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Abstract

An Extensible Type System for Component-Based Design

by

Yuhong Xiong

Doctor of Philosophy in Engineering — Electrical Engineering and Computer Sciences

University of California at Berkeley

Professor Edward A. Lee, Chair

Component-based design has been established as an important approach to designing
complex embedded systems, which often have many concurrent computational activi-
ties and mix widely differing operations. A good type system is particularly important
for component-based design. A type system can improve the safety and flexibility of the
design environment, promote component reuse, and help simplify component develop-
ment and optimization. Although type systems have been studied extensively in the pro-

gramming language community, its research in component-based design is not enough.

In this thesis, we present an extensible type system for component-based design. Fun-
damentally, a type system detects incompatibilities at component interfaces. Incompat-
ibility. may happen at two different levels: data types and dynamic behavior.
Accordingly, the type system presented in this thesis also has two parts. For data types,
our system combines static typing with run-time type checking. It supports polymorphic
typing of components, and allows automatic lossless type conversion at run-time. To
achieve this, we use a lattice to model the subtyping relation among types, and use ine-
qualities defined over the type lattice to specify type constraints in components and
across components. By requiring the types to form a lattice, we can use a very efficient

algorithm to solve the inequality type constraints, with existence and uniqueness of a



solution guaranteed by fixed-point theorems. This type system can be extended in two
ways: by adding more types to the lattice, or by using different lattices to model differ-

ent system properties.

Our type system supports both the primitive types and structured types, such as arrays
and records. The addition of structured types makes the type lattice infinite, and requires
an extension on the format of the inequality constraints. We present an analysis on the
issue of convergence on an infinite lattice, and add an unification step in the constraint
solving algorithm to handle the new inequality format. OQur extension allows structured
types to be arbitrarily nested, and supports type constraints that involve the elements of
structured types.

The data-level type system has been implemented in Ptolemy II, which is a component-
based design environment. Our implementation is modular. In particular, the CPO and
lattice support, including the algorithm for solving inequality constraints, are imple-
mented as a generic infrastructure that is not bound to one particular type lattice. Type
definition and type checking are implemented in separate packages and have been fully

integrated with Ptolemy IIL.

To describe the dynamic behavior of components and perform compatibility check, we
extend the concepts of conventional type system to behavioral level and capture the
dynamic interaction between components, such as the communication protocols the
components use to pass messages. In our system, the interaction types and the dynamic
behavior of components are defined using a light-weight formalism, interface automata.
Type checking, which checks the compatibility of a component with a certain interac-
tion type, is conducted through automata composition. Our system is polymorphic in
that a component may be compatible with more than one interaction types. We show
that a subtyping relation exists among various interaction types and this relation can be
described using a partial order. This behavioral type order provides significant insight
into the relation among the interaction types. It can be used to facilitate the design of
polymorphic components and simplify type checking. In addition to static type check-

ing, we also propose to extend the use of interface automata to the on-line reflection of



component states and to run-time type checking. We illustrate our framework using the
Ptolemy II environment, and discuss the trade-offs in the design of behavioral type sys-

tem.

Professor Edward A. Lee, Chair Date
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1 Motivation

1.1 Embedded System Design

Over the past 50 years, the center stage of computing has shifted from mainframe to PC
and is about to shift again to embedded computing. The invention of ENIAC in 1947
marked the start of mainframe era and computing was focused on information processing.
In the 1980’s, personal computers emerged and took over mainframes as the driving force
in computer industry. In recent years, many people believe that we are at the cross line of
a post-PC era, in which communication and pervasive interaction are becoming the focus.
In this era, the role of desktop computing will be greatly diminished by new computing par-
adigms, described by such terms as invisible computing, pervasive computing [38], or
handheld computing. From our perspective, all of these new forms of computing fall into

the category of embedded computing.

Embedded systems are computing systems that are not first-and-foremost computers [61].
They are everywhere, residing in cars, consumer electronics, appliances, networking
equipments, aircrafts, security systems, etc. In addition to the dozens of embedded systems
we interact with everyday, networked embedded systems will play a larger role in our life
in the post-PC era. As painted vividly by media, many of the devices in our home and office
will be connected and will cooperate with each other. For example, our sprinkler will com-
pute the optimal watering schedule based on the sensor data and weather forecast, our PDA
or mobile phone may display a coupon for Big Mac if we walk by a McDonald at lunch
time. Our cars will also become more intelligent; they can help us find out the best route
according to real-time traffic information, and the mechanical steering system will be

replaced by drive-by-wire technology, making the ride safer and more pleasant. These pre-



dictions may not become true in the near future, but at least one thing is evident: t

and development of embedded systems will continue to evolve for many years to co

Besides consumer applications, embedded systems also play a big role in industry and
safety critical systems. For example, embedded software is an important part of the
flight control system in aircrafts. Research is also under way to use embedded software
to prevent aircrafts from entering restricted space [63]. There is little doubt that embedded

systems are taking the center stage of computing.

Embedded systems often mix technologies, such as hardware and software, analog and
digital circuits, and mechanical devices. They are heterogeneous in that they frequently
perform diverse operations, including signal processing, feedback control, sequential deci-
sion making, and user interfaces. In addition, they often have many parts that are working
concurrently, and must meet some real-time requirements [62]. Unlike PCs, where most
systems follow de facto industry standards for system architecture, CPU instruction sets,
bus protocol, and operation systems, the vast majority of embedded systems are custom
designed. With the increasing complexity, and time to market and cost pressures, the

design of embedded systems has become a challenging task.

In recent years, component-based design has shown great promise in coping with the com-
plexity in modern systems. At the system level, component-based design amounts to
wiring up pre-designed components to form the complete system. This approach has the
potential of increasing design productivity by reusing the same components in multiple
designs. At the same time, it also poses some new challenges. One of the fundamental
questions is: when we connect components to form a system, how can we ensure that

they will work together?

1.2 Type Systems for Component-Based Design

To make components work together, one of the prerequisites is that their interfaces
must be compatible in some sense. This thesis focuses on techniques to ensure interface
compatibility. For software components, interface mismatch can happen at (at least)

two different levels. One is the data type level. For example, if a component expects to



receive data encoded as integers, but another components sends it a string, then the first
component may not be able to function correctly. The second level of mismatch is the
dynamic interaction behavior, such as the communication protocols the components
use to exchange data. Since embedded systems often have many concurrent computa-
tion activities and mix widely differing operations, components may follow widely dif-
ferent communication protocols. Therefore, ensuring the compatibility of dynamic

behavior is also an important and non-trivial problem.

In the programming language community, the data type problem has been studied exten-
sively over several decades. However, most of the type systems proposed are for con-
ventional text based languages, and type systems for component-based design
environments, which are usually block diagram based languages, have not been studied
enough. In the first part of this thesis, we propose a type system for component-based

design environment that addresses the data type compatibility issue.

To address the compatibility of communication behavior, we extend the concept of type
sygtems to capture the dynamic aspects of component interaction. We call the result
behavioral types [69][69]. We will describe our framework for capturing and checking the
dynamic behavior of component interface, and show that it offers some of the same bene-

fits as data typing.

By detecting mismatch at component interfaces and ensuring component compatibility,
a type system can greatly increase the robustness of a system. This is particularly valu-
able for embedded software. Unlike desktop computers, many embedded systems do
not enjoy the luxury of being able to be rebooted when things go wrong. Once the

system is deployed, it must continue to work without human intervention.

In addition to providing safety guarantees, many modern type systems are also very
flexible in that they support polymorphic typing of programs. That is, they allow a pro-
gram to have more than one type so that it can be used in different settings. Our type
system, at both the data level and system level, is also polymorphic. This feature

enables component reuse, which is a key benefit of component-based design.



The rest of this thesis is organized as follows. Chapter 2 reviews the background mate-
rial, including type systems for conventional languages, the issues in component-based
design, and the mathematical tools used in this thesis. Chapter 3 presents our data type
system. Chapter 4 presents behavioral types. Chapter 5 discusses our implementation
of the type system in Ptolemy II - a component-based design environment. Chapter 6

concludes the thesis and points out future directions.



2 Background

On a high level, the main goal of this thesis is to present techniques that help improve the
quality and productivity of embedded software development. As such, the techniques pre-
sented in this thesis are closely related to other research in the general area of software. As
witnessed by the frequent crashes of PCs and frequent delays in software projects, software
quality and development productivity have not reached the desired level. To solve this
problem, many solutions have been proposed by researchers and practitioners. Roughly
speaking, these solutions fall into three categories: good software practice, new languages

and tools, and formal method.

Good software practice includes design and code reviews, code rating, thorough testing,
good source code repository management, and complete documentation. They are very
effective in improving software quality. For example, in the Ptolemy II project, all of the
above are practiced and they have greatly improved the quality of software [111]. The
number of bugs in the core parts of Ptolemy II is small and most bugs can be tracked down
within hours. Since the adoption of good practice does not require developers to learn new
languages and tools based on formal methods, good practice can make quicker impact than
other approaches. In addition, it also helps by boosting the experience of novice program-
mers in a team setting. However, human factors may be the main hurdle in their adoption.
Some programmers may not be willing to have their code reviewed by peers. And some
business strategies give early availability of product (even with a lot of bugs) higher prior-
ity than software quality, making some managers reluctant to enforce good practice
throughout the development cycle. We will not make further discussion on software prac-

tice since it is outside the scope of this thesis.



At the beginning of their life span, widely accepted languages were usually adopted in a
new application domain, where they offer unique advantage over existing languages. For
example, Fortran offers the convenience of high level programming while maintaining
efficiency close to direct assembly language programming. Since this language was
originally designed for the IBM 704 computer, which had built-in floating point capa-
bilities [10], it provides good support for floating point computation. Due to the ease of
high level programming and floating point support, Fortran has been widely used in the sci-

ence and engineering community for decades after its introduction in 1954.

Another popular language is C, which was devised as a system implementation language
for the UNIX operating system [114]. C is “close to the machine” in that the abstractions
it introduces are readily grounded in the concrete data types and operations supplied by
conventional computers. This makes it simple and small, and allows engineers who under-
stand how computers work to generate time- and space-efficient programs. This attribute

makes C suitable for system programming.

In recent years, Java has become the language of choice for many software developers.
While Java has many good features, the most important one that popularized the language
was the capability of Java applets to “move behavior” [19]. This makes it uniquely posi-

tioned for web programming.

As can be seen, new languages can often enable or boost the massive software develop-
ment activities in a new application area, because they offer an abstraction level and a set
of features that hit the bull’s eye in that area. The high level notation and floating point sup-
port in Fortran, the closeness to the machine of C, and the capability of moving behavior
in Java are all examples of this. Now if we consider embedded software, the characteristics
are quite different from other applications. As argued by Lee in [62], the principal role of
embedded software is the interaction with the physical world, so factors including timeli-
ness, concurrency, liveness, interfaces, heterogeneity, and reactivity need to be considered.
The prevailing software engineering methods do not address these issues well, and a new
language is in order. This new language should take a component-based approach and be

based on formal Models of Computations. The type system proposed in this thesis is



designed for such languages. Later in this chapter, we will discuss component-based

design and models of computation in more detail, in section 2.2 and 2.3.

Formal methods include theorem proving and model checking for verification, and formal
languages for specification [28]. Broadly, formal methods also include type systems since
many type systems have precise mathematical formulations. Theorem proving can be used
to verify properties or prove the correctness of programs. For example, it can be proved
that a division program computes the correct remainder and quotient. However, verifying
specific properties of non-trivial programs is difficult. Very often, program proofs are more
detailed than the programs being verified, and the proving process requires human inter-
vention. In practice, theorem proving is generally applied to safety-critical applications by
skilled experts [47].

Compared with theorem proving, traditional type systems in programming languages are
not used to verify arbitrary properties, but to prevent the occurrence of execution errors,
which means that during the execution of the program, the machine encounters a mean-
ingless instruction, such as jumping to the wrong address, or adding an integer to a
boolean [21]. Although the prevention of execution errors does not ensure the correctness
of a program, it does eliminate a large percentage of the errors, or “bugs,” in the program.
Furthermore, many program errors are multi-faceted, so some aspects of the problem are
exposed as type errors. This makes type systems one of the most successful formal meth-
ods in software design. The next section of this chapter reviews some of the results in type

system research.

Model checking is a technique that relies on building a finite model of a system and check-
ing that a desired property holds in that model [28]. It has been applied successfully in
hardware and protocol verification. In recent years, it has also been used in software.
Model checking is related to our behavioral type system. Both use automata as a basic tool.
In section 2.4.2, we will present an overview of a particular form of automata used in

behavioral types - interface automata [34].

The above categorization of techniques is not clear cut. For example, type systems belong

to both language design and formal methods. Also, major advancement in software devel-
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opment requires a successful combination of the techniques. As Meyer puts it, “Every
Little Bit Counts” [81].

2.1 Data Types

Research in type systems for programming languages dates back many decades. As early
as 1954, real and integer types are distinguished in Fortran. Due to the vastness of the field,
it is beyond reasonable hope to mention even a moderate part of the literature. In this sec-
tion, we will examine some basic issues in type system design and some notable type sys-
tems that have inspired our work. Section 2.1.1 discusses the role of type systems as
catching execution errors. Section 2.1.2 examines design issues for type systems. And

section 2.1.3 presents some notable type systems in programming languages.

2.1.1 Role of Type Systems
The Dictionary of Computing [57] defines #ype, or data type as:

An abstract set of possible values that an instance of the data type may

assume, given either implicitly, e.g. INTEGER, REAL, STRING, or explic-

itly as, for example, in Pascal:

TYPE color = (red, green, orange)

The data type indicates a class of implementations for those values.
Other sources [21][55][109] give similar definitions. A type system is the component of a
language that keeps track of the types of objects in a program. In general, the type of an
object implicitly specifies a set of admitted operations of the object, and the type system
ensures that only those operations are applied during the execution of the program, which
prevents the occurrence of execution errors. To make this statement more precise, let’s

look at figure 2.1, which shows a simple categorization of program errors. This figure

errors caught by a safe language
e

————>

untrapped error : trapped error
!

program €rror

4

execution error .

Figure 2.1 Venn diagram of program errors.
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is generated based on the definitions in [21]. In this figure, execution error is a subset
of all program errors, or bugs. Very often, execution errors cause the program to crash,
while non-execution errors do not crash a program, but may cause the program to pro-
duce a wrong result. Execution errors can be divided into two categories: trapped errors
and untrapped errors. Trapped errors cause the execution to stop immediately, but
untrapped errors may go unnoticed (for a while) and later cause arbitrary behavior.
Examples of trapped errors include divide by zero or dereferencing null. Examples of
untrapped errors include going over the boundary of an array or jumping to the wrong
address. Obviously, untrapped errors are the most insidious form of execution errors,
so the type system of a languages should strive to detect as many untrapped errors as
possible. Languages that rule out all untrapped errors are called safe languages. Exam-
ples of safe languages are ML [124] and Java, and examples of unsafe languages
include C and various assembly languages. The lack of safety in language design is usu-
ally driven by performance considerations, as the safety guarantee requires extra com-
putation. However, safe languages can catch a larger fraction of routine programming
errors and eliminate many lengthy debugging sessions. In practice, many bugs reveal
themselves in multiple ways. For example, a buggy sorting routine may go over array
boundary and produce the wrong result. If this routine is written in a safe language, this
error will be caught in the first execution, at the latest. However, if this routine is writ-
ten in an unsafe languages, this error may not be caught until the result of the program

is examined.

In addition to catching execution errors, type information can also be used for program
optimization. For example, type information was introduced in Fortran to improve code
generation and run time efficiency for numerical computations. More recently, type infor-
mation has been used extensively in program analysis. Program analysis includes various
techniques to extract information from programs so that compilers can take advantage of
this information to produce optimized code. For example, common subexpressions are
expressions that were previously computed, and not later modified. The common subex-
pression analysis identifies such expressions for each program point so that the compiler

can avoid recomputing them. Another example of program analysis is alias analysis. In



languages with side effects, a memory location has aliases if it is denoted by more than one
expression, such as pointed to by more than one pointer. Alias information is useful in
compilers because, for instance, if a memory location does not have aliases, the compiler
can assume that it will not be modified through other pointers, so its value does not need
to be loaded every time it is used. This is called redundant-load elimination (RLE).
Common subexpression analysis, alias analysis, and many other kinds of program anal-
yses have been studied and used in optimizing compilers for a long time (see for exam-
ple [5]); In recent years, type information is exploited to make such analyses simpler and
more efficient [105]. For example, type-based alias analysis was performed on C++ [89]
and Modula-3 [36]. For object-oriented languages, class hierarchy analysis was used to
identify the virtual method calls that can be resolved at compile time, and possibly replace
those calls with method inlining [35]. The survey paper of Palsberg [105] examines the

state of the art of type-based analysis and contains many references of work in this area.

Type annotations in programs also serve as important documentation and help clarify pro-
gram interfaces. Compared with other form of annotation, such as informal comments and
formal specifications for theorem proving, types are more precise than program comments,

and easier to check than formal specifications.

The design of a good type system is not a trivial task. To improve safety, a type system
defines a set of rules, or type rules, regarding how objects with various types may interact.
These rules are enforced by a type checking algorithm. 1deally, the type rules should enable
the type checking algorithm to separate out all the “bad” expressions from the “good” ones
in a program. However, since type-checking must be theoretically decidable and practi-
cally feasible, this perfect separation is usually not possible. As a result, some good expres-

sions are sacrificed. For example, as we will see in section 2.1.3.2, the ML program
fun h(f) = (£(3), f(true));

is rejected by the type system, even thought it can be a good function definition if the argu-
ment £ is always a function that can be applied to both integer and boolean. In unsafe lan-
guages, some bad expressions are also admitted. One direct consequence of rejecting good

expressions is that the reusability of programs is compromised. So the trade-off between
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safety guarantees and the flexibility of the language needs to be carefully evaluated in type
system design.

Furthermore, from the programmers’ point of view, type rules should be easily understand-
able so that they can predict easily whether a program will typecheck. If it fails to
typecheck, the compiler or the run-time environment should be able to provide a clear
explanation of the problem. Also, type checking should not require excessive type annota-

tion. To meet these requirements, we need to look into some issues in type system design.
2.1.2 Issues in Type System Design

2.1.2.1 Static vs. Dynamic Type Checking
Type checking can be performed at either compile time or run time. Compile time checking
is also called static checking. Static checking has the key advantages of early error detec-

tion and not incurring run-time overhead. However, static checking often requires the pro-

grammer to declare the type of variables!, slows down compilation, and limits the reuse
of programs to some degree. On the other hand, run time, or dynamic type checking
usually requires much less annotation in the program and permits more program reuse,
but slows down the execution of program. Full dynamic type checking is often
employed in languages that are intended for interactive use, such as scripting lan-
guages. These languages are often labeled typeless since the source program does not
contain type annotation. The choice between static and dynamic type checking is still
subject to some debate. For example, Ousterhout argues that system programing lan-
guages should be typeless to support a compact coding style and reuse [103]. However, for
languages that are intended for developing large scale applications, static type checking is
favored by most researchers. Much of the research in this area has been driven by the desire
to combine the flexibility of dynamically typed languages with the security and early error-
detection potential of statically typed languages [100]. Modern type systems have achieved

this goal to a large extent by making program components polymorphic.

1. Of course, there are exceptions. For example, the language ML uses &ype inference to automatically
infer the type of variables. The ML type system will be discussed in section 2.1.3.2.
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2.1.2.2 Polymorphism

In polymorphic languages, some values and variables may have more than one type. Poly-
morphic functions are functions whose operands can have more than one type [22].
Cardelli and Wegner [22] distinguished two broad kinds of polymorphism: universal and
ad hoc polymorphism. Universal polymorphism is further divided into parametric and
inclusion polymorphism. Parametric polymorphism is obtained when a function works
uniformly on a range of types. Inclusion polymorphism appears in object oriented lan-
guages when a subclass can be used in place of a superclass. Examples of these kinds of
polymorphism will be discussed in section 2.1.3. In terms of implementation, a univer-
sally polymorphic function will usually execute the same code for different types,

whereas an ad hoc polymorphic function will execute different code.

Ad hoc polymorphism is also further divided into overloading and coercion. Overloading
refers to the reuse of the same operator or function name to denote different operations, and
the context is used to decide which operation should be invoked. This kind of polymor-
phism can be viewed as a convenient syntactic abbreviation, since the compiler can elim-
inate overloading by giving different names to different operations. On the other hand,
coercion is instead a semantic operation that converts an argument to the type expected by

a function.

The distinction between overloading and coercion is not always clear. For example, the
operation 3.0 + 4 can be interpreted as either overloading or coercion. That is, we can
either view the + operator as overloaded for integer and floating point addition, or only
used for floating point addition but the integer 4 is converted to a floating point number

through coercion. Obviously, coercion is one kind of type conversion.

2.1.2.3 Type Conversion

Frequently, a value of one type needs to be converted to another type before it can be used.
The most common case is the conversion between integer and floating point numbers.
Type conversion can be implicit, in which case it is carried out automatically by the com-
piler or the run-time system, or explicit, in which case it is specified by the programmer.

Many languages provide ways to cast values or variables of one type to another, which is
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a form of explicit conversion. The coercion discussed in the last section is the same as
implicit type conversion. Type conversions can also be categorized into lossless and lossy
conversions. For example, converting the integer 3 to the floating point number 3.0 is loss-
less, but converting the floating point number 3.5 to an integer by removing the fractional
part loses information. In practice, the amount of implicit conversion varies widely among
languages, reflecting the different view on type conversion by different language design-
ers. Some people believe that type conversions should be explicit [10], or at least that com-
plicated rules that define implicit conversions should be avoided [53]. Other people

implement complicated conversion rules in languages. For example, in ALGOL 68, a type

proc ref bool can be coerced to proc [] union (real, proc union (int, bool)) [73]1. Since
the conversion rules in ALGOL 68 are very complex, some of the coercions in a pro-
gram may actually arise from programming errors, rather than intention. After the
ALGOL 68 experience, many later languages have greatly reduced the amount of

implicit coercions [22].

Type conversion can also be performed on objects in systems with subtyping. In this con-
text, the conversion not only affects data layout, but also the behavior of the objects. An
example of the object type converter is the respectful type converter [125]. In a type hier-
archy where T is a super type of both 4 and B, a converter C: A—B that converts an object
of type 4 to type B respects T if a type 4 object and a type B object have the same behavior
when both are viewed as a type T object, i.e., from T”s point of view, the objects 4 and B
look the same. Intuitively, T captures the information preserved after type conversion. The
formal definition of respect is based on behavioral subtyping [125]. Respectful converters
are used in the Typed Object Model (TOM) that is used for document type conversion. For
example, PNG image and GIF image types are both subtypes of bitmap image type. Con-
verters that respect bitmap image type can be designed to convert PNG to GIF image.

