S^P, then P is a complete lattice,

A chain is a totally ordered set. That is, a set 5 is a chain if, for all x,y g .S, either x <y or

y < X. A chain appears as an upward path in a Hasse diagram.

A completepartially ordered set {CPO) is a poset P in which every chain in P has a least

upper bound in P. All the posets discussed in this thesis are CPOs.

2.4.1.2 Fixed Point Theorem

Let P and Q be posets. A functionf: P-^Q is monotonic ifx <y in P impliesX^) <fly) in

Q. A monotonic function is order-preserving.

A functionf: P->Q between posets P and Q is continuous if for all chains S c P,flyS) = v

flS), wherey(«S) is {/(5) 15 e 5}. If we view the least upper bound ofa set as its limit, con

tinuous functions are limit-preserving. All continuous functions are monotonic.

For functions whose domain and range are the same poset, we can define the fixed point

of the function.

42

Let P be a posetj/P-^P be a function, and x,yEiP, IfX^) = then is afixed point In

the set formed by all the fixed points oifi the least element, if it exists, is called the least

fixed point. Since the least element ofa set is unique, the least fixed point is unique.

The followingfixed point theorem gives a way to find the least fixed point ofa continuous

function on a CPO.

Let P be a CPO with a bottom, andfi P-^P be a continuous function. Then v{l,y(l),

fij{l)\ ...,/*(!),...} exists and is the unique least fixed point off.

2.4.2 Interface Automata

In chapter 4, we will use a formalism called interface automata [34] to describe the

interaction of components. Interface automata were proposed by de Alfaro and Henz-

inger. They are a light-weight formalism for the modeling of components and their

environments. We give a high-level overview of interface automata in this section.

Details can be found in [34].

2.4.2.1 An Example

As other automata models, interface automata consist of states and transitions^ and are
usually depicted bybubble-and-arc diagrams. There are three different kinds oftransitions

in interface automata: input, output, and internal transitions. When modeling a software

component, input transitions correspond to the invocation of methods onthe component,

or the returning of method calls from other components. Output transitions correspond

to the invocation of methods on other components, or the retuming of method calls

from the component being modeled. Intemal transitions correspond to computations

inside the component.

For example, figure 2.5 shows an interface automaton model of a software component

called Comp that provides a message-transmission service. This and the other examples

in this section are drawn from [34]. The automaton was constructed in the Ptolemy II

software, and the figure is a screen shot of Ptolemy II. The convention in interface

1. Transitions are called actions in [34].

43

Comp

o

i-o o o nack? o send!

o
nack?

Figure 2.5 An interface automaton modeling a communication component.

automata is to label the input transitions with an ending the output transitions with

an ending and internal transitions with an ending Figure 2.5 does not contain

any intemal transitions. The Comp component has a method msg^ used to send mes

sages. When this method is called, the component calls a send method on a low-level

communication channel to send the message. The send method may retum either ack^

indicating a successful transmission, or nack^ indicating a failure during transmission.

If ack is retumed, Comp retums from the msg method with a retum value ok. If nack is

returned, Comp calls send once more to re-send the message. If the second attempt is

successful, Comp retums ok, otherwise, it retums fail. The block arrows on the sides of

figure 2.5 denote the inputs and outputs of the automaton. The three arrows on the left

side correspond to the interface with the users of Comp, namely, the msg method and

its retum values ok and fail. The three arrows on the right side correspond to the inter

face with the channel, which is the send method and its retum values ack and nack.

This example illustrates an important characteristic of interface automata. That is, they

are not input enabled. In another words, they do not require all the states to accept all

inputs. In figure 2.5, the input msg is only accepted in the initial state 0, but not in any

other states. In fact, the illegal inputs are used to encode assumptions about the envi

ronment. These assumptions state, among other things, that once the msg method is

called, the environment should not call this method again until an ok or fail is retumed.

This way of encoding environment assumptions also eliminates the need of using

44

explicit states to model error conditions. This example shows that interface automata

take an optimistic approach for modeling, and they reflect the intended behavior of

components under a good environment. As a result, interface automata models are usu

ally more concise than other automata-based formalisms, such as I/O automata [78],

where every input must be enabled at every state.

2.4.2.2 Composition and Compatibility

Two interface automata can be composed if their transitions do not overlap, except that

an input transition of one may coincide with an output transition of the other. These

overlapping transitions are called shared transitions. Shared transitions are taken syn

chronously, and they become internal transitions in the composition. Figure 2.6 shows

an automaton that can be composed with Comp. This automaton models an user of the

communication component. It always expects successful transmission of the messages.

When composed with Co/wp, msg^ ok^ andfail become shared transitions, and the com

position result is shown in figure 2.7.

Figure 2.6 An interface automaton modeling a userof the component Comp.

UserjComp 5 1

O-
2 lya"*' 3 1

Figure 2.7 Composition of User and Comp.

45

Notice that the composition is smaller than the product of User and Comp. This is also

due to the optimistic approach of interface automata. Under this approach, error condi

tions are not explicitly modeled. For example, if the User automaton is in state 1 and

Comp is in state 6, Comp may make the transition fail. However, since fail is not

accepted by User, the pair of states (1, 6) is illegal in the composition {User, Comp). In

interface automata, illegal states are pruned out in the composition. Furthermore, all

states that can reach illegal states through output or internal transitions are also pruned

out. This is because the environment cannot prevent the automaton from entering ille

gal states from these states. The resulting composition reflects the environment

assumption that no two consecutive transmissions fail.

We can further compose the automaton UserjComp with a model of the low-level

channel. Figure 2.8 shows two channel models. The good channel always returns ack

on each send request, but the bad one nondeterministically returns ack or nack. When

composing UserjComp with the good channel in figure 2.8(a), we obtain the composi

tion in figure 2.9(a). This is a closed system in which all of the transitions are intemal

transitions. This model describes the behavior that communication is always successful

on the first attempt. If we compose UserjComp with BadChannel, we obtain an empty

automaton shown in figure 2.9(b). This is because the bad channel does not satisfy the

assumption that no two consecutive transmissions fail. In particular, the pair of states

(4_1, 1) in {UserjComp, BadChannel) is illegal because the bad channel may issue

nack in state 1, which cannot be accepted by UserjComp in state 4_1. Since this illegal

GoodChannel
send

1^ ack*

send?

(a)

BadChannel

send

ack!

ack

¥
nack

Qr"=^0
nack*

(b)

Figure 2.8 Two channel models.

46

User_Comp_GoodChannel User_Comp_BadChannel
5 1 0

O- ack;

•^Ok;

0 0 Ojf 110 X2 1 1

0=^0^0
(a) (b)

Figure 2.9 Composition of UserjComp with two channel models.

state is reachable by the initial state of the composition through internal transition, the

initial state is prune out. As a result, the whole composition is empty.

The above examples illustrate the key notion of compatibility in interface automata.

Two automata are compatible if their composition is not empty. This notion gives a

formal definition for the informal statement "two components can work together". The

composition automaton defines exactlyhow they can work together.

Under the optimistic approach to composition in interface automata, two components

are compatible if there is some environment that can make them work together. In the

traditional pessimistic approach, two components are compatible if they can work

together in all environments. Because of this difference, the composition of interface

automata is usually smaller thanthe composition in other automata models.

2.4.2.3 Alternating Simulation

In conventional automata settings, several relations between automata have been stud

ied,suchas traceequivalence, simulation, andbisimulation [51][68]. In the areaof system

design, these relations aresometimes usedas therefinement relations between the specifi

cation and implementation of systems. The simulation relation ensures that the output

behaviors of the implementation are behaviors that are allowedby the specification. It also

requires that the set of legal inputs of the implementation is a subsetof the inputs allowed

by the specification. In the non-input-enabled setting, such as interface automata, this

requirement is not appropriate, because it could restrict the implementation to work in

47

fewerenvironmentsthan the interfacespecification. Thisproblemmotivated the authorsof

interface automata to use alternating simulation to define refinement. Informally, for two

interface automata P and g, thereis an alternating simulation relation from 2 to P if all the

input steps ofP can be simulated by Q, and all the output steps of Q canbe simulated by

P. The formal definition also involves intemal transitions, and is given in [34]. Under the

altemating simulation relation, one interface refinesanother if it has weakerinputassump

tions, and stronger output guarantees.

Refinement and compatibility are related. A theorem states that if a third automaton R

is compatible with P, then Q and R are also compatible, provided that P and Q are con

nected to R by the same inputs. The formal statementof this theoremcan be found in [34].

Essentially, this theoremstatesthata component P canbe replaced with a more refinedver

sion Q in the environment R.

48

3 Data Types

In this chapter, we present a type system for a block diagram based design environment.

This system has been implemented in the Ptolemy II software [33]. We focus on the for

mulation and the design issues in this chapter and discuss the implementation details in

chapter 5.

3.1 Introduction

3.1.1 Abstract Syntax and High-level Semantics

Before we start to design a type system, we must have a syntax for the language on which

the type system can be implemented. For text based languages, most research papers use

the notation ofA,-calculus. For the discussion in this chapter, we use a syntax adapted from

the abstract syntax for actor-oriented designs [62]. As shown in figure 3.1, each of the

components is an actor, and actors containparameters and ports. Ports are denoted by

the small circles on the actors, and they are connected through connections.

The abstract syntax in [62] is more general than the one shown in figure 3.1. Among

other things, the connections in figure 3.1 have directions. This implies a high-level

Actor

Port

Parameters

Connection

Connection

Actor

Port

Parameters

Actor

Port

Parameters

Figure 3.1 An abstract syntax for block diagram based language.

49

semantics of message passing. In this chapter, we assume that actors send and receive

messages through ports, and messages are encapsulated in tokens. The ports that send

out tokens are called output or sending ports, and the ports that receive tokens are called

input or receiving ports. Here, the detailed interaction semantics in various MoCs is

ignored. This abstraction enables the same type system to work with widely differing

models.

The abstract syntax in [62] can also be used as the basis for state transition systems. There

are some interesting type system issues when mixing state transition systems with message

passing systems, such as in modal models [48]. These issues will be discussed later in this

chapter.

3.1.2 Design Goal

In figure 3.1, the interconnections imply type constraints. For example, if an actor

expects to receive integers from one of its input ports, then the output port that is con

nected to that input should not send out strings. In addition, actors themselves may have

constraints among their ports and parameters. For example, an actor designer may want

to specify that the type of the tokens sent out from a port is the same as the type of an

internal parameter. The primary role of a type system is to support the specification of

these kinds of constraints, and to ensure their satisfaction.

As discussed in chapter 2, many type systems play a larger role than just ensuring type

safety. For example, many type systems provide t3q)e conversion services, most

modem type systems support program reuse through certain kind of polymorphism,

and type information can be used for program optimization. For component-based

design, we also want our type system to do more than type checking. In particular, we

want to support the following features:

• Type conversion: Conversions between primitive types, such as Int to Double, happen
frequently in programs. We want to perform these kinds ofconversions automati
cally in the system so that the actor designers do not need to be burdened with the
conversion tasks. As a design principle, we will only support conversions that do
not lose information. For example, using the IEEE 754 standard, a 32 bit integer
can be losslessly converted to a double, but the reverse is not tme.

50

• Subtyping: In recent years, a large percentage of software development has been
done using object-oriented languages, such as Java or C-H-. For example, Ptolemy
II is developed in Java, and many commercial system design tools are developed in
C++. Subtyping is one of the main features of these languages. To support this fea
ture, we want our type system to recognize the subtyping relation among types.

• Polymorphism: since the primary benefit of component-based design is reuse, the
type system should be polymorphic, so that some actors can be reused in different
settings with different types. We call these actors data polymorphic actors.

• Supportingdesign optimization: Polymorphic actorsmay have more than one possible
type assigrunent. In this case, the type systemshouldfind a typing that has a lower
cost of implementation.

• Structured types: In addition to primitive types, we want to support structured types
such as arrays and records.

• Extensibility: Since the application areasand the technology used in designing embed
ded systemsare diverse, designers maysometimes wantto add newtypes to the design
environment. Therefore, the type system shouldbe extensible to accommodate this.

3.1.3 Our Approach

Type conversion among primitive types and subtyping naturally imply an ordering rela

tion among all the types. In our system, we organize all the types into a typelattice. The

reason to restrict the partial order to be a latticewill become clear later.

To express the typing requirements across connections and inside the actors in figure

3.1, we give each portand each parameter a type. The type of the port restricts the type

of the token that can pass through it. Inspired by ML, we take a constraint solving

approach in our type system. In particular, we use type variables to denote the type of

polymorphic actors and set up type constraints in term of the variables and constant

types. The format of type constraints in our system is different from that in ML. In ML,

type constraints are type equations. In oursystem, they are inequalities defined over the

type lattice. The constraint-base approach handles recursion or feedback loops well,

because once the constraints are set up, the constraint solving process does not take the

program structure into consideration anymore. Another advantage of this approach is

that constraint resolution can be separated from constraint generation, and resolution

can employ a sophisticated algorithm. Although the actor designers and tool users need

to understand the constraint formulation, they do not have to understand the details of

the resolution algorithm in order to use the system. In addition, the constraint resolution

51

algorithm can be built as a generic tool that can be used for other applications. Even

more important, the tj^es are not aware of the constraints, so more types can be added

to the type lattice, resulting in an extensible type system.

Type constraints can be set up based on the topology ofthe block diagram and the specifi

cation ofactors. The collection and resolution ofthe constraints can be performed statically

before the model executes. This has obvious advantages. However, static checking alone

is not enough to ensure type safety at run-time. In general, many block diagram based envi

ronment, such as Ptolemy II, can be viewed as coordination languages [27]. Their type sys

tems do not have detailed information about the operation of each actor, except the

declared types of the ports and the type constraints provided by the actors. In fact, many

design tools place no restriction on the implementation of an actor. So an actor may

wrap a component implemented in a different language, or a model built by a foreign

tool [75]. Therefore, even ifa source actor declares its port type to be Int, no static structure

prevents it from sending a token containing a double at run-time. The declared type Int in

this case is only a promise from the actor, not a guarantee. Analogous to the run-time type

checking in Java, the components are not trusted. Static type checking checks whether the

components can work together as connected based on the information given by each com

ponent, but run-time type checking is also necessary for safety. Therefore, we combine

both static and run-time checking in our system. With the help of static typing, run-time

type checking can be done when a token is sent from a port. I.e., the run-time type checker

checks the token type against the type of the port. This way, a type error is detected at the

earliestpossible time, and run-time type checking (as well as static type checking) can be

performed by the system infrastructure instead ofby the actors.

Static type information can also be used to perform type conversion. For example, if a

sending port with type Int is connected to a receiving port with type Double, the integer

token sent from the sender can be converted to a double token before it is passed to the

receiver. This kind of run-time type conversion can be done transparently by the type

system (actors are not aware it). So the actors can safely cast the received tokens to the

type of the receiving port. This makes actor development easier.

52

The rest of this chapter is organized as follows. Section 3.2 presents the formulation of

our type system, including the type lattice, type constraints, and type checking. Section

3.3 extends the system to include structured types, and section 3,4 describes ways to

express more involved type constraints. The last section discusses several design deci

sions.

3.2 Formulation

3.2.1 Type Lattice

As mentioned above, the type lattice represents the type conversion relation among prim

itivetypesand the subtype relationamong other types. In systems with subtyping, such as

Fi< discussed in section 2.1.3.1, the subtyping relation is usually reflexive and transi

tive. We add two additional requirements in our system. First, we require the relation

among types to be antisynmietric so that the set of types form a CPO. Secondly, we

require the least upper bound and the greatest lowerbound of each pair of types to exist

so that the CPO becomes a lattice. As will be shown later, type constraints over a lattice

can be solved using a very simple and efficient algorithm.

In each language, there is a set of base types. This set is oftenslightly different from lan

guage to language. The type lattice in Ptolemy II, which includes all the base types, is

shown in figure 3.2. In Ptolemy II, data are encapsulated in a set of Java classes. The

base class is called Token, and all the other token classes, such as StringToken,

IntToken, are derived from it. Following the convention of the Hasse diagram discussed

in section 2.4.1, a type a in figure 3.2 is greater than a type p if there is a path upwards

from P to a. Thus, ComplexMatrix is greater than Int, and Int is less than ComplexMa-

trix. Two types can be incomparable. Complex and Long, for example, are incompara

ble. The top element. General, which is "the most general type," corresponds to the

base Token class; the bottom element, UNKNOWN, does not correspond to a token.

Users can extend a type lattice by adding more types.

The ordering relation of the type lattice is a combination of the lossless type conversion

relation among primitive types, suchasInt <Double, andthe subclass relation of the token

classes, such as String < General Since the type conversion relation among primitive

53

General

Numerical

Object FixMatrix / LongMatrix ComplexMatrix

DoubleMatnx

IntMatrvc

Scalar

Boolean fix Long
Complex

Double

UNKNOWN

Figure 3.2 An example of a type lattice.

types can be viewed as ad hoc subtyping [87], we can say that the relation in the type lattice

represents two kinds of subtyping relations.

3.2.2 Type Constraints

As mentioned earlier, each port has a type. This type can be declared by the actor writer,

or left undeclared, in which case the type system will resolve the type when solving the

type constraints. Type resolution can be viewed as a form of type inference.

In object-oriented languages, a subtype object can be used in place of a supertype

object. Similarly, in block diagram based languages, if an input port expects to receive

tokens of a certain type receiveType, the output port that is connected to that input

54

should be allowed to send out tokens of a subtype, as well as the same type as receive-

Type. Therefore, across any connections, we require the type of the port that sends

tokens to be the same as or less than the type of the receiving port:

sendType < receiveType (1)

If both thesendType and receiveType are declared, the static typechecker simply checks

whether this inequalityis satisfied, and reports a type conflict if it is not.

In addition to the above constraint imposed by the topology, actors may also impose con

straints among portsandparameters. For example, the Ramp actor in Ptolemy II, which is

a source actorthatproduces a token on eachexecution witha value that is incremented by

a specified step, stores thefirst output andthestep value in twoparameters. This actorwill

not declare the type of its port, but will specify the constraint that the port type is greater

than orequal to thetypes of the two parameters. Asanother example, a polymorphic Dis

tributor actor,whichsplits a singletoken stream intoa set of streams, will specifythe

constraint that the type of a sending port is greater than or equal to that of the receiving

port. ThisDi s t r ibutor will beable to work ontokens ofanytype. In general, polymor

phic actors need to describe the acceptable types through typeconstraints.

All thetype constraints aredescribed in theform ofinequalities like theonein(1). If a port

ora parameter hasa declared type, itstype appears asa constant in theinequalities. Onthe

other hand, if a portora parameter hasan undeclared type, its type is represented by a type

variable in theinequalities. Thedomain of thetype variable is theelements of thetype lat

tice. The type resolution algorithm resolves the imdeclared types in the constraint set. If

resolution is not possible, a type conflict error will be reported. As an example of a con

straint set, consider figure 3.3.

The port on actorA1 has declared type Int\ the ports on A3 and A4 have declared type

Double; and the ports on A2 have their types undeclared. Let the type variables for the

undeclaredtypes be a, p, and y; the type constraints from the topology are:

Int < a

Double < p
y < Double

55

Double

Double

Figure 3.3 A topology (interconnection ofcomponents) with types.

Now, assume A2 is a polymorphic adder, capable of doing addition for integer, double,

and complex numbers. Then the type constraints for the adder can be written as:

a < Y

P<Y
Y< Complex

The first two inequalities constrain that the precision ofthe addition result to be no less than

that ofthe summands, the last one requires that the data on the adder ports can be converted

to Complex losslessly. These six inequalities form the complete set of constraints and

are used by the type resolutionalgorithm to solve for a, p, and y-

In the Ptolemy II implementation, the adder can also work on structured types such as

arrays and records. These types will be discussed in section 3.3.

