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Abstract

TOWARDS A COMPLETE
PLASMA DIAGNOSTIC SYSTEM

byDong Zhao

Doctor ofPhilosophy in Engineedng-EIectiical Engjneeting &Computer Sciences

University ofCalifomia atBerkeley

Professor Costas J. Spanos, Chair

We have set up aplasma diagnostic system with three sources of signals, OES,
RF, and machine signals. CF^ OES lines 275 nm and 321 nm are found to be
better than any other signals for poly-etch endpoint detection. In addition,
excellent starisdcal models for wafer state prediction are obtained by linear
stepwise regression on all available signals. Adata exploration system, based on
syntactical analysis, is developed for efficiently browsing of the data archive,
allowing users unprecedented filexibiUty in examining the data both qualitatively
and quantitatively. Two case studies of syntactic analysis for diagnostics are
presented. Finally, the use of low frequency signals for plasma diagnostics in
investigated. The syntactic method for analyzing the signals is proposed.
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Chapter 1

INTRODUCTION

1.1 Motivation

As the semiconductor processing technology approaches the 0.1 |Jm feature size and 300 mm wafer

diameter, the cost of building a new fabrication plant is rising rapidly (20% per year) [26]. It is

predicted that it will take about $10 billion to build a state-of-the-art facility for manufacture in 2005.

To remain competitive and manage the escalating cost, the industry has strived to improve feature size,

wafer diameter, yield, and equipment utilization. However, thegains fromwafer diameter andyield are

reaching their practical limits and the new focus is on equipment utilization.

The key to optimize equipment utilization is through process monitoring in order to make sure that

wafers are processed properly at each step. However, there are more than 100 manufacturing steps,

and it is too cosdy and time-consuming to measure each wafer afterthe completion of each step. As of

now, people in the 'industry usually measure and monitor wafers periodically, especially right after

performing preventive maintenance and changing machine settings. A final test is performed on each

wafer afterall the steps. Thus, if an error occurs, it is very likely that many wafers are misprocessed

without notice until very late. Becauseof the late notice, it is very difficult to trace back and locate the

faulty step and diagnose the problem. Therefore, one can save considerable resources bymonitoring

equipments on line, using their real-time signals. In this workwe demonstrate that it is possible to do

so, with the monitoring of plasma etch signals as an example.

Plasma etching is one of the costliest steps during semiconductor processing. In addition, it is very

difficult to control, since the physical mechanism of plasma etching is not well understood. This thesis

explores various issues of plasma etch process monitoring, including fault detection and diagnosis,

endpoint detection,wafer state prediction.



Afault occurs when there is asudden change in etching behavior, manifesting through asudden shift
in signal behavior. It can happen due to operator errors, such as no photoresist, undeveloped wafer,
and wrong material, ormachine errors, such as gas leak, power fault, and pressure fault. Fault detection

tools determine the state ofthe plasma etcher by analy2ing the behavior ofits real-time signals. Once a
fault is detected, the fault diagnosis tools will assign acause to it, as to assist the process engineer to fix
the problem. By detecting the fault early, a process engineer can prevent expensive new wafers from

being fetched to the faulty etcher, and correct the fault on a timely basis. Thus, wafer yield and
throughput will be enhanced. Also, preventive maintenance (PM) can be scheduled according to fault
detection and diagnosis results, and down-time and mean-time-to-repair (MTTR) can be reduced.[15].

An endpoint is reached when the target thin film is etched through. Accurate end pointing has agreat
impact on controlling the critical feature size. Precise wafer state prediction, for parameters such as
uniformity, etch rate, selectivity, and anisotropy, can reduce the need for costly and time-consuming
wafer measurement.

A plasma etcher generates a large number of signals suitable for diagnostic purposes. This work
examines the combination of heterogeneous signals, in order to extract useful information. Four

different sources ofdiagnostic signals on aplasma etcher are collected and analyzed, including optical
emission spectroscopy (OES), KF power information on the fundamental and several harmonics, and

the machine signals such as power, chamber pressure, temperature, gas flow rate, etc., and low

frequency signals, ranging anywhere from 10 Hz to 10 kHz. Various researchers have investigated the
first three kinds ofdiagnostic signals, for examples. White, et al. [26, 27] and R. Chen [24] on OES,
Roth, et al. [45] on RF, Spanos and S. Lee [14, 15] on machine signals. This thesis puts emphasis on
exploring and analyzing these three sources ofsignals. An automated data collection system is set up
on a LAM Rainbow 9400 Etcher. An OES sensor and an RF sensor are installed, and the machine

signals are collected through the machine built-in SECS II interface. Adata exploration system based
on syntactic analysis is developed for examining the signals both quantitatively and qualitatively. An

endpoint detection sensitivity test is performed on these signals. Some wafer state models are built

firom them with a few different techniques. Also, a couple ofcase studies ofsyntactic analysis in fault
detection and diagnosis on the plasma machine signals are presented.



Plasma operation is often associated with low frequency electrical signals. Even though these signals
may carry useful diagnostic information, they are not well understood, and have not yet been utilized

for this purpose. Recently, Lieberman, et al. observed that some low frequency signals are related to

the instability of the plasma, and proposed a physical model for the instability phenomenon [47].

Although some analytical techniques are proposed for analyzing the low frequency signals, the work

would not be complete without integration with the physical model. As of now, Lieberman, etc. are

still working the instability modeling.

1.2Thesis Orgaiiization

Chapter 2 describes some traits ofplasma etch signals which make them difficult to analyze, and then a

discussion onprevious works by various researchers is presented. Chapter 3details the hardware setup

on the LAM Rainbow 9400 Etcher in the Berkeley Microfabrication Laboratory. Chapter 4 discusses

the basic features of the data exploration software and present some case studies. Chapter 5 is about

choosing the optimal endpoint detection signals from the available signals on the LAM etcher. Some

comments on otherendpoint detections works are also presented. Chapter 6 addresses thewafer state

modeling results, comparing a few modeling techniques. Chapter 7 talks about the data exploration

software's advanced features based on syntactic analysis. The details of syntactic analysis will be

discussed. Chapter 8presents some case studies offault detection and diagnosis with syntactic analysis
on plasma machines signals. Chapter 9 explores the potentials of low frequency analysis. Some

analytical techniques are proposed. Chapter 10 concludes the thesis, with some thoughts onthe future

works.



Chapter 2

BACKGROUND & PREVIOUS WORKS

2.1 Real-time Data of PlasmaEtch &Analytical Difficulties

Plasma etching is not avery well understood process. Practical physical models for fault detection and
diagnosis are not yet available. Researchers in fault detection and diagnosis so far have used empirical
models. Previous works [15] involve modeling ofinput setting against wafer's output parameters, such
as etch rate, uniformity, selectivity, and anisotropy. However, due to machine aging, maintenance and
various other effects, input settings do not entirely determine the chamber state. The same settings can
result in very different etching behavior. Spanos and S. Lee [14] [15] show that the equipment's own
electrical and mechanical signals can be modeled as time series and used effectively for fault detection
and diagnosis. These real-time signals reflect the chamber state much better than the input settings;
they are able to show drift in etching behavior due to machine aging and maintenance.

Usually, when the equipment is justout of control, the malfunction will first manifest itselfin the real

time signals, but not much etching damage is done to the wafer yet, and the wafer is still usable if the

malfunction is corrected soon enough. As aresult, using real-time signals for monitoring the etching
process can help prevent misprocessing costly wafers. Hundreds ofreal-time signals are available for
computer analysis via standard communication ports, such as SECS II. An engineer can choose a few
ofthem to monitor the etching process based on experience. Alternatively, one can find out the signals
that are sensitive to faults by doing designed experiments. Some ofthe real-time signals proved useful
are RF load, coil position, RF tune vane position, peak-to-peak voltage load impedance, RF phase
error, DC bias and endpoint [16]. In this thesis, we will examine signals from other sources as well,

such as OES and RF.

Statistical modeling ofetching signals has been difficult, due topreventive maintenance (PM), machine
^gkig, chamber memory effects, and other influences [15]. During a maintenance cycle, residue

gradually builds up in the chamber. This causes the chamber state and sensor signals to drift slowly.

4



Notice that a drift in sensor signals does not necessarily correspond to a drift in the chamber state. For

instance, as residue accumulates on the sensor window anddegrades the transmittance, the intensity of

the sensor signals will decrease. Yet, the operation of theequipment is far frombeing faulty.

If too much residue accumulates in the chamber, the process parameters will be quite different from

when the chamber is clean. The aim of PM is to restore the etcher back to the original clean state.

However, due to the aging of other parts of the tool, process parameters after a PM will be a little

different from those at the beginning of theprevious clean cycle; theaverage level of the signals aswell

as the variance may change.

One also encounters so-called "memory effects", where, for example, after a signal is unusually high

indicating a fault, it will often remain relatively high for a while before returning to the normal level,

evenafter the machine is backin control. This memory effect is very obvious when the machine first

starts up. It takes a few runs before the machine reaches its steady operating state, while the signals

appear to approachsteady statevalues in an exponential fashion. (See Figure 2.1 and 2.2.)

a) MacliiiM

b> Klaintcnoncc

c) Mcmoiy

Figure 2.1. liustratingthe nature of the plasmaetching signals,a) Machine
aging effect within a PM maintenancecycle,b) Maintenanceeffect after a
PM maintenance procedure, c) Memoiy effect after a fault occurs.
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Figure 22. The memoiy effect as seen when themachine starts up.

The above are some of the observations that the author makes on some data obtained from the

industry. The thesis investigates signals from heterogeneous sources, and presents syntactic analysis, a

novel technique for analyzing the signals,. Some prior works applied analytical techniques on limited

observations with mixed success. Before presenting the new technique, it is helpftd togo over some of

the previous works (hardware setups and analytical techniques), so that we can have a baseline for

evaluating the solution thatis being presented.

2.2 Real-Time Machine Signals

S. Lee investigates the real-time machine signals with a parallel plate etching system (Lam Rainbow

4400) and a TCP etching system (Lam Rainbow 9400). A parallel plate system's RF source consists of

upper and lower electrodes, which produces capacitive plasma discharges. The TCP RF source

consists of a planar coils wound from the center to the outer radius of the chamber. The plasma is

created when the gas near the coil ionizes due to the induced electric field. The RF sources of both

systems are 13.56 MHz AC power generators. TCP systems run at lower pressures and create higher

plasma density than parallel plate systems, so they usually achieve better anisotropy, smaller critical

dimensions, and faster etcher rates. Two data collection systems are being used, the Brookside

LamStation software and the Comdel Real Power Monitor (RPM-1). The LamStation software, which

gets data via the SECS II (SEMI Equipment Communication Standard - II) interface, is installed on

both the parallel plate etching system and the TCP etching system. The Comdel RPM-1 RF probe,

which collects data via its own RS232 interface, isonly installed on the parallel plate etching system.

6



Each etcher has more than 400 signals to choose from for diagnostic analysis. However, many signals
donot direcdy impact the etching chamber. Forexample, sensor signals for transporting wafers. Also,

even under the same recipe, etching behavior of the system changes over time as mentioned in

previous paragraphs, so machine settings are not monitored. An Ftest is deployed to assess the

relevance of the rest of the real-time signals. A factorial experiment is conducted over a certain range

on the input settings. Also, the data is collected for a few wafers processed under normal machine

setting, or baseline condition.

Then the F-test can be computed as.

fac, ! ^ fac
^ has ! ^ has

(2.1)

where is the estimated variance of a signal during the factorial run, vis the degrees of

freedom in the factorial experiment; is the estimated variance of the baseline run, is the

degrees of freedom for the baseline condition. The signals with Fstatistics above a certain level of

significance are used formonitoring the system. Table 2.1 and 2.2 list and describe the signals selected

for theparallel plate system, and Table 2.3 lists thesignals selected for theTCP system.

LamStation Software Comdel RPM-1

RF Load Coil Position RF Power

RP Tune Vane Position RF Voltage

Peak-to-Peak Voltage RF Ciurent

Load Impedance Load Impedance

RF Phase Error RF Phase Error



DC Bias DC Bias

Endpoint

Signal Description

RF Tune Vane Position Positionof the tune vane in the matching network of the
upperelectrode; acts as a variable capacitor

RF Load Coil Position Position of the load coil position in the matching network
of the upper electrode; acts as a variable inductor

RF Load Impedance Apparent input impedance of the matching network

RF Phase Error The phase error between the current and voltage (ideally
90 0) at the upper electrode

DC Bias Measures the potential difference of the electrodes

Peak-to-Peak Voltage Magnitude of voltage on the electrodes

End Point Data Reads the intensity of the plasma in the chamber at a

particular wavelength

RF Voltage Root-mean-square (RMS) voltage at the upper electrode

RF Current RMS current at the upper electrode

Table 22. Description of the Real-TimeSignals.



Source Signal Description

Bottom RF

RF Tune Vane Position Equivalent position of the tune vane position
in matching network of the lower coil

RF Load Coil Position Equivalent position of the load coil position
in matching network of the lower coil

Line Impedance Apparent input impedance ofthe lower
matching network

RF Phase Error Phase error between the current and voltage
at the bottom coil

DC Bias Measures the charge on the electrodes

Top TCP

TCP Tune Vane Capacitor

Position

Position of the tune vane capacitor of the

matching network for the top coil

TCP Phase Error Phase error between the current and voltage at

the top coil

TCP Load Capacitor

Position

Position of the load capacitor of the matching

network for the top coil

Line Impedance Apparent input impedance of the upper

matching network

Others

RF Bias DC bias when both sources are powered

Endpoint Reads the intensity of the plasma in the
chamber at a particular wavelength



Time series models are used to capture the dynamics ofthe selected real-time signals. First, models are
trained to learn the in-control autocorrelation stmcture from the baseline data. If significant deviation
isdetected from the baseline model, analarm isgenerated.

The time series models used are ARIMA(p,d,q) models, where p is the auto-regressive order, d is

the integration order, and q is the moving average order. The ARIMA models for a non-

stationary time series X, can be expressed by the following two equations,

0),

-k (2.2)
k=]

(2.3)

where co, is the stationary time series after taking the t/th difference on the original non-

stationary series, with error a, which is distributed as iV(0,o"^).

With the ARIMA model, the prediction of the current stationary series is done by using past

observations.

-* (2.4)
k=\ A=1

The actual series is made stationary by taking the dth difference on the raw data as needed, i.e.

(0, =VX,. Then the residual ofthe time series model is,

A

a,=w,-co, (2.5)

10



The residual is a zero-mean IIND variable if the tool is in-control.

For some signals, the wafer-to-wafer variation is much greater than the within-wafer variation

(Figure 2.3). RTSPC decomposes raw signals into long-term components (wafer-to-wafer) and

short-term components (within wafer). Eachcomponent is modeled by an ARIMA model.

During production, the wafer-to-wafer averages andthe within-wafer trends are filtered by their

respective time series model in order to obtain the residuals. Then each component's residuals

from different signals is combined into a single score byHotelling's statistics (Figure 2.4),

T^=e''S e (2.6)

where S is the estimated covariance matrix of the residuals, which may be computed in an

exponential weighted fashion,

5 =^ ^e{k - i)e^ (k - i) (2.7)
1=0

where k is theuser-defined moving window length and Ais the exponential weighting factor.
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Figure 2.4. Diagram of the real-time SPG scheme.

2.3 OES

Single

1 Alarm

Signal

White, et al. andR. Chen have investigated theuse of OES forplasma diagnostic. Figure 2.5 illustrates

the emission process. Gaseous plasma species are elevated to excited states by collision with energetic

electrons. As a species drops to a lower energy state, electromagnetic wave is released. Since only

excited species can release electromagnetic wave, the observed spectrum reveals density of particles in

the excited states, which is only small fraction of total particles, on the order of 10"*. Also on the

spectrum, emission from intermediates and products may overlap with that from the intended

diagnostic species. As a result, it is necessary to choose selectively from the spectrum for the

wavelength in performing diagnostics. We need to choose the ones that are correlate with the

diagnostic parameters.
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Figure 2.5. Schematic diagram of atomic emission spectrum (from [24]),

Neglecting contribution from other emissions, let us consider only the case that a plasma particle is
excited from the ground state i toastatey by an electron collision, and then drops back tostate i. The

electromagnetic emission intensity canbewritten as.

(2.8)

is the transition wave-length between state i and state N is the ground state density, is the

Einstein emission probability, iC is a correction factor which describes the effect of viewvolume and

alignment, and Pis the electron impact excitation function which represents the probability ofexciting
the state j by electron impact, starting from the ground state. P is a complex function of electron

temperature Te,and is. given by Lieberman and lichtenberg [23].

P=r4,m)ldv^ai{v,yuJ,{v„T^,n^) (2.9)

where is the electron velocity, Gx is the cross section for emission ofaphoton ofwave-length

Xdue toelectron impact excitement, and/is the electron distribution function
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which depends on electron temperature andelectron density [23].
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Figure 2.6. Schematic illustration of the OES instrumentation.