1. Types are called modes in [73].
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2.1.2.4 Type Inference

Type inference is the process of finding a type for all the expressions and variables in a
program without requiring the programmer to declare the types. Type inference reduces the
burden of programmers by allowing them to omit most of the type annotations while still
providing the benefit of static type checking. Type inference in polymorphic type systems
is in general a difficult problem. The most successful inference system is the one used in

the ML family of languages [85]. This system will be discussed in section 2.1.3.2.

2.1.2.5 Extended Type Systems

In most languages, the types defined by the type system include the primitive types
such as integer and float, function types, structured types such as arrays and records,
and user defined types. Many researchers have proposed various extended type systems
to broaden the information carried by types, so as to provide more guarantee through
type checking or more opportunity for program optimization through type-based anal-

ysis. The following are some examples of this work.

In [127], Xi and Pfenning proposed to assign more accurate types to programs, with the
objective of catching more errors at compile time. The more accurate type information is
represented by dependent types, which allows types to be indexed by terms. The index
object is drawn from a certain domain, and type checking for the refined property of a pro-
gram is reduced to constraint satisfaction in that domain. For example, to do array bounds
checking statically, an integer index object is attached to an array type. The index object is
a singleton type, such as int(n) for the type of integer n. Array bounds checking is reduced
to linear inequality solving in the integer domain. Their approach requires some additional

annotation by programmers.

Although most of the work on type checking is done on high-level languages, some is
aimed at safety guarantees at the binary executable level. An example of these is the proof-
carrying code (PCC) [96], which can also be viewed as work on type system extensions.
PCC is a mechanism by which a system can verify that an executable provided by an
untrusted source adheres to some safety policy. The safety policy can be viewed as typing

rules and the validation processing as typing checking. For this to be possible, the
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untrusted code producer must supply with the code a safety proof, either manually or
through a certifying compiler. The host can then easily and quickly validate the proof
without using cryptography and without consulting any external agents. In the imple-
mentation of PCC that ensures memory safety for the DEC Alpha machine code, the
safety proof is represented in such a way that the validity of a proof is implied by the
well typedness of the proof representation. Thus, proof validation amounts to type
checking [95]. The PCC approach is promising for distributed and web computing, when
mobile code is deployed, or when an operating system kernel needs to determine the safety

of user supplied applications.

A more drastic extension to conventional type systems is to capture some of the dynamic
behavior of programs. One area of research in this direction is the effect systems [77]. In
conventional type systems, types abstract the values that an expression may return, but they
do not carry any information about the execution behavior of the program. The effect sys-
tems augment types with effects, which describe the side-effects that an expression may
have, such as read/write effects on the store, or exceptions that may be raised by the expres-
sion. The scope of effects are represented by regions, which abstract a set of memory loca-
tions in which side-effects may occur. The effects of expressions can be analyzed and
inferred using techniques similar to the one used in the ML type system, with some exten-
sions. One application of effect analysis is in parallel computers. If two expressions do not
have interfering effects, then a compiler can schedule them in parallel. Effect systems were
first proposed in the Ph.D. thesis of Lucassen [76]. Since then, a lot of research was carried
out in this area. A summary of more recent research can be found in [98], and in

Fahndrich’s lecture notes [43], which provides a very accessible tutorial.

Another example of an extended type system that captures the dynamic behavior of pro-
grams is the work of Nielson, e al., who analyzed the communication topology of a
concurrent language [99]. They extended the effect system to capture the communication
behavior of programs, such as the sending of a value, the receiving of a value, the alloca-
tion of a new communication channel, or the spawning of a new process. Their work is
based on the language Concurrent ML (CML) [113], which is an extension of the func-

tional language Standard ML. In their system, behaviors can be included in the type infer-

15



ence system, and the inference result indicates whether a program only spawns a finite
number of processes, or only creates a finite number of channels. In these cases, the com-
piler may allocate the processes to available processors or allocate communication

resources statically.

In addition to the ML family of languages, extended type systems have also been proposed
for object and actor based languages [3]. In [29], Colaco et al. presented a type inference
system for a primitive actor calculus. In the actor model, the communication topology is
dynamic, so some messages sent out by actors may never be handled. The aim of the infer-
ence system is to detect these orphan messages. This system is based on set constraints [6].
It can detect many orphan messages statically and the remaining messages dynamically

based on the static type information.

The issues discussed in this section represent a set of trade-offs in type system design. Each
type system represents a set of decisions on these issues. The following section discusses

some notable type systems that have influenced the design of our system.
2.1.3 Notable Type Systems

2.1.3.1 Typed Lambda Calculus

To study type system features without being encumbered by non-type system details,
such as the syntax of a language, researchers often use an abstract, or bare bone lan-
guage. A-calculus [11] is such a language that has been used widely in literature. The orig-
inal A-calculus is untyped, but type annotation can be added to form typed A-calculus. In
this section, we will first review the basic syntax and operational semantics of A-calculus,
then add type annotations and type rules to build progressively more complex type sys-

tems.

Lambda Calculus

Lambda calculus was invented by Church in the 1930s. Since the 1960s, it has been used
extensively in the programming language community for the specification of language fea-
tures and the study of type systems. Lambda calculus is a mathematical system that defines
a syntax for terms and a set of rewrite rules for transforming terms. It captures one’s intu-
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ition about the behavior of functions. A comprehensive treatment of lambda calculus can

be found in [11]. The following introduction is mainly drawn from [7], [106] and [56].

Let x, y, z denote variables, e, e;, e, denote lambda expressions. The syntax of A-calculus
is:

ex=x|Areleje;
A variable x by itself is a lambda expression. Expressions of the form Ax.e are called
abstractions. It denotes a function with argument x and function body e. e¢,e; is an applica-

tion of e; to e,. A lambda expression is also called a term.

Informally, the meaning of applying a function Ax.e; to a term e, (Ax.e;)e,, is to bind x to
e,, evaluate e;, and return the result of this evaluation. To define this operational semantics

more precisely, we need the notions of free variables and substitution.

The free variables of an expression e, denoted fv(e), is defined by:

Sv(x) = {x}
fr(eie;) = fu(e)) Viv(ey)
fv(rx.e) = fv(e) - {x}

The substitution [e;/x]e; is then defined inductively by:

e, ifi=j

/xx. =
Le/xil; { ifi#)

xj,

[e;/x](ese5) = ([e;/x]ey)([e)/x]es)

( Axj.ey ifi=j

Ax.[e /x;]e;,, ifi#j and x; ¢ fv(e))

[ey/x](Ax;.e5) = 1 I .
lxk.[el/xi]([x,c/xj]ez), otherwise,

where k=i, k#j,x, ¢ fv(e)) V fv(ey)

\

The last rule handles the situation where the variable X has a name conflict with a free vari-

able in ¢,. This conflict is resolved by renaming x; to x;.

In general, bound variables can be renamed by an operation called a-conversion:
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Ax;.e = Ax;.[x;/x;]e, where x;  fv(e)

Intuitively, o.-conversion says that the names of the formal parameters in a function in a
programming language do not affect the operation. For example, the following two Java
programs are the same:

int plusOne (int foo) {
return (foo + 1);
}

int plusOne (int bar) {
return (bar + 1);
}

Computation in A-calculus is carried out by function application. The rule for function

application is called SFreduction:

(Ax.e\)e; = [e, /x]e
For example, (Ax.xy)(uv) reduces to uvy.

Given the above simple definition of A-calculus, much more involved computation can be
carried out. For example, we can define multi-argument functions using higher order func-
tions, which are functions that yield functions as results. A function F with arguments x
and y can be written as F = Ax.Ay.e. That is, F is a function that given a value for x, yields
a function that, given a value for y, yields the desired result. This transformation of multi-

argument functions into higher order functions is called currying.

The pure A-calculus does not have constants. But they can be encoded as A-expressions.

For example, the boolean values frue and false can be encoded as:

trite = A\t
false = At.Aff

We can also define a A-expression if so that if e; e, e3 reduces to e, if e; is true and reduces
to e3 if e; is false:
if = AM.Am.An.Imn

This function takes three arguments. When applying it to e;, e,, and e3, the result is

(ejese3). When e is true or false, we have (true e, e3) and (false e, e3), respectively. In
1€2€3 1 2€3 2 €3 P y
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fact, true and false are conditionals, they each take two arguments, and choose the first or

the second, respectively. To show the computation in term of B-reduction, let’s compute if

true e, e3:
if true e, e; = (AM.Am.An. I m n) true e, e, definition of if
= (Am.An.true m n) e, e, B-reduction
= (An.true e, n) e, B-reduction
= true e, €3 B-reduction
= (MAM1) ey e3 definition of true
= (Me,) ey B-reduction
=e, p-reduction

This computation assumes that n, ¢, and f are not free in e, and e3. Otherwise, some extra

renaming steps are required.

We can also encode numbers using the Church Numerals Cy, C;, C,, etc., as follows:

Co = 7\,2.7\.8.2
C, = Az.As.sz
C, = Az.As.s(sz)

C, = Az.As.s(s(...(s2))...)

That is, each number  is represented by a function with two arguments, z and s (“zero”

and “successor”), and applies n copies of s to z. Given these numerals, we can define some

common arithmetic operations as follows:

plus = Am.An.Az.As.m(nzs)s
times = Am.An.mCy(Plus n)
isZero = Am.m True (Ax.False)
For the function isZero, it applies a Church numeral to two arguments true and (Ax.false).
If the numeral is Cy, it will choose the first argument true. If the numeral is C, (n>0), it will
apply n copies of the second argument (Ax.false) to true. Since the function (Ax.false) just

throws away its argument and always returns false, the result is false. For the intuition
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behind plus and times, as well as the encoding for other data types and operations, please

see [106] and the reference therein.

In addition to B-reduction, there is also an 7-reduction and a notion of normal form in A-
calculus. A A-expression is in normal form if it cannot be further reduced using B- or 1-
reduction. The normal form is what we intuitively think of as the value of an expression.
The Church-Rosser theorems ensure that the normal form is unique, and there is a way to
find it whenever it exists. Another important result is Church’s thesis, which establishes
the equivalence between Turing computability and A-definability. These results have
enabled A-calculus to be the foundation of functional languages and have profound impacts
on programming languages in general. However, since these results are not central to
the discussion of the type systems below, they are skipped here. Details can be found
in [56].

First-Order Type System
In the above introduction to A-calculus, we have actually defined a tiny programming lan-

guage with booleans and natural number constants. For example, we can write a program:

Ay.if (isZero y) C, C,
that has an argument y. If y is zero, the program returns 0; otherwise, it returns 1.

Notice however, that we can also write programs that do not make sense, such as:
Ay.if plus (true y) times

When provided with an argument, this program can be translated into a A-expression, but
the result is meaningless because some operations are applied to unintended arguments. To
solve this problem, we need to introduce a type system to make the intended interpretations
explicit. Type systems can be formalized by defining a syntax of types and a set of type
rules using that syntax. In the rest of this section, we will add types to the untyped A-cal-
culus and build three type systems, including a first-order type system, a second-order type
system, and a system with subtyping. First-order type systems include a set of base types,

structured types, and function types. Second-order type systems add type parameterization
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and type abstraction. The material in this section is based on [21], [7], and [97]. We now
start with the first-order type system.

Each language has a set of base types. For example, the base types for our tiny language
are boolean and natural number. Using K to denote the base types, and t to denote a type,
we have the following in a first order type system:

t=K|t>1

A type 1,7, stands for the set of functions that map arguments of type T, to results of

type 3.

To add types to the untyped A-calculus, we assign types to bound variables:

e =x|Axt.e|ee;
This is analogous to declaring the type of function parameters in a real programming lan-
guage. To express “e has type t”, we write e:t. For example,

Axitx:T—>T
AT AYIT, X T D T T
true: Bool
Cy: Nat

Where Bool and Nat stand for the boolean and natural number data types, respectively.

They are names for sets of A-expressions.

To perform type checking, we also need the types for free variables. This is given in a fype
environment, which is a function from variables to types. The syntax of the environments
18

FN:=9|I,x

where @ is the empty environment. The meaning of T, x:7t is:

T ifx=y

(I, z:0)0) = {F(y) ifx#y

In real compilers, the type environment is implemented by a symbol table.

A typing judgment, which asserts that an expression e has a type © with respect to a type

environment for the free variables of e, has the form:
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['l-et
For example,

@ |- true:Bool true has type Bool
&, x:Nat |- plus x C;: Nat  x+ 1 has type Nat, provided that x has type Nat

Type rules assert the validity of certain judgments based on the validity of other judgments.
The general form of a type rule is:

-3, .7, -3,
TS

The judgments above the line are the premises, the one below the line is the conclusion.

Two fundamental type rules regarding function abstraction and application are:

I,x:t |-eT, Flepty—=1, TIl-emy
I'l-Ax:teit o1, I'l-ee:,

The first rule says that if we can deduce that the expression e has type t,, given that its free
variable x has type 1, then the expression Ax:t.e is a function of type T;—1,. The second
rule says that if ; is a function of type T1—1,, and e, has type 1, then the result of applying

e; to e, has type 1,.

Using the type rules, we can perform type checking by deriving the types of expressions
under a type environment. A derivation is a tree of judgments with leaves at the top and a
root at the bottom, where each judgment is obtained from the ones immediately above it

by some type rule. For example, given that e has type 1,—1,, and x has type t;, we can

derive that Ax:t.(ex) has type T,—7; as follows:

et DTy XT [-et T, et Ty, Xt |- X

et = Ty, x:T |- (ex):1,

et =T, |- Axit (ex)it; > T,
The first step uses the function application rule, the second step uses the function abstrac-

tion rule.

A type rule is associated with each basic construct of a language. For example, the type

rules for the if construct and the isZero function are:
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['|-e;:Bool Tl|-eyt T|-e3t I'|- e:Nat
[|-ife eye;:t I |- isZero e: Bool

Now that we have established the basic structure of a simple first-order type system, we
can enriching it with more type constructs. We will add another base type Unit and two

structured types Record and Array.

The Unit type is called void in languages like C and Java. It is used as a filler for uninter-
esting arguments and results. There is no operation on this type, and it only has one legal

value, unit. So unit:Unit. We will use this type in one of the type rules for array type.

A record type is a named collection of types, like the structure in the C language. A record

is denoted by record(l;=x,, ..., l,=x,), where I}, ..., I, are labels, and x, ..., x,, are values.
The type of this record is denoted by Record(l;:ty, ..., I,:t,). The operation e./; extracts the

field whose label is /; from the record e. Two rules for record type are:

I'lep:t, ... Tlhegr,

[ |-record(l, = ey, ..., I, = e,): Record(l}:1y, ..., 1,:T,)

[ |- e:Record(ly:ty, ..., 1:t,) ie€l.n
[-el:t;

The record type is immutable (although mutable record can be defined). That is, once a
record is constructed, its contents cannot be changed. Compared with record, Array type is

mutable. We use array(n, e;) to denote an array of length »n with all the elements set to the
value e;. The type of this array is denoted by Array(t). The operation bound e returns the
length of the array e, the operation e[n] return the »’th element of the array, and e[n]=e,
assigns the n’th element of the array to value e;. The rules for array construction and the

operations are:

I'l-n:Nat T'|-et I |- e:Array(t)
T |- array(n, e;): Array(t) T |- bound e: Nat

[ |-n:Nat T |-e:Array(z) T'|-n:Nat T|-edrray(t) Tl-e;t
I'l-e[n]:t I'|-e[n] =e;: Unit
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In addition to record and array types, other structured types, such as product, union, vari-
ant, and list types, can also be added. Details can be found in [21]. The resulting first-order

typed A-calculus is called system F;. This system is monomorphic in that each expression

has only one type. For example, the identity function Ax:Bool.x has type Bool—Bool, and
the function Ax:Nat.x has type Nat—Nat. If we want an identity function for another type,
we need to write a new function. Obviously, this is inconvenient. To reuse the same func-
tion on different types, we can parameterize the type of the variable x, and instantiate the

type parameter to different types. By doing this, we obtain a second-order type system F,.

Second-Order Type System

To accommodate type parameters, we need to add a new kind of expression in our typed
A-calculus: Aa.e. This expression can be viewed as a program e that is parameterized with
respect to a type variable a. In this thesis, we will use o, 8, and y to denote type variables.
By using type variables, we can turn some monomorphic functions to polymorphic ones.
For example, the identity function for a fixed type T, Ax:t.x, can be turned into a polymor-
phic identity function by abstracting over t: Ao.Ax:a..x. This is parametric polymorphism

discussed in section 2.1.2.2.

In parametric polymorphism, type variables can be instantiated to any given type. So we
use universally quantified types to denote the type of the expression Aa.e: Va.t. This
means that forall a, the body e has type t. Here e and T may contain occurrences of a. For

example, the type of the polymorphic identity function is Va.o—a.
To complete the treatment of type parameterization, we need to add two new rules in the
second-order system F, to handle the abstraction and application of type variables:

T,al-e: l-eVa.r Tl-1
I'|-Aa.e: Va.t 'l-et:[t/alt

In the second rule for the application of type expression, [t;/a]t stands for the substitution

of T, for all the free occurrences of o in <.
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In addition to universally quantified types, the second-order type system also has existen-
tially quantified types, which is used to model data abstraction. This extension is skipped

here since it is not directly related to the system that we will present in chapter 3.

Subtyping
Subtyping is a feature found in almost all of the object-oriented languages. In these lan-
guages, an element of a type can be considered also as an element of any of its supertypes,

thus allowing an object to be used wherever a supertype element is expected.

One of the simplest type systems with subtyping is an extension of F, called F . In F,
we add a new judgment

1<,

stating that T, is a subtype of 1,.

We also need some additional type rules regarding subtyping. The following two rules say

that the subtyping relation is reflexive and transitive:

Ft<t 1 <7,

The subsumption rule says that if an expression e has type t;, and 1, is a supertype of 7y,

then e also has t;:

ket I'l-1<1,

-e:1,
The subtyping relation for function types is a little bit involved. If we want a function e
with type T,—>1, to be a subtype of t,'—1,’, e must be able to accept all the arguments of
type T’ so the argument type of e must be a supertype of t,’. Also, the return type of e
must be acceptable when a value of type t5’ is expected, so T, must be a subtype of 7,'.
Therefore, the subtyping rule for function types is:

Flt/'<ty Tl

’ ’
FFty=>15<ty'>1
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Notice that the subtyping relation is inverted (contravariant) for function arguments, while

it goes in the same direction (covariant) for function results.

In addition to the subtyping relation between objects in object-oriented languages, ad hoc
subtyping for base types can be defined. For example, if we add two base types Int and
Double to the typed A-calculus, we can define Int < Double. If we consider the four func-
tion types whose argument and result types are Int or Double, the subtyping relation among
them can be shown in figure 2.2, where a type at the lower end of a line is a subtype of

the one at the upper end.

Subtyping rules can also be defined for some structured types. The rule for record subtyp-
ing is:
Cltu=<vy ... Tlt,<t' Tlt,, ... It
[ |- Record(ly:ty, ..y by iy 4 ) SRecord(l:ty’, ..., 1 :1,")

This rule actually specifies two kinds of subtyping for record. A subtype record may
have more fields than a super type record, and the field types of the subtype record may
be subtypes of the corresponding fields in the supertype record. The former condition

is called width subtyping, and the latter depth subtyping.

Subtyping for mutable types, such as array, is neither covariant nor contravariant. For

example, given 1, < 15, we cannot define Array(t)) < Array(ty) or Array(t,) <
Array(t;) and ensure type consistency through static checking alone. In both cases, we

can write programs that cause functions to be applied to wrong type of argument. To
illustrate this, let’s define a function f with argument type 1, two arrays 4; and 4, with

Int—>Double
Double / \
I Int—Int Double—Double
Int \ /
Double—Int

Figure 2.2 Function subtyping among /nt and Double functions.
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element types T, and 1,, and two values x; and x, of types t; and 1, respectively. That

1S:

fitg =1
A,: Array(t;)
Ay: Array(t,)
X T

Xy: T,

Now consider these two cases:

Case 1:

Case 2:

Assuming that array type is covariant with the element type:

[ |- Array(t,) < Array(z,)

We can write an illegal program that assigns x; to the first entry of 4; (assuming
array index starts from 0): 4,{0] =x,. Since the type of 4, (4rray(t,)) is a sub-
type of that of 4, (4rray(t,)), we can replace 4, on the left side of the above
assignment with 4 ;, which results in the assignment: 4;[0] = x,. This causes the
first entry of 4; to contain an element of type t,! Now if we apply fto 4,[0],

we cause the function to be applied to the wrong type.

Assuming that array type is contravariant with the element type:

T |- Array(z,) < Array(t,)

We can write a program that applies f'to the first element of 4;: {4;[0]). Since
the type of 4, is a subtype of that of 4; now, we can replace 4; with 4 in this
application: f{4,[0]). Once again, we have caused the function f'to be applied to
the wrong type.

In Java, arrays are covariant. For example, an Object array reference can point to a String

array. To avoid the problem in case 1 above, Java performs run-time checking when the
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array elements are set, and the exception java.lang.ArrayStoreException is

thrown if the check fails.

In addition to the type systems discussed in this section, more complex ones can be
defined. For a classification of type systems, see [22]. The systems in this section have
ample type annotations, so type checking is relatively simple. If type declaration is omitted
in the program, type inference must be used to reconstruct type information. In the second-
order type system, type parameters are declared explicitly in polymorphic functions. This
is called explicit polymorphism. If we omit all the type parameters and type applications,
we achieve implicit polymorphism. Type inference for polymorphic type systems is in gen-
eral a hard problem. So far, the most successful inference algorithm is the Hindly-Milner

algorithm used in ML.

2.1.3.2 The ML Type System

ML (Metalanguage) was originally conceived as an interactive programming language for
conducting proofs in a logical system [49], and later became one of the most popular func-
tional languages. ML supports parametric polymorphism and type inference. In most pro-
grams, type declarations can be omitted and the type inference algorithm will infer the
types for program expressions. The following overview of the ML type system is mostly
based on [7][20][85].