3.2.3 Type Resolution Algorithm

The above formulationconvertstype resolutioninto a problem ofsolvinga set of inequal

ities defined over a finite lattice. An efficient algorithm for doing this is given by Rehof

and Mogensen [112]. Essentially, the algorithm starts by assigning all the type variables

the bottom element of the type hierarchy, UNKNOWN, then repeatedly updating the vari

ablesto a greater elementuntil all the constraints are satisfied,or until the algorithmfinds

that the set ofconstraints are not satisfiable. This iteration can be viewed as repeated eval

uation ofa monotonic function, and the solution is the least fixed point ofthe function. The

least fixed point is the set of most specific types. It is unique [32], and satisfies the con

straints if it is possible to satisfy the constraints.

56

The kind of inequality constraints for which the algorithm can determine satisfiability

are the ones with the greater term being a variable or a constant. By convention, we

write inequalities with the lesser term on the left and the greater term on the right, as in

a < p, not P > a. The algorithm allows the left side of the inequality to contain mono-

tonic functions of the type variables, but not the right side. The first step of the algo

rithm is to divide the inequalities into two categories, Cvar and Ccnst. The inequalities

in Cvar have a variable on the right side, and the inequalities in Ccnst have a constant

on the right side. In the exampleof figure 3.2, Cvar consists of:

Int<a

Double < P
a<Y

P<Y

And Ccnst consists of:

y < Double
y < Complex

The repeated evaluations are only done on Cvar, Ccnst are used as checks after the iter

ation is finished, as we will see later. Before the iteration, all the variables are assigned

the value UNKNOWN, and Cvar looks like:

Int<a{UNKNOWN)
Double < ^{UNKNOWN)
a(UNKNOWN) < y{UNKNOWN)
^{UNKNOWN) ^-iiUNKNOWN)

Where the current valuesof the variables are inside the parenthesesnext to the variable.

At this point, Cvar is further divided into two sets: those inequalities that are not cur

rently satisfied, and those that are satisfied:

Not-satisfied Satisfied
Int < aiUNKNOWN) a{UNKNOWN) < y{UNKNOWN)
Double < ^{UNKNOWN) ^{UNKNOWN) < t{UNKNOWN)

Nowcomes theupdate step. Thealgorithm selects anarbitrary inequality from theNot-sat

isfied set, and forces it to be satisfied by assigning thevariable on the right side the least

upper bound of thevalues of both sides of the inequality. Assuming thealgorithm selects

Int < aiUNKNOWN), then

57

a = InNUNKNOWN= Int (2)

After a is updated, all the inequalities in Cvar containing it are inspected and are

switched to either the Satisfied or Not-satisfied set, if they are not already in the appro

priate set. In this example, after this step, Cvar is:

Not-satisfied Satisfied
Double < ^{UNKNOWN) Int < a{Int)
ailnt) < y(UNKNOWN) ^{UNKNOWN) < y{UNKNOWN)

The update step is repeated until all the inequalities in Cvar are satisfied. In this exam

ple, p and Ywill be updated and the solution is:

a = Int, P = Y= Double

Note that there always exists a solution for Cvar. An obvious one is to assign all the vari

ables to the top element. General, although this solution may not satisfy the constraints in

Ccnst. The above iteration will find the least solution, or the set ofmost specific types.

After the iteration, the inequalities in Ccnst are checked based on the current value of the

variables. If all of them are satisfied, a solution for the set of constraints is found.

As mentioned earlier, the iteration step can be seen as a search for the least fixed point of

a monotonic function. In this view, the computation in (2) is the application ofa monotonic

function to type variables. Let L denote the type lattice. In an inequality r < a, where a is

a variable, and r is either a variable or a constant, the update function/ -> L is a' =flr,

a) = r Va. Here, a represents the value ofthe variable before the update, and a' represents

the value after the update. The function / can easily be seen to be monotonic and non-

decreasing. And, since L is finite, it satisfies the ascending chain condition, so / is also

continuous. Let the variables in the constraint set be aj, a^,..., where N is the total

number of variables, and define A = (ay, a2, ... , a^). The complete iteration can be

viewed as repeated evaluation of a function F\ of A, where F is the composi

tion of the individual update functions. Clearly, F is also continuous. The iteration starts

with the variables initialized to the bottom, A = 1^, where -L = UNKNOWN, and com

putes the sequence (i > 0), which is a non-decreasing chain. By the fixed point

58

theorem in [32], the least upper bound ofthis chain is the least fixed point ofF, correspond

ing to the most specific types in our case.

Rehof and Mogensen [112]proved that the above algorithm is linear time in the number of

occurrences ofsymbols in the constraints, and gave an upper bound on the number ofbasic

computations. In our formulation, the symbols are type constants and type variables, and

each constraint contains two sjmibols. So the type resolution algorithm is linear in the

number of constraints.

If the set of type constraints is not satisfiable, or some type variables are resolved to

UNtCNOWN, the static typechecker flags a type conflict error. The former case can hap

pen, for example, if the port on actor A1 in figure 3.3 has declared type Complex. The

latter can happen if an actor does not specify any type constraints on an undeclared

sending port. If the type constraints do not restrict a type variable to be greater than

UNKNOWN, it will stay at UNKNOWN afterresolution. To avoid this, any sending port

must either have a declared type, or some constraints to force its type to be greater than

UNKNOWN.

The type constraints discussed in this section only involve constant types and type vari

ables. In section 3.3 and 3.4, we will see more complicated constraints that involve

structured types and monotonic functions.

3.2.4Run-time Type Checking and Lossless Type Conversion

The declared type isa contract between an actor and the type system. Ifan actor declares

that a sending port has acertain type, it asserts that itwill only send tokens whose types are

less than orequal tothat type. Ifanactor declares a receiving port tohave a certain type, it

requires the system to only send tokens that are instances of the class of that type to that

port. Run-time type checking is the component in the system that enforces this contract.

When a token is sentfrom a sending port, therun-time type checker finds itstype,andcom

pares it with the declared type ofthe port. If the type of the token isnot less than orequal

to the declared type, a run-time typeerror willbe reported.

59

As discussed before, type conversion is needed when a token sent to a receiving port has a

type less than the type of that port but is not an instance of the class ofthat type. Since this

kind of lossless conversion is done automatically, an actor can safely cast a received token

to the declared type. On the other hand, when an actor sends tokens, the tokens being sent

do not have to have the exact declared type of the sending port. Any type that is less than

the declared t)^e is acceptable. For example, if a sending port has declared type Double^

the actor can send IntToken from that port without having to convert it to a DoubleToken,

since the conversion will be done by the system. So the automatic type conversion simpli

fies the input/output handling of the actors.

Note that even with the convenience provided by the type conversion, actors should still

declare the receiving types to be the most general that they can handle and the sending

types to be the most specific that includes all tokens they will send. This maximizes their

applications. In the previous example, if the actor only sends IntToken, it should declare

the sending type to be Int to allow the port to be connected to a receiving port with type Int.

If an actor has ports with undeclared types, its type constraints can be viewed as both a

requirement and an assertion from the actor. The actor requires the resolved types to satisfy

the constraints. Once the resolved types are found, they serve the role ofdeclared types at

run time. That is, the type checking and type conversion system guarantees to only put

tokens that are instances of the class of the resolved tjqje to receiving ports, and the actor

asserts to only send tokens whose types are less than or equal to the resolved type from

sending ports.

3.3 Structured Types

3.3.1 Goals and Problems

Structured types are very useful for organizing related data and make programs more read

able. In a block diagram based design environment, we want to support tokens that con

tain structured data, such as array tokens and record tokens. Both kinds of tokens allow

multiple pieces of information to be transferred in one round of communication, making

the execution more efficient. In addition, record tokens can be used to reduce the number

ofports on certain actors, which simplifies the topology of the block diagram.

60

In our type system, the elements ofstructured tokens are also tokens. For example, an inte

ger array token contains an array of integer tokens. This allows structured types to be arbi

trarily nested. For example, we can have an array token whose elements are also array

tokens, that is, an array of arrays. Also, we can have an array of records, or records con

taining arrays. Another desired feature for structured types is to be able to set up type con

straints between the element type and the type of another object in the system. For

example, we want to be able to specify that the element type ofan array is no less than the

type ofa certain port.

To support these two features in the framework of our type system, we need to overcome

some technical difficulties. In particular, we need to answer the following questions:

• Ordering relation. What is the ordering relation among various structured types?

• Type constraints on structured types. Can the simple format of inequalities express
type constrains on structured types? Ifnot, how can we extend the format to do so?

• Infinite lattice. Since the element type of structured types can be arbitrary, the type
lattice will become infinite. Will type resolution always converge on this infinite
lattice? Ifnot, can we detect and handle the cases that do not converge?

The rest of this section will answer these questions for array and record types. To express

the values and types of structured data, we will use the syntax of the expression lan

guage of Ptolemy II. In this syntax, structured values and types are enclosed in braces,

elements are separated by comma, and the equal sign is used to link the record label

with the element type or value. For examples:

• {1.4, 5.5}: An array containing two double values, 1.4 and 3.5.

• {Double): The type of the above array.

• {{7,2}, {5,4}}: An array of arrays.

• {{Int)}: The tjqDe of the above array.

• {name="foo", value=l}: A record with two fields. One field has label name and
string valuefoo, the other has label value and integer value 1.

• {name=String, value=Int}: The type of the above record.

61

3.3.2 Ordering Relation

In section 2.1.3.1, we discussed that subtyping for mutable arrays is neither covariant

nor contravariant. This means that if a subtyping relation is defined on mutable arrays,

static checking alone is not enough to ensure type consistency. One way to obtain sub-

typing in arrays is to use a run-time check, as is done in Java. Another way, which we

use in our type system, is to disallow the contents of the arrays to be changed after they

are initialized. That is, to make arrays immutable.

By making the arrays immutable, the elements of the arrays must be specified when con

structing the array. Once the array is constructed, the elements cannot be changed. This

restriction is usually not acceptable for general purpose text based languages. However, for

block diagram based languages, making the arrays immutable is justifiable, or even desir

able. In our case, the arrays are encapsulated in array tokens, which are mostly used for

passing messages between actors. As a message carrier, we usually do not need to

modify the contents of the array. Furthermore, if the arrays are mutable, then when we

send an array token to multiple actors, we will want to make copies of the array and

send each receiving actor a new copy. Otherwise, multiple actors will share the same

mutable array and the modification by one actor will affect the operation of the other.

This is analogous to the use of global variables in programming, which is regarded as

one of the main source of program errors, particularly in concurrent software. In fact,

this problem is not only limited to arrays, it applies to any type of token. Because of

this, it is desirable to make all tokens immutable. This way, no copying is necessary

during token passing, and the corrununicationbetween actors become more efficient.

For immutable arrays, we can define subtyping in a covariant way. That is, if Xj < 12, then

{xi} < {X2}. This is the orderingrelation weuse in our type lattice. We do not need to per

form run-time checking upon assignment because the elements carmot be changed.

Record types are immutable in most languages that support them. In our system, they are

certainly immutable. According to the discussion in section 2.1.3.1, there are two kinds

of subtyping relations among record types, depth subtyping and width subtyping. In

depth subtyping, the element types of a sub record type are subtypes of the correspond-

62

(Base types except
General and

UNKNOWN)

General

n r -| r

II II I

11 (Infinite number of I I (Infinite number of |
11 arraytypes) I I recordtypes) |
II II I

J L J U

UNKNOWN

Figure 3.4 The type lattice of Ptolemy II with array and record types added.

ing elements in the super record type. For example, {name^String, value=Int} <

{name=String, value=Double}. In width subtyping, a longer record is a subtype of a

shorter one. For example, {name=String, value=Double, id=Int} < {name=String,

value=Double].

Different kinds ofstructured types are mutually incomparable. For example,any array type

is incomparable with any record type. Figure 3.4 shows the organization of the type lat

tice of Ptolemy II after adding array and record types. All the structured types are less

than the type General and greater than UNKNOWN, but they are not comparable with

other base types. As indicated bythe type lattice in figure 3.2, the base types in Ptolemy

II include matrix types. Matrices and arrays are different. Matrices contain primitive

data, such as integers or doubles, while arrays contain tokens that may have arbitrary

type. In Ptolemy II, matrix types are comparable with the corresponding element types.

For example, Int is less than IntMatrix, but array types are not. This is largely a design

decision on the construction of the type lattice.

33.2.1 Inequality Constraints

The inequality solving algorithm we described in the last section admits definite ine

qualities, which are the ones having the following form:

63

Const
Const

a ^
a

/(a)

That is, the left side ofthe inequalitycan be a constant, a variable,or a monotonic function,

and the right side can be either a constantor a variable. Noticethat the right side cannotbe

a function. This is because that during the update step, we need to update the right hand

side to the least upper bound of both sides, and in general, we cannot update the value

of a function to an arbitrary value.

When structured types are added, we may have inequality constraints with the right

hand side being a variable structured type, such as:

T^{a}

In this inequality, the right side is neither a constant nor a simple variable. It can be viewed

as a function that takes a and returns an array type {a}. Strictly speaking, this inequality

cannot be admitted by the algorithm ofRehof and Mogensen since the right side is a func

tion. However, in the case of structured type, we know exactly the definition of the

function, so that during the update step of the algorithm, we can attempt to update the

arguments of this function such that the value of the function is the least upper bound

of the two sides. In the above inequality, if x is {Int} and the current value of a is

UNKNOWN^ then the least upper bound of both sides is {Int}\/{UNKNOWN} = {Int}.

By matching the structure of the right side {a} with {Int}, we can update a to Int,

which makes the value of the right side {Int}. Conceptually, this matching and updating

is a process of unification for the right side of the inequality and the least upper bound

of the two sides. For this unification to succeed, the least upper bound must be a sub

stitution instance of the right side variable structured type. If this is not the case, we

have a type conflict in the model. The implementation of this process in Ptolemy II will

be discussed in chapter 5.

3.3.2.2 Infinite Lattice

After structured types are added, the t)q)e lattice becomes infinite. Type resolution on this

lattice, unfortunately, does not always converge. To see this, let's look at a simplified lat-

64

Boolean

General

{General]

[String]

[Boolean]
Double

base types ^

[Double]

[UNKNOWN]

1-Darrays' ^

UNKNOWN

{[General])

{{Long]}

{{Boolean}]
[{Double}}

{{/«'}}

{{unknown}}

2:P5rays,

Figure3.5 An example of a type latticewith arrays.

tice, with only arraytypes added, and include only seven basetypes: General, String, Bool

ean,Long, Double, Int, and UNKNOWN, This lattice is shownin figure 3.5.

Notice that there is an infinite chain in this lattice:

UNKNOWN, {UNKNOWN), {{UNKNOWN}}, {{{UNKNOWN}}},...

This chain may cause problem in type resolution. For example, if we try to solve the

inequality {a} < a, we will encounter an infinite iteration:

{ UNKNOWN} < UNKNOWN

{{ UNKNOWN}} < {UNKNOWN}

{{{ UNKNOWN)}} < {{UNKNOWN}}

65

Fortunately, this kind of infinite iteration can be detected. Observe that:

• The infinite iteration only happens along the chain that involves UNKNOWN.

• Fromany type that does not include UNKNOWN as an element,all chains to the top
of the lattice have finite length.

These two conditions are true not only after the array types are added, but also after the

record types are added. According to the subtyping rules for records, a super record

type cannot have more fields than a sub record type, so any upward chain starting from

a record type that does not involve UNKNOWN will have a finite number of elements

before reaching the top of the lattice.

If we want to detect the infinite iteration shown above, we can simply set a boimd on the

depth of structured types that contain UNKNOWN. The depth of a structured type is the

number of times a structured type contains other structured types. For example, an array

of arrays has depth 2, and an array of arrays of records has depth 3. By setting the bound

to a large enough number, say 100, the infinite iterations can be detected without lim

iting the flexibility of the design environment in practice.

3.3.3 Actors Operating on Structured Types

To simplify the usage of structured types, some actors can be designed to construct and

manipulate them. In the Ptolemy II software, the actors that construct arrays and records

are called SequenceToArray and RecordAssembler. SequenceToArray bun

dles a certain number of input tokens into an array token. RecordAssembler assembles the

tokens from multiple input ports into a record token. The actors ArrayToSequence and

RecordDisassembler perform the reverse operation. Figure 3.6 shows a model

that uses the above actors to construct a record whose elements are arrays, and disas

sembles the elements.

It is interesting to note that the above actors can be viewed as a typed version of some of

the canonical SDF actors described by Reekie [110]. He showed that any SDF actor can be

implemented as a network containing delays and instances of just five canonical actors.

Four of these five actors are group, concat, zip, and unzip. The actors discussed in

this section, SequenceToArray, ArrayToSequence, RecordAssembler, and

66

SequenceToArray

SequenceToArray

Jtem

RecordAssembler O

item

RecordDisassembler

{item={a}, val={^}}

{a})AiTayToSequence

ArrayToSequence

Figure 3.6Using actors to construct anddisassemble structured data.

RecordDisassembler, can be viewed as the typed version of the four canonical SDF

actors, respectively.

3.4 Using Monotonic Functions in Constraints

So far, allofthe type constraints we have seen are simple inequalities that involve only the

constant types, type variables, and variable structured types. These kinds of inequalities

may not be able to express more complicated type constraints. In section 3.3.2.1 above,

we mentioned that the type resolution algorithm admits monotonic functions on the left

side of the inequality. It tums out that monotonic functions can be used to express com

plicated type constraints. We show this using the type constraints in three actors. These

actors are implemented in Ptolemy II by the Ptolemy research group and some outside

contributors.

AbsoluteValue

Suppose we want to implement an AbsoluteValue actor shown in figure 3.7(a) that

computes the absolute value of the input. We want this actor to be polymorphic and

work with several scalar types, including Int, Double, and Complex. If the input type is

not Complex, the output type should bethe same as the input. However, if the input type

is Complex, the output type is Double. This type constraint cannot be expressed by

67

l,l
(a)

Complex >. /
I -v.
' /

Double

I /
Int

(b)

Complex

k i
-Double

• Int

Figure 3.7 The AbsoluteValue actor and the monotonic function expressing its
tj^e constraint.

simple inequalities, but can be expressed with the help of a function. Let the input type

be a and the output type be p. We can express the above constraint using

/(a) < p where f(a) =
a

if a = Complex

otherwise

The functionif monotonic. Figure 3.7(b) shows the input and output of this func

tion for a portion of the type lattice.

RecordUpdater

A RecordUpdater has a record input port that receives record tokens, and a

number of update input ports. Upon each firing, this actor updates the fields of the

record received from the record input using the tokens received from the update

inputs. Since tokens are immutable, this actor does not actually modify the received

token, but creates a new token with the correct fields. Figure 3.8 shows such an actor

with an example input and output. This particular actor has two update inputs, named

{item=String, val=Int}

Double
RecordUpdater {item=String, val=Double, id=Int}

y

Figure 3.8 A RecordUpdater actor with an example input and output.

68

ml and id. These names are used as labels in the output record. In figure 3.8, the input

record has a field with label val, so the input token from the val port, which has type

Double, replaces the one in the original record, which has type Int. The original record

does not have a field with label id, so a new field is added in the output record.

In general, the type constraint for the RecordUpdater actor can be expressed as

/(a,pi,P2,

Where a is the type of the record input port, and p^, P2, ..., Pn are the types of the

update inputs, and n is the number of update inputs. This function can be computed

as follows:

• If Q=UNKNOWN,Ktam UNKNOWN-,

• If a={/i=/i, l2=t2,.... /„=/„}

Let y = a

For each Pj(i = 1, 2, . . ., n)

Let / = name of the port for Pj

If3j such that / = /j (j = 1, 2, . . ., n)
set ty = Pi iny

Else add a new field / = Pi in y

return y;

• If a UNKNOWN and a is not a record type, report type error;

In the first line above, the function value is UNKNOWN when a is UNKNOWN. This

helps make the function monotonic. Some example function arguments and results for

the actor in figure 3.8 are shown in table 3.1.

a Pi P2 y(a. Pi, P2)

UNKNOWN UNKNOWN UNKNOWN UNKNOWN

UNKNOWN Double Int UNKNOWN

{item=String, vai=Int} Double Int {item=String, Val=Double, id=Int)

Table 3.1. Someexample arguments and results for the monotonic function that
expresses the type constraint in RecordUpdater.

