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Abstract

TOWARDS A COMPLETE
PLASMA DIAGNOSTIC SYSTEM

by Dong Wu Zhao

Doctor of Philosophy in Engineering-Electrical Engineering & Computer Sciences
University of California at Berkeley
Professor Costas J. Spanos, Chair

We have set up a plasma diagnostic system with three sources of signals, OES,
RF, and machine signals. CF, OES lines 275 nm and 321 nm are found to be
better than any other signals for poly-etch endpoint detection. In addition,
excellent statistical models for wafer state prediction are obtained by linear
stepwise regession on all available signals. A data exploration system, based on
syntactical analysis, is developed for efficiently browsing of the data archive,
allowing users unprecedented flexibility in examining the data both qualitatively
and quantitatively. Two case studies of syntactic analysis for diagnostics are '
presented. Finally, the use of low frequency signals for plasma diagnostics in
investigated. The syntactic method for analyzing the signals is proposed.
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Chapter 1

INTRODUCTION

1.1 Modvation

As the semiconductor processing technology approaches the 0.1 pm feature size and 300 mm wafer
diameter, the cost of building a new fabrication plant is rising rapidly (20% per year) [26]. It is
predicted that it will take about $10 billion to build a state-of-the-art facility for manufacture in 2005.
To remain competitive and manage the escalating cost, the industry has strived to improve feature size,
wafer diameter, yield, and equipment utilization. However, the gains from wafer diameter and yield are

reaching their practical limits and the new focus is on equipment utilization.

The key to optimize equipment utilization is through process monitoring in order to make sure that
wafers are processed properly at each step. However, there are more than 100 manufacturing steps,
and it is too costly and time-consuming to measure each wafer after the completion of each step. As of
now, people in the industry usually measure and monitor wafers periodically, especially right after
performing preventive maintenance and changing machine settings. A final test is performed on each
wafer after all the steps. Thus, if an error occurs, it is very likely that many wafers are misprocessed
without notice until very late. Because of the late notice, it is very difficult to trace back and locate the
faulty step and diagnose the problem. Therefore, one can save considerable resources by monitoring
equipments on line, using their real-time signals. In this work we demonstrate that it is possible to do

so, with the monitoring of plasma etch signals as an example.

Plasma etching is one of the costliest steps during semiconductor processing. In addition, it is very
difficult to control, since the physical mechanism of plasma etching is not well understood. This thesis
explores various issues of plasma etch process monitoring, including fault detection and diagnosis,

endpoint detection, wafer state prediction.



A fault occurs when there is a sudden change in etching behavior, manifesting through a sudden shift
in signal behavior. It can happen due to operator errors, such as no photoresist, undeveloped wafer,
and wrong material, or machine errors, such as gas leak, power fault, and pressure fault. Fault detection
tools determine the state of the plasma etcher by analyzing the behavior of its real-time signals. Once a
fault is detected, the fault diagnosis tools will assign a cause to it, as to assist the process engineer to fix
the problem. By detecting the fault early, a process engineer can prevent expensive new wafers from
being fetched to the faulty etcher, and correct the fault on a timely basis. Thus, wafer yield and
throughput will be enhanced. Also, preventive maintenance (PM) can be scheduled according to fault

detection and diagnosis results, and down-time and mean-time-to-repair (MTTR) can be reduced.[15].

An endpoint is reached when the target thin film is etched through. Accurate end pointing has a great
impact on controlling the critical feature size. Precise wafer state prediction, for parameters such as
uniformity, etch rate, selectivity, and anisotropy, can reduce the need for costly and time-consuming

wafer measurement.

A plasma etcher generates a large number of signals suitable for diagnostic purposes. This work
examines the combination of heterogeneous signals, in order to extract useful information. Four
different sources of diagnostic signals on a plasma etcher are collected and analyzed, including optical
emission spectroscopy (OES), RF power information on the fundamental and several harmonics, and
the machine signals such as power, chamber pressure, temperature, gas flow rate, etc., and low
frequency signals, ranging anywhere from 10 Hz to 10 kHz. Various researchers have investigated 1"he
first three kinds of diagnostic signals, for examples, White, et al. [26, 27) and R. Chen [24] on OES,
Roth, et al. [45] on RF, Spanos and S. Lee [14, 15] on machine signals. This thesis puts emphasis on
| exploring and analyzing these three sources of signals. An automated data collection system is set up
on a LAM Rainbow 9400 Etcher. An OES sensor and an RF sensor are installed, and the machine
signals are collected through the machine built-in SECS II interface. A data exploration system based
on syntactic analysis is developed for examining the signals both quantitatively and qualitatively. An
endpoint detection sensitivity test is performed on these signals. Some wafer state models are built
from them with a few different techniques. Also, a couple of case studies of syntactic analysis in fault

detection and diagnosis on the plasma machine signals are presented.



Plasma operation is often associated with low frequency electrical signals. Even though these signals
may carry useful diagnostic information, they are not well understood, and have not yet been utilized
for this purpose. Recently, Lieberman, et al. observed that some low frequency signals are related to
the instability of the plasma, and proposed a physical model for the instability phenomenon [47].
Although some analytical techniques are proposed for analyzing the low frequency signals, the work
would not be complete without integration with the physical model. As of now, Lieberman, etc. are

still working the instability modeling.
1.2 Thesis Organization

Chapter 2 describes some traits of plasma etch signals which make them difficult to analyze, and then a
discussion on previous works by various researchers is presented. Chapter 3 details the hardware setup
on the LAM Rainbow 9400 Etcher in the Berkeley Microfabrication Laboratory. Chapter 4 discusses
the basic features of the data exploration software and present some case studies. Chapter 5 is about
choosing the optimal endpoint detection signals from the available signals on the LAM etcher. Some
comments on other endpoint detections works are also presented. Chapter 6 addresses the wafer state
modeling results, comparing a few modeling techniques. Chapter 7 talks about the data exploration
software’s advanced features based on syntactic analysis. The details of syntactic analysis will be
discussed. Chapter 8 presents some case studies of fault detection and diagnosis with syntactic analysis
on plasma machines signals. Chapter 9 explores the potentials of low frequency analysis. Some
analytical techniques are proposed. Chapter 10 concludes the thesis, with some thoughts on the future

works.



Chapter 2

BACKGROUND & PREVIOUS WORKS

2.1 Real-time Data of Plasma Etch & Analytical Difficulties

Plasma etching is not a very well understood process. Practical physical models for fault detection and
diagnosis are not yet available. Researchers in fault detection and diagnosis so far have used empirical
models. Previous works [15] involve modeling of input setting against wafer’s output parameters, such
as etch rate, uniformity, selectivity, and anisotropy. However, due to machine aging, maintenance and
various other effects, input settings do not entirely determine the chamber state. The same settings can
result in very different etching behavior. Spanos and S. Lee [14][15] show that the equipment’s own
electrical and mechanical signals can be modeled as time series and used effectively for fault detection
and diagnosis. These real-time signals reflect the chamber state much better than the input settings;

they are able to show drift in etching behavior due to machine aging and maintenance.

Usually, when the equipment is just out of control, the malfunction will first manifest itself in the real-
time signals, but not much etching damage is done to the wafer yet, and the wafer is still usable if the
malfunction is corrected soon enough. As a result, using real-time signals for monitoring the etching
process can help prevent misprocessing costly wafers. Hundreds -of real-time signals are available for
computer analysis via standard communication ports, such as SECS II. An engineer can choose a few
of them to monitor the etching process based on expetience. Alternatively, one can find out the signals
that are sensitive to faults by doing designed experiments. Some of the real-time signals proved useful
are RF load, coil position, RF tune vane position, peak-to-peak voltage load impedance, RF phase
error, DC bias and endpoint [16]. In this thesis, we will examine signals from other sources as well,

such as OES and RF.

Statistical modeling of etching signals has been difficult, due to preventive maintenance (PM), machine
aging, chamber memory effects, and other influences [15]. During a maintenance cycle, residue

gradually builds up in the chamber. This causes the chamber state and sensor signals to drift slowly.
4



Notice that a drift in sensor signals does not necessatily correspond to a drift in the chamber state. For
instance, as residue accumulates on the sensor window and degrades the transmittance, the intensity of

the sensor signals will decrease. Yet, the operation of the equipment is far from being faulty.

If too much residue accumulates in the chamber, the process parameters will be quite different from
when the chamber is clean. The aim of PM is to restore the etcher back to the original clean state.
However, due to the aging of other parts of the tool, process parameters after a PM will be a little
different from those at the beginning of the previous clean cycle; the average level of the signals as well

as the variance may change.

One also encounters so-called “memory effects”, where, for example, after a signal is unusually high
indicating a fault, it will often remain relatively high for a while before returning to the normal level,
even after the machine is back in control. This memory effect is very obvious when the machine first
starts up. It takes a few runs before the machine reaches its steady operating state, while the signals

appear to approach steady state values in an exponential fashion. (See Figure 2.1 and 2.2.)

g
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Figure 2.1. llustrating the nature of the plasma etching signals. a) Machine
aging effect within a PM maintenance cycle. b) Maintenance effect after a
PM maintenance procedure. c) Memory effect after a fault occurs.
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Figure 2.2, The memory effect as seen when the machine starts up.

The above are some of the observations that the author makes on some data obtained from the
industry. The thesis investigates signals from heterogeneous sources, and presents syntactic analysis, a
novel technique for analyzing the signals,. Some prior works applied analyu'cal fechnicjues on limited
observations with mixed success. Before presenting the new technique, it is helpful to go over some of
the previous works (hardware setups and analytical techniques), so that we can have a baseline for

evaluating the solution that is being presented:
2.2 Real-Time Machine Signals

S. Lee investigates the real-time machine signals with a parallel plate etching system (Lam Rainbow
4400) and a TCP etching system (Lam Rainbow 9400). A parallel plate system’s RF source consists of
upper and lower electrodes, which produces capacitive plasma discharges. The TCP RF source
consists of a planar coils wound from the center to the outer radius of the chamber. The plasma is
created when the gas near the coil ionizes due to the induced electric field. The RF sources of both
systems are 13.56 MHz AC power generators. TCP systems run at lower pressures and create higher
plasma density than parallel plate systems, so they usually achieve better anisotropy, smaller critical
dimensions, and faster etcher rates. Two data collection systems are being used, the Brookside
LamStation software and the Comdel Real Power Monitor (RPM-1). The LamStation software, which
gets data via the SECS II (SEMI Equipment Communication Standard — II) interface, is installed on
both the parallel plate etching system and the TCP etching system. The Comdel RPM-1 RF probe,

which collects data via its own RS232 intetface, is only installed on the parallel plate etching system.
6



Each etcher has more than 400 signals to choose from for diagnostic analysis. However, many signals
do not directly impact the etching chamber. For example, sensor signals for transporting wafers. Also,
even under the same recipe, etching behavior of the system changes over time as mentioned in
previous paragraphs, so machine settings are not monitored. An Etest is deployed to assess the
relevance of the rest of the real-time signals. A factorial experiment is conducted over a certain range
on the input settings. Also, the data is collected for a few wafers processed under normal machine

setting, or baseline condition.

Then the F-test can be computed as,

2
Sﬁwt /Vfacr

2 [ SN N
Soes |V bas

@.1)

where s}w is the estimated variance of a signal during the factorial run, v fur 15 the degrees of

freedom in the factorial experiment; 52, is the estimated variance of the baseline run, V. is the
degrees of freedom for the baseline condition. The signals with Estatistics above a certain level of
significance are used for monitoring the system. Table 2.1 and 2.2 list and describe the signals selected
for the parallel plate.system, and Table 2.3 lists the signals selected for the TCP system.

LamStation Software Comdel RPM-1
RF Load Coil Position RF Power
RF Tune Vane Position RF Voltage

Peak-to-Peak Voltage RF Current

Load Impedance Load Impedance
RF Phase Error RF Phase Error




DC Bias

DC Bias

Endpoint

Table 2.1. Real-Time State Signals Collected for the Lam Rainbow 4400,

Signal Description
RF Tune Vane Position Position of the tune vane in the matching network of the
upper electrode; acts as a variable capacitor
RF Load Coil Position Position of the load coil position in the matching network
of the upper electrode; acts as a variable inductor
RF Load Impedance Apparent input impedance of the matching network
RF Phase Error The phase error between the current and voltage (ideally

90 o) at the upper electrode

DC Bias

Measures the potential difference of the electrodes

Peak-to-Peak Voltage

Magnitude of voltage on the electrodes

End Point Data Reads the intensity of the plasma in the chamber at a
particular wavelength

RF Voltage Root-mean-square (RMS) voltage at the upper electrode

RF Current RMS current at the upper electrode

Table 2.2. Description of the ReakTime Signals.




Source Signal Description

RF Tune Vane Position Equivalent position of the tune vane position
in matching network of the lower coil

RF Load Coil Position Equivalent position of the load coil position
in matching network of the lower coil

Bottom RF Line Impedance Apparent input impedance of the lower

matching network

RF Phase Error Phase error between the current and voltage
at the bottom coil

DC Bias Measures the charge on the electrodes

TCP Tune Vane Capacitor | Position of the tune vane capacitor of the

Position matching network for the top coil

TCP Phase Error Phase error between the current and voltage at
the top coil

Top TCP

TCP Load Capacitor | Position of the load capacitor of the matching

Position network for the top coil

Line Impedance Apparent input impedance of the upper
matching network

RF Bias DC bias when both sources are powered

Others i _
Endpoint Reads the intensity of the plasma in the

chamber at a particular wavelength

Table 2.3. RealTime State Signals Collected for the Lam TCP 9600.




Time series models are used to capture the dynamics of the selected real-time signals. First, models are
trained to learn the in-control autocorrelation structure from the baseline data. If significant deviation

is detected from the baseline model, an alarm is generated.

The time series models used are ARIMA(p,d,q) models, where p is the auto-regressive order, d is
the integration order, and q is the moving average order. The ARIMA models for a non-

stationary time series X, can be expressed by the following two equations,

o, = —ﬁ%a’:-k + iokal-k (2.2)
k=1 k=1
w,=V‘X, 2.3)

where ®, is the stationary time series after taking the dth difference on the original non-

stationary series, with error a, which is distributed as N 0,0%).

With the ARIMA model, the prediction of the current stationary series is dohe by using past

observations.

w, = —i(ﬁ,‘w,_,‘ + ina,_,‘ (2.4)
k=1 k=1

The actual series is made stationary by taking the dth difference on the raw data as needed, i.e.

@, =V X, . Then the residual of the time series model s,

a,=w—Qo 2.5
t ]
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The residual is a zero-mean IIND variable if the tool is in-control.

For some signals, the wafer-to-wafer variation is much greater than the within-wafer variation
(Figure 2.3). RTSPC decomposes raw signals into long-term components (wafer-to-wafer) and

short-term components (within wafer). Each component is modeled by an ARIMA model.

During production, the wafer-to-wafer averages and the within-wafer trends are filtered by their
respective time series model in order to obtain the residuals. Then each component’s residuals

from different signals is combined into a single score by Hotelling’s statistics (Figure 2.4),

|

T =¢"S e (2.6)

where § is the estimated covariance matrix of the residuals, which may be computed in an

exponential weighted fashion,
A ko
S=Y Ne(k —ie" (k—i) @.7

i=0

where k is the user-defined moving window length and A is the exponential weighting factor.
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Figure 2.3. Signal decomposition for the impedance signal.
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2.3 OES

White, et al. and R. Chen have investigated the use of OES for plasma diagnostic. Figure 2.5 illustrates
the emission process. Gaseous plasma species are elevated to excited states by collision with energetic
electrons. As a species drops to a lower energy state, electromagnetic wave is released. Since only
excited species can release electromagnetic wave, the observed spectrum reveals density of particles in
the excited states, which is only small fraction of total particles, on the order of 10”. Also on the
spectrum, emission from intermediates and products may overlap with that from the intended
diagnostic species. As a result, it is necessary to choose selectively from the spectrum for the
wavelength in performing diagnostics. We need to choose the ones that are correlate with the

diagnostic parameters.
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Figure 2.5. Schematic diagram of atomic emission spectrum (from [24]).

Neglecting contribution from other emissions, let us consider only the case that a plasma particle is
excited from the ground state / to a state / by an electron collision, and then drops back to state 7. The

electromagnetic emission intensity can be written as,

I(A;) = NF;4;(A;)K (2.8)

Y

A;is the transition wave-length between state 7 and state J» N is the ground state density, A4; is the
Einstein emission probability, K is a correction factor which describes the effect of view volume and
alignment, and P is the electron impact excitation function which represents the probability of exciting
the state ; by electron impact, starting from the ground state. P is a complex function of electron

temperature Te, and is given by Lieberman and Lichtenberg [23].
P={"4m2dv,0,00,)0, £.(v,.,,n,) 2.9)

where Ve is the electron velocity, Gy is the cross section for emission of a photon of wave-length

A due to electron impact excitement, and £ is the electron distribution function
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which depends on electron temperature and electron density [23].

lens
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Czerny-Turner spectroscopy
Figure 2.6. Schematic illustration of the OES instrumentation.

Figure 2.6 shows a Czerny-Turner Spectroscopy instrument. Optical emission in the plasma chamber
is collected by the lens, transmitted through the optical fiber, imaged onto the entrance slit, dispersed
by the diffraction grating system. Then a CCD camera detects the dispersed beam through the exit

slot. The diffraction grating is usually a square. The grating equation s,
ma =d(sin@, —6,) (2.10)

Where m is the diffraction order, d is the groove separation distance, and 8,, and 6; are the angles
of incidence and diffraction respectively. The grooves are designed to maximize the first-order

diffraction (m=1) at a particular wavelength. The wavelength resolution of dispersion can be

computed as,
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M= cose, @1

where w is the exit slit width, f is the spectrometer focal length, which is the distance from the
exit plane to the last focusing mirror, v is the groove density. The efficiency of a grating system

for collecting light is wavelength-dependent, so the detect optical emission intensity by OES is,

1(A;) = NF; 4, (3,)Q(;)K @12)

Where ((A;) is the correction factor accounting for the grating system’s collection efficiency at
wavelength As;.