Figure 2.6 shows a Czemy-Tumer Spectroscopy instrument. Optical emission in the plasma chamber

is collected by the lens, transmitted through the optical fiber, imaged onto the entrance slit, dispersed

by the diffraction grating system. Then a CCD camera detects the dispersed beam through the exit

slot. Thediffraction grating is usually a square. Thegrating equation is,

mX = d(sine^~d,) (2.io)

Where m is the diffraction order, d is the groove separation distance, and and Gj are the angles

of incidence and diffraction respectively. The grooves are designed to maximize the first-order

diffraction (m=l) at a particular wavelength. The wavelength resolution of dispersion can be

computed as.



w

—7cos0_ f2inmxf ^ ^

where w is the exit slit width, f is the spectrometer focal length, which is the distance from the

exit plane to the last focusing mirror, v is the groove density. The efficiency ofa grating system

for collecting light iswavelength-dependent, so the detect optical emission intensity by OES is,

I(^j) = NP^A,a,)Qay)K (2.12)

Where is the correction factor accounting for the grating system's collection efficiency at

wavelength

An OES spectrum contains 500~2000 wavelengths. Thus, an etcher can generate a large amount of

OES data. Also, signals firom different wavelength are highly correlated. Researchers have used

principal component analysis (PCA) toanalyze OES data.. The purpose ofusing PCA is to compress
the data and extract relevant information. PCA splits the data matrix into systematic variation (process
model) and noise (residual variance). For processing awafer, data matrix Xwith mrows by n columns

(samples byvariables), canbe expressed as,

X=i,p[ +t^pl+...+t^pl+E =Ti,Pl +E (2.13)

Each variable in X has been centered by subtracting a 1 by n vector of the means of variables,

and scaled by £?, a 1 byn standard deviation vector. The pi are called loading vectors, which are

eigenvectors of C= X^X,1hQ covariance matrix of X. They are a set oforthonormal vectors;

i.e. pfPj =0 for i ^ j, pfPj =1 for i=j. The /, are called the scores vectors, which for an

individual sample, can be computed as,

h = ^Pi (2.13)

And k is the number of principal component (PC) selected, which is less than or equal to the

dimension of X, i.e., k<min(m,n). For the highly correlated plasma etching real-time data, the
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number of PCs required to adequately capture thesystematic variation of a process is far smaller

than m and n.

Two statistics are used, "lack of fit" statistics Q and the Hotelling's 7^ statistics. 0 is a measure

of the amountof variation not captured by the PGAmodel.

a =e,ef = j:,. (/ - )xf (2.i4)

wheree, is the zth rowof E. is the measure of the variation within the PGA model,

r (2.15)

where /,• is the zth row of 7\. Notice that is a diagonal matrix due the orthogonality of the

{f/} vectors. The diagonal entries of the matrix are eigenvalues of the covariance matrixofX,

The mean vector a, standard deviation vector d and the covariance matrix need to be updated in

an exponential weighted way as new process data become available.

a(y+l) =Xa-'a'(-^-y) (2.16)
y=i

dU +^) =Y.r'd'{J-j) (2.17)
J=\

C<J +\) =jj'C(J-j) (2.18)
J=\

where a'(J-j)y d'Odh 0(j-J) are the actual mean vector, standard deviation vector, and covariance

matrix respectively, for the jth measurement. O, y, and T are the user-defined exponential weight. J is

the window si2e of the past measurement. Notice that these model parameters depend only on the

past observation. The PGA model is recomputed based on the covariance matrix C '̂+l), i.e., new

loading vector p,- and eigenvalues of the covariance matrix will be obtained. As the new process data
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^ato- become available, it is centered with oQ'̂ 1) and scaled with d0-\-1). Then new score can be
obtained by Eq. (2.13) with the new loadings. And j2, can be computed with Eq. (2.14) and (2.15)

by replacing with X, with and with the new eigenvalue matrix.

2.4 RF signals

RF signals are not as sensitive to the change inplasma chamber as OES and real-time machine signals.
We have not seen the use ofRF signals alone for plasma diagnostic purpose. However, we will show

in later chapters that RF signals can supply significant diagnostic information.

Let us denote the real-time RF voltage of the powered electrode with respect to ground v(t)^ and real

time current flowing into the powered electrode i(t). Since v(t) and t(t) contain harmonics of the 13.56

MHz fiindamental firequency, they can beexpanded intoFourier series,

= (2.19)

= (2.20)

wherey is the imaginary number, y^=-l; (0„—2Knfis the angular frequency, and 1„ are the Fourier

amplitudes at Ct)„. The fundamental firequency/is 13.56 MHz.

In studying the plasma impedance's transient behavior, Roth, et al. has used commercial voltage

probes Phillips PM 9100, and current probes Pearson 2878 tomeasure the fundamental frequency and

its four harmonics. In our study, we use Advanced Energy's Zscan sensor and software to measure

andcollect RFvoltage andcurrent data at thefive firequencies.

2.5 Comments on previous analytical techniques

Previous analjrtical techniques usually rely on assumptions about the signal. A typical assumption is

that the signal isstationary (i.e., the mean value isunchanged, the noise isnormally distributed and the

variance isconstant), or the drift over time is constant, etc. The previous techniques can only deal with

the various influence on the signal on a limited scope. That is, a technique may be able to capture
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some aspects of the signal well, but fail to address other aspects. For instant, ARIMA time series

modeling is able to capture the general dynamic behavior of the signal withina waferrun, or wafer-to-

wafer. But it fails to address memory effects (as we haveseen during machine startup), or sharp spike

in the signal waveform. PCA is able to handle the correlated structure in the signals, but it does not

eliminate irrelevant signals that will decrease the significance of the model.

In studies of this nature, it is easy to underestimate the importance of critically examining the data, in

the content of the application and the physical model that describes it. Unfortunately, automated data

analysis schemes are ill-suited for this time of examination, vhich has to be performed by a human

domain expert. In the following chapters, we will discuss the data archive setup of our diagnostic

system first. Then we will present the features of the data exploring software, which allow the

researcher to makeboth quantitative and qualitative observation on plasma etch signals. Also, we will

discuss syntactic analysis in depth, which offer great flexibility in handling different influences on the

signals.
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Chapter 3

THE DATA ARCHIVING SYSTEM SETUP

3.1 Introduction

Many signals from a plasma etcher under operation can be monitored. An automatic data archiving

system is set up for the LAM Research Rainbow 9400 Etcher, adapted for 6" wafers, and operating in

the Berkeley Microfabrication Laboratory. The system archives three different sources of diagnostic

signals, including optical emission spectroscopy (OES), RF power information on the fundamental

frequency and several harmonics, and various other machine signals such as power, chamber pressure,

temperature, gas flow rate, etc., which are collected via the SECS II interface. The data archiving

system is turned on at all times. Every time the etcher starts a wafer run, a set of three time-stamp-

synchronized files are created, and the data from each signal source is saved to its respective file.

Finally, the data for the diagnostic signals are saved to a network archive file system, available for

retrieval from one's workstation.
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Figure3.1. Overall setup schematicof the data archiving system.

3.2 Machine Signal Acquisition

The LAM 9400 polysilicon etcher has built-in sensors for its real-time signals. These machine signals,

along machine settings, and machine status parameters, such as lot number, vacuum on-off, valve

open-close, etc., can be collected by a workstation via the SECS II interface. The Accelar 1200

Network on our system runs at 100Mbit/sec, and SECS communication ports are set to run at 9600

baud. Thus, server-client network communication will not be the bottle-neck for data transfer from

the etcher to the workstation.
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3.3 Ocean Optics OES Sensor

The Ocean Optics OES Sensor is PC2000-UV-VIS Fiber Optic Spectrometer with effective range of
200 nm~1100 nm. Its detector consists of a 2048-element linear CCD-array with a grating of 600

lines/mm. The entrance slit is fixed at25 mm in width, 1000 Jim in height. With no moving part, the

optical benchis compactly mounted on a PC plug-in 1 MHzISA-bus A/D card, which fits into a slot

in the PC. The spectrometer collects light transmitted from Ocean Optic P400-2-UV/VIS fiber, which

is a 2-meter-long, 400-|lm-patch fiber. The 74-UV coUimating lens, 5 mm in diameter, 10 mm in

length, screws on the endof the fiber formeasuring optical emission from the LAM etcher window.

3.4 RF Sensor

Figure 3.2. Ocean Optics PC2000-IJV-VIS
Spectrometer is mountedon a PC plug-in card.

The RF sensor we use is the Advanced Energy Z-Scan probe, a non-intrusive RF-sensing system that

allows accurate real-time measurement under powered conditions. The Z-Scan probe collects voltage.



current, and phase data of the five harmonics of the 13.56 MHz fundamental firequency. The Z-Scan

system consists of a sensor, an electronic module, and an analysis software, 2^Ware. The Z-Scan

sensor is designed to be inserted between matching network and the process chamber. The electronic

module contain A/D converters along with analog processor, and interface boards. The analog board

receives the data firom the sensor. The A/D converter converts the data into digital format for the

processor to read out the sensor input, at 10 readings per second. A RS-232 interface card is for

making connection to the PC. Z-Ware contains various analysis features, such as graphical analysis

with Smith, polar, and time domain plots. Since we do our own analysis, we just need Z-Ware to

output the sensorin ASCII format for our analysis system.

RFGenerator ZrScan Sesisor

Plasma

Chamber

Figure 3.3. Illustration of theplacement of theZ-Scan sensor probe.

3.5 The Data Archiving

Z-Scan

Hectronic

Module

The data archiving system is developed for automatic data acquisition, storage, and retrieval. The

workstation acquires data through various sensors and interfaces. The Archive File System stores the

data in a centralized file archival location. The researcher can examine the data files through the
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Archive User Interface. The Data Archiving system has five main software components: Custom
SECS II Communication Labview VI (Virtual Icon) Interface, Custom Ocean Optics PC 2000
Spectrometer Auto-Archiving Labview Interface, ZrWare interface. Archival Storage File System, and
Custom Archive Retrieval User Interface. The last two components are connected to the data

acquisition workstation as shown in Figure 3.1. The first three components resides inside the
workstation. These components run continuously. User interaction is not necessary unless the system
is down due to network outage or other abnormal events, so that arestart is required.

The Custom SECS II Interface transmits data packets between the connecting workstation and the
LAM 5 Etcher. Besides real-time signals, such as power, pressure, gas flow rate, the workstation can

fetch additional machine information, such as alarm messages, process chamber status, equipment
status, process wafer number.

Ocean Optics PC2000 Interface is a custom-designed Labview VI. It continuously monitors the
machine information from the SECS II interface. The SECS II interface and Ocean Optics PC2000
interface share the same Labview front—end control panel, which show the display various machine
information (see Figure 3.4). When awafer is being processed and the plasma is ignited, the VI will
acquire a spectrum from the OES sensor through the ISA bus. Also, the workstation will update the
various information display on the front-end control panel based on the user-defined integration time.
In our case, we set it to be 0.95 second. Due to the overhead of data transmission via the SECS II

which run at 9600 baud. The update frequency of the display is about once every 1.9
seconds. There is a graphical display showing thecurrent location of the wafer in theetcher while the

wafer is being processed. On the upper right comer, there is the intensity vs. wavelength OES plot,
which will be frequently updated when a wafer is being etched in the chamber. On the Lower left

comer, there is an array ofnumber entries, which allows users to specify which real-time signals to be
saved to the archive. Table 3.1 lists the signals used. The numerical code names can be found in the

appendix of the LamStation Rainbow Manual.
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Figure 3.4. The front-endcontrol panel for both SECS II and OES.

Code Name Signal Name

RF power #1

RP line impedance #1

RF match #1 peak RF voltage

RF generator #1 reflected power



28 RF generator #1 forward power

53 RF generator#1 power control

550 RF generator#3 forward power

551 RFgenerator #3 reflected power setpoint

552 RFgenerator #3 forward power set point

241 Chamberpressure setpoint

242 Chamber pressure

600 Upper chambertemp set point

601 Lowerchamber temp set point

612 Upper chambertemp sens

613 Lowerchamber temp sens

8 Gas #1 (Cy flow

45 Gas #1 (Cy set point

10 Gas #2 (HBr) flow

46 Gas #2 (HBr) set point

12 Gas #3 (CF3) flow

47 Gas #3 (CF3) set point
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14 Gas #4 (O2) flow

48 Gas #4 (O2) set point

16 Gas #5 (He/Ar) flow

49 Gas #5 (He/Ar) set point

18 Gas #6 (SFg) flow

50 Gas #6 (SFg) set point

1 Gas #7 (O2) flow

41 Gas #7 (O2) set point

2 Gas #7 (O2) current sense

42 Gas #8 (CF4) set point

423 Recipe number

20 RF match #1 tuningposition

21 RF match #1 load coilposition

564 TCP tuningcap pos

578 TCP match load cap

332 Current recipe step #

3 Gas #8 (CF4) flow
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34 Endpoint detector a (SiCl 405nm)

35 Endpoint detector b (CO520nm)

While the Z-Ware software has many data-analysis features, we only need the Z-Ware to convert the
RF voltage, current, phase data hrom the ZrScan sensor to ASCII format. The final accjuiring rate on
Z-Ware for the Z-Scan data is about 1 Hz.

The Archive File System Stores the data files acquired by the workstation to acentralized file system
location, with asymbolic pathname of ^\skopelosXbcamarcliiveS\lam5\archive*. Every time awafer
run is finished, a set of three files for the three sources of data is stored. The log file "lam5.log" is
updated to record the change. The OES file name format is '1am5_pc2000.ff»«.dat"; for the machine
real-time signal, "lam5_pc2000.»«;;.dat.SVID"; for Z-Scan data, "lam5_pc2000./!??;w;».dat.ZSCAN";
where nnn or mmm is the time stamp, the number of seconds past with respect to a fixed time
reference. Notice that since both the machine real-time signals and OES data have Labview interfaces,
their files can be synchronized to have the same time stamp. At the time ofthe writing, the Z-Ware
has not been synchronized with the Labview interfaces to produce a common time stamp. Some
programming is required to group the files together fordata retrieval of each wafer run. Theresearcher

can examine the data files from his/her workstation through the Archive User-Interface. The user-

ftiendly interface allow users toview files, retrieve file, store files, oredit files attributes.
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Chapter 4

DATA EXPLOREATION SYSTEM

4.1 Motivadon

As mentioned previously, plasma etch signals are subject to various influences, such as preventive
maintenance, machine aging, and chamber memory effect. Before proposing any meaningful analytical
technique for the signals, a researcher needs to look through the data first in order to mentally
characterize the influences. That is, before developing computer routines to perform diagnostics on
the signals, s/hehas tobe able toperform the task with her/his naked eyes. However, there are more
than 2000 signals available for investigation on our data archiving system. Also, the system is on at all

time. A few hundred kilobytes ofdata is saved to the file system every time awafer is processed. It is
tedious and time-consuming for aresearcher tobrowse through this huge amount ofdata. As aresult,

a data exploration software is developed for efficiently browsing the data archive. It allows the user to
examme the signals both quantitatively and qualitatively. In this chapter, we will only introduce the

basic features. In later chapters, we will discuss the advanced features with sj^tactic analysis.

4.2 Features

The software allows the user to retrieve alist offiles according to the specified time interval. Then the
files aregrouped intoa wafer list, with three files from each of the three sensor sources for each wafer.

The user can indicate a list ofsignals s/he wishes to investigate. Awindow ran be specified for a
particular portion of the etch waveform. The windowed waveforms can be plotted on the screen,
wither one after another, or stacking on top of one another. Recipe name distribution can be

generated. Also, distribution for the value of the windowed portion of the waveform can be created.

Further, wafer data lists can be extracted based on recipe names orvalues of the windowed portion.
Finally, signal-vs.-signal plots can be generated and signal-vs.-signal correlations can be computed. Let
us step through the featuresin the software.
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Change exploration settings

This item allows the user to change various inputs of the software, including, time interval, window

selection, signal selection. The user can specify the jmm-date and to-date of a time interval.With a new

timeinterval, the user can get a complete new list or append the waferdata to an existing list. For the

list of wafer data, the software has the options of specifying absolute windows and step window. A

differentwindow can be specified for each of the three sources of data.An etch process has a number

of steps. For instance. Recipe 5001 has three steps,with step 3 as its main etch step; Recipe 5003 has

seven steps, with step 5 as its main etch step. The step number information available is from the SVID

machine data. As previously mentioned, due to the different hardware interface, ZSCAN data is not

sjmchronized with SVID and OES data,and havea different sampling rate (1 sample/1 secondinstead

of 1 sample/1.9 second for SVID and OES), so the user can only specify absolute windows for

ZSCAN data.

For step window selection, the user need to input step number, delay, and window size. If the window

size exceeds the end of the step, or if the user specifies the window size as -1, the data up the last

entry of the step will be selected. For absolute windowselection, the user just needs to specify the start

index and the end index. If the end index exceeds the end of the data, data up to the last entrywill be

selected. There is a subde design issue here. For absolute windowing, we do not adapt the step

window format which lets the user specify the delay and window size, so that the user can input —1

window sizeto fetch up untilthe lastdataentry. The reason is thatwhenwedo windowing, we usually

want to get the data from stableregion of the same step. The last data entries often correspond to the

power-off state and are usually not in the same step we are interested in.

A list of signals can be selected for investigation, with this format: sourcel tndexl source! index! ... A

sourceis one of the three sources of signals, OES, SVID, and ZSCAN. For OES, the index range

from 1 to 2048. Since the OES effective wavelength is 200 nm~1100 nm, to get a wavelength

conversion for an index, one can use this formula: wavelength (nm)=200 + index * (1100 —

200)/2048. For SVID, the variable index can be looked up in Table 3.1. The index is the ordinal

number on the table. The index for the first variable, RF power #1, code 23, is indexed as "1." For

ZSCAN, there are 35 variables for selection, as shown in Table 4.1.
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Index Symbol SignalName

N+1 Vrms Root-mean-square voltage

N+2 Irms Root-mean-square current

N+3 Phase Phase between current andvoltage

N+4 P Power

N+5 Z Impedance

N+6 R Resistance

N+7 X Reactance

Where N is from 0 to 4, indicating the JVth harmonic. N=0 indicates the fundamental frequency.
Notice that only the first three variables in the table are independent. The other four are calculated by

the Z-Ware software.

Build wafer list & Add wafer data to list

The user can build a wafer data list from scratch or add wafer data to the current existing list by

specifying anew time interval. The program first fetches all the data files that fall between thejrom-date
and the to-date^ then builds the listofwaferdata records from the files. Each wafer data record consists

of three files, with each file firom its respective source. While the OES file is synchronized with the

SVID file, the ZSCAN file is not synchronized with them, that is, the ZSCAN file has a slightly
different time stamp from the other two files. Therefore, the program needs tolook through the list of
files to find theclosest time-stamp match of the ZSCAN file from theothertwo files.

Generate recipe distribution & Extractwafers on recipe number
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The program gets the recipe number from the SVID file from eachof the wafer recordin the list, and

then generates the count for each recipe number. Most of the analysis is done on the wafer data with

the same recipe number. It is usefiil to see the distribution of the recipe number; it helps to decide

which recipe's data should be used for analysis, since the more vrafer data for a recipe there are, the

more significant the analysis is.The program prompts for a recipe number and extract the data with

the recipe.