69

Scale

The Scale actor has an input port, an output port, and a parameter called factor, as

shown in figure 3.9. The operation of this actor is to multiply the value of the input

token by the factor parameter and sendthe result to the output. The factor param

eter has one of the scalar types, such as Int, Double, Complex, Long. The input type can

be either a scalar or an array. If the input type is a scalar, the output type will be the

higher type of the input and the factor parameter. If the input type is array, the scal

ing operation is performed on the elements of the array so the output type will also be

an array whose element type is the higher type of the input array element and the

factor parameter. To maximize the usage of this actor, we want to allow the input

array to have arbitrary dimension. For example, it can be an array of Int, or an array of

arrays of Double. Tbis latter requirement can be supported by a recursive monotonic

function. Tbat is, we can express tbe type constraint as

/(a, P)<y

and the functiony(a, p) can be computedas follows:

• \ioir-UNKNOWN

return UNKNOWN;

• If a=a scalar type

retum tbe bigber type ofa and p;

• If a=an array type

Let s=element type ofa

Let r|=f(8, p)

retum a new array type witb element type t];

a

t
p« factor

Figure 3.9 The Scale actor.

70

Some of the example arguments and results for this function are shown in table 3.2.

a P Pl» P2)

UNKNOWN UNKNOWN UNKNOWN

{UNKNOWN} Double {UNKNOWN}

{Int} Double {Double}

{{Double}} Double {{Double}}

Table 3.2. Some exampleargumentsand results for the monotonic function that
expresses the type constraint in Scale.

3.5 Discussion

In this section, we discuss some of the design decisions in our type system and compare

them with some of the related work.

3.5.1 Type System for Block Diagram Based Languages

In the area of system-level design, some block diagram based environments have

implemented type systems with different approaches from ours. In the Ptolemy Classic

software [16], most components (called stars) are monomorphic. But it supports a rudi

mentary form of polymorphism by allowing the component to declare that theirports can

work with ANYTYPE. For example, the fork star in Ptolemy Classic, which copies an

input value tomultiple outputs, declares the types ofallof itsports to be ANYTYPE. This

isanalogous toparametric polymorphism. This approach issimple andstraightforward, but

more sophisticated type constraints cannot be expressed, andtype checking is adhoc.

The type system of Simulink [79] is similar to that of the Ptolemy Classic. Simulink has

virtualblocks, whichare polymorphic components thatcanworkwith any type.Examples

of virtual blocks include multiplexer and demultiplexer. Type conversion is supported

through aDflto Type Conversion block. This component converts aninput signal to thedata

typespecified by a parameter. Typechecking is guided by a set of ad hoc rules. For exam

ple, the output type ofa block is generally the same as the input type, except the constant

blocks and the data type conversion block. Simulink does not have built-in structured

types, but it allows the user to define new t3^es.

71

Another design tool, the CoCentric system studio from Synopsys [118] uses a template

approach, where a component has type variable that the user must set. By setting the type

variables to different types, the component can be configured to work on different types.

This approach is similar to C-h- templates, and it allows a component to have multiple

types. This template approach achieves a similar effect as parametric polymorphism, but

different code is executed for different types. One disadvantage ofthis approach is that the

user has the burden to set the type, and type constraints cannot be propagated across a

topology. In some components, a single type variable is used to control the types ofseveral

objects, such as multiple ports, then all ofthose port must have the same type, which makes

components less reusable.

Compared with the above systems, our system and its implementation in Ptolemy II sup

port more kinds of polymorphism. In section 2.1.2.2, we discussed four kinds of poly

morphism: parametric, inclusion, overloading and coercion. In Ptolemy II, many flow

control actors, such as the Distributor, which splits a single token stream into a set

of streams, show parametric polymorphism because they work with all types of tokens

uniformly. If an actor declares its receiving type to be General, which is the type of the

base token class, then that actor can accept any type of token since all the other token

classes are derived from the base token class. This is inclusion polymorphism. The

automatic type conversion performed during data transfer is a form of coercion; it

allows an receiving port with type Complex, for example, to be connected to sending

ports with type Int, Double or Complex.

An interesting case is the arithmetic and logic operators, like the Add actor. In most lan

guages, arithmetic operators are overloaded, but different languages handle overload

ing differently. In standard ML, overloading of arithmetic operators must be resolved

at the point of appearance, but type variables ranging over equality types are allowed

for the equality operator [124]. In Haskell, type classes are used to provide overloaded

operations [50]. Ptolemy II takes advantage of data encapsulation. The token classes in

Ptolemy II are not passive data containers, they are active data in the sense that they know

how to do arithmetic operations with another token. This way, the Add actor can simply

call the addO method ofthe tokens, and work consistently on tokens ofdifferent types. An

72

advantage of this design is that users can develop new token types with their implementa

tion for the add() method, achieving an effect similar to user defined operator overloading

in C-H-. The detailed implementation ofour type system in Ptolemy II will be discussed in

chapter 5.

In many strongly typed text based languages, such as ML, type checking is done almost

entirely at compile time. Once static type checking passes, type information can be dis

carded at run time. For block diagram based languages, complete static checking is often

not possible. In component-based design, we assume that the components are opaque in

that the detailed operation of the components are encapsulated, and only the type declara

tion and constraints at the interface are exposed. As a result, the type systems for such envi

ronments can only check type consistency at the interface ofthe components, but not inside

the components. Therefore, static checking alone usually cannot ensure type safety. At run

time, some components may send out tokens with a wrong type. To enforce that the actors

obey the interface types, we combine static typing with run-time type checking. This is one

of the differences between our system and the ML type system. Our combined approach

can detect errors at the earliest possible time and minimize the computation of run-time

checking.

3.5.2 Type Lattice and Type Constraints

In our type system, we organize all the types into a lattice using the subtyping relations.

Organizingtypes in a hierarchy is fairly standard. For example, Abelson and Sussman[1]

organized the coercion relation among types in a hierarchy. However, they did not delib

erately model the hierarchy as a lattice. Long ago, Hext [52] experimented with using a lat

tice to model the type conversionrelation,but he was not working with an object oriented

language and did not intend to support polymorphic system components. This work pre

dates the popular use of those concepts.

In some other type systems, the subtyping relation does not form a hierarchy. One rep

resentative example is the system of Fuh and Mishra, which extends polymorphic type

inference in ML with subtypes [45]. Their system allows arbitrary type conversion, repre

sented by a coercion set. This approach makes the system more expressive, since type con-

73

version is not limited to those that do not lose information. However, because of the lack

ofstructure among the types, the algorithm for type matching and checking the consistency

of a coercion set becomes more costly than the inequality solving algorithm we use in our

system.

In [112], Rehof and Mogensen proved that their algorithm for solving inequality con

straints is linear time in the number ofoccurrences of symbols in the constraints, which in

our case, can be translated into linear time in the number of constraints. This makes type

resolution very efficient. On the other hand, one might be tempted to extend the formula

tion to achieve more flexibility in type specification. For example, one may be tempted to

introduce an OR relation among the constraints. This can be useful, for example in the case

ofa two-input adder, for specifying the constraint that the types of the two receiving ports

are comparable. This constraint will prohibit tokens with incomparabletypes to be added.

As shown in [112], this cannot be easily done. The inequality constraint problem belongs

to the class of meet-closed problems. Meet-closed, in our case, means that if A and B are

two solutions to the constraints, their greatest lower bound in the lattice is also a solution.

This condition guarantees the existence of the least solution, if any solution exists at all.

Introducing the OR relation would break the meet-closed property of the problem. Rehof

and Mogensen also showed that any strict extensionof the class of meet-closedproblems

solved by their algorithm will lead to an NP-complete problem. This impliesheavier reli

anceon run-time checking. However, we havefoundthat our systemis generally sufficient

to expressmost ofthe type constraints,particularly when augmentedwith monotonicfunc

tions.

The inequality type constraints can be generalized to set constraints [6]. Set constraints

have been used widely in program analysis. They are more expressive than the inequality

constraints based on a lattice. For example, for the type lattice in figure 3.2, the OR rela

tion that a type a is either less than or equal to Boolean^ OR less than or equal to Dou

ble, can be expressed using a set constraint X c {Boolean, Double, Int, UNKNOWN},

where X is the set of types that can be assigned to a. The main disadvantage of set con

straints is that the resolution algorithm is generally expensive. For the basic set con

straint problem, which allows set expressions to involve set constants, set variables, set

74

union, intersection, negation, and set constructors, deciding satisfiability has exponen

tial complexity [6]. In light of this, the formulation of our type system represent a good

trade-off between expressiveness and computation cost.

3.5.3 Most Specific Type

The type resolution algorithm we described in section 3.2.3 computes the most specific

types (least in the lattice) that satisfy the type constraints. This least solution may not

be the only solution. In the example in figure 3.3, another solution is to resolve all the

ports on A2 to Double. In fact, the inequality solving algorithm can be used to find

either the least fixed point or the greatest fixed point. We choose to use the least solu

tion for a practical reason. In general, types lower in the type lattice have a lower imple

mentation cost. For example, in embedded system design, hardware is often

synthesized firom a component-based description of a system. If a polymorphic adder

is going to be synthesized into hardware, and it receives Int tokens and sends the addi

tion result to a Double port, our scheme will resolve the types of all the ports on the

adder to Int, rather than Double. Using an integer adder will be more economical than

a double adder. This is analogous to using types to generate more optimized code in

compilers.

In section 2.1.3.2, we discussed that the type resolution algorithm in ML computes the

principal types. These principal types can be viewed as the most general solution for

the type constraints in that all the other solutions are substitution instances of the prin

cipal types. In ML, functions can be separately compiled, so resolving the types of

polymorphic functions to the most general types allows maximal reuse of compiled

code. In our case, we perform type resolution on a complete model, and multiple occur

rences of an actor in a topology are treated as different actors, even though they specify

the same set of type constraints, so we do not need to use the most general type to

achieve reuse. Notice that on multiple occurrences of the same polymorphic actor, dif

ferent type variables are used to denote the types of their ports and parameters. These

variables are analogous to the generic type variables in ML.

75

It is interesting to note that some other researchers have also attempted to infer more pre

cise types for text based programs. For example, Plevyak and Chien observed that principal

types are inadequate for program optimization, and proposed an algorithm to infer concrete

types in programs [107]. They use different type variables for different runs of the same

program, and the inference is based on set constraints. To guide the type inference effort

to where it is fruitful, they propose to do coarse level inference first, then zoom in on par

ticular areas to find more precise types. Their algorithm works well for many programs,

but there are still some program structures which will require run time type checks.

3.5.4 Type Resolution in Modal Models

Besides the models based on message passing, our type system can also be used in modal

models that mix finite-state machines (FSMs) with other concurrency models [48]. In these

mixed models, type constraints can be propagated between the events ofthe control model

and the data of the other concurrency models. For example, Girault, Lee and Lee showed

how to mix FSM with synchronous dataflow (SDF) in [48]. Figure 3.10 is such an

example. In this figure, the top of the hierarchy is an SDF system. The middle actor B

in this system is refined to a FSM with two states, each of which is further refined to a

SDF subsystem. One type constraint on the receiving port of B is that its type must be

less than or equal to the types of both of the receiving ports of the SDF subsystems D

and E, because tokens may be transported from the receiving port of B to the receiving

SDF
Int Complex

A M Double C

FSM

SDF

Int
D

Int

B

Double Double

Figure 3.10 Mixing FSM with SDF.

76

ports of D or E. Assuming the types of the receiving ports on D and E are Int and Double,

respectively, type resolution will resolve the type of the receiving port of B to Int. Sim

ilarly, a type constraint for the sending port of B is that its type must be greater than or

equal to the types of both of the sending ports of D and E, and its resolved type will be

Double.

Note that this result is consistent with function subtyping discussed in section 2.1.3.1.

If we consider the actors as functions, then the types of the actors are D: Int->Int, E:

Double-^Double, and B: a->p before type resolution. Since D and E can take the place

of B during execution, their types should be subtypes of the type of B. Since function

subtyping is contravariant for function arguments and covariant for function results, the

type a should be a subtype of Int and Double and p should be a super type of Int and

Double. This is exactly what the type constraints specify, and the resulting type for B:

Int-^Double is indeed a supertype ofboth of the types ofD and E.

77

4 Behavioral Types

4.1 Capturing the Dynamic Behavior of Components

In the last chapter, we presented a type system for component-based design. Fundamen

tally, a type system detects mismatches at component interfaces and ensures compo

nent compatibility. As discussed in section 2.2.3, interface mismatch can happen at (at

least) two different levels: data exchange and the dynamic interaction. The system pre

sented in the last chapter is a data-level type system. In this chapter, we present a system

that captures the dynamic behavior of components. We call the result behavioral types.

At the interface of components, the communication protocol and execution control are

two of the most important aspects of the dynamic behavior. They essentially determine

the model of computation the components use to interact with each other. Our approach

is to describe the communication protocol types and the component behavior using

interface automata, and perform compatibility checking through automata composi

tion. From a type system point of view, this compatibility check amounts to type check

ing.

Traditionally, automata models are used to perform model checking at design time. Here,

our emphasis is not on model checking to verify arbitrary user code, but rather on compat

ibility of the composition of pre-defined types. As such, the scalability of the methods is

much less an issue, since the size of the automata in question is fixed. We also propose to

extend the use ofautomata to on-line reflection ofcomponent state, and to do run-time type

checking.

As has been discussed several times earlier, polymorphism is a very desirable feature in the

design oftype systems. At the data level, research has been driven to a large degree by the

78

desire to combine the flexibility ofdynamically typed languages with the security and early

error-detection potentialofstaticallytyped languages [100], and modempolymorphic type

systems have achieved this goal to a large extent. At the behavioral-level, type systems

should also be polymorphic to support component reuse while ensuring component com

patibility.

Inour data-level type system, we organizeall the typesintoa hierarchy using the subtyping

relation. We form a polymorphic type system at the behavioral level through an

approach similar to subtyping. Using the altemating simulation relation of interface

automata, we organize all the interaction types in a partial order. Given this hierarchy,

if a component is compatible with a certain type it is also compatible with all the sub

types of A. This property can be used to facilitate the design of polymorphic compo

nents and simplify type checking.

Evenwith thepowerof polymorphism, no typesystemcancaptureall thepropertiesofpro

grams and allow type checking to be performed efficiently while keeping the language

flexible. So the language designer always has to decide what properties to include in the

system and what to leaveout. Furthermore, some properties that canbe capturedby types

cannot be easily checked statically before the program runs. This is either because the

information available at compile time is not sufficient, or because checking those prop

erties is too costly. Hence, the designer also needs to decide whether to check those prop

erties staticallyor at run time. Any type system represents some compromise.

Type systems at the behavioral levelhave similar trade-offs. Among all the properties in a

component-based design environment, we choose to check the compatibility of communi

cationprotocols as the starting point.This is because communication protocols are thecen

tral piece in many models of computation [62] and determine many other properties in the

models. Our type system is extensible, so otherproperties, such as deadlock in concurrent

models, can be included in type checking. Anotherreason we choose to check the compat

ibility of communication protocols is that it can be done efficiently, when a component is

inserted in a model. More complicated checking may need to be postponed to run time.

79

Our system is based on the Ptolemy II environment [33]. Ptolemy II supports multiple

models of computation so it is ideal for studying the dynamic interaction of components.

Some researchers have proposed extended type systems for other languages, including n-

calculus [86] and the actors model [3]. Some of these systems also capture the dynamic

behavior of components and are closely related to ours. We will discuss related work in

section 4.4.

In addition to the benefit of improved safety through type checking, our type system also

has an intangible benefit. The process of describing communication protocols and com

ponent behavior formally can help designers gain a deeper understanding of the system

being specified. Through this specification process, developers may uncover design

flaws, inconsistencies, ambiguities, and incompleteness.

The rest of this chapter is organized as follows. Section 4.2 describes component inter

action in Ptolemy II. Section 4.2 presents our behavioral type system, including the type

definition, the type hierarchy and some type checking examples. Section 4.4 discusses

the trade-offs in the design of behavioral types and compares our approach with related

work.

4.2 Component Interaction in Ptolemy II

Ptolemy II [33] is a system-level design environment that supports component-based het

erogeneous modeling and design. The focus is on embedded systems. In Ptolemy II, com

ponents are called actors, and the channel of communication between actors is

implemented by an object called a receiver, as shown in figure 4.1. Receivers are con

tained in lOPorts (input/output ports), which are in turn contained in actors. Ptolemy II

lOPort

producer ^ consumer
actor V-/ * actor

Receiver

Figure 4.1 A simple model in Ptolemy II.

80

is implemented in Java. The methods in the receiver are defined in a Java interface

Receiver. This interface assumes a producer/consumer model, and communicated

data is encapsulated in a class called Token. The put () method is used by the pro

ducer to deposit a token into a receiver. The get () method is used by the consumer to

extract a token from the receiver. The hasToken () method, which returns a boolean,

indicates whether a call to get {) will trigger a NoTokenException.

Aside from assuming a producer/consumer model, the Receiver interface makes no fur

ther assumptions. It does not, for example, determine whether communication between

actors is synchronous or asynchronous. Nor does it determine the capacity of a receiver.

These properties of a receiver are determined by concrete classes that implement the

Receiver interface. Each one of these concrete classes is part of a Ptolemy 11 domain,

which is a collection of classes implementing a particular model of computation. In each

domain, the receiver determines the communication protocol, and an object called a direc

tor controls the execution ofactors. From the point ofview ofan actor, the director and the

receiver form its execution environment.

Each actor has a fire () method that the director uses to start the execution of the

actor. During the execution, an actor may interact with the receivers to receive or send

data. The following are some of the domains in Ptolemy II. The models of computation

implemented by these domains are discussed in section 2.3.

• Communicating Sequential Processes (CSP): As the name suggests, this domain
implements a rendezvous-style communication (sometimes called synchronous mes
sage passing), as in Hoare's communicating sequential processes model [54]. In this
domain, the producer and consumer are separate threads executing the fire ()
method of the actors. Whichever thread calls put () or get () first blocks until the
other thread calls get () or put (). Data is exchanged in an atomic action when both
the producer and consumer are ready.

• Process Networks (PN)\ This domain implements the Kahn process networks model of
computation [58]. The Ptolemy II implementation is similar to that by Kahn and Mac-
Queen [59]. In that model, just like CSP, the producer and consumer are separate
threads executing the fire () method. Unlike CSP, however, the producer can send
data and proceed without waiting for the receiver to be ready to receive data. This is
implemented by a non-blocking write to a FIFO queue with (conceptually) unbounded
capacity. The put () method in a PN receiver always succeeds and always returns
immediately. The get () method, however, blocks the calling thread ifno data is

81

available. To maintain determinacy, it is important that processes not be able to test a
receiver for the presence ofdata. So the hasToken () method always returns true.
Indeed, this retum value is correct, since the get () method will never throw a NoTo-
kenException. Instead, it will block the calling thread until a token is available.

• Synchronous Data Flow (SDF)\ This domain supports a synchronous dataflow model
ofcomputation [65]. This is different from the thread-based domains in that the pro
ducer and consumer are implemented as finite computations (firings of a dataflow
actor) that are scheduled (typically statically, and typically in the same thread). In this
model, a consumer assumes that data is always available when it calls get () because
it assumes that it would not have been scheduled otherwise. The capacity of the
receiver can be made finite, statically determined, but the scheduler ensures that when
put () is called, there is room for a token. Thus, if scheduling is done correctly, both
get () and put {) succeed immediatelyand retum.