An OES spectrum contains 500~2000 wavelengths. Thus, an etcher can generate a large amount of
OES data. Also, signals from different wavelength are highly correlated. Researchers have used
principal component analysis (PCA) to analyze OES data.. The purpose of using PCA is to compress
the data and extract relevant information. PCA splits the data matrix into systematic variation (process
model) and noise (residual variance). For processing a wafer, data matrix X with m rows by n columns

(samples by variables), can be expressed as,
X=tp] +t,p; +..+t,pi +E=T,PT +E - (2.13)

Each variable in X has been centered by subtracting a 1 by n vector of the means of variables,

and scaled by d, a 1 by n standard deviation vector. The p; are called loading vectors, which are
eigenvectors of C=XT X, the covariance matrix of X. They are a set of orthonormal vectors;
ie. pip ;=0 for i#j, rlp ; =1 for i=j. The 4 are called the scores vectors, which for an

individual sample, can be computed as,
t, = Xp, (2.13)

And £ is the number of principal component (PC) selected, which is less than or equal to the
dimension of X, i.e., k<min(m,n). For the highly correlated plasma etching real-time data, the
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number of PCs required to adequately capture the systematic variation of a process is far smaller

than m and n.

Two statistics are used, “lack of fit” statistics O and the Hotelling’s T° statistics. Q is a measure

of the amount of variation not captured by the PCA model.

0, =eel =x,(I-BP)x| 2.14)
where e, is the ith row of E. T° is the measure of the variation within the PCA model,

T? =t,(T]T,)"tT (2.15)

where ¢ is the ith row of T,. Notice that 7,77, is a diagonal matrix due the orthogonality of the

{t:} vectors. The diagonal entries of the matrix are eigenvalues of the covariance matrix of X,

The mean vector a, standard deviation vector d and the covariance matrix need to be updated in

an exponential weighted way as new process data become available.

J
a(j+D)=Y a’a'(J - j) ) (2.16)
J=1
J
d(j+)=Yy'd'(J - ) @.17)
J=1
. J
CG+)=T/C(J-)) @.18)
j=l

where a(J), 4]-j), and C’(Jj) are the actual mean vector, standard deviation vector, and covariance
matrix respectively, for the jth measurement. ., Y, and I" are the user-defined exponential weight. ] is
the window size of the past measurement. Notice that these model parameters depend only on the
past observation. The PCA model is recomputed based on the covariance matrix Cfj+7), ie., new

loading vector p; and eigenvalues of the covariance matrix will be obtained. As the new process data
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X, become available, it is centered with 4ff+7) and scaled with dj+1). Then new score 7

nnen

obtained by Eq. (2.13) with the new loadings. And Q, T can be computed with Eq. (2.14) and (2.15)

can be

by replacing X, with X, £,,, with £, and T, 7, with the new eigenvalue matrix.
2.4 RF signals

RF signals are not as sensitive to the change in plasma chamber as OES and real-time machine signals.
We have not seen the use of RF signals alone for plasma diagnostic purpose. However, we will show
in later chapters that RF signals can supply significant diagnostic information.

Let us denote the real-time RF voltage of the powered electrode with respect to ground »(f), and real-
time current flowing into the powered electrode #(%). Since #() and (%) contain harmonics of the 13.56

MHz fundamental frequency, they can be expanded into Fourier series,
wt)y=> Ve (2.19)
)= 1,e" (2.20)

where j is the imaginary number, #=-1; ®,=27nfis the angular frequency, V, and I, are the Fourier
amplitudés at @,. The fundamental frequency fis 13.56 MHz.

In studying the plasma impedance’s transient behavior, Roth, et al. has used commercial voltage
probes Phillips PM 9100, and current probes Pearson 2878 to measure the fundamental frequency and
its four harmonics. In our study, we use Advanced Energy’s Zscan sensor and software to measure

and collect RF voltage and current data at the five frequencies.
2.5 Comments on previous analytical techniques

Previous analytical techniques usually rely on assumptions about the signal. A typical assumption is
that the signal is stationary (i.e., the mean value is unchanged, the noise is normally distributed and the
variance is constant), or the drift over time is constant, etc. The previous techniques can only deal with

the various influence on the signal on a limited scope. That is, a technique may be able to capture
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some aspects of the signal well, but fail to address other aspects. For instant, ARIMA time series
modeling is able to capture the general dynamic behavior of the signal within a wafer run, or wafer-to-
wafer. But it fails to address memory effects (as we have seen during machine startup), or sharp spike
in the signal waveform. PCA is able to handle the correlated structure in the signals, but it does not

eliminate irrelevant signals that will decrease the significance of the model.

In studies of this nature, it is easy to underestimate the importance of critically examining the data, in
the content of the application and the physical model that describes it. Unfortunately, automated data
analysis schemes are ill-suited for this time of examination, which has to be performed by a human
domain expert. In the following chapters, we will discuss the data archive setup of our diagnostic
system first. Then we will present the features of the data exploring software, which allow the
researcher to make both quantitative and qualitative observation on plasma etch signals. Also, we will
discuss syntactic analysis in depth, which offer great flexibility in handling different influences on the
signals.
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Chapter 3

THE DATA ARCHIVING SYSTEM SETUP

3.1 Introduction

Many signals from a plasma etcher under operation can be monitored. An automatic data archiving
system is set up for the LAM Research Rainbow 9400 Etcher, adapted for 6” wafers, and operating in
the Berkeley Microfabrication Laboratory. The system archives three different sources of diagnostic
signals, including optical emission spectroscopy (OES), RF power information on the fundamental
frequency and several harmonics, and various other machine signals such as power, chamber pressure,
temperature, gas flow rate, etc., which are collected via the SECS II interface. The data archiving
system is turned on at all times. Every time the etcher starts a wafer run, a set of three time-stamp-
synchronized files are created, and the data from each signal source is saved to its respective file.
Finally, the data for the diagnostic signals are saved to a network archive file system, available for

retrieval from one’s workstation.



Archive user

interface

network

system

OES Plasma RF
« *
sensor Etcher sensor

Figure 3.1. Overall setup schematic of the data archiving system.

3.2 Machine Signal Acquisition

The LAM 9400 polysilicon etcher has built-in sensors for its real-time signals. These machine signals,
along machine settings, and machine status parameters, such as lot number, vacuum on-off, valve
open-close, etc., can be collected by a workstation via the SECS II interface. The Accelar 1200
Network on our system runs at 100 Mbit/sec, and SECS communication ports are set to run at 9600
baud. Thus, server-client network communication will not be the bottle-neck for data transfer from
the etcher to the workstation.
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3.3 Ocean Optics OES Sensor

The Ocean Optics OES Sensor is PC2000-UV-VIS Fiber Optic Spectrometer with effective range of
200 nm~1100 nm. Its detector consists of a 2048-clement linear CCD-array with a grating of 600

lines/mm. The entrance slit is fixed at 25 mm in width, 1000 pum in height. With no moving patt, the

optical bench is compactly mounted on a PC plug-in 1 MHz ISA-bus A/D card, which fits into a slot
in the PC. The spectrometer collects light transmitted from Ocean Optic P400-2-UV/VIS fiber, which

is a 2meter-long, 400-m-patch fiber. The 74UV collimating lens, 5 mm in diameter, 10 mm in

length, screws on the end of the fiber for measuring optical emission from the LAM etcher window.

Figure 3.2. Ocean Optes PC2000-UV-VIS
Spectrometer is mounted on a PC plug-in card.

3.4 RF Sensor

The RF sensor we use is the Advanced Energy Z-Scan probe, a non-intrusive RF-sensing system that

allows accurate real-time measurement under powered conditions. The Z-Scan probe collects voltage,
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cutrent, and phase data of the five harmonics of the 13.56 MHz fundamental frequency. The Z-Scan
system consists of a sensor, an electronic module, and an analysis software, Z-Ware. The ZScan
sensor is designed to be inserted between matching network and the process chamber. The electronic
module contain A/D converters along with analog processor, and intetface boards. The analog board
receives the data from the sensor. The A/D converter converts the data into digital format for the
processor to read out the sensor input, at 10 readings per second. A RS-232 interface card is for
making connection to the PC. Z-Ware contains various analysis features, such as graphical analysis
with Smith, polar, and time domain plots. Since we do our own analysis, we just need ZWare to

output the sensor in ASCII format for our analysis system.

RF Generator Matching Z-Scan Sensor Z-Scan
- Network Electronic
‘L 1 Module
Plasma
Chamber

Figure 3.3. lllustration of the placement of the Z-Scan senser probe.

3.5 The Data Archiving

The data archiving system is developed for automatic data acquisition, storage, and retrieval. The
workstation acquires data through various sensors and interfaces. The Archive File System stores the

data in a centralized file archival location. The researcher can examine the data files through the
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Archive User Interface. The Data Archiving system has five main software components: Custom
SECS II Communication Labview VI (Virtual Icon) Interface, Custom Ocean Optics PC 2000
Spectrometer Auto-Archiving Labview Interface, Z-Ware interface, Archival Storage File System, and
Custom Archive Retrieval User Interface. The last two components are connected to the data
acquisition workstation as shown in Figure 3.1. The first three components resides inside the
workstation. These components run continuously. User interaction is not necessary unless the system

is down due to network outage or other abnormal events, so that a restart is required.

‘The Custom SECS II Interface transmits data packets between the connecting workstation and the
LAM 5 Etcher. Besides real-time signals, such as power, pressure, gas flow rate, the workstation can
fetch additional machine information, such as alarm messages, process chamber status, equipment

status, process wafer number.

Ocean Optics PC2000 Interface is a custom-designed Labview VI. It.continuously monitors the
machine information from the SECS II interface. The SECS II interface and Ocean Optics PC2000
interface share the same Labview front-end control panel, which show the display various machine
information (see Figure 3.4). When a wafer is being processed and the plasma is ignited, the VI will
acquire a spectrum from the OES sensor through the ISA bus. Also, the workstation will update the
various information display on the front-end control panel based on the user-defined integration time.
In our case, we set it to be 0.95 second. Due to the overhead of data transmission via the SECS II
interface, which run at 9600 baud. The update frequency of the display is about once every 1.9
seconds. There is a graphical display showing the current location of the wafer in the etcher while the
wafer is being processed. On the upper right corner, there is the intensity vs. wavelength OES plot,
which will be frequently updated when a wafer is being etched in the chamber. On the Lower left
corner, there is an array of number entries, which allows users to specify which real-time signals to be
saved to the archive. Table 3.1 lists the signals used. The numerical code names can be found in the

appendix of the LamStation Rainbow Manual.
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Figure 3.4. The front-end control panel for both SECS II and OES.

Code Name Signal Name

23 RF power #1

24 RF line impedance #1

26 RF match #1 peak RF voltage
27 RF generator #1 reflected power
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28

RF generator #1 forward power

53 RF generator #1 power control

550 RF generator #3 forward power

551 RF generator #3 reflected power set point
552 RF generator #3 forward power set point
41 Chamber pressure set point

242 Chamber pressure

600 Upper chamber temp set point

601 Lower chamber temp set point

612 Upper chamber temp sens

613 Lower chamber temp sens

8 Gas #1 (CL) flow

45 Gas #1 (C,) set point

10 Gas #2 (HBr) flow

46 Gas #2 (HBr) set point

12 Gas #3 (CF,) flow

47 Gas #3 (CF,) set point
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14

Gas #4 (O,) flow

48 Gas #4 (O,) set point

16 Gas #5 (He/Ar) flow

49 Gas #5 (He/Ar) set point

18 Gas #6 (SFy) flow

50 Gas #6 (SF) set point

1 Gas #7 (O,) flow

41 Gas #7 (O,) set point

2 Gas #7 (O,) current sense
42 Gas #8 (CF,) set point

423 Recipe number

20 RF match #1 tuning position
21 RF match #1 load coil position
564 .TCP tuning cap pos

578 TCP match load cap

332 Current recipe step #

3 Gas #8 (CF,) flow
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34 Endpoint detector a (SiCl 405nm)

35 Endpoint detector b (CO 520nm)

Table 3.1. List of selected machine reaFtime signals for data archiving.

While the Z-Ware software has many data-analysis features, we only need the Z-Ware to convert the
RF voltage, current, phase data from the Z-Scan sensor to ASCII format. The final acquiring rate on
Z-Ware for the Z-Scan data is about 1 Hz.

The Archive File System Stores the data files acquired by the workstation to a centralized file system
location, with a symbolic pathname of 4\ \skopelos\bcamarchive$\lam5\archive’. Every time a wafer
run is finished, a set of three files for the three sources of data is stored. The log file “lam5.log” is
updated to record the change. The OES file name format is “lam5_pc2000.775.dat”; for the machine
real-time signal, “lam5_pc2000.77n.dat.SVID”; for Z-Scan data, “lam5 _pc2000.7mm.dat ZSCAN”;
whete nnn or mmm is the time stamp, the number of seconds past with respect to a fixed time
reference. Notice that since both the machine real-time signals and OES data have Labview interfaces,
their files can be synchronized to have the same time stamp. At the time of the writing, the Z-Ware
has not been synchronized with the Labview interfaces to produce a common time stamp. Some
programming is required to group the files together for data retrieval of each wafer run. The researcher
can examine the data files from his/her workstation through the Archive User-Interface. The user-

friendly interface allow users to view files, retrieve file, store files, or edit files attributes.
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Fie Nams [Sien |

oS, log

Lle

[ Recipe Fie

Fiename 2
E LAMS_PC2000 305424 7605 dal SVID ctv
g LAMS_PC2000 3054248533 dat
|m] LAM5_PC2000 3054248533 dal.5003 rcp
5] LAMS_PC2000 3054248533 dal. SVID.csv
] LAMS_PC2000 3054 248770.dat
|m] LAMS_PC2000 3054248770.dat.5003.1cp

LAMS_PC2000 3054248770 dal. SVID.csv
¥ LAMS5_PC2000 3054347725 dal
|m] LAMS_PC2000 3054347725 dat. 5003 rcp
illAME_PCZWU 3054347725 dal SVID . cav.
¥ LAMS_PC2000.3054347852 dal
{=m] LAMS_PC2000 3054347852 dat 5003 rcp
34)LAMS_PC2000 3054347852 dal SVID cev
LAMS_PC2000 3054347330 dat
(=] LAMS_PC2000 3054347330 dat 5003 rep
LAMS_PC2000 3054347330 dal SVID.csv
] LAMS_PC2000 3055128347, dat
{m] LAMS_PC2000 3055128347, dal 5003 rep

LAMS_PC2000 3055128347 dat SVID czv

LAMS_PC2000 305424 76805 dat. SO0G 1ep
LAMS_PC2000 3054248633 dat. 5003 1cp
LAMS_PC2000.3054248533.dat. 5003.1cp
LAMS_PC2000 3054248533 dat SO0D rep
LAMS_PC2000.3054248770.dat. 5003.1cp
LAMS_PC2000.3054248770.dat. 5003.icp
LAMS_PC2000 3054248770.dat. 5000 rep
LAMS_PC2000.3054347725.dat. 5003.i1cp
LAMS5_PC2000.3054347725.dat. 5003.1cp
LAMS_PC2000 3054347725 dat. S003.1ep
LAMS_PC2000. 3054347862 dat.5003.1cp
LAMS_PC2000. 3054347862 dst. 500G 1cp
LAMS_PC2000 3054347862 dat. SO03.1cp
LAMS_PC2000.3054347990.dat. 5003.1cp
LAMS_PC2000 3054347390 dat SO03.1cp
LAMS_PC2000 3054347350 dat SO 1ep
LAMS_PC2000.3055128947. dat. 5003.1cp
LAMS_PC2000 3055128947 dat SO0 1cp
LAMS_PC2000 3055128347 dat 5003 icp

Date

10/12/2000 02:08:23

10/12/2000 07:23:18

10/12/2000 07.23:19 ..
10/12/2000 07:23:19 .
10/12/2000 07.27:14 ...
10/12/2000 07:27:14 .

10A13/2000 105719 .
10/13/2000 10:53.04 ..
101372000 105304 .
10/13/2000 10:58:04 .
10/13/2000 11:01:47 ..
101372000 11:01:48 .

1011372000 11:01:48

10/22/2000 11:59.34 ...

1072272000 11:53:34

10/22/2000 11:59.34

Flgure 3.5. Archive User-Interface.
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Chapter 4

DATA EXPLOREATION SYSTEM

4.1 Motivation

As mentioned previously, plasma etch signals are subject to various influences, such as preventive
maintenance, machine aging, and chamber memory effect. Before proposing any meaningful analytical
technique for the signals, a researcher needs to look through the data first in order to mentally
characterize the influences. That is, before developing computer routines to perform diagnostics on
the signals, s/he has to be able to perform the task with her/his naked eyes. However, there are more
than 2000 signals available for investigation on our data archiving system. Also, the system is on at all
time. A few hundred kilobytes of data is saved to the file system every time a wafer is processed. It is
tedious and time-consuming for a researcher to browse through this huge amount of data. As a result,
a data exploration software is developed for efficiently browsing the data archive. It allows the user to
examine the signals both quantitatively and qualitatively. In this chapter, we will only introduce the

basic features. In later chapters, we will discuss the advanced features with syntactic analysis.
4.2 Features

The software allows the user to retrieve a list of files according to the specified time interval. Then the

files are grouped into a wafer list, with three files from each of the three sensor sources for each wafer.
| The user can indicate a list of signals s/he wishes to investigate. A window can be specified for a
particular portion of the etch waveform. The windowed waveforms can be plotted on the screen,
wither one after another, or stacking on top of one another. Recipe name distribution can be
generated. Also, distribution for the value of the windowed portion of the waveform can be created.
Further, wafer data lists can be extracted based on recipe names or values of the windowed portion.
Finally, signal-vs.-signal plots can be generated and signal-vs.-signal correlations can be computed. Let
us step through the features in the software.
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Change exploration settings

This item allows the user to change various inputs of the software, including, time interval, window
selection, signal selection. The user can specify the from-date and fo-date of a time interval. With a new
time interval, the user can get a complete new list or append the wafer data to an existing list. For the
list of wafer data, the software has the options of specifying absolute windows and step window. A
different window can be specified for each of the three sources of data. An etch process has a number
of steps. For instance, Recipe 5001 has three steps, with step 3 as its main etch step; Recipe 5003 has
seven steps, with step 5 as its main etch step. The step number information available is from the SVID
machine data. As previously mentioned, due to the different hardware interface, ZSCAN data is not
synchronized with SVID and OES data, and have a different sampling rate (1 sample/1 second instead
of 1 sample/1.9 second for SVID and OES), so the user can only specify absolute windows for
ZSCAN data.