Generate signal value distribution & Extract wafers on signal value

The data window should be specified around the steady region of the waveform. During stable

etching, the signal intensity should be more or less steady. However, on a wafer-to-wafer basis, signal

intensity may fall into clusters, due to different exposure masks, etching material compositions,

equipment status, etc.The user maywant to analyze waferdatawith the signal valuein a certaincluster

only. Therefore, it is useful to generate a distribution of the average windowed signal value. In

extracting data, the user needs to specify the signal index, and the upper and lower bounds for the

signal value.

Generate entire within-wafer plot, windowed within-wafer plot & Concatenated windowed

plot

In order to assess the natureof the signal, it is veryimportantfor the user to get a visual impression of

the waveform. The program can plot the entire waveforms, so that the user can make a judgment on

which portion of the signal to bewindowed. The windowed within-wafer plot is the plot that shows all

the windowed waveforms stacking on top of each other. This can showthe trend of the signal during

etching, as well as the variation of the similar etch region. The concatenated windowed wafer plot

takes all the windowed waveform and connects them back-to-back. This plot can demonstrate the

wafer-to-wafer trend of the signal.

Generate cross-wafer plot & Compute signal correlation

A cross-wafer plot is a signal-vs.-signal plot. That is, the program generates all the combinations of

two signals from the list of user-selected signals. The average values of the windowed region are
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computed for all the wafers. Then, the program generates a X-Y plot for each signal combination for
the average values ofthe windowed region (for example, see Figure 4.8). On the plot, each data point
comes from a different wafer. Subsequendy, signal-vs.-signal correlation can be calculated for all the

combinations. The plots and the respective correlation information are very useful for reducing the

number of variables needed foranalysis.

Manipulate wafer list

The program allows the user to list all the wafer records, and selectively delete some records. Or the
user can move some records toa buffer list, incase they might beuseful for later analysis. This feature

does not only facilitate the removal outliers, but also allows the user to manipulate the data list based
on his/her expert knowledge on the data. There is an interactive windowed within-wafer plot to let the
user see the effect ofmampulating the wafer list. It generates the same plot as windowed within-wafer
plot, only that it puts thewindowed waveforms one at a time withuserinteraction.

4.3 Examples

Wafer state experiment

At the end of February 2001, a wafer state experiment was performed. The machine setting was
adjusted in order to achieve different etch rate and uniformity. For details of experimental design and
analysis, see Chapter 6. In this example, we want examine the waveform and value spread ofsome of
the significant signals, and perform some correlation calculations. Sixteen wafers were to be processed

February 24. However, an error occurred on the 14*'' wafer, so that, the remaining 3wafers were
processed onFebruary 28. Toget the data of 16 wafers for the exploration software, first, build a list

for the time interval of"24-Feb-2001 12:30:00" ~ "24-Feb-2001 13:30:00".

wafer 1

LAM5_PC2000.983042971.595.dat 24-Fcb-200l 12:33:36
LAM5_PC2000.983042971.595.dat.SVID.csv 24-Fcb.2001 12:33!36
LAM5_PC2000.983043032.000.datZSCAN.csv 24.Feb-2001 12:48:58
wafer 2

LAM5_PC2000.983043409.916.dat 24-Feb-2001 12:37:36
LAM5_PC2000.983043409.916.datSVID.csv 24-Feb-2001 12!37!37
LAM5_PC2000.983043427.000.datZSCAN.csv 24-Feb-2001 12:48:58
wafer 3

LAM5_PC2000.983043537.970.dat 24-Feb-2001 12:39J9
LAM5_PC2000.983043537.970.datSVID.csv 24-Feb-2001 1239:40
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LAM5_PC2000.983043552.000.dat.ZS(:AN.csv 24-Fcb.2001 12:48:58
wafer 4

LAM5_PC2000.983043701.1(j4.dat 24-Fcb-2001 12:42:23
LAM5_PC2000.983043701.164.dat.SVID.csv 24-Feb-2001 12:42:24

LAM5_PC2000.983043716.000.datZSCAN.csv 24-Feb-2001 12:48:58
wafers

LAM5_PC2000.983043940.489.dat 24-Feb-2001 12:46:24
LAM5_PC2000.983043940.489.datSV ID.csv 24.Feb-2001 12:46:25
LAM5_PC2000.983043955.000.dat.ZSCAN.csv 24-Feb-2001 13:18:58
wafer 6

LAM5_PC2000.983044069.404.dat 24-Fcb-2001 12:4832

LAM5_PC2000.983044069.404.datSVID.csv 24-Feb-2001 12:4832

LAM5_PC2000.983044083.000.datZSCAN.csv 24-Feb-2001 13:18:58
wafer 7

LAM5_PC2000.983044214.162.dat 24-Feb-2001 12:50:58
LAM5_PC2000.983044214.162.dat.SVID.csv 24-Feb-2001 12:50:59

LAM5_PC20CO.983044232.000.datZSCAN.csv 24.Feb-2001 13:18:58
wafer 8

LAM5_PC2000.983044378.649.dat 24-Feb-2001 12:53:41

LAM5_PC2000.983044378.649.datSVID.csv 24-Feb-2001 12:53:42
LAM5_PC2000.983044393.000.dat.ZSCAN.c!!v 24-Fcb-2001 13:18:58
wafer 9

LAM5_PC2000.983044598.194.dat 24.Feb-2001 12:57:24
LAM5_PC2000.983044598.194.dat.SVID.csv 24-Feb-2001 12:57:23

LAM5_PC2000.983044613.000.dat2LSCAN.csv 24-Feb-2001 13:18:58
wafer 10

LAM5_PC2000.983044731.826.dat 24-Fcb-2001 12:59:36

LAM5_PC2000.983044731.826.dat.SVID.csv 24.Feb-2001 12:59:37

LAM5_PC2000.983044747.000.dat.2LSCAN.csv 24-Feb-2001 13:18:58

wafer 11

LAM5_PC2000.983044929.060.dat 24-Feb-2001 13:02:51

LAM5_PC2000.983044929.060.dat.SVID.csv 24-Fcb-2001 13:02:51

LAM5_PC2000.983044944.000.dat.ZSCAN.csv 24-Feb-2001 13:18:58

wafer 12

LAM5_PC2000.983045070.383.dat 24-Feb.2001 13:05:13

LAM5_PC2000.983045070.383.dat.SVID.csv 24-Feb-2001 13K)5:13

LAM5_PC2000.983045084.000.datZSCAN.csv 24-Feb-2001 13:18:58
wafer 13

LAM5_PC2000.983045261.438.dat 24-Feb-2001 13:08:23

LAM5_PC2000.983045261.438.dat.SVID.csv 24-Feb-2001 13K)8:24

LAM5_PC2000.983045276.000.datZSCAN.csv 24-Feb-2001 13:18:58
wafer 14

LAM5_PC2000.983045455.637.dat 24-Feb-2001 13:11:38

LAM5_PC2000.983045455.637.dat.SVID.csv 24-Feb-2001 13:11:39

LAM5_PC2000.983045471.000.dat.ZSCAN.csv 24-Feb-2001 13:18:58
wafer 15

LAM5_PC2000.983046088.507.dat 24-Feb.2001 13:21:57

LAM5_PC2000.983046088.507.datSVID.csv 24-Feb-2001 13:21:58
wafer 16

LAM5_PC2000.983046179.128.dat 24-Fcb-2001 13:23:32

LAM5_PC2000.983046179.128.dat.SVID.csv 24-Fcb-2001 13:2333

According to the experiment logbook, only wafers 2~14 are the ones that tookpart in thewafer state

experiment. So, we go to the Manipulate Wafer List Menu to delete 1, 15, 16. Then, we add more

wafer data to the existing 13 records, with time interval "28-Feb-2001 17:30:00" "28-Feb-2001

18:30:00". Upon inspection of the new list, we can find that wafers 14~18 and 22~26 should also be

deleted. We are then leftwith the 16wafers of the experiment.

wafer 1
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LAM5_PC2000.983043409.916.dat
LAM5_PC2000.983043409.916.datSVID.csv
LAM5_PC2000.983043427.000.datZSCAN.csv
wafer 2

LAM5_PC2000.983043537.970.dat
LAM5_PC2000.983043537.970.datSVID.csv
LAM5_PC2000.983043552.000.datZSCAN.c$v
wafer 3

LAM5_PC2000.983043701.164.d3t
LAM5_PC2000.983043701.164.datSVID.C8v

LAM5_PC2000.983043716.000.datZSCAN.csv
wafer 4

LAM5_PC2000.983043940.489.dat

LAM5_PC2000.983043940.489.datSVID.c8v
LAM5_PC2000.983043955.000.datZSCAN.csv
wafers

LAM5_PC2000.983044069.404.dat
LAM5_PC2000.983044069.404.dat.SVID.csv

LAM5_PC2000.983044083.000.datZSCAN.csv
wafer 6

LAM5_PC2000.983044214.162.dat

LAM5_PC2000.983044214.162.datSVID.csv
LAM5_PC2000.983044232.000.datZSCAN.C8v
wafer 7

LAM5_PC2000.983044378.649.dat
LAM5_PC2000.983044378.649.datSVID.csv
LAM5_PC2000.983044393.000.datZSCAN.cs\-
wafer 8

LAM5_PC2000.983044598.194.dat
LAM5_PC2000.983044598.194.dat.SVID.C8v
LAM5_PC2000.983044613.000.datZSCAN.csv
wafer 9

LAM5_PC2000.983044731.826.dat
LAM5_PC2000.983044731.826.dat.SVID.csv
LAM5_PC2000.983044747.000.datZSCAN.csv
wafer 10

LAM5_PC2000.983044929.060.dat

LAM5_PC2000.983044929.060.datSVID.csv
LAM5_PC2000.983044944.000.datZSCAN.csv
wafer 11

LAM5_PC2000.983045070.383.dat

LAM5_PC2000.983045070383.datSVID.csv
LAM5_PC2000.983045084.000.datZSCAN.csv
wafer 12

LAM5_PC2000.983045261.438.dat

LAM5_PC2000.983045261.438.datSVID.csv
LAM5_PC2000.983045276.000.datZSCAN.csv
wafer 13

LAM5_PC2000.983045455.637.dat
LAM5_PC2000.983045455.637.datSVID.csv
LAM5_PC2000.983045471.000.dat.ZSCAN.csv
wafer 14

LAM5_PC2000.983407267.387.dat
LAM5_PC2000.983407267.387.dat.SVlD.csv
LAM5_PC2000.983407282.000.dat2aCAN.csv
wafer 15

LAM5_PC2000.983407394.470.dat

LAM5_PC2000.983407394.470.dat.SVID.csv
LAM5_PC2000.983407409.000.datZSCAN.csv
wafer 16

LAM5_PC2000.983407522.213.dat

LAM5_PC2000.983407522.213.datSVID.csv
LAM5_PC2000.983407538.000.datZSCAN.csv

24-Feb-2001 12:37:36

24-Feb-2001 12:37:37

24-Feb-2001 12:48:58

24-Feb-2001 12:39:39

24-Feb-2001 12:39:40

24.Feb-2001 12:48:58

24-Feb-2001 12:4223

24-Feb-2001 12:4224

24-Feb-2001 12:48:58

24-Feb-2001 12:4624

24-Feb-2001 12:4625

24-Fcb-2001 13:18:58

24-Feb-2001 12:48:32

24-Feb-2001 12:48:32

24-Fcb-2001 13:18:58

24-Feb-2001 12:50:58

24.Fcb-2001 12:50:59

24-Feb-2001 13:18:58

24-Feb-2001 12:53:41

24-Feb-2001 12:53:42

24-Feb-2001 13:18:58

24-Feb-2001 12:5724

24-Fcb-2001 12:5723

24-Feb-2001 13:18:58

24-Fcb-2001 12:59:36

24-Fcb-2001 12:5937

24-Fcb-2001 13:18:58

24-Fcb-2001 13:02:51

24-Feb-2001 13:02:51

24-Feb-2001 13:18:58

24-Feb-2001 13:05:13

24.Fcb-2001 13:05:13

24-Feb-2001 13:18:58

24-Feb-2001 13:0823

24-Feb-2001 13:0824

24-Fcb-2001 13:18:58

24-Fcb-2001 13:11:38

24-Fcb-2001 13:11:39

24-Feb-2001 13:18:58

28-Feb-2001 17:41:49

28-Feb-2001 17:41:50

28-Feb-2001 17:49:54

28-Feb-2001 17:43:56

28-Feb-2001 17:43:57
28-Feb-2001 17:49:54

28-Fcb.2001 17:46:06

28-Fcb-2001 17:46:07
28-Feb-2001 18:19:56
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We know that the wafers are processed with Recipe 5001; we may generate a recipe distribution to

verify this. There are three steps in Recipe 5001, with step 3 as the main etch step. Let us first inspect

the entirewithin-wafer plot (Figure 4.1,4.2).

Within wafer plot, sourcB=oBS. index=277

3000

1500

Figure 4.1. The entire within-waferplot for CF2321 nm line.
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Within wafer plot, sQurca=oes, index=^5
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Figure 4.2. The entire within-wafer plot for HBr 355 nm line.

According to the result shown in Chapter 5, the CF2 321 nm line is effective for endpoint detection,
and the HBr 355 nm line is useful for etch rate prediction. As seen inthe two plots, the starts ofstep 3

do not line up, and there is a fall-off for the power-off state in the end. The absolute stable etch

window can be chosen to be 13~20. However, upon close inspection, we see that, for the CFj line

there are three plots that have the decreasing trend. In order to get bigger window size and better

average values for computing correlation, we may want to get step windows. Let us examine the

windowed within-wafer plotfor theentire step 3.
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Within wafer plot, source=oes, lndex=277
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Figure 4.3. Windowed within-wafer plot for CF2321 nm line for step 3.

Within wafer plot, source=aes, mdex=355

_I L.

10 12 14 18

Figure 4.4. Windowed within-wafer plot for HBr 355 nm line for step 3.

We now see that the window size can be a litde bit bigger, 5 ~ 14 for step 3. So let the delaybe 4, and

the size to be 9. We have,
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Figure 4.5. Windowed within-wafer plot for CFj 321 nm line for step 3
size 9.

Within wafer plot, eource^oes, index~355

Figure 4.6. Windowed within-wafer plot forHBr355 nm
line for step 3 size 9.

Notice the wafer-to-wafer signal intensity is reasonably well-spread, covering arelatively wide range of
value, and not clustering much. This suggests that the experimental design is reasonably sound. Figure
4.7 shows the concatenated plot. From there, we can see that data for wafers 2,7,10 have the obvious

decliningtrends.
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catenated Within wafer plot, sourc0=oes. index=:277
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Figure 4.7. Concatenated Windowedwithin-waferplot for CF2 321 nm line.

Lastly, wewant to get signal-vs.-signal plots and the correlation coefficient for signal CF, 275 nm,CFj

321 nm, and HBr 355 nm. We see that the endpoint detector, CF, 275 nm and CFj 321 nm signals

have an almost perfect correlation since they are from the same chemical species. On the other hand,

HBr 355 nm, the etchrateindicator, isvery much correlated with the two CF, signals as well.

Correlation between OES 176nm line and OES 277nm line is 0.997439,
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Figure4.8. Signal-vs.-signal plot forCFj 275nmandCF, 321nm.

Correlation between 176nm and 355nm lineintensitiesis 0.755675
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Figure 4.9. Signal-vs.-signal plot for CF2275 nm and HBr 355 nm.

Correlation between 277nm and 355 nm line intensities is 0.743946,
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Figure 4.10. Signal-vs.-signal plot for CF2 321 nm and HBr 355 nm.
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The above example shows the basic usage ofthe software. Next, we will show examples that show the

nature of plasma etch signals.

Someplots showing the nature of plasma etch signals

1BCIQ0

15O30

10000

4O00

WHhin wafer plot, source=svid, index=40

120

Figure 4.11. Windowed within-wafer plot for machine endpoint SiCl 405
nm.

Figure 4.11 shows the windowed within-wafer plot for machine endpoint SiCl 405 nm, for wafers

processed with recipe 5003, hrom 23-May-2001 to 24-May-200l. The window is the entire step 5. It
demonstrates that thewafer-to-wafer signal intensity falls into three clusters. Notice all thewaveforms

start around the same intensity at4000, and goupwith respect to time atdifferent rate, or even remain

constant. Probably the intensity level around 4000 corresponds to oxide etch, and for poly etch, there
is usually a thin layer ofnative oxide on top ofthe silicon layer. What is shown here is very long etch
processes of about 200 seconds (1.9 seconds per sample point). We can infer that the top cluster
corresponds to bare silicon etch. The middle cluster has endpoints, so itmust be poly etch. However,
the uniformity ofthe poly film must be very bad, so that the oxide-poly etch transition is so slow. The

bottom should correspond to oxide etch, since little intensity variation is observed. Also, we should

take note the there are two small negative peaks in the top cluster. Previous researchers have not paid
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attention to this kind of peaks, which can cause false alarms. Syntactic analysis can recogni2e them

with ease. This will be demonstrated in detail in later chapters.

Figure 4.12 show the plots for wafers processed with Recipe 5001 from 30-May-2001 to 14-Jun-2001.

The window is the entire main etch step, step 3. The plot demonstrates the typical chamber memory

effect Ona wafer-to-wafer basis, the intensity starts relatively low, and then gradually go up to reach

steady value after a few runs. Since the Berkeley Microlab is a research environment, there is no

control or consistency over what type of wafers that are being etched. Film thickness varies

considerably, as manifesting through the varying duration of the main etch step. Also, theetching film

material can be drastically different, as revealed by the different clusters of wafer-to-wafer intensity

level and the different etch waveform. Notice that some waveforms have an increasing trend, and

some havea decreasing trend, but theyallseemto stabilize over time.