• Discrete Event (DE): This domain uses timed events to communicate between
actors. Similar to SDF, actors in the DE domain implement finite computations
encapsulated in the fire () method. However, the execution order among the
actors is not statically scheduled, but determined at mn time. Also, when a con
sumer is fired, it cannot assume that data is available. Very often, when an actor
with multiple input ports is fired, only one of the ports has data. Therefore, for an
actor to work correctly in this domain, it must check the availability ofa token
using the hasToken () method beforeattempting to get a tokenfromthe receiver.

As can be seen, different domains impose different requirements for actors. Some actors,

however, can work in multiple domains. These actors are called domain-polymorphic

actors.One ofthe goalsofthe behavioral type system is to facilitate the design ofdomain-

polymorphic actors.

4.3 Behavioral Types

4.3.1 Type Definition

We use interface automata to describe the behavior of actors and the interaction type.

Figure 4.2 shows the interface automata model for an implementation of the consumer

actor in figure 4.1. This figure is a screen shot of Ptolemy II. The block arrows on the

two sides denote the inputs and outputs of the automata. They are:

• yi the invocation of the f ire () method of the actor.

• fR: the retum fromthe fire () method.

• g: the invocation of the get () method of the receiver at the inputport of the actor.

• t: the token retumed in the get () call.

82

SDFActor g

¥

83

hi

¥
0 f , 2\ X

o^o--o .t
Figure 4.2 Interface automaton model for an SDF actor.

• hT: the invocation of the hasToken () method of the receiver.

• hTT: the value true returned from the hasToken {) call, meaning that the receiver
contains one or more tokens.

• hTF\ the valuefalse returned from the hasToken () call, meaning that the receiver
does not contain any token.

The initial state is state 0. When the actor is in this state, and the fire () method is called,

it callsget () on the receiver to obtaina token. Afterreceiving the tokenin state 3, it per

forms some computation, and retums from fireO. Following the optimistic

approach of interface automata, this model only encodes the behavior of the actor imder

a good environment, namely, the SDF domain. In this domain, there is only one thread

of execution, so the actor assumes that its f ire () method will not be called again if

it is already inside this method. Therefore, the input/is only accepted in state 0, but not

in any other states. Also, the scheduler guarantees that data is available when a con

sumer is fired, so the transition from state 2 to state 3 assumes that the receiver will

return a token. An error condition, such as the receiver throws NoTokenException

when get () is called, is not explicitly described in the model.

Figure 4.3 describes another actor that can operate in a wider variety of domains. Since

this actor is not designed under the assumption of the SDF domain, it does not assume

that data are available when it is fired. Instead, it calls hasToken {) on the receiver

to check the availability of a token. If hasToken () retums false, it immediately

retums from f ire (). This is a simple form ofdomain-polymorphism.

PolyActor

fR

CK-*0^0^0

I

hT

N
hTT

hTF

Figure 4.3 Interface automaton model for a domain-polymorphic actor.

In Ptolemy II, actors interact with the director and the receivers of a domain. In figures

4.2 and 4.3, the block arrows on the left side denote the interface with the director, and

the ones on the right side denote the interface with the receiver. As discussed in section

4.2, the implementation of the director and the receiver determines the semantics of

component interaction in a domain, including the flow of control and the communica

tion protocol. If we use an interface automaton to model the combined behavior of the

director and the receiver, this automaton is then the type signature for the domain.

Figure 4.4 shows such an automaton for the SDF domain. Here, p and pR represent the

SDFDomain p

pR

N
g

t

hTT

¥
hTF

t >"
o

Figure 4.4 Type signature of the SDF domain.

84

call and the return of the put () method of the receiver. This automaton encodes the

assumption of the SDFdomain that the consumer actor is fired only after a token is put

into the receiver^

The type signature of the DE domain is shown in figure 4.5. In DB, an actor may be

fired without a token being put into the receiver at its input. This is indicated by the

transition from state 0 to state 7. Figures 4.4 and 4.5 also reflect the fact that both of the

SDF and the DE domains have a single thread of execution, so the hasToken {) query

may happen only after the actor is fired, but before it calls get (), during which time

the actor has the thread of control.

CSP and PN are two domains in Ptolemy II in which each actor runs in its own thread.

Figures 4.6 and 4.7 give the type signature of these two domains. These automata are

simplified from the true implementation in Ptolemy II. In particular, CSPDomain omits

conditional rendezvous, which is an important feature in the CSP model of computa-

DEDomain p

pR

¥

V O-

o

hTT

N
hTF

N

•0*0^0-0

o

Figure 4.5 Type signature of the DE domain.

fR

1. This is a simplificationof the SDF domain, since an actor may require more than one token to be put in the receiver
before it is fired. This simplification makes our exposition clearer. Modeling this fully would require dependent types.

85

CSPDomain p

pR

h
z

o
t p? /

hi

pR

hTT

N
hTF

N

•o'^r.Q-Ji.o'
•0^11-" 4")

O Q

R fR

Figure 4.6 Type signature of the CSP domain.

PNDomain p

I*"

r p

•b-^feKp,^
5? P t)-" p,
•f o o ^
Figure 4.7 Type signature of the PN domain.

tion. In the CSP and PN domains, an actor is fired repeatedly by its thread, as modeled

by the transitions between state 0 and 1.

In CSP, the communication is synchronous; the first thread that calls get () or put ()

on the receiver will be stalled until the other thread calls put () or get (). The case

where get () is called before put () is modeled by the transitions among the states

86

1, 3, 4, 5, 1. The case where put {) is called before get () is modeled by the transi

tions among the states 1,6,8,9,1.

In PN, the communication is asynchronous. So the put {) call always returns immedi

ately, but the thread callingget () may be stalleduntil put () is called.The case where

get () is called first in PN is modeled by the transitions among the states 1, 3,4, 5, 1 in

figure 4.7, while the case where put () is called first is modeled by the transitions

among the states 1, 6, 8,10,1.

Given an automaton modelingan actor and the type signature of a domain, we can check

the compatibility of the actor with the communication protocolof that domain by compos

ing these two automata. Type checking exampleswill be shown below in section 4.3.3.

4.3.2 Behavioral Type Order and Polymorphism

If we comparethe SDF and DE domain automata,we can see that they are closely related.

This relationship can be captured by the altemating simulation relation of interface autom

ata. In particular, there is an altemating simulation relation from SDF to DE.

In the set of all domain types, the altemating simulationrelation induces a partial order, or

behavioral type order. An example of this partial order is shown in figure 4.8. From a

Figure 4.8 An example ofbehavioral type order.

87

type system point of view, this order is the subtyping hierarchy for the domain types. If

we view the automata as functions with inputs and outputs, then the alternating simu

lation relation is exactly analogous to the standard function subtyping relation in data

type systems. According to the definition of alternating simulation, the automaton

lower in the hierarchy can simulate all the input steps of the ones above it, and the

automaton higher in the hierarchy can simulate all the output steps below it. In function

subtyping, if a function A-^B is a subtype of another function A '->Bthen .4' is a sub

type ofA and 5 is a subtype of BNote that in both relations, the order is inverted (con-

travariant) for the inputs and goes in the same direction (covariant) for the outputs.

In [34], altemating simulation is used to capture the refinement relation from the specifi

cation to the implementation of components. Our use of this relation is not directly for

component design, but for capturing the relation between interaction types. In the behav

ioral tjqje order, SDFDomain is not a refinement ofDEDomain^ but a subtype ofDEDo-

main. In fact, SDFDomain has fewer states than DEDomain. This subtyping relation can

help us design actors that can work in multiple domains. According to the theorem dis

cussed in section 2.4.2, if an actor is compatible with a certain domain D, and there are

other domains below D in the behavioral type order, then the actor is also compatible

with those lower domains. Therefore, this actor is domain polymorphic.

In figure 4.8, we added a bottom element UNKNOWNand a top element DP. DP stands

for "domain polymorphic". There is an altemating simulation relation from

UNKNOWN to any other element, and from all the elements to DP. One possible design

of these two automata is shown in figure 4.9. In this figure, both automata have a single

state. The UNKNOWN automaton has all the input transitions, and the DP automaton

has all the output transitions. We will discuss these two automata further in section

4,4.1.

4.33 Type Checking Examples

Let's perform a few type checking operations using the actors and domains in the earlier

sections. To verify that the SDFActor in figure 4.2 can indeed work in the SDF domain,

we compose it with the SDFDomain automaton in figure 4.4. The result is shown in

88

(a) bottom (UNKNOWN)

SDFDomain SDFActor

fR

(b)top{i)/')

Figure 4.9 The bottom and top elements of the behavioral type order.

figure 4.10. As expected, the composition is not empty so SDFActor is compatible with

SDFDomain. This composition is a new type definition for the composed components.

Due to the optimistic approach of interface automata, the above composition is much

smaller than the product automaton.Before adopting interfaceautomata,we also attempted

to describe behavioral types using a more traditional finite state machine model [69]. Com

patibility checking in that setting proved to be more difficult.

Now let's compose DEDomain with SDFActor. The result is an empty automaton shown

in figure 4.11. This is because the actor may call get () when there is no token in the

receiver, and this call is not accepted by an empty DE receiver. The exact sequence that

leads to this condition is the following: first, both automata take a shared transition f.

5_3

Figure 4.10 Composition ofSDFDomain in figure 4.4 and SDFActor in figure 4.2.

89

DEDomain SDFActor p

pR

¥

Figure 4.11 Composition ofDEDomain in figure 4.5 and SDFActor in figure 4.2.

In this transition, DEDomain moves from state 0 to state 7, and SDFActor moves from

state 0 to state 1. At state 1, SDFActor issues g, but this input is not accepted by DEDo

main at state 7. So the pair of states (7, 1) in {DEDomain, SDFActor) is illegal. Since

this state can be reached from the initial state (0, 0), the initial state is pruned out from

the composition. As a result, the whole composition is empty. This means that the SDF

actor cannot be used in DE Domain.

The PolyActor in figure 4.3 checks the availability of a token before attempting to read

from the receiver. By composing it with DEDomain, we verify that this actor can be

used in the DE Domain. This composition is shown in figure 4.12. Since SDFDomain

is below DEDomain in the behavioral type order of figure 4.8, we have also verified

that PolyActor can work in the SDF domain. Therefore, PolyActor is domain polymor-

DEDomain PolyActor

pR

.../ \
o o

o

5 5 4 4

0-M3-
00^ •'0 20 31 62 \3_3

cvc>c>o^c>o

Figure4.12 Composition of DEDomain in figure 4.5 and PolyActor in figure 4.3.

90

SDFDomain^PolyActor
5„5 4_4

P

o^o-^-o^o^o^o
Figure4.13 Composition of SDFDomain in figure 4.4 andPolyActor in figure 4.3.

phic. As a sanity check, we have composed SDFDomain with PolyActor, with the result

shown in figure 4.13.

In Ptolemy II, there is a library of about 100 domain-polymorphic actors. The communi

cation behavior for many of these actors can be modeled by the PolyActor automaton.

4.3.4 Reflection

So far, interface automata have been used to describe the operation of Ptolemy II compo

nents. These automata can be used to perform compatibility checks between components.

Another interesting use is to reflect the component state in a run-time environment. For

example, we can execute the automaton SDFActor of figure 4.2 in parallel with the exe

cution of the actor. When the fire () method of the actor is called, the automaton

makes a transition from state 0 to state 1. At any time, the state of the actor can be

obtained by querying the state of the automaton. Here, the role of the automaton is

reflection, as realized for example in Java. In Java, the Class class can be used to obtain

the static structure of an object, while our automata reflect the dynamic behavior of a

component. We call an automaton used in this role a reflection automaton.

4.4 Discussion

4.4.1 Top and Bottom

We have shown one possible design for the top and bottom elements ofthe behavioral type

order in figure 4.9. These two automata are very general in that they are not only the

top and bottom elements of the partial order in figure 4.8, but also the top and bottom

of the partial orders formed by any set of automata with the same set of input and output

91

transitions. In another word, there is an alternating simulation relation from any autom

aton to the DP automaton in figure 4.9(b), and an alternating simulation relation from

the UNKNOWN automaton in figure 4.9(a) to any automaton with the same inputs and

outputs.

If we can design an actor that is compatible with the DP automaton, then that actor will

be maximally polymorphic in that it will be able to work in any domain that may be

created. However, it is easy to see that this is almost impossible. Since the DP autom

aton may issue any output at any time, no non-trivial actor can be compatible with it.

This means that we cannot hope to design a non-trivial actor that will be able to work

in any environment.

On the other hand, the UNKNOWNautomaton is compatible with any actor automaton. For

example, the compositions of UNKNOWN with the SDFActor or the PolyActor are shown

in figure 4.14. The two compositions are the same. Intuitively, since the UNKNOWN

automaton does not have any output transition, it does not call the f ire () method of

the actor, so there is no interaction between the UNKNOWN automaton and the actor

automaton. The only transition is the inputp from outside the composition.

The DP and UNKNOWN automata represent two extremes of the possible environments

for actors. The DP is the most stringent environment in which no non-trivial actor can

work, while UNKNOWN is the laxest environment in which an actor is not asked to do

anything.

UNKNOWN_SDFActor or UNKNOWN_PolyActor ^ o o

.f opR

N O
P?

Figure 4.14 Composition of UNKNOWN in fi^e 4.9(a) and the SDFActor infigure
4.2 or the PolyActor in figure 4.3.

92

4.4.2 Trade-offs in Type System Design

The type checking examples in section 4.3.3 focus on the communication protocol

between a single actor and its environment. This scope can be broadened by including

the automata of more actors and using a more detailed director model in the composi

tion. Also, properties other than the communication protocol, such as deadlock freedom

in thread-based domains, can be included in the type system. However, these exten

sions will increase the cost of type checking. So there is a trade-off between the amount

of informationcarried by the type system and the cost of type checking.

Another dimension of the trade-offs is static versus run-time type checking. The exam

ples in the last section are static type checking examples. If we extend the scope of the

type system, static checking can quickly become impractical due to the size of the com

position. An alternative is to check some of the properties at run time. One way to per

form run-time checking is to execute the reflection automata of the components in

parallel with the execution of the components. Along the way, we periodically check

the states of the reflection automata, and see if something has gone wrong.

Thesetrade-offs implythat there is a big design space for behavioral types. In this space,

oneextreme point is complete static checking by composing theautomata modeling all the

system components, and check the composition. This amounts to model checking. To

explore the boimdary in this direction, we did an experiment by checking an implementa

tionof the classical dining philosophers model implemented in theCSPdomain in Ptolemy

II. Eachphilosopher and eachchopstick is modeled by an actorrunning in its ownthread.

Thechopstick actoruses conditional sendto simultaneously check which philosopher (the

one on its left or the oneon its right)wants to pick it up. We createdinterfaceautomatafor

the Ptolemy II components CSPReceiver, Philosopher, and Chopstick, and a simplified

automaton to model conditional send. We are able to compute the composition of all the

components in a two-philosopher version of the dining philosopher model, and obtain a

closed automaton with 2992 states. Since this automaton is not empty, we have verified

that the components in the composition are compatible with respect to the synchronous

communication protocol in CSP. We also checked for deadlock inherent in the implemen

tation by looking for states in the composition that do not have any outgoing transitions,

93

and are able to identify two deadlock states in the composition. These two states corre

spond to the situation where all the philosophers are holding the chopsticks on their left and

waiting for the ones on their right, and the symmetrical situation where all the philoso

phers are waiting for the chopsticks on their left.

Our goal here is not to do model checking, but to perform static type checking on a non-

trivial models. Obviously, when the model grows, complete static checking will become

intractable due to the well-known state explosion problem.

Another extreme point in the design space for behavioral types is to rely on run-time type

checking completely. For deadlock detection, we can execute the reflection automata in

parallel with the Ptolemy II model. When the model deadlocks, the states of the automata

will explain the reason for the deadlock. In this case, the t)^e system becomes a debugging

tool. The point here is that a good type system is somewhere between these extremes. We

believe that a system that checks the compatibility of conununication protocols, as illus

trated in sections 4.3.3, is a good starting point.

4.4.3 Behavioral Typing

In the concurrent object-oriented language community, there is a lot of ongoing work

on type systems for parallel object languages and calculi. Some of the proposed systems

have very similar objectives as ours, namely, capturing the dynamic behavior of com

ponents. In particular, the typemodel ofPuntigam[108] and the behavioral type system of

Najm and Nimour [93][94] both attempt to capture the communication behavior of com

ponents, and both systems have a notion of subtyping that is conceptually similar to the

altemating simulation relation.

The type model of Puntigam is designed for a language that is based on a combination

of the actor model [3] and a process calculus with trace semantics. Similar to our model,

objectscommunicateby messagepassing. A messagehas the form c(o;,..., vy,..., v„).

This can be viewed as a method call with method name c, input parameters oy,..., 0;„, and

output parameters vy,..., v„. A type trace is a sequencepy... p„ of message prototypes, and

a type trace set T is a prefix-closed non-emptyset of type traces. Here, the type trace sets

94

are the type specifications of active objects. It defines the sequences of messages that an

object isprepared tohandle, and theclients ofthe objects areallowed tosend message only

according to exactly one type trace selected from theset. The type trace set of a type x is

denoted trace(T). Under this formulation, a subtype is defined as:

A type a is a subtype of a type x (denoted by g < x) if and only if for each type

tracepj ...p„ e trace(x) there isa/?;e trace(a) so that (for each\<i<n;

with Pi = c,(<[),. I,1. •••.

p'i = 1' •••'<!>'/.*•,1' •••'

• Cf = c'y (equal message identifiers);

• k'I < and j <<1)'̂ j for 1<y <k'̂ (contravariant input parameter types);
• /j. </',• and (p',. j <(p,- j for 1<y ^ // (covariant output parameter types).

As the alternating simulation relation we use for defining subtypes in our system, thisdef

inition has contravariant input types and covariant output types.

However, there are several differences between this formulation and ours. First, a trace

is a global property in that a trace specifies a complete run of an object, while the sim

ulation relation is local in that it is a relation for each step of the run. Second, the sub-

typing definition here mixes data typing issues with behavior. In particular, the last two

conditions in the definition is essentially the record subtyping rules we use for our data

type system. In our system, we separate the data typing issues from behavioral typing

and handle them in different ways. Third, the trace set, which defines a language, is

more general than an automaton. If the trace set is constrained to be a regular set, then

it is equivalent to an automaton.

The behavioral type system presented in [93] is closer to our system. This system is

designed for an object calculus which is a variant of the 7i-calculus [86], with syntactic

sugar for method definition. Here, behavioral types specify the set of methods (services)

an objects supports. This set is dynamic since the set of supported methods may change

after each method call. For example, an object implementing a one place buffer has a

put () and a get {) method for writing and reading data into and from the buffer. When

95

the buffer is empty, the set of supported methods includes only the put () method. After

put () is called, the set includes only the get () method, and so on. This dynamicbehav

ior is specified using a labeled transition system, where each transition is a method signa

ture. Similar to our system, the definition of subtyping distinguishes the sending and

receiving ofmessages. If a type X2is a subtype ofa typeXy, then all the receiving actions

of ^y can be performed by the sending actions ofX2 can be performed hyXj.

This is analogous to the alternating simulation relation of interface automata. The formal

definition of behavioral types, the transition system, and subtyping can be found in

[93][94]. In this system, the requirements for type compatibility are defined by compli

cated type rules.

In both of the above two systems, the basic goal of typing is to ensure that an object does

not receive a method call that is not supported. This error condition is analogous to the

error condition that results in illegal states in the composition of interface automata. Com

pared with them, our interface automata based system permits much easier type checking.