Let’s start with a ML program that computes the length of a list:
fun length(x) = if (x=nil) then 0 else 1l+length(tl(x));

Here, fun can be viewed as the A binder. In A-calculus syntax, the above function defini-
tion can be viewed as length = Ax.if (x=nil) then 0 else 1+length(tl(x)). Notice that this is
a recursive function. In this program, #ni/ is a constant representing an empty list of any
type, tl() is a function that returns the tail of a list. To resolve the types in this program, a
type variable is assigned to each unknown type. For example, we can denote the type of
length by a.,, and the type of x by B. By inspecting this program, we can write down the

expressions and their types as:
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length: o
x: B
nil: vy list
x = nil: d
0: Int
1: Int
tl: x list - x list
tl(x): €
length(tl(x)):
1+length(tl(x)): m
if (x=nil) then 0 elsel + length(tl(x)): 6
Then a system of type constraints can be set up according to the type rules of language con-
structs. For example, by the function abstraction rule, the type of the function length is
B—0. By the function application rule, the type of x in #/(x) must be the same as the argu-
ment type of ¢/, and the type of #/(x) must be the same as the resulting type of . That is, B
=k list, and € = « list. By the rule of the if ... then ... else construct, the type of x=nil is
8=Boolean, and the type of 0 and 1+1ength (t1 (x) ) must be the same. The important

type constraints in this program can be summarized as follows:

a=08->6
B =1 list
B = x list
e = x list
e=p
=20
= Int
n = Int

& = Boolean
Int = n
Now the problem of type resolution has become the problem of solving a set of type equa-
tions. What we want is to find substitutions for variables so that all the equations are satis-
fied. This is a unification problem, which was first studied by Robinson [115]. For our

program, we can solve the problem by repeatedly applying five simple rules. Let S denote
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the set of equations, and C denote a constant, such as Int, Boolean, and v denote the vari-

ables, such as a, B, and T denote either a constant or a variable. The five rules are:

Su{C=C}>S§ 1)
Su{v=v}=>S (2)
Suf{v=1}=S[t/v]u{vz1} 3)

SU{t; 21 =13 214} 25U {1 =13, T, = 74} @
Su {a list =B list} = Su {a = B} (5)

Rules 1 and 2 eliminate trivial constraints. In rule 3, [t/v] means replacing all occurrences
of v with 7, and v = T means marking this equation as solved. This rule eliminates a variable

from all equations but one. Rules 4 and 5 apply structural equality to function and list types.

For the set of type equations for the length function, we can apply rule 3 to the equations

C=Int, n=Int, and 6=Boolean, we obtain a new set of equations:

a=pf->0
B =1 list
B = «x list
€ = K list
e=p
6 = Int

We can apply rule 3 again on 6=Int, and €=, and obtain:

oa=pB—Int
B = vy list
B = x list
B = x list

Here, we can remove one of the duplicate constraints f= « /ist, and apply rule 3 again on

the remaining one, we obtain:

k list —> Int
y list

Q
]

K list
Now, applying rule 5, we obtain:

a = k list > Int
K=

By applying rule 3 one more time, we obtain the type of the length function a.:
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o = v list—> Int

In the process, we have also found the solution for other type variables: (=n=0=Int,
d=Boolean, e=P=y list, and x=y. This solution is a substitutor from variable to expression

that satisfies the equations. This substitutor is also called a unifier.

Notice that the solution for the type of the Jength function contains a type variable y. This
means that this function is polymorphic. Type variables can be viewed to be universally
quantified. So the function length can be applied to a list of any type, and it returns an inte-
ger. This is parametric polymorphism.

Also notice that the solution for the type constraints is not unique. Other solutions include
o. = Int List — Int, o = Boolean List List — Int, and o = k List — Int. In fact, there are
infinite number of solutions. Nevertheless, the solution we have obtained is the most gen-
eral unifier in that all the other solutions are substitution instances of the most general solu-
tion. For example, by substituting y with Int, Boolean List, and k, we obtain the above three
solutions, respectively. In this sense, the ML type system computes the most general types.
This most general type is also called the principal type. It is unique up to a renaming of

type variables.

The algorithm we just used to find the most general unifier is not the optimal one. A faster
algorithm can be found in [7]. For a comprehensive discussion on unification theory,

please see [8].

The type system discussed above was first proposed by Hindley and later independently
rediscovered by Milner [85][20]. In addition, Milner introduced a crucial extension to
Hindley’s work: the notion of generic and non-generic type variables. To understand this

notion, consider the following program:

fun h(f) = (£(3), f(true));

In ML syntax, (a, b) is a tuple with elements a and b. Tuples can be viewed as records
without labels. The above program defines a function A that takes an argument f, which is
also a function. The body of % applies f'to two arguments, 3 and true, and returns the result
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as a tuple. This program cannot be typed in ML. For example, in the Standard ML of New

Jersey compiler!, the following error is reported:

- fun h(f) = (£(3), f(true));-
stdIn:13.12-13.27 Error: operator and operand don't agree [liter-
al]
operator domain: int
operand: bool
in expression:
£ true

This is because the type inference algorithm cannot unify the types for the two occurrences
of £. Suppose the type of the function £ is denoted by a— . Based on the first occurrence
of £ in £ (3), the type inference algorithm unifies o with /nt. However, the second occur-

rence £ (true) requires a to be Bool, which cannot be unified with Inz.

Type variables appearing in the type of a fun-bound identifier like £ are called non-
generic. In this example, a is non-generic. It is shared among all the occurrences of £ and
its instantiations may conflict. Therefore, heterogeneous occurrences of £un-bound iden-

tifiers cannot be typed in ML.

However, if we know what £ is, we should be able to do better. Indeed, ML has a construct
let ... in ... end thatcan be used for this purpose. Suppose we first define an
identity function g:

fun g(x) = x;

Then we can write:

let

val f=g
in

(£(3), f£(true))
end;

Here, we specify that £ is equal to the identity function g, then apply £ to 3 and true.
This program can be complied and executed with the correct result (3, true). In this
case, £ has type a—a. Type variables which, like this a, occur in the type of 1et-bound

identifiers are called generic. They can assume different values for different instantiations

1. Standard ML of New Jersey, version 110.0.7. (http://cm.bell-labs.com/cm/cs/what/smlnj/)
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of the 1et-bound identifier. This is achieved by making a copy of the type of £ for every

distinct occurrence.

The 1et polymorphism discussed above is considered one of the most important advances
in many years. The type system in ML in general has made great impact. Many people have
proposed extensions. For example, Mitchell extended the system with coercion [87], Hall,
et al. extended the system with type classes to handle overloading [50], and Fuh and
Mishra extended the system with subtypes [45]. The technique is also applied outside func-
tional languages. In the visual language area, the type systems of several languages, includ-
ing Forms/3 [18], ESTL [91], and CUBE [92] are based on the ML type system. A survey
of the type systems for visual languages can be found in [15]. The basic idea has also been

applied to the logic programming language Prolog [90].

2.2 Component-Based Design

2.2.1 Component

Component-based design has been established as an important approach to designing com-
plex systems. In hardware design, people have long been assembling systems from com-
mercial off-the-shelf (COTS) components. In recent years, with the adoption of system-on-
a-chip (SoC) design, systems are often assembled from virtual components, which are
intellectual property (IP) blocks. Some industry organizations, such as the Virtual Socket
Interface Alliance (VSIA) [71] were formed during this trend to standardize the specifica-

tion, interface, and protection of the virtual components.

In software, an industry that produces commercial software components (routines) was
envisioned as early as 1968 [80]. However, the concept of software components did not
catch on until recent years, after the widespread acceptance of object-oriented program-
ming and the emergence of industry backed component architectures. Today there are three
major forces in industry in the component software arena: the CORBA-based standards
backed by the Object Management Group, the COM-based standards backed by Microsoft,
and the JavaBeans-based standards backed by Sun. Component software also attracted

many researchers in academia. The book by Szyperski [119] provides an excellent cover-
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age on various aspects of component software, from both the technology and market per-

spective.

Although component-based design has become a widely used term in both industry and
academic research community, there is no standard definition for the word component. It
seems that every group has their own definition. In the Workshop on Component-Oriented
Programming [122], a software component is defined as “a unit of composition with con-
tractually specified interfaces and explicit context dependencies only. A software compo-
nent can be deployed independently and is subject to composition by third parties.” The
OMG UML specification [101] defines component as “a physical, replaceable part of a
system that packages implementation and provides the realization of a set of interfaces. A
component represents a physical piece of a system’s implementation, including software
code (source, binary or executable) or equivalents, such as scripts or command files.” The
component description model in Microsoft Repository [13] defines component as “a soft-
ware package that offers services through interfaces.” A list of other definitions can be
found in [119]. People have also discussed the importance of various aspects of compo-
nents. For example, Meyer and Szyperski engaged in a series of discussions on topics
related to software components, including information hiding, binary vs. source, contracts
between components [82](83]1[84][120][121]. Meyer also gave seven criteria for compo-
nents [83]. Other people have given definitions for components with slightly different
emphasis [37].

Although these definitions emphasize different aspects of components, at an abstract

level, most of these definitions boil down to two basic points:

e Encapsulation: a component encapsulates behavior and state.

e Interface: a component interact with its environment through an interface.

In this thesis, we will view components at this abstract level, and largely ignore the other
aspects, such as their function, complexity, implementation, and source. For example, a
component can be as simple as an adder, or as complex as a video encoder. Components
can be implemented either by software, or hardware, and can be developed in-house or pro-

vided by a third party.
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In the Ptolemy II software, which is the experimental platform for the type system pre-
sented in this thesis, components are called actors. In this context, component and actor are

used interchangeably.

2.2.2 Advantages of Component-Based Design

In component-based design, a system is developed by composing components. Some well
recognized benefits of this approach include:

¢ Reuse. By reusing pre-designed components, companies can save development cost,

significantly reduce the time to market, and address the shortage of good software and
hardware developers.

e Clarify system structure.
¢ Simplify verification.
¢ Platform or language independence (for some software components).
e Permit dynamic system re-configuration.
¢ Protect the intellectual property associated with the components through encapsula-
tion.
Fundamentally, components raise the level of abstraction in the design process. If we look
at the evolution of programming languages that predates the adoption of software compo-
nents, we see a process of increasing the levels of abstraction. In the early days of comput-
ers, people performed all the programming tasks using assembly languages, which reflect
the structure of the underlying machines. This low level of abstraction makes programming
tedious and error-prone. High-level languages such as FORTRAN raised the abstraction
level from machine instruction to algebraic formulae, greatly improved the productivity.
However, the FORTRAN family of imperative languages still follow the von Neumann
model of computation. Backus and many other researchers proposed to use functional
abstraction [9][56], and argue that functional programs are easier to understand, and their
correctness can be justified by strict mathematics. In recent years, object abstraction,
embodied in object-oriented languages, has received widespread adoption. However, nei-
ther functional nor object abstraction alone is enough for the design of heterogeneous con-
current systems. Lee proposed to raise the abstraction level by adopting actor-oriented
design [62]. His actor model emphasizes concurrency and communication abstractions,

and admits time as a first-class concept.
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In component-based design, a system is often represented as a block diagram. One key
advantage of the block diagrams is that they reflect the topology of component communi-
cation. In other approaches, such as implementing the whole system using a concurrent
language, the communication topology may not be readily available. For example, if a
system is implemented in Concurrent ML (CML) [113], a sophisticated algorithm must be

used to infer the topology from the source program [99].

2.2.3 Challenges of Component-Based Design
When assembling components to form a system, an obvious question arises: “Can the com-

ponents work together?”

By analogy, if we assemble a stereo system from components such as CD players, tuners,
and amplifiers, we need to first ensure that the connectors between components have
matching shape and size. And then we need to ensure that the connected boxes use the same
signal protocol. For analog systems, this means that the source component must supply a
signal within the voltage range expected by the receiver, and other circuit specifications,
such as impedance, must be compatible. For digital systems, the communication protocol,
encoded by the bit sequence flowing through the connection, must also be compatible

between the source and the receiver.

For software components to work together, they also have to be compatible in at least two
levels. One is the data type level. For example, if a component expects to receive an integer
at its input, but another component sends it a string, then the first component may not be
able to function correctly. The other level of mismatch is the dynamic interaction behavior,
such as the communication protocol the components use to exchange data. Since embed-
ded systems often have many concurrent computational activities and mix widely differing
operations, components may follow widely different communication protocols. Ensuring
compatibility at component interfaces is one of the major challenges in component-based
design, and is the main goal of this thesis. These two levels of compatibility are also

observed by other researchers [30].

The existing component software standards, such as CORBA, COM, and JavaBeans,

are not good match for embedded system design. CORBA is oriented toward corporate
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enterprise computing, COM was born out of a desktop environment, and Java-based
standards are oriented toward internet computing. These standards are basically distrib-
uted object-oriented models, and they do not address the heterogeneity and concur-
rency issues in embedded systems. We should point out that the development of
CORBA services such as event service, is moving in the right direction. Another reason
that these standards are not good match for embedded systems is that they are mostly
wiring standards that define the interconnection of components [119]; and they do not
directly support the specification of the dynamic properties and constraints of component
interface. As Meyer says, “we badly need more expressive Interface Definition Languages
for both CORBA and COM to support the expression of semantic constraints” [81].
Because of this, many desired properties for embedded systems, such as determinacy,
bounded memory usage, and deadlock freedom, are hard to verify in these standards. To
design systems with some of these properties, a good approach is to use computation

models that inherently offer these properties, or allow easy verification of them.

2.3 Models of Computation
In [61], Lee defines Model of Computation as:

A model of computation is the “laws of physics” of concurrent compo-
nents, including what they are (the ontology), how they communicate and
how their flows of control are related (the protocols), and what informa-
tion they share (the epistemology).

For embedded system design, we need to use models of computation that support concur-
rency and combine different models in a structured way to cope with the heterogeneity and
complexity of the system. In the rest of this section, we will review some examples of
models of computation that are suitable for embedded system design. This material is

drawn from [62] and the references therein.

As discussed earlier, systems designed using a component-based approach are often
depicted using block diagrams, like the one in figure 2.3. We will use this figure as the
common syntax for the models of computation below. In the spirit of actor-oriented

design [62], the components A, B, and C are also called actors.
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Figure 2.3 Multiple MoCs can share the same block diagram syntax.

Dataflow

In dataflow models, actors implement atomic computations that are driven by the avail-
ability of input data, and the connections between actors represent data streams. Certain
restrictions on the general dataflow models can yield extremely useful properties. In
synchronous dataflow (SDF), the number of data samples produced or consumed by
each actor on each invocation is specified a priori, and the actors can be scheduled stat-
ically onto single or multiple processors [64][65]. As a result, deadlock and boundedness
are decidable. These properties make SDF an excellent model for specifying digital signal
processing systems. Boolean dataflow (BDF) models sometimes yield to deadlock and
boundedness analysis, although fundamentally these questions are undecidable [17].
Dynamic dataflow (DDF) uses only run-time analysis, and thus makes no attempt to stati-
cally answer questions about deadlock and boundedness. Dataflow Process Networks [66]

encompass both possibilities.

Discrete Events

In discrete-event (DE) models of computation, the actors communicate via sequences
of events placed along a real time line. An event consists of a value and time stamp. This
and several other models can be formally described using the tagged signal model [60][67].
The DE model is the basis for many simulation environments and hardware description

languages, including VHDL and Verilog.

Although DE models are excellent for specifying digital hardware and for simulating
telecommunication systems, the notion of global time in the model often causes diffi-
culty in describing distributed systems. It is also relatively expensive to implement in
software.
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Asynchronous Message Passing

In this model, the actors are processes that communicate with each other through asynchro-
nous message passing. The connections between actors are channels that can buffer mes-
sages. After an actor sends out a message to the channel, it can start other computations
without waiting for the receiver to receiver the message. Kahn process networks [58] are a
particular case of asynchronous message passing, where the connections represent
sequences of data values, and the actors implement functions that map input sequences
into output sequences. With certain technical restrictions on these functions, this model
is deterministic, meaning that the sequences are fully specified. The dataflow models

discussed above are special cases of process networks [66].

Process network (PN) models are natural for describing signal processing applications
[72]. They can be implemented efficiently in both hardware and software. However, they

are weak in specifying complicated control logic.

Synchronous Message Passing

In this model, the actors are processes that communicate with each other through rendez-
vous. If a process wants to send a message, it blocks until the receiving process is ready to
accept it. Similarly, if a process wants to receive a message, it blocks until the sending pro-
cess is ready to send it. When both processes are ready, the communication is conducted
in a single uninterrupted step. An example of a rendezvous-based model is Hoare’s com-
municating sequential processes (CSP) [54]. This model is non-deterministic as it includes
conditional communication constructs. This model of computation is well suited for

resource management problems.

Synchronous/Reactive

In the synchronous/reactive (SR) model of computation [12], the connections between the
actors represent signals whose values are aligned with global clock ticks. The actors rep-
resent relations between the input and output signals at each clock tick. A signal need not
be present at every clock tick, and the actors are usually implemented as partial functions

with certain technical constraints to ensure determinacy.
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The SR models are good for applications with concurrent and complex control logic. The
tight synchronization in the model makes it suitable for designing safety-critical real-time
applications. However, the tight synchronization requirement makes it hard to model dis-

tributed systems, and compromises modularity in the design.

In addition to the models discussed above, there are many other models, such as time trig-
gered, publish and subscribe, continuous time and finite state machines. They are described
in [62].

2.4 Mathematical Tools

2.4.1 CPO, Lattice, and Fixed Point Theorems

The type system that will be presented in the next few chapters is based on the mathematics
of lattices, continuous functions, and fixed point theorems. This is a standard set of math-
ematical tools in the study of programming language semantics and type systems. For
example, in the denotational semantics of programming languages [117][126], the denota-
tion of a command is the least fixed point of a continuous function on a CPO. The elements
of the CPO are functions that map one state to another. In concurrent programming models,
the process network [58] and the synchronous reactive [39] models also have fixed point
semantics. Fixed point theorems are handy in dealing with “circular systems”, such as the
while construct in general purpose languages, and circular graphs in PN and SR. We
briefly review some basic definitions and results here, mostly for establishing notation.

This review is based on [32][39].

2.4.1.1 CPOs and Lattices
Let P be a set. A partial order relation on P is a binary relation < such that, for all x, y,

ze P,

o x < x (reflexive)
e x<yandy <x imply x = y (antisymmetric)

e x<yandy<zimply x < z (transitive)

A set P equipped with such a relation is said to be a partially ordered set, or poset.
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A finite partially ordered set can be depicted by a Hasse diagram, such as the ones in
figure 2.4. The lines in the diagram represent the order relation, where the element at
the lower end of the line is Jess than the one at the higher end of the line. For example,
in figure 2.4(a), 4 is less than B and C, and E is greater than B and C. Two elements can

be incomparable. For example, D and E are incomparable.

If P is a poset and S c P, an element x € S is the least element of Sif x < s foralls € S.
The greatest element is defined dually. The least and greatest elements of a set may not
exist, but if they do, they are unique. For example, for the set {B, D, E} in figure 2.4(a),

the least element is B, and there is no greatest element.

The bottom element of a partially ordered set, if it exists, is the least element of the
whole set. Similarly, the top element, if it exists, is the greatest element of the whole
set. The bottom element is denoted by L, and the top element is denoted by T. In figure
2.4(a), 4 is the bottom element, and there is no top element. In 2.4(b), 4 is the bottom

element, and G is the top element.

Lattices and CPOs are posets with some special structure. Before we give their definitions,

we need to define the upper bound and lower bound of a subset.

Let S be a subset of a partially ordered set P. An element x € P is an upper bound of S
if s < x for all s € S. The least upper bound of S, denoted by VS, is an upper bound / of
S such that / < u for all upper bounds u of S. The lower bound and greatest lower bound
are defined dually. The greatest lower bound of a set S is denoted by AS. The least upper

bound and greatest lower bound of two elements x and y can also be denoted by x v y

b TN

Li</<|: N
A N
(@) (b)

Figure 2.4 Hasse diagrams for two partially ordered sets.

41



and x A y, respectively. In figure 2.4(a), D and E are upper bounds of the subset {B, C},
but there is no least upper bound for this subset. In 2.4(b), F and G are upper bounds of
the subset {B, C}, and F is the least upper bound.

Consider the case where the set P has a bottom and a top element. If the set S in the
above definition is P itself, it is easily seen that the least upper bound of § is the top
element of P, and the greatest lower bound of S is the bottom element. Now let S be the
empty subset of P. Then every element x € P vacuously satisfies s < x for all s € S.
Therefore, every element of P is an upper bound of S, and the least upper bound is the
bottom element of P. Dually, the greatest lower bound of the empty set S is the top ele-

ment of P.

A non-empty partially ordered set P is a lattice if x v y and x A y exist forall x, y € P. If
v and AS exist for all S c P, then P is a complete lattice.

A chain is a totally ordered set. That is, a set S is a chain if, forallx, y € §, eitherx <y or

y < x. A chain appears as an upward path in a Hasse diagram.

A complete partially ordered set (CPO) is a poset P in which every chain in P has a least
upper bound in P. All the posets discussed in this thesis are CPOs.

2.4.1.2 Fixed Point Theorem
Let P and Q be posets. A function f: P—Q is monotonic if x < y in P implies f{x) < f{y) in

Q. A monotonic function is order-preserving.

A function £ P—Q between posets P and Q is continuous if for all chains S ¢ P, AvS)=v
AS), where (S) is {f(s) | s € S}. If we view the least upper bound of a set as its limit, con-

tinuous functions are limit-preserving. All continuous functions are monotonic.

For functions whose domain and range are the same poset, we can define the fixed point

of the function.
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Let P be a poset, :P—P be a function, and x, y € P. If f{x) = x, then x is a fixed point. In
the set formed by all the fixed points of £, the least element, if it exists, is called the least

fixed point. Since the least element of a set is unique, the least fixed point is unique.

The following fixed point theorem gives a way to find the least fixed point of a continuous

function on a CPO.

Let P be a CPO with a bottom, and f: P—P be a continuous function. Then v{Ll, f{1),
SRAL), ...f k(1), ...} exists and is the unique least fixed point of f.

2.4.2 Interface Automata

In chapter 4, we will use a formalism called interface automata [34] to describe the
interaction of components. Interface automata were proposed by de Alfaro and Henz-
inger. They are a light-weight formalism for the modeling of componentsA and their
environments. We give a high-level overview of interface automata in this section.

Details can be found in [34].

2.4.2.1 An Example

As other automata models, interface automata consist of states and transitionsl, and are
usually depicted by bubble-and-arc diagrams. There are three different kinds of transitions
in interface automata: input, output, and internal transitions. When modeling a software
component, input transitions correspond to the invocation of methods on the component,
or the returning of method calls from other components. Output transitions correspond
to the invocation of methods on other components, or the returning of method calls
from the component being modeled. Internal transitions correspond to computations

inside the component.

For example, figure 2.5 shows an interface automaton model of a software component
called Comp that provides a message-transmission service. This and the other examples
in this section are drawn from [34]. The automaton was constructed in the Ptolemy II

software, and the figure is a screen shot of Ptolemy II. The convention in interface

1. Transitions are called actions in [34].
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Comp 5

ok! ack?
msg send
* ack? -
2
ok

. . »
ol O '

Figure 2.5 An interface automaton modeling a communication component.

automata is to label the input transitions with an ending “?”, the output transitions with
an ending “!”, and internal transitions with an ending “;”. Figure 2.5 does not contain
any internal transitions. The Comp component has a method msg, used to send mes-
sages. When this method is called, the component calls a send method on a low-level
cqmmunication channel to send the message. The send method may return either ack,
indicating a successful transmission, or nack, indicating a failure during transmission.
If ack is returned, Comp returns from the msg method with a return value ok. If nack is
returned, Comp calls send once more to re-send the message. If the second attempt is
successful, Comp returns ok, otherwise, it returns fail. The block arrows on the sides of
figure 2.5 denote the inputs and outputs of the automaton. The three arrows on the left
side correspond to the interface with the users of Comp, namely, the msg method and
its return values ok and fail. The three arrows on the right side correspond to the inter-

face with the channel, which is the send method and its return values ack and nack.