For step window selection, the user need to input step number, delay, and window size. If the window
size exceeds the end of the step, or if the user specifies the window size as —1, the data up the last
entry of the step will be selected. For absolute window selection, the user just needs to specify the start
index and the end index. If the end index exceeds the end of the data, data up to the last entry will be
selected. There is a subtle design issue here. For absolute windowing, we do not adapt the step
window format which lets the user sbecify the delay and window size, so that the user can input —1
window size to fetch up until the last data entry. The reason is that when we do windowing, we usually
want to get the data from stable region of the same step. The last data entries often correspond to the

power-off state and are usually not in the same step we are interested in.

A list of signals can be selected for investigation, with this format: source? index1 source2 index2 ... A
source is one of the three sources of signals, OES, SVID, and ZSCAN. For OES, the index range
from 1 to 2048. Since the OES effective wavelength is 200 nm~1100 nm, to get a wavelength
conversion for an index, one can use this formula: wavelength (nm)=200 + index * (1100 —
200)/2048. For SVID, the variable index can be looked up in Table 3.1. The index is the ordinal
number on the table. The index for the first variable, RF power #1, code 23, is indexed as “1.” For
ZSCAN, there are 35 variables for selection, as shown in Table 4.1.

3



Index Symbol Signal Name

N+1 Vrms Root-mean-square voltage

N+2 Irms Root-mean-square current

N+3 Phase Phase between current and voltage
N+4 P Powet

N+5 yA Impedance

N+6 R Resistance

N+7 X Reactance

Table 4.1. ZSCAN signal index.

Where N is from 0 to 4, indicating the Nth harmonic. N=0 indicates the fundamental frequency.
Notice that only the first three variables in the table are independent. The other four are calculated by
the Z-Ware software.

Build wafer list & Add wafer data to list

The user can build a wafer data list from scratch or add wafer data to the current existing list by

specifying a new time interval. The program first fetches all the data files that fall between the from-date
and the #o-date, then builds the list of wafer data records from the files. Each wafer data record consists
of three files, with each file from its respective source. While the OES file is synchronized with the

SVID file, the ZSCAN file is not synchronized with them, that is, the ZSCAN file has a slightly

different time stamp from the other two files. Therefore, the program needs to look through the list of
files to find the closest time-stamp match of the ZSCAN file from the other two files.

Generate recipe distribution & Extract wafers on recipe number
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The program gets the recipe number from the SVID file from each of the wafer record in the list, and
then generates the count for each recipe number. Most of the analysis is done on the wafer data with
the same recipe number. It is useful to see the distribution of the recipe number; it helps to decide
which recipe’s data should be used for analysis, since the more wafer data for a recipe there are, the
more significant the analysis is. The program prompts for a recipe number and extract the data with

the recipe.
Generate signal value distribution & Extract wafers on signal value

The data window should be specified around the steady region of the waveform. During stable
etching, the signal intensity should be more or less steady. However, on a wafer-to-wafer basis, signal
intensity may fall into clusters, due to different exposure masks, etching material compositions,
equipment status, etc. The user may want to analyze wafer data with the signal value in a certain cluster
only. Therefore, it is useful to generate a distribution of the average windowed signal value. In
extracting data, the user needs to specify the signal index, and the upper and lower bounds for the

signal value.

Generate entire within-wafer plot, windowed within-wafer plot & Concatenated windowed

plot

In order to assess the nature of the signal, it is very important for the user to get a visual impression of
the waveform. The program can plot the entire waveforms, so that the user can make a judgment on
which portion of the signal to be windowed. The windowed within-wafer plot is the plot that shows all
the windowed waveforms stacking on top of each other. This can show the trend of the signal during
etching, as well as the variation of the similar etch region. The concatenated windowed wafer plot
takes all the windowed waveform and connects them back-to-back. This plot can demonstrate the

wafer-to-wafer trend of the signal.
Generate cross-wafer plot & Compute signal correlation

A cross-wafer plot is a signal-vs.-signal plot. That is, the program generates all the combinations of

two signals from the list of user-selected signals. The average values of the windowed region are
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computed for all the wafers. Then, the program generates a X-Y plot for each signal combination for
the average values of the windowed region (for example, see Figure 4.8). On the plot, each data point
comes from a different wafer. Subsequently, signal-vs.-signal correlation can be calculated for all the
combinations. The plots and the respective correlation information are very useful for reducing the

number of variables needed for analysis.
Manipulate wafer list

The program allows the user to list all the wafer records, and selectively delete some records. Or the
user can move some records to a buffer list, in case they might be useful for later analysis. This feature
does not only facilitate the removal outliers, but also allows the user to manipulate the data list based
on his/her expert knowledge on the data. There is an interactive windowed within-wafer plot to let the
user see the effect of manipulating the wafer list. It generates the same plot as windowed within-wafer

plot, only that it puts the windowed waveforms one at a time with user interaction.
4.3 Examples
Wafer state experiment

At the end of February 2001, a wafer state experiment was performed. The machine setting was
adjusted in order to achieve different etch rate and uniformity. For details of experimental design and
analysis, see Chapter 6. In this example, we want examine the waveform and value spread of some of
the significant signals, and perform some correlation calculations. Sixteen wafers were to be processed
on February 24. However, an error occurred on the 14" wafer, so that, the remaining 3 wafers were
processed on February 28. To get the data of 16 wafers for the exploration software, first, build a list
for the time interval of “24-Feb-2001 12:30:00” ~ “24-Feb-2001 13:30:00”.

wafer 1

LAMS5_PC2000.983042971.595.dat 24-Feb-2001 12:33:36
LAMS5_PC2000.983042971.595.dat.SVID.csv 24-Fcb-2001 12:33:36
LAMS5_PC2000.983043032.000.dat.ZSCAN.csv 24-Feb-2001 12:48:58
wafer 2

LAMS5_PC2000.983043409.916.dat 24-Feb-2001 12:37:36
LAMS5_PC2000.983043409.916.dat.SVID.csv 24-Feb-2001 12:37:37
LAMS_PC2000.983043427.000.dat.ZSCAN.csv 24-Feb-2001 12:48:58
wafer3

LAMS5_PC2000.983043537.970.dat 24-Feb-2001 12:39:39
LAMS_PC2000.983043537.970.dat.SVID.csv 24-Feb-2001 12:39:40
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LAMS5_PC2000.983043552.000.dat. ZSCAN.csv
wafer 4

LAMS5_PC2000.983043701.164.dat
LAMS_PC2000.983043701.164.dat.SVID.csv
LAMS5_PC2000.983043716.000.dat. ZSCAN.csv
wafer 5

LAMS_PC2000.983043940.489.dat
LAMS_PC2000.983043940.489.dat.SVID.csv
LAMS5_PC2000.983043955.000.dat.ZSCAN.csv
wafer 6

LAMS_PC2000.983044069.404.dat
LAMS_PC2000.983044069.404.dat.SVID.csv
LAMS5_PC2000.983044083.000.dat. ZSCAN.csv
wafer 7

LAMS5_PC2000.983044214.162.dat
LAM5_PC2000.983044214.162.dat.SVID.csv
LAMS_PC2000.983044232.000.dat. ZSCAN.csv
wafer 8

LAMS5_PC2000.983044378.649.dat
LAMS5_PC2000.983044378.649.dat.SVID.csv
LAMS5_PC2000.983044393.000.dat.ZSCAN.csv
wafer 9

LAMS5_PC2000.983044598.194.dat
LAMS_PC2000.983044598.194.dat.SVID.csv
LAMS_PC2000.983044613.000.dat. ZSCAN.csv
wafer 10

LAMS5_PC2000.983044731.826.dat
LAMS_PC2000.983044731.826.dat.SVID.csv
LAMS_PC2000.983044747.000.dat. ZSCAN.csv
wafer 11

LAMS5_PC2000.983044929.060.dat
LAMS5_PC2000.983044929.060.dat.SVID.csv
LAMS5_PC2000.983044944.000.dat. ZSCAN.csv
wafer 12

LAMS5_PC2000.983045070.383.dat
LAMS5_PC2000.983045070.383.dat.SVID.csv
LAMS5_PC2000.983045084.000.dat.ZSCAN.csv
wafer 13

LAMS5_PC2000.983045261.438.dat
LAMS5_PC2000.983045261.438.dat.SVID.csv
LAMS5_PC2000.983045276.000.dat.ZSCAN.csv
wafer 14

LAMS_PC2000.983045455.637.dat
LAMS_PC2000.983045455.637.dat.SVID.csv
LAMS5_PC2000.983045471.000.dat. ZSCAN.csv
wafer 15

LAMS5_PC2000.983046088.507.dat
LAMS5_PC2000.983046088.507.dat.SVID.csv
wafer 16

LAMS_PC2000.983046179.128.dat
LAMS5_PC2000.983046179.128.dat.SVID.csv

According to the expériment logbook, only wafers 2~14 are the ones that took part in the wafer state
experiment. So, we go to the Manipulate Wafer List Menu to delete 1, 15, 16. Then, we add more
wafer data to the existing 13 records, with time interval “28-Feb-2001 17:30:00” ~ “28-Feb-2001
18:30:00”. Upon inspection of the new list, we can find that wafers 14~18 and 22~26 should also be

24-Fcb-2001 12:48:58

24-Feb-2001 12:42:23
24-Feb-2001 12:42:24
24-Feb-2001 12:48:58

24-Feb-2001 12:46:24
24-Feb-2001 12:46:25
24-Feb-2001 13:18:58

24-Fcb-2001 12:48:32
24-Feb-2001 12:48:32
24-Feb-2001 13:18:58

24-Feb-2001 12:50:58
24-Feb-2001 12:50:59
24-Feb-2001 13:18:58

24-Feb-2001 12:53:41
24-Feb-2001 12:53:42
24-Feb-2001 13:18:58

24-Feb-2001 12:57:24
24-Feb-2001 12:57:23
24-Feb-2001 13:18:58

24-Feb-2001 12:59:36
24-Feb-2001 12:59:37
24-Feb-2001 13:18:58

24-Feb-2001 13:02:51
24-Fcb-2001 13:02:51
24-Feb-2001 13:18:58

24-Feb-2001 13:05:13
24-Feb-2001 13:05:13
24-Feb-2001 13:18:58

24-Feb-2001 13:08:23
24-Feb-2001 13:08:24
24-Feb-2001 13:18:58

24-Feb-2001 13:11:38
24.Feb-2001 13:11:39
24-Feb-2001 13:18:58

24-Feb-2001 13:21:57
24-Fcb-2001 13:21:58

24-Fcb-2001 13:23:32
24-Feb-2001 13:23:33

deleted. We are then left with the 16 wafers of the experiment.

wafer 1
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LAMS5_PC2000.983043409.916.dat
LAMS5_PC2000.983043409.916.dat.SVID.csv
LAMS_PC2000.983043427.000.dat.ZSCAN.csv
wafer 2

LAMS_PC2000.983043537.970.dat
LAMS5_PC2000.983043537.970.dat.SVID.csv
LAMS5_PC2000.983043552.000.dat.ZSCAN.csv
wafer 3

LAMS5_PC2000.983043701.164.dat
LAMS5_PC2000.983043701.164.dat.SVID.csv
LAMS5_PC2000.983043716.000.dat. ZSCAN.csv
wafer 4

LAMS5_PC2000.983043940.489.dat
LAMS_PC2000.983043940.489.dat.SVID.csv
LAMS5_PC2000.983043955.000.dat.ZSCAN.csv
wafer §

LAMS5_PC2000.983044069.404.dat
LAMS5_PC2000.983044069.404.dat.SVID.csv
LAMS5_PC2000.983044083.000.dat.ZSCAN.csv
wafer 6

LAMS_PC2000.983044214.162.dat
LAMS5_PC2000.983044214.162.dat.SVID.csv
LAMS5_PC2000.983044232.000.dat.ZSCAN.csv
wafer 7

LAMS_PC2000.983044378.649.dat
LAMS5_PC2000.983044378.649.datSVID.csv
LAMS5_PC2000.983044393.000.dat.ZSCAN.csv
wafer 8

LAMS5_PC2000.983044598.194.dat
LAMS5_PC2000.983044598.194.dat.SVID.csv
LAMS5_PC2000.983044613.000.d2t.ZSCAN.csv
wafer 9

LAMS5_PC2000.983044731.826.dat
LAMS_PC2000.983044731.826.dat.SVID.csv
LAMS_PC2000.983044747.000.dat. ZSCAN.csv
wafer 10

LAMS_PC2000.983044929.060.dat
LAMS5_PC2000.983044929.060.dat.SVID.csv
LAMS5_PC2000.983044944.000.dat. ZSCAN.csv
wafer 11

LAMS_PC2000.983045070.383.dat
LAMS5_PC2000.983045070.383.dat.SVID.csv
LAMS5_PC2000.983045084.000.dat.ZSCAN.csv
wafer 12

LAMS5_PC2000.983045261.438.dat
LAMS5_PC2000.983045261.438.dat.SVID.csv
LAMS5_PC2000.983045276.000.dat.ZSCAN.csv
wafer 13

LAMS_PC2000.983045455.637.dat
LAMS_PC2000.983045455.637.dat.SVID.csv
LAMS_PC2000.983045471.000.d2t. ZSCAN.csv
wafer 14

LAM5_PC2000.983407267.387.dat
LAMS5_PC2000.983407267.387.dat.SVID.csv
LAMS_PC2000.983407282.000.dat.ZSCAN.csv
wafer 15

LAMS5_PC2000.983407394.470.dat
LAMS5_PC2000.983407394.470.d2t.SVID.csv
LAMS5_PC2000.983407409.000.dat. ZSCAN.csv
wafer 16

LAMS_PC2000.983407522.213.dat
LAMS_PC2000.983407522.213.dat.SVID.csv
LAMS5_PC2000.983407538.000.d2t. ZSCAN.csv

24-Fcb-2001 12:37:36
24-Feb-2001 12:37:37
24-Feb-2001 12:48:58

24-Feb-2001 12:39:39
24-Feb-2001 12:39:40
24-Feb-2001 12:48:58

24-Fcb-2001 12:42:23
24-Fcb-2001 12:42:24
24-Feb-2001 12:48:58

24-Feb-2001 12:46:24
24-Feb-2001 12:46:25
24-Feb-2001 13:18:58

24-Feb-2001 12:48:32
24-Feb-2001 12:48:32
24-Fcb-2001 13:18:58

24-Feb-2001 12:50:58
24-Feb-2001 12:50:59
24-Feb-2001 13:18:58

24-Feb-2001 12:53:41
24-Feb-2001 12:53:42
24-Feb-2001 13:18:58

24-Feb-2001 12:57:24
24-Fcb-2001 12:57:23
24-Feb-2001 13:18:58

24-Feb-2001 12:59:36
24-Feb-2001 12:59:37
24-Feb-2001 13:18:58

24-Feb-2001 13:02:51
24-Feb-2001 13:02:51
24-Feb-2001 13:18:58

24-Feb-2001 13:05:13
24-Feb-2001 13:05:13
24-Feb-2001 13:18:58

24-Feb-2001 13:08:23
24-Feb-2001 13:08:24
24-Feb-2001 13:18:58

24-Feb-2001 13:11:38
24-Feb-2001 13:11:39
24-Feb-2001 13:18:58

28-Feb-2001 17:41:49
28-Feb-2001 17:41:50
28-Feb-2001 17:49:54

28-Feb-2001 17:43:56
28-Feb-2001 17:43:57
28-Feb-2001 17:49:54

28-Feb-2001 17:46:06

28-Feb-2001 17:46:07
28-Feb-2001 18:19:56
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We know that the wafers are processed with Recipe 5001; we may generate a recipe distribution to
verify this. There are three steps in Recipe 5001, with step 3 as the main etch step. Let us first inspect
the entire within-wafer plot (Figure 4.1, 4.2).

Within wafer plot, source=oes, index=277
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Figure 4.1. The entire within-wafer plot for CF,321 nm line.
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Within wafer plot, source=oas, index=355
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Figure 4.2. The entire within-wafer plot for HBr 355 nm line.

According to the result shown in Chapter 5, the CF, 321 nm line is effective for endpoint detection,
and the HBr 355 nm line is useful for etch rate prediction. As seen in the two plots, the starts of step 3
do not line up, and there is a fall-off for the power-off state in the end. The absolute stable etch
window can be chosen to be 13~20. However, upon close inspection, we see that, for the CF, line
there are three plots that have the decreasing trend. In order to get bigger window size and better
average values for computing correlation, we may want to get step windows. Let us examine the

windowed within-wafer plot for the entire step 3.
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Within wafer plot, source=oes, index=277

Figure 4.3. Windowed within-wafer plot for CF, 321 nm line for step 3.

‘Within wafer plot, source=gces, index=355

Figure 4.4. Windowed within-wafer plot for HBr 355 nm line for step 3.

We now see that the window size can be a little bit bigger, 5 ~ 14 for step 3. So let the delay be 4, and

the size to be 9. We have,
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Wilhin wafer plul, suurce—uvs, indea=277

Figure 4.5. Windowed within-wafer plot for CF, 321 nm line for step 3
size 9.

Within wafer plot. source=oes, index=355
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Figure 4.6. Windowed within-wafer plot for HBr 355 nm
line for step 3 size 9.

Notice the wafer-to-wafer signal intensity is reasonably well-spread, covering a relatively wide range of
value, and not clustering much. This suggests that the experimental design is reasonably sound. Figure
4.7 shows the concatenated plot. From there, we can see that data for wafers 2,7, 10 have the obvious
declining trends.



catenated Within wafer plot, source=aes, index=277
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Figure 4.7. Concatenated Windowed within-wafer plot for CF, 321 nm line.
Lastly, we want to get signal-vs.-signal plots and the cotrelation coefficient for signal CF, 275 nm, CF,
321 nm, and HBr 355 nm. We see that the endpoint detector, CF, 275 nm and CF, 321 nm signals

have an almost perfect correlation since they are from the same chemical species. On the other hand,

HBr 355 nm, the etch rate indicator, is very much correlated with the two CF, signals as well.