Also, since interface automata can be easily described in bubble and arc diagrams, the type

representation in our system is easier to understand than the algebraic form used in both

approaches. Another difference is that the above two systems concentrate mostly on the

communication between objects through message passing, while our system also takes

the execution control into consideration. Finally, it is interesting to note the different

terminologies used to describe the dynamic behavior ofcomponents. Inspired by [93], we

call our description behavioral types, while it is called process types in [108].

4.4.4 Component Interfacing

In hardware design, many people have proposed techniques of protocol synthesis to

connect components with different interfaces [25][26][40][41][102][104]. There are two

approaches to protocol synthesis.One is libraryor templatebased. For example, Eisenring

and Platzner [40] develop a tool that provides a template and a corresponding generator

method for each interface type. The other is to generate a converter from the two interfaces

to be connected. For example, Passerone et al. [104] describe the communication protocols

of the two components to be interfaced by two finite state machines, and the converter is

96

essentially theproduct machine, with invalid states removed. Compared withthisapproach

ofcomponent interfacing, ourapproach is to design polymorphic components with tolerant

interfaces, so that they can be used in different settings. Besides, there are two additional

differences between our system and the protocol synthesis techniques.

One difference is that behavioral types cover multiple models of computation, while

protocol synthesis usually concentrates on interfacing different implementations of one

model of computation. For example, Passerone et al [104] focus on synchronous model

(shared clock); Eisenring and Platzner[40] study dataflow models implementedby queues

between component; in [41],Eisenring et al. design a system using synchronous dataflow;

andin[102], OrtegaandBorriello usea communication protocol witha non-blocking write

behavior, which is similar to the one in process networks.

Another difference is on the level of abstraction. Since design is a process of refine

ment, thedescription ofa component may existat different levels. In [41],Eisenring, et al.

divide thepossible abstractions intotwo levels: abstract communication typesandphysical

communication types. Abstract communication types includes buffered versus non-buff

ered, blocking versus non-blocking, synchronous versus asynchronous communication.

Physical communication types includes memory-mapped I/O, interruptor DMA-transfer.

In [14], Borriello, et al gave a more contiguous categorization of interface levels: electri

cal, logical, sequencing, timing, data transaction, packet, andmessage. Thebehavioral t3q)e

workaddresses the highest level in this classification: different mechanisms for message

passing. It covers the abstract communication types. Onthe otherhand,mostworkonpro

tocolsynthesis is at the hardware or architecture levels. For example, reconfigurable com

puting with FPGA is targeted in [40]; [104] is about RTL level interface synthesis; the

problem ofmapping a high-level specification to an architecture is consideredin [102]; and

a system to generate interface between a set of microprocessors and a set of devices is

described in [25][26].

The differences between our type system and the work in protocol synthesis make them

complementary to each other. They may be used at the different stages of the design

process.

97

5 Implementation in Ptolemy II

In this chapter,we describe our implementation of the type system presented in the previ

ous two chapters. This implementation is done in the Ptolemy II [33] software. We will

firstgive an overview of PtolemyII, then describe the implementation of a generic graph

package thatsupports the construction of partial orders and the solution of inequality con

straints over a lattice, followed by the implementation ofthe data level type system and the

support for interface automata. Part of the material in this chapter is drawn from the

Ptolemy II design document [33].

5.1 Overview of Ptolemy II

Ptolemy II offers unified infrastructure for implementation of a number of models of com

putation. It consists of a set of Java packages that are listed in figure 5.1. The core pack

ages provide a basic infrastructure and tools that are shared by all the models of

computation. Each model of computation is implemented in a separate package as a

Ptolemy II domain. The user interface (UI) packages provide a graphical environment

for building and executing Ptolemy II models. The name of the graphical environment

is called vergil. Vergil stores models in text files using an XML schema called MoML,

which stands for Modeling Markup Language. Some details are omitted here. For

example, the actor package contains a subpackage actor. gui that is part of the user

interface.

The key packages relevant to the implementation of the data-level type system are in

the core. They are the kernel package, the data package, the actor package, and the

graph package.

98

math

X

graph

data actor

domains

csp ct

fsm giotto

X

dde

gr

domains

de dt

pn sdf

I

gui
Ul packages

% A A

vergil momi plot media

Figure 5.1 The Java packages in Ptolemy 11.

The Kernel Package

The kemel package defines a small set ofJava classes that implement a data structure sup

porting a general form of uninterpreted clustered graphs, plus methods for accessing and

manipulating such graphs. These graphs provide an abstract syntax for netlists, state tran

sition diagrams, block diagrams, etc. A graph consists of entities and relations. Entities

have ports. Relations connect entities through ports. Relations are multi-way associations.

Hierarchical graphs can be constructed by encapsulating one graph inside the composite

entity of another graph. This encapsulation can be nested arbitrarily.

99

The Actor Package

The actor package provides basic support for executable entities, or actors. It supports a

general form of message passing between actors. Messages are passed between ports,

which can be inputs, outputs or bidirectional ports. Actors can be typed, which means

that their ports have types. The types of the ports can be declared by the containing

actor, or left undeclared on poljonorphic actors; type resolution will resolve the types

according to type constraints. Messages are encapsulated in tokens that are imple

mented in the data package or in user-defined classes extending those in the data pack

age.

A subpackageofthe actor packagecontains a library of(currently) about 100polymorphic

actors.

The Data Package

The data package provides data encapsulation, polymorphism, parameter handling, and an

expression language. Data encapsulation is implemented by a set of token classes. For

example, IntToken contains an integer, DoubleMatrixToken contains a two-

dimensional matrix of doubles. The tokens can be transported via message passing

between Ptolemy II objects. Altematively, they can be used to parameterize Ptolemy II

objects. Such encapsulation allows for a great degree of extensibility, permitting develop

ers to extend the library of data types that Ptolemy II can handle.

Parameter handling and an extensible expression language, including its interpreter, are

supported by a subpackage inside the data package. A parameter contains a token as its

value. This token can be set directly, or specified by an expression. An expression may

refer to other parameters, and dependencies and type relationshipsbetween parametersare

handled transparently.

The Graph package

This package provides algorithms for manipulating and analyzing mathematical graphs.

Mathematical graphs are simpler than PtolemyII clustered graphs in that there is no hier

archy, andarcs link exactly twonodes. Bothundirected anddirected graphsare supported.

Acyclic directed graphs, which can be usedto model complete partial orders (CPOs) and

100

lattices, are also supported with more specialized algorithms. This package provides the

infrastructure to construct the type lattice and implement the tj^De resolution algorithm.

However, this package is not aware of the types; it supplies generic tools that can be used

in different applications.

In [46], Gamma, et al distinguished three classes of software: application, toolkit, and

framework. The role oftoolkit and framework is reversed. In framework, the main body of

the code is reused, but the code it calls must be written. In this view, the kernel and the

actor packages are a general frameworkfor buildingexecutable graphs, the domainpack

agesare more specializedframeworks that implement modelsofcomputations, and the rest

of the packages, including the actor libraries, are toolkits.

5.2 CPO and Constraint Solving Infrastructure

As mentioned earlier, CPO and constraint solving support are implemented as generic

tools in the graph package. Figure 5.2 shows the UML diagram for the classes in this

packaged The classes Graph, DirectedGraph and DirectedAcyclicGraph

support graph construction and provide graph algorithms. Currently, only topological

sort and transitive closure are implemented; other algorithms will be added as needed.

The CPO interface defines the basic CPO operations, and the class DirectedAcy

clicGraph implements this interface. An instance of DirectedAcyclicGraph

is also a finite CPO where all the elements and order relations are explicitly specified.

Defining the CPO operations in an interface allows expansion to support infinite CPOs

and finite CPOs where the elements are not explicitly enumerated. The Inequali-

tyTerm interface and the Inequality class model inequality constraints over the

CPO. The InequalitySolver class implements the constraint solving algorithm

described in section 3.2.3. The usage of these classes can be found in the Ptolemy II

design document [33].

One of the fundamental operations on a CPO is to find the least element of a subset, if

it exists. This operation is the basis for many other important operations, such as com-

1. Currently, the graph package is being updated by Shuvra Bhattacharyya to support annotation on
edges. Figure 5.2 reflects the state of this package before this change.

101

Graph

DLgiapb:ArrayUst
-_nodeOt)jects; ArrayUst
-.nodeldTable; HashMap
•_edgeCowt: Int
♦GraphO
-KSrapliCnodeCouit;int)
'•'add(o: Object)
'»ad(£dge(o1: Object o2; Object)
'•coniains(o: Oltjed): boolean
-HtescrtptionO;String
'T^getEdgeCountO: Int
+getEdges(): OtijectQQ
+gelNodeCoiiit(): ltd
+getNodesO: Objectfl
#jgetNodeld(o; Object): Int
rijgelNodeObject(nodeld: Int): Object

riJnOegtee: ArrayUst
ri.transitiveClosura: booleanOQ
•JsAcycic: boolean
'•'DtrectedGraphO
'»DirectedGraphs(nodeCoirt; int)
♦t»dcMi3nIRe3ChableNodes(o: Object): ObjectQ
'H)ac)cM3tdReach3bleNodes(o:ObjectO): OlijectQ
'TcydeNodesOO: Objedfl
risAcycfcO: boolean
«reactiableNodes(o; Object); objectQ
-rreactiableNodesCo; OtjectQ): Objectfl
djeomputeTiansitiveClosureO

-jMttoin: Otrject
-_closuPs;booleanQO
•Jop: Ofa|ect
-•-DtnectedAcydicGcpahO
'•'DirecteclAcydlcGfaptKnodeCounl: int)
'KopobgicalSoitO: Ottjeclfl
*topobgcalSort(o: Objadfl): OtiiectD

*gotAssodate(IOt^ectO' OiVOci
*getV8lueO: Object
*getVariablesO Inequ^UyTerniQ
*mitialize(e: Object)
*isSettat)leO: tioolean
*isValueAccept8bleO: boolean
♦setVcftwfa Object)

0..n

-_lesserTemi: InequaStyTeim
•jgreaterTenn: InequaityTerni

+Inequ3ity(lesser;InequaityTetm,greater: InequaStyTenn)
rgetGreaterTennO: InequaEtyTerm
>getLes8erTerm(); IneqteltyTerm
♦isSatisfiedCcpo: CPO):boolean

♦HIGHER: int

•HNCOMPARABL£: Int

♦LOWER: int

♦SAME: Int
*bottomO: Object
♦corrtparefet; Otyect eZ: Object): int
♦donnSeifsObject): ObjeCtQ
♦graatestLoMefSoundfefOt^ect e2; Offset); Object
♦greatestUMorSoundjsirirset; Objec^j): Obj^
*greatestBement(sutiset: ObjecllD: Object
*ist.atticeO: boolean
HeastElemenKsubset: Object: Object
*leastUppetBoun<l(e1: Object,e2: Object): Oject
*leastUpf)eiBoun(l(stit>set: ObjectU): ObjM
♦top0:Object
♦iipSet(e Object); ObjectO

'Mne(tu3itySolv8f(cpo: CPO)
'faddlnequallyOneq:Inequafty)
'•'tMttomVaiiablesO; Iterator
-fSolveGreatestO: tioolean
-^sdvel-eastO; boolean
«^topVafiablesO:Iterator
'KiisatisriedlnequattiesO: iterator
♦variablesO: Iterator

0..n

0..n

0..n constraints

domain

Figure 5.2 Classes in the graph package.

puting the least upper bound. On a totally ordered set, the least element can be found

by simply scanning all the elements. The complexity of a linear scan is 0(n), where n

is the number of elements. On a poset, where elements may be incomparable, the least

element cannot be found by a linear scan. One straightforward algorithm is to compare

each element in the poset with every other element. This algorithm has a complexity of

O(n^), which is both the average and the worst case complexity.

We use an algorithm that improves the average complexity. The worst case complexity

of our algorithm is still 0(n^\ but on many posets, the complexity can be significantly

reduced. The idea is the following. Suppose the poset in which we want to find the least

element is called inputSet. We do a linear scan on all the elements in inputSet. If we

102

encounter elements that are incomparable, we temporarily store these elements in a set

called incomparableSet. Since the least element must be less than all the other elements

in inputSet, we know that none of the elements in incomparableSet can be the least ele

ment, but the least element, if it exists, must be less than every elements in incompara

bleSet. As we continue scanning the elements in inputSet, we first compare the current

element with the elements in incomparableSet. If the current element is greater than any

element in incomparableSet, we ignore the current element and continue the scan. If the

current element is less than some of the elements in the incomparableSet, but incom

parable with the other elements, we remove the elements that are greater than the cur

rent element from incomparableSet, and add the current element to the

incomparableSet. If the current element is less than all the elements in incompara

bleSet, we discard all the elements in incomparableSet, and the current element

becomes a candidate for the least element of inputSet. The following is a more precise

description of this algorithm:

• .Initialize: let inputSet = {e^} (1 < i < n);

candidate = nul1; incomparableSet = empty set;

• Scanning:

For i = 1 to n

If candidate = null and incomparableSet = empty set

candidate = e^;

Else ifcandidate ^ null and incomparableSet = empty set

If e^ < candidate

candidate = ei;

Else if e^ and candidateare incomparable

Add both e^ andcandidate to incomparableSet',
candidate = null;

Else ifcandidate = null and incomparableSet ^ empty set

For each element c in incomparableSet

If e^ < c

Remove c from incomparableSet',

Else if c < e^

ignore e^ and continuescanning the next element in inputSet

If incomparableSet = empty set

103

II ©i is less than all elements in incomparableSet

candidate = e^;

Else

Add ©i to incomparableSet-,

Else if candidate 9^ null and incomparableSet ^ ©mpty s©t

// This case cannot happen

• If candidate ^ null

candidate is the least element of inputSet;

Else

The least element does not exist;

The worst case for this algorithm happens when inputSet is an anti-chain (a partial order in

which every element is incomparable with every other element). The best case is that

inputSet is a chain (a totally ordered set). In this case, no element will be added to

incomparableSet during the execution of the algorithm and the complexity reduces to

0{n). This algorithm is implemented in a private method of the Dir©ct©dAcyclic-

Graph class.

5.3 Data Types

5.3.1 Data Encapsulation and Type Representation

The data package contains a set of token classes that encapsulate data. The UML diagram

for these classes is shown in figure 5.3. One of the goals of the data package is to sup

port polymorphic operations between tokens. For this, the base Tok©n class defines

methods for the primitive arithmetic operations, such as add (), multiply {), sub

tract (), divid© (), modulo {) and ©quals (). Derived classes override these

methods to provide class specific operations where appropriate.

Type conversion is done by the method conv©rt () in the token classes. This method

converts the argument into an instance of the class implementing this method. For exam

ple, Doubl©Tok©n. conv©rt (Tok©n tok©n) converts the specified token into an

instance ofDoubl©Tok©n. The convert () method can convert any token immediately

below it in the type hierarchy into an instance of its own class. If the argument is several

levels down the type hierarchy, the convert () method recursively calls the con-

104

clrterfaoe*

Ntanerlcal

ScalarTaken

#_uritCategoiyE)qx)nerts: iitQ
+atsolut8(); ScalarToken
«oomple)A/alueO: Complex
«dotl)leValue(); double
+rnValue{);R)d>oint
'Hnl\/aks<): irt
*longValu^):long
^(llnitsOf{isits: ScalaiToken);ScalarToken
>isLessThan(token: ScalafToken): BooleanToken
«setUnitC3tegoiy(tndex: int)
#_addCategoiyE]^ne>ts(token; ScalarToken): Irtfl
if.copyOfCat^ryExponenisO; irtfl
#~lsUnitEqu3i(token: ScalarToken): boolean
A_isUnitiessO: boolean
tTsubtractCategoiy&iponertsitoken; ScalarToken): Irtfl
ffjntStiingO: String

3:

• value; Fu^lrt

♦FIxToken(value:double,bits: Irt. IrtBits: Irt)
+FixToken(value: dotlile.precision:Precision)
'•'RxToken(value: Fod^oirt)
'•oonveriJoDodbleO:doUbte
♦prirtO

OoubieToken

• value; double • value: Irt

Token

«add(rigMAig: Token):Toten
*addRev«8e(leflArg: Token):Token
♦CMwettflokcn: Tokeni: Token

+divide(divisor:Token): Token
'fdivideRevefse{dlyidend: Token): Token
♦gelTypeO: Type
>isEqu3lTo(token: Token):BooleanToken
+modulo(rigMArg: Token): Token
*nxxlrtoReve(se{leftAig: Token);Token
+nxitIply(rigttFactor: Token):Token
'•'mrttiplyReveiseOeftFaclor: Token):Token
+one(); Token
♦sUbbacKrigrtArg: Token);Token
+sU]bactReve(se(leftAig: Token):Token
♦zeroQ: Token

.fields: Map

AirayToken

•_v8lue; Tokenfl
•jeleniertType: Type

+AiTayToken(v3lue: Tokenfl)
4^anayValue(); Tokenfl
'•getElemert(lndex; Int);Token
♦tengttiQ: Irt

RecordToken

ReoofffToken(labels: Stringfl, values: Tokenfl)
♦gef(label: String);Token
♦labeiSet(): Set

StringToken BooleanToken CI)|ectToken

•jvake; String
•_toStrtng:String
^StringTokenO
+StringToken(value: String)
♦stringVakeQ: String

ComplaxToken

.value: Complex

K:omplexToken()
♦Complextoken(value: Complex)

LongToken

.value: long

♦FALSE: BooleanToken

♦TRUE:BooleanToken

- vakje: boolean

♦BooleanTokenO

♦Boole3nToken(b:boolean)
♦BooleanToken(inlt: String)
♦booleariValue(): boolean
♦not(): BooleanToken

•jaluB: OfajBCt
♦ObjedTokeiX)

♦OI^Token(v8lue: Object)
♦grtValueQ: Objed

UaMxTohen

^COPY:irt
tfPO NOT COPY:lrt

♦oomplejMatri]^):ComplexQQ
♦doubleMatrixO: doubl^
♦getColumnCourtO: irt
♦getElementAsToken(rew: irt.ool: irt): Token
♦getRowCourtO: Irt
♦irtMatrix(): in^Q
♦longMatri^): bngflfl
♦oneRigrtO: Token
♦toArrayO: AirayToken

+OoubleToken()
♦Doii)leToken(value: doitile)
♦DoubleTokBn(value: String)

♦IrtTokenO

♦lrtToken(value: Irt)
♦IrtTokaiXinit: Siring)

♦LongTokenO

♦|jongToken(value: tong)
♦IjongTokenjiril: String)

kriMatrixToken

•^ookxniCount: Irt
.ro^^urt: irt
yaiue: irtffl)

♦lrtMatrixToken()

♦lrtMatrixToken(v3lue: IrtflQ)
♦lrtMatrixToken(v3luB: irtfl.raws: irt. cokmns: Irt)
♦getElefnertAI(row: M.ool: Irt): int
♦intAnayQtlrtfl

RxMatrUToken

•_oolumCourt: Irt
•jxedsion: Precision
•_rav£ourt: irt
•~valuB: Fbd^)intini
♦FbMatrixTokenO
♦Fi>MatrixToken(value: Fitf>oirt(n))
♦getEleniertAt(raw: M, ookxm: irt): Fb^oirt
♦fi)^atrix(): Fn^irtflfl

BodeanMetrixToken

.oolumnCount: irt

.rawCo(rt:int

.value: boolearflll
♦BooieanMatrixTokenO

♦BooleanMatrixToken(vaiue: booleanQ])
♦booleanMatrix(): boolearCQ]
♦getEleraertAt(raw:irt. column: irt): boolean

DouUeMitiixToken

-joolumnCourt:irt
,re«Ootrt:irt
value: doubteflfl

♦DoUrieMatrixTokenO

♦Dort)leMatrixToken(value: doubteflfl)
♦OoubleMalrixToken(value: dortrieflfl. oopy: Irt)
♦gelElemertAt(raw: irt, cokitin: irt): double

CocnplexMitrixToksn

-^oolumnCount: Irt
rawCotftrlrt

value: Comptejll)
♦CofflpiexMatrixO

♦ComplexMatrixTokenjvaluB: Complexflfl)
♦ComplexMrtrixTohetXvalue: Compte^n). oopy:irt)
+grtElefflertAt(raw: fart, cokmn:irt): Complex
l».getWeflalComplmdteblxO:Cotrt>lB)ffl|

longMatrbiToken

-^cokinnCourt: irt
ro«^int:lrt

yaluB:lon^fl

♦LongMatrixTokenQ
♦LongMatrixTokenjvalue:longflfl)
♦getElennertAl(raw:itt.ool:irt):long

Figure 5.3 Classes in the data package.