This example illustrates an important characteristic of interface automata. That is, they
are not input enabled. In another words, they do not require all the states to accept all
inputs. In figure 2.5, the input msg is only accepted in the initial state 0, but not in any
other states. In fact, the illegal inputs are used to encode assumptions about the envi-
ronment. These assumptions state, among other things, that once the msg method is
called, the environment should not call this method again until an ok or fail is returned.

This way of encoding environment assumptions also eliminates the need of using
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explicit states to model error conditions. This example shows that interface automata
take an optimistic approach for modeling, and they reflect the intended behavior of
components under a good environment. As a result, interface automata models are usu-
ally more concise than other automata-based formalisms, such as I/O automata [78],

where every input must be enabled at every state.

2.4.2.2 Composition and Compatibility

Two interface automata can be composed if their transitions do not overlap, except that
an input transition of one may coincide with an output transition of the other. These
overlapping transitions are called shared transitions. Shared transitions are taken syn-
chronously, and they become internal transitions in the composition. Figure 2.6 shows
an automaton that can be composed with Comp. This automaton models an user of the
communication component. It always expects successful transmission of the messages.
When composed with Comp, msg, ok, and fail become shared transitions, and the com-

position result is shown in figure 2.7.

User msg

207 0
4 ~_ "

msg!

Figure 2.6 An interface automaton modeling a user of the component Comp.

User_Comp 5.1

o send
ok O ack?
ack
0_0 1.1 2.1 ’W? 31 R

Figure 2.7 Composition of User and Comp.
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Notice that the composition is smaller than the product of User and Comp. This is also
due to the optimistic approach of interface automata. Under this approach, error condi-
tions are not explicitly modeled. For example, if the User automaton is in state 1 and
Comp is in state 6, Comp may make the transition fail. However, since fail is not
accepted by User, the pair of states (1, 6) is illegal in the composition (User, Comp). In
interface automata, illegal states are pruned out in the composition. Furthermore, all
states that can reach illegal states through output or internal transitions are also pruned
out. This is because the environment cannot prevent the automaton from entering ille-
gal states from these states. The resulting composition reflects the environment

assumption that no two consecutive transmissions fail.

We can further compose the automaton User_Comp with a model of the low-level
channel. Figure 2.8 shows two channel models. The good channel always returns ack
on each send request, but the bad one nondeterministically returns ack or nack. When
composing User_Comp with the good channel in figure 2.8(a), we obtain the composi-
tion in figure 2.9(a). This is a closed system in which all of the transitions are internal
transitions. This model describes the behavior that communication is always successful
on the first attempt. If we compose User_Comp with BadChannel, we obtain an empty
automaton shown in figure 2.9(b). This is because the bad channel does not satisfy the
assumption that no two consecutive transmissions fail. In particular, the pair of states
(4_1, 1) in (User_Comp, BadChannel) is illegal because the bad channel may issue

nack in state 1, which cannot be accepted by User_Comp in state 4_1. Since this illegal

GoodChannel BadChannel
send send
ack! ack!
0 /’\ 1 0 /‘\ 1
ack ack send?
10 O 8 O—=—0
nack nack nack!
h send? -
(@) (b)

Figure 2.8 Two channel models.
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O ack;
ok:
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send:

(a) (b)

Figure 2.9 Composition of User_Comp with two channel models.

state is reachable by the initial state of the composition through internal transition, the

initial state is prune out. As a result, the whole composition is empty.

The above examples illustrate the key notion of compatibility in interface automata.
Two automata are compatible if their composition is not empty. This notion gives a
formal definition for the informal statement “two components can work together”. The

composition automaton defines exactly how they can work together.

Under the optimistic approach to composition in interface automata, two components
are compatible if there is some environment that can make them work together. In the
traditional pessimistic approach, two components are compatible if they can work
together in all environments. Because of this difference, the composition of interface

automata is usually smaller than the composition in other automata models.

2.4.2.3 Alternating Simulation

In conventional automata settings, several relations between automata have been stud-
ied, such as trace equivalence, simulation, and bisimulation [51][68]. In the area of system
design, these relations are sometimes used as the refinement relations between the specifi-
cation and implementation of systems. The simulation relation ensures that the output
behaviors of the implementation are behaviors that are allowed by the specification. It also
requires that the set of legal inputs of the implementation is a subset of the inputs allowed
by the specification. In the non-input-enabled setting, such as interface automata, this

requirement is not appropriate, because it could restrict the implementation to work in
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fewer environments than the interface specification. This problem motivated the authors of
interface automata to use alternating simulation to define refinement. Informally, for two
interface automata P and Q, there is an alternating simulation relation from Q to P if all the
input steps of P can be simulated by 0, and all the output steps of O can be simulated by
P. The formal definition also involves internal transitions, and is given in [34]. Under the
alternating simulation relation, one interface refines another if it has weaker input assump-

tions, and stronger output guarantees.

Refinement and compatibility are related. A theorem states that if a third automaton R
is compatible with P, then Q and R are also compatible, provided that P and Q are con-
nected to R by the same inputs. The formal statement of this theorem can be found in [34].
Essentially, this theorem states that a component P can be replaced with a more refined ver-

sion Q in the environment R.
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3 Data Types

In this chapter, we present a type system for a block diagram based design environment.
This system has been implemented in the Ptolemy II software [33]. We focus on the for-
mulation and the design issues in this chapter and discuss the implementation details in

chapter 5.

3.1 Introduction

3.1.1 Abstract Syntax and High-level Semantics

Before we start to design a type system, we must have a syntax for the language on which
the type system can be implemented. For text based languages, most research papers use
the notation of A-calculus. For the discussion in this chapter, we use a syntax adapted from
the abstract syntax for actor-oriented designs [62]. As shown in figure 3.1, each of the
components is an actor, and actors contain parameters and ports. Ports are denoted by

the small circles on the actors, and they are connected through connections.

The abstract syntax in [62] is more general than the one shown in figure 3.1. Among

other things, the connections in figure 3.1 have directions. This implies a high-level

Actor

Port

Actor Parameters

Port

Parameters Actor

Connection Port

Parameters

Figure 3.1 An abstract syntax for block diagram based language.
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semantics of message passing. In this chapter, we assume that actors send and receive
messages through ports, and messages are encapsulated in tokens. The ports that send
out tokens are called output or sending ports, and the ports that receive tokens are called
input or receiving ports. Here, the detailed interaction semantics in various MoCs is
ignored. This abstraction enables the same type system to work with widely differing

models.

The abstract syntax in [62] can also be used as the basis for state transition systems. There
are some interesting type system issues when mixing state transition systems with message
passing systems, such as in modal models [48]. These issues will be discussed later in this

chapter.

3.1.2 Design Goal

In figure 3.1, the interconnections imply type constraints. For example, if an actor
expects to receive integers from one of its input ports, then the output port that is con-
nected to that input should not send out strings. In addition, actors themselves may have
constraints among their ports and parameters. For example, an actor designer may want
to specify that the type of the tokens sent out from a port is the same as the type of an
internal parameter. The primary role of a type system is to support the specification of

these kinds of constraints, and to ensure their satisfaction.

As discussed in chapter 2, many type systems play a larger role than just ensuring type
safety. For example, many type systems provide type conversion services, most
modern type systems support program reuse through certain kind of polymorphism,
and type information can be used for program optimization. For component-based
design, we also want our type system to do more than type checking. In particular, we

want to support the following features:

o Type conversion: Conversions between primitive types, such as Int to Double, happen
frequently in programs. We want to perform these kinds of conversions automati-
cally in the system so that the actor designers do not need to be burdened with the
conversion tasks. As a design principle, we will only support conversions that do
not lose information. For example, using the IEEE 754 standard, a 32 bit integer
can be losslessly converted to a double, but the reverse is not true.
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o Subtyping: In recent years, a large percentage of software development has been
done using object-oriented languages, such as Java or C++. For example, Ptolemy
I is developed in Java, and many commercial system design tools are developed in
C++. Subtyping is one of the main features of these languages. To support this fea-
ture, we want our type system to recognize the subtyping relation among types.

e Polymorphism: since the primary benefit of component-based design is reuse, the
type system should be polymorphic, so that some actors can be reused in different
settings with different types. We call these actors data polymorphic actors.

o Supporting design optimization: Polymorphic actors may have more than one possible
type assignment. In this case, the type system should find a typing that has a lower
cost of implementation.

e Structured types: In addition to primitive types, we want to support structured types
such as arrays and records.

e Extensibility: Since the application areas and the technology used in designing embed-
ded systems are diverse, designers may sometimes want to add new types to the design
environment. Therefore, the type system should be extensible to accommodate this.

3.1.3 Our Approach
Type conversion among primitive types and subtyping naturally imply an ordering rela-
tion among all the types. In our system, we organize all the types into a yype lattice. The

reason to restrict the partial order to be a lattice will become clear later.

To express the typing requirements across connections and inside the actors in figure
3.1, we give each port and each parameter a type. The type of the port restricts the type
of the token that can pass through it. Inspired by ML, we take a constraint solving
approach in our type system. In particular, we use type variables to denote the type of
polymorphic actors and set up type constraints in term of the variables and constant
types. The format of type constraints in our system is different from that in ML. In ML,
type constraints are type equations. In our system, they are inequalities defined over the
type lattice. The constraint-base approach handles recursion or feedback loops well,
because once the constraints are set up, the constraint solving process does not take the
program structure into consideration anymore. Another advantage of this approach is
that constraint resolution can be separated from constraint generation, and resolution
can employ a sophisticated algorithm. Although the actor designers and tool users need
to understand the constraint formulation, they do not have to understand the details of

the resolution algorithm in order to use the system. In addition, the constraint resolution
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algorithm can be built as a generic tool that can be used for other applications. Even
more important, the types are not aware of the constraints, so more types can be added

to the type lattice, resulting in an extensible type system.

Type constraints can be set up based on the topology of the block diagram and the specifi-
cation of actors. The collection and resolution of the constraints can be performed statically
before the model executes. This has obvious advantages. However, static checking alone
is not enough to ensure type safety at run-time. In general, many block diagram based envi-
ronment, such as Ptolemy II, can be viewed as coordination languages [27]. Their type sys-
tems do not have detailed information about the operation of each actor, except the
declared types of the ports and the type constraints provided by the actors. In fact, many
design tools place no restriction on the implementation of an actor. So an actor may
wrap a component implemented in a different language, or a model built by a foreign
tool [75]. Therefore, even if a source actor declares its port type to be Int, no static structure
prevents it from sending a token containing a double at run-time. The declared type Int in
this case is only a promise from the actor, not a guarantee. Analogous to the run-time type
checking in Java, the components are not trusted. Static type checking checks whether the
components can work together as connected based on the information given by each com-
ponent, but run-time type checking is also necessary for safety. Therefore, we combine
both static and run-time checking in our system. With the help of static typing, run-time
type checking can be done when a token is sent from a port. Le., the run-time type checker
checks the token type against the type of the port. This way, a type error is detected at the
earliest possible time, and run-time type checking (as well as static type checking) can be

performed by the system infrastructure instead of by the actors.

Static type information can also be used to perform type conversion. For example, if a
sending port with type Int is connected to a receiving port with type Double, the integer
token sent from the sender can be converted to a double token before it is passed to the
receiver. This kind of run-time type conversion can be done transparently by the type
system (actors are not aware it). So the actors can safely cast the received tokens to the

type of the receiving port. This makes actor development easier.
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The rest of this chapter is organized as follows. Section 3.2 presents the formulation of
our type system, including the type lattice, type constraints, and type checking. Section
3.3 extends the system to include structured types, and section 3.4 describes ways to
express more involved type constraints. The last section discusses several design deci-

sions.

3.2 Formulation

3.2.1 Type Lattice
As mentioned above, the type lattice represents the type conversion relation among prim-
itive types and the subtype relation among other types. In systems with subtyping, such as

F < discussed in section 2.1.3.1, the subtyping relation is usually reflexive and transi-

tive. We add two additional requirements in our system. First, we require the relation
among types to be antisymmetric so that the set of types form a CPO. Secondly, we
require the least upper bound and the greatest lower bound of each pair of types to exist
so that the CPO becomes a lattice. As will be shown later, type constraints over a lattice

can be solved using a very simple and efficient algorithm.

In each language, there is a set of base types. This set is often slightly different from lan-
guage to language. The type lattice in Ptolemy II, which includes all the base types, is
shown in figure 3.2. In Ptolemy II, data are encapsulated in a set of Java classes. The
base class is called Token, and all the other token classes, such as StringToken,
IntToken, are derived from it. Following the convention of the Hasse diagram discussed
in section 2.4.1, a type o in figure 3.2 is greater than a type P if there is a path upwards
from B to . Thus, ComplexMatrix is greater than Int, and Int is less than ComplexMa-
trix. Two types can be incomparable. Complex and Long, for example, are incompara-
ble. The top element, General, which is “the most general type,” corresponds to the
base Token class; the bottom element, UNKNOWN, does not correspond to a token.

Users can extend a type lattice by adding more types.

The ordering relation of the type lattice is a combination of the lossless type conversion
relation among primitive types, such as Int < Double, and the subclass relation of the token

classes, such as String < General. Since the type conversion relation among primitive
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Figure 3.2 An example of a type lattice.

types can be viewed as ad hoc subtyping [87], we can say that the relation in the type lattice

represents two kinds of subtyping relations.

3.2.2 Type Constraints

As mentioned earlier, each port has a type. This type can be declared by the actor writer,

or left undeclared, in which case the type system will resolve the type when solving the

type constraints. Type resolution can be viewed as a form of type inference.

In object-oriented languages, a subtype object can be used in place of a supertype
object. Similarly, in block diagram based languages, if an input port expects to receive

tokens of a certain type receiveType, the output port that is connected to that input
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should be allowed to send out tokens of a subtype, as well as the same type as receive-
Type. Therefore, across any connections, we require the type of the port that sends
tokens to be the same as or less than the type of the receiving port:

sendType < receivelype €))

If both the sendType and receiveType are declared, the static type checker simply checks

whether this inequality is satisfied, and reports a type conflict if it is not.

In addition to the above constraint imposed by the topology, actors may also impose con-
straints among ports and parameters. For example, the Ramp actor in Ptolemy II, which is
a source actor that produces a token on each execution with a value that is incremented by
a specified step, stores the first output and the step value in two parameters. This actor will
not declare the type of its port, but will specify the constraint that the port type is greater
than or equal to the types of the two parameters. As another example, a polymorphic Dis-
tributor actor, which splits a single token stream into a set of streams, will specify the
constraint that the type of a sending port is greater than or equal to that of the receiving
port. This Distributor will be able to work on tokens of any type. In general, polymor-
phic actors need to describe the acceptable types through type constraints.

All the type constraints are described in the form of inequalities like the one in (1). If a port
or a parameter has a declared type, its type appears as a constant in the inequalities. On the
other hand, if a port or a parameter has an undeclared type, its type is represented by a type
variable in the inequalities. The domain of the type variable is the elements of the type lat-
tice. The type resolution algorithm resolves the undeclared types in the constraint set. If
resolution is not possible, a type conflict error will be reported. As an example of a con-

straint set, consider figure 3.3.

The port on actor Al has declared type Int; the ports on A3 and A4 have declared type
Double; and the ports on A2 have their types undeclared. Let the type variables for the
undeclared types be a., B, and y; the type constraints from the topology are:

Int<a
Double < B
Y < Double
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Double

Figure 3.3 A topology (interconnection of components) with types.

Now, assume A2 is a polymorphic adder, capable of doing addition for integer, double,
and complex numbers. Then the type constraints for the adder can be written as:

a<y
B<y

v < Complex
The first two inequalities constrain that the precision of the addition result to be no less than
that of the summands, the last one requires that the data on the adder ports can be converted
to Complex losslessly. These six inequalities form the complete set of constraints and

are used by the type resolution algorithm to solve for a, B, and y.

In the Ptolemy II implementation, the adder can also work on structured types such as

arrays and records. These types will be discussed in section 3.3.

3.2.3 Type Resolution Algorithm

The above formulation converts type resolution into a problem of solving a set of inequal-
ities defined over a finite lattice. An efficient algorithm for doing this is given by Rehof
and Mogensen [112]. Essentially, the algorithm starts by assigning all the type variables
the bottom element of the type hierarchy, UNKNOWN, then repeatedly updating the vari-
ables to a greater element until all the constraints are satisfied, or until the algorithm finds
that the set of constraints are not satisfiable. This iteration can be viewed as repeated eval-
uation of a monotonic function, and the solution is the least fixed point of the function. The
least fixed point is the set of most specific types. It is unique [32], and satisfies the con-

straints if it is possible to satisfy the constraints.
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The kind of inequality constraints for which the algorithm can determine satisfiability
are the ones with the greater term being a variable or a constant. By convention, we
write inequalities with the lesser term on the left and the greater term on the right, as in
a £ B, not B = a. The algorithm allows the left side of the inequality to contain mono-
tonic functions of the type variables, but not the right side. The first step of the algo-
rithm is to divide the inequalities into two categories, Cvar and Ccnst. The inequalities
in Cvar have a variable on the right side, and the inequalities in Ccnst have a constant
on the right side. In the example of figure 3.2, Cvar consists of:

Int<a

Double < B

as<y

B<y
And Censt consists of:

Y < Double

Y < Complex
The repeated evaluations are only done on Cvar, Ccnst are used as checks after the iter-
ation is finished, as we will see later. Before the iteration, all the variables are assigned

the value UNKNOWN, and Cvar looks like:

Int < ao(UNKNOWN)

Double < B(UNKNOWN)
o(UNKNOWN) < y(UNKNOWN)
B(UNKNOWN) < y(UNKNOWN)

Where the current values of the variables are inside the parentheses next to the variable.

At this point, Cvar is further divided into two sets: those inequalities that are not cur-
rently satisfied, and those that are satisfied:

Not-satisfied Satisfied

Int < o UNKNOWN) o(UNKNOWN) < y(UNKNOWN)

Double < B(UNKNOWN) B(UNKNOWN) < y(UNKNOWN)
Now comes the update step. The algorithm selects an arbitrary inequality from the Not-sat-
isfied set, and forces it to be satisfied by assigning the variable on the right side the least
upper bound of the values of both sides of the inequality. Assuming the algorithm selects

Int < o(UNKNOWN), then
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o = IntvUNKNOWN = Int )

After o is updated, all the inequalities in Cvar containing it are inspected and are
switched to either the Satisfied or Not-satisfied set, if they are not already in the appro-

priate set. In this example, after this step, Cvar is:

Not-satisfied Satisfied
Double < B(UNKNOWN) Int < a(Int)
o(Int) < y(UNKNOWN) B(UNKNOWN) < y(UNKNOWN)

The update step is repeated until all the inequalities in Cvar are satisfied. In this exam-
ple, B and y will be updated and the solution is:
o=Int, B =v=Double

Note that there always exists a solution for Cvar. An obvious one is to assign all the vari-
ables to the top element, General, although this solution may not satisfy the constraints in

Ccnst. The above iteration will find the least solution, or the set of most specific types.

After the iteration, the inequalities in Censt are checked based on the current value of the

variables. If all of them are satisfied, a solution for the set of constraints is found.

As mentioned earlier, the iteration step can be seen as a search for the least fixed point of
amonotonic function. In this view, the computation in (2) is the application of a monotonic

function to type variables. Let L denote the type lattice. In an inequality » < o, where a is

a variable, and r is either a variable or a constant, the update function f: I’ Liso’ =f{r,
o) =rv o. Here, a represents the value of the variable before the update, and o’ represents
the value after the update. The function f can easily be seen to be monotonic and non-
decreasing. And, since L is finite, it satisfies the ascending chain condition, so f'is also

continuous. Let the variables in the constraint set be a;, o, ... , oy, where N is the total

number of variables, and define A = (o, a,, ... , ay). The complete iteration can be

viewed as repeated evaluation of a function F: LV — LV of A, where F is the composi-

tion of the individual update functions. Clearly, F is also continuous. The iteration starts
with the variables initialized to the bottom, A = 1V , where 1 = UNKNOWN, and com-

putes the sequence Fi(.LN) (i 2 0), which is a non-decreasing chain. By the fixed point
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theorem in [32], the least upper bound of this chain is the least fixed point of F, correspond-

ing to the most specific types in our case.

Rehof and Mogensen [112] proved that the above algorithm is linear time in the number of
occurrences of symbols in the constraints, and gave an upper bound on the number of basic
computations. In our formulation, the symbols are type constants and type variables, and
each constraint contains two symbols. So the type resolution algorithm is linear in the

number of constraints.

If the set of type constraints is not satisfiable, or some type variables are resolved to
UNKNOWN, the static type checker flags a type conflict error. The former case can hap-
pen, for example, if the port on actor Al in figure 3.3 has declared type Complex. The
latter can happen if an actor does not specify any type constraints on an undeclared
sending port. If the type constraints do not restrict a type variable to be greater than
UNKNOWN, it will stay at UNKNOWN after resolution. To avoid this, any sending port
must either have a declared type, or some constraints to force its type to be greater than
UNKNOWN.

The type constraints discussed in this section only involve constant types and type vari-
ables. In section 3.3 and 3.4, we will see more complicated constraints that involve

structured types and monotonic functions.

3.2.4 Run-time Type Checking and Lossless Type Conversion

The declared type is a contract between an actor and the type system. If an actor declares
that a sending port has a certain type, it asserts that it will only send tokens whose types are
less than or equal to that type. If an actor declares a receiving port to have a certain type, it
requires the system to only send tokens that are instances of the class of that type to that
port. Run-time type checking is the component in the system that enforces this contract.
When a token is sent from a sending port, the run-time type checker finds its type, and com-
pares it with the declared type of the port. If the type of the token is not less than or equal

to the declared type, a run-time type error will be reported.
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As discussed before, type conversion is needed when a token sent to a receiving port has a
type less than the type of that port but is not an instance of the class of that type. Since this
kind of lossless conversion is done automatically, an actor can safely cast a received token
to the declared type. On the other hand, when an actor sends tokens, the tokens being sent
do not have to have the exact declared type of the sending port. Any type that is less than
the declared type is acceptable. For example, if a sending port has declared type Double,
the actor can send IntToken from that port without having to convert it to a DoubleToken,
since the conversion will be done by the system. So the automatic type conversion simpli-

fies the input/output handling of the actors.

Note that even with the convenience provided by the type conversion, actors should still
declare the receiving types to be the most general that they can handle and the sending
types to be the most specific that includes all tokens they will send. This maximizes their
applications. In the previous example, if the actor only sends IntToken, it should declare

the sending type to be /nt to allow the port to be connected to a receiving port with type Int.