Correlation between OES 176nm line and OES 277nm line is 0.997439,
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Figure 4.8. Signal-vs.-signal plot for CF, 275 nm and CF, 321 nm.

Correlation between 176nm and 355nm line intensities is 0.755675,
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oes, 176 vs oes 355
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Figure 4.9. Signal-vs.-signal plot for CF, 275 nm and HBr 355 nm.
Correlation between 277nm and 355 nm line intensities is 0.743946,
oes 277 vs oes 355
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Figure 4.10. Signalvs.-signal plot for CF, 321 nm and HBr 355 nm.
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The above example shows the basic usage of the software. Next, we will show examples that show the

nature of plasma etch signals.

Some plots showing the natute of plasma etch signals

Within wafer plot, source=svid, index=40
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Figure 4.11. Windowed within-wafer plot for machine endpoint SiCl 405
nm.

Figure 4.11 shows the windowed within-wafer plot for machine endpoint SiCl 405 nm, for wafers
processed with recipe 5003, from 23-May-2001 to 24-May-2001. The window is the entire step 5. It
demonstrates that the wafer-to-wafer signal intensity falls into three clusters. Notice all the waveforms
start around the same intensity at 4000, and go up with respect to time at different rate, or even remain
constant. Probably the intensity level around 4000 corresponds to oxide etch, and for poly etch, there
is usually a thin layer of native oxide on top of the silicon layer. What is shown here is very long etch
processes of about 200 seconds (1.9 seconds per sample point). We can infer that the top cluster
corresponds to bare silicon etch. The middle cluster has endpoints, so it must be poly etch. However,
the uniformity of the poly film must be very bad, so that the oxide-poly etch transition is so slow. The
bottom should correspond to oxide etch, since little intensity variation is observed. Also, we should

take note the there are two small negative peaks in the top cluster. Previous researchers have not paid



attention to this kind of peaks, which can cause false alarms. Syntactic analysis can recognize them

with ease. This will be demonstrated in detail in later chapters.

Figure 4.12 show the plots for wafers processed with Recipe 5001 from 30-May-2001 to 14-Jun-2001.
The window is the entire main etch step, step 3. The plot demonstrates the typical chamber memory
effect. On a wafer-to-wafer basis, the intensity starts relatively low, and then gradually go up to reach
steady value after a few runs. Since the Berkeley Microlab is a research environment, there is no
control or consistency over what type of wafers that are being etched. Film thickness varies
considerably, as manifesting through the varying duration of the main etch step. Also, the etching film
material can be drastically different, as revealed by the different clusters of wafer-to-wafer intensity
level and the different etch waveform. Notice that some waveforms have an increasing trend, and

some have a decreasing trend, but they all seem to stabilize over time.

x 104 catenated Within wafer plot, source=svid, index=40
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Figure 4.12. Concatenated windowed within-wafer plot for machine
endpoint SiCl 405 nm.
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Figure 4.13 shows the concatenated windowed plot for some wafer data processed with recipe 5001
around 01-Jun-2001. It demonstrates the chamber memory effect after an extreme event occurs.
Although the intensity drops very close to the usual level, still, it takes a few runs for the intensity to
stabilize.

catenated Within wafer plot, source=oes, index=355
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Figure 4.13. Concatenated windowed within-wafer plot for HBr 355 nm,
demonstrating the chamber memory effect after the occurrence of a big
spike.
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Chapter 5

ENTPOINT DETECTION SENSITIVITY EXPERIMENT

5.1 Background

During an etching operation, when the target layer material is clear, the plasma should be stopped to
minimized the overetch damage of the underneath layer. The clearing of the target layer typically
signals the endpoint of the etch. Due to the non-uniformity of the etch rate and the thin film layer

across the wafer, some overetch is often required to make sure that all the exposed area is fully etched.

The timed etch is an older approach for determining endpoint, for instance, [28]. The timed etch
approach required pre-etch measurement of the film thickness. Once the wafer is fed into the etcher,
the diagnostic system will try to predict the etch rate based on the real-time information, and thus
obtain an etch time, which is equal to the measured film thickness divided by the estimated etch rate.
The timed etch approach has a few pitfalls. First the pre-etch film thickness measurement may be
time-consuming, and has be done manually. Second, non-uniformity in film thickness and etch rate
across the wafer presents a difficulty in predicting the time required to fully clear the target film layer.
‘This means that in order to ensure full clearance, additional overetch time would be required. Lastly,
due to machine aging and drifting, the equipment and wafer states change over time, and as a result,

the etch rate model may require constant update to ensure accurate etch time calculation.

The most popular approach for endpoint detection is to monitor the trace of emission from reactive
species or volatile products using OES. Currently, most of these detection methods based on OES use
a wavelength corresponding to the chemical species that show an obvious transition at the endpoint.
For instance, one could monitor CO emission for oxide or polymer film etch, N, or CN for nitride
film, SiF or SiCl for polysilicon film, AICI for Al film. The LAM Research etchers in the Betkeley
Microfabrication Laboratory, use the SiCl 405 nm for polysilicon etch endpointing, and the CO 520
nm for oxide etch endpointing. The user is allowed to specify the endpoint criterion on the signal,

either based on transition amplitude or on transition slope.
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5.2 The Endpoint Detection Experiment

As the lithography exposure area is shrunk down to less than one percent for contact and via etch,
there is an increasing need for finding a wavelength with a pronounced endpoint transition. However,
plasma etch is a rather complex chemical and physical process. The emission from reactive species or
volatile products may not yield the most pronounced transition because they may not be the
concentration limiting species for the etch process. Even if they are the concentration limiting species,

overlapping bands can blur the transition.

In order to find the wavelength with the most pronounced transition, one needs to carry out a
designed experiment. For the design of experiment, the exposure area used were 100%, 40%, 20%,
10%, 5%, 1%. The purpose of this sensitivity study is to determine the signal most sensitive to the
endpoint transition for poly etch. That is, we want to be able to find out which signal (or combinations
of signals) out of the thousands of available signals, can still show the endpoint transition when the
exposure area is very small. Consequently, we choose not to use 2 contact or via mask for exposure,
since non-uniformity in etch rate and film thickness within the wafer will blur the transition. We just
do blanket exposure for each die. We know that the diameter of a wafer is 100 mm, the total area of
the wafer is 25001t mm?. And the side of a die is 10 mm, so the area for a die is 100 mm?. Then we can
figure out the number of dies we should have for different percentage of exposure area. For the 100%
exposure area, we can just perform blanket etch. There is no photoresist required, and as a result, no
patterning is necessary. For other percentage of exposure areas, on descending order, the numbers of

dies for exposure are: 32, 16, 8, 4, and 1.

There was a data acqu.isition error for the 16-die (20% exposure area) wafer. This did not affect the
experiment, because the endpoint transition is cleatly visible for many signals for the 8die (10%
exposure are) wafer and below. Figure 5.1 shows the best transition from the ZSCAN signals, which is
the second harmonic of the voltage reading. The transition is more or less clear for exposure of 32 dies

and up. Yet, the stable values for the poly etch and oxide etch are not distinct. The endpoint transition
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disappears for exposure of 8 dies and below. Due to their insensitivity, we see that the ZSCAN signals

are not suitable for endpoint detection.
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Figure 5.1. ZSCAN 2nd harmonic voltage endpoint plots.

Likewise, it is found that when the exposure area is large, the endpoint transition can be clearly seen
from many OES wavelengths below 500 nm. As the exposure area is shrunk, the transition gets more
obscure or disappears altogether. It is observed that the best signals for endpoint detection are two
CF, OES lines, 275 nm and 321 nm. These are the only two signals that the transition is still clearly

seen when the exposure area is down to 1%.
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Figure 5.2. The OES endpoint traces of Lam 9400 built-in endpoint
detection wavelength SiCl 405nm for different exposure areas.
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Figure 5.3. The OES endpoint traces of the CF, 275nm line for different

€xposure areas.
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Figure 5.3 shows the endpoints plots for CF, 275 nm. One thing to notice is that the signal intensity
corresponding to the oxide stays more or less constant for different exposure percentages, and that the
signal intensity corresponding to poly etch varies linearly with respect to the amount of exposure area.
A comparison for the SiCl 405 nm, which is the LAM 9400 wavelength for poly etch endpoint
detection, is shown in Figure 5.2. The transition is more or less obscure for 8-die exposure already, and

it is very difficult to locate the transition for the 4-die exposure.

At the time of the endpoint sensitivity experiment, the built-in endpoint signal (SiCl 405 nm) was not
included in the SVID data acquisition list. However, we just need to show that the ratio between the
signal intensity for poly etch and oxide etch value is greater for the CF, wavelengths than that of the
built-in endpoint signal. Figures 5.4, 5.5, show some endpoint traces of CF, 321 nm and the built-in
endpoint signal for some wafer runs on 5/28/2001. Also, notice that the waveform of the built-in
endpoint signal is much “cleaner” than the CF, 321 nm wavelength. This is due to the LAM built-in
endpoint sensor’s aperture is much bigger than that of the OES sensor, and thus achieve much better
signal-to-noise ratio for the stable etch region. In Figure 5.4, we see that the poly-versus-oxide ratio for
CF,is about 1.8, and the ratio for the built-in endpoint signal is about 1.2, as shown in Figure 5.5. This
shows that the CF, signals are much better endpoint detection signals than the built-in.

Within wafer plot, cource=ooc, index=277

a0

100 |

Figure 5.4. The OES endpoint traces of the CF, 321 nm line for a fixed
exposure area.
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Within wafer plot, source=svid, index=40

6000

2000

1000 |

Figure 5.5. The LAM 9400 SVID built-in endpoint traces of the SiCl 405
nm line for a fixed exposure area.

One should take note that this is a poly etch process, which uses Cl, gas as the etchant. There is often
pre-poly etch step which etches away the native oxide on the top of the poly layer, using CF, gas. The
CF, particles in the plasma during poly etch probably come from the CF., particles deposited on the
chamber walls. The creation mechanism for the CEp articles is subject to future investigation. Also,
for the future works, we should perform verification runs to assess the endpoint detection accuracy
using the CF, signals. Cutrently, for the sensitivity study, the sampling rate is one sample for every 1.9
seconds. The sampling rate should be increased to about 5 Hz, as to minimize unnecessary overetch.
Lithography exposure should be done with a via or contact mask with less than 1 percent exposure
area. The detection algorithm can be developed using syntactic analysis, which will be illustrated in

later chapters.

5.3 Criticism of other OES approaches for endpoint detection

While other researchers have been focusing on using multiple wavelengths for performing endpoint
detection, the author believes that the single-wavelength approach should be sufficient for the
detection, at least for the polysilicon etch chemistry in question. Other researchers have, one way or

the other, avoided searching for the best single wavelength. For very small exposure areas, it would be
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very sutptising if no single wavelength could provide obvious endpoint transition, and yet, the
combination of multiple wavelengths could. It is worthwhile examining some examples of multiple-

wavelength approaches in the literature.

White, et al [27] perform PCA on the full OES spectrum on the main etch region. As wafers being
processed, and new data coming in, they compute the T value for the combination of the first few
principal components. When the T value is abnormally large, that signifies the endpoint is being
reached. They apply this approach on SiO, etch, varying the lithography exposure area, 100%, 10%,
and 1%. They plot T? value vs. time for each exposure area, and compare the intensity by plot vs. time
for a dominant wavelength (CO 520 nm). They demonstrate that the endpoint transition for T¢ value
plot is much more pronounced than that of the dominant wavelength plot. However, White et al did
not address the issue of what could be the best dominant wavelength, i.e., the wavelength with the

most distinct transition at the endpoint.

The first few principal components capture most of the variance of the entire spectrum due to the
highly correlated nature of the OES signals. And usually, the wavelengths with significant endpoint
information contain a lot of variation, so that they are heavily weighed in the first few principal
components. As the full spectrum approach can work well relatively large exposure area (>10%).
However, when the exposure area is very small (<1%), there will be very few wavelengths with
significant endpoint transition. As demonstrated in our work, for polysilicon etch with 1% exposure
area, only two wavelengths, CF, 275 nm and 321 nm, contain significant endpoint transition. The'full

spectrum approach would not yield distinct endpoint transition for small open area.

Yue, et al [29] proposed two steps in selecting wavelengths before petforming PCA. First, they divide
up the full spectrum into several windows, and use PCA to step through those windows, and then they
keep the windows with obvious endpoint transition and discard the ones without. Then recursively,
they subdivide up the remaining windows into smaller ones, and further remove irrelevant
wavelengths. Next, they use a “sphere” criterion to select the most relevant wavelengths from the
remaining from step one. Some principal components with obvious endpoint transition are selected.
They examine the sum of square for the loading coefficients in the selected principal components for

each wavelength. A few wavelengths with the largest sum of square are finally chosen.
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Yue et al’s approach substantially reduces the number of wavelengths used for endpoint detection, and
thus reduces computation cost and improves model consistency. Yet, they did not do an exhaustive
search for the best wavelength for endpoint detection. During the first pass of the wavelength
elimination procedure, it is likely that a good endpoint detection signal may fall in one of the window
with largely irrelevant signals, so that the PCA could not pick out the transition.
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Chapter 6

EQUIPMENT STATE AND WAFER STATE PREDICTION EXPERIMENTS

6.1 Introductioﬁ

The purpose of the equipment state experiment is to assess the sensitivity of the sensors to
fluctuations of equipment parameters such as power, chamber pressure, gas flow rate, etc. The wafer
state prediction experiment is to determine whether the data from the three sensor sources provide
significant diagnostic information for predicting wafer states, such as etch rate and uniformity. In other
words, the two experiments are used to determine if the combination of the three sources of sensor
information can more accurately characterize the equipment and wafer states. If this is not the case, it
is not necessary to have all the sensors in place, and thus we can save some hardware cost, disk space,

and analysis time.
6.2 Equipment State Experiment

For the equipment state experiment, five parameters are under consideration, HBr flow rate, Cl, flow
rate, chamber pressure, RF top power, RF bottom power. We vary the machine settings of the
parameters, one at a time, and then try to see if the sensors signals fluctuate accordingly. We know that
the LAM etcher provides built-in real-time monitoring for the five parameters. The user of the etcher
can get both the settings and the actual readings through the SECS II interface. For the equipment
state information, the source of machine signals through the SECS II interface is indispensable.
Therefore, we only need to assess on the OES and ZSCAN soutces. Since we are only interested in
the equipment states for this experiment, we want to minimize plasma etching reaction in the
chamber. Ideally, we would power up and ignite the plasma without any wafer in the chamber.
However, under normal operation, the etcher will not ignite a plasma without wafers. So, we opted to
use oxide wafers into the chamber. Since we are using a poly etch recipe with high selectivity to oxide,

this diminishes etching when the plasma is ignited.
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Each parameter is in turn varied around the center. First, we vary it in an increasing fashion, then vary
it away from the center point (see Table 6.2). In this way, we can classify the chamber memory effect,

if there is any, during the wafer runs.

Parameter Center point
HBr flow rate 150 scem
Cl, flow rate 50 sccm
Chamber pressure 12 mTorr
RF top power 300 W
RF bottom power 150 W

Table 6.1. Center point of the equipment machine settings.

Parameter Run # Run Sequence
1 130, 140, 150, 160, 170
HBr
2 150, 140, 160, 130, 170
1 25, 37.5, 50, 62.5, 70
CL
2 50, 37.5, 62.5, 25, 70
1 10,11, 12,13, 14
Pressure
2 12,11, 13,10, 14
RF top 1 250, 275, 300, 325, 350
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2 300, 275, 325, 250, 350

1 130, 140, 150, 160, 170
RF bottom

2 150, 140, 160, 130, 170

Table 6.2. The run sequence of the equipment state experiment. One
parameter is changed at a time; others remain at the center points.

Varying HBr, 130 to 170 sccm Varying RF bottom, 130 to 1 70 W
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Figure 6.1. Two examples of time series plots of the ZSCAN signals for
different machine settings.

All the ZSCAN current, voltage, and phase values on time series are examined. Figure 6.1 shows two
examples. From them, we see that the fundamental voltage reading is in linear relationship with the RF
bottom power, but it is not sensitive to HBr flow rate deviation. It is found that ZSCAN current,
voltage, is sensitive to the setting deviation of chamber pressure, RF top and bottom power, but not
sensitive to the deviation of the gas flow rates. The phase reading appears random to any parameter

deviation.
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For the OES spectrum, wavelengths corresponding to peaks are selected for examination. As shown in
Figure 6.2, the intensity value is the average of a window of five sample points. From the plots, we see
that OES 797 nm intensity varies linearly with HBr gas flow rate, but varies randomly with RF bottom
power. And after examining all the OES peaks, we find out that OES signals are sensitive to all but the
RF bottom power. That suggests that RF bottom power may not play much of a role in plasma

reaction.
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Figure 6.2. Two intensity vs. machine setting plots for OES 797 nm.

Table 6.3 summarizes the qualitative sensitivity study result, demonstrating that OES and ZSCAN are

complementary in equipment state modeling.

HBr Cl2 Pressure RF top RF bottom
ZSCAN No Slightly Yes Yes Yes
OES Yes Yes Yes Strongly No

Table 6.3. Equipment state sensitivity study summary.
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6.3 Wafer State Prediction Expetiment

Accurate inline wafer state prediction can reduce the need for costly and time-consuming wafer
measurement. The wafer states that we are interested in are etch rate and uniformity. Five machine
settings are varied to achieve different etch rate and uniformity on the wafer. The center points and
positive and negative deviation of the settings are shown on table 6.4. However, no center point wafer
run is needed because machine settings will not be used as terms in wafer state modeling. We only use
the three sources of signals. OES, ZSCAN and SVID signals, as the modeling terms. A two level, 2>
resolution V experiment with ISABCDE, is designed as shown in Table 6.5. In order to un-confound
the blocking effect, a randomization is performed on the running sequence. The randomized sequence

1s10,7,12,4,16,1, 3, 14, 6, 8,11, 15,13, 9, 5, 2 (The numbers are in the first column of the table).