105

vert () method onelevel below todotheconversion. If theargument ishigher in thetype

hierarchy, or is incomparable withits own class, convert () throws an exception. If the

argument to convert () is already an instance of its ownclass, it is returned withoutany

change.

All the classes for representing the types and the type lattice are under a subpackage of

data, data. type. Figure 5.4 shows the UML diagram for this package. The Type

interface defines the basic operations on a type. BaseType contains a type-safe enu

meration of all the primitive types. ArrayType and RecordType are derived from

atnterfaces

Type

TypeLattico

*cotwert(t: Token): Token
*isCompatit)le(token: Token): txxtean
+isCm^antO: boolean
+isEqualTo(type: Type): txrolean
•*islnstantlalbleO •' boolean
*lsSut)stitutlonlnstance(type: Type): txxtean

- btlice: TheTyneLatiirfl

0..1 ■♦comoarefti:Tokea t2; Tokent: inl

•HMmoareftl: Tvee. f2: Tvoe): int

■♦latticed:^olvCPO

5"

BaseType

•mNKNOWN: BaseTvae

•^BOOLEAN MATRIX : BaseTvoe

•^COMPLEXrBasaTvne

•fCOMPLEX MATRIX: BaseTvoe

•♦•DOUBLE:BaseType

•♦DOUBLE MATRIX: BaseTvoe

•♦RX:BaseTvne

^IX MATRIX: BaseTvoe

•♦■INT: BaseTvoe
■♦INT MATRIX: BaseTvoe

•♦LONG:BaseTvoe

•♦LONG MATRIX: BaseTvoe

•♦MATRIX:BaseType

•♦NUMERICAL:BaseTvoe

•♦OBJECT:BaseTvoe

■♦SCALAR:BaseTvoe

■♦STRING:BaseType

•K5ENERAL: BaseTvoe

-name: String
•♦forName(naiT>e: String): Type

♦(Interfaces

InetfuantyTerm

3
TypeConstant

--typo: Type
■♦TypeCcnst3iTt(type:Type)

StnietuncfType

•*-initiallz0(type: Type)
*updateT^(newType: StrvcturedType)
1t_compam(type: StrvcturedType): int
»_getRepresentativeO •' SducturedType
1tjgreBtesttMwerBourtd(type: Sttuc^urerfType): StrvcturedType
1tJeastUpperBound(ty^: StrvcturedType): StrvcturedType

I

ArrayType RecordType

-jdeclarsdElementType: Type
-jelementType: Type

-Jlields: Map
•.representative: RecordType

-jeletnentTypeTerm: ElementTypeTerm
- reoresentative: AnavTvoe

•♦RecordType(lat>els:StringQ, types: TypeQ)
•♦•get(label: String); Type
■♦getTypeTerm(label:String): InequaEtyTerm•♦AnayType<eiemeftType: Type)

■♦getElementTypeO: Type
•♦getElementTypeTenmO:InequaftyTerm

ainteffaces
Typeable

*getTypeO: Type
*getTyp0TermO: InequalityTerrtt
*setTi^3eAtljeast(lesser: Typeatite)
*setTypeAlLeast(typeTetm: IrrequalityTerm)
•*-setTypeAtMost(type: Type)
+setTypeEquals(t^: Type)
*setTypeSameAs(equal: Typeatrle)
•♦fypeConsfra/ntUsfQ: List

Figure 5.4 Classes in the data.type package.

106

an abstract class StructuredType. The class TypeLattice contains the lattice

shown in figure 3.2 in chapter 3. This lattice is constructed using the CPO infrastructure

in the graph package. Each type has a convert () method to convert a token lower in

the type lattice to one of its type. Forbase types, this method justcalls the same method

in the corresponding tokens. For structured types, the conversion is done within the

concrete structured type classes.

The Typeable interface defines a set of methods to set type constraints between typed

objects. It is implemented by the Variable class in the data. expr package and the

TypedlOPort class in the actor package. Details of these two classes can be found

in [33].TypeConstant encapsulatesa constanttype. It implements the Inequality-

Term interfaceand canbe used to set up typeconstraintsbetweena typed object and a con

stant type.

5.3.2 Type Checking and Type Conversion

Type checking and type conversion are implemented in the actor package. The detailed

information aboutthis package canbe found in [33]. Theclasses and interfaces related to

type handling are TypedActor, TypedAtomicActor, TypedCompositeActor,

TypedlOPort, andTypedlORelation. They extend the imtyped version of the cor

responding classes and interfaces, as shown in figure 5.5. TypedlOPort has a

declared type and a resolved type. The undeclared type is represented by Base-

Type. UNKNOWN. If a port has a declared type that is not BaseType. UNKNOWN, the

resolvedtype will be the same as the declared type.

Static type checking is done in the checkTypes () method of TypedCompositeAc

tor. This method finds all the connections within the composite by first finding the output

ports on deep contained entities, and then finding the deeply connected input ports for

those output ports. For each connection, if the types on both ends are declared, static

type checking is performed using the type compatibility rule described in section 3.2.2.

If the composite contains other instances of TypedCompositeActor, this method

recursively calls the checkTypes {) method of the contained actors to perform type

107

-oL

ulntefface*

Actor

AtmnicActar «liter(aceB
TypodAclor CompositeActor

TypedAtomicAetor

*lypeConstraintUstO: List

3

TypedCocnposlteActor

-•-TypedAtoniicActorO
'•'TypedAtomicActoitworkspaoe: Wortcspaoe)
♦TypedAtoniicActoftcortainef: CompositeEntily. name: String)

-•-TypedCofflpositsActoit)
+TypedCo(npositeActor(>Noi1<space: Woitepaoe)
'•'TypedCompositsActorfoontainer: CompositeErtity, nsRie: Stiing)
♦ctieckTypesQ: List

.

♦TYPE: int

•.constraints: list
-.dedaredType: Type
-.resolvedType: Type
•JypeTerm: TypeTettn
•_typeUsleners: Usl

0..1

TypadOPort

clrteffaces ;

T^peable !
0..1

«lntefface»

InequstttyTerm t StiingAttifiNfte

TypeTerm

♦TypeTemifport:TypedlOPorl)

♦TypedlOPoit()

♦TypedtOPort^oonlairer;ComponentEntity, name: String)
♦TypedlOPort(oonl8!ner: ComponertEntity, name: String, islnpU: Iwoleaa isOulpul: IXMlean)
+addTypelJst(mer(listener: TypeUstener)
♦perrwyeTypeUstenertlistener:Typetistener)

•_type: Type

TypeAttrStute

notify

«lt«efface»
TypeUstener

TypeEvent

♦TypeAttrit>ute(port;TypedlOPort name: String)
♦getTypeQrType

*typeChanged(event: TypeEvenl): void

•jioit; TypedlOPort
•joUType: Type
•_newType: Type
♦TypeEventfpoit: TypedlOPort, okJType; Type, newType: Type)
♦getPortO; TypedlOPort
♦gefOMTypeO:Type
♦getNewTyp^): Type

S<j-
KemeiExeeptkin t

Manager

TypeConfSctExcsption TypedlORetstion

•jobiects: List
♦TypeCortflct£xception(imqu3tties: List)
♦TypeCor<ictExoeption(inequaKties: UsL detail: String)
♦ine<tualitytJst(): List

+TypediORelation()
♦TypedlORelationfiAortispaoe:Wortcspaoe)
♦TypedlORel8tion(conlainef: TypedCompositeActor, name: String)

Figure 5.5 Classes in the actor package that support type checking.

checking down the hierarchy. Hence, if this method is called on the top level Typed-

CompositeActor, type checking is performed through out the hierarchy.

If a type conflict is detected, i.e., if the declared type at the source end of a connection is

greater than or incomparable with the type at the destination end of the connection, the

ports at both ends ofthe connectionare recordedand will be returned in a list at the end of

108

type checking. Note that type checkingdoes not stopafter detecting the first type conflict,

so the returned list contains all the ports that have type conflicts. This behavior is similar

to a regular compiler, where compilation will generally continue after detecting errors in

the source code.

The TypedActor interface has a typeConstraintList () method, which returns

thetypeconstraints of thisactor.For atomic actors, thetypeconstraints are differentin dif

ferent actors, but the TypedAtomicActor class provides a default implementation,

which is that the type of any input port with undeclared type must be less than or equal to

the type of any undeclared output port. Ports with declared types are not included in the

default constraints. If all the ports have declared type, no constraints are generated. This

default works for most of the control actors such as commutator and multiplexer. So by

providing the default, we make it easier to write such actors. In addition, the type

ConstraintList () method also collects all the constraints from the contained

Typeable objects, which are instances ofTypedlOPort and Variable.

The typeConstraintList () method in TypedCompositeActor collects all the

constraints within the composite. It works in a similar fashion as the checkTypes ()

method, where it recursively goes down the containment hierarchy to collect type con

straints ofthe contained actors. It also scans all the connections and forms type constraints

on connections involving imdeclared types. As with checkTypes (), if this method is

calledon the top levelcontainer, all the type constraints withinthe compositeare returned.

The Manager class has a resolveTypes {) method that invokes type checking and

resolution. It uses the InequalitySolver class in the graph package to solve the con

straints. If type conflicts are detected during type checking or after type resolution, this

method throws TypeConf lictException. This exception contains a list of ine

qualities where type conflicts occurred.

Run-time type checking is done in the send {) method of TypedlOPort. This method

puts a token into the destination receiver. The checking is simply a comparison of the type

of the token being sent with the resolved type of the port. If the type of the token is less

109

than or equal to the resolved type, type checking passes, otherwise, an exception is

thrown.

Type conversion, if needed, is also done in the send () method. The type of the destina

tion port is the resolved type ofthe port containing the receivers that the token is sent to. If

the token does not have that type, the convert () method on that type is called to perform

the conversion.

5.3.3 Structured Types Implementation

The implementation of the structured types is more involved than the base types. The

complexity is due to the following:

• Type constraints may involve the element type ofa structured type.

• As discussed in section 3.3.2.1, when the right side ofan inequality term is a vari
able structured type, the update step in the type resolution algorithm involves a uni
fication of the right side variable structured type with the least upper bound ofboth
sides.

• While base types are atomic entities that will not change, variable structured types
are mutable and may change. For example, using the syntax of chapter 3, a type
{UNKNOWN} may be updated to [Double] during type resolution. Because of the
mutation, two instances of typed objects, such as two instances of TypedlOPort,
cannot share the same instance of the variable StructuredType as their type.

To understand these issues better, let's first take a look at how type resolution is conducted

with base types.

In Ptolemy II, the t)q)e of a TypedlOPort is stored in a local variable. This variable

is a reference to an instance of Type, and it is encapsulated in an inner class of Type

dlOPort that implements the InequalityTerm interface. For example, figure 5.6

shows the run-time object structure of a TypedlOPort pi with type Int, Here, a solid

line box represent an instance of a class or interface, a dashed line box represents a ref

erence, and an arrow from the dashed line box points to the object that the reference is

referring to. If a solid line box is contained within another box, it is an instance of an

inner class. For example, el is an instance of an inner class that implements the Ine-

qua1 i t yTerm interface.

110

pi: TypedlOPort

el: InequalityTerm

[11; TyE.e] '

BaseType.STRING

BaseType.DOUBLE

BaseType.INT

BaseType.UNKNOWN

Figure 5.6 Run-time object structure ofa TypedOIPort with type Int.

The inequality type constraints are implemented by the Inequality class, which

contains two references for the lesser and greater inequality terms. Figure 5.7 shows the

run-time object structure of two ports and a constraint that the type of the first port is

less than or equal to the type of the second. At the moment depicted by figure 5.7, the

type of the first port is Int, and the type of the second port is UNKNOWN, so the type

constraint is Int < a, and the current value of a is UNKNOWN. During type resolution.

pi: TypedlOPort BaseType.STRING

el: InequalityTerm
BaseType.DOUBLE

BaseType.INT

p2: TypedlOPort
BaseType.UNKNOWN

e2: InequalityTerm

i: Inequality

[hjineguality^inn] ^ LgLlll®3H§lJ:l^Te:nn
(Jnt < a)

Figure 5.7 Run-time object structure during type resolution for the base type system.

Ill

a will be updated to the least upper bound of Int and UNKNOWN^ which is Int. This

update is done by directly changing the reference t2 (the type of the port p2) to point to

the object BaseType. INT, as shown by the dashed arrow.

This implementation works well for base types, but adding structured types requires some

non-trivial extensions. Since we allow typQ constraints to involve the element type ofstruc

tured types, the element type must also be wrapped in an instance of Inequality-

Term. For example, figure 5.8 shows two instances of ArrayType. Here, atl and at2

are the element types, and the two array types are {Int} and {UNKNOWN} respec

tively. Now, assuming the object a2 in figure 5.8 represents the type of a port, and

during type resolution, we want to update the type of this port to {Int}. This update

cannot be done simply by moving the type reference of the port to point to the object

al, because the element type of a2 may be part of another type constraint. Figure 5.9

shows an example of this situation. Here, we have three ports pi, p2 and p3, with types

{Int}, {UNKNOWN}, and UNKNOWN, respectively. We also have two type con

straints. The first one is that the type of pi is less than or equal to that of p2. If we use

a to denote the element type of the array type a2, this constraint is {Int} < {a}. The

second constraint is that the type of p3 is less than or equal to the element type of a2. If

we use P to denote the type of p3, this constraint is p < a. During type resolution, when

processing the inequality {Int} < {a}, we compute the least upper bound of both sides.

al: ArrayType

ael: InequalityTerm BaseType.STRING

BaseType.DOUBLE

a2: ArrayType BaseType.INT

ae2: InequalityTerm BaseType.UNKNOWN

Figure 5.8 Run-time object structure for two instances ofarray type.

112

pi: TypedlOPort

el: InequalityTerm

[tl: Tir£e]N

p2: TypedlOPort

e2: InequalityTerm

p3: TypedlOPort

e3: InequalityTe:

L ^-lYSPJ

il: Inequality

[llj_Ine_gualit '̂̂ :nn] ^ [gil Inegi^UtyTeinn]
({/«/} < {a})

12: Inequality

[l^Ineqi^]J.t^'^:nn] - [g?] Ineguay.^Te™

BaseType.STRING

BaseType.DOUBLE

BaseType.INT

BaseType.UNKNOWN

al: ArrayType

ael: InequalityTerm

I. athTyESj'

a2: ArrayType

ae2: Inec[ual ityTe

[.at^Typej

^

Figure 5.9 Run-time object structure during type resolution for structured types.

which is {Int}. Now, we cannot simply update the type of p2 to {Int) by moving the

reference t2 to point to the array type a1. If we do so, the greater term reference of the

second inequality would be pointing to the wrong inequality term. This means that the

update for the type of p2 must be done in place. Instead of changing the reference t2.

113

we should update the element type reference of a2. That is, we move at2 to point to

BaseType. INT. This step is implemented by the updateType () method in the

ArrayType class.

Forthis update to succeed, the least upper bound of both sides of the inequality must bea

substitution instance of the right hand side. In the case of figure 5.9, {Int} is indeed a

substitution instance of {a}. The method isSiibstitutionlnstance () defined

in the Type interface performs this check. This method is called from update

Type (). If the check fails, an exception is thrown to indicate a type error in the model.

Another issue in the implementation of structured type is that an instance of variable

StructuredType cannot be shared by multiple typed objects. This is different from

base types. In Ptolemy II, base types are implemented as a type-safe enumeration, and

there is only one instance of the BaseType class for each base type. For example,

BaseType. INT is the only instance of BaseType that represents the Int type. If

there are multiple ports that all have the Int type, their type references all point to the

same instance BaseType. INT. For structured types, since there are an infinite

number of them, and they are mutable, they cannot be implemented by a type-safe enu

meration. Hence, multiple instances of the same structured type, such as {Int}, can be

created. However, the same instance of variable structured type can not be shared by

multiple ports. If so, changing the element type for one port will affect other ports. To

see this difference fromthe developer'spointof view, let's look at a program example.

Assuming there are two ports in an actor, pi and p2. If a developer wants to declare that

these two ports canwork with anytype, he or shecanwrite the following code:

Type declaredType = BaseType.UNKNOWN;
pi.setTypeEquals(declaredType);
p2.setTypeEquals(declaredType);

After type resolution, pi andp2 may be resolved to different types. Note that this code is

usually notnecessary since the default type ofports isBaseType. UNKNOWN. Neverthe

less, this code is perfectly legal.

114

On the other hand, if the developer wants to declare that these two ports can work with

any array type, and their element types are not necessarily the same. An obvious way

of coding seems to be:

//An array of anything
Type declaredType = new ArrayType(BaseType.UNKNOWN);
pi.setTypeEquals(declaredType);
p2.setTypeEquals(declaredType);

This code will result in a run-time object structure shown in figure 5.10. Here, pi and

p2 share the same instance of ArrayType. As discussed earlier, type update for struc

tured types are done in place, so these two ports will always have the same type. In

another word, a type constraint that requires the t3q)es of the two ports to be the same

is added implicitly, without the awareness of thedeveloper.

Onewayto resolve this issue is to ask thedeveloper to write code in another style:

pi. setTypeEquals (new ArrayType (BaseType .UNKNOWN)) ;
p2. setTypeEquals (new ArrayType (BaseType .UNKNOWN)) ;

This way, the two ports will usedifferent instances ofArrayType, and they may resolve

to different types after type resolution. However, this solution is not very satisfactory

because the developer needs to understand and remember the difference between the

implementation of base types and structured types, and the implicit type constraint may

cause unexpected errors.

pi: TypedlOPort

el: InequalityTerm
BaseType.UNKNOWN

al: ArrayType

p2: TypedlOPort
ael: InequalityTerm

e2: InequalityTerm
^t^ Type

t2: Type

Figure5.10 Two ports share the sameinstanceofstructured type.

115

To make structured types behave like base types, we adopt another solution, which is to

not allow the same instance of variable structured types to be used by two tj^jed objects,

such as two ports. To achieve this, we make a clone of the structured type object if it is

passed to the setTypeEquals () method for the second time. More specifically, each

instance of structured type is given a "user". Constant structured types can have many

users, variable structured types can only have one user. In the first section of the code

above where the developer reuses declaredType on the port p2, the second call to

setTypeEquals () would cause the ArrayType instance to be cloned because it is

already used by a port. This way, the two code sections above will have the same effect.

5.3.4 Fork Connection and Transparent Port

In a Ptolemy II model, a port can be connected to multiple other ports at the same time.

Also, a port can be transparent^ in which case it does not play a role during message

passing. Our type system can handle these special cases easily. We illustrate this

through some simple examples.

Fork Connection

Consider two simple topologies in figure 5.11, where a single output is connected to

two inputs in 5.11(a) and two outputs are connected to a single input in 5.11(b). Denote

the types of the ports by aj, a2, a3, Pj, P2» Psj as indicated in the figure. The type con

strains in these models are:

a| < 0-2

ai<a3

Pi < P3

P2 - P3

Some possibilities of legal and illegal type assignments are:

In 5.11(a), if clI - Int, 1x2 = Double, = Complex. The topology is well typed. At run

time, the IntToken sent out from actor A1 will be converted to DoubleToken

before being transferred to A2, and converted to ComplexToken before being trans-

116

A2

B3

A3 B2

(a) (b)

Figure 5.11 Two topologies in which one port is connected to two other ports.

ferred to A3. This shows that multiple ports with different types can be interconnected

as long as the type compatibility rule is obeyed.