If an actor has ports with undeclared types, its type constraints can be viewed as both a
requirement and an assertion from the actor. The actor requires the resolved types to satisfy
the constraints. Once the resolved types are found, they serve the role of declared types at
run time. That is, the type checking and type conversion system guarantees to only put
tokens that are instances of the class of the resolved type to receiving ports, and the actor
asserts to only send tokens whose types are less than or equal to the resolved type from

sending ports.

3.3 Structured Types

3.3.1 Goals and Problems

Structured types are very useful for organizing related data and make programs more read-
able. In a block diagram based design environment, we want to support tokens that con-
tain structured data, such as array tokens and record tokens. Both kinds of tokens allow
multiple pieces of information to be transferred in one round of communication, making
the execution more efficient. In addition, record tokens can be used to reduce the number

of ports on certain actors, which simplifies the topology of the block diagram.
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In our type system, the elements of structured tokens are also tokens. For example, an inte-
ger array token contains an array of integer tokens. This allows structured types to be arbi-
trarily nested. For example, we can have an array token whose elements are also array
tokens, that is, an array of arrays. Also, we can have an array of records, or records con-
taining arrays. Another desired feature for structured types is to be able to set up type con-
straints between the element type and the type of another object in the system. For
example, we want to be able to specify that the element type of an array is no less than the

type of a certain port.

To support these two features in the framework of our type system, we need to overcome

some technical difficulties. In particular, we need to answer the following questions:

e Ordering relation. What is the ordering relation among various structured types?

e Type constraints on structured types. Can the simple format of inequalities express
type constrains on structured types? If not, how can we extend the format to do so?

¢ Infinite lattice. Since the element type of structured types can be arbitrary, the type
lattice will become infinite. Will type resolution always converge on this infinite
lattice? If not, can we detect and handle the cases that do not converge?

The rest of this section will answer these questions for array and record types. To express

the values and types of structured data, we will use the syntax of the expression lan-

guage of Ptolemy II. In this syntax, structured values and types are enclosed in braces,

elements are separated by comma, and the equal sign is used to link the record label

with the element type or value. For examples:

e {1.4, 3.5}: An array containing two double values, 1.4 and 3.5.
{Double}: The type of the above array.

{{1, 2}, {3, 4}}: An array of arrays.

{{Int}}: The type of the above array.

{name="foo", value=1}: A record with two fields. One field has label name and
string value foo, the other has label value and integer value /.

{name=String, value=Int}: The type of the above record.

61



3.3.2 Ordering Relation

In section 2.1.3.1, we discussed that subtyping for mutable arrays is neither covariant
nor contravariant. This means that if a subtyping relation is defined on mutable arrays,
static checking alone is not enough to ensure type consistency. One way to obtain sub-
typing in arrays is to use a run-time check, as is done in Java. Another way, which we
use in our type system, is to disallow the contents of the arrays to be changed after they

are initialized. That is, to make arrays immutable.

By making the arrays immutable, the elements of the arrays must be specified when con-
structing the array. Once the array is constructed, the elements cannot be changed. This
restriction is usually not acceptable for general purpose text based languages. However, for
block diagram based languages, making the arrays immutable is justifiable, or even desir-
able. In our case, the arrays are encapsulated in array tokens, which are mostly used for
passing messages between actors. As a message carrier, we usually do not need to
modify the contents of the array. Furthermore, if the arrays are mutable, then when we
send an array token to multiple actors, we will want to make copies of the array and
send each receiving actor a new copy. Otherwise, multiple actors will share the same
mutable array and the modification by one actor will affect the operation of the other.
This is analogous to the use of global variables in programming, which is regarded as
one of the main source of program errors, particularly in concurrent software. In fact,
this problem is not only limited to arrays, it applies to any type of token. Because of
this, it is desirable to make all tokens immutable. This way, no copying is necessary

during token passing, and the communication between actors become more efficient.

For immutable arrays, we can define subtyping in a covariant way. That is, if T} < 15, then
{t;} < {15} This is the ordering relation we use in our type lattice. We do not need to per-

form run-time checking upon assignment because the elements cannot be changed.

Record types are immutable in most languages that support them. In our system, they are
certainly immutable. According to the discussion in section 2.1.3.1, there are two kinds
of subtyping relations among record types, depth subtyping and width subtyping. In
depth subtyping, the element types of a sub record type are subtypes of the correspond-
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Figure 3.4 The type lattice of Ptolemy II with array and record types added.

ing elements in the super record type. For example, {name=String, value=Int} <
{name=String, value=Double}. In width subtyping, a longer record is a subtype of a
shorter one. For example, {name=String, value=Double, id=Int} < {name=String,

value=Double}.

Different kinds of structured types are mutually incomparable. For example, any array type
is incomparable with any record type. Figure 3.4 shows the organization of the type lat-
tice of Ptolemy II after adding array and record types. All the structured types are less
than the type General and greater than UNKNOWN, but they are not comparable with
other base types. As indicated by the type lattice in figure 3.2, the base types in Ptolemy
II include matrix types. Matrices and arrays are different. Matrices contain primitive
data, such as integers or doubles, while arrays contain tokens that may have arbitrary
type. In Ptolemy II, matrix types are comparable with the corresponding element types.
For example, Int is less than Int Matrix, but array types are not. This is largely a design

decision on the construction of the type lattice.

3.3.2.1 Inequality Constraints
The inequality solving algorithm we described in the last section admits definite ine-

qualities, which are the ones having the following form:
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Const
Const
o <

fa)
That is, the left side of the inequality can be a constant, a variable, or a monotonic function,
and the right side can be either a constant or a variable. Notice that the right side cannot be
a function. This is because that during the update step, we need to update the right hand
side to the least upper bound of both sides, and in general, we cannot update the value

of a function to an arbitrary value.

When structured types are added, we may have inequality constraints with the right

hand side being a variable structured type, such as:
1< {a}

In this inequality, the right side is neither a constant nor a simple variable. It can be viewed
as a function that takes o and returns an array type {a}. Strictly speaking, this inequality
cannot be admitted by the algorithm of Rehof and Mogensen since the right side is a func-
tion. However, in the case of structured type, we know exactly the definition of the
function, so that during the update step of the algorithm, we can attempt to update the
arguments of this function such that the value of the function is the least upper bound
of the two sides. In the above inequality, if T is {/nf} and the current value of o is
UNKNOWN, then the least upper bound of both sides is {Int}v{UNKNOWN} = {Int}.
By matching the structure of the right side {a} with {/nt}, we can update a to Int,
which makes the value of the right side {/nt}. Conceptually, this matching and updating
is a process of unification for the right side of the inequality and the least upper bound
of the two sides. For this unification to succeed, the least upper bound must be a sub-
stitution instance of the right side variable structured type. If this is not the case, we
have a type conflict in the model. The implementation of this process in Ptolemy II will

be discussed in chapter 5.

3.3.2.2 Infinite Lattice
After structured types are added, the type lattice becomes infinite. Type resolution on this

lattice, unfortunately, does not always converge. To see this, let’s look at a simplified lat-
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Figure 3.5 An example of a type lattice with arrays.

tice, with only array types added, and include only seven base types: General, String, Bool-
ean, Long, Double, Int, and UNKNOWN. This lattice is shown in figure 3.5.

Notice that there is an infinite chain in this lattice:
UNKNOWN, {UNKNOWN}, {{UNKNOWN}}, {{{ UNKNOWN}}}, ...

This chain may cause problem in type resolution. For example, if we try to solve the

inequality {a} < a, we will encounter an infinite iteration:

{ UNKNOWN} < UNKNOWN
{ {UNKNOWN}} < {UNKNOWN}
{{{UNKNOWN}}} < { {UNKNOWN}}
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Fortunately, this kind of infinite iteration can be detected. Observe that:

¢ The infinite iteration only happens along the chain that involves UNKNOWN.

¢ From any type that does not include UNKNOWN as an element, all chains to the top
of the lattice have finite length.

These two conditions are true not only after the array types are added, but also after the

record types are added. According to the subtyping rules for records, a super record

type cannot have more fields than a sub record type, so any upward chain starting from

a record type that does not involve UNKNOWN will have a finite number of elements

before reaching the top of the lattice.

If we want to detect the infinite iteration shown above, we can simply set a bound on the
depth of structured types that contain UNKNOWN. The depth of a structured type is the
number of times a structured type contains other structured types. For example, an array
of arrays has depth 2, and an array of arrays of records has depth 3. By setting the bound
to a large enough number, say 100, the infinite iterations can be detected without lim-

iting the flexibility of the design environment in practice.

3.3.3 Actors Operating on Structured Types

To simplify the usage of structured types, some actors can be designed to construct and
manipulate them. In the Ptolemy II software, the actors that construct arrays and records
are called SequenceToArray and RecordAssembler. SequenceToArray bun-
dles a certain number of input tokens into an array token. RecordAssembler assembles the
tokens from multiple input ports into a record token. The actors ArrayToSequence and
RecordDisassembler perform the reverse operation. Figure 3.6 shows a model
that uses the above actors to construct a record whose elements are arrays, and disas-

sembles the elements.

It is interesting to note that the above actors can be viewed as a typed version of some of
the canonical SDF actors described by Reekie [110]. He showed that any SDF actor can be
implemented as a network containing delays and instances of just five canonical actors.
Four of these five actors are group, concat, zip, and unzip. The actors discussed in

this section, SequenceToArray, ArrayToSequence, RecordAssembler, and
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Figure 3.6 Using actors to construct and disassemble structured data.

RecordDisassembler, can be viewed as the typed version of the four canonical SDF

actors, respectively.

3.4 Using Monotonic Functions in Constraints

So far, all of the type constraints we have seen are simple inequalities that involve only the
constant types, type variables, and variable structured types. These kinds of inequalities
may not be able to express more complicated type constraints. In section 3.3.2.1 above,
we mentioned that the type resolution algorithm admits monotonic functions on the left
side of the inequality. It turns out that monotonic functions can be used to express com-
plicated type constraints. We show this using the type constraints in three actors. These
actors are implemented in Ptolemy II by the Ptolemy research group and some outside

contributors.

AbsoluteValue

Suppose we want to implement an AbsoluteValue actor shown in figure 3.7(a) that
computes the absolute value of the input. We want this actor to be polymorphic and
work with several scalar types, including Int, Double, and Complex. If the input type is
not Complex, the output type should be the same as the input. However, if the input type
is Complex, the output type is Double. This type constraint cannot be expressed by
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Figure 3.7 The AbsoluteValue actor and the monotonic function expressing its
type constraint.

simple inequalities, but can be expressed with the help of a function. Let the input type

be a and the output type be B. We can express the above constraint using

fla)<P where Aa) = {Double, if a= Co.mplex
o, otherwise
The function fla) if monotonic. Figure 3.7(b) shows the input and output of this func-

tion for a portion of the type lattice.

RecordUpdater

A RecordUpdater has a record input port that receives record tokens, and a
number of update input ports. Upon each firing, this actor updates the fields of the
record received from the record input using the tokens received from the update
inputs. Since tokens are immutable, this actor does not actually modify the received
token, but creates a new token with the correct fields. Figure 3.8 shows such an actor

with an example input and output. This particular actor has two update inputs, named

{item=String, val=Int}

&1 RecordUpdater |{jtem=Sti I=Double, id=I
Doubl {item=String, val=Double, id=Int}
ouble a1 Sren”

By Y

Int id
B2

Figure 3.8 A RecordUpdater actor with an example input and output.
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val and id. These names are used as labels in the output record. In figure 3.8, the input
record has a field with label val, so the input token from the val port, which has type
Double, replaces the one in the original record, which has type Int. The original record

does not have a field with label id, so a new field is added in the output record.

In general, the type constraint for the RecordUpdater actor can be expressed as
ﬂaa B]a Bz’ LRRS ] Bn) SY

Where o is the type of the record input port, and B,, B,, ..., B, are the types of the
update inputs, and n is the number of updafe inputs. This function can be computed

as follows:

o If a=UNKNOWN, return UNKNOWN,
o If a={l1=ty, lL=ty, ..., [n=tm}
Lety=a
ForeachB;(i=1,2,...,n)
Let / = name of the port for f3;
If 35 suchthatl=lj 3=1,2,...,n)
set4;=P;iny
Else add a new field /= B;iny
return ;
e If o # UNKNOWN and a is not a record type, report type error;

In the first line above, the function value is UNKNOWN when o is UNKNOWN. This
helps make the function monotonic. Some example function arguments and results for

the actor in figure 3.8 are shown in table 3.1.

a By B2 Ao, By, B2)
UNKNOWN UNKNOWN UNKNOWN UNKNOWN
UNKNOWN Double Int UNKNOWN

{item=String, val=Int} Double Int {item=String, Val=Double, id=Int}

Table 3.1. Some example arguments and results for the monotonic function that
expresses the type constraint in RecordUpdater.
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Scale

The Scale actor has an input port, an output port, and a parameter called factor, as
shown in figure 3.9. The operation of this actor is to multiply the value of the input
token by the factor parameter and send the result to the output. The factor param-
eter has one of the scalar types, such as Int, Double, Complex, Long. The input type can
be either a scalar or an array. If the input type is a scalar, the output type will be the
higher type of the input and the factor parameter. If the input type is array, the scal-
ing operation is performed on the elements of the array so the output type will also be
an array whose element type is the higher type of the input array element and the
factor parameter. To maximize the usage of this actor, we want to allow the input
array to have arbitrary dimension. For example, it can be an array of Int, or an array of
arrays of Double. This latter requirement can be supported by a recursive monotonic

function. That is, we can express the type constraint as
flo, B)<y

and the function fla,, B) can be computed as follows:

o If a=UNKNOWN
return UNKNOWN,
o If a=a scalar type
return the higher type of o and ;
¢ If a=an array type
Let e=element type of a
Let n=f(e, B)
return a new array type with element type n;

—>°‘o_>z—> O—m
)

fe factor

Figure 3.9 The Scale actor.
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Some of the example arguments and results for this function are shown in table 3.2.

a B Lo, Brs Ba)
UNKNOWN UNKNOWN UNKNOWN
{UNKNOWN} Double {UNKNOWN}

{Int} Double {Double}
{{Double}} Double {{Double}}

Table 3.2. Some example arguments and results for the monotonic function that
expresses the type constraint in Scale.

3.5 Discussion
In this section, we discuss some of the design decisions in our type system and compare

them with some of the related work.

3.5.1 Type System for Block Diagram Based Languages

In the area of system-level design, some block diagram based environments have
implemented type systems with different approaches from ours. In the Ptolemy Classic
software [16], most components (called stars) are monomorphic. But it supports a rudi-
mentary form of polymorphism by allowing the component to declare that their ports can
work with ANYTYPE. For example, the fork star in Ptolemy Classic, which copies an
input value to multiple outputs, declares the types of all of its ports to be ANYTYPE. This
is analogous to parametric polymorphism. This approach is simple and straightforward, but

more sophisticated type constraints cannot be expressed, and type checking is ad hoc.

The type system of Simulink [79] is similar to that of the Ptolemy Classic. Simulink has
virtual blocks, which are polymorphic components that can work with any type. Examples
of virtual blocks include multiplexer and demultiplexer. Type conversion is supported
through a Data Type Conversion block. This component converts an input signal to the data
type specified by a parameter. Type checking is guided by a set of ad hoc rules. For exam-
ple, the output type of a block is generally the same as the input type, except the constant
blocks and the data type conversion block. Simulink does not have built-in structured
types, but it allows the user to define new types.
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Another design tool, the CoCentric system studio from Synopsys [118] uses a template
approach, where a component has type variable that the user must set. By setting the type
variables to different types, the component can be configured to work on different types.
This approach is similar to C++ templates, and it allows a component to have multiple
types. This template approach achieves a similar effect as parametric polymorphism, but
different code is executed for different types. One disadvantage of this approach is that the
user has the burden to set the type, and type constraints cannot be propagated across a
topology. In some components, a single type variable is used to control the types of several
objects, such as multiple ports, then all of those ﬁort must have the same type, which makes

components less reusable.

Compared with the above systems, our system and its implementation in Ptolemy II sup-
port more kinds of polymorphism. In section 2.1.2.2, we discussed four kinds of poly-
morphism: parametric, inclusion, overloading and coercion. In Ptolemy II, many flow
control actors, such as the Distributor, which splits a single token stream into a set
of streams, show parametric polymorphism because they work with all types of tokens
uniformly. If an actor declares its receiving type to be General, which is the type of the
base token class, then that actor can accept any type of token since all the other token
classes are derived from the base token class. This is inclusion polymorphism. The
automatic type conversion performed during data transfer is a form of coercion; it
allows an receiving port with type Complex, for example, to be connected to sending

ports with type Int, Double or Complex.

An interesting case is the arithmetic and logic operators, like the Add actor. In most lan-
guages, arithmetic operators are overloaded, but different languages handle overload-
ing differently. In standard ML, overloading of arithmetic operators must be resolved
at the point of appearance, but type variables ranging over equality types are allowed
for the equality operator [124]. In Haskell, type classes are used to provide overloaded
operations [50]. Ptolemy II takes advantage of data encapsulation. The token classes in
Ptolemy II are not passive data containers, they are active data in the sense that they know
how to do arithmetic operations with another token. This way, the Add actor can simply
call the add() method of the tokens, and work consistently on tokens of different types. An
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advantage of this design is that users can develop new token types with their implementa-
tion for the add() method, achieving an effect similar to user defined operator overloading
in C++. The detailed implementation of our type system in Ptolemy II will be discussed in

chapter 5.

In many strongly typed text based languages, such as ML, type checking is done almost
entirely at compile time. Once static type checking passes, type information can be dis-
carded at run time. For block diagram based languages, complete static checking is often
not possible. In component-based design, we assume that the components are opaque in
that the detailed operation of the components are encapsulated, and only the type declara-
tion and constraints at the interface are exposed. As a result, the type systems for such envi-
ronments can only check type consistency at the interface of the components, but not inside
the components. Therefore, static checking alone usually cannot ensure type safety. At run-
time, some components may send out tokens with a wrong type. To enforce that the actors
obey the interface types, we combine static typing with run-time type checking. This is one
of the differences between our system and the ML type system. Our combined approach
can detect errors at the earliest possible time and minimize the computation of run-time

checking.

3.5.2 Type Lattice and Type Constraints

In our type system, we organize all the types into a lattice using the subtyping relations.
Organizing types in a hierarchy is fairly standard. For example, Abelson and Sussman [1]
organized the coercion relation among types in a hierarchy. However, they did not delib-
erately model the hierarchy as a lattice. Long ago, Hext [52] experimented with using a lat-
tice to model the type conversion relation, but he was not working with an object oriented
language and did not intend to support polymorphic system components. This work pre-

dates the popular use of those concepts.

In some other type systems, the subtyping relation does not form a hierarchy. One rep-
resentative example is the system of Fuh and Mishra, which extends polymorphic type
inference in ML with subtypes [45]. Their system allows arbitrary type conversion, repre-

sented by a coercion set. This approach makes the system more expressive, since type con-
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version is not limited to those that do not lose information. However, because of the lack
of structure among the types, the algorithm for type matching and checking the consistency
of a coercion set becomes more costly than the inequality solving algorithm we use in our

system.

In [112], Rehof and Mogensen proved that their algorithm for solving inequality con-
straints is linear time in the number of occurrences of symbols in the constraints, which in
our case, can be translated into linear time in the number of constraints. This makes type
resolution very efficient. On the other hand, one might be tempted to extend the formula-
tion to achieve more flexibility in type specification. For example, one may be tempted to
introduce an OR relation among the constraints. This can be useful, for example in the case
of a two-input adder, for specifying the constraint that the types of the two receiving ports
are comparable. This constraint will prohibit tokens with incomparable types to be added.
As shown in [112], this cannot be easily done. The inequality constraint problem belongs
to the class of meet-closed problems. Meet-closed, in our case, means that if A and B are
two solutions to the constraints, their greatest lower bound in the lattice is also a solution.
This condition guarantees the existence of the least solution, if any solution exists at all.
Introducing the OR relation would break the meet-closed property of the problem. Rehof
and Mogensen also showed that any strict extension of the class of meet-closed problems
solved by their algorithm will lead to an NP-complete problem. This implies heavier reli-
ance on run-time checking. However, we have found that our system is generally sufficient
to express most of the type constraints, particularly when augmented with monotonic func-

tions.

The inequality type constraints can be generalized to set constraints [6]. Set constraints
have been used widely in program analysis. They are more expressive than the inequality
constraints based on a lattice. For example, for the type lattice in figure 3.2, the OR rela-
tion that a type a. is either less than or equal to Boolean, OR less than or equal to Dou-
ble, can be expressed using a set constraint X ¢ {Boolean, Double, Int, UNKNOWN},
where X is the set of types that can be assigned to a. The main disadvantage of set con-
straints is that the resolution algorithm is generally expensive. For the basic set con-

straint problem, which allows set expressions to involve set constants, set variables, set
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union, intersection, negation, and set constructors, deciding satisfiability has exponen-
tial complexity [6]. In light of this, the formulation of our type system represent a good

trade-off between expressiveness and computation cost.

3.5.3 Most Specific Type

The type resolution algorithm we described in section 3.2.3 computes the most specific
types (least in the lattice) that satisfy the type constraints. This least solution may not
be the only solution. In the example in figure 3.3, another solution is to resolve all the
ports on A2 to Double. In fact, the inequality solving algorithm can be used to find
either the least fixed point or the greatest fixed point. We choose to use the least solu-
tion for a practical reason. In general, types lower in the type lattice have a lower imple-
mentation cost. For example, in embedded system design, hardware is often
synthesized from a component-based description of a system. If a polymorphic adder
is going to be synthesized into hardware, and it receives Int tokens and sends the addi-
tion result to a Double port, our scheme will resolve the types of all the ports on the
adder to Int, rather than Double. Using an integer adder will be more economical than
a double adder. This is analogous to using types to generate more optimized code in

compilers.

In section 2.1.3.2, we discussed that the type resolution algorithm in ML computes the
principal types. These principal types can be viewed as the most general solution for
the type constraints in that all the other solutions are substitution instances of the prin-
cipal types. In ML, functions can be separately compiled, so resolving the types of
polymorphic functions to the most general types allows maximal reuse of compiled
code. In our case, we perform type resolution on a complete model, and multiple occur-
rences of an actor in a topology are treated as different actors, even though they specify
the same set of type constraints, so we do not need to use the most general type to
achieve reuse. Notice that on multiple occurrences of the same polymorphic actor, dif-
ferent type variables are used to denote the types of their ports and parameters. These

variables are analogous to the generic type variables in ML.
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It is interesting to note that some other researchers have also attempted to infer more pre-
cise types for text based programs. For example, Plevyak and Chien observed that principal
types are inadequate for program optimization, and proposed an algorithm to infer concrete
types in programs [107]. They use different type variables for different runs of the same
program, and the inference is based on set constraints. To guide the type inference effort
to where it is fruitful, they propose to do coarse level inference first, then zoom in on par-
ticular areas to find more precise types. Their algorithm works well for many programs,

but there are still some program structures which will require run time type checks.