+ - Center point
RF top (A) 350 250 300
RF bottom (B) 180 120 150
Cl, (C) 75 25 50
HBr (D) 180 120 150
Pressure (E) 14 10 12

Table 6.4. Parameter level assignments.

| Run# A B C E |

1 + + + + +
2 + + +

3 + + - + -
4 + + - - +
5 + - + + -
6 + - + - +
7 + - - + +
8 + - - - -
9 - + + + -
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10 - + + - +
1 - + - + +
12 - + - - -
13 - - + + +
14 - - + - -
15 - - - + -
16 - - - - +

Table 6.5. The design table for the wafer state prediction experiment.

Poly-on-oxide wafers are used. The thickness of undoped poly film is about 3500 angstrom, and the
thickness of the oxide film is about 300 angstrom. The wafers are set for 30-second poly etch in the
LAM 9400 etcher, which has an etch rate of about 2500 angstrom/min, under the center point settings
as shown in Table 6.4. A CMOS gate mask is used for lithography exposure. The GCAW stepper is
programmed to perform 32-die exposure runs. Figure 6.3 shows a wafer map. The ones in bold are
selected for thickness measurement. For each die, five locations, four in the comer, one in the center,

are selected for measurement, as shown in Figure 6.4.

XXXX
XxXXxX
XXxxXX
XXxxXX
XxXXxX

XX XX

Figure 6.3. Wafer die map. The ones in bold are selected
for measurement.
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\o Y

Figure 6.4. The locations selected for thickness
measurement within a die.

The CMOS gate mask image on the die is used for finding the central location of the die. For each
measutement location, four points in proximity are selected for film thickness measurement by
Nanoduv. Two points are in the exposed etched regions; the other two are in the unexposed and
unetched regions. Then the etched depth is the sum of the measurements for the unetched regions
minus the sum of the measurements for the etched regions, divided by 2. Nanoduv performs the
measurement by shining a laser beam onto the wafer surface. The two reflected beams, from the poly.
and oxide film respectively, interfere with each other, and a sensor captures the interference pattern

and calculates the path difference of the two beams, and thus obtaining the film thickness. Then,
Etch rate = average etch depth / .5 [angstrom/min]

Uniformity=(max etch rate — min etch rate)/average etch rate

=(max etch depth — min etch depth)/average etch depth

Once we compute the wafer states and acquire the sensor signal data, we can start to build models

from them.
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Similar to their endpoint detection work, White, et al [26] have performed PCA on the entire OES

spectrum. While PCA can extract most variance from the spectrum using a few principal components,
including irrelevant signals will degrade the significance of the model. Draper (1964), Jeffers (1967),
and Mansfield (1977) have considered how to select variables based on the PCA loading values of the
variables. In order to test the assumption that irrelevant signals degrade the model significance, several

stepwise linear regression schemes are deployed.

1)

2

3)

Perform PCA on all signals, and treat all PCs are individual variables, and perform stepwise

linear regression on them.

Perform PCA on OES signals only, and treat the principal components (PCs), the 43 SVID
signals, and 10 ZSCAN signals as individual variables, and perform stepwise linear regression

on them.

Without performing PCA, treat 2048 OES, 43 SVID, and 10 ZSCAN signals as individual

variables, and perform stepwise linear regression on them.

As for the stepwise linear regression, we perform the follow steps,

1)

2)

3)

4

Start with the signal most correlating with the wafer state.

Add the next signal which reduce the model prediction error (Cp, consult [48] p216 for
definition and explanation) the most.

From the current added set of variables, if dropping a variable can reduce the prediction error,

remove the variable.

Stop if no more variable can be added to increase the model significance ([48], p18) OR no

more variable can be added to reduce the model prediction error.

From Table 6.6, we can see that just performing PCA alone yields a better R® value than performing
PCA on all the signals. This suggests that the irrelevant signals of SVID and ZSCAN in the grand
PCA (PCA on all signals) deteriorate the wafer model significance. Due to the large number of OES
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signals (2048), comparing to the number of SVID (43), and ZSCAN (10) signals, this deterioration is
rather slight. The K value goes from .84 to .81 for the etch mte model, from .90 to .89 for the
uniformity model. By the same token, if we just do linear stepwise regression on all the signals, we
notice that the model significance improvement is quite substantial; the R? value goes from .81 to .99
for the etch rate model, from .89 to .96 for the uniformity model. Yue, et al [30] have attempted to
select relevant signals first before applying PCA for wafer state modeling using OES signals. The
author takes note of their method and intention. However, with the R? values being .96 and .99, which
are very close to 1, the margin for improving the model significance is very slim. In other words, even
if we gain improvement from additional signal screenings, we cannot really determine if this
improvement is statistically significant. The author is well-aware that some schemes of signal selection
in addition to PCA might be worth examining for other problems with smaller R? values.
Nevertheless, for our case, we have a large number of signals for the stepwise regression, giving us
very significant terms in the model. We consider that by using the simple linear stepwise regression,
the modeling result for this current problem is satisfactory. Besides, the purpose of this work is not to
search for the best modeling method for problems with a large number of variables, in a theoretical

sense. Rather, we just want to demonstrate that all three sources of signals contribute significant

diagnostic information.
Signal | Wafer | Significant | R®
source |state | terms (adjusted)
PCAonal |ER |PC1,PC3 | .8122
signals (.7833)
U PC1,PC6 | .888
(.8708)
PCA on|ER |PC1,PC3 |.8383
OES alone (:8134)
U PC 1, PC 5, | .8998
IS (.8748)
Stepwise | ER 355 nm, 207 | .9876
Regression nm, I4, RF | (0.9821)
on all load coil pos
signals U 997 nm, 559 | .9576
nm, 1049 | (.9422)
nm, 974 nm

Table 6.6. Summary of wafer state modeling, comparing with or without
PCA. Note: I5, 14 are the current readings of the fifth and fourth harmonics
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of the plasma frequency, respectively. ER = etch rate; U = uniformity; PC =
principal component.

Table 6.7 shows the simple linear stepwise regression results on each soutce alone, and then on all
three sources combined. We notice that ZSCAN signals are not sensitive to the wafer states. Probably,
this is the reason RF sensors have not been used widely for plasma diagnostics. The populatity of OES
sensors is justified since OES model are significantly better than SVID models. As for the stepwise
regression on the combination of all sources, we should notice that while uniformity model only takes
terms from the OES signals, the etch rate model takes terms from all three sources, and improve
slightly, and yet significantly from the OES signals alone. This demonstrates that all three signal

sources contribute useful diagnostic information.

Signal | Wafer | Significant terms R2
source | state (adjusted)
OES ER 355nm Br, 520nm 9475
CO, 359nm CN (:9394)
U 997 nm, 559 nm, 1049 | .9576
nm, 974 nm (.9422)
SVID ER TCP load cap, CI2, RF | .9082
line imp #1 (-8941)
U TCP load cap, HBr 8548
stpt, cham press (.8325)
ZSCAN |ER |5 217 (161)
U V1,11 4858
(.4067)
Stepwise | ER [ 355 nm, 207 nm, 14, | .9876
Regression RF load coil pos (.9821)
on al| U 997 nm, 559 nm, 1049 | .9576
signals nm, 974 nm (.9422)
Table 6.7. Summary of wafer state modeling, comparing different sources.



Chapter 7

DATA EXPLORATION WITH SYNTACTIC ANALYSIS

7.1 Introduction

Syntactic analysis refers to a general pattern recognition technique, which uses formal language
paradigms to describe the structure of an object. The basic approach is to decompose the object into
sub-patterns of primitives. By some criteria, a symbol is assigned to each primitive, and the symbols
are assembled into a sentence. A grammar is a set of syntactic rules for generating sentences, which
describes a class of objects. If the sentence encoded from an object is accepted by the grammar, then
we consider that the object belongs to the class described by the grammar. Syntactic analysis is widely
used for character recognition, especially in the Far East, where syntactic analysis-based Chinese

character recognition is an active research area.

Syntactic analysis also has found some success in the medical field, for analyzing electrocardiogram
(ECG) signals, in order to determine the status of a patient’s heart. If done visually, the procedure is
divided into two stages [10]. First, some characteristic features of ECG are recognized, such as the P
wave, the PQ segment, the QRS complex, the ST segment, the T wave and the TP segment. Then, the
physician measures the features’ parameters, such as durations and amplitudes, and interprets these
numerical values based on experience and a set of established empirical diagnostic criteria. Due to the
massive amount of ECG data, there has been a great interest for computerizing the interpretation
process. Many medical researchers have used syntactic pattern recognition techniques to analyze ECG
signals [1-5]. The objective is to build an ECG processing system to imitate the physician, and to draw

similar judgments about the status of the patient.

ECG signals are similar to the plasma etch signals in some respects. In addition to considerable
amounts of noise, their form and size can change over time [3). Also, like etching signals differing
from machine to machine, ECG signals differ considerably from person to person. Syntactic analysis is

applicable since it is robust against gross change, and also appeals to intuition. Even if a signal has
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been “rubber stretched”(i.e. linearly transformed along the x- and y- axes), if the signal is classifiable by
a human expert, then syntactic analysis can usually classify it correctly. For these reasons we think that

syntactic analysis holds considerable promise analyzing plasma etching signals.
7.2 A qualitative description of the basic etch waveform

Chapter 2 and Chapter 4 have described the nature of plasma etch signals, and the related analytical
difficulties. As pointed out previously, syntactic analysis is able to ignore extraneous influences on the
waveforms, and offers great flexibility in capturing both the qualitative and quantitative dynamics of
the signals.

Often, for a basic poly etch waveform, we identify the poly etch segment, the oxide etch segment, and
the transition between the segments. However, a few variations of the waveform exist. At the
beginning and the end of the waveform, there can be power-on and —off transitions, respectively.
Sometimes, there is even a stable power-off segment. There is often a thin layer of native oxide on top
of the poly film, so we may see an oxide-to-poly transition at the beginning of an etch waveform. If
the layer of native oxide is thick enough, there might be a stable oxide etch region before a stable poly
etch region. Also, the oxide etch segment may not be clearly defined, and the transition may not be
complete. If it is a timed etch and the etch is not through, there will be only a poly etch segment.
There will be just a silicon etch segment if it is 2 dummy run with a bare silicon wafer. There will be

just an oxide etch segment if it is a dummy run with an oxide wafer.

The data collected for our analysis comes from a development-oriented process. As a result, users
may use masks of various exposure areas, poly think films of different doping concentrations.
Different masks will lead the etch signal intensity to fall into distinctly different clusters even for the
same matetial. The different doping concentrations of poly thin films will generate a spread within the
cluster. At times, users put wafers with aluminum films into the etcher, and cause intense reaction in

the chamber, and the intensity of the etch signal may overshoot the calibration limit.

7.3 Waveform encoding & waveform query
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In order to perform qualitative and quantitative data exploration, we need to encode the etch
waveforms first. As shown in Figure 7.1, we want to divide a etch signal waveform into stable etch
(e-g., poly or oxide etch), and transition (e.g., poly-oxide, or oxide-poly transition) primitives. A stable
etch primitive is encoded with “eX”, where “e” stands for “etch,” and “X” is the material (for Poly,
for Oxide, for Aluminum, etc.) symbol. We will discuss in detail how to assign the material symbol
later. A transition primitive is encoded as “tYZ”, where “t” is for “transition,” “Y™ is the transition-
from material symbol, and “Z” is the transition-to material symbol. Before we divide a waveform into

primitives, we do a linear piecewise approximation with an error tolerance of 30 (intensity units).

Primitive Demanstration
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Figure 7.1. Demonstration of the primitives on a typical etch waveform.

The following shows a linear piecewise approximation algorithm. The segment starts from the first
data points. The segment keeps growing with successive points until the maximum linear fitting error
is greater than the tolerance. The second segment starts with the end of the first segment, and this

procedure is repeated until the entire window is represented by linear segments.

Segmentation
Input: Time series X={X, ... X, }; linear fit error tolerance €.
Output: List of line segment L={s, ... 5, }.
h=1, i=1, j=1;
i H
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while (j<n)
s=linear model fit on {x;... X };
maxerror = max {prediction error of s};
if (maxerror > €)
s=linear model fit on {x... X, };
L=append(L, s);
i=j-1, j=i+l1;
else j=j+1;
L=append(L, s);
retumn L;

The running time of the above algorithm is . There is a massive amount of data, so we have an
interest to speed up the computation. Notice that once we approximate the data points with line
segments, the amount of data we need to analyze will be substantially reduced. A faster (n*log n)
algorithm for line segmentation is presented next. The basic difference is that, instead of growing the
segment point by point, the algorithm grows a line segment exponentially with data points if the linear
fit tolerance is not exceeded. Likewise, once it detects that the linear fit tolerance is exceeded, it shrinks

the segment in an exponential manner.

Sped-up Segmentation

Input: Time series X={x, ... X, }; linear fit error tolerance ¢.
Output: List of line segment L={s, ... s, }.

k=1; h=1;i=1;
j=it
almostfullidx=0;
while j<=n

s=linear model fiton {x... x; };
maxerror = max {prediction error of s};
while maxerror< €
k=k*2;
j=itk;
exceeded=0;
if j>n Yoreaching the end of the curve
almostfullidx=i+k/2;
)=n;
s=linear model fit on {x... x;};
maxerror = max {prediction error of s};
exceeded=1;
break;
else
s=linear model fit on {x... x;};



maxerror = max {prediction error of s};

if maxerror< € %for break out of reaching the end of the curve
L=append(L,s);
break;
else %adjsize computation
adjsize=0;
if j==n AND exceeded
adjsize=n - almostfullidx;
else
adjsize=k/2;
j=}-adjsize;
s=linear model fiton {x ... x;};
maxerror = max {prediction error of s};

while adjsize>1
adjsize=floor(adjsize/2);
if(maxerror<e)
j=j+adjsize;
else
j=j-adjsize;
s=linear model fit on {x; ... x; };
maxerror = max {prediction error of s};

adjsize=1;
if maxerror>e
j=j-adjsize;
s=linear model fit on {x... x;};
L=append(L,s);
h=h+1; i=j; k=1; j=j+k; %next segment, notice k reinitialized to 1

return L;

After these computations we group the line segments together based on the slope values. If the
absolute slope is less than 20 per sample, we consider the line segments as a flat stable etch region,
assigning a slope code of 0. If the slope values are greater than 20, we consider the line segments as an

up-transition region, assigning a slope code of 1. If the slope values are less than —20, we consider the

line segments as a down-transition, assigning a slope code of 1.

However, due to the irregularity of the signal, this first pass segmentation might lead to many noisy
small line segments. Small line segments are those with amplitude smaller than 80, and duration
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smaller than or equal to 4 sampling points. Next we show how to group them with bigger line
segments or how to filter them out. Table 7.1 lists many of the scenarios that can occur due to noisy

segments, and the action we take for each case.

Waveform Rules Description

A noisy segment lies between two long FLAT
segments. We consider all three segments as a

7 FLAT primitive candidate. The noisy segment can
be UP or DOWN.

A noisy segment lies between two big UP
segments. We consider all three segments as an
UP primitive candidate. The noisy segment can be
UP - DOWN or FLAT.
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A DOWN noisy segment lies between a UP
segment and a FLAT segment. A horizontal line
is drawn through the noisy region, and the region
and the FLAT segment are treated as one FLAT

primitive candidate.

A UP noisy segment lies between a FLAT
segment and a DOWN segment. A horizontal
line is drawn through the noisy region, and the
region and the FLAT segment are treated as one
FLAT primitive candidate.

FLAT
UP
et
DOWN
UP
FLAT

A DOWN noisy segment lies between a FLAT
segment and a UP segment. A horizontal line is
drawn through the noisy region and the region
and the FLAT segment arte treated as one FLAT

primitive candidate.

)




DOWN

FLAT

A UP noisy segment lies between a DOWN
segment and a FLAT segment. A horizontal line
is drawn through the noisy region, and the region
and the FLAT segment are treated as one FLAT

primitive candidate.

Up

Noisy segments occur consecutively, alternating
between UP and FLAT primitives. We consider

the entire region as UP.

DOWN

Noisy segments occur consecutively, alternating
between DOWN and FLAT primitives. We

consider the entire region as DOWN.
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Noisy segments occur consecutively, alternating
between UP and DOWN primitives. We use lines
to connect bottoms or tops of the segments. The
slope of those lines defines the slope attribute for
m the region.
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Table 7.1. Rules for processing noisy segments.

Definition of Characteristic Value

charactenstic vilue for e4
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Figure 7.2. Showing how to get the characteristic value on a stable etch

region. For illustration purposes, the segmentation criteria are different from
the one in figure 7.1.

The numerical attribute for coding the symbol for a certain etching material is the characteristic value

of the stable etch waveform. Figure 7.2 shows a typical stable etch waveform, which first increases
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rapidly, then stabilizes and reaches a steady state. Due to various reasons, the transient time until
reaching steady state can vary considerably. We decided to use the steady state value as the
characteristic value of the etch waveform. As we have done the piecewise linear approximation on the
waveform already, we select the flattest “significantly long” line segment, and take its average value as
the characteristic value. The flattest line segment is the one with the smallest absolute slope value. A
“significantly long” line segment is one with more than four samples. Since the sampling rate is about

1.9 sec/sample, the duration of the line segment needs to be greater than 7.6 seconds to be significant.

The reason we want the characteristic ine segment to be reasonably long is that there are times when
there is a small spike with very short duration in the etch waveform. At the peak of the small spike, the
absolute slope value is very close to zero. If we do not require the characteristic line segment to be
reasonably long, the peak value of the small spike could be mistaken as the steady etch value. If
somehow, due to a noisy waveform, there is no significantly long line segment, then we just choose the
longest line segment as the characteristic line segment because when the waveform reaches a steady

state, the line segments tend to get longer.
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Figure 7.3. The distribution of the characteristic values of stable etch
regions for OES 321nm CF, line.

74



Figure 7.3 shows a characteristic value histogram. Table 7.2 shows the code number assignments for
different material. On the lower end we have the power-off state. The diagnostic system usually stops
sampling when the power is off, so for a power on-off transition, i.e., t1Z or tY1, the sensor may not
be able to see the power-off intensity. Nevertheless, we can interpret extremely sharp and large
transitions as power on-off transitions. There are two clusters for oxide and poly, respectively, possibly
due to the different doping concentration of the material or the different exposure area. Also, there is

an overshoot cluster on the high end.