In 5.11(b), if Pi = Int, P2 = Double^ and P3 is undeclared. The resolved type for P3 will

be Double. If Pi = Int and P2 = Boolean^ the resolved type for P3 will be String since it

is the lowest element in the type hierarchy that is higher than both Int and Boolean. In

this case, if the actor B3 has some type constraints that require P3 to be less than String,

then type resolution is not possible, and a type conflict will be signaled.

Transparent Ports

In Ptolemy II, there are two kinds of composite actors: opaque and transparent. Opaque

composite actors contain a local director that manages the execution of the actors inside

the composite. On the other hand, transparent composite actors do not contain a local

director and the actors inside the composite are managedby an outside director. Ports on a

transparent actorare transparentports. These definitions are explained in detail in [33].

Transparent ports are not involved in token passing. For example, in figure 5.12, if the

actor A2 is transparent, the token sent out by A1 will be put into the input ports of B1

and B2 without being temporarily stored in the port pi. Similarly, tokens sent out by

B1 or B2 will be put into the input of A3 directly. Since the transparent ports pi and

p2 do not play a role in token passing, we do not include them in type checking and

type resolution. However, in the user interface of Ptolemy II, we want to assign types

to these ports so their information can be displayed in a way consistent with opaque

ports. Obviously, the types we assign should meet all the type constraints should these

117

Figure 5.12 A model with a transparent composite actor.

ports be opaque. In particular, the type of pi should be less than or equal to the types

of the input ports of B1 and B2, and the type of p2 should be greater than or equal to

the types of the output ports of B1 and B2. This is very similar to the fork connection

cases discussed above. To meet such constraints, we define the type of a transparent

input port to be the greatest lower bound of the types of the input ports connected on

the inside, and the type of a transparent output port to be the least upper bound of the

types of the output ports connected on the inside. In figure 5.12, this means that a = aj

Aa2, and p = Pi v P2.

An interesting special case is empty transparent composite actors. The type of an input

port on such an actor is the greatest lower bound of an empty set, and the type of an

output port on such an actor is the least upper bound of an empty set. As discussed in

section 2.4.1.1, the greatest lower bound of an empty set is the top element of the CPO,

and the least upper bound is the bottom element. This means that the type of the input

port is General, and the type of the output port is UNKNOWN. Figure 5.13 shows two

screen shots of a transparent actor in Ptolemy II with its input and output types dis

played in tooltips. This type assignment makes perfect sense. Since an empty compos-

empty composite actor empty composite actor

|tnput.typa:oenefal[[output, type: unknown

Figure 5.13 An empty transparent composite actor in Ptolemy II with input and output
types displayed.

118

ite actor does not do anything with the input token, it can accept tokens with any type.

On the other hand, since this actor does not send out any token, its output type should

be the least element in the type lattice so that it can be connected with ports of any type.

From the typing point ofview, this actor is maximally reusable.

5.4 Interface Automata

5.4.1 Implementation Classes

Interface automata are implemented in the FSM domain in Ptolemy 11. This implementa

tion leverages heavily the finite state machine infrastructure, so only two new classes

are needed. Figure 5.14 shows the UML diagram. The class InterfaceAutomaton

models an interface automaton. It contains instances of State and InterfaceAu-

tomatonTransition. This class also includes some tools that manipulate interface

automata or find information about them. The corabinelnternalTransi-

tions {) method searches for chains of internal transitions and combines each chain

into a single intemal transition. The resulting automaton may be smaller, but does not

make an observable difference in behavior since multiple intemal transitions in a row

cannot be distinguished from outside the automaton. The compose () method com-

FSMActor 0..1 Stata

0..n ;

•'InlerfaoeAutomatonO
•'lnleff8oeAutomaton(vw)tl(space: Woricspace)
'•lrterfaoeAutomaton(ooniatner; CompositeEnlity, name; String)
'•addPortsO
+combinetnteman'ransttion50
'•oompose<automaton: InterfaoeAutomaton): liteifaoeAutomaton
'•deadlockStatesO:Set
'•getlrfoQ: String
•'tnputNameSetO: Set
+tntemarrransitionNameSet():Set
'•tsClosedO: boolean
+tsEmptyO: boolean
•newRelationO:ComponentRelation
'K>utputN3meSet(); Set
•TenameTransmoitafaelstnameMap: Map)

0..1

0..n

Transition

'•'label:StringAttribute
MNPUT TRWSIT10N:inl

ffOUTPUT TRANSITION: in!

INTERNAL TRANSITION: in!

'•'lnterfaoeAutoniatonTraiisition(container: InterfaoeAutoinaton, name: Siring)
'•'atliibuteCh3nge<l(attribute; A^bute)
'•getLabelO:String
♦geCTypeOiinl

*setContainef(conlainef: CompositeEnlity)

Figure 5.14 Classes implementing interface automata.

119

putes the composition of two automata. The composition algorithm will be described

later. The method deadlockstates () searches for states that do not have any out

going transitions. The getInfo () method returns some high level information about

the automaton, such as the number of states, the number of transitions, and the names

of the transitions. The isClosedO method checks whether the automaton is closed.

That is, whether it only has internal transitions. The isEmptyO method checks

whether the automaton is empty.

The InterfaceAutomatonTransition class implements the transition of interface

automata. This class ensures that the label of the transition ends with an appropriate char

acter (?,!, or;) and determines the type of the transition from this ending character.

5.4.2 Composition Algorithm

As mentioned above, the compose () method in InterfaceAutomaton com

putes the composition of two interface automata. There are four major steps in this

method:

1. Check composability

2. Construct the product automaton

3. Prune illegal states

4. Remove unreachable states

In step 1, we check that the transitions of the two automata are disjoint, except that an

input transition of one may coincide with an output transitions of the other, in which

case, the transitions will become a shared transition in the composition. If this condition

is not met, an exception is thrown. If this condition is met, we proceed to construct the

product automaton in step 2. The product automaton is constructed progressively from

the initial state, so only states that are reachable from the initial states are explored. In

addition, when we encounter illegal states in the product, we stop further exploration

from those states. Hence, this procedure does not actually construct the full product

automaton, but only the portion that may survive in the final composition. Since the

composition of two interface automata may be very small, this procedure may result in

significant savings than the construction of the full product automaton. In step 3, we

120

prune out the illegal states in the product, and all the states that can reach those illegal

states through output and internal transitions. After this pruning, the resulting automa

ton may be a disconnected graph, so we remove the states that are not reachable from

the initial state in step 4.

In step 2, 3 and 4 above, we use the standard frontier exploration algorithm, which is

similar to breadth first search of graphs. We outline the procedure in step 2 here. We

start from the initial state of the product automaton, and explore other states along the

legal transitions. During the exploration, the whole state space of the product automa

ton is divided into three parts, as shown in figure 5.15. The frontier is the set of states

that are currently being explored. Let the two automata to be composed be P and Q, the

algorithm can be described as follows:

• Initialize:

product = frontier = (initialState_of_P, initialState_of_Q);

• Iterate:

Pick (remove) a state (p, q) from frontier ;

Exploring from p: picka transition pTr (p, r are the source and destination

state space of
product automaton

states of transition T in P);

states not

explored

frontier

initial

state

states

explored

Figure 5.15 Frontier exploration in the product automaton. The black dots represent
illegal states.

121

case 1: T is input transition in P

case 1A: T is input transition in P x Q

Add state (r, q) to product;

Add transition (p, q)T(r, q) to product;

case IB: T is shared transition in P x Q

case IBa: state q in Qhas output transition qTs

Add state (r, s) to product;

Add internal transition (p, q)T(r, s) to product;

case IBb: state q in Q does not have output transition T

Transition T cannot happen in (p, q), ignore;

case 2: T is output transition in P

case 2A: T is output transition in P x Q

Add state (r, q) to product;

Add transition (p, q)T(r, q) to product;

case 2B: T is shared transition in P x Q

case 2Ba: state q in Q has input transition qTs

Add state (r, s) to product;

Add internal transition (p, q)T(r, s) to product;

case 2Bb: state q in Q does not have input transition T

Mark (p, q) as illegal state;

Stop exploring from (p, q);

case 3: T is internal transition in P

Add state (r, q) to product;

Add transition (p, q)T(r, q) to product;

Exploring from q: (the procedure is symmetrical with exploring from p, but
shared transitions are not added twice. Details omitted here.)

• Stop when f ront i e r is empty;

When pruning illegal states, frontier exploration starts from the set of illegal states

marked in the above procedure. In the last step of the compose () method, the explo

ration starts from the initial state.

The composition of interface automata is also supported through the vergil interface of

Ptolemy II.

122

6 Conclusions and Future Work

6.1 Summary

In this thesis, we have presented an extensible type system for component-based design.

Fundamentally, a type system detects incompatibilities at component interfaces.

Incompatibility may happen at two different levels: data types and dynamic behavior.

Accordingly, the type system presented in this thesis also has two parts. For data types,

our system combines static typing with run-time type checking. It supports polymor

phic typing of components, and allows automatic lossless type conversion at run-time.

To achieve this, we use a lattice to model the subtyping relation among types, and use

inequalities defined over the type lattice to specify type constraints in components and

across components. Compared with the subtyping hierarchy in many conventional lan

guages, our lattice formulation is more restrictive in that we require the subtyping rela

tion to be antisymmetric and the least upper bound of any two types to exist. This

restriction enables us to use a very efficient algorithm to solve the inequality type con

straints, with existence and uniqueness of a solution guaranteed by fixed-point theo

rems. This type system increases the safety and flexibility of the design environment,

promotes component reuse, and helps simplify component development and optimiza

tion. It addition, it can be extended in two ways: by adding more types to the lattice, or

by using different latticesto model different system properties.

We have also presented our approach for supporting structured types in this system. The

addition ofstructuredtj^jesrequires extensions on both the theoretical formulation andthe

implementation of the system. In particular, we extend the format of inequality constraint

to admitvariable structured types, and add a unificationstep in the constraint solving algo-

123

rithm to handle these types. We have also analyzed the issue ofconvergence on an infinite

type lattice with structured types.

The data-level type system has been implemented in the Ptolemy II environment. Our

implementation is modular. The CPO and lattice support, including the algorithm for solv

ing inequality constraints, are implemented in the graph package ofPtolemy II. This infra

structure is generic in that it is not bound to one particular type lattice. Data encapsulation

and type definition were implemented in the data package, and type checking and type con

version are implemented in the actor package.

To describe the djmamic behavior of components and perform compatibility check, we

extend the concepts of conventional type system to behavioral level and capture the

dynamic interaction between components, such as the communication protocols the

components use to pass messages. In our system, the interaction types and the dynamic

behavior of components are defined using interface automata. To check whether a com

ponent is compatible with a certain interaction type, we can simply compose the autom

ata models of the component and the interaction type, and check whether the result is

empty. This yields a straightforward algorithm for type checking at the behavioral

level. Our system is polymorphic in that a component may be compatible with more

than one interaction types. We have shown that the alternating simulation relation of

interface automata can be used for defining subtyping, and it induces a partial order for

the interaction types. This behavioral type order provides significant insight into the

relation among various interaction types. It can be used to facilitate the design of poly

morphic components and simplify type checking. In addition to static type checking,

we also propose to extend the use of interface automata to the on-line reflection of com

ponent states and to run-time type checking. We have also discussed the trade-offs in

the design ofbehavioral type systems.

We have implemented interface automata in the FSM domain ofPtolemy II. All the autom

ata in this thesis are built in Ptolemy II and their compositions are computed in software,

except that some manual layout is applied for better readability of the diagrams.

124

6.2 Future Work

6.2.1 Data Types

Our data-level type system can be improved in several ways:

Type Resolution for Open Systems

When a typed component with inputs and outputs is used in an untyped environment, the

environment does not provide type constraints for the inputs and outputs. In this case, type

resolution is done on an open system. This is analogous to compiling an individual library

module in text-based languages. To maximize the utility of the typed component, we want

to resolve the input type to the most general while keeping the type everywhere else to the

most specific. To achieve this, we plan to use a two-pass algorithm^ In the first pass, we

find the most general types in the system. In the second pass, we fix the types ofthe input,

and search for the most specific types for everywhere else.

Deriving Type Constraints for Expressions

As discussed in chapter 3, we assume that the detailed operation of the components are

not exposed to the type system and we only check type consistency at component inter

face. However, in some cases, it is possible to examine the operation of the components

and extend the reach of type checking. For example, the Expression actor in

Ptolemy II computes an expression specified by the user. It should be possible for the

type system to analyze the expression and generate type constraints that link the type

of the expression with the types of the inputs and outputs of the actor. As another exam

ple, in the FSM domain in Ptolemy II, the guard and action on the transitions can be

specified using expressions. These expressions can also be used to generate type con

straints for the inputs and outputs of the finite state machine. By doing this, we can

reduce run-time type errors and the need for the user to specify the types at the inputs

and outputs of the components.

1. This algorithm came up during a discussion with Jdm Janneck.

125

Adding More Structured Types

Currently, Ptolemy II only supports two structured types: array and record. More types,

such as union and tuple [21], can be added. Union type may be useful, for example, in a

communication system where a received message are drawn from a predefined set. Tuple

can be used as a generalized array, where the tj^es of the elements do not have to be the

same, or as a simplified record, where the record labels are reduced to numerical indices.

We believe these types can be added without much difficulty, but the question is whether

they are useful enough to warrant their presence in the type system.

6.2.2 Behavioral Types

The behavioral types framework presented in this thesis can be extended in a number

of ways. Most of these extensions are speculative, but they may lead to some interesting

opportunities.

Running the Reflection Automata

Currently, the interface automata implementation in Ptolemy II does not support execution.

By leveraging the execution framework of the FSM domain, we can make interface

automata executable. We have mentioned the possibility of using automata to do on-line

reflection of component states. One immediate application ofthe reflection automata is to

provide debug information. In a model, the collective states ofthe reflection automata pro

vide a snapshot of the model behavior. This information may be more intuitive than the

conventional debugging trace. In addition, reflection automata can also be used to control

configuration changes. For example, in a reconfigurable architecture or distributed system,

the state of the reflection automata can provide information on when it is safe to perform

mutation.

Automata Generation

In conventional type systems, data types may be declared by the programmer or inferred

by the system. So far in our behavioral types framework, the interaction types and the

reflection automata are designed manually based on the source code ofPtolemy II. This is

analogous to type declaration. An altemative is to automatically generate these automata

from the source code, which can be viewed as inferring the behavior types from the imple-

126

mentation of components. The Bandera project [31] may provide a starting point for this

effort.

Using the Reflection Automata to Aid Actor Development

In Ptolemy II, many actors have a similar behavioral pattern. For example, the reflection

automaton in figure 4.3 of chapter 4 describes the common behavior of most of the

polymorphic consumer actors. We might be able to use these common patterns to sim

plify actor development. Instead of asking the user to write a complete Java class for

each new actor, we can provide a library of actor templates in the form of interface

automata. The library may include such templates as Polymorphic Consumer, Poly

morphic Transformer, SDF Consumer, SDF Transformer. When the user needs to

develop a new actor, he or she can pick a template, and just write the code that processes

the input token, which corresponds to the operation in a particular state in the automa

ton. The rest of the code in the actor, including the code for execution control and com

munication, can be provided by the design environment. This approach will have a

similar benefit as the Caltrop language [42] for actor development. Note that this

approach puts the creation of the reflection automata before the development of actor

code, so the behaviortypesdo not need to be inferredfrom the sourcecode.

Capturing Timing Properties

The interface automata we have used in this thesis are untimed. Using a timed automata

model, we may be able to model real-time requirements and constraints. Such automata

may be used to analyze the schedule for real-time systems. This is potentially a very

rich research area.

Support User Customization

One of the challenges in type systems research is to make type systems amenable to

user definition and customization [100]. This is important for behavioral types due to the

highly diverse information they may capture. It might be possible to design behavioral

types as a metalanguage that can be specified by the user. Eventually, such an approach

might lead to flexible design tools that allow the user to specify the relevant properties to

check.

127

Bibliography

[1] H. Abelson and G. J. Sussman, Structure and Interpretation of Computer
Programs, The MIT Press, 1985.

[2] S. Adolph, "Whatever Happened to Reuse?" Software Development, Nov. 1999.

[3] G. A. Agha, Actors: A Model ofConcurrent Computation in Distributed Systems,
The MIT Press, 1986.

[4] G. A. Agha, "Concurrent Object-Oriented Programming," Communications ofthe
ACM, 33(9), pp. 125-141,1990.

[5] A. V. Aho, R. Sethi and J. D. Ullman, Compilers: Principles, Techniques, and
Tools, Addison-Wesley Publishing Company, 1988.

[6] A. Aiken, "Set Constraints: Results, Applications and Future Directions," Proc. of
the Second Workshop on the Principles and Practice ofConstraint Programming,
Orcas Island, Washington, May 1994.

[7] A. Aiken, Lecture Notes for CS263: Design and Analysis of Programming
Languages, Univ. of Califomia at Berkeley, Spring, 1998. (http://
www.cs.berkeley.edu/'-aiken/cs263/lectures/index.html)

[8] F. Baader and W. Snyder, "Unification Theory," Handbook of Automated
Reasoning, Elsevier Science Publishers, 2001.

[9] J. Backus, "Can Programming Be Liberated from the von Neumann Style? A
Functional Style and Its Algebra of Programs," Communications of the ACM,
21(8), Aug. 1978.

[10] J. Backus, "The History of Fortran I, II, and III," IEEE Annals of the History of
Computing, 20(4), 1998.

[11] H. P. Barendregt, "The Lambda Calculus, Its Syntax and Semantics," Revised
Edition, Studies in Logic and the Foundations ofMathematics, Vol. 103, North-
Holland, 1984.

128

[12] A. Benveniste and G. Berry, "The Synchronous Approach to Reactive and Real-
Time Systems," Proceedings ofthe lEEE^ VoL79, No.9, Sept. 1991.

[13] P. A. Bernstein, T. Bergstraesser, J. Carlson, S. Pal, P. Sanders and D. Shutt,
"Microsoft Repository Version 2 and the Open Information Model," Microsoft
Corporation, May 3, 1999.

[14] G. Borriello, L. Lavagno, and R. B. Ortega, "Interface Synthesis: a Vertical Slice
from Digital Logic to SoftwareComponents,"Proc. ofInternational Conferenceon
ComputerAided Design (ICCAD)^ San Jose, CA, USA, 8-12 Nov. 1998.

[15] R. L. Brumfield, "Type Systems in Visual Languages,"Project Report, Department
of Computer Science, University ofColorado, Dec. 1995.

[16] J. T. Buck, S. Ha,E. A. Lee, and D. G. Messerschmitt, "Ptolemy: A Framework for
Simulating and Prototyping Heterogeneous Systems," Int Journal of Computer
Simulation, special issue on ''Simulation Software Development," vol. 4, pp. 155-
182, April, 1994.

[17] J. T. Buck and E. A. Lee, "Scheduling Dynamic Dataflow Graphs with Bounded
Memory Using the Token Flow Model," Proc. of ICASSP, Minneapolis, April,
1993.

[18] M. M. Burnett, "Types and Type Inference in a Visual Programming Language,"
Proc. 1993 IEEESymposium on Visual Languages, Bergen, Norway, Aug. 24-27,
1993.

[19] J.Byous, "Java Technology: An Early History," http://java.sun.com/features/1998/
05/birthday.html.

[20] L. Cardelli, "Basic Polymorphic Typechecking," Science of Computer
Programming 147-172, North-Holland, 1987.

[21] L. Cardelli, "Type Systems," The Computer Science andEngineering Handbook,
CRC Press, 1997.