3.5.4 Type Resolution in Modal Models

Besides the models based on message passing, our type system can also be used in modal
models that mix finite-state machines (FSMs) with other concurrency models [48]. In these
mixed models, type constraints can be propagated between the events of the control model
and the data of the other concurrency models. For example, Girault, Lee and Lee showed
how to mix FSM with synchronous dataflow (SDF) in [48]. Figure 3.10 is such an
example. In this figure, the top of the hierarchy is an SDF system. The middle actor B
in this system is refined to a FSM with two states, each of which is further refined to a
SDF subsystem. One type constraint on the receiving port of B is that its type must be
less than or equal to the types of both of the receiving ports of the SDF subsystems D

and E, because tokens may be transported from the receiving port of B to the receiving

SDF Int Complex
L —
FA— Int Double l?
FSM
@) D).
~¥. [B]
SDF SDF

—> —- —P
Int |? Int Dﬁ Double

Figure 3.10 Mixing FSM with SDF.
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ports of D or E. Assuming the types of the receiving ports on D and E are Int and Double,
respectively, type resolution will resolve the type of the receiving port of B to Int. Sim-
ilarly, a type constraint for the sending port of B is that its type must be greater than or
equal to the types of both of the sending ports of D and E, and its resolved type will be
Double.

Note that this result is consistent with function subtyping discussed in section 2.1.3.1.
If we consider the actors as functions, then the types of the actors are D: Int—Int, E:
Double—Double, and B: a—f before type resolution. Since D and E can take the place
of B during execution, their types should be subtypes of the type of B. Since function
subtyping is contravariant for function arguments and covariant for function results, the
type o should be a subtype of Int and Double and B should be a super type of Int and
Double. This is exactly what the type constraints specify, and the resulting type for B:
Int—Double is indeed a supertype of both of the types of D and E.
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4 Behavioral Types

4.1 Capturing the Dynamic Behavior of Components

In the last chapter, we presented a type system for component-based design. Fundamen-
tally, a type system detects mismatches at component interfaces and ensures compo-
nent compatibility. As discussed in section 2.2.3, interface mismatch can happen at (at
least) two different levels: data exchange and the dynamic interaction. The system pre-
sented in the last chapter is a data-level type system. In this chapter, we present a system

that captures the dynamic behavior of components. We call the result behavioral types.

At the interface of components, the communication protocol and execution control are
two of the most important aspects of the dynamic behavior. They essentially determine
the model of computation the components use to interact with each other. Our approach
is to describe the communication protocol types and the component behavior using
interface automata, and perform compatibility checking through automata composi-
tion. From a type system point of view, this compatibility check amounts to type check-

ing.

Traditionally, automata models are used to perform model checking at design time. Here,
our emphasis is not on model checking to verify arbitrary user code, but rather on compat-
ibility of the composition of pre-defined types. As such, the scalability of the methods is
much less an issue, since the size of the automata in question is fixed. We also propose to
extend the use of automata to on-line reflection of component state, and to do run-time type

checking.

As has been discussed several times earlier, polymorphism is a very desirable feature in the

design of type systems. At the data level, research has been driven to a large degree by the
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desire to combine the flexibility of dynamically typed languages with the security and early
error-detection potential of statically typed languages [100], and modern polymorphic type
systems have achieved this goal to a large extent. At the behavioral-level, type systems
should also be polymorphic to support component reuse while ensuring component com-

patibility.

In our data-level type system, we organize all the types into a hierarchy using the subtyping
relation. We form a polymorphic type system at the behavioral level through an
approach similar to subtyping. Using the alternating simulation relation of interface
automata, we organize all the interaction types in a partial order. Given this hierarchy,
if a component is compatible with a certain type 4, it is also compatible with all the sub-
types of A. This property can be used to facilitate the design of polymorphic compo-
nents and simplify type checking.

Even with the power of polymorphism, no type system can capture all the properties of pro-
grams and allow type checking to be performed efficiently while keeping the language
ﬂéxible. So the language designer always has to decide what properties to include in the
system and what to leave out. Furthermore, some properties that can be captured by types
cannot be easily checked statically before the program runs. This is either because the
information available at compile time is not sufficient, or because checking those prop-
erties is too costly. Hence, the designer also needs to decide whether to check those prop-

erties statically or at run time. Any type system represents some compromise.

Type systems at the behavioral level have similar trade-offs. Among all the properties in a
component-based design environment, we choose to check the compatibility of communi-
cation protocols as the starting point. This is because communication protocols are the cen-
tral piece in many models of computation [62] and determine many other properties in the
models. Our type system is extensible, so other properties, such as deadlock in concurrent
models, can be included in type checking. Another reason we choose to check the compat-
ibility of communication protocols is that it can be done efficiently, when a component is

inserted in a model. More complicated checking may need to be postponed to run time.
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Our system is based on the Ptolemy II environment [33]. Ptolemy II supports multiple
models of computation so it is ideal for studying the dynamic interaction of components.
Some researchers have proposed extended type systems for other languages, including n-
calculus [86] and the actors model [3]. Some of these systems also capture the dynamic
behavior of components and are closely related to ours. We will discuss related work in

section 4.4.

In addition to the benefit of improved safety through type checking, our type system also
has an intangible benefit. The process of describing communication protocols and com-
ponent behavior formally can help designers gain a deeper understanding of the system
being specified. Through this specification process, developers may uncover design

flaws, inconsistencies, ambiguities, and incompleteness.

The rest of this chapter is organized as follows. Section 4.2 describes component inter-
action in Ptolemy II. Section 4.2 presents our behavioral type system, including the type
definition, the type hierarchy and some type checking examples. Section 4.4 discusses
the trade-offs in the design of behavioral types and compares our approach with related

work.

4.2 Component Interaction in Ptolemy II

Ptolemy II [33] is a system-level design environment that supports component-based het-
erogeneous modeling and design. The focus is on embedded systems. In Ptolemy II, com-
ponents are called actors, and the channel of communication between actors is
implemented by an object called a receiver, as shown in figure 4.1. Receivers are con-

tained in JOPorts (input/output ports), which are in turn contained in actors. Ptolemy II

10Port

consumer
actor

producer
actor

Receiver

Figure 4.1 A simple model in Ptolemy II.

80



is implemented in Java. The methods in the receiver are defined in a Java interface
Receiver. This interface assumes a producer/consumer model, and communicated
data is encapsulated in a class called Token. The put () method is used by the pro-
ducer to deposit a token into a receiver. The get () method is used by the consumer to
extract a token from the receiver. The hasToken () method, which returns a boolean,

indicates whether a call to get () will trigger a NoTokenException.

Aside from assuming a producer/consumer model, the Receiver interface makes no fur-
ther assumptions. It does not, for example, determine whether communication between
actors is synchronous or asynchronous. Nor does it determine the capacity of a receiver.
These properties of a receiver are determined by concrete classes that implement the
Receiver interface. Each one of these concrete classes is part of a Ptolemy II domain,
which is a collection of classes implementing a particular model of computation. In each
domain, the receiver determines the communication protocol, and an object called a direc-
tor controls the execution of actors. From the point of view of an actor, the director and the

receiver form its execution environment.

Each actor has a fire () method that the director uses to start the execution of the
actor. During the execution, an actor may interact with the receivers to receive or send
data. The following are some of the domains in Ptolemy II. The models of computation

implemented by these domains are discussed in section 2.3.

o Communicating Sequential Processes (CSP): As the name suggests, this domain
implements a rendezvous-style communication (sometimes called synchronous mes-
sage passing), as in Hoare’s communicating sequential processes model [54]. In this
domain, the producer and consumer are separate threads executing the f£ire ()
method of the actors. Whichever thread calls put () or get () first blocks until the
other thread calls get () or put (). Data is exchanged in an atomic action when both
the producer and consumer are ready.

e Process Networks (PN): This domain implements the Kahn process networks model of
computation [58]. The Ptolemy II implementation is similar to that by Kahn and Mac-
Queen [59]. In that model, just like CSP, the producer and consumer are separate
threads executing the fire () method. Unlike CSP, however, the producer can send
data and proceed without waiting for the receiver to be ready to receive data. This is
implemented by a non-blocking write to a FIFO queue with (conceptually) unbounded
capacity. The put () method in a PN receiver always succeeds and always returns
immediately. The get () method, however, blocks the calling thread if no data is
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available. To maintain determinacy, it is important that processes not be able to test a
receiver for the presence of data. So the hasToken () method always returns true.
Indeed, this return value is correct, since the get () method will never throw a NoTo-
kenException. Instead, it will block the calling thread until a token is available.

o Synchronous Data Flow (SDF): This domain supports a synchronous dataflow model
of computation [65]. This is different from the thread-based domains in that the pro-
ducer and consumer are implemented as finite computations (firings of a dataflow
actor) that are scheduled (typically statically, and typically in the same thread). In this
model, a consumer assumes that data is always available when it calls get () because
it assumes that it would not have been scheduled otherwise. The capacity of the
receiver can be made finite, statically determined, but the scheduler ensures that when
put () is called, there is room for a token. Thus, if scheduling is done correctly, both
get () and put () succeed immediately and return.

e Discrete Event (DE): This domain uses timed events to communicate between

actors. Similar to SDF, actors in the DE domain implement finite computations

encapsulated in the £ire () method. However, the execution order among the

actors is not statically scheduled, but determined at run time. Also, when a con-

sumer is fired, it cannot assume that data is available. Very often, when an actor

with multiple input ports is fired, only one of the ports has data. Therefore, for an

actor to work correctly in this domain, it must check the availability of a token

using the hasToken () method before attempting to get a token from the receiver.
As can be seen, different domains impose different requirements for actors. Some actors,
however, can work in multiple domains. These actors are called domain-polymorphic
actors. One of the goals of the behavioral type system is to facilitate the design of domain-

polymorphic actors.

4.3 Behavioral Types

4.3.1 Type Definition

We use interface automata to describe the behavior of actors and the interaction type.
Figure 4.2 shows the interface automata model for an implementation of the consumer
actor in figure 4.1. This figure is a screen shot of Ptolemy II. The block arrows on the

two sides denote the inputs and outputs of the automata. They are:

e f the invocation of the £ire () method of the actor.

e fR: the return from the £ire () method.

e g: the invocation of the get () method of the receiver at the input port of the actor.
e ¢ the token returned in the get () call.
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Figure 4.2 Interface automaton model for an SDF actor.

e AT the invocation of the hasToken () method of the receiver.

e AKTT: the value true returned from the hasToken () call, meaning that the receiver
contains one or more tokens.

e hTF: the value false returned from the hasToken () call, meaning that the receiver
does not contain any token.

The initial state is state 0. When the actor is in this state, and the £ire () method is called,
it calls get () on the receiver to obtain a token. After receiving the token in state 3, it per-
forms some computation, and returns from fire(). Following the optimistic
approach of interface automata, this model only encodes the behavior of the actor under
a good environment, namely, the SDF domain. In this domain, there is only one thread
of execution, so the actor assumes that its f£ire () method will not be called again if
it is already inside this method. Therefore, the input fis only accepted in state 0, but not
in any other states. Also, the scheduler guarantees that data is available when a con-
sumer is fired, so the transition from state 2 to state 3 assumes that the receiver will
return a token. An error condition, such as the receiver throws NoTokenException

when get () is called, is not explicitly described in the model.

Figure 4.3 describes another actor that can operate in a wider variety of domains. Since
this actor is not designed under the assumption of the SDF domain, it does not assume
that data are available when it is fired. Instead, it calls hasToken () on the receiver
to check the availability of a token. If hasToken () returns false, it immediately

returns from £ire (). This is a simple form of domain-polymorphism.
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Figure 4.3 Interface automaton model for a domain-polymorphic actor.
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In Ptolemy II, actors interact with the director and the receivers of a domain. In figures
4.2 and 4.3, the block arrows on the left side denote the interface with the director, and
the ones on the right side denote the interface with the receiver. As discussed in section
4.2, the implementation of the director and the receiver determines the semantics of
component interaction in a domain, including the flow of control and the communica-
tion protocol. If we use an interface automaton to model the combined behavior of the
director and the receiver, this automaton is then the type signature for the domain.

Figure 4.4 shows such an automaton for the SDF domain. Here, p and pR represent the
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Figure 4.4 Type signature of the SDF domain.
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call and the return of the put () method of the receiver. This automaton encodes the

assumption of the SDF domain that the consumer actor is fired only after a token is put

into the receiver!.

The type signature of the DE domain is shown in figure 4.5. In DE, an actor may be
fired without a token being put into the receiver at its input. This is indicated by the
transition from state 0 to state 7. Figures 4.4 and 4.5 also reflect the fact that both of the
SDF and the DE domains have a single thread of execution, so the hasToken () query
may happen only after the actor is fired, but before it calls get (), during which time
the actor has the thread of control.

CSP and PN are two domains in Ptolemy II in which each actor runs in its own thread.
Figures 4.6 and 4.7 give the type signature of these two domains. These automata are
simplified from the true implementation in Ptolemy II In particular, CSPDomain omits

conditional rendezvous, which is an important feature in the CSP model of computa-
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Figure 4.5 Type signature of the DE domain.

1. This is a simplification of the SDF domain, since an actor may require more than one token to be put in the receiver
before it is fired. This simplification makes our exposition clearer. Modeling this fully would require dependent types.
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Figure 4.7 Type signature of the PN domain.

tion. In the CSP and PN domains, an actor is fired repeatedly by its thread, as modeled
by the transitions between state 0 and 1.

In CSP, the communication is synchronous; the first thread that calls get () or put ()
on the receiver will be stalled until the other thread calls put () or get (). The case

where get () is called before put () is modeled by the transitions among the states
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1, 3, 4, 5, 1. The case where put () is called before get () is modeled by the transi-

tions among the states 1, 6, 8, 9, 1.

In PN, the communication is asynchronous. So the put () call always returns immedi-
ately, but the thread calling get () may be stalled until put () is called. The case where
get () is called first in PN is modeled by the transitions among the states 1, 3,4, 5, 1 in
figure 4.7, while the case where put () is called first is modeled by the transitions
among the states 1, 6, §, 10, 1.

Given an automaton modeling an actor and the type signature of a domain, we can check
the compatibility of the actor with the communication protocol of that domain by compos-

ing these two automata. Type checking examples will be shown below in section 4.3.3.

4.3.2 Behavioral Type Order and Polymorphism
If we compare the SDF and DE domain automata, we can see that they are closely related.
This relationship can be captured by the alternating simulation relation of interface autom-

ata. In particular, there is an alternating simulation relation from SDF to DE.

In the set of all domain types, the alternating simulation relation induces a partial order, or

behavioral type order. An example of this partial order is shown in figure 4.8. From a

Figure 4.8 An example of behavioral type order.
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type system point of view, this order is the subtyping hierarchy for the domain types. If
we view the automata as functions with inputs and outputs, then the alternating simu-
lation relation is exactly analogous to the standard function subtyping relation in data
type systems. According to the definition of alternating simulation, the automaton
lower in the hierarchy can simulate all the input steps of the ones above it, and the
automaton higher in the hierarchy can simulate all the output steps below it. In function
subtyping, if a function A—B is a subtype of another function 4 '—B’, then 4’ is a sub-
type of 4 and B is a subtype of B'. Note that in both relations, the order is inverted (con-

travariant) for the inputs and goes in the same direction (covariant) for the outputs.

In [34], alternating simulation is used to capture the refinement relation from the specifi-
cation to the implementation of components. Our use of this relation is not directly for
component design, but for capturing the relation between interaction types. In the behav-
ioral type order, SDFDomain is not a refinement of DEDomain, but a subtype of DEDo-
main. In fact, SDFDomain has fewer states than DEDomain. This subtyping relation can
help us design actors that can work in multiple domains. According to the theorem dis-
cussed in section 2.4.2, if an actor is compatible with a certain domain D, and there are
other domains below D in the behavioral type order, then the actor is also compatible

with those lower domains. Therefore, this actor is domain polymorphic.

In figure 4.8, we added a bottom element UNKNOWN and a top element DP. DP stands
for “domain polymorphic”. There is an alternating simulation relation from
UNKNOWN to any other element, and from all the elements to DP. One possible design
of these two automata is shown in figure 4.9. In this figure, both automata have a single
state. The UNKNOWN automaton has all the input transitions, and the DP automaton
has all the output transitions. We will discuss these two automata further in section
44.1.

4.3.3 Type Checking Examples
Let’s perform a few type checking operations using the actors and domains in the earlier
sections. To verify that the SDFActor in figure 4.2 can indeed work in the SDF domain,

we compose it with the SDFDomain automaton in figure 4.4. The result is shown in
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Figure 4.9 The bottom and top elements of the behavioral type order.

figure 4.10. As expected, the composition is not empty so SDFActor is compatible with

SDFDomain. This composition is a new type definition for the composed components.

Due to the optimistic approach of interface automata, the above composition is much
smaller than the product automaton. Before adopting interface automata, we also attempted
to describe behavioral types using a more traditional finite state machine model [69]. Com-

patibility chécking in that setting proved to be more difficult.

Now let’s compose DEDomain with SDFActor. The result is an empty automaton shown
in figure 4.11. This is because the actor may call get () when there is no token in the
receiver, and this call is not accepted by an empty DE receiver. The exact sequence that

leads to this condition is the following: first, both automata take a shared transition f.
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Figure 4.10 Composition of SDFDomain in figure 4.4 and SDFActor in figure 4.2.
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Figure 4.11 Composition of DEDomain in figure 4.5 and SDFActor in figure 4.2.

In this transition, DEDomain moves from state 0 to state 7, and SDFActor moves from
state 0 to state 1. At state 1, SDFActor issues g, but this input is not accepted by DEDo-
main at state 7. So the pair of states (7, 1) in (DEDomain, SDFActor) is illegal. Since
this state can be reached from the initial state (0, 0), the initial state is pruned out from
the composition. As a result, the whole composition is empty. This means that the SDF

actor cannot be used in DE Domain.

The PolyActor in figure 4.3 checks the availability of a token before attempting to read
from the receiver. By composing it with DEDomain, we verify that this actor can be
used in the DE Domain. This composition is shown in figure 4.12. Since SDFDomain
is below DEDomain in the behavioral type order of figure 4.8, we have also verified

that PolyActor can work in the SDF domain. Therefore, PolyActor is domain polymor-

DEDomain_PolyActor

5.5 44 :
1
e
5
p’ 0.0 ;/1_0 2.0 31 6.2 3.3
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pR o? pR! f. hT:
I/

Figure 4.12 Composition of DEDomain in figure 4.5 and PolyActor in figure 4.3.
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Figure 4.13 Composition of SDFDomain in figure 4.4 and PolyActor in figure 4.3.

phic. As a sanity check, we have composed SDFDomain with PolyActor, with the result
shown in figure 4.13.

In Ptolemy I, there is a library of about 100 domain-polymorphic actors. The communi-

cation behavior for many of these actors can be modeled by the PolyActor automaton.

4.3.4 Reflection

So far, interface automata have been used to describe the operation of Ptolemy II compo-
nents. These automata can be used to perform compatibility checks between components.
Another interesting use is to reflect the component state in a run-time environment. For
example, we can execute the automaton SDFActor of figure 4.2 in parallel with the exe-
cution of the actor. When the fire () method of the actor is called, the automaton
makes a transition from state O to state 1. At any time, the state of the actor can be
obtained by querying the state of the automaton. Here, the role of the automaton is
reflection, as realized for example in Java. In Java, the Class class can be used to obtain
the static structure of an object, while our automata reflect the dynamic behavior of a

component. We call an automaton used in this role a reflection automaton.

4.4 Discussion

4.4.1 Top and Bottom

We have shown one possible design for the top and bottom elements of the behavioral type
order in figure 4.9. These two automata are very general in that they are not only the
top and bottom elements of the partial order in figure 4.8, but also the top and bottom

of the partial orders formed by any set of automata with the same set of input and output
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transitions. In another word, there is an alternating simulation relation from any autom-
aton to the DP automaton in figure 4.9(b), and an alternating simulation relation from
the UNKNOWN automaton in figure 4.9(a) to any automaton with the same inputs and
outputs.

If we can design an actor that is compatible with the DP automaton, then that actor will
be maximally polymorphic in that it will be able to work in any domain that may be
created. However, it is easy to see that this is almost impossible. Since the DP autom-
aton may issue any output at any time, no non-trivial actor can be compatible with it.
This means that we cannot hope to design a non-trivial actor that will be able to work

in any environment.

On the other hand, the UNKNOWN automaton is compatible with any actor automaton. For
example, the compositions of UNKNOWN with the SDFActor or the PolyActor are shown
in figure 4.14. The two compositions are the same. Intuitively, since the UNKNOWN
automaton does not have any output transition, it does not call the fire () method of
the actor, so there is no interaction between the UNKNOWN automaton and the actor

automaton. The only transition is the input p from outside the composition.

The DP and UNKNOWN automata represent two extremes of the possible environments
for actors. The DP is the most stringent environment in which no non-trivial actor can

work, while UNKNOWN is the laxest environment in which an actor is not asked to do

anything.

UNKNOWN _SDFActor or UNKNOWN_PolyActor

* O
4

Figure 4.14 Composition of UNKNOWN in figure 4.9(a) and the SDFActor in figure
4.2 or the PolyActor in figure 4.3.
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4.4.2 Trade-offs in Type System Design

The type checking examples in section 4.3.3 focus on the communication protocol
between a single actor and its environment. This scope can be broadened by including
the automata of more actors and using a more detailed director model in the composi-
tion. Also, properties other than the communication protocol, such as deadlock freedom
in thread-based domains, can be included in the type system. However, these exten-
sions will increase the cost of type checking. So there is a trade-off between the amount

of information carried by the type system and the cost of type checking.

Another dimension of the trade-offs is static versus run-time type checking. The exam-
ples in the last section are static type checking examples. If we extend the scope of the
type system, static checking can quickly become impractical due to the size of the com-
position. An alternative is to check some of the properties at run time. One way to per-
form run-time checking is to execute the reflection automata of the components in
parallel with the execution of the components. Along the way, we periodically check

the states of the reflection automata, and see if something has gone wrong.

These trade-offs imply that there is a big design space for behavioral types. In this space,
one extreme point is complete static checking by composing the automata modeling all the
system components, and check the composition. This amounts to model checking. To
explore the boundary in this direction, we did an experiment by checking an implementa-
tion of the classical dining philosophers model implemented in the CSP domain in Ptolemy
I1. Each philosopher and each chopstick is modeled by an actor running in its own thread.
The chopstick actor uses conditional send to simultaneously check which philosopher (the
one on its left or the one on its right) wants to pick it up. We created interface automata for
the Ptolemy II components CSPReceiver, Philosopher, and Chopstick, and a simplified
automaton to model conditional send. We are able to compute the composition of all the
components in a two-philosopher version of the dining philosopher model, and obtain a
closed automaton with 2992 states. Since this automaton is not empty, we have verified
that the components in the composition are compatible with respect to the synchronous
communication protocol in CSP. We also checked for deadlock inherent in the implemen-

tation by looking for states in the composition that do not have any outgoing transitions,
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and are able to identify two deadlock states in the composition. These two states corre-
spond to the situation where all the philosophers are holding the chopsticks on their left and
waiting for the ones on their right, and the symmetrical situation where all the philoso-

phers are waiting for the chopsticks on their left.