Material Symbol Range Etch segment
1 0~200 Powet-off
2 200~400 Oxide I
3 400~800 Oxide II
4 800~1400 Poly I
5 1400~2000 Poly II
6 3800~4500 Aluminum

Table 7.2. Material symbol assignment table.

For qualitative data exploration, we often use a search string to test the existence of a portion of the
etch waveform, such as the existence of poly etch, and endpoint transition. Once the encoding for the
etch waveform is in place, it is saved to the archive with the wafer ID. The user can retrieve the wafer
data files as needed. For instance, to focus on poly II etch only, he/she can use “25” as the search
string. Figure 7.4 shows some within-wafer plots for the wafers extracted using “¢5” as the search
string. Alternatively, to study wafer runs with poly Fto-oxide II endpoint transition, the appropriate
search string will be ¢4743¢4. Notice that the codes for the two stable etches are included in the search
string. Then, the user can use the software features, such as within wafer plot, wafer-to-wafer plot, and
signal-vs.-signal plot, signal correlation computation, to study the various qualitative and quantitative
data properties. Figure 7.5 shows a wafer-to-wafer plot for the wafer runs with poly I to oxide II

endpoint transition.
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* Figure 7.4. Within-wafer plot of runs with poly II etch.
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Figure 7.5. Within-wafer plot of runs with poly I to oxide II transitions.

Notice in Figure 7.4 for the poly II etch wafer extraction, the wafers can fall into two clusters based on
the duration attribute of the poly II etch. Also, in figure 7.5 for the wafers with endpoint transitions,
they can be group into two clusters based on the poly etch duration, etch characteristic value,
transition amplitude, or transition duration. In order to further categorize the wafer data, we need to

use some quantitative attributes as the criteria.

For quantitative encoding of the stable etch primitive, we are interested in the characteristic value,
amplitude, and duration; and for transition primitives, we are interested in the nominal transition
amplitude, the actual transition amplitude, as well as the duration. The nominal transition amplitude is
the amplitude due to segmentation, which takes the difference between the beginning and terminating
points of the transition primitive. The actual transition amplitude is the difference between
characteristic values of two stable etch regions (see Figure 7.6). If one of the stable etch regions does
not exist, the difference between the characteristic value and one end of the primitive. A power-on or
power-off usually does not have a stable region. Often, stable oxide etch region does not exist, since
once the endpoint transition is detected, the machine will stop the main etch. If due to some

operational errors, neither stable etch region exist, then the actual transition amplitude is equal to the
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nominal transition amplitude. If there is a thin native oxide on the top of the poly film, the power-on
transition will not have any adjacent stable etch region, because the native oxide etch will exhibit an
oxide-to-poly transition. Also, if the native oxide etch is interrupted, then the oxide-to-poly transition

will not have any adjacent stable etch region.
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Figure 7.6. Definition of nominal and actual transition amplitude.

Figure 7.7 shows the extraction result based on the poly I etch characteristic value from 1000 to 1200;
and Figure 7.8 shows the result based on the characteristic value from 800 to 1000. Likewise, Figure
7.9 shows the extraction result based on the poly II etch duration from 50 to 400; and Figure 7.10
shows the result based on the duration from 1 to 50. We can see that with these numerical criteria we
can resolve the respective clusters from the visual inspection of the wafer plot. Lastly, we can do
graphical plots, and correlation computations on these numerical attributes. Figure 7.11 shows the

distribution plot for the poly II etch characteristic value for the cluster with shorter etch duration.
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Figure 7.7. The cluster of within-wafer plot of runs with poly I to oxide II
transitions for poly I etch characteristic value from 1000 to 1200.
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Figure 7.8. The other cluster of within-wafer plot of runs with poly I to
oxide II transitions for poly I etch characteristic value from 800 to 1000.
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Figure 7.9. The cluster of within-wafer plot of runs with poly II etch
duration from 50 to 400.
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Figure 7.10. The cluster of within-wafer plot of runs with poly II etch
duration from 1 to 50.
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Figure 7.11. The distribution plot for the poly II etch characteristic value for
the cluster with shorter etch duration.

7.4 Designing the Syntactic System

Let us examine the issue of how to come up with syntactic rules and parameters for a diagnostic
system. For the syntactic rule in this chapter, we use the stable etch and transidon primitives to
describe the etch waveform. To further characterize the primitives, we extract numerical attributes,
such as characteristic value, duration, and amplitude from them. The designed parameters include the
criteria for defining the material symbol, the linear tolerance for the first pass segmentation, the slope

threshold for defining the stable etch and transition primitives, the small duration and the small

amplitude that define noisy line segments.

The author realizes the advantages in completely or partially automating the design process. Complete

automation might be possible for simple diagnostic problems. This might be possible, for example, if
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we can classify objects correctly using some easily measurable attributes, such as weight, temperature,
volume, length, width, and etc. It might also be possible to automate the process of deciding what
attributes to use. However, complete automation for plasma diagnostics appears to be impractical due
to the complexity of the etch waveform. Complete automation implies coming up with syntactic
primitives and parameters without analyzing the etch waveform. The task is equivalent to describing a

complicated object without seeing the object.

If we lay down the syntactic rules first, and limit the automated search to just the values of the
appropriate parameters, the task is often feasible. Let us use the poly I-to-oxide II transition in Figure
7.5 as an example. Here we will use the syntactic rules from previous work and we are searching for
parameters that conform the etch waveforms to the syntactic rules. Just for the investigation, we keep
the material symbol criteria constant, and petform a three-point iteraton for the rest of the
parameters, varying each one by plus/minus 25% of its default center point value. The center points
are 30, 4, 20, 80 for linear tolerance, small duration, slope threshold, and small amplitude respectively.

Table 7.3 shows all the combinations that conform the etch waveforms to the syntactic rules.

Linear Tolerance | Small Duration | Slope Threshold | Small Amplitude
23 3 15 60
23 3 20 60
23 4 15 60
23 4 20 60
23 5 15 60
23 5 20 60
30 3 15 60
30 3 15 80
30 3 20 60
30 3 20 80
30 4 15 60
30 4 15 80
30 4 20 60
30 4 20 80
38 3 15 60
38 3 20 60
38 4 15 60
38 4 20 60
38 5 15 60
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| 38 I 5 | 20 I 60 |
Table 7.3. The combinations of parameters that conform the poly I-to-oxide
HI etch waveforms to the syntactic rules.

This iterative way of searching for parameter is rather computationally intensive, on the order of m*r,
where m is the number of designing wafers; n is the number of parameters; k is the number of points
for iteration. In addition, selecting a good combination out of the table remains a problem. A good
combination will yield small diagnostic error rates. Automating this choice would require the
appropriate quantification of the error rate criterion. Here, the author believes that the human expert’s
judgment is irreplaceable in making the selection. One should use the combinations one at a time to
perform segmentation on some raw etch waveforms (other than the designing etch waveforms), and
inspect the segmentation result visually. A good segmentation result usually has the following visual

properties:
1) The number of line segment is reasonably small.
2) The line segments approximate the etch waveform reasonably well.
3) The stable etch and transition primitives make sense visually.

However, once the designer performs a visual inspection, the benefit of automation is lost. The
designer is better off to just manually vary the parameters and then visually inspect the result. Table 7.4
shows the segmentation result by varying the slope threshold. We see that when the threshold gets to
20 or above, what visually appears to a transition region can segmented to be a stable etch primitive. A

slope threshold of 10 or 15 will be acceptable.
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Ent01=30 ¢d=4 smallamp=80 slopethrash=10 kst length=3 lintol=30 sd=4 smallamp=80 slopethrest~15 list length=3

lintot=30 $d=4 smallamp=00 slopethrash=20 list lengtt=3 - lintol=30 sd=4 smallemp=00 slopethreshr25 list length=3

Table 7.4. The segmentation result by varying the slope threshold. Note: ‘*’
= transition, ‘+’ = stable etch. Lintol = linear tolerance, sd = small duration,
smallamp = small amplitude, slopethresh =slope threshold.

Table 7.5 shows the segmentation result by varying the linear tolerance. When the tolerance is 10, the
segmentation result is wrong even after filtering out any noisy segments. When it is 15, the
segmentation result is correct after noisy segment filtering for this sample. However, there are too

many line segments, which will induce error in new samples. It is better to use 20 or slightly above for

linear tolerance.
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Table 7.5. The segmentation result by varying the linear tolerance.

The following parameter design scheme is recommended:

1) Pick a few representative waveforms. (ones with longer and short durations, big and small

transition amplitude, etc).

2) By tral and error, pick a parameter combination that yield correct segmentation for all the

sample waveforms.

3) Vary one parameter at a time to fine-tune the combination, as to get a visually acceptable

segmentation result.



Although the above scheme is not strictly optimal for diagnostic error rate, it generally yields very

small error rate and is applicable to ordinary syntactic parameter design problems.
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Chapter &8

TWO CASE STUDIES: FAULT DIAGNOSICS WITH SYNTATIC ANALYSIS

8.1 Introduction

Syntactic analysis offers great flexibility for performing diagnostics. It allows the researcher to select
meaningful features and ignore extraneous features or noise. Since the system we have is set up in a
research environment, and we do not have control over what wafers to be processed in the etcher, it is
not suitable to perform diagnostic analysis on a large scale. We have two data sets. The first data set is
the machine signal data of a metal etch marathon run from a manufacturing vendor. The second data
set, named “high speed data,” was also some machine signal data with sampling rate of about 100 Hz,
and was acquired in the Berkeley Microfabrication Lab.

8.2 Metal Etch Marathon Run

The data set consists of real-time signals from more than 1400 wafers. For this analysis, we have
chosen the capacitance manometer signal, which reflects the pressure level in the etcher’s chamber.
The waveform provided by the capacitance manometer is relatively clean, which simplifies visual

verification of the analysis.

As mentioned previously, there are several steps in the etching process, including pre-etch of native
oxide, main etch, and over-etch. At the beginning of each etching step, it usually takes a few seconds
for the etchant gases to stabilize. We usually select the later part of the main etch step for analysis,
where the waveform is relatively stable and repeatable. Figure 8.3 shows the “windowing” operation
on the capacitance manometer signal. An experienced process engineer can usually tell if etching is
faulty by viewing the signal’s waveform. For our metal etch marathon data, the commonly seen
waveforms are shown in Figure 8.1. We visually classify these signals as either “normal” or of type 1, 2,
3 and 4. Even though we do not have documented faults in this run, types 3 and 4 are most likely
faulty. Notice that types 1 and 2 can be viewed as the combination of a normal signal, and a negative
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or a positive spike, respectively; they may be considered normal if the spike is small enough. The goal

of the analysis is to correctly classify the waveforms.

70N

Figure 8.1. Commonly seen waveforms for capacitance manometer in a
metal etch marathon run.

A syntactic system for analyzing the etching signal of a capacitance manometer is presented here. The
system attempts to discriminate among various waveform types. Figure 8.2 shows the overall block
diagram. When a raw signal comes in, the waveform is pre-processed to facilitate further analysis.
Then the waveform is encoded into a string of integers. The string is fed into the classifier to
determine the fault category. There is also a numerical spike evaluator in the classifier. We will point
out its necessity when we talk about the classification result. The major parts of this syntactic analysis

system will be described next.

raw si nal | window ! . |
S| elector ™| smoother | —pmsegmenter

I — -
. " — .
7 spike evaluator 3\

o~ —'-of

— et encoder gl classifier | ——sfault category

Figure 8.2. Architecture of the overall syntactic system
for analyzing the marathon run data.
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The preprocessor performs three operations: windowing, smoothing, and segmentation (Figure 8.3).
“Windowing” refers to choosing the appropriate time interval for observation during the etch cycle of
one wafer. The time window we select is usually the later part of the main etch step. For the
capacitance manometer signal, there are two dominant positive spikes (as opposed to the minor ones
in the stable region), one big, and one small, before the relatively stable region, so we can define a
window after the small spike. Since we do not do any analysis on the random, high frequency noise, we
can smooth out the noise of the windowed waveform. We use an algorithm called Locally Weighted
Scatter Plot Smoothing [13]. This algorithm attempts to predict each point of the signal by
interpolation, by appropriately weighing the nearby raw data. The smoother lets the user specify the
fraction of total data used for predicting a particular point; the larger the fraction, the smoother the fit.
For the capacitance manometer, a fraction value of 0.2 is appropriate in the sense that this
transformation seems to preserve the features that are analyzed later by the segmentation algorithm

and the classifier. The smoothed waveform is segmented using the faster algorithm discussed in
Chapter 7.

90



00

wi ndow
of interest

-
-
=
—n_
[

indowing

(]
O ‘
hd
L] i0 -‘ S0 30 <0

smoothing

Figure 8.3. The process flow of the preprocessor. The
sample rate of the original signal is 2 samples per sec.

n



Figure 8.4 shows the encoding scheme used to convert the sequence of segments into a string of
integers. Five integers are used for encoding the slope of the segments: 2 (fast increasing), 1 (slowly
increasing), 0 (almost flat), -1 (slowly decreasing), and -2 (fast decreasing). For the windowed
waveform of the capacitance manometer, we consider a segment with a slope of magnitude more than
10 units/sec to be fast changing, less than 4 units/sec to be almost flat, and the in-between values to

be slowly changing.

210-1-20210
Figure 8.4. The encoding scheme.

The classifier’s operation is based on regular expression representation. Regular expressions are used
to build the classifier. The expressions are used for matching the encoding string from the raw data.

Assuming that x is an integer variable, we show some examples of regular expressions:
x*: zero or more X, i.e.,, <empty>, x, XX, OF XXXXXXX.

x+: one or more x, i.e., X, XX, OF XXXXXXX.

X?: zero or one X, i.e.,.<empty>, x.

x|y: either x or y.

For example, the following strings are all represented by the same regular expression, 2*1+0*,
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2¥1+0%: 2222110000, 22221, or 100000.

Based on the process engineer’s knowledge on the different waveforms, the classifier can be built to
describe the shape of waveforms with one regular expression for each. After an incoming etching
waveform is encoded into an integer string, the classifier will try to match the string to one of the
regular expressions, and thus determine its category. For example, the following regular expressions

can be used to describe the waveforms shown in Figure 8.4:

2+1+0+: describes a curve that first increases rapidly, then stabilizes and finally flattens out. (Le. the
first encoding example 21100 from Figure 8.4)

2+ {1¥O*(-1)*(-2)*(-1)*0*1*2*} 1+0+: describes curves that are the sum of the 2+1+0+ curve and a
possible negative spike. (I.e. the second encoding example 210-1-20210 from Figure 8.4. Notice that
the expression within the curly brackets represents the spike).

However, actual real-time signals may evolve quite a bit over time. The normal waveform may be
“stretched” in time or amplitude; the spikes of type 1 and 2 can appear at various times, with varying
amplitude and duration, relative to the base waveform. Care should be taken when one derives a
regular expression, so that the expression is flexible enough to accept variants of the waveform. Let us

discuss in some detail the regular expressions for the five different waveforms in our data.

Regular expressions for five waveform categories
Normal:

The normal waveform has a shape similar to the first example in Figure 8.4. It first increases rapidly,
then stabilizes and flattens out. However, expression 2+1+0+ will not be appropriate enough to
describe this decreasing trend of positive slope. Due to the “rubber stretching” effect, sometimes slope
code of 2 or 1 might not appear in the integer sting. The engineer must exercise discretion in deriving
the regular expression. Strings without a “2” or “1” should be accepted. An expression that would
accommodate this range of signals is 2*¥1+0+ | 2+1*0+.

Type 1:
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The type 1 waveform is the sum of the normal waveform and a negative noisy peak. Because the
amplitudes of the peaks are different, and they are added to an increasing curve, the encoding
representation might not contain negative slopes. For instance, see the waveform in Figure 8.5. Also,
the peak might appear in any position relative to the normal curve, so it is necessary to consider all
scenarios of where the peak appears. The notation of Nxy is used for describing the peak, where N
stands for negative peak; x is the slope encoding value before the peak; y is the slope encoding value
after the peak. The encoding for the peak is in this format:

(starting segment, left arm, right arm, ending segment)

N4 stands for the negative peak occurring at end of the waveform; flat segments do not need to
appear after N,y P, is the positive peak defined similiarly. For the peak coding N22, (2 (-2|-1]0] 1)+
(0] 1]2)* 2), i.e., the negative peak occurring within the fast increasing “2” region, line segments with

slope code less than 2 will be considered as a valid left arm; also, it is not necessary to have a right arm.
N22=(2 (-2|-1|0]1)+ (0|1|2)* 2)

N21=(2 (-2]-1]0)+ (0| 1]2)* 1)

N11=(1 (-2]-1]0)+ (0|1]|2)* 1)

N10=(1 (-2]-1)+ (0|1|2)* 0)

N00=(0 (-2|-1)+ (0]1|2)* 0)

Neos =0 (:2]-D)+ (0] 1]2)*)

Typel=2*{N22}?2*{N21}?1*{N11}21*{N10}20* {N00} 20*{ N,_, }?
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N11

Figure 8.5. Two examples of negative peaks.

Type 2:

The type 2 waveform is the sum of the normal waveform and a positive noisy peak. Similar to the
negative-peak type 1 case, it is necessary to consider all scenarios of where the positive peak appears.
Notice that there are no P22 and P21. A positive peak has segments with slopes greater than the
segments before it. However, as “2” is the largest slope coding value, it is not possible to have a
segment with the slope coding value greater than 2. Thus, under this coding scheme, it is not possible
to have a possible peak within, or right after a region of segments with coding values “2.”

P11=(1 2+ (1|0]-1]-2)* 1)
P10=(1 2+ (1|0]-1|-2)* 0)
P00=(0 (1|2)+ (0]-1]|-2)* 0)
Pea =0 (1]2)+ (0]-1]-2)*)

Type2=2*1*{P11}21*{P10}20*{P00}20*{ P, }?
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Figure 8.6. Two examples of positive peaks.