10** catenated Within wafer plot, source=svld. index=40

500 1000 1500 2000 2500 3000 3500 4000

Figure 4.12. Concatenated windowed within-wafer plot for machine
endpoint SiCl 40S nm.
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Figure 4.13 shows the concatenated windowed plot for some wafer data processed with recipe 5001
around Ol-Jun-2001. It demonstrates the chamber memory effect after an extreme event occurs.

Although the intensity drops very close to the usual level, still, it takes a few runs for the intensity to

stabilize.

3000

250D

2000 -

1500

1000

500

catenated Within wafer plot, source=oes, lndex=355

150 200 250 3D0 350

Figure 4.13. Concatenated windowed within-wafer plot for HBr355 nm,
demonstrating the chamber memoiy effect after the occurrence of a big
spike.
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Chapter 5

ENTPOINT DETECTION SENSITIVITY EXPERIMENT

5.1 Background

During an etching operation, when the target layer material is clear, the plasma should be stopped to

minimi2ed the overetch damage of the undemeath layer. The clearing of the target layer typically

signals the endpoint of the etch. Due to the non-uniformity of the etch rate and the thin film layer

across the wafer, some overetch is often required tomake sure that all the exposed area is fully etched.

The timed etch is an older approach for determining endpoint, for instance, [28]. The timed etch

approach required pre-etch measurement of the film thickness. Once the wafer is fed into the etcher,

the diagnostic system will try to predict the etch rate based on the real-time information, and thus

obtain an etch time, which is equal to themeasured film thickness divided by the estimated etch rate.

The timed etch approach has a few pitfalls. First the pre-etch film thickness measurement may be

time-consuming, and has be done manually. Second, non-uniformity in film thickness and etch rate

across the wafer presents a difficulty inpredicting the time required to fully clear the target film layer.

This means that in order to ensure full clearance, additional overetch time would be required. Lastly,

due to machine aging and drifting, the equipment and wafer states change over time, and as a result,

the etch rate modelmayrequire constantupdate to ensure accurate etch timecalculation.

The most popular approach for endpoint detection is to monitor the trace of emission from reactive

species or volatile products using OES. Currendy, mostof these detection methods based on OES use

a wavelength corresponding to the chemical species that show an obvious transition at the endpoint.

For instance, one could monitor CO emission for oxide or polymer film etch, or CN for nitride

film, SiF or SiCl for polysilicon film, AlCl for A1 film. The LAM Research etchers in the Berkeley

Microfabrication Laboratory, use the SiCl 405 nm for polysilicon etch endpointing, and the CO 520
nm for oxide etch endpointing. The user is allowed to specify the endpoint criterion on the signal,

either based on transition amplitude or on transition slope.
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5.2The Endpoint Detection Experiment

As the lithography exposure area is shrunk down to less than one percent for contact and via etch,

there is an increasing need for finding awavelength with a pronounced endpoint transition. However,

plasma etch is a rather complex chemical and physical process. The emission firom reactive species or
volatile products may not yield the most pronounced transition because they may not be the
concentration limiting species for the etch process. Even if they are the concentration limiting species,

overlappingbands can blur the transition.

In order to find the wavelength with the most pronounced transition, one needs to carry out a

designed experiment. For the design of experiment, the exposure area used were 100%, 40%, 20%,

10%, 5%, 1%. The purpose of this sensitivity study is to determine the signal most sensitive to the

endpoint transition for poly etch. That is, we want to be able to find out which signal (or combinations
of signals) out of the thousands of available signals, can still show the endpoint transition when the

exposure area isvery small. Consequendy, we choose not to use a contact or via mask for exposure,

since non-uniformity in etch rate and film thickness within the wafer will blur the transition. We just
do blanket exposure for each die. We know that the diameter of a wafer is 100 mm, the total area of

thev^feris 25007C mm^. Andtheside of a die is 10mm, so thearea fora die is 100 mm". Thenwecan

figure out the number ofdies we should have for different percentage ofexposure area. For the 100%

exposure area, we can just perform blanket etch. There is no photoresist required, and as a result, no

patterning is necessary. For other percentage of exposure areas, on descending order, the numbers of

dies for exposure are:32,16, 8,4, and 1.

There was a data acquisition error for the 16-die (20% exposure area) wafer. This did not affect the

experiment, because the endpoint transition is clearly visible for many signals for the 8-die (10%

exposure are) wafer and below. Figure 5.1 shows the best transition from the ZSCAN signals, which is

the second harmonic ofthe voltage reading. The transition is more or less clear for exposure of32 dies
and up. Yet, the stable values for the poly etch and oxide etch are not distinct. The endpoint transition
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disappears for exposure of8dies and below. Due totheir insensitivity, we see that the ZSCAN signals
are not suitable for endpoint detection.

Exposure of 32 dies

40% exposure

KU iU uu uu

Uttic itidvn (.-I uuirirJlu/uw)

Exposure of 8 dies

10% exposure

2U uu uu

Utfic iriUvn f-I uutriplL'yui.'v>

FigureS.l. ZSCAN 2nd haimonic voltage endpoint plots.

likewise, it is found that when the exposure area is large, the endpoint transition can be clearly seen

from many OES wavelengths below 500 nm. As the exposure area is shrunk, the transition gets more

obscure or disappears altogether. It is observed that the best signals for endpoint detection are two

CF, OES lines, 275 nm and 321 nm. These are the only two signals that the transition is still clearly

seen when the exposure area is down to 1%.
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Figure 5.2. The OES endpoint traces of Lam 9400 built-in endpoint
detection wavelength SiCl405nmfor different exposure areas.
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Figure 5.3. The OES endpoint traces of the CFj 275nm line for different
exposure areas.
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Figure 5.3 shows the endpoints plots for CP,275 nm. One thing to notice is that the signal intensity

corresponding to theoxide stays moreor less constant fordifferent exposure percentages, and that the

signal intensity corresponding to poly etchvaries linearly with respect to the amount of exposure area.

A comparison for the SiCl 405 nm, which is the LAM 9400 wavelength for poly etch endpoint

detection, is shown in Figure 5.2. The transition ismore or less obscure for 8-die exposure already, and

it is verydifficult to locate the transition for the 4-die exposure.

At the time of the endpoint sensitivity experiment, the built-in endpoint signal (SiCl 405 nm) was not

included in the SVID data acquisition Ust. However,we just need to show that the ratio between the

signal intensity for poly etch and oxide etch value is greater for the CF2 wavelengths than that of the

built-in endpoint signal. Figures 5.4, 5.5, show some endpoint traces of CFj 321 nm and the built-in

endpoint signal for some wafer runs on 5/28/2001. Also, notice that the waveform of the built-in

endpoint signal is much "cleaner" than the CF2 321 nm wavelength. This is due to the LAM built-in

endpoint sensor's aperture is much bigger than that of the OES sensor, and thus achieve much better

signal-to-noise ratio for the stable etchregion. In Figure 5.4, weseethat the poly-versus-oxide ratio for

CF2is about 1.8, andthe ratio for thebuilt-in endpoint signal is about 1.2, as shown in Figure 5.5. This

shows that the CF2 signals aremuch betterendpoint detection signals thanthe built-in.

60Q

300

Within wafer plot, eourcB=o0c, lndoxs377

10 2a 30 40 60 60 70

Figure 5.4. The OES endpoint traces of the CF2 321 nm line for a fixed
exposure area.
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Figure 5.5. The LAM 9400 SVID built-in endpoint traces of the SiCl 405
nm line for a fixed exposurearea.

One should take note that this is a poly etch process, which uses CUgas as the etchant. There is often

pre-poly etch step which etches away the native oxide on the top ofthe poly layer, using CF4 gas. The
CF, particles in the plasma during poly etch probably come from the CF,^ particles deposited on the
chamber walls. The creation mechamsm for the CFop articles is subject to future investigation. Also,
for the future works, we should perform verification runs to assess the endpoint detection accuracy
using the CF2 signals. Currently, for the sensitivity study, the sampling rate is one sample for every 1.9
seconds. The sampling rate should be increased to about 5Hz, as to minimize unnecessary overetch.

lithography exposure should be done with a via or contact mask with less than 1percent exposure
area. The detection algorithm can be developed using syntactic analysis, which will be illustrated in

later chapters.

5.3Criticism of other OES approaches forendpointdetection

While other researchers have been focusing on using multiple wavelengths for performing endpoint
detection, the author believes that the single-wavelength approach should be sufficient for the

detection, atleast for the polysilicon etch chemistry in question. Other researchers have, one way or
the other, avoided searching for the best single wavelength. For very small exposure areas, itwould be
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very surprising if no single wavelength could provide obvious endpoint transition, and yet, the

combination of multiple wavelengths could. It is worthwhile examining some examples of multiple-

wavelength approaches in the literature.

White, et al [27] perform PCA on the full OES spectrum on the main etch region. As wafers being

processed, and new data coming in, they compute the value for the combination of the first few

principal components. When the 1® value is abnormally large, that signifies the endpoint is being
reached. They apply this approach on SiO, etch, varying the lithography exposure area, 100%, 10%,

and 1%. They plot T^ value vs. time for each exposure area, and compare the intensity by plot vs. time
for a dominant wavelength (CO 520 nm). They demonstrate that theendpoint transition for1® value

plotis much more pronounced than thatof the dominant wavelength plot. However, White et al did

not address die issue of what could be the best dominant wavelength, i.e., the wavelength with the

most distinct transition at the endpoint.

The first few principal components capture most of the variance of the entire spectrum due to the

highly correlated nature of the OES signals. And usually, the wavelengths with significant endpoint

information contain a lot of variation, so that they are heavily weighed in the first few principal

components. As the full spectrum approach can work well relatively large exposure area (>10%).

However, when the exposure area is very small (<1%), there will be very few wavelengths with

sigmficant endpoint transition. As demonstrated in our work, for polysilicon etch with 1% exposure

area, only two wavelengths, CF, 275 nm and 321 nm, contain significant endpoint transition. The'fiill

spectrum approach would not yield distinct endpoint transition forsmall openarea.

Yue, et al [29] proposed two steps in selecting wavelengths before performing PCA. First, they divide

up the full spectrum into several windows, and use PCA to step through those windows, and then they

keep the windows with obvious endpoint transition and discard the ones without. Then recursively,

they subdivide up the remaining windows into smaller ones, and further remove irrelevant

wavelengths. Next, they use a "sphere" criterion to select the most relevant wavelengths firom the

remaining firom step one. Some principal components with obvious endpoint transition are selected.

They examine the sum of square for the loading coefficients in the selected principal components for

each wavelength. A few wavelengths with thelargest sumof square are finally chosen.
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Yue et al's approach substantially reduces the number ofwavelengths used for endpoint detection, and
thus reduces computation cost and improves model consistency. Yet, they did not do an exhaustive
search for the best wavelength for endpoint detection. During the first pass of the wavelength
elimination procedure, it is likely that agood endpoint detection signal may fall in one of the window
with largely irrelevant signals, so that the PCA could not pick out the transition.
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Chapter 6

EQUIPMENT STATE AND WAFER STATE PREDICTION EXPERIMENTS

6.1 Introduction

The purpose of the equipment state experiment is to assess the sensitivity of the sensors to

fluctuations of equipment parameters such as power, chamber pressure, gas flow rate, etc. Thewafer

state prediction experiment is to determine whether the data from the three sensor sources provide

significant diagnostic information forpredicting wafer states, such as etch rate anduniformity. In other

words, the two experiments are used to determine if the combination of the three sources of sensor

information can more accurately characterize the equipment and wafer states. If this is not the case, it

is not necessary to have ail thesensors in place, andthus wecan save some hardware cost, disk space,

and analysis time.

6.2 Equipment State Experiment

For the equipment state experiment, five parameters are under consideration, HBr flow rate, Clj flow

rate, chamber pressure, RF top power, RF bottom power. We vary the machine settings of the

parameters, one at a time, and then tryto seeif the sensors signals fluctuate accordingly. Weknowthat

the LAM etcher provides built-in real-time monitoring for the five parameters. The user of the etcher

can get both the settings and the actual readings through the SECS II interface. For the equipment

state information, the source of machine signals through the SECS II interface is indispensable.

Therefore, we only need to assess on the OES and ZSCAN sources. Since we are onlyinterested in

the equipment states for this experiment, we want to minimize plasma etching reaction in the

chamber. Ideally, we would power up and ignite the plasma without any wafer in the chamber.

However, under normal operation, the etcher will not ignite a plasma without wafers. So,we opted to

useoxide wafers into the chamber. Since weareusing a poly etchrecipe with high selectivity to oxide,

this diminishes etchingwhen the plasma is ignited.
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Each parameter is in turn varied around the center. First, we vary itin an increasing fashion, then vary
it away &om the center point (see Table 6.2). In this way, we can classify the chamber memory effect,

if there is any, during the waferruns.

Parameter Center point

HBr flow rate 150 seem

CI2 flow rate 50 seem

Chamber pressure 12 mTorr

RF top power 300 W

RF bottom power 150 W

Table6.1. Centerpointof theequipment machine settings.

Parameter Run # Run Sequence

HBr

1 130,140,150,160,170

2 150,140,160,130,170

Cl,

1 25, 37.5,50, 62.5,70

2 50,37.5,62.5,25,70

Pressure

1 10,11,12,13,14

2 12,11,13,10,14

RF top 1 250,275,300,325,350
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2 300,275,325,250,350

RF bottom

1 130,140,150,160,170

2 150,140,160,130,170

Table 6.2. The run sequence of the equipment state experiment. One
parameter is changedat a time; others remain at the center points.

Varylnsi HBr, 130to 170 seem Varying RF bottom, 130 to 1 TO W
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Figure 6.1. Two examples of time series plots of the ZSCAN signals for
different machine settings.

All the ZSCAN oirrent, voltage, and phase values on time series are examined. Figure 6.1 shows two

examples. From them, weseethat the fundamental voltage reading is in linear relationship with the RF

bottom power, but it is not sensitive to HBr flow rate deviation. It is found that ZSCAN current,

voltage, is sensitive to the setting deviation of chamber pressure, RF top and bottom power, but not

sensitive to the deviation of the gas flow rates. The phase reading appears random to anyparameter

deviation.

57



For the OES spectrum, wavelengths corresponding topeaks are selected for examination. As shown in

Figure 6.2, the intensity value is the average ofawindow offive sample points. From the plots, we see
that OES 797 nm intensity varies linearly with HBr gas flow rate, but varies randomly with RF bottom

power. And after examining all the OES peaks, we find out that OES signals are sensitive to all but the

RF bottom power. That suggests that RF bottom power may not play much of a role in plasma
reaction.

Ts;

2

d>

8-

HBr flow rate (seem)

Figure 6.2. Twointensity vs.machine setting plots forOES 797nm

i*n inn inn

RF t>ottom (W/)

Table 6.3 summarizes the qualitative sensitivity study result, demonstrating that OES and ZSCAN are

complementary inequipment state modeling.

HBr C12 Pressure RF top RF bottom

ZSCAN No Slightly Yes Yes Yes

OES Yes Yes Yes Strongly No
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6.3 Wafet State Prediction Experiment

Accurate inline wafer state prediction can reduce the need for costly and time-consuming wafer

measurement. The wafer states that we are interested in are etch rate and uniformity. Five machine

settings are varied to achieve different etch rate and uniformity on the wafer. The center points and

positive and negative deviation of the settings are shown on table 6.4. However, nocenter point wafer

run isneeded because machine settings will notbeused as terms inwafer state modeling. We only use

the three sources of signals. OES, ZSCAN and SVID signals, as the modeling terms. A two level, 2^^

resolution V experiment with I=ABCDE,is designed asshownin Table6.5. In order to un-confound

the blocking effect, a randomization is performed on the mnning sequence. The randomized sequence

is10,7,12,4,16,1,3,14, 6, 8,11,15,13, 9, 5,2 (The numbers are inthe first column of the table).

+ - Center point

RF top (A) 350 250 300

RF bottom (B) 180 120 150

CU (C) 75 25 50

HBrp) 180 120 150

Pressure (E) 14 10 12

Run #

1

2

3

4

5

6

7

8

9
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10 - + + - +

11 - + - + +

12 - + - - -

13 - - + + +

14 - - + - -

15 - - - + -

16 - - - - +
Table 6.5.Thedesign table for thewafer state prediction experiment.

Poly-on-oxide wafers are usedThe thickness of undoped poly film is about 3500 angstrom, and the

thickness of the oxide film is about 300 angstrom. The wafers are set for 30-second poly etch in the

LAM 9400 etcher, which has an etch rate ofabout 2500 angstrom/min, under the center point settings

as shown in Table 6.4. A CMOS gate mask is used for lithography exposure. The GCAW stepper is

programmed to perform 32-die exposure runs. Figure 6.3 shows a wafer map. The ones in bold are

selected for thickness measurement For each die, five locations, four in the comer, one in the center,

are selected for measurement, as shown in Figure 6.4.

X X X X

X X X X X X

X X X X X X

X X X X X X

X X X X X X

X X X X

Figure 6.3. Wafer die map. The ones in bold are selected
for measurement.

60



Figure 6.4. The locations selected for thickness
measurement within a die.

The CMOS gate mask image on the die is used for finding the central location of the die. For each

measurement location, four points in proximity are selected for film thickness measurement by

Nanoduv. Two points are in the exposed etched regions; the other two are in the unexposed and

unetched regions. Then the etched depth is the sum of the measurements for the unetched regions

minus the sum of the measurements for the etched regions, divided by 2. Nanoduv performs the

measurement byshining a laser beam onto the wafer surface. The two reflected beams, firom the poly

and oxide film respectively, interfere with each other, and a sensor captures the interference pattern

and calculates thepathdifference of the two beams, andthus obtaining the fihn thickness. Then,

Etch rate = average etch depth / .5 [angstrom/min]

Uniformity=(max etch rate—minetchrate)/average etchrate

=(maxetch depth- min etch depth)/average etch depth

Once we compute the wafer states and acquire the sensor signal data, we can start to build models

firom them.
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Similar to their endpoint detection work, White, et al [26] have performed PCA on the entire OES

spectrum. WHule PCA can extract most variance from the spectrum using a few principal components,

including irrelevant signals will degrade the significance of the model. Draper (1964), Jeffers (1967),

and Mansfield (1977) have considered how to select variables based on the PCA loading values of the

variables. In order totest the assumption that irrelevant signals degrade the model significance, several

stepwise linear regression schemes are deployed.