[22] L. Cardelli and P. Wegner, "On Understanding Types, Data Abstraction, and
VoXymovphism, '̂' Computing Surveys, 17(4), Dec. 1985.

[23] W.-T. Chang, S. Ha, and E.A.Lee, "Heterogeneous Simulation - Mixing Discrete-
Event Models with Dataflow," Invited paper for RASSP special issue of the
Journal on VLSI Signal Processing, 1996.

[24] W.-T. Chang, A.Kalavade, andE.A.Lee, "Effective Heterogenous Design andCo-
Simulation," Nato Advanced Study Institute Workshop on Hardware/Software
Codesign, Lake Como, Italy, June 18-30,1995.

129

[25] P. Chou, R. B. Ortega and G. Borriello, "Synthesis of the Hardware/Software
Interface in Microcontroller-Based Systems," Proc. ICCAD, pp488-495, Nov.
1992.

[26] P. Chou, R. B. Ortega and G. Borriello, "Interface Co-Synthesis Techniques for
Embedded Systems," Proc. ofthe Int. Conf. on ComputerAidedDesign,'Noy. 1995.

[27] P. Ciancarini, "Coordination Models and Languages as Software Integrators,"
ACM Computing Surveys, 28(2), June, 1996.

[28] E. M. Clarke, J. M. Wing, et al, "Formal Methods: State of the Art and Future
Directions," Computing Surveys, 28(4), Dec. 1996.

[29] J-L. Colaco, M. Pantel and P. Salle, "A Set-Constraint-Based Analysis of Actors,"
International Workshop on Formal Methods for Open Object-Based Distributed
Systems, Canterbur, UK, July 21-23,1997.

[30] D. Compare, P. Inverardi, A. L. Wolf, "Uncovering Architectural Mismatch in
Component Behavior", Science ofComputerProgramming 33 (1999) 101-131.

[31] J. C. Corbett, M. D. Dwyer, J. Hatcliff and S. Laubach, "Bandera: Extracting
Finite State Models from Java Source Code," Proc. of the 2000 International
Conf. on Software Engineering, Limerick, Ireland, June, 2000.

[32] B. A. Davey and H. A. Priestly, Introduction to Lattices and Order, Cambridge
University Press, 1990.

[33] J. Davis II, C. Hylands, B. Kienhuis, E. A. Lee, J. Liu, X. Liu, L. Muliadi, S.
Neuendorffer, J. Tsay, B. Vogel and Y. Xiong, "Heterogeneous Concurrent
Modeling and Design in Java," Technical Memorandum UCB/ERLM0I/I2, EECS,
University of California, Berkeley, March 15, 2000. (http://
ptolemy.eecs.berkeley.edu/publications/papers/01/HMAD)

[34] L. de Alfaro and T. A. Henzinger, "Interface Automata," Proc. of the Joint 8th
European Software Engineering Conference and 9th ACM SIGSOFT
International Symposium on the Foundations of Software Engineering (ESEC/
FSE 01), Austria, 2001.

[35] J. Dean, D. Grove and C. Chambers, "Optimization of Object-Oriented
Programs Using Static Class Hierarchy Analysis," Proc. of the 9th European
Conference on Object-Oriented Programming (ECOOP*95), Aarhus, Denmark,
Aug., 1995.

[36] A. Diwan, K. S. McKinley and J. E. B. Moss, "Type-Based Alias Analysis,"
Proc. ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDIVS), Montreal, Canada, 1998.

130

[37] B. P, Douglass, "Components, States and Interfaces, Oh My!" Software
Development^ April 2000.

[38] B. P. Douglass, "The Evolution of Computing," Software Development, Jan.
2001.

[39] S. A. Edwards, The Specification and Execution of Heterogeneous Synchronous
Reactive Systems, Ph.D. thesis. University of California, Berkeley, May 1997.

[40] M. Eisenring and M. Platzner, "Synthesis of Interfaces and Communication in
Reconfigurable Embedded Systems," lEE Proc. Comput Digit Tech, 147(3),
May 2000.

[41] M. Eisenring, J. Teich and L. Thiele, "Rapid Prototyping of Dataflow Programs
on Hardware/Software Architectures," Proc. 31st Annual Hawaii International
Conference on System Sciences, 1998.

[42] J. Eker and J. Janneck, An Introduction to the Caltrop Actor Language, Dept. of
Electrical Engineering and Computer Sciences, Univ. of California at Berkeley,
2001.

[43] M. Fahndrich, "Effect Systems," CS263 Guest Lecture, Univ. of California at
Berkeley, 1996. (http://citeseer.nj.nec.coni/249349.html)

[44] E. Freeman, S. Hupfer and K. Arnold, JavaSpaces Principles, Patterns, and
Practice, Addison-Wesley Pub. Co., 1999.

[45] Y-C. Fuh and P. Mishra, "Type Inference with Subtypes," Second European
Symposium on Programming, Nancy,France, 1988.

[46] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1995.

[47] J. D. Gannon, "Verification and Validation," The Computer Science and
Engineering Handbook, CRC Press, 1997.

[48] A. Girault, B. Lee, and E. A. Lee, "Hierarchical Finite State Machines with
Multiple Concurrency Models," IEEE Transaction on Computer-Aided Design of
Integrated Circuits and Systems, 18(6),June 1999.

[49] M. Gordon, R. Milner, L. Morris, M. Newey and C. Wadsworth, "A
Metalanguage for Interactive Proof in LCF," Conf. Record of the 5th Annual
ACM Symp. on Principles ofProgramming Languages, pp. 119-130,1978.

[50] C. V. Hall, K. Hammond, S.L. Peyton Jones, and P. L. Wadler, "Type Classes
in Haskell," ACM Transactions on Programming Languages, Vol.18, No.2,
Mar. 1996.

131

[51] M. R. Henzinger, T. A. Henzinger and P. W. Kopke, "Computing Simulations
on Finite and Infinite Graphs," Proc. of the 36th Annual IEEE Symp. on
Foundations ofComputer Science (FOGS '95), pp. 453-462, Oct. 1995.

[52] J. B. Hext, "Compile-Time Type-Matching," Computer Journal, 9, 1967.

[53] C. A. R. Hoare, "Hints on Programming Language Design," In C. Bunyan (ed.).
Computer Systems Reliability: State ofthe Art Report, Vol. 20, Pergamon/Infotech,
1974. pp. 505-34.

[54] C. A. R. Hoare, "Communicating Sequential Processes," Communications of the
ACM, 28(8), August 1978.

[55] D. Howe (editor), "The Free On-line Dictionary of Computing," http://
www.foldoc.org.

[56] P. Hudak, "Conception, Evolution, and Application of Functional Programming
Languages," CM Computing Survey, 21(3), Sept., 1989.

[57] V. Illingworth, Dictionary of Computing, 3rd ed., Oxford University Press,
1990.

[58] 0. Kahn, "The Semantics of a Simple Language for Parallel Programming,"
Proc. of the IFIP Congress 74, Amsterdam, The Netherlands, North-Holland,
1974.

[59] G. Kahn and D. B. MacQueen, "Coroutines and Networks of Parallel
Processes," Information Processing 77, B. Gilchrist (ed.) North-Holland
Publishing Co., 1977.

[60] E. A. Lee, "Modeling Concurrent Real-Time Processes Using Discrete Events,"
Annals of Software Engineering, Special Volume on Real-Time Software
Engineering, Volume 7, 1999.

[61] E. A. Lee, "Embedded Software - An Agenda for Research," Memorandum
UCB/ERL M99/63, EECS Dept., UC Berkeley, 2001. (http://
ptolemy.eecs.berkeley.edu/publications/papers/99/embedded/)

[62] E. A. Lee, "Embedded Software," Memorandum UCB/ERL MOI/26, EECS
Dept., UC Berkeley, 2001. (http://ptolemy.eecs.berkeley.edu/publications/
papers/01/embsystems/)

[63] E. A. Lee, "Soft Walls - Modifying Flight Control Systems to Limit the Flight
Space of Commercial Aircraft," Memorandum UCB/ERL MO1/31, EECS Dept.,
UC Berkeley, 2001. (http://ptolemy.eecs.berkeley.edu/publications/papers/01/
softwalls/)

132

[64] E. A. Lee and D. G. Messerschmitt, "Static Scheduling of Synchronous Data
Flow Programs for Digital Signal Processing," IEEE Transactions on
Computersy January, 1987.

[65] E. A. Lee and D. G. Messerschmitt, "Synchronous Data Flow," Proc. of the
IEEE, 75(9), Sept. 1987.

[66] E. A. Lee and T. M. Parks, "Dataflow Process Networks,", Proc. of the IEEE,
83(5), pp. 773-801, May, 1995. (http://ptolemy.eecs.berkeley.edu/publications/
papers/95/processNets)

[67] E. A. Lee and A. Sangiovanni-Vincentelli, "A Framework for Comparing
Models ofComputation,"IEEE Transactionson CAD, 17(12), Dec., 1998.

[68] E. A. Lee and P. Varaiya, Structure and Interpretation ofSignals and Systems,
EECS20 Class Reader, EECS Dept., UC Berkeley, 2001.

[69] E. A. Lee and Yuhong Xiong, "System-Level Types for Component-Based
Design," Technical Memorandum UCB/ERL MOO/8, EECS, University of
California, Berkeley, Feb. 29, 2000. (http://ptolemy.eecs.berkeley.edu/
publications/papers/OO/systemLevel/)

[70] E. A. Lee and Yuhong Xiong, "System-Level Types for Component-Based
Design," First International Workshop on Embedded Software (EMSOFT2001),
Tahoe City, CA, USA, Oct. 8-10, 2001. Lecture Notes in Computer Science
(LNCS) 2211, Springer.

[71] C. K. Lennard, "VSIA Develops System-Level Modeling Standards," EE Times,
June 9,2000.

[72] P. Lieverse, P. van der Wolf, E. Deprettere and K. Vissers, "A Methodology for
Architecture Exploration of Heterogeneous Signal Processing Systems," IEEE
Workshop on Signal Processing Systems (SiPS99), Taipei, Taiwan, Oct. 20-22,
1999.

[73] C. H. Lindsey and S. G. van der Meulen, Informal Introduction to ALGOL 68,
North-Holland Publishing Company, 1971.

[74] B. H. Liskov and J. M. Wing, "A Behavioral Notion of Subtyping," ACM
Transactions on Programming Languages and Systems, 16(6), Nov. 1994.

[75] J. Liu, B. Wu, X. Liu and E. A. Lee, "Interoperation of Heterogeneous CAD
Tools in Ptolemy II," Symp. on Design, Test, and Microfabrication of MEMS/
MOEMS, Paris, France, Mar., 1999.

133

[76] J. M. Lucassen, Types and Effects - Towards the Integration ofFunctional and
Imperative Programming^ Ph.D. Thesis, MIT Laboratory for Computer Science
LCS TR-408, Aug., 1987.

[77

[78

[79

[80

[81

[82

[83

[84

[85

[86

[87

[88

[89

[90

J. M. Lucassen and D. K. Gifford, "Polymorphic Effect Systems," Proc. of the
Fifteenth Annual ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, San Diego, California, Jan. 1998.

N. Lynch and M. Tuttle, "Hierarchical Correctness Proofs for Distributed
Algorithms," Proc. 6th ACM Symp. Principles ofDistributed Computing, pp 137-
151,1981.

The MathWorks, Inc., Using Simulink: Model-Based and System-Based Design,
June, 2001. (http://www.mathworks.com/access/helpdesk/help/pdf_doc/
simulink/sl_using.pdf)

M. D. Mcllroy, "Mass Produced Software Components," In P. Naur and B.
Randell, Software Engineering, Report on a Conference Sponsored by the NATO
Science Committee, Garmisch, Germany, Oct. 7-11, 1968. Scientific Affaires
Division, NATO, Brussels, 1969.

B. Meyer, "Every Little Bit Counts: Toward More Reliable Software," IEEE
Computer,^Gw. 1999.

B. Meyer, "The Significance of Components," Software Development, Nov.
1999.

B. Meyer, "What to Compose," Software Development, Mar. 2000.

B. Meyer, "Contracts for Components," Software Development, July, 2000.

R. Milner, "A Theory of Type Polymorphism in Programming," Journal of
Computer and System Sciences, 17, pp. 384-375,1978.

R. Milner, J. Parrow, D. Walker, "A Calculus of Mobile Processes (Port I and
Part n)," Information and Computation, 100:1-77,1992.

J. C. Mitchell, "Coercion and Type Inference," Proc. of11th Annual ACMSymp.
on Principles ofProgramming Languages, pp. 175-185, 1984.

J. C. Mitchell, Foundationsfor Programming Languages, The MIT Press, 1998.

M. Mitchell, "Type-Based Alias Analysis: Optimization that Makes C++ Faster
Than C," Dr. Dobb's Journal, Oct., 2000.

A. Mycroft and R. A. O'Keefe, "A Polymorphic Type System for Prolog,"
Artificial Intelligence, 23(3), North-Holland, Amsterdam, 1984.

134

[91] M. A. Najork and E. Golin, "Enhancing Show-and-Tell with a Polymorphic
Type System and Higher-Order Functions," 1990 IEEE Workshop on Visual
Languages^ Skokie, IL, Oct., 1990.

[92] M. A. Najork and S. M. Kaplan, "The CUBE Language," 1991 IEEE Workshop
on VisualLanguages, Kobe, Japan, Oct. 1991.

[93] E. Najm, A. Nimour, "Explicit Behavioral Typing for Object Interface,"
Semantics of Objects as Processes, ECOOP'99 Workshop, Lisboa, Portugal,
June, 1999.

[94] E. Najm, A. Nimour and J.-B. Stefani, "Infinite Types for Distributed Object
Interfaces," Third IFIP Conf. on Formal Methods for Open Object-Based
Distributed Systems (FMOODS'99), Firenze, Italy, Feb., 1999.

[95] G. Necula and P. Lee, "Safe Kernel Extension Without Run-Time Checking,"
Second Symp. on OperatingSystems Design and Implementation (OSDI '96),Oct.
28-31,1996.

[96] G. Necula, "Proof-Carrying Code," Conf Record of the 24th Annual ACM
Symp. on Principles of Programming Languages, pp.106-119, ACM Press,
1997.

[97] G. Necula, Lecture Notes for CS263: Design and Analysis of Programming
Languages, Univ. of California at Berkeley, Spring, 1999. (http://
www.cs.berkeley.edu/~necula/cs263/lectures.html)

[98] F. Nielson, "Annotated Type and Effect Systems," ACM Computing Surveys,
28(2), June, 1996.

[99] H. R. Nielson and F. Nielson, "Higher-Order Concurrent Programs with Finite
Communication Topology," ACM Symp. on Principles of Programming
Languages, Jan., 1994.

[100] M. Odersky, "Challenges in Type Systems Research," ACM Computing
Surveys, 28(4), 1996.

[101] Object Management Group, OMG Unified Modeling Language Specification,
version 1.3, June 1999.

[102] R. B. Ortega and G. Borriello, "Communication Synthesis for Embedded
Systems wiA Global Considerations," Proc. of the 5th International Workshop
on Hardware/Software Co-Design (Codes/CASHE'97), March 1997.

[103] J. K. Ousterhout, "Scripting: Higher Level Programming for the 21 Century,"
IEEE Computer Magazine, March 1998.

135

[104] R. Passerone, J. A. Rowson and A. Sangiovanni-Vincentelli, "Automatic
Synthesis of Interfaces between Incompatible Protocols," 35th Design
Automation Conference^ 1998.

[105] J. Palsberg, "Type-Based Analysis and Applications," ACM SIGPLAN/
SIGSOFT Workshop on Program Analysis for Software Tools (PASTE'01)^
Utah, USA, June, 2001.

[106] B. C. Pierce, "Foundational Calculi for Programming Languages," The
Computer Science and Engineering Handbook, CRC Press, 1997.

[107] J. Plevyak and A. A. Chien, "Precise Concrete Type Inference for Object-
Oriented Languages," Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), Portland, Oregon, USA, 1994.

[108] F. Puntigam, "Types for Active Objects Based on Trace Semantics," Proc. ofthe
Workshop on Formal Methods for Open Object-Oriented Distributed Systems
(FMOODS'96), Paris, France, March, 1996.

[109] A. Ralston, E. D. Reilly and D. Hemmendinger (editors). Encyclopedia of
Computer Science, 4th ed.. Nature Publishing Group, 2000,

[110] H. J. Reekie, Realtime Signal Processing, Dataflow, Visual, and Functional
Programming, Ph.D. Thesis, University ofTechnology at Sydney, Sept., 1995.

[111] J. Reekie, S. Neuendorffer, C. Hylands and E. A. Lee, "Software Practice in the
Ptolemy Project," Technical Report Series, GSRC-TR-1999-01, Gigascale
Semiconductor Research Center, University of California, Berkeley, CA 94720,
April 1999.

[112] J. Rehof and T. Mogensen, "Tractable Constraints in Finite Semilattices," Third
International Static Analysis Symposium, LNCS 1145, Springer, Sept., 1996.

[113] J. H. Reppy, "CML: A Higher-Order Concurrent Language," ACM SIGPLAN
'91 Conference on Programming Language Design and Implementation,
Toronto, Ont., Canada, June, 1991.

[114] D. Ritchie, "The Development of the C Language," SIGPLAN Notices, 28(3),
ACM SIGPLAN HOPL-IL 2nd ACM SIGPLAN History of Programming
Languages Conference, Cambridge, MA, USA, 20-23 April 1993.

[115] J. A. Robinson, "A Machine-Oriented Logic Based on the Resolution
Principle,'V. ACM 12(1), 1965.

[116] J. A. Rowson, A. Sangiovanni-Vincentelli, "Interface-Based Design," Proc. of
the 34th Design Automation Conference (DAC-97). pp. 178-183, Las Vegas,
Jime 1997.

136

[117] D. Scott, "Outline Of a Mathematical Theory of Computation," Proc. of the 4th
AnnualPrinceton Conf. on InformationSciencesand Systemsy pp. 169-176,1970.

[118] Synopsys Inc., CoCentric System StudiOy 2000. (http://www.synopsys.com/
products/cocentric_studio/cocentric_studio_ds.html)

[119] C. Szyperski, Component Softare, Beyond Object-Oriented Programmingy
Addison-Wesley, 1999.

[120] C. Szypersky, "Point, Counterpoint," Software Developmenty Feb.2000.

[121] C. Szypersky, "Components and Contracts," Software Developmenty May 2000.

[122] C. Szyperski and C. Pfister, "Workshop on Component-Oriented Programming,
Summary," In M. Muhlhauser (ed.), Special Issues in Object-Oriented
Programming - European Conference on Object-Oriented Programming
(ECOOP96) Workshop Readery dpunkt Verlag, Heidelber, 1997.

[123] Carolyn L. Talcott, "Composable Semantics Models for Actor Theories,"
Higher-Order and Symbolic Computationy 11(3), pp. 281-343, Kluwer
Academic Publishers, 1998.

[124] J. D. Ullman, Elements ofML Programmingy Prentice Hall, 1998.

[125] J. M. Wing and J. Ockerbloom, "Respectful Type Converters," IEEE
Transactions on SoftwareEngineeringy Nov. 1998.

[126] G. Winskel, The Formal Semantics of Programming Languages, The MIT
Press, 1993.

[127] Hongwei Xi and Frank Pfenning, "Eliminating Array Bound Checking Through
Dependent Types," Proc. of ACM SIGPLAN Conf on Programming Language
Design andImplementation (PLDI '98)y pp. 249-257, Montreal, June, 1998.

[128] Y. Xiong and E. A. Lee, "An Extensible Type System for Component-Based
Design," 6th International Conference on Tools and Algorithms for the
Construction and Analysis of SystemSy Berlin, Germany, March/April 2000.
Lecture Notes in Computer Science (LNCS) 1785, Springer.

137

	Copyright notice 2002
	ERL-02-13