Type 3:

The type 3 waveform is more or less the inverted version of the normal waveform. It first decreases
rapidly, then stabilizes and flattens out. Again, due to the “rubber stretching” effect, thete may not be a
“1” or a “0” in the encoding strings, so the regular expression for type 3 is (2)+(-1)*0+ | (2)+(-
1)+0*.

Type 4:

The type 4 waveform has a more complicated valley-like shape. There is a bump at the bottom of the
valley. The expression is

(-2)*(-1)+OK(-2) (-1 FOFIX2XTHORC1)*(-2) 0¥ 1 %2+ 1#0%,

First-pass classification result

Table 8.1 summarizes the classification result based on the system described above,
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Type  Normal 1&2 3 4 unknown

Correct 1180 221 9 2 3
Miss 2 0 1 0 -

Table 8.1. Waveform category distribution, first-pass
result.

Let us examine this table. There are 3 “unknown” signals that could not be classified as any of the
predetermined types. Many normal waveforms may have small spikes; proper smoothing and
quantizing prevents them from showing up in the encoding. The two misclassifications for the normal
begin with a “1” followed by “2s” instead of beginning with a “2”. The type 3 misclassification has a
small negative spike. Lastly, the system basically cannot distinguish if there is a positive or negative
spike to the normal template, although it is able to detect a significant slope change in the otherwise
monotonically increasing waveform. Figure 8.7 can explain this ambiguity. Depending on how we
interpret the different curve regions, we might come up with a positive or a negative spike for the

same curve.

normal.

no positiye
spike

Figure 8.7. Two possible interpretations of the shape of
the same curve.

Spike Evaluator

One apparent way to resolve this structural ambiguity is to add quantitative measuring ability to the
classifier, in order to find out the sign and magnitude of the spikes. Similar schemes have been

implemented for ECG waveform analysis. For example, for more accurate ECG waveform
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classification, Koski, et al. [3] compute the amplitude and duration of candidate P wave and T wave.
Based on these numerical attributes, the wave in question is designated as a noisy waves, a P wave or a
T wave. Here, a spike evaluator is proposed to measure the magnitude and sign of spikes (Figure 8.8).
We first take the smoothed signal, centered, and standardized by its standard deviation, and we then
subtract a reference signal. On the residual plot, the maximum peak value represents the value of the
spike. In our study, we put a threshold of 0.3, which means that if the spike is less than 0.3 times the
standard deviation of the signal, we consider the process to be normal. Using this criterion, 60
examples of type 1, and 29 of type 2 are classified as faulty. The improved results are shown in Table
8.2. Notice that a small spike added to a signal is a very common phenomenon. It should not be a
surprise that out of the ten type 3 signals, one has a small spike. If we construct a spike evaluator for
fault type 3, the one classifying error due to the small negative spike added to the signal would be

corrected as well.
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Figure 8.8. The way to measure the spike magnitude in
the classifier.
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Type  Normal 1 2 3 4 unknown
Correct 1312 60 29 9 2 3
Miss 2 0 0 1 0 --

Table 8.2. Improved waveform classification with the
spike evaluator.

8.3 Analysis of the “High Speed” Data

High speed data is acquired during the plasma ignition stage, before any etching occurs. This stage is
the transition between the pre-etch and the main etch. The sample rate is 100 samples per second,
instead of one or two samples per second, as was the case when monitoring during the entire etching
period. The high sampling rate is needed to capture the detail of the transition waveform, and this is

where the term “high speed” comes from.

Our assumption about the “high speed” waveform is that each waveform corresponds to an operating
condition. The goal of the analysis is to describe the shape of a waveform and thus determine its
operating condition. There are two designed parameters for the operating conditions, namely, “tune”
and “load.” They can be assigned to different experimental levels, such as “high,” “medium-high,”

“baseline,” “medium-low,” and “low.”

Let us examine some waveforms. Figure 8.9 shows two baseline waveforms and two medium-low tune
and load waveforms. For the baseline waveforms, the region between the first and second spikes
might be somewhat different; otherwise, the two wave-forms will have very similar structures. For the
medium low tune and load waveforms, the region after the big positive peak can be quite different.
Also, we can infer from inspection that the negative peak can be sometimes narrower (as in the first
waveform) and sometimes wider (as in the second waveform). A human brain can effortlessly analyze
the waveforms and come up the above observations. We will build our automated analysis system with

these observations in mind.
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Figure 8.9. Two types of TCP line impedance waveforms
for two different operation conditions.

Syntactic analysis is partly science and partly art. For accurate classification, the importance of
engineering judgment cannot be overemphasized. This means that the rules encoded in the system are
going to be highly specific to the nature of the data. The “high speed” data waveforms are much more
complicated than the main-etch waveforms we analyzed previously, so we cannot use the analytic
scheme for the main-etch waveforms. Using line segments as the primitive elements would make the
classifier extremely complicated. Also, using slope attributes alone would not adequately describe the

“high speed” waveforms.

Horowitz proposes a syntactic algorithm for detecting peaks in ECG signals [6]. Belforte uses a peak-
coding table look-up method to analyze ECG signals [7]. After taking the first derivative on the raw
ECG data, the waveform is parsed into peaks. Based on the amplitude and duration of a peak, a letter
code is assigned to it. Trahanias and Skordalakis suggest using peak and segment as two types of
primitives, and one can build a hierarchy for a waveform from the primitives m a bottom-up fashion
[81[9]- However, the use of a "peak” as a primitive can be troublesome. Notice that if 2 positive peak is
followed by a negative peak, the two peaks will share a common arm in the middle. That is, a lower-
level element is being shared by two higher-level elements; this will complicate the syntactic structure
description. Also, it may be difficult to define the duration and amplitude of a peak if the left and right
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arms of a peak are uneven. Nevertheless, we believe that the recognition of complicated waveforms

can be done in a fairly straightforward way, as discussed next.

A new scheme is proposed for recognizing “high speed” waveforms. Three types of primitives are
used: UP (monotonically increasing), FLAT (approximately constant), and DOWN (monotonically
decreasing). Each primitive consists of small straight line segments. For our data, the line segments
with slope between -0.1 and 0.1 unit per data point are considered FLAT; less than -0.1, DOWN;
greater than 0.1, UP. See Figure 8.10 for drawing of the primitives.

FLAT

\

\DOWN

\\
~

Figure 8.10. Illustration of three types of primitives.

Then we perform the nosy segment processing techniques in Chapter 7 on the waveform. Since the
waveforms are much more complicated, and we do not have distinct names such as stable etches,

endpoint transitions for the primitives. We decide to encode the waveform differently.

Three attributes are used to describe each primitive, in the form of {S, D, A}, where,
S is the slope code, which can be -1 (DOWN), 0 (FLAT), and 1 (UP);

D is the duration code which can be 0, 1, and 2, in order of length. If duration of a primitive is less

than 10, D=0; between 10 and 30, D=1; greater than 30, D=2;
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A is the amplitude code which can be 0, 1, and 2, in order of magnitude. If amplitude of a primitive is
less than 0.4, A=0; between 0.4 and 2, D=1; greater than 2, D=2,

The criteria for quantization can be assigned based on the process engineer’s experience with the
signal. One should try to make the number of primitives cotresponding to each quantized value
roughly the same. This will make the task of building the classifier easier. Consider the case where we
use a very strict criterion on the FLAT primitive, in which case only line segments with slope very
close to zero will be assigned slope code of 0. Then the number of FLAT primitives will be very small,
and it simply defeats the purpose of having a FLAT attribute; since the FLAT attribute were to be left
largely unused, we might as well just two attributes, UP and DOWN.

FUIv)

] 1] (0,2,%\(;{ 100\ aoa -1+ ] 4000 4300
(-1,0,2)

31 (0,2,0)

2 (1,1,0)

Figure 8.11. An encoding example. This is the low-tune
and high-load waveform.

For the above low-tune and high-load waveform, the list of the numerical values for the primitives is
(0,412, 0.02) (-1, 1, 2.99) (1, 23, 0.35) (0, 763, 0.01), which can be coded as,

0,2,0) (-1,0,2) (1,1,0) (0, 2, 0).

The syntactic rules have to be created to take into account the error tolerances used in extracting the
primitives. In training the classifier, one should be careful with primitives close to the boundary value.

If there is a reason to believe that the corresponding primitive of the subsequent waveform may take
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on either of the two encoding values which share a common boundary, we should use the logical OR
(“|”) operator on the two values, so that both values will be accepted.

Consider the third primitive of the above waveform. Its amplitude is 0.35, which is faitly close to the
boundary value of 0.4. We should make the classifier accept both 0 and 1 for the amplitude attribute.

The classifier for the waveform can be,
0,2,0)(-1,0,2) (1,1,0|1) (0, 2, 0).

Indeed, engineering intuition is of great help in building the back to the observation on the LHext
waveform. The basic idea is to write the regular expression based on the common region. Anything

attached to the common region will be acceptable.
{Common} {Anything}

Anything=-2 | -1 |0 |1]2],]|(])

1. [\t LHmed -{: :
I S : n
v e o {1 v I T ———
by L’: €ooeses >
. comm})n. ~“ 1. COMMO .

Figure 8.12. Highlight the common region in two
waveforms collected at the same operating conditions.

In this case, the common region is a big FLAT segment followed by a negative peak and a positive
peak. Notice that the top portion of the negative peak might be relatively flat. Therefore, after
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segmentation, a small FLAT primitive corresponding to the top of the negative peak might exist. With

this in mind, the common region can be coded as follows:

top_flat = (0,0 1,0)

common= (0,2,0)(-1,0,2){top_flat}?(1,2,2)(-1,0,1)(1,0| 1,0 1)(-1,2,2)
Please see Appendix A for the flex code of the classifier.

Figure 8.13 shows the basic schematic of the LAM 9400 plasma etcher, which is a transformer-
coupled plasma (TCP) system. The inductive planar coils at the top of the chamber are wound from
near the center to the outer radius of the chamber. Plasma is created by applying RF power to the
inductive coil. Another RF power source is applied to the substrate for ion-bombardment of the
wafer. There is one matching network for each RF source. The upper one is a capacitive network,
consisting of two variable capacitors, the tune vane capacitor and the load capacitor. The lower one is
a L-type network; the variable circuit elements are the tune vane capacitor and the load coil (see Figure
8.14). A matching network tries to match the impedance it “sees,” as to maximize the power transfer
from the RF source to the plasma. During the matching operation, we can acquire a list of signals
from each network. Some useful signals for fault detection and diagnosis are listed in Table 8.3. For
this work, we analyze TCP line impedance waveforms for classifying machine operating condition. For
this classification purpose, it is sufficient to analyze just one signal. Multiple-signal analysis is still under

investigation.
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Figure 8.13. a) Top view of the inductive planar coil. b)
The side-view illustration of a TCP system.[24]
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Position

Description

TCP Tune Vane Capacitor | Value for the tune vane capacitor to match
Command
Upper TCP Load Capacitor Value for the load capacitor to match
Matching Command
Network :
TCP Phase Control Control signal of phase error between the
current and voltage at the top coil
TCP Tune Vane Capacitor | Position of the tune vane capacitor of the
Position upper matching network for the top coil
TCP Load Capacitor Position of the load capacitor of the upper
Position matching network for the top coil
TCP Line Impedance Apparent input impedance of the upper
matching network
RF Tune Vane Capacitor | Conrrol signal for the tune vane capacitor
Control of the lower matching network
Lower RF load coil Control Control signal for the load coil of the lower
Y\I:llatchmf matching network
r RF Tune Vane Capacitor | Position of the tunc vane capacitor of the
Position lower matching network
RF l.oad Coil Position of the load coil of the lower match-
Position ing network
RF power Power rransferring to the substrate
RF Line Impedance Apparent input impedance of the lower-
matching network
RF volage Substrate bias with respect o ground
Table 8.3. Real-Time Signals Collected for the Lam TCP
9400.
load cap load coil
7“' + % —
# vanc cap vane cap
sourc = sourc y

(a

(h)

Figure 8.14. a) A capacitive matching network. b) An L-

type matching network.
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The two designed parameters for the operating conditions, “tune” and “load,” are the pre-specified
values for the two variable capacitors of the upper matching network to follow. They each can have
one of the experimental designed levels of “high,” “medium high,” “baseline,” “medium low,” and

“low.”

Each parameter is on a standardized scale, shown in Figure 8.15. “H” and “L” stand for high and low,
respectively; “ext” and “med” stand for extreme and medium respectively. “HLext” means that the
operating condition of extremely high tune and extremely low load. There are nine operating
conditions: Baseline, HHext, LLext, HLext, LHext, HHmed, LLmed, HLmed, LHmed.

A 32000 — Hext A

19000- — — - Hmed
16000 —— baseline
13000- — — - Lmed

Numerical value
Designed levlels

¢) Lext

Figure 8.15. The designed-level description of the
parameters tune and load.

The results are summarized in Table 8.4. The bold italic wafer numbers signify the misclassified cases.
The baseline miss has to do with the fact that a routine spike is significantly weaker in the other
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signals, so that the second and third peaks of the line impedance signal disappear. the LLmed miss has
to do with a high spike occurring in the common tegion, so that the recognizable pattern is greatly
“damaged.” Notice that if the high spike occurs far away from the common region (first waveform of

Figure 8.16), the common region will not be altered, and thus classifying error will not occur.

ike

© @Oy Ay 3630 3632 VO 300 Pevey a0 e noo VK 9 PO

@ b)

Figure 8.16. The high-spike effect on the waveforms. (a)
The spike occurs far away from the common region. (b)
The spike occurs right at the common region.

Finally, for the LHmed wafers, #26 and #28 waveforms are similar to LLmed ones (see Figure 8.12
and Figure 8.16). #27 waveform is similar to LHext ones (Figure 8.11). This means that #27
waveform is totally different from those of #26 and #28. As a matter of fact, the similarity that
confused the classifying task is so great that even a human expert will not be able to make a
distinction. This implies that probably any pattern recognition scheme will not tell those confounded

waveforms apart. Therefore, the author will not consider this as a classification etror.
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Type
Baseline
HHext
LLext
HLext
LHext
HHmed

LLmed
HLmed

LHmed

Wafer number

1,2,3,16
4,5,6
7,89
10,11,12
13,14,15
17,18,19
20,21,22
23,24,25
26,27,28

Comment

missing spike

extra spike

confused, with LHx, LLm.

Table 8.4. Result summary. The italic wafer numbers
signify misclassification.
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Chapter 9

LOW FREQUENCY ANALYSIS FOR PLASMA ETCH DIAGNOSIS

9.1 Introduction

In previous chapters we discussed the use of three different sources of signals for plasma etch
diagnosﬁcs. In this chapter we address the use of low frequency signals. For low frequency analysis, we
increase the sampling rate from 1~2 Hz to 10 kHz, in order to acquire machine signals coming out of
the etching chamber, such as power, pressure, impedance, load and tune capacitor position, etc. The
National Instrument A/D converter is, with maximum sampling rate of 300 kHz. The low frequency

patterns that we observe may come from different sources.

1) The machine consists of many sub-parts that are to operate at different frequencies. Many
mechanical and electrical parts operate at low frequencies in the range of a few hundred Hz up to a
few KHz.

2) Harmonics of high frequency, such as the ones generated by the RF sources and optical emission,

mix with each other and generate low frequency products.

3) Lieberman, et al found out that under certain settings of chamber pressure and power, plasma
discharges of SF; and Ar/SF, exhibit oscillating behavior in charged partide density, electron

temperature and plasma potential.

4) Praburam and Goree [21] observed that when the plasma chamber under operation is dusty, there is

a void of ionization wave moving back and forth in the chamber at frequency of orders of 10 Hz.
9.2 Literature survey

The literature provides some evidence that plasma absorbs energy of signals at relatively low

frequencies, and can be treated as a filter for low frequency signals. Bongdira etc. [20] and Henion etc.
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[19] did some iron nitriding experiments. They varied the frequency of the input pulse to the plasma
chamber, from 0 Hz to 1 KHz, and the parameters of the resulting nitriding samples were
considerably different (Table 9.1). Also, Lebeau [18] measured ion cyclotron resonance heating
(ICRH) power absorption in a plasma subjected to different modulation frequencies (50~300 Hz).
The power absorption increased with frequency (Figure 9.1). Thus, from these experiments, we see
that the plasma chamber can absorb power from low frequency signals effectively and selectively for
different frequencies. We can reasonably expect that if we change the composition of the plasma by
altering the chamber settings, the filtering properties will change accordingly. This change of filtering
properties has been confirmed in the preliminary work.

Parameter Frequency (Hz)
SO 100 1S5S0 200 250 300 S00
(‘!/—;", S s hard 500 730 375 265 330 330 260
(11 1) diffraction 92 100 18 14 19 19 7
intensity (a.u.) . -
¥'(200) diffraction s2 77 12 9 11 11 s

peak intensity (a.u.)

Table 9.1. Metallurgical parameters of a nitriding sample as a function of
plasma frequency [20].

Y(Q)

1 L t

0.8 - TR F
0.6 - L I -

0.4 4 -

0.2 - . i

1 10 100 1000
Q2r  (Hz)

Figure 9.1. Fraction of the RF power confined with a confinement time
longer than the modulation period [18].
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Therefore, by performing frequency transformation on the output signals of low frequency, we should
be able to monitor the chamber and wafer states. Designed experiments can be used to identify the
spectral features that behave consistently from wafer to wafer, and ignore those that behave

inconsistently.

There are many other examples where spectral analysis has exploited low-frequency resonance of

various systems:

Scholtz etc. [11] used low frequency noise to characterize semiconductor devices. They plotted noise
vs. temperature at different low frequencies. Jevtic [13] modeled the relationship between low-

frequency noise and imperfection of the device.

Fritsch etc. [12] used a low-frequency micromechanical resonant vibration sensor for wear monitoring
of mechanical tools, such as dsills and mills (Figure 9.2). Seifert etc. [1 5] used very low frequency (10-6

Hz to 10 Hz) to detect and classify aging phenomena of composite insulating materials.

200

braring FAG 6203 wadoul defict

]

Uiput Valtage ! mV
g ¥

o

O 10 20 30 e Sp» & 0 B 9 1w
Froqueney ‘Mz
Figure 9.2. Solid-bore vibration spectrum measured with a piezoelectric

acceleration senor, for the cases of a bearing being without defect and with
defect [12].