1) Perform PCA on all signals, and treat all PCs are individual variables, and perform stepwise

linear regression on them.

2) Perform PCA on OES signals only, and treat the principal components (PCs), the 43 SVID

signals, and 10 ZSCAN signals as individual variables, and perform stepwise linear regression

on them.

3) Without performing PCA, treat 2048 OES, 43 SVID, and 10 ZSCAN signals as individual

variables, andperform stepwise linear regression on them.

As for the stepwise linear regression, we perform the follow steps,

1) Startwith the signal most correlating with the wafer state.

2) Add the next signal which reduce the model prediction error (Cp, consult [48] p216 for

definition and explanation) the most.

3) From the current added set ofvariables, ifdropping avariable can reduce the prediction error,

remove the variable.

4) Stop if no more variable can be added to increase the model significance ([48], pi8) OR no

more variable can be addedto reduce the modelprediction error.

From Table 6.6, we can see that just performing PCA alone yields a better value than performing

PCA on all the signals. This suggests that the irrelevant signals of SVID and ZSCAN in the grand

PCA (PCA on all signals) deteriorate the wafer model significance. Due to the large number of OES
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signals (2048), compaidng to the number of SVID (43), and ZSCAN (10) signals, this deterioration is

rather slight. The value goes from .84 to .81 for the etch ate model, from .90 to .89 for the

umformity model. By the same token, if we just do linear stepwise regression on all the signals, we

notice that the model significance improvement is quite substantial; the value goes from .81 to .99

for the etch rate model, from .89 to .96 for the uniformity model. Yue, et al [30] have attempted to

select relevant signals first before applying PCA for wafer state modeling using OES signals. The

author takes note of their method and intention. However, with the values being .96 and .99, which

arevery close to 1, the margin for improving the model significance isvery sUm. In otherwords, even

if we gain improvement from additional signal screenings, we cannot really determine if this

improvement is statistically significant. The author iswell-aware that some schemes of signal selection

in addition to PCA might be worth examining for other problems with smaller R^ values.

Nevertheless, for our case, we have a large number of signals for the stepwise regression, giving us

very sigmficant terms in the model. We consider that by using the simple linear stepwise regression,

themodeling result for this current problem is satisfactory. Besides, thepurpose of this work is not to

search for the best modeling method for problems with a large number of variables, in a theoretical

sense. Rather, we just want to demonstrate that all three sources of signals contribute significant

diagnostic information.

Signal
source

Wafer

state

Significant
terms

R'
(adjusted)

PCA on all

signals
ER PCI, PC 3 .8122

(.7833)
U PCI, PC 6 .888

(.8708)
PCA on

OES alone

ER PCI, PC 3 .8383

(.8134)
U PC 1, PC 5,

15

.8998

(.8748)
Stepwise
Regression
on all

signals

ER 355 nm, 207
nm, 14, RF
load coil pos

.9876

(0.9821)

U 997 nm, 559
nm, 1049
nm, 974 nm

.9576

(.9422)

Table 6.6. Summary of wafer state modeling, comparing with or without
PCA. Note: 15,14 are the current readings ofthe fifth and fouith harmonics
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oftheplasma frequency, respectively. ER = etch rate; U=uniformity; PC =
principal component

Table 6.7 shows the simple linear stepwise regression results on each source alone, and then on all

three sources combined. We notice that ZSCAN signals are not sensitive to the wafer states. Probably,
this is the reason RF sensors have not been used widely for plasma diagnostics. The popularity ofOES

sensors is justified since OES model are significantly better than SVID models. As for the stepwise

regression onthe combination ofall sources, we should notice that while uniformity model only takes

terms firom the OES signals, the etch rate model takes terms firom all three sources, and improve

slightly, and yet significantly from the OES signals alone. This demonstrates that all three signal

sourcescontribute usefuldiagnostic information.

Signal
source

Wafer

state

Significant terms R2

(adjusted)
OES ER 355nm Br, 520nm

CO, 359nm CN
.9475

(.9394)

U 997 nm, 559 nm, 1049
nm, 974 nm

.9576

(.9422)
SVID ER TCP load cap, C12, RF

line imp #1
.9082

(.8941)
U TCP load cap, HBr

stpt, cham press
.8548

(.8325)
ZSCAN ER 15 .217 (.161)

U VI, 11 .4858

(.4067)
Stepwise
Regression
on all

signals

ER 355 nm, 207 nm, 14,
RF load coil pos

.9876

(.9821)
U 997 nm, 559 nm, 1049

nm, 974 nm
.9576

(.9422)
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Chapter 7

DATA EXPLORATION WITH SYNTACTIC ANALYSIS

7.1 Inttoduction

Syntactic analysis refers to a general pattern recognition technique, which uses formal language

paradigms to describe the structure of an object. The basic approach is to decompose theobject into

sub-pattems of primitives. By some criteria, a symbol is assigned to each primitive, and the symbols

are assembled into a sentence. A grammar is a set of syntactic rules for generating sentences, which

describes a class of objects. If the sentence encoded from an object is accepted by thegrammar, then

we consider that the object belongs to the class described by thegrammar. Syntactic analysis is widely

used for character recognition, especially in the Far East, where syntactic analysis-based Chinese

character recognition is an activeresearch area.

Sjmtactic analysis also has found some success in the medical field, for analyzing electrocardiogram

(EGG) signals, in order to determine the status of a patient's heart. If done visually, the procedure is

divided into two stages [10]. First, some characteristic features of EGG are recognized, such as the P

wave, thePQ segment, the QRS complex, theSTsegment, theT wave and theTP segment. Then, the

physician measures the features' parameters, such as durations and amplitudes, and interprets these

numerical values based on experience anda set of established empirical diagnostic criteria. Due to the

massive amount of EGG data, there has been a great interest for computerizing the interpretation

process. Many medical researchers have used syntactic pattern recognition techniques to analyze EGG

signals [1-5]. The objective is to build an EGGprocessing system to imitate thephysician, and to draw

similar judgmentsabout the status of the patient.

EGG signals are similar to the plasma etch signals in some respects. In addition to considerable

amounts of noise, their form and size can change over time [3]. Also, like etching signals differing

from machine to machine, EGG signals differ considerably from person to person. Syntactic analysis is

applicable since it is robust against gross change, and also appeals to intuition. Even if a signal has
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been "rubber stretched"(i.e. linearly transformed along the x- and y- axes), ifthe signal is classifiable by
a human expert, then syntactic analysis can usually classify it correcdy. For these reasons we think that

sjmtactic analysis holds considerable promise analjrzing plasma etching signals.

7.2 A qualitative description of the basic etch waveform

Chapter 2 and Chapter 4 have described the nature ofplasma etch signals, and the related analytical

difficulties. As pointed outpreviously, syntactic analysis isable to ignore extraneous influences on the

waveforms, and offers great flexibility in capturing both the qualitative and quantitative dynamics of

the signals.

Often, for a basic poly etch waveform, we identify the poly etch segment, the oxide etch segment, and

the transition between the segments. However, a few variations of the waveform exist. At the

beginning and the end of the waveform, there can be power-on and -off transitions, respectively.

Sometimes, there iseven a stable power-off segment. There is often a thin layer ofnative oxide on top

of the poly film, sowe may see an oxide-to-poly transition at the beginning of an etch waveform. If

the layer ofnative oxide is thick enough, there might be astable oxide etch region before a stable poly

etch region. Also, the oxide etch segment may not be clearly defined, and the transition may not be

complete. If it is a timed etch and the etch is not through, there will be only a poly etch segment.

There will be just a silicon etch segment if it is a dummy runwith a bare silicon wafer. There will be

justan oxideetch segmentif it is a dummy run with an oxide wafer.

The data collected for our analysis comes firom a development-oriented process. As a result, users

may use masks of various exposure areas, poly think films of different doping concentrations.

Different masks will lead the etch signal intensity to fall into distincdy different clusters even for the

same material. The different doping concentrations of poly thin films will generate a spread within the

cluster. At times, users put wafers with aluminum films into the etcher, and cause intensereaction in

the chamber, and the intensity of the etch signal may overshoot the calibration limit.

7.3 Waveform encoding & waveform query
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In order to perform qualitative and quantitative data exploration, we need to encode the etch

waveforms first. As shown in Figure 7.1, we want to divide a etch signal \raveform into stable etch

(c-g-j poly or oxide etch), and transition (e.g., poly-oxide, or oxide-poly transition) primitives. Astable
etch primitive is encoded with "eX", where "e" stands for "etch," and "X" is the material (for Poly,
for Oxide, for Aluminum, etc.) symbol. We will discuss in detail how to assign the material symbol
later. A transition primitive is encoded as "tYZ", where "t" is for "transition," "Y" is the transition-

from material symbol, and"Z" is thetransition-to material symbol. Before we divide a waveform into

primitives, we do alinear piecewise approximation with an error tolerance of30 (intensity units).
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Figure 7.1. Demonstration of the primitives on a typical etch waveform.

The following shows a linear piecewise approximation algorithm. The segment starts from the first

data points. The segment keeps growing with successive points until the maximum linear fitting error

is greater than the tolerance. The second segment starts with the end of the first segment, and this

procedure is repeated until the entirewindow is represented by linearsegments.

Segmentation
Input: Time series X={X|... x„}; linear fit error tolerance e.
Output: List ofline segment L={s,... Sm}.

h=l,i=l,j=l;
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while (j<n)
s=Iinear model fit on {Xj... 3^ };
maxeiror = max {prediction error ofs};
if (maxerror > e)

s=linear model fit on (xj... 3^.,};
L=append(L, s);
i=j-l,j=i+l;

elsej^+1;
L=append(L, s);
retum L;

The running time of the above algorithm is n^. There is a massive amount of data, so we have an

interest to speed up the computation. Notice that once we approximate the data points with line

segments, the amount of data we need to analyze will be substantially reduced. A faster (n*log n)

algorithm for line segmentation is presented next. The basic difference is that, instead ofgrowing the
segment point by point, the algorithm grows aline segment exponentially with data points if the linear

fit tolerance is not exceeded. Likewise, once it detects that the linear fit tolerance is exceeded, it shrinks

the segment in an exponential manner.

Sped-up Segmentation
Input: Time seriesX={X|... x„}; linear fit error tolerance e.
Output: List of line segment L={si... Sm}.

k=l;h=l;i=l;
j=i+k;
almostfullidx=0;
while j<=n

s=linear model fiton (xj... 3^};
maxerror= max (predictionerror of s};

while maxerror< £

k=k*2;
j=i+k;
exceeded=0;
if j>n %reaching the end of the curve

almostfiillidx=i+k/2;

s=linear model fit on (x... x };
maxerror =max (pre^ction error ofs};
exceeded=l;
break;

else

s=linearmodel fit on (x -. X}5
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maxerror = max {prediction error ofs};

if maxerror<e %for break out of reaching the end of the curve
L=append(L,s);
break;

else%adjsi2e computation
adjsi2e=0;

if j==n AND exceeded
adjsi2e=n - almostfuiiidx;

else

adjsi2e=k/2;
j=j-adjsi2e;
s=linear model fit on {x Xj};
maxerror = max {preiction error ofs};

while adjsi2e>l
adjsize=floor(adjsi2e/2);
if(maxerror<e)

j=j+adjsi2e;
else

j=j-adjsi2e;
s=linear model fit on {x - Xj};
maxerror = max (prediction error of s};

adjsize=l;
if maxerror>e

j=j-adjsi2e;
s=linear model fit on (x —Xj};

L=append(L,s);
h=h+l; i=j; k=l; j=j+k; %next segment, notice k reinitialized to 1

return L;

After these computations we group the line segments together based on the slope values. If the

absolute slope is less than 20 per sample, we consider the line segments as a flat stable etch region,

assigninga slope code of 0. If the slope values are greater than 20, we consider the line segments as an

up-transition region, assigninga slope code of 1. If the slope values are less than —20, we consider the

line segments as a down-transition, assigninga slope code of —1.

However, due to the irregularity of the signal, this first pass segmentation might lead to many noisy

small line segments. Small line segments are those with amplitude smaller than 80, and duration
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smaller than or equal to 4 sampling points. Next we show how to group them with bigger line

segments or how to filter them out. Table 7.1 lists many of the scenarios that ran occur due to noisy

segments, and the action we take for each case.

Waveform

FLAT

UP

RulesDescription

A noisy segment lies between two long FLAT

segments. We consider all three segments as a

FLAT primitive candidate. The noisy segment can

be UP or DOWN.

A noisy segment lies between two big UP

segments. We consider all three segments as an

UP primitive candidate. Thenoisy segment canbe

DOWN or FLAT.
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FLAT

UP

A DOWN noisy segment lies between a UP

segment and a FLAT segment. A horizontal line

is drawn through the noisy region, and the region

and the FLAT segment are treated as one FLAT

primitive candidate.

FLAT

DOWN

A UP noisy segment lies between a FLAT

segment and a DOWN segment. A horizontal

line is drawn through the noisy region, and the

region and the FLAT segment are treated as one

FLAT primitive candidate.

UP

FLAT

A DOWN noisy segment lies between a FLAT

segment and a UP segment. A horizontal line is

drawn through the noisy region and the region

and the FLAT segment arte treated as one FLAT

primitive candidate.
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DOWN

\ FLAT

A UP noisy segment lies between a DOWN

segment and a FLAT segment A honzontal line

is drawn through the noisy region, and the region

and the FLAT segment are treated as one FLAT

primitive candidate.

UP

Noisy segments occur consecutively, alternating

between UP and FLAT primitives. We consider

the entireregionas UP.

DOWN

Noisy segments occur consecutively, altemating

between DOWN and FLAT primitives. We

consider the entireregionas DOWN.
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Noisy segments occur consecutively, alternating

betweenUP and DOWN primitives. We use lines

to connect bottoms or tops of the segments. The

slope of those linesdefines the slope attribute for

the region.

Table 7.1. Rules for processing noisy segments.
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Figure 7.2. Showing how to get the characteristic value on a stable etch
region. For illustration purposes, the segmentation criteria are different from
the one in figure 7.1.
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The numerical attribute for coding the symbol for a certain etching materialis the characteristic value

of the stable etch waveform. Figure 7.2 shows a typical stable etch waveform, which first increases
73



rapidly, then stabilizes and reaches a steady state. Due to various reasons, the transient time until

reaching steady state can vary considerably. We decided to use the steady state value as the

characteristic value ofthe etch waveform. As we have done the piecewise linear approximation on the

waveform already, we select the flattest "significantly long" line segment, and take its average value as

the characteristic value. The flattest line segment is the one with the smallest absolute slope value. A

"significantly long" line segment isone with more than four samples. Since the samphng rate is about

1.9 sec/sample, the duration ofthe line segment needs to be greater than 7.6 seconds tobesignificant.

The reason we want the characteristic fine se^nent to bereasonably long is that there are times when

there isa small spike with very short duration in the etch waveform. Atthe peak of the small spike, the

absolute slope value is very close to zero. If we do not require the characteristic Itnp segment to be

reasonably long, the peak value of the small spike could be mistaken as the steady etch value. If

somehow, due to a noisy waveform, there isno significantly long line segment, then we just choose the

longest line segment as the characteristic line segment because when the waveform reaches a steady

state,the linesegments tend to get longer.
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500 1000 1500 2000 2500 3000 3930 4000
characteristic value

Figure 7.3. The distribution of the characteristic values of stable etch
regions for OES 321nni CF2 line.

74

4500



Figure 7.3 shows a characteristic value histogram. Table 7.2 shows the code number assignments for

different material. On the lower end we have the power-off state. The diagnostic system usually stops

sampling when the power is off, so for a power on-off transition, i.e., tlZ or tYl, thesensor may not

be able to see the power-off intensity. Nevertheless, we can interpret extremely sharp and large

transitions aspower on-off transitions. There are two clusters foroxide andpoly, respectively, possibly

due to the different doping concentration of thematerial or thedifferent exposure area. Also, there is

an overshoot clusteron the high end.

Material Symbol Range Etch segment

1 0-200 Power-off

2 200-400 Oxide I

3 400-800 Oxide II

4 800-1400 Poly I

5 1400-2000 Poly II

6 3800-4500 Aluminum
Table 7.2. Material symbol assignment table

For qualitative data exploration, we often use a search string to test the existence of a portion of the

etch waveform, such as the existence ofpoly etch, and endpoint transition. Once the encoding for the

etch waveformis in place,it is saved to the archive with the wafer ID. The user can retrieve the wafer

data files as needed. For instance, to focus on poly II etch only, he/she can use as the search

string. Figure 7.4 shows some within-wafer plots for the wafers extracted using 'Vi" as the search

string. Alternatively, to study wafer runs with poly I-to-oxide II endpoint transition, the appropriate

search string will be e4t43e4. Notice that the codes for the two stableetches are includedin the search

string. Then, the user can use the software features, such as within wafer plot, wafer-to-wafer plot, and

signal-vs.-signal plot, signal correlation computation, to study the various qualitative and quantitative

data properties. Figure 7.5 diows a wafer-to-wafer plot for the wafer runs with poly I to oxide II

endpoint transition.
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Figure 7.5. Within-waferplot of runs with poly I to oxide II transitions.

Notice in Figure 7.4 for the poly II etch wafer extraction, the wafers can fall into two clusters based on

the duration attribute of the poly II etch. Also, in figure 7.5 for the wafers with endpoint transitions,

they can be group into two clusters based on the poly etch duration, etch characteristic value,

transition amplitude, or transition duration. In order to further categorize the waferdata,we need to

use some quantitative attributes as the criteria.