Our goal here is not to do model checking, but to perform static type checking on a non-
trivial models. Obviously, when the model grows, complete static checking will become

intractable due to the well-known state explosion problem.

Another extreme point in the design space for behavioral types is to rely on run-time type
checking completely. For deadlock detection, we can execute the reflection automata in
parallel with the Ptolemy II model. When the model deadlocks, the states of the automata
will explain the reason for the deadlock. In this case, the type system becomes a debugging
tool. The point here is that a good type system is somewhere between these extremes. We
believe that a system thaf checks the compatibility of communication protocols, as illus-

trated in sections 4.3.3, is a good starting point.

4.4.3 Behavioral Typing

In the concurrent object-oriented language community, there is a lot of ongoing work
on type systems for parallel object languages and calculi. Some of the proposed systems
have very similar objectives as ours, namely, capturing the dynamic behavior of com-
ponents. In particular, the type model of Puntigam [108] and the behavioral type system of
Najm and Nimour [93][94] both attempt to capture the communication behavior of com-
ponents, and both systems have a notion of subtyping that is conceptually similar to the

alternating simulation relation.

The type model of Puntigam is designed for a language that is based on a combination
of the actor model [3] and a process calculus with trace semantics. Similar to our model,

objects communicate by message passing. A message has the form c(oy, ..., 0,,; vy, .., Vp)-
This can be viewed as a method call with method name ¢, input parameters oy, ..., 0,,, and
output parameters vy, ..., v,,. A type trace is a sequence p; ... p,, of message prototypes, and

a type trace set T is a prefix-closed non-empty set of type traces. Here, the type trace sets
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are the type specifications of active objects. It defines the sequences of messages that an
object is prepared to handle, and the clients of the objects are allowed to send message only
according to exactly one type trace selected from the set. The type trace set of a type T is
denoted trace(t). Under this formulation, a subtype is defined as:

A type o is a subtype of a type T (denoted by o < 7) if and only if for each type

trace p; ... p, € trace(t) there is a p;’ ... p,” € trace(c) so that (for eachl1 <i<n;
With p' = Ci(d)i, ) EIRERT) ¢i, k,;(Pl, 12 =*°» (Pi, 11) al’ld
D= €1 0 1 @)

ec; = c'; (equal message identifiers);
ok';<k; and ¢, ;S Ly for 1 <j<k'; (contravariant input parameter types);

e/;<I';and ¢'; ;< @, ; for 1 <j<I; (covariant output parameter types).

As the alternating simulation relation we use for defining subtypes in our system, this def-

inition has contravariant input types and covariant output types.

However, there are several differences between this formulation and ours. First, a trace
is a global property in that a trace specifies a complete run of an object, while the sim-
ulation relation is local in that it is a relation for each step of the run. Second, the sub-
typing definition here mixes data typing issues with behavior. In particular, the last two
conditions in the definition is essentially the record subtyping rules we use for our data
type system. In our system, we separate the data typing issues from behavioral typing
and handle them in different ways. Third, the trace set, which defines a language, is
more general than an automaton. If the trace set is constrained to be a regular set, then

it is equivalent to an automaton.

The behavioral type system presented in [93] is closer to our system. This system is
designed for an object calculus which is a variant of the n-calculus [86], with syntactic
sugar for method definition. Here, behavioral types specify the set of methods (services)
an objects supports. This set is dynamic since the set of supported methods may change
after each method call. For example, an object implementing a one place buffer has a

put () and a get () method for writing and reading data into and from the buffer. When
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the buffer is empty, the set of supported methods includes only the put () method. After
put () is called, the set includes only the get () method, and so on. This dynamic behav-
ior is specified using a labeled transition system, where each transition is a method signa-
ture. Similar to our system, the definition of subtyping distinguishes the sending and

receiving of messages. If a type X}, is a subtype of a type X}, then all the receiving actions
of X; can be performed by X, and all the sending actions of X, can be performed by X;.

This is analogous to the alternating simulation relation of interface automata. The formal
definition of behavioral types, the transition system, and subtyping can be found in
[93][94]. In this system, the requirements for type compatibility are defined by compli-
cated type rules.

In both of the above two systems, the basic goal of typing is to ensure that an object does
not receive a method call that is not supported. This error condition is analogous to the
error condition that results in illegal states in the composition of interface automata. Com-
pared with them, our interface automata based system permits much easier type checking.
Also, since interface automata can be easily described in bubble and arc diagrams, the type
representation in our system is easier to understand than the algebraic form used in both
approaches. Another difference is that the above two systems concentrate mostly on the
communication between objects through message passing, while our system also takes
the execution control into consideration. Finally, it is interesting to note the different
terminologies used to describe the dynamic behavior of components. Inspired by [93], we

call our description behavioral types, while it is called process types in [108].

4.4.4 Component Interfacing

In hardware design, many people have proposed techniques of protocol synthesis to
connect components with different interfaces [25][26][40][41][102][104]. There are two
approaches to protocol synthesis. One is library or template based. For example, Eisenring
and Platzner [40] develop a tool that provides a template and a corresponding generator
method for each interface type. The other is to generate a converter from the two interfaces
to be connected. For example, Passerone et al. [104] describe the communication protocols

of the two components to be interfaced by two finite state machines, and the converter is
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essentially the product machine, with invalid states removed. Compared with this approach
of component interfacing, our approach is to design polymorphic components with tolerant
interfaces, so that they can be used in different settings. Besides, there are two additional

differences between our system and the protocol synthesis techniques.

One difference is that behavioral types cover multiple models of computation, while
protocol synthesis usually concentrates on interfacing different implementations of one
model of computation. For example, Passerone et al. [104] focus on synchronous model
(shared clock); Eisenring and Platzner [40] study dataflow models implemented by queues
between component; in [41], Eisenring ef al. design a system using synchronous dataflow;
and in [102], Ortega and Borriello use a communication protocol with a non-blocking write

behavior, which is similar to the one in process networks.

Another difference is on the level of abstraction. Since design is a process of refine-
ment, the description of a component may exist at different levels. In [41], Eisenring, et al.
divide the possible abstractions into two levels: abstract communication types and physical
communication types. Abstract communication types includes buffered versus non-buff-
ered, blocking versus non-blocking, synchronous versus asynchronous communication.
Physical communication types includes memory-mapped I/O, interrupt or DMA-transfer.
In [14], Borriello, et al. gave a more contiguous categorization of interface levels: electri-
cal, logical, sequencing, timing, data transaction, packet, and message. The behavioral type
work addresses the highest level in this classification: different mechanisms for message
passing. It covers the abstract communication types. On the other hand, most work on pro-
tocol synthesis is at the hardware or architecture levels. For example, reconﬁghrable com-
puting with FPGA is targeted in [40]; [104] is about RTL level interface synthesis; the
problem of mapping a high-level specification to an architecture is considered in [102]; and
a system to generate interface between a set of microprocessors and a set of devices is
described in [25][26].

The differences between our type system and the work in protocol synthesis make them
complementary to each other. They may be used at the different stages of the design

process.
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5 Implementation in Ptolemy II

In this chapter, we describe our implementation of the type system presented in the previ-
ous two chapters. This implementation is done. in the Ptolemy II [33] software. We will
first give an overview of Ptolemy II, then describe the implementation of a generic graph
package that supports the construction of partial orders and the solution of inequality con-
straints over a lattice, followed by the implementation of the data level type system and the
support for interface automata. Part of the material in this chapter is drawn from the

Ptolemy II design document [33].

5.1 Overview of Ptolemy II

Ptolemy II offers unified infrastructure for implementation of a number of models of com-
putation. It consists of a set of Java packages that are listed in figure 5.1. The core pack-
ages provide a basic infrastructure and tools that are shared by all the models of
computation. Each model of computation is implemented in a separate package as a
Ptolemy II domain. The user interface (UI) packages provide a graphical environment
for building and executing Ptolemy II models. The name of the graphical environment
is called vergil. Vergil stores models in text files using an XML schema called MoML,
which stands for Modeling Markup Language. Some details are omitted here. For
example, the actor package contains a subpackage actor.gui that is part of the user

interface.

The key packages relevant to the implementation of the data-level type system are in
the core. They are the kernel package, the data package, the actor package, and the
graph package.

98



core packages

99

entity of another graph. This encapsulation can be nested arbitrarily.

math | graph |
| B
| : ;
: data i"-- actor
: - -
I
e e e e e e e e e e e e e e e Y e —————— |
R e i
I domains | I
: csp I ct | dde de dt :
| |
i | | | |
i fsm I giotto I gr I pn sdf ] E
! | | | !
I I
L e e e e e e e I
i- - Ul packages :
| gui :
! |
I I
i ve:'gil mt;ml . plot I media ' i
| ) S— N N ) N o |
Figure 5.1 The Java packages in Ptolemy IIL.
The Kernel Package

The kernel package defines a small set of Java classes that implement a data structure sup-
porting a general form of uninterpreted clustered graphs, plus methods for accessing and
manipulating such graphs. These graphs provide an abstract syntax for netlists, state tran-
sition diagrams, block diagrams, etc. A graph consists of entities and relations. Entities
have ports. Relations connect entities through ports. Relations are multi-way associations.

Hierarchical graphs can be constructed by encapsulating one graph inside the composite




The Actor Package

The actor package provides basic support for executable entities, or actors. It supports a
general form of message passing between actors. Messages are passed between ports,
which can be inputs, outputs or bidirectional ports. Actors can be typed, which means
that their ports have types. The types of the ports can be declared by the containing
actor, or left undeclared on polymorphic actors; type resolution will resolve the types
according to type constraints. Messages are encapsulated in tokens that are imple-
mented in the data package or in user-defined classes extending those in the data pack-

age.

A subpackage of the actor package contains a library of (currently) about 100 polymorphic

actors.

The Data Package

The data package provides data encapsulation, polymorphism, parameter handling, and an
expression language. Data encapsulation is implemented by a set of token classes. For
example, IntToken contains an integer, DoubleMatrixToken contains a two-
dimensional matrix of doubles. The tokens can be transported via message passing
between Ptolemy II objects. Alternatively, they can be used to parameterize Ptolemy II
objects. Such encapsulation allows for a great degree of extensibility, permitting develop-

ers to extend the library of data types that Ptolemy II can handle.

Parameter handling and an extensible expression language, including its interpreter, are
supported by a subpackage inside the data package. A parameter contains a token as its
value. This token can be set directly, or specified by an expression. An expression may
refer to other parameters, and dependencies and type relationships between parameters are

handled transparently.

The Graph package

This package provides algorithms for manipulating and analyzing mathematical graphs.
Mathematical graphs are simpler than Ptolemy II clustered graphs in that there is no hier-
archy, and arcs link exactly two nodes. Both undirected and directed graphs are supported.

Acyclic directed graphs, which can be used to model complete partial orders (CPOs) and
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lattices, are also supported with more specialized algorithms. This package provides the
infrastructure to construct the type lattice and implement the type resolution algorithm.
However, this package is not aware of the types; it supplies generic tools that can be used

in different applications.

In [46], Gamma, et al. distinguished three classes of software: application, toolkit, and
framework. The role of toolkit and framework is reversed. In framework, the main body of
the code is reused, but the code it calls must be written. In this view, the kernel and the
actor packages are a general framework for building executable graphs, the domain pack-
ages are more specialized frameworks that implement models of computations, and the rest

of the packages, including the actor libraries, are toolkits.

5.2 CPO and Constraint Solving Infrastructure
As mentioned earlier, CPO and constraint solving support are implemented as generic

tools in the graph package. Figure 5.2 shows the UML diagram for the classes in this

packagel. The classes Graph, DirectedGraph and DirectedAcyclicGraph
support graph construction and provide graph algorithms. Currently, only topological
sort and transitive closure are implemented; other algorithms will be added as needed.
The CPO interface defines the basic CPO operations, and the class DirectedAcy-
clicGraph implements this interface. An instance of DirectedAcyclicGraph
is also a finite CPO where all the elements and order relations are explicitly specified.
Defining the CPO operations in an interface allows expansion to support infinite CPOs
and finite CPOs where the elements are not explicitly enumerated. The Inequali-
tyTerm interface and the Inequality class model inequality constraints over the
CPO. The InequalitySolver class implements the constraint solving algorithm
described in section 3.2.3. The usage of these classes can be found in the Ptolemy II

design document [33].

One of the fundamental operations on a CPO is to find the least element of a subset, if

it exists. This operation is the basis for many other important operations, such as com-

1. Currently, the graph package is being updated by Shuvra Bhattacharyya to support annotation on
edges. Figure 5.2 reflects the state of this package before this change.
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puting the least upper bound. On a totally ordered set, the least element can be found
by simply scanning all the elements. The complexity of a linear scan is O(n), where n
is the number of elements. On a poset, where elements may be incomparable, the least
element cannot be found by a linear scan. One straightforward algorithm is to compare

each element in the poset with every other element. This algorithm has a complexity of
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Figure 5.2 Classes in the graph package.

O(n?), which is both the average and the worst case complexity.

We use an algorithm that improves the average complexity. The worst case complexity

of our algorithm is still O(n®), but on many posets, the complexity can be significantly
reduced. The idea is the following. Suppose the poset in which we want to find the least

element is called inputSet. We do a linear scan on all the elements in inputSet. If we
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encounter elements that are incomparable, we temporarily store these elements in a set
called incomparableSet. Since the least element must be less than all the other elements
in inputSet, we know that none of the elements in incomparableSet can be the least ele-
ment, but the least element, if it exists, must be less than every elements in incompara-
bleSet. As we continue scanning the elements in inputSet, we first compare the current
element with the elements in incomparableSet. If the current element is greater than any
element in incomparableSet, we ignore the current element and continue the scan. If the
current element is less than some of the elements in the incomparableSet, but incom-
parable with the other elements, we remove the elements that are greater than the cur-
rent element from incomparableSet, and add the current element to the
incomparableSet. If the current element is less than all the elements in incompara-
bleSet, we discard all the elements in incomparableSet, and the current element
becomes a candidate for the least element of inputSet. The following is a more precise

description of this algorithm:

o Initialize: let inputSet = {e;} (1 <i <n),
candidate = null; incomparableSet = empty set;
e Scanning:
Fori=1ton
If candidate = null and incomparableSet = empty set
candidate = e;;
Else if candidate # null and incomparableSet = empty set
If e; < candidate
candidate = e;;
Else if e; and candidate are incomparable
Add both e; and candidate to incomparableSet;
candidate = null;
Else if candidate = null and incomparableSet # empty set
For each element ¢ in incomparableSet
Ife;<c
Remove c from incomparableSet;
Elseifc<e;
ignore e; and continue scanning the next element in inputSet
If incomparableSet = empty set
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// e; is less than all elements in incomparableSet
candidate = ey;
Else
Add e; to incomparableSet,
Else if candidate # null and incomparableSet # empty set
/ / This case cannot happen

o If candidate # null

candidate is the least element of inputSet;
Else
The least element does not exist;

The worst case for this algorithm happens when inputSet is an anti-chain (a partial order in
which every element is incomparable with every other element). The best case is that
inputSet is a chain (a totally ordered set). In this case, no element will be added to
incomparableSet during the execution of the algorithm and the complexity reduces to
O(n). This algorithm is implemented in a private method of the DirectedAcyclic-

Graph class.

5.3 Data Types

5.3.1 Data Encapsulation and Type Representation

The data package contains a set of token classes that encapsulate data. The UML diagram
for these classes is shown in figure 5.3. One of the goals of the data package is to sup-
port polymorphic operations between tokens. For this, the base Token class defines
methods for the primitive arithmetic operations, such as add (), multiply (), sub-
tract (), divide(), modulo() and equals (). Derived classes override these

methods to provide class specific operations where appropriate.

Type conversion is done by the method convert () in the token classes. This method
converts the argument into an instance of the class implementing this method. For exam-
ple, DoubleToken.convert (Token token) converts the specified token into an
instance of DoubleToken. The convert () method can convert any token immediately
below it in the type hierarchy into an instance of its own class. If the argument is several

levels down the type hierarchy, the convert () method recursively calls the con-
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Figure 5.3 Classes in the data package.

105




vert () method one level below to do the conversion. If the argument is higher in the type
hierarchy, or is incomparable with its own class, convert () throws an exception. If the

argument to convert () is already an instance of its own class, it is returned without any

change.

All the classes for representing the types and the type lattice are under a subpackage of
data, data.type. Figure 5.4 shows the UML diagram for this package. The Type
interface defines the basic operations on a type. BaseType contains a type-safe enu-

meration of all the primitive types. ArrayType and RecordType are derived from

«interfacen
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Typelattice
ion hi
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Figure 5.4 Classes in the data.type package.
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an abstract class StructuredType. The class TypeLattice contains the lattice
shown in figure 3.2 in chapter 3. This lattice is constructed using the CPO infrastructure
in the graph package. Each type has a convert () method to convert a token lower in
the type lattice to one of its type. For base types, this method just calls the same method
in the corresponding tokens. For structured types, the conversion is done within the

concrete structured type classes.

The Typeable interface defines a set of methods to set type constraints between typed
objects. It is implemented by the Variable class in the data.expr package and the
TypedIOPort class in the actor package. Details of these two classes can be found
in [33]. TypeConstant encapsulates a constant type. It implements the Inequality-
Term interface and can be used to set up type constraints between a typed object and a con-

stant type.

5.3.2 Type Checking and Type Conversion

Type checking and type conversion are implemented in the actor package. The detailed
information about this package can be found in [33]. The classes and interfaces related to
type handling are TypedActor, TypedAtomicActor, TypedCompositeActor,
TypedIOPort, and TypedIORelation. They extend the untyped version of the cor-
responding classes and interfaces, as shown in figure 5.5. TypedIOPort has a
declared type and a resolved type. The undeclared type is represented by Base-
Type . UNKNOWN. If a port has a declared type that is not BaseType . UNKNOWN, the

resolved type will be the same as the declared type.

Static type checking is done in the checkTypes () method of TypedCompositeAc-
tor. This method finds all the connections within the composite by first finding the output
ports on deep contained entities, and then finding the deeply connected input ports for
those output ports. For each connection, if the types on both ends are declared, static
type checking is performed using the type compatibility rule described in section 3.2.2.
If the composite contains other instances of TypedCompositeActor, this method

recursively calls the checkTypes () method of the contained actors to perform type
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Figure 5.5 Classes in the actor package that support type checking.

checking down the hierarchy. Hence, if this method is called on the top level Typed-

CompositeActor, type checking is performed through out the hierarchy.

If a type conflict is detected, i.e., if the declared type at the source end of a connection is
greater than or incomparable with the type at the destination end of the connection, the

ports at both ends of the connection are recorded and will be returned in a list at the end of
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type checking. Note that type checking does not stop after detecting the first type conflict,
so the returned list contains all the ports that have type conflicts. This behavior is similar
to a regular compiler, where compilation will generally continue after detecting errors in

the source code.

The TypedActor interface has a typeConstraintList () method, which returns
the type constraints of this actor. For atomic actors, the type constraints are different in dif-
ferent actors, but the TypedAtomicActor class provides a default implementation,
which is that the type of any input port with undeclared type must be less than or equal to
the type of any undeclared output port. Ports with declared types are not included in the
default constraints. If all the ports have declared type, no constraints are generated. This
default works for most of the control actors such as commutator and multiplexer. So by
providing the default, we make it easier to write such actors. In addition, the type-
ConstraintList () method also collects all the constraints from the contained

Typeable objects, which are instances of TypedIOPort and Variable.

The typeConstraintList () method in TypedCompositeActor collects all the
constraints within the composite. It works in a similar fashion as the checkTypes ()
method, where it recursively goes down the containment hierarchy to collect type con-
straints of the contained actors. It also scans all the connections and forms type constraints
on connections involving undeclared types. As with checkTypes (), if this method is

called on the top level container, all the type constraints within the composite are returned.

The Manager class has a resolveTypes () method that invokes type checking and
resolution. It uses the InequalitySolver class in the graph package to solve the con-
straints. If type conflicts are detected during type checking or after type resolution, this
method throws TypeConflictException. This exception contains a list of ine-

qualities where type conflicts occurred.

Run-time type checking is done in the send () method of TypedIOPort. This method
puts a token into the destination receiver. The checking is simply a comparison of the type

of the token being sent with the resolved type of the port. If the type of the token is less
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than or equal to the resolved type, type checking passes, otherwise, an exception is

thrown.

Type conversion, if needed, is also done in the send () method. The type of the destina-
tion port is the resolved type of the port containing the receivers that the token is sent to. If
the token does not have that type, the convert () method on that type is called to perform

the conversion.

5.3.3 Structured Types Implementation
The implementation of the structured types is more involved than the base types. The

complexity is due to the following:

¢ Type constraints may involve the element type of a structured type.

e As discussed in section 3.3.2.1, when the right side of an inequality term is a vari-
able structured type, the update step in the type resolution algorithm involves a uni-
fication of the right side variable structured type with the least upper bound of both
sides.

e While base types are atomic entities that will not change, variable structured types
are mutable and may change. For example, using the syntax of chapter 3, a type
{UNKNOWN} may be updated to {Double} during type resolution. Because of the
mutation, two instances of typed objects, such as two instances of TypedIOPort,
cannot share the same instance of the variable St ructuredType as their type.

To understand these issues better, let’s first take a look at how type resolution is conducted

with base types.

In Ptolemy II, the type of a TypedIOPort is stored in a local variable. This variable
is a reference to an instance of Type, and it is encapsulated in an inner class of Type-
dIOPort that implements the InequalityTerm interface. For example, figure 5.6
shows the run-time object structure of a TypedIOPort pl with type Int. Here, a solid
line box represent an instance of a class or interface, a dashed line box represents a ref-
erence, and an arrow from the dashed line box points to the object that the reference is
referring to. If a solid line box is contained within another box, it is an instance of an
inner class. For example, el is an instance of an inner class that implements the Ine-

qualityTerm interface.
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BaseType.STRING

pl: TypedIOPort

BaseType .DOUBLE

el: InequalityTerm

F= = = __p| BaseType. INT

BaseType . UNKNOWN

Figure 5.6 Run-time object structure of a TypedOIPort with type Int.