To avoid the need for expensive high rating transformers, Hilder etc. [24] and Kruger etc. [16] used

test supplies of 0.01 Hz to test cables or circuits, and tried to predict the 50 Hz behavior of the system.

The above examples in the literature suggest that we may be able to use empirical low frequency

analysis to perform plasma etch fault detection, equipment and wafer state modeling..
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9.3 Preliminary experiments

A few preliminary experiments with the chamber state were conducted to explore the low frequency
behaviors in respond to varying machine parameters, the time drifting phenomenon, and its
relationship with the OES spectrum. The parameters involved are HBr flow rate, chamber pressure,

top and bottom RF power. The center points can be found in Table 6.1 in Chapte 6.

Figure 9.3 and 9.4 show the 410 Hz peak from the RF top impedance signal and the RF bottom
impedance signal respectively. The peak from the RF top impedance signal goes down with increasing
top powet, whereas the one from the bottom signal goes down with increasing bottom power. Also, to
study the time effect on the peaks, two time slots were scheduled about 20 days apart, before and after
Christmas 1999. The peaks drift down for both top and bottom cases.

Intensity of the 410 Hz peak from

. .
g I%.____ the RF top impedance signal
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L2, 4101 (:nrm&uug\; n S
g ER 1 ““‘:-’“s » 3‘\
= e
53 ¥ ‘-..\~~ .
S
= _| ‘~\‘§‘
~ -
5§ ¥
w
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Figure 9.3. Varying RF top power -10% to +10%.
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Figure 9.4. Varying RF bottom power -10% to +10%.

When varying the HBr setting, bandwidth transition of harmonics can be observed on the spectrum,;
the drifting behavior due to time of the bandwidth transition can be seen as well, as shown in Figure
9.5, 9.6 for the December 2000, and January 2001 experiments, respectively. Notice, the plot label
specxxx.yy, where xxx is the wafer run number, yy is the signal number. “10” is the load capaci'tor '
position signal, and 13 is the tune capacitor position signal. Wafer numbers 183, 185, 187, 189, 191,
193, and 195, correspond to HBt setting of 135, 140, 145, 150, 155, 160, 165 sccm, respectively. An
 even wafer number was set at the same HBr flow rate of the odd wafer number immediately before it.
For instance, for wafer 184, the HBr setting is 135 sccm, which is the same as for wafer 183. Notice
that the center point plot is not shown in order to conserve space. It looks similar to the one with the
lower settings. For the experiment before Christmas, the bandwidth transition point occurs between

160 and 165 sccm. After Christmas, the transition occurs right after the center point.
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Figure 9.5. Frequency plot of the signal for tune capacitance position, pre-
Christmas HBr -10% to +10%.
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Figure 9.6. Frequency plot of the signal for tune capacitance position, post-
Christmas HBr -10% to +10%.
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Figure 9.7 shows an OES plot with varying HBr setting. The OES data was acquired from the etching
system simultaneously in addition to the low frequency data. There are seven settings and the wafer
group size for each one is three. The OES signal intensity appears to be in linear relationship with the
varying HBr setting, and does not seem to have an relationship with the low frequency harmonics
bandwidth. Another experiment was performed by varying chamber pressure, with nine set points and
utilizing two wafers (Figure 9.8). We can see in Figure 9.9 that the OES intensity stays constant for the
first three setting points, then a transition point follows, and the OES intensity starts to decrease
linearly with increasing chamber pressure. This transition point coincides with the low frequency
band“ridth transition point.

lambda = 409.9 nm

1020
1

intensty
1C00

ggo
!

1] 5 10 15 20
wafer number

Figure 9.7. An OES peak intensity plot for varying HBr 125 to 175 ccms.
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Figure 9.9. An OES peak intensity plot for varying pressure 10 to 14 mtormr.
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Additional experiments can be performed in a manufacturing environment. An examination of the
low frequency spectrum can be made before and after a preventive maintenance procedure, and before
and after the replacement of the RF generator. In this way, we can determine if low frequency analysis

provide diagnostic information for maintenance putpose.

On the RF power signal spectrum, it is found that some peaks gradually shift their frequency from
wafer to wafer. As shown Figure 9.10, peak 1 stays very much on the same frequency. Peak 2 shifts
gradually to the right. Peak 3 and 4 are initially close together, and then gradually drift apart. The
physical explanation of the frequency shift is subject to future investigation. Some researchers also
came across similar phenomena. Brodskii etc. [22] observed the same dynamic behavior (Figure 9.11),
but could not explain it. It might have to do with the transient behavior of the chamber during the first
few minutes after the plasma ignition (Figure 9.12), as observed by Roth etc. [23]. These works were

not able to explain the transient effect, although they eliminated a few causes. These are some
phenomena which make plasma diagnosis challenging.

118



intensily (dBi

intengty (dB)

@ 1 1
o | 3
Ao 4
§ 1 2
RI J
=
2 | -
0 1000 2000 32000 4000 5000
frequency (Hz)
wafor 2
1
[ =
o 3
8 1 2 4
8 4
=3
' ‘Ml -l -}k\.,-‘--
o :
0 1000 2000 3000 4000 5000
fiequenty (He)
Figure 9.10. Illustration of the frequency shift.
Z

wafer 1

| 4
e ol M 2
. h
E\&M—*‘M__M—g_
r Fo 700 750
Js kH=z

Irtensty (dB:

Intensity (dB)

-50 -40 -3)

4 0

-20

wafer 3

20 10 0

0

1000

2000 3000
frequency (Hz)

wafer 4

4000

5000

A 40 -2

1000

2000 3000
frequency (He)

Figure 9.11. Spectral dynamics of the ohmic-heating signal: a) =150 ms; b)
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Figure 9.12. Transient values of the plasma impedance afier plasma
ignition. The plot is showing the impedance of etching a single wafer.

9.4 Proposed technique for analyzing the LF spectta

The analyzing scheme will be similar to the previous diagnostic examples. Figure 9.13 shows an overall
design of the system. After turning the raw data into a smooth spectrum by wavelet transform, we
build a baseline curve and peak primitives from it. We then encode the primitives. Finally, attribute

grammar is used to determine the fault category of the raw input.
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Figure 9.13. A schematic of the diagnostic system for low frequency

analysis.

The periodogram of a noisy signal is typically very noisy; and the variance of the periodogram at a

particular frequency may be as large as the power of the frequency component itself. Also, this

variance does not decrease with increase of data sample size [9]. Gao’s spectral wavelet denoising

technique [10] may be used to smooth the periodogram. This technique is computationally efficient; it

can estimate a nonsmooth spectrum at a near-optimal rate. This method preserves the sharpness of

the peaks, while making a smooth estimate on the baseline.

There are two categories of wavelet functions: fazher wavelet ¢ (t), which is used to describe the smooth

and low-frequency parts of the signal f(t); mother wavelet  (t), which is used to capture the detailed

and high-frequency parts of the signal f(t). There are many wavelet functions to choose from. The

wavelet pair we chose for smoothing the spectrum is called “S8”. With scaling index j, and translation

index k, they will appear as the following,
dp(®=2"2¢ (2't - k) and

V=2 y (27t - k).
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When we try to describe the details of the signal, we usually want to have multi-resolution, i.e., more

than one wavelet level number for computing the coefficients of the mother wavelets.

dy= [V, () f@)dt, j=12,., J
where j is the wavelet level number, the smaller numbers indicate the coefficients for the finer details
of the signal. Notice the ] is the maximum wavelet level number, which is a user defined parameter.

When computing the sr.nooth part of the signal, one level of the father wavelet is needed

Sy = I¢J,k(t)f(t)dt

The denoising procedure is illustrated in Figure 9.14 and outlined below. Notice that in the illustration

we set the maximum wavelet level number ] to 6.

1) Perform Fast Fourier Transform (FFT) on the raw signal to obtain the log-periodogram.
2) Apply a Discrete Wavelet Transform (DWT) with multiple levels to the log-period‘ogram.
3) Apply a special threshold rule to the mother wavelet coefficients, according the formula:
A=max(m (log,(n)/3)°*, log.(2n)26 ")

where j is the wavelet level number, n is the length of the raw data. Any wavelet coefficient smaller
than the threshold is shrunk to zero. '

4) Apply the Inverse Discrete Wavelet Transform (IDWT) to the remaining coefficients to get the

smooth log-periodogram.
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Figure 9.14. Illustration of Gao’s spectral wavelet denoising method [32.].

After obtaining a clean spectrum, structural analysis may be performed. Syntactic analysis with
attribute grammar [7,8] will be utilized. Two types of primitives, baseline curve and peak, will be used
(Figure 9.15). A peak is a sharp spike. The baseline consists of relatively flat and smooth curves with
peaks among them. The baseline curve and peak consist of lower-level primitives, the line segments,
which can be obtained by a piecewise linear approximation technique on the log-petiodogram, as
presented in Chapter 7. Based on their repeatable behavior, peaks will be selected for various
diagnostic purposes. For both baseline curves and peaks, we will monitor the numerical attributes of

amplitude, bandwidth, and power (area under the curve).
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Figure 9.15. Demonstration of baseline curves and peaks.

For a baseline curve, we encode it as: (BC, slpe code, length codé), where BC stands for “baseline curve;”
slope code can be up (1), flat (0), and down (-1); length code can be short (0), medinm (1), and long (2). For a
peak, we encode it as: (P, amplitude code, bandwidth codr), whete P stands for “peak;” amplitude wode can be
small (0), medium (1), and large (2); bandwidth code can be narrow (0), medium (1), and wide (2).

The following illustrates the encoding of two hypothetical examples of two peaks with a baseline in

between.
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(P,2,0)(BC,0,0)(P,2,0) (P,2,0)(BC,0,0)(P,1,2)

Figure 9.16. On the left: the encoding for a large narrow peak, a flat and
short baseline curve, and another large narrow peak. On the right: the

encoding for a large narrow peak, a flat and short baseline curve, followed
by a wide peak with medium amplitude.

Qualitatively, we will use regular expressions (see Chapter 8 for a discussion on them) to classify the
spectrum. For instance, (P, 2, 0) (BC, 0, 0)?(P, 2, 0]|1]2) describes two large peaks with or without a
baseline curve in-between; the bandwidth of the later peak can be arbitrary. This expression will accept
the example on the left in Figure 9.16, and reject the one on the right.

Quantitative attributes will be used systematically to classify the spectra in finer detail. Table 9.2
illustrates the use of attribute grammar. The left column is the qualitative systematic description of the
spectrum. The right column specifies the calculation and manipulation of various quantitative attribute
of the spectrum. In order to convert the prototype of the rules into executable code, a parser generator

such as_yacc or bison will be needed.
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Syntax Rules Attribute Rules

| Spe=<LF_spe><HF_spe>

LF_spe=(BC,-1,2)(P,1,1|2)... *LF_spe.BC_power=sum(BC;.power)
*If (LF_spe.BC_power>threshold)
alarm(“cleanness™)|

| HF _spe=(P,0|1,0)(BC,1,1)(P,0,1)... *If (P; BW>threshold) alarm(“gas”)

Table 9.2. An illustration of attribute grammar.
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Chapter 10

CONCLUSION AND FINAL REMARKS

10.1 Work Summary

We have set up a plasma diagnostic system with three sources of signals, OES, RF, and machine
signals. CF, OES lines 275 nm and 321 nm are found to be better than any other signals for poly-etch
endpoint detection. In addition, excellent statistical models for wafer state prediction are obtained by
linear stepwise regression on all available signals. A data exploration system, based on syntactical
analysis, is developed for efficiently browsing of the data archive, allowing users unprecedented
flexibility in examining the data both qualitatively and quantitatively. Two case studies of syntactic
analysis for diagnostics are presented. Finally, the use of low frequency signals for plasma diagnostics
in investigated. The syntactic method for analyzing the signals is proposed.

10.2 Remarks on Syntactic Analysis

The most promising technique proposed in this thesis is syntactic analysis. The syntactic method is
shown to be robust and accurate for fault detection and diagnosis in plasma etching. For the successful
operation of this system, the expertise of the process engineer plays a key role. The system
complements the process engineer’s expertise in interpreting the etching signals, therefore, parameters

of the system must be trained to suit the engineer’s needs.

At a glance, syntactic analysis is quite similar to the encoding and decoding techniques in digital signal
processing (DSP). In DSP, the engineer first defines a number of logical values, and assigns a voltage
or frequency level for each logical value. The data is presented with a stream of logical values, encoded
into physical signal levels (voltage or frequency), and transmitted over noisy channels. The receiver will
try to ignore the noise in the received signal, and try to match it to a predefined logical value. In
syntactic analysis, we define a mumber of fault categories based on our experience. For diagnosing a

plasma etching signal, we would ignore effects such as machine aging, preventive maintenance,
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chamber memory, small spikes, and so on, and try to match the signal to a predefined fault category.
The similarities between syntactic analysis and DSP are highlighted in Figure 10.1.

Digital Signal Processing

logical noisy determined
>+ encoder »t channel ™ decoder || signal
value value

Syntactic Analysis
Nnoisy

fault |wl encoder |»| Machine | | classifier |, |classified
behavior fault

Figure 10.1. Comparison of the overall architectures of DSP and syntactic
systems.

The syntactic techniques for solving the classification problems in this thesis may appear ad hoc. The
reader might wonder if there is any general syntactic method for all the patterns, using the same set of
primitives, such that one can develop a syntactic system systematically. While some general schemes
(such as You and Fu’s) have been proposed, in our experience, this is not desirable, since they might

lead to overly complicated grammars, and thus induce higher diagnostic error rates.

In the literature, uses of syntactic analysis to recognize objects tend to be pattern dependent. Many
researcher use context-free grammar. For a different pattern, a different set of segmentation primitives
must be used; a different grammar must be specified; also, different attribute information, such as
segment length, time duration, and amplitude, may need to be considered (this is done usually by using
attributed grammar, described briefly in 6.3). Similarly, for the plasma main etch signal pattern, line
segments are used as the segmentation primitives; a regular grammar (a subset of context-free

grammar) is specified, and the spike magnitude is the attribute considered.

You and Fu [22] propose a general 2-D shape recognition method, in which curve segments are used

as primitives. Each curve has four attributes: direction, length, total angle change, and the degree of
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symmetry. Also, the angle between two adjacent curve segments is considered. While this method can
describe a 2-D pattern in detail, it may complicate the task of classifying plasma ignition waveforms.
Obviously, in You and Fu’s scheme, if curve segments are used as primitives, the grammar for
classification will be extremely complicated. However, if we use monotonic segments (UP, FLAT,

DOWN) as the primitives, with the qualitative attribute of amplitude and duration, the classifier’s
grammar will be very simple.

10.3 Future Ditections

In order to fully test the value of the diagnostic system, there is no substitute for incorporating it into a
manufacturing environment from our research environment. Since the diagnostic system is non-

intrusive, the set-up disturbance to manufacturing will be minimal.

In Chapter 5, we have discussed the use of two OES signals for endpoints detection. The long-term
robustness still needs to be tested in a manufacturing environment. Also, we need to develop rigorous
syntactic diagnostic models for both equipment and wafer states, making them applicable to one

maintenance cycle or longer.

Since the real-time-data waveforms of plasma etch drift constantly due to machine aging, the
waveform is significantly different between the beginning and the end of a maintenance cycle. Since
the real-time etch waveform reflects the actual etching behavior of the machine, it would be very
helpful if we can capture the amount of drift of a plasma etch signal, such that preventive maintenance
can be scheduled according to how much the shape of the waveform has changed. Attributed
grammar can be used to achieve this. There are two parts to attribute grammar: the qualitative part and
the quantitative part. The qualitative part focuses on the rough structural description of the waveform.
Loosely speaking, it is the grand human impression on the signal, which we mainly use throughout this
thesis for classification purpose. The quantitative part is the numerical measurement of the wave-form

attributes, for instance, the amplitude and duration of a peak, the distance between peaks, etc.

Lastly, we should incorporate low frequency signals into the diagnostic system, in addition to the other

three existing sources of signals. The author believes that the low frequency signals can provide
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valuable diagnostic information about specific parts of the machine, in addition to plasma stability,

equipment state and wafer state.
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Appendix A

The Classifer for the High Speed Data

/*enceding.c*/
#include <stdio.h>
#include <string.h>
int GetDurCode(int dur){
if (dur <10)
return 0;
elgse if (dur >= 10 && dur <=30)
return 1;
else if(dur > 30)
return 2;
printf ("Exror, wrong duration sign %d\n", dur);
exit(1);

int GetAmpCode (£loat amp) {
if (amp <0.4)
return 0;
else if (amp >= 0.4 && amp <=2)
return 1;
else if (amp > 2)

return 2;
printf ("Exrror, wrong amp sign %d\n", amp);
exit(1);
}
main () {

int idx, dur, slopecode, durcode, ampcode;
float amp;
FILE *inf, *outf;
inf=fopen("forhist.dat.txt", “r%);
outf=fopen(“code.list", "w");
while(fscanf (inf, "%d%d %f %¥d",&idx, &dur, &amp, &slopecode) !=EOF) {
if (idx==1) fprintf(outf, "\n");
fprintf (outf, *(%d,%d,%d)",slopecode,
GetDurCode (dur) , GetAmpCode (amp) ) ;
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printf( "Type C matched:

fileName) ;

}
SYM} *{Fcommon} {SYM} *$ {
printf( "Type F matched:
fileName) ;
}
{Hcommon} {SYM} *$ {
printf( "Type H matched:
fileName) ;
}
{Icommon}{sYM}*$ {

printf( "Type I matched:

fileName) ;

}
{D}s {
printf( "Type D matched:
fileName) ;
}
%%

main( argc, argv )

int argc;
char **argv;

++argv, --arge; [E("-29)+("-1%)*0*$
if ( arge > 0 ){

yyin = fopen( argv([0], "r" );
fileName=argv[0] ;

}

elsef

fileName="Standard input";

yyin = stdin;

}

yylex();

}

$s %s\n", yytext,

s $s\n", yytext,

%¥s %$s\n", yytext,

%8 ¥s\n", yytext,

s %$s\n", yytext,

{ skip over program name
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