For quantitative encoding of the stable etch primitive, we are interested in the characteristic value,

amplitude, and duration; and for transition primitives, we are interested in the nominal transition

amplitude, the actual transition amplitude, as well as the duration. The nominal transition amplitude is

theamplitude due to segmentation, which takes thedifference between thebeginning and terminating

points of the transition primitive. The actual transition amplitude is the difference between

characteristic values of two stable etch regions (see Figure 7.6). If one of the stable etch regions does

not exist, the difference between the characteristic value and one end of the primitive. A power-on or

power-off usually does not have a stable region. Often, stable oxide etch region does not exist, since

once the endpoint transition is detected, the machine will stop the main etch. If due to some

operational errors, neither stable etch region exist, then the actual transition amplitude is equal to the
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nominal transition amplitude. If there is a thin native oxide on the top of the poly film, the power-on
transition will not have any adjacent stable etch region, because the native oxide etch will exhibit an

oxide-to-poly transition. Also, if the native oxide etch is intermpted, then the oxide-to-poly transition

will not have anyadjacent stable etchregion.

1200

1100

1000

900

^ 800
CO
c
0)

= 700

600

500

400

300
0

DefinSlonof Transition Ampitude

characteristic vQlue for e4

•" Stable etch

—* transition

raw data

nominal

transition

amplitude

20 40 BQ 80

time index (~1 sample/1.9 sec)

actual

transition

amplitude

100 120

Figure 7.6.Definition ofnominal andactual transition amplitude.

Figure 7.7 shows theextraction result based on thepoly I etch characteristic value from 1000 to 1200;

and Figure 7.8 shows the result based on the characteristic value from 800 to 1000. Likewise, Figure

7.9 shows the extraction result based on the poly II etch duration from 50 to 400; and Figure 7.10

shows the result based on the duration tirom 1 to 50. We can see that with these numerical criteriawe

can resolve the respective clusters from the visual inspection of the wafer plot. Lastly, we can do

graphical plots, and correlation computations on these numerical attributes. Figure 7.11 shows the

distribution plot for the polyII etchcharacteristic value for the cluster withshorteretch duration.
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Figure 7.7. The cluster of within-waferplot of runs with poly I to oxide II
transitions for poly I etch characteristic value fium 1000 to 1200.
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Figure 7.8. The other cluster of within-wafer plot of runs with poly I to
oxide II transitions for poly 1etch characteristic value from 800 to 1000.
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Figure 7.11. The distribution plot for the poly II etch characteristic value for
the cluster with shorter etch duration.

7.4 Designing the Syntactic System

Let us examine the issue of how to come up with syntactic rules and parameters for a diagnostic

system. For the syntactic rule in this chapter, we use the stable etch and transition primitives to

describe the etch waveform. To further characterize the primitives, we extract numerical attributes,

such as characteristic value, duration, and amplitude from them. The designed parameters include the

criteria for defining the material symbol, the linear tolerance for the first pass segmentation, the slope

threshold for defining the stable etch and transition primitives, the small duration and the small

amplitude that define noisy line segments.

The author realizes the advantages in completely or partially automating the design process. Complete

automation might be possible for simple diagnostic problems. This might be possible, for example, if



we canclassify objects correctly using some easily measurable attributes, such as weight, temperature,

volume, length, width, and etc. It might also be possible to automate the process of deciding what

attributes to use. However, complete automation for plasma diagnostics appears to be impractical due

to the complexity of the etch waveform. Complete automation implies coming up with syntactic

primitives andparameters without analyzing the etch waveform. The task is equivalent to describing a

complicated objectwithout seeing the object.

If we lay down the syntactic rules first, and limit the automated search to just the values of the

appropriate parameters, the task is often feasible. Let us use the poly I-to-oxide II transition in Figure

7.5 as an example. Here we will use the syntactic rules from previous work and we are searching for

parameters that conform the etch waveforms to the syntactic rules. Just for the investigation, we keep

the material symbol criteria constant, and perform a three-point iteration for the rest of the

parameters, varying each one by plus/minus 25% of its default center point value. The center points

are 30, 4, 20, 80 for linear tolerance, small duration, slope threshold, and small amplitude respectively.

Table 7.3 shows all the combinations that conform the etch waveforms tothe syntactic rules.

1Linear Tolerance Small Duration Slope Threshold Small Amplitude i
23 3 15 60

23 3 20 60

23 4 15 60

23 4 20 60

23 5 15 60

23 5 20 60

30 3 15 60

30 3 15 80

30 3 20 60

30 3 20 80

30 4 15 60

30 4 15 80

30 4 20 60

30 4 20 80

38 3 15 60

38 3 20 60

38 4 15 60

38 4 20 60

38 5 15 60
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38 5 20 60

n etch waveformsto the syntacticrules.

This iterative way of searching forparameter is rather computationally intensive, on theorder of m*n'',

vdiere mis the number ofdesigning wafers; n is the number of parameters; k is the number of points

for iteration. In addition, selecting a good combination out of the table remains a problem. A good

combination will yield small diagnostic error rates. Automating this choice would require the

appropriate quantification of the errorratecriterion. Here, the author believes that the human expert's

judgmentis irreplaceable in making the selection. One should use the combinations one at a time to

perform segmentation on someraw etch waveforms (other than the designing etch waveforms), and

inspect the segmentation result visually. A good segmentation result usually has the following visual

properties:

1) The number of line segment is reasonablysmall.

2) The line segments approximate the etch waveform reasonablywell.

3) The stable etch and transition primitives make sense visually.

However, once the designer performs a visual inspection, the benefit of automation is lost. The

designer is better off to just manuallyvary the parameters and then visually inspect the result.Table 7.4

shows the segmentation result by varying the slope threshold. We see that when the threshold gets to

20 or above, what visually appears to a transition region can segmented to be a stable etch primitive.A

slope threshold of 10 or 15 will be acceptable.
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Table 7.4. The segmentation result by vaiying the slope threshold. Note:
= transition,'+' = stable etch. Lintol = linear tolerance, sd=small duration,
smallamp = small amplitude, slopetfaresh =slope threshold.

2S0

Table 7.5 shows the segmentation result by varying the linear tolerance. When the tolerance is 10, the
segmentation result is wrong even after filtering out any noisy segments. When it is 15, the
segmentation result is correct after noisy segment filtering for this sample. However, there are too
many line segments, which will induce error in new samples. Itis better to use 20 or slighdy above for
linear tolerance.
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Table7.5.Thesegmentation resultby varying the lineartolerance.

Thefollowing parameter design scheme isrecommended:

1) Pick a few representative waveforms, (ones with longer and short durations, big and small

transition amplitude, etc).

2) By trial and error, pick a parameter combination that yield mrrect segmentation for all the

sample waveforms.

3) Vary one parameter at a time to fine-tune the combination, as to get a visually acceptable

segmentation result.
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Although the above scheme is not strictly optimal for diagnostic error rate, it generally yields very
small error rate and is applicable toordinary syntactic parameter design problems.
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Chapter 8

TWO CASE STUDIES: FAULT DIAGNOSICS WITH SYNTATIC ANALYSIS

8.1 Introduction

Syntactic analysis offers great flexibility for performing diagnostics. It allows the researcher to select

meaningful features and ignore extraneous features or noise. Since the system we have is set up in a

research environment, and we donothave control over what wafers to beprocessed in the etcher, it is

not suitable to perform diagnostic analysis on a large scale. We have two data sets. The first data setis

the machine signal data ofa metal etch marathon run from a manufacturing vendor. The second data

set, named "high speed data," was also some machine signal data with sampling rate ofabout 100 Hz,

andwas acquired in the Berkeley Microfabrication Lab.

8.2 Metal Etch Marathon Run

The data set consists of real-time signals from more than 1400 wafers. For this analysis, we have
chosen the capacitance manometer signal, which reflects the pressure level in the etcher's chamber.
The waveform provided by the capacitance manometer is relatively clean, which simplifies visual
verification of the analysis.

As mentioned previously, there are several steps in the etching process, including pre-etch ofnative
oxide, main etch, and over-etch. At the beginning ofeach etching step, it usually takes a few seconds
for the etchant gases to stabilize. We usually select the later part of the main etch step for analysis,
where the waveform is relatively stable and repeatable. Figure 8.3 shows the "windowing" operation
on the capacitance manometer signal. An experienced process engineer can usually tell ifetching is
faulty by viewing the signal's waveform. For our metal etch marathon data, the commonly seen
waveforms are shown in Figure 8.1. We visually classify these signals as either "normal" or oftype 1, 2,
3 and 4. Even though we do not have documented faults in this run, types 3and 4 are most likely
faulty. Notice that types 1and 2can be viewed as the combination of anormal signal, and anegative
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or apositive spike, respectively; they may be considered normal ifthe spike is small enough. The goal
of theanalysis is to correctly classify thewaveforms.

Nonmol
tjpel ^3

Figure 8.1. Commonlyseen waveformsfor capacitancemanometerin a
metal etch marathon run.

^pe4

A syntactic system for analyzing the etching signal of a capacitance manometer is presented here. The

system attempts to discriminate amongvarious waveform types. Figure 8.2 shows the overall block

diagram. When a raw signal comes in, the waveform is pre-processed to facilitate further analysis.

Then the waveform is encoded into a string of integers. The string is fed into the classifier to

determine the fault category. There is also a numerical spike evaluator in the classifier. Wewill point

out its necessity when we talk about the classification result. The major parts of this sjmtactic analysis

system will be described next.

j>rei^ocessor

raw signal window
selector smoother

s|)ike evaUlalor^

encoder classifier

segmenter

"fault category

Figure 8.2. Architecture of the overall syntactic system
for analyzing the marathon run data.
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The preprocessor performs three operations: windowing, smoothing, and segmentation (Figure 8.3).

**Windowing" refers to choosing the appropriate time interval for observation during theetch cycle of

one wafer. The time window we select is usually the later part of the main etch step. For the

capacitance manometer signal, there are two dominant positive spikes (as opposed to theminor ones

in the stable region), one big, and one small, before the relatively stable region, so we can define a

window after the small spike. Since we do not do any analysis onthe random, high firequency noise, we

can smooth out the noise of the windowed waveform. We use an algorithm called Locally Weighted

Scatter Plot Smoothing [13]. This algorithm attempts to predict each point of the signal by
interpolation, by appropriately weighing the nearby raw data. The smoother lets the user specify the
fraction oftotal data used for predicting aparticular point; the larger the fraction, the smoother the fit.
For the capacitance manometer, a firaction value of 0.2 is appropriate in the sense that this

transformation seems to preserve the features that are analyzed later by the segmentation algorithm
and the classifier. The smoothed waveform is segmented using the faster algorithm discussed in
Chapter 7.
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Figure 8.3. The process flow of the preprocessor. The
sample rate of the original signal is 2 samples per sec.
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Figure 8.4 shows the encoding scheme used to convert the sequence of segments into a string of

integers. Five integers are used for encoding the slope of the segments: 2 (fast increasing), 1 (slowly

increasing), 0 (almost flat), -1 (slowly decreasing), and -2 (fast decreasing). For the windowed

waveform of the capacitance manometer, weconsider a segment witha slope of magnitude more than

10 units/sec to be fast changing, less than 4 units/sec to be almost flat, and the in-between values to

be slowly changing.

Y 21100
e iu CO ao ^ 99

> <9 CO 90 90 CO

/•"T 0

>C\2 X

210-1-20210

Figure 8.4. The encoding scheme.

umts/sec

The classifier's operation is based on regular expression representation. Regular expressions are used
to build the classifier. The expressions are used for matching the encoding string from the raw data.

Assuming that xis an integer variable, we show some examples ofregular expressions:

X*: zero or more x,i.e., <empty>,x, xx, or xxxxxxx.

x+: one or more x, i.e., x, xx, or xxxxxxx.

X?: zero or one x, i.e.,<empty>, x.

XI y: either x or y.

For example, the following strings are all represented by the same regular expression, 2*1+0*.
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2*1+0*: 2222110000,22221, or 100000.

Based on the process engineer's knowledge on the different waveforms, the classifier can be built to

describe the shape ofwaveforms with one regular expression for each. After an incoming etching
waveform is encoded into an integer string, the classifier will try to match the string to one of the

regular expressions, and thus determine its category. For example, the following regular expressions

canbe usedto describe thewaveforms shown in Figure 8.4:

2+1+0+: describes a curve that first increases rapidly, then stabilizes and finally flattens out. (I.e. the

firstencoding example 21100 from Figure 8.4)

2+ {l*0*(-l)*(-2)*(-l)*0*l*2*} 1+0+: describes curves that are the sum of the 2+1+0+ curve and a

possible negative spike. (I.e. the second encoding example 210-1-20210 fi:om Figure 8.4. Notice diat

the expression within the curly brackets represents the spike).

However, actual real-time signals may evolve quite a bit over time. The normal waveform may be

"stretched" in time or amplitude; the spikes of type 1 and 2 can appear at various times, with varying

amplitude and duration, relative to the base waveform. Care should be taken when one derives a

regular expression, so that the expressionis flexible enough to accept variants of the waveform. Let us

discuss in some detail the regularexpressionsfor the fivedifferent waveforms in our data.

Regularexpressionsfor five waveform categories

Normal:

The normal waveform has a shape similar to the first example in Figure 8.4. It first increases rapidly,

then stabilizes and flattens out. However, expression 2+1+0+ will not be appropriate enough to

describe this decreasingtrend of positive slope.Due to the "mbber stretching" effect, sometimes slope

code of 2 or 1 might not appearin the integersting. The engineer must exercise discretion in deriving

the regular expression. Strings without a "2" or "1" should be accepted. An expression that would

accommodate this range of signals is 2*1+0+ | 2+1*0+.

Type 1:
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The type 1 waveform is the svim of the normal waveform and a negative noisy peak. Because the

amplitudes of the peaks are different, and they are added to an increasing curve, the encoding

representation might not contain negativeslopes. For instance, see the waveform in Figure 8.5. Also,

the peak might appear in any position relative to the normal curve, so it is necessary to consider all

scenarios of where the peak appears. The notation of Nxy is used for describing the peak, where N

stands for negative peak; x is the slope encoding value before the peak; y is the slope encoding value

after the peak. The encoding for the peakisin this format;

(starting segment,left arm, rightarm, endingsegment)

Nend stands for the negative peak occurring at end of the waveform; flat segments do not need to
appear after .P^ is the positive peak defined similiarly. For the peak coding N22, (2 (-21 -11011)+

(01112)* 2), i.e., the negative peak occurring within the fast increasing "2" region, line segments with

slope code less than 2will be considered as avalid left arm; also, it is not necessary tohave aright arm.

N22=(2 (-21 -11011)+ (01112)* 2)

N21=(2(-2|-l|0)+(0|l|2)* 1)

Nll=(l (-2|-1|0)+(0|1|2)* 1)

N10=(l (-2|-1)+(0|1|2)*0)

N00=(0(-2|-l)+(0|l|2)»0)

Nend =(0(-2|-1)+(0|1|2)*)

Typel=2*{N22}?2*{N21}?l*{Nll}?l*{N10}?0*{N00}?0*{ }?
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Type 2:

TOO "T

0 0

Nil

Figure 8.5. Two examples ofnegative peaks.

The type 2 waveform is the sum of the normal waveform and a positive noisy peak. Similar to the

negative-peak type 1 case, it is necessary to consider all scenarios of where thepositive peakappears.

Notice that there are no P22 and P21. A positive peak has segments with slopes greater than the

segments before it. However, as "2" is the largest slope coding value, it is not possible to have a

segmentwith the slope codingvalue greater than 2. Thus, under this coding scheme, it is not possible

to have a possible peak within,or right after a region of segmentswith codingvalues "2."

Pll=(12+ (l|01-l|-2)* 1)

P10=(l 2+ (l|0|-l|-2)*0)

P00=(0(l|2)+(0|-l|-2)*0)

Pcnd =(0(l|2)+(0|-l|-2)*)

Type2=2*l*{Pll}?l*{P10}?0*{P00}?0*{ P^ }?
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Figure 8.6. Two examplesofpositivepeaks.

Type 3:

The type 3 waveformis more or less the inverted version of the normal waveform. It first decreases

rapidly, then stabilizes and flattens out. Again, due to the "rubber stretching" effect, there may not be a
"-1" or a "0" in the encoding strings, so the regular expression for type 3 is (-2)+(-l)*0+ | (-2)+(-
l)+0*.

Type 4:

The type 4waveform has amore complicated valley-like shape. There is abump at the bottom of the
valley. The expression is

(-2)*(-l)+0*(-2)+(-l)*0*l*2*l*0*(-l)*(-2)*0*l*2+l*0*.

First-pass classificationresult

Table 8.1 summarizes the classification result based on the system described above.
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Type

Correct

Miss

Normal

1180

2

1 &2

221

0

4

2

0

Table 8.1. Waveform category distribution, first-pass
result.

unknown

3

Let us examine this table. There are 3 "unknown" signals that could not be classified as any of the

predetermined types. Many normal waveforms may have small spikes; proper smoothing and

quantizingprevents them firom showingup in the encoding. The two misclassifications for the normal

begin with a "1" followed by "2s" instead of beginning with a "2". The type3 misclassification has a

small negative spike. Lastly, the system basically cannot distinguish if there is a positive or negative

spike to the normal template, although it is able to detect a significant slope change in the otherwise

monotonically increasing waveform. Figure 8.7 can explain this ambiguity. Depending on how we

interpret the different curve regions, we might come up with a positive or a negative spike for the

same curve.

normal legativf
spike

normal
normal.

Figure 8.7. Two possible interpretations of the shape of
the same curve.

Spike Evaluator

One apparent way to resolve this structural ambiguity is to add quantitative measuring ability to the

classifier, in order to find out the sign and magnitude of the spikes. Similar schemes have been

implemented for ECG waveform analysis. For example, for more accurate ECG waveform
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classification, Koski, et al. [3] compute the amplitude and duration of candidate P wave and T wave.

Basedon these numerical attributes, the wavein questionis designated as a noisywaves, a P wave or a

T wave. Here, a spike evaluator is proposed to measure the magnitude and sign of spikes (Figure 8.8).