The inequality type constraints are implemented by the Inequality class, which
contains two references for the lesser and greater inequality terms. Figure 5.7 shows the
run-time object structure of two ports and a constraint that the type of the first port is
less than or equal to the type of the second. At the moment depicted by figure 5.7, the
type of the first port is Int, and the type of the second port is UNKNOWN, so the type

constraint is Int < o, and the current value of a is UNKNOWN. During type resolution,

pl: TypedIOPort BaseType . STRING

el: InequalityTerm

BaseType .DOUBLE

| .| BaseType.INT
b 4

p2: TypedIOPort d

7
b
e2: InequalityTerm ] //

Vd
Type |

\

i: Inequality

r n
o t:Type —

BaseType . UNKNOWN

IS

r
L

|l TnequalityTerm < g TnequalityTerm,
(Int < )

Figure 5.7 Run-time object structure during type resolution for the base type system.
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o will be updated to the least upper bound of Int and UNKNOWN, which is Int. This
update is done by directly changing the reference t2 (the type of the port p2) to point to
the object BaseType . INT, as shown by the dashed arrow.

This implementation works well for base types, but adding structured types requires some
non-trivial extensions. Since we allow type constraints to involve the element type of struc-
tured types, the element type must also be wrapped in an instance of Inequality-
Term. For example, figure 5.8 shows two instances of ArrayType. Here, atl and at2
are the element types, and the two array types are {/nt} and {UNKNOWN} respec-
tively. Now, assuming the object a2 in figure 5.8 represents the type of a port, and
during type resolution, we want to update the type of this port to {I/n¢}. This update
cannot be done simply by moving the type reference of the port to point to the object
al, because the element type of a2 may be part of another type constraint. Figure 5.9
shows an example of this situation. Here, we have three ports pl, p2 and p3, with types
{Int}, {UNKNOWN}, and UNKNOWN, respectively. We also have two type con-
straints. The first one is that the type of pl is less than or equal to that of p2. If we use
o to denote the element type of the array type a2, this constraint is {Int} < {o}. The
second constraint is that the type of p3 is less than or equal to the element type of a2. If
we use B to denote the type of p3, this constraint is B < a.. During type resolution, when

processing the inequality {/nf} < {a}, we compute the least upper bound of both sides,

al: ArrayType

ael: InequalityTerm BaseType . STRING

r A
L atl: Type ~ BaseType . DOUBLE

N
\ BaseType.INT

/ BaseType . UNKNOWN

a2: ArrayType

ae2: InequalityTerm

2t Type ]

Figure 5.8 Run-time object structure for two instances of array type.
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Figure 5.9 Run-time object structure during type resolution for structured types.

which is {Int}. Now, we cannot simply update the type of p2 to {Int} by moving the
reference t2 to point to the array type al. If we do so, the greater term reference of the
second inequality would be pointing to the wrong inequality term. This means that the

update for the type of p2 must be done in place. Instead of changing the reference t2,
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we should update the element type reference of a2. That is, we move at2 to point to
BaseType.INT. This step is implemented by the updateType () method in the
ArrayType class.

For this update to succeed, the least upper bound of both sides of the inequality must be a
substitution instance of the right hand side. In the case of figure 5.9, {Int} is indeed a
substitution instance of {a}. The method isSubstitutionInstance () defined
in the Type interface performs this check. This method is called from update-

Type () . If the check fails, an exception is thrown to indicate a type error in the model.

Another issue in the implementation of structured type is that an instance of variable
StructuredType cannot be shared by multiple typed objects. This is different from
base types. In Ptolemy II, base types are implemented as a type-safe enumeration, and
there is only one instance of the BaseType class for each base type. For example,
BaseType.INT is the only instance of BaseType that represents the Int type. If
there are multiple ports that all have the Int type, their type references all point to the
same instance BaseType.INT. For structured types, since there are an infinite
number of them, and they are mutable, they cannot be implemented by a type-safe enu-
meration. Hence, multiple instances of the same structured type, such as {Int}, can be
created. However, the same instance of variable structured type can not be shared by
multiple ports. If so, changing the element type for one port will affect other ports. To

see this difference from the developer’s point of view, let’s look at a program example.

Assuming there are two ports in an actor, pl and p2. If a developer wants to declare that
these two ports can work with any type, he or she can write the following code:

Type declaredType = BaseType.UNKNOWN;
pl.setTypeEquals (declaredType) ;
p2.setTypeEquals (declaredType) ;

After type resolution, p1 and p2 may be resolved to different types. Note that this code is
usually not necessary since the default type of ports is BaseType . UNKNOWN. Neverthe-
less, this code is perfectly legal.
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On the other hand, if the developer wants to declare that these two ports can work with
any array type, and their element types are not necessarily the same. An obvious way
of coding seems to be:

// BAn array of anything

Type declaredType = new ArrayType (BaseType.UNKNOWN) ;
pl.setTypeEquals (declaredType) ;

p2.setTypeEquals (declaredType) ;

This code will result in a run-time object structure shown in figure 5.10. Here, p1 and
p2 share the same instance of ArrayType. As discussed earlier, type update for struc-
tured types are done in place, so these two ports will always have the same type. In
another word, a type constraint that requires the types of the two ports to be the same

is added implicitly, without the awareness of the developer.

One way to resolve this issue is to ask the developer to write code in another style:

pl.setTypeEquals (new ArrayType (BaseType.UNKNOWN)) ;
p2.setTypeEquals (new ArrayType (BaseType.UNKNOWN) ) ;

This way, the two ports will use different instances of ArrayType, and they may resolve
to different types after type resolution. However, this solution is not very satisfactory
because the developer needs to understand and remember the difference between the
implementation of base types and structured types, and the implicit type constraint may

cause unexpected errors.

pl: TypedIOPort

BaseType . UNKNOWN

el: InequalityTerm

_ tl: Type —_ |

| al: ArrayType

ael: InequalityTerm
p2: TypedIOPort s vt %

-l -1/
e2: InequalityTerm / L 2t2_. Type,,

:E _e'l/

YPE€

1!

r
L

Figure 5.10 Two ports share the same instance of structured type.
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To make structured types behave like base types, we adopt another solution, which is to
not allow the same instance of variable structured types to be used by two typed objects,
such as two ports. To achieve this, we make a clone of the structured type object if it is
passed to the set TypeEquals () method for the second time. More specifically, each
instance of structured type is given a “user”. Constant structured types can have many
users, variable structured types can only have one user. In the first section of the code
above where the developer reuses declaredType on the port p2, the second call to
setTypeEquals () would cause the ArrayType instance to be cloned because it is

already used by a port. This way, the two code sections above will have the same effect.

5.3.4 Fork Connection and Transparent Port

In a Ptolemy II model, a port can be connected to multiple other ports at the same time.
Also, a port can be transparent, in which case it does not play a role during message
passing. Our type system can handle these special cases easily. We illustrate this

through some simple examples.

Fork Connection

Consider two simple topologies in figure 5.11, where a single output is connected to
two inputs in 5.11(a) and two outputs are connected to a single input in 5.11(b). Denote
the types of the ports by o, oy, 03, By, B2, B3, as indicated in the figure. The type con-

strains in these models are:

o, <a,
o, <a,
Bi<Bs
Br<B;

Some possibilities of legal and illegal type assignments are:

In 5.11(a), if al = Int, a, = Double, a3 = Complex. The topology is well typed. At run-

time, the IntToken sent out from actor A1 will be converted to DoubleToken

before being transferred to A2, and converted to ComplexToken before being trans-
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A1 B3

o A3 B2 B,

(a) (b)

Figure 5.11 Two topologies in which one port is connected to two other ports.

ferred to A3. This shows that multiple ports with different types can be interconnected

as long as the type compatibility rule is obeyed.

In 5.11(b), if B; = Int, B, = Double, and B is undeclared. The resolved type for B; will
be Double. If By = Int and B, = Boolean, the resolved type for B3 will be String since it

is the lowest element in the type hierarchy that is higher than both Int and Boolean. In

this case, if the actor B3 has some type constraints that require B; to be less than String,

then type resolution is not possible, and a type conflict will be signaled.

Transparent Ports

In Ptolemy II, there are two kinds of composite actors: opaque and transparent. Opaque
composite actors contain a local director that manages the execution of the actors inside
the composite. On the other hand, transparent composite actors do not contain a local
director and the actors inside the composite are managed by an outside director. Ports on a

transparent actor are transparent ports. These definitions are explained in detail in [33].

Transparent ports are not involved in token passing. For example, in figure 5.12, if the
actor A2 is transparent, the token sent out by A1 will be put into the input ports of Bl
and B2 without being temporarily stored in the port p1. Similarly, tokens sent out by
B1 or B2 will be put into the input of A3 directly. Since the transparent ports p1 and
p2 do not play a role in token passing, we do not include them in type checking and
type resolution. However, in the user interface of Ptolemy II, we want to assign types
to these ports so their information can be displayed in a way consistent with opaque

ports. Obviously, the types we assign should meet all the type constraints should these
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A1 A3

p1

Figure 5.12 A model with a transparent composite actor.

ports be opaque. In particular, the type of p1 should be less than or equal to the types
of the input ports of B1 and B2, and the type of p2 should be greater than or equal to
the types of the output ports of B1 and B2. This is very similar to the fork connection
cases discussed above. To meet such constraints, we define the type of a transparent
input port to be the greatest lower bound of the types of the input ports connected on
the inside, and the type of a transparent output port to be the least upper bound of the
types of the output ports connected on the inside. In figure 5.12, this means that o = a

A dy,and B=B; v B,.

An interesting special case is empty transparent composite actors. The type of an input
port on such an actor is the greatest lower bound of an empty set, and the type of an
output port on such an actor is the least upper bound of an empty set. As discussed in
section 2.4.1.1, the greatest lower bound of an empty set is the top element of the CPO,
and the least upper bound is the bottom element. This means that the type of the input
port is General, and the type of the output port is UNKNOWN. Figure 5.13 shows two
screen shots of a transparent actor in Ptolemy II with its input and output types dis-

played in tooltips. This type assignment makes perfect sense. Since an empty compos-

empty compaosite actor emply composite actor

tnput, type:genera! output, type:unknown

Figure 5.13 An empty transparent composite actor in Ptolemy II with input and output
types displayed.
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ite actor does not do anything with the input token, it can accept tokens with any type.
On the other hand, since this actor does not send out any token, its output type should
be the least element in the type lattice so that it can be connected with ports of any type.

From the typing point of view, this actor is maximally reusable.

5.4 Interface Automata

5.4.1 Implementation Classes

Interface automata are implemented in the FSM domain in Ptolemy II. This implementa-
tion leverages heavily the finite state machine infrastructure, so only two new classes
are needed. Figure 5.14 shows the UML diagram. The class InterfaceAutomaton
models an interface automaton. It contains instances of State and InterfaceAu-
tomatonTransition. This class also includes some tools that manipulate interface
automata or find information about them. The combineInternalTransi-
tions () method searches for chains of internal transitions and combines each chain
into a single internal transition. The resulting automaton may be smaller, but does not
make an observable difference in behavior since multiple internal transitions in a row

cannot be distinguished from outside the automaton. The compose () method com-

FSMActor 0.1 State Transition

T ‘i

InterfaceAutormaton IntarfaceAutomataT ransition

-_inputNames : Set +abel : StringAttribute
-_outputNames : Set N W
-_intemaiNames : Set 1int
+réerfaceAutomaton() 0.n [HNIERNAL TRANSITION it
+InterfaceAutomaton{workspace : Workspace) +InterfaceAutomatonT ransition(container : InterfaceAutomaton, name : String)|
+InterfaceAutomaton{container : CompositeEntity, name : String) | +attributeChanged(attribute : Attribute)
+addPorts() . 0.1 +getLabei() : String
[+combinetntemaiTransitions() [+getType() : int

+compose{automaton : interfaceAutomaton) : InterfaceAutomatony +setContainer{container : CompositeErtity)
+deadlockStates() : Set

+getirfo() : String

+inputNameSet() : Set
vintemalTransitionNameSet() : Set
+isClosed() : boolean

+sEmpty() : boolean

+newRetation) : ComponentRetation
+ouputNameSet() : Set

+renameT ransitionLabels{nameMap : Map)

Figure 5.14 Classes implementing interface automata.
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putes the composition of two automata. The composition algorithm will be described
later. The method deadlockStates () searches for states that do not have any out-
going transitions. The getInfo () method returns some high level information about
the automaton, such as the number of states, the number of transitions, and the names
of the transitions. The isClosed () method checks whether the automaton is closed.
That is, whether it only has internal transitions. The isEmpty () method checks

whether the automaton is empty.

The InterfaceAutomatonTransition class implements the transition of interface
automata. This class ensures that the label of the transition ends with an appropriate char-

acter (2, !, or ;) and determines the type of the transition from this ending character.

5.4.2 Composition Algorithm

As mentioned above, the compose () method in InterfaceAutomaton com-
putes the composition of two interface automata. There are four major steps in this
method:

1. Check composability

2. Construct the product automaton

3. Prune illegal states

4. Remove unreachable states

In step 1, we check that the transitions of the two automata are disjoint, except that an
input transition of one may coincide with an output transitions of the other, in which
case, the transitions will become a shared transition in the composition. If this condition
is not met, an exception is thrown. If this condition is met, we proceed to construct the
product automaton in step 2. The product automaton is constructed progressively from
the initial state, so only states that are reachable from the initial states are explored. In
addition, when we encounter illegal states in the product, we stop further exploration
from those states. Hence, this procedure does not actually construct the full product
automaton, but only the portion that may survive in the final composition. Since the
composition of two interface automata may be very small, this procedure may result in

significant savings than the construction of the full product automaton. In step 3, we
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prune out the illegal states in the product, and all the states that can reach those illegal
states through output and internal transitions. After this pruning, the resulting automa-
ton may be a disconnected graph, so we remove the states that are not reachable from

the initial state in step 4.

In step 2, 3 and 4 above, we use the standard frontier exploration algorithm, which is
similar to breadth first search of graphs. We outline the procedure in step 2 here. We
start from the initial state of the product automaton, and explore other states along the
legal transitions. During the exploration, the whole state space of the product automa-
ton is divided into three parts, as shown in figure 5.15. The frontier is the set of states
that are currently being explored. Let the two automata to be composed be P and Q, the

algorithm can be described as follows:

¢ Initialize:
product = frontier =(initialState_of_P, initialState_of_Q);
e [terate:
Pick (remove) a state (p, ) from frontier;

Exploring from p: pick a transition pTr (p, r are the source and destination
states of transition T in P);

state space of

product automaton states not

explored

frontier

states
explored
initial
state

Figure 5.15 Frontier exploration in the product automaton. The black dots represent
illegal states.
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case 1: T is input transition in P
case 1A: T is input transitionin P x Q
Add state (x, q) to product;
Add transition (p, @)T(x, q) to product;
case 1B: T is shared transitionin P x Q
case 1Ba: state g in Q has output transition gTs
Add state (r, s) to product;
Add internal transition (p, q)T(z, s) to product;
case 1Bb: state g in Q does not have output transition T
Transition T cannot happen in (p, q), ignore;
case 2: T is output transition in P
case 2A: T is output transitionin P x Q
Add state (x, q) to product;
Add transition (p, q)T(x, q) to product;
case 2B: T is shared transitionin P x Q
case 2Ba: state g in Q has input transition qTs
Add state (1, s) to product;
Add internal transition (p, g)T(xr, s) to product;
case 2Bb: state g in Q does not have input transition T
Mark (p, Q) as illegal state;
Stop exploring from (p, Q);
case 3: T is internal transition in P
Add state (r, q)toproduct;
Add transition (p, @)T(r, ) to product;
Exploring from g: (the procedure is symmetrical with exploring from p, but
shared transitions are not added twice. Details omitted here.)

e Stop when frontier is empty;

When pruning illegal states, frontier exploration starts from the set of illegal states
marked in the above procedure. In the last step of the compose () method, the explo-

ration starts from the initial state.

The composition of interface automata is also supported through the vergil interface of

Ptolemy II.
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6 Conclusions and Future Work

6.1 Summary

In this thesis, we have presented an extensible type system for component-based design.
Fundamentally, a type system detects incompatibilities at component interfaces.
Incompatibility may happen at two different levels: data types and dynamic behavior.
Accordingly, the type system presented in this thesis also has two parts. For data types,
our system combines static typing with run-time type checking. It supports polymor-
phic typing of components, and allows automatic lossless type conversion at run-time.
To achieve this, we use a lattice to model the subtyping relation among types, and use
inequalities defined over the type lattice to specify type constraints in components and
across components. Compared with the subtyping hierarchy in many conventional lan-
guages, our lattice formulation is more restrictive in that we require the subtyping rela-
tion to be antisymmetric and the least upper bound of any two types to exist. This
restriction enables us to use a very efficient algorithm to solve the inequality type con-
straints, with existence and uniqueness of a solution guaranteed by fixed-point theo-
rems. This type system increases the safety and flexibility of the design environment,
promotes component reuse, and helps simplify component development and optimiza-
tion. It addition, it can be extended in two ways: by adding more types to the lattice, or

by using different lattices to model different system properties.

We have also presented our approach for supporting structured types in this system. The
addition of structured types requires extensions on both the theoretical formulation and the
implementation of the system. In particular, we extend the format of inequality constraint

to admit variable structured types, and add a unification step in the constraint solving algo-
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rithm to handle these types. We have also analyzed the issue of convergence on an infinite

type lattice with structured types.

The data-level type system has been implemented in the Ptolemy II environment. Our
implementation is modular. The CPO and lattice support, including the algorithm for solv-
ing inequality constraints, are implemented in the graph package of Ptolemy II. This infra-
structure is generic in that it is not bound to one particular type lattice. Data encapsulation
and type definition were implemented in the data package, and type checking and type con-

version are implemented in the actor package.

To describe the dynamic behavior of components and perform compatibility check, we
extend the concepts of conventional type system to behavioral level and capture the
dynamic interaction between components, such as the communication protocols the
components use to pass messages. In our system, the interaction types and the dynamic
behavior of components are defined using interface automata. To check whether a com-
ponent is compatible with a certain interaction type, we can simply compose the autom-
ata models of the component and the interaction type, and check whether the result is
empty. This yields a straightforward algorithm for type checking at the behavioral
level. Our system is polymorphic in that a component may be compatible with more
than one interaction types. We have shown that the alternating simulation relation of
interface automata can be used for defining subtyping, and it induces a partial order for
the interaction types. This behavioral type order provides significant insight into the
relation among various interaction types. It can be used to facilitate the design of poly-
morphic components and simplify type checking. In addition to static type checking,
we also propose to extend the use of interface automata to the on-line reflection of com-
ponent states and to run-time type checking. We have also discussed the trade-offs in

the design of behavioral type systems.

We have implemented interface automata in the FSM domain of Ptolemy II. All the autom-
ata in this thesis are built in Ptolemy II and their compositions are computed in software,

except that some manual layout is applied for better readability of the diagrams.
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6.2 Future Work

6.2.1 Data Types

Our data-level type system can be improved in several ways:

Type Resolution for Open Systems

When a typed component with inputs and outputs is used in an untyped environment, the
environment does not provide type constraints for the inputs and outputs. In this case, type
resolution is done on an open system. This is analogous to compiling an individual library
module in text-based languages. To maximize the utility of the typed component, we want

to resolve the input type to the most general while keeping the type everywhere else to the

most specific. To achieve this, we plan to use a two-pass algorithm!. In the first pass, we
find the most general types in the system. In the second pass, we fix the types of the input,

and search for the most specific types for everywhere else.

Deriving Type Constraints for Expressions

As discussed in chapter 3, we assume that the detailed operation of the components are
not exposed to the type system and we only check type consistency at component inter-
face. However, in some cases, it is possible to examine the operation of the components
and extend the reach of type checking. For example, the Expression actor in
Ptolemy II computes an expression specified by the user. It should be possible for the
type system to analyze the expression and generate type constraints that link the type
of the expression with the types of the inputs and outputs of the actor. As another exam-
ple, in the FSM domain in Ptolemy II, the guard and action on the transitions can be
specified using expressions. These expressions can also be used to generate type con-
straints for the inputs and outputs of the finite state machine. By doing this, we can
reduce run-time type errors and the need for the user to specify the types at the inputs

and outputs of the components.

1. This algorithm came up during a discussion with Jérn Janneck.
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Adding More Structured Types

Currently, Ptolemy II only supports two structured types: array and record. More types,
such as union and tuple [21], can be added. Union type may be useful, for example, in a
communication system where a received message are drawn from a predefined set. Tuple
can be used as a generalized array, where the types of the elements do not have to be the
same, or as a simplified record, where the record labels are reduced to numerical indices.
We believe these types can be added without much difficulty, but the question is whether

they are useful enough to warrant their presence in the type system.

6.2.2 Behavioral Types
The behavioral types framework presented in this thesis can be extended in a number
of ways. Most of these extensions are speculative, but they may lead to some interesting

opportunities.

Running the Reflection Automata

Currently, the interface automata implementation in Ptolemy II does not support execution.
By leveraging the execution framework of the FSM domain, we can make interface
automata executable. We have mentioned the possibility of using automata to do on-line
reflection of component states. One immediate application of the reflection automata is to
provide debug information. In a model, the collective states of the reflection automata pro-
vide a snapshot of the model behavior. This information may be more intuitive than the
conventional debugging trace. In addition, reflection automata can also be used to control
configuration changes. For example, in a reconfigurable architecture or distributed system,
the state of the reflection automata can provide information on when it is safe to perform

mutation.

Automata Generation

In conventional type systems, data types may be declared by the programmer or inferred
by the system. So far in our behavioral types framework, the interaction types and the
reflection automata are designed manually based on the source code of Ptolemy II. This is
analogous to type declaration. An alternative is to automatically generate these automata

from the source code, which can be viewed as inferring the behavior types from the imple-
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mentation of components. The Bandera project [31] may provide a starting point for this
effort.

Using the Reflection Automata to Aid Actor Development

In Ptolemy II, many actors have a similar behavioral pattern. For example, the reflection
automaton in figure 4.3 of chapter 4 describes the common behavior of most of the
polymorphic consumer actors. We might be able to use these common patterns to sim-
plify actor development. Instead of asking the user to write a complete Java class for
each new actor, we can provide a library of actor templates in the form of interface
automata. The library may include such templates as Polymorphic Consumer, Poly-
morphic Transformer, SDF Consumer, SDF Transformer. When the user needs to
develop a new actor, he or she can pick a template, and just write the code that processes
the input token, which corresponds to the operation in a particular state in the automa-
ton. The rest of the code in the actor, including the code for execution control and com-
munication, can be provided by the design environment. This approach will have a
similar benefit as the Caltrop language [42] for actor development. Note that this
approach puts the creation of the reflection automata before the development of actor

code, so the behavior types do not need to be inferred from the source code.

Capturing Timing Properties

The interface automata we have used in this thesis are untimed. Using a timed automata
model, we may be able to model real-time requirements and constraints. Such automata
may be used to analyze the schedule for real-time systems. This is potentially a very

rich research area.

Support User Customization

One of the challenges in type systems research is to make type systems amenable to
user definition and customization [100]. This is important for behavioral types due to the
highly diverse information they may capture. It might be possible to design behavioral
types as a metalanguage that can be specified by the user. Eventually, such an approach
might lead to flexible design tools that allow the user to specify the relevant properties to
check.
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