We first take the smoothed signal, centered, and standardized by its standard deviation, and we then

subtract a reference signal. On the residual plot, the maximum peak value represents the value of the

spike. In our study, we put a threshold of 0.3, which means thatif the spike is less than 0.3 times the

standard deviation of the signal, we consider the process to be normal. Using this criterion, 60

examples of type 1,and29of type 2 are classified as faulty. Theimproved results are shown in Table

8.2. Notice that a small spike added to a signal is a very common phenomenon. It should not be a

surprise that outof the ten type 3 signals, one has a small spike. If we construct a spike evaluator for

fault type 3, the one classifying error due to the small negative spike added to the signal would be

corrected as well.

spike

reference

spike

residuals

Figure 8.8. The way to measure the spike magnitude in
the classifier.
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Type Normal 1 2 3 4 unknown

Correct 1312 60 29 9 2 3

Miss 2 0 0 1 0 —

Table 8.2. Improved waveform classification with the
spike evaluator.

8.3 Analysis of the **High Speed" Data

High speed data is acquired during the plasma ignition stage, before anyetching occurs. This stage is

the transition between the pre-etch and the main etch. The sample rate is 100 samples per second,

instead of one or two samples per second, as was the case when monitoring during the entire etching

period. The high sampling rate is needed to capture the detail of the transition waveform, and this is

where the term 'high speed" comes from.

Our assumption about the "high speed" waveform is that eachwaveform corresponds to an operating

condition. The goal of the analysis is to describe the shape of a waveform and thus determine its

operating condition. There are two designed parameters for the operating conditions, namely, "tune"

and 'load." They can be assigned to different experimental levels, such as "high," "medium-high,"

"baseline," "medium-low," and "low."

Let us examine some waveforms. Figure 8.9 shows two baseline waveforms and two medium-lowtune

and load waveforms. For the baseline vaveforms, the region between the first and second spikes

might be somewhat different; otherwise, the two wave-forms will have very similar structures. For the

medium low tune and load waveforms, the region after the big positive peak can be quite different.

Also, we can infer from inspection that the negative peak can be sometimes narrower (as in the first

waveform) and sometimes wider (as in the second waveform). A human brain can effortlessly analyze

the waveforms and come up the above observations. We will build our automated analysis system with

these observations in mind.
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Figure 8.9. Twotypes of TCPlineimpedance waveforms
for two different operation conditions.

Syntactic analysis is partly science and partly art. For accurate classitication, the importance of
engineering judgment cannot be overemphasized. This means that the rules encoded in the system are
going to be highly specific to the nature ofthe data. The "high speed" data waveforms are much more
complicated than the main-etch waveforms we analyzed previously, so we cannot use the analytic
scheme for the main-etch waveforms. Using line segments as the primitive elements would make the
classifier extremely complicated. Also, using slope attributes alone would not adequately describe the
"high speed" waveforms.

Horowitz proposes asyntactic algorithm for detecting peaks in EGG signals [6\. Belforte uses apeak-
coding table look-up method to analyze EGG signals [7]. After taking the first derivative on the raw
EGG data, the waveform is parsed into peaks. Based on the amplitude and duration ofapeak, aletter
code is assigned to it. Trahanias and Skordalakis suggest using peak and segment as two types of
primitives, and one can build ahierarchy for awaveform from the primitives in abottom-up fashion
[8] [9]. However, the use ofa peak as aprimitive can be troublesome. Notice that if apositive peak is
followed by anegative peak, the two peaks will share acommon arm in the middle. That is, a lower-
level element is being shared by two higher-level elements; this will complicate the syntactic stmcture
description. Also, it may be difficult to define the duration and amplitude ofapeak ifthe left and right
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arms of a peak are uneven. Nevertheless, we believe that the recognition of complicated vraveforms

can bedone in a fairly straightforward vray, as discussed next.

A new scheme is proposed for recognixing "high speed" waveforms. Three types of primitives are
used: UP (monotonically increasing), FLAT (approximately constant), and DOWN (monotonically

decreasing). Each primitive consists of small straight line segments. For our data, the line segments

with slope between -0.1 and 0.1 unit per data point are considered FLAT; less than -0.1, DOWN;

greater than0.1, UP.See Figure 8.10 for drawing of theprimitives.

FIAT

\
\down

\
\

Figure 8.10. Illustration of three types of primitives.

Then we perform the nosy segment processing techniques in Chapter 7 on the waveform. Since the

waveforms are much more complicated, and we do not have distinct names such as stable etches,

endpoint transitions for the primitives. We decide to encode the waveformdifferently.

Three attributes are used to describeeach primitive, in the form of {S, D, A}, where,

S is the slope code, which can be -1 (DOWN), 0 (FLAT), and 1 (UP);

D is the duration code which can be 0, 1, and 2, in order of length. If duration of a primitive is less

than 10, D=0; between 10 and 30, D=l; greater than 30, D=2;
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A is the amplitude codewhich can be 0,1, and 2, in order of magnitude. If amplitude of a primitive is

less than 0.4,A=0; between 0.4 and 2, D=l; greater than 2, D=2.

The criteria for quantization can be assigned based on the process engineer's experience with the

signal. One should try to make the number of primitives corresponding to each quantized value

roughly the same.This willmake the task of buildingthe classifier easier. Consider the case where we

use a very strict criterion on the FLAT primitive, in which case only line segments with slope very

close to zero will be assigned slopecode of 0. Then the number of FLAT primitives will be verysmall,

and it simply defeats the purpose of havinga FLAT attribute; since the FLAT attributewere to be left

largely unused,we mightas well just two attributes, UP and DOWN.

^00 6oa eoo looo isoo

(-1,0,2)

(0,2,0)
(1,1,0)

Figure 8.11. An encoding example. This is the low-tune
and highrload waveform.

For the above low-tune and high-load waveform, the list of the numerical values for the primitives is

(0,412,0.02) (-1,1,2.99) (1,23,0.35) (0,763,0.01), which can becoded as,

(0,2,0) (-1,0,2) (1,1,0) (0,2,0).

The syntactic rules have to be created to take into account the error tolerances used inextracting the

primitives. In training the classifier, one should becareful with primitives close to the boundary value.

If there is a reason to believe that the corresponding primitive of the subsequent waveform may take
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on either of the two encoding values which share a common boundary, we should use the logical OR

("I") operator on the two values, so thatbothvalues will be accepted.

Consider the third primitive of the above waveform. Its amplitude is 0.35, which is fairly close to the

boundary value of 0.4. We should make the classifier accept both 0 and 1 for the amplitude attribute.

The classifier for the waveform can be,

(0,2,0)(-l,0,2)(l,l,0|l)(0,2,0).

Indeed, engineering intuition is of great help in building the back to the observation on the LHext

waveform. The basic idea is to write the regular expression based on the common region. Anything

attached to the common region willbe acceptable.

{Common} {Anything}

Anything = -2 | -1 | 0 | 1 | 2 | , | (| )

A

«

1
1

\: LHmed
i:

- -

: commjim: commojT

Figure 8.12. Highlight the common region in two
waveforms collected at the same operating conditions.

In this case, the common region is a big FLAT segment followed by a negative peak and a positive

peak. Notice that the top portion of the negative peak might be relatively flat. Therefore, after
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segmentation, a small FLAT primitive coiresponding to the top of the negative peak might exist. With

this in mind,the common region canbe coded as follows:

top_flat = (0,011,0)

common= (0,2,0)(-l,0,2){top_flat}?(l,2,2)(-l,0,l)(l,0| 1,0| 1)(-1,2,2)

PleaseseeAppendix A for the flex code of the classifier.

Figure 8.13 shows the basic schematic of the LAM 9400 plasma etcher, which is a transformer-
coupled plasma (TCP) system. The inductive planar coils at the top of the chamber are wound from
near the center to the outer radius ofthe chamber. Plasma is created by applying RF power to the
inductive coil. Another RF power source is applied to the substrate for ion-bombardment of the

wafer. There is one matching network for each RF source. The upper one is a capacitive network,
consisting oftwo variable capacitors, the tune vane capacitor and the load capacitor. The lower one is
aL-type network; the variable circuit elements are the tune vane capacitor and the load coil (see Figure
8.14). Amatching network tries to match the impedance it"sees," as to maximize the power transfer
firom the RF source to the plasma. During the matching operation, we can acquire alist of signals
from each network. Some useful signals for fault detection and diagnosis are listed in Table 8.3. For
this work, we analyze TCP line impedance waveforms for classifying machine operating condition. For
this classification purpose, itis sufficient to analyze just one signal. Multiple-signal analysis is still under
investigation.
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TCP planar coil

matching
network

vacuum

pump

matching
network

network

Figure 8.13. a) Top view of the inductive planar coil, b)
The side-view illustration of a TCP system.[24]



Position Description

Upper
Matching
Network

TCP Tune Vane Capacitor
Command

Value for the tune vane capacitor to match

TCP Load Capacitor
Command

Value for the load capacitor to match

TCP Phase Control Control signal ofphase error between the
current and voltage at the top coil

TCP Tune Vane Capacitor
Position

Position ofthe time vane capacitor ofthe
upper matching network for the top coil

TCP Load Capacitor
Position

Position ofthe load capacitor ofthe upper
matching network for the top coil

TCP Line Impedance Apparent input impedance of the upper
matching network

Lower

Matching
Network

RP Tune Vane Capacitor
Control

Control signal for the tune vane capacitor
ofthe lower matching network

RF load coil Control Control signal for the load coil of the lower
matching network

RF Tune Vane Capacitor
Position

Po.sition of the tune vnnc capacitor of the
lower matching network

RF T.oad Coil

Position

Po.sition of the load coil ofthe lower match
ing network

RF power

RF Line Impedance

RF voltage

Power rran.sferring to the siihstrare

Apparent input impedance ol' the lower-
matching network

Substrate bias with respect to ground

sourc

Table 8.3. Real-Time Signals Collected for the Lam TCP
9400.

load cap

vane cap

sourc

(a) (b)

Figure 8.14. a) A capacitive matching network, b) An L-
type matching network.
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The two designed parameters for the operating conditions, "tune" and *1oad," are the pre-specified
values for the two variable capacitors of the upper matching network to follow. They each can have

one of the experimental designed levels of "high," "medium high," "baseline," "medium low," and

"low."

Each parameter is ona standardized scale, shown inFigure 8.15. "H"and "L" stand for high and low,

respectively; "ext" and "med" stand for extreme and medium respectively. "HLext" means that the

operating condition of extremely high tune and extremely low load. There are nine operating

conditions: Baseline, HHext, LLext, HLext, LHext, HHmed, LLmed, HLmed, LHmed.

(U

>

•n

B

2

A 32000

19000

16000

13000

0-

-Hext

Hmed

baseline

Lmed

l.exl

A

J£l

<L>

• •wt

T/i

Figure 8.15. The designed-level description of the
parameters tune and load.

The results are summarized in Table 8.4. The bold italicwafer numbers signify the misclassified cases.

The baseline miss has to do with the fact that a routine spike is significandy weaker in the other
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signals, so thatthesecond andthird peaks of theline impedance signal disappear, theLLmed miss has

to do Txith a high spike occurring in the common region, so that the recognizable pattern is greatly

"damaged." Notice that if the high spike occurs far away from the common region (first waveform of

Figure 8.16), the common region will notbe altered, and thus classifying error will notoccur.

LLmed

comm

tiocj

-(a)

i 1

^^^pike
1

11

^ — -
. commo

(b)

Figure 8.16. The high-spike effect onthe waveforms, (a)
The spike occurs far away from the common region, (b)
The spike occurs right at the common region.

Finally, for the LHmed wafers, i^26 and #28 waveforms are similar to LLmed ones (see Figure 8.12
and Figure 8.16). #27 waveform is similar to LHext ones (Figure 8.11). This means that #27
waveform is totally different from those of #26 and #28. As amatter of fact, the similarity that
confused the classifying task is so great that even a human expert will not be able to make a
distinction. This implies that probably any pattern recognition scheme will not tell those confounded
waveforms apart. Therefore, the author will not consider this as a classification error.
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Type Wafer number

Baseline \axi6

HHext 4,5,6

LLext 7,8,9

HLext 10,11,12

LHext 13,14,15

HHmed 17,18,19

LLmed 2f?,2l,22

HLmed 23,24,25

LHmed 26,27,28

Comment

missing vSpike

extra spike

confused, with LHx, LLm.

Table 8.4. Result summary. The italic wafer numbers
signify misclassification.
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Chapter 9

LOW FREQUENCY ANALYSIS FOR PLASMA ETCH DIAGNOSIS

9.1 Inttoduction

In previous chapters we discussed the use of three different sources of signals for plasma etch
diagnostics. In this chapter we address the use oflow frequency signals. For low frequency analysis, we
increase the sampling rate from 1~2 Hz to 10 kHz, in order to acquire machine signals coming out of
the etching chamber, such as power, pressure, impedance, load and tune capacitor position, etc. The
National Instrument A/D converter is, with maximum sampling rate of 300 kHz. The low frequency
pattems thatwe observe may come from different sources.

1) The machine consists of many sub-parts that are to operate at different frequencies. Many
mechanical and electtical parts operate at low frequencies in the range of a few hundred Hz up to a
few KHz.

2) Harmonics of high frequency, such as the ones generated by the RF sources and optical emission,
mix with each other and generate low frequency products.

3) Lieberman, et al found out that under certain settings of chamber pressure and power, plasma
discharges of SFg and Ar/SF^ exhibit oscillating behavior in charged partide density, electron
temperatureand plasmapotential.

4) Praburam and Goree [21] observed that when the plasma chamber under operation is dusty, there is
avoid ofionization wave moving back and forth in the chamber at frequency oforders of10 Hz.

9.2 Literature survey

The literature provides some evidence that plasma absorbs energy of signals at relatively low
frequencies, and can be treated as afilter for low frequency signals. Bongdira etc. [20] and Henion etc.
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[19] did some iron nitriding experiments. They varied the frequenqr of the input pulse to the plasma
chamber, from 0 Hz to 1 KHz, and the parameters of the resulting nitriding samples were

considerably different ^able 9.1). Also, Lebeau [18] measured ion cyclotron resonance heating

(ICRH) power absorption in a plasma subjected to different modulation frequencies (50~300 Hz).

The power absorption increased with frequency (Figure 9.1). Thus, from these experiments, we see

that the plasma chamber can absorb power from low frequency signals effectively and selectively for

different frequencies. We can reasonably expect that if we change the composition of the plasma by

altering the chamber settings, the filtering properties will change accordingly. This change of filtering

properties has been confirmedin the preliminary work.

Parameter Frequency (Hz)

SO lOO ISO 200 250 300 SOO

Viclcers hardness
(HV 1)
y'( 111) diffraction
peak intensity (a.u.)
y'(200) diffraction
peak intensity (a.u.>

SOO

92

52

730

lOO

77

375

18

12

2(S5

Id

9

330

19

1 1

330

19

1 1

2<SO

7

S

Table 9.1. Metalluipcal parameters of a nitriding sample as a function of
plasma frequency [20].

0.8 -

1.0 100

n/2ir (Hz)
1000

Figure 9.1. Fraction of the RF power confined with a confinement time
longer than the modulation period [18].
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Therefore, byperforming frequency transformation on theoutput signals of low frequency, weshould

be able to monitor the chamber and \^fer states. Designed experiments can be used to identify the

spectral features that behave consistently from wafer to wafer, and ignore those that behave

inconsistendy.

There are many other examples where spectral analysis has exploited low-frequency resonance of

various systems:

Scholtz etc. [11] used low frequency noise to characterixe semiconductor devices. They plotted noise
vs. temperature at different low frequencies. Jevtic [13] modeled the relationship between low-

frequency noise andimperfection of the device.

Fiitsch etc. [12] used alow-frequency micromechanical resonant vibration sensor for wear monitoring
ofmechanical tools, such as drills and mills (Figure 9.2). Seifert etc. [15] used very low frequency (10-6
Hz to10 Hz) to detect and classify aging phenomena ofcomposite insulating materials.

200

bemcgFACOSOdiMitioul
100 • .

0

>
B

&
5
5 200

t 100

FAG 620Owiihde6Mc

0 10 30 10 'lO 50 do 70 00 OO lUU

FkrtqiaBnQr'Hi
Figure 92. Solid-bome vibration spectrum measured with a piezoelectric
acceleration senor, forthecases of a bearing being without defect and with
defect [12].

To avoid the need for expensive high rating transformers, Hilder etc. [24] and Kruger etc. [16] used
test supplies of0.01 Hz to test cables or circuits, and tried to predict the 50 Hz behavior ofthe system.

The above examples in the literature suggest that we may be able to use empirical low frequency
analysis to perform plasma etch fault detection, equipment and wafer state modeling..
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9.3 Preliminaty experiments

Afew preliminary experiments with the chamber state were conducted to explore the low frequency
behaviors in respond to varying machine parameters, the time drifting phenomenon, and its

relationship with the OES spectrum. The parameters involved are HBr flow rate, chamber pressure,
top and bottom RF power. The center points can be found inTable 6.1 inChapter 6.

Figure 9.3 and 9.4 show the 410 Hz peak from the RF top impedance signal and the RF bottom

impedance signal respectively. The peak from the RF top impedance signal goes down with increasing

toppower, whereas theonefrom thebottom signal goes down with increasing bottom power. Also, to

study thetime effect on thepeaks, two time slots were scheduled about 20days apart, before andafter

Christmas 1999. The peaks drift down for both top andbottomcases.

Intensity of the 410 Hz peak from

.y.

-r

•7

the RF top impedance signal
• o

P^jsTC-hiiatmas «•»

HfH

A

:>nn ann .nn

RF Lup puwL'i (W)

Figure 9.3. Vaiying RF top power -10% to +10%.
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Figure 9.4. Varying RF bottom power-10%to +10%.

When varying the HBr setting, bandwidth transition of harmonics can be observed on the spectrum;
the drifting behavior due to time of the bandwidth transition can be seen as well, as shown in Figure
9.5, 9.6 for the December 2000, and January 2001 experiments, respectively. Notice, the plot label
specxxx.yy, where xxx is the wafer run number, yy is the signal number. "10" is the load capacitor
position signal, and 13 is the tune capacitor position signal. Wafer numbers 183, 185, 187, 189, 191,
193, and 195, correspond to HBr setting of 135,140,145,150,155, 160,165 seem, respectively. An
even wafer number was set at the same HBr flow rate of the odd wafer number immediately before it.
Forinstance, for wafer 184, the HBr setting is 135 seem, which is the same as for wafer 183. Notice

that the center point plot is not shown in order to conserve space. It looks similar to the one with the
lower settings. For the experiment before Christmas, the bandwidth transition point occurs between
160 and 165 seem. After Christmas, the transition occurs right after the center point.
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Figure 9.S. Frequency plot of the signal for tune capacitance position, pre-
Christmas HBr-10% to+10%.
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Figure 9.6. Frequency plot of the signal for tune capacitance position, post-
Christmas HBr-10% to+10%.
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Figure 9.7 shows an OES plot with var5dng HBr setting. The OES data was acquired from the etching

system simultaneously in addition to the low frequency data. There are seven settings and the wafer

group si2e for each one is three. The OES signal intensity appears tobe inlinear relationship with the

varying P®r setting, and does not seem to have an relationship with the low frequency harmonics

bandwidth. Another experiment was performed by varying chamber pressure, with nine set points and
utilizing two wafers (Figure 9.8). We can see inFigure 9.9 that the OES intensity stays constant for the

first three setting points, then a transition point follows, and the OES intensity starts to decrease
linearly with increasing chamber pressure. This transition point coincides with the low frequency
bandwidth transition point.

lambda = 409.9 nm

8-

«) 8
5 ^

10

wafer number

Figure 9.7. An OES peak intensity plot for varying HBr 125 to 175 ccms.
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Figure 9.8. Frequency plots of the signal for tune capacitance position,
varying pressure 10 to 14 mtorr.
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Figure 9.9. An OES peak intensity plot for varying pressure 10 to 14 mtorr.
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Additional experiments can be performed in a manufacturing environment. An examination of the

low frequency spectrum can bemade before andafter a preventive maintenance procedure, andbefore

andafter thereplacement of theRFgenerator. In this way, wecan determine if lowfrequency analysis

provide diagnostic information for maintenance purpose.

On the RF power signal spectrum, it is found that some peaks gradually shift their frequency from

wafer to wafer. As shown Figure 9.10, peak 1 stays very much on the same frequency. Peak 2 shifts

gradually to the right. Peak 3 and 4 are initially close together, and then gradually drift apart. The
physical explanation of the frequency shift is subject to future investigation. Some researchers also

came across similar phenomena. Brodskii etc. [22] observed the same dynamic behavior (Figure 9.11),

but could not explain it. Itmight have to do with the transient behavior ofthe chamber during the first
few minutes after the plasma ignition (Figure 9.12), as observed by Roth etc. [23]. These works were
not able to explain the transient effect, although they eliminated a few causes. These are some

phenomena which make plasma diagnosis challenging.
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Figure 9.10. Illustration ofthe frequency shift.

•-.yyJwjVKVvy

f/70 rao

J', kHz

1000

1000

wafer 3

2000 3000

trequencv (Hz)

wafer 4

2000 3000

Ouuueiicy (Hz)

Figure 9.11. Spectral dynamics of the ohmic-heating signal: a) ^150 ms; b)
250; c) 300; d) 400; e) 500; f) 700; g) 850; h) 950 ms [22].
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Figure 9.12. Transient values of the plasma impedance after plasna
ignition. The plot isshowing the impedance ofetching a single wafer.

9.4 Proposed technique for analyzing theLFspectra

The analyzing scheme will be similar to the previous diagnostic examples. Figure 9.13 shows an overall
design ofthe system. After turning the raw data into a smooth spectrum by wavelet transform, we
build abaseline curve and peak primitives from it. We then encode the primitives. Finally, attribute
grammar is used to determine the fault category ofthe raw input.
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Figure 9.13. A schematic of the diagnostic system for low frequency
analysis.

fault

category

The peiiodogram of a noisy signal is typically very noisy; and the variance of the pedodogram at a

particular frequency may be as large as the power of the frequency component itself. Also, this

variance does not decrease with increase of data sample size [9]. Gao's spectral wavelet denoising

technique [10] may be used to smooth the periodogram. This techniqueis computationally efficient; it

can estimate a nonsmooth spectrum at a near-optimal rate. This method preserves the sharpness of

the peaks, while making a smooth estimate on the baseline.

There are two categories ofwavelet functions:father•wsivdet (|) (t),which is used to describe the smooth

and low-frequencyparts of the signal f(t); mother wavelet\|/ (t), which is used to capture the detailed

and high-frequency parts of the signal f(t). There are many wavelet functions to choose from. The

wavelet pair we chose for smoothing the spectrum is called "S8". With scaling index j, and translation

index k, they will appear as the following.

(j) (2Pt - k) and

Vi*(t)=2 '̂=V(2^t-k).
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When we try to describe the details of the signal, we usually want to have multi-resolution, i,e., more

thanonewavelet level number forcomputing thecoefficients of themother wavelets.

^ Uk = \v J.tit) f {t)dt , j = \,1 J

where j is the wavelet level number, the smaller numbers indicate the coefficients for the finer details

ofthe signal. Notice theJ is the maximum wavelet level number, which is auser defined parameter.

When computing the smooth partof the signal, onelevel of the father wavelet is needed

^J,k —j0y,A(O/(O^^

The denoising procedure is illustrated in Figure 9.14 and outlined below. Notice that inthe illustration

we setthe maximum wavelet level numberJ to 6.

1) Perform Fast Founer Transform (FFT) on the raw signal to obtain the log-periodogram.

2) Apply aDiscrete Wavelet Transform (DWI) with multiple levels to the log-periodogri

3) Apply aspecial threshold rule to the mother wavelet coefficients, according the formula:

Xj=max(7C Gog,(n)/3)-^, log,(2n)2<^^> '̂*)

am.

where jis the wavelet level number, n is the length of the raw data. Any wavelet coefficient smaller
than the threshold is shrunk to zero.

4) Apply the Inverse Discrete Wavelet Transform (IDWI) to the remaining coefficients to get the
smoothlog-periodogram.
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Figure9.14. Illustration of Gao's spectralwaveletdenoising method[32.].

After obtaining a dean spectrum, structural analysis may be performed. Syntactic analysis with

attribute grammar [7,8] will be utilized. Two types of primitives, baseline curveand peak,will be used

(Figure 9.15). A peak is a sharp spike. The baseline consists of rdatively flat and smooth curves with

peaks among them. The baseline curve and peak consist of lower-levd primitives, the Une segments,

which can be obtained by a piecewise linear approximation technique on the log-periodogram, as

presented in Chapter 7. Based on their repeatable behavior, peaks will be sdected for various

diagnostic purposes. For both baseline curves and peaks, we willmonitor the numerical attributes of

amplitude, bandwidth, and power (areaunder the curve).
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Figure 9.15. Demonstration ofbaseline curves and peaks.

For abaseline curve, we encode it as: (BC, s^J>e code, length code), where BC stands for "baseline curve;"
slope code can be up {\),Jlat (0), and down (-1); length code can be short (0), medium (1), and bng (2). For a
peak, we encode it as: amptitude code, bandwidth code), where Pstands for "peak;" amplitude code can be
small (0), medium (1), and large (2); bandwidth code can be narrow (0), medium (1), and wide (2).

The following illustrates the encoding of two hypothetical examples of two peaks with abaseline in
between.
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(P,2,0)(BC,0,0)(P,2,0) (P,2,0)(BC,0,0)(P,1.2)

Figure 9.16. On the left: the encoding for a large narrow peak, a flat and
short baseline curve, and another large narrow peak. On the right the
encoding for a large narrow peak, a flat and short baseline curve, followed
by a wide peak with medium amplitude.

Qualitatively, we will use regular expressions (see Chapter 8 for a discussion on them) to classify the

spectrum. For instance, (P, 2, 0) (BC,0, 0)?(P, 2, 01112) describes two large peaks with or without a

baselinecurve in-between; the bandwidth of the laterpeak can be arbitrary. This expression will accept

the example on the left in Figure 9.16, and reject the one on the right.

Quantitative attributes will be used systematically to classify the spectra in finer detail. Table 9.2

illustrates the use of attribute grammar. The left columnis the qualitative systematic descriptionof the

spectrum. The right column specifies the calculation and manipulation ofvarious quantitative attribute

of the spectrum. In order to convert the prototype of the rules into executable code,a parsergenerator

such 2i%yacc or bison willbe needed.
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Syntax Rules Attribute Rules
Spe=<LF_spexHF_spe>

LF_spe=(BC,-l,2)(P,l,l|2)... *LF_spe.BC_power=smn(BCj.power)
*If (LF_spe.BC_power>threshold)
alarm("cleaimess")1

HF_spe=(P,0|l,0)(BC,l,l)(P,0,l)... *If (Pj.BW>threshold) alarm("gas")

Table9.2.An illustration of attribute grammar.
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Chapter 10

CONCLUSION AND FINAL REMARKS

10.1Work Summaty

We have set up a plasma diagnostic system with three sources of signals, OES, RF, and machine

signals. CFj OESlines 275 nmand321 nmare found to be better than any othersignals forpoly-etch

endpoint detection. In addition, excellent statistical models for wafer stateprediction are obtained by

linear stepwise regression on all available signals. A data exploration system, based on syntactical

analysis, is developed for effidendy browsing of the data archive, allowing users unprecedented

flexibility in examining the data both qualitatively and quantitatively. Two case studies of syntactic

analysis for diagnostics are presented. Finally, the use of low frequency signals for plasma diagnostics

in investigated. The syntacticmethod for analyzing the signals is proposed.

10.2 Remarks on Syntactic Analysis

The most promising technique proposed in this thesis is syntactic analysis. The syntactic method is

shown to be robust and accurate for fault detection and diagnosis in plasma etching. For the successful

operation of this system, the expertise of the process engineer plays a key role. The system

complements the process engineer's expertise in interpreting the etching signals, therefore, parameters

of the system must be trained to suit the engineer'sneeds.

At a glance, syntactic analysis is quite similar to the encoding and decoding techniques in digital signal

processing (DSP). In DSP, the engineer first defines a number of logical values, and assigns a voltage

or frequency level for each logicalvalue. The data is presented with a stream of logicalvalues, encoded

into physicalsignallevels (voltage or frequency), and transmitted over noisy channels.The receiverwill

try to ignore the noise in the received signal, and try to match it to a predefined logical value. In

syntactic analysis, we define a number of fault categories based on our experience. For diagnosing a

plasma etching signal, we would ignore effects such as machine aging, preventive maintenance,
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chamber memory, small spikes, andso on, and try to match the signal to a predefined fault category.

The similarities between syntactic analysis andDSP are highlighted in Figure 10.1.

Digital Signal Processing

logical
value

encoder
noisy

channel decoder

Syntactic Analysis

determined
signal
value

fault - encoder

noisy
machine classifier classified

behavior fault

Figure 10.1. Comparison of the overall architectures of DSP and syntactic
systems.

The syntactic techniques for solving the classification problems in this thesis may appear ad hoc. The
reader might wonder ifthere is any general syntactic method for all the pattems, using the same set of
primitives, such that one can develop a syntactic system systematically. While some general schemes
(such as You and Fu's) have been proposed, in our experience, this is not desirable, since they might
lead to overly complicated grammars, and thus induce higher diagnostic error rates.

In the literature, uses of syntactic analysis to recognize objects tend to be pattern dependent. Many
researcher use context-free grammar. For adifferent pattern, adifferent set ofsegmentation primitives
must be used; a different grammar must be specified; also, different attribute information, such as

segment length, time duration, and amplitude, may need to be considered (this is done usually by using
attributed grammar, described briefly in 6.3). Similarly, for the plasma main etch signal pattern, line
segments are used as the segmentation primitives; a regular grammar (a subset of context-firee

grammar) is specified, and thespike magnitude is theattribute considered.

You and Fu [22] propose ageneral 2-D shape recognition method, in which curve segments are used
as primitives. Each curve has four attributes: direction, length, total angle change, and the degree of
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symmetiy. Also, the angle between two adjacent curve segments is considered. While this method can

describe a 2-D pattern in detail, it may complicate the task ofclassifying plasma ignition waveforms.
Obviously, in You and Fu's scheme, if curve segments are used as primitives, the grammar for

classification will be extremely complicated. However, if we use monotonic segments (UP, FLAT,

DOWN) as the primitives, with the qualitative attribute of amplitude and duration, the classifier's

grammarwillbe verysimple.

10.3 Future Directions

In order to fiilly test thevalue of thediagnostic system, there isno substitute forincorporating it intoa

manufacturing environment from our research environment. Since the diagnostic system is non-

intrusive, the set-up disturbance to manufacturing willbe minimal.

In Chapter 5, we have discussed the use of two OES signals for endpoints detection. The long-term

robustness stillneeds to be testedin a manufacturing environment. Also,we need to develop rigorous

syntactic diagnostic models for both equipment and wafer states, making them applicable to one

maintenance cycleor longer.

Since the real-time-data waveforms of plasma etch drift constantly due to machine aging, the

waveform is significantly different between the beginning and the end of a maintenance cycle. Since

the real-time etch waveform reflects the actual etching behavior of the machine, it would be very

helpfial if we can capture the amount of drift of a plasmaetch signal, such that preventive maintenance

can be scheduled according to how much the shape of the waveform has changed. Attributed

grammarcan be used to achieve this.There are two parts to attributegrammar: the qualitative part and

the quantitative part. The qualitative part focuses on the rough structural description of the waveform.

Looselyspeaking, it is the grand human impression on the signal, whichwe mainly use throughout this

thesis for classification purpose. The quantitative part is the numericalmeasurement of the wave-form

attributes, for instance, the amplitude and durationof a peak,the distance betweenpeaks, etc.

Lastly,we should incorporate low frequency signals into the diagnostic system,in addition to the other

three existing sources of signals. The author believes that the low frequency signals can provide
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valuable diagnostic information about specific parts of the machine, in addition to plasma stability,

equipment state and wafer state.
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Appendix A

The Classifer for the High Speed Data

/♦encoding.c*/

#include <stdio.h>

ftinclude <string.h>

int GetDurCodednt dur) {

if (dur <10)

return 0;

else if(dur >= 10 && dur <=30)

return l;

else if(dur > 30)

return 2;

printf("Error, wrong duration sign %d\n", dur);

exit(1);

}

int GetAmpCode(float amp)(

if (amp <0.4)

return 0;

else if(amp >= 0.4 && amp <=2)

return 1;

else if(amp > 2)

return 2;

printf("Error, wrong amp sign %d\n", amp);

exit(1);

}

main(){

int idx, dur, slopecode, durcode, ampcode,-

float amp;

PILE *inf, *outf;

inf=fopen("forhist.dat.txt", "r") ;

outf=fopen ("code, list", "w") ,-

while(fscanf(inf, "%d%d %f %d",&idx, &dur, &amp, tslopecode)!=EOF){

if(idx==l) fprintf(outf, "\n");

fprintf(outf, "(%d,%d,%d)",slopecode,

GetDurCode(dur),GetAmpCode(amp));

}
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fprintf(outf,"\n");

}

/♦classfier.1*/

/*needthisforthecalltoatofObelow*/

#include<math.h>

char*fileName;

SYM"("I")"I","I01112I"-1"
DIGIT(0-9]

ID[a-z][a-20-9]*

ONEORTWOl|2

AI"("0,2,0")("1,0,2")("-1,0,2")("1,0,1")("-1,1,2")("0,1,0")"

All{SYM}

AIII"("1,0,(l|2)")("-1,(0|l),(l|2)")("0,(l|2),0")"
AIV"("1,(0|1),(0|l)")("-1,{0|l),(0|1)")("0,2,0")"
BI"("0,2,0")("-1,0,1")("1,2,2")("0,1,0")("-1,1,2")("1,1,2")("-1,1,2")"
BII"("1,0,1")("-1,0,1")("1,1,1")("-1,(0|1),(0|1)")"
BIIIl"("0,0,0")("1,(0|l),0")("0,2,(0|l)")"

BIII2"("0,1,0")("-1,0,0")("0,2,0")"

Bill(BIIIl)|{BIII2}

Cop_pos_spike"("1,0,1")("-1,1,1")"

Cop_flat"("0,(o|l),0")"

Cop_down"("-1,(011),(011)")"

Ccommon"("-1,2,2")"{Cop_flat}?"("1,2,2")("0,1,0")("-
1,1,2")"{Cop_pos_spike}?"("1,1,2")("-1,(0|l),2")"
D"("0,2,0")("-1,0,2")("1,1,0")("0,2,(011)")"

Fcommon"("1,1,2")(»-l,O,2")("1,1,2")("-1,0,1")("l,O,2")("-l,l,2")"
Hcommon"("0,2,0")("-1,0,2")"{Cop_flat}?"("1,2,2")("-
1,0,1")("1,(0|l),(0|l)")"{Cop_flat}?"("-1,2,2")"
Icommon"("0,2,0")("1,0,2")("-1,1,2")("0,2,(0|l)")"
%%

{AI}(All){AIII}{AIV}${
printf("TypeAmatched:%s%s\n",yytext,

fileName);

}
{BI}{BII}{BIII}${

printf("TypeBmatched:%s%s\n",yytext,
fileName);

}
{SYM}*{Ccommon}{SYM}*${

136



printf( "Type C matched: %s %s\n", yytext,

fileName);

}
SYM}*{Fcommon}{SYM}*$ {

printf( "Type F matched: %s %s\n", yytext,

fileName);

}
{Hcommon}{SYM}*$ {

printf( "Type H matched: %s %s\n", yytext,

fileName);

}
{icommon}{syM}*$ {

printf( "Type I matched: %s %s\n", yytext,

fileName);

}

{D}$ {
printf( "Type D matched: %s %s\n", yytext,

fileName);

}
%%

main( argc, argv )

int argc;

char **argv;

{
++argv, --argc; /*("-2") + ("-1")*0*$ { skip over program name */

if ( argc > 0 ){

yyin = fopen( argv[0], "r" );

fileNamesargv[0];

}
else(

fileName="Standard input";

yyin = stdin;

}
yylex();
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