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Abstract. In this paper, we consider the so-cEdled Generalized Principal Component
Analysis (GPCA) problem, i.e. the problem of identifying n Unear subspaces of a
/^-dimensional linear space from a collection of sample points drawn from these
subspaces. We cast the GPCA problem in an algebraic geometric framework and
show that it is essentially equivalent to a factorization problem in the space of
homogeneous polynomials of degree n'm K variables. We prove that such a problem
has a unique solution which can be obtained from the roots of a poljmomial of
degree n in one variable and from the solution of K —2 linear systems in n variables.
Therefore, the GPCA problem has a closed form solution when n < 4. Furthermore,
we show that the number of subspaces n cem also be obtained from the rank of
a certain matrix that depends on the data. The theory of GPCA presented in
this paper can be applied to a variety of estimation problems in which the data
comes simultaneously from multiple (approximately) linear models. In this paper
we apply GPCA to the estimation of a mixture of probabilistic models without any
knowledge about the distribution of the data. Wealsoapply GPCA to the multibody
structure from motion problem in computer vision, i.e. the problem of estimating
the 3D motion of multiple moving objects from 2D imagery. Applications to image
grouping, handwritten digit recognition, texture segmentation and face recognition
are forthcoming.
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1. Introduction

Principal Component Analysis (PGA) refers to the problem of identi
fying a linear subspace S C of unknown dimension k < K from N
sample points ^ S, j = 1,..., AT. This problem shows up in a variety
of applications in many fields, e.g., face and object recognition [5], hand
written digit recognition,dynamic textures [4], etc., just to mention a
few. In spite of its enormous applicability, PCA can be solved in a
remarkably simple way from the singular value decomposition (SVD)
of the data matrix [a;^ •••x^] €

A natural generalization of PCA is to consider a mixture of principal
components, in which the sample points {x^ GR^}f=i are drawn from
n > 1 linear subspaces of E^, as illustrated in Figure 1 for
n=3 and K = 3. In this case, the problem becomes that of identifying
each subspace without knowing which sample points belong to which
subspace^. It is natural to ask if this problem can be solved with some
generalization of the SVD. It turns out that even though SVD has
a multi-linear counterpart, the so-called higher order singular value
decomposition (HOSVD) [2], such a generalization is not unique. Fur
thermore, while the SVD of a matrix A = C/SV^ produces a diagonal
matrix S, the HOSVD of a tensor A produces a tensor S which is hardly
diagonal. Thus, it is not possible to apply HOSVD to the mixture of
PCAs problem.

A traditional approach to mixtures of principal components, usually
referred to as Probabilistic PCA (PPCA), assumes that sample points
are drawn from a certain probability distribution. The parameters of
the distribution are estimated in a Maximum Likelihood or Maximum a

Posteriori framework as follows: one first estimates the likehhood of the

mixture of models given a prior on the grouping of the data, and then
estimates the likelihood of the grouping given the current estimation
of the subspaces. This is usually done in an iterative manner using the
Expectation Maximization (EM) algorithm.

In our opinion, the probabilistic approach to mixtures of principal
components suffers from the following disadvantages:

1. It relies on a probabilistic model for the data, which is restricted
to certain classes of distributions or independence assumptions.

2. The EM algorithm depends on initialization. In fact, to the best of
our knowledge, there is no global initialization irrespective of the
distribution of the data. Furthermore, there is no guarantee that
the EM algorithm will converge to the optimal solution.

^ If the association between points and subspaces is know, then the problem
reduces to standard PCA applied to each subspace.
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3. It is hard to analyze some theoretical questions such as the existence
and uniqueness of a solution to the problem.

4. There axe many cases in which it is very hard to solve the grouping
problem correctly, and yet it is possible to obtain a quite precise
estimate of the subspaces. In those cases, a direct estimation of
the subspaces (without grouping) seems more appropriate than an
estimation based on incorrectly segmented data.

In this paper, we propose a novel approach the so-called Gener
alized Principal Component Analysis (GPCA) problem, which under
mild assumptions guarantees a unique global solution based on simple
linear algebraic techniques. We assume no probabilistic model for the
data. Instead, we cast the GPCA problem in an algebraic geometric
framework and show that it is essentially equivalent to a factorization
problem in the space of homogeneous polynomials of degree n in K
variables. We prove that such a problem has a unique solution which
can be obtained from the roots of a polynomial of degree n in one
variable and from the solution of AT —2 linear systems in n variables.
Therefore, the GPCA problem has a closed form solution when n < 4.
Furthermore, we show that the number of subspaces n can also be
obtained from the rank of a certain matrix that depends on the data.

The theory of GPCA presented in this paper can be applied to a
variety of estimation problems in which the data comes simultaneously
from multiple (approximately) linear models. In this paper we apply
GPCA to the estimation of a mixture of probabilistic models without
any knowledge about the distribution of the data. We also apply GPCA
to the multibody structure from motion problem in computer vision, i.e.
the problem of estimating the 3D motion of multiple moving objects
from 2D imagery. Applications to image grouping, handwritten digit
recognition, texture segmentation and face recognition are forthcoming.

Figure 1. Three (n = 3) 2-dimensional subspaces Si, 82,83 in R^. GPCA tries to
identify all three subspaces from samples {a:} drawn from these subspaces.
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2. Generalized Principal Component Analysis (GPCA)

In this paper, we consider the following generalization of PCA:

PROBLEM 1 (Generalized Principal Component Analysis (GPCA)).
Given a set of sample points {x^ € drawn from n > 1 distinct
linear subspaces {5, C of dimension K —1, i =
identify each subspace Si without knowing which sample points belong to
which subspace. By identifying the subspaces we mean the following:

1. Identify the number of subspaces n;

2. Identify a basis (or a set of principal components) for each subspace
Si (or equivalently S^);

3. Group or segment the N points into the subspace(s) they belong to;

4. Determine the conditions under which 1-3 can be done, and if there
is a unique closed-form solution to the problem.

Each subspace Si is a (AT —l)-dimensional space in that can be
defined in terms of a nonzero normal vector bi G as follows:

Si = {x :bjx = biixi + 6,22:2 + ... + bi^XK = 0}. (1)

Since the subspaces 5, are all distinct from each other, we assume that
the normal vectors are pairwise linearly independent.

Now imagine that we are given a point x 6 R^ lying on one of the
subspaces 5,. Such a point must satisfy the formula:

(bfa;) = 0V(b^x) = 0V•••V{b^x) = 0, (2)

which is equivalent to the following homogeneous polynomial of degree
n in X with real coefficients:

Pn(x) = [\{bix) = 0. (3)

The problem of identifying each subspace Si is then equivalent to
that of solving for the vectors bj's from the nonlinear equation (3).
A standard technique used in algebra to render a nonlinear problem
into a linear one is to find an "embedding" that lifts the problem
into a higher-dimensional space. Let R[xi,..., xk] or simply R(K) be
the ring of all polynomials with real coefficients in K variables. Its
subset of all homogeneous polynomials of degree n can be denoted as
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Rn{K). Therefore the whole ring R{K) is a direct sum of homogeneous
polynomials of different degrees^

R{K) = Ro{K) © © •••© Rn(K) © ••• .

We notice that each Rn{K), can be made into a vector spaoe under
the usual addition and scalar multiplication. Furthermore, Rn(K) is
generated by the set of monomials with 0 < < n,
j = 1,..., jFsT, and ni + n2 H 1- uk = n. It is readily seen that there
are a total of

(n-¥K-V\ (n + K-\\
if-l j =( n ) W

diflFerent monomials, thus the dimension of Rn(K) as a vector space is
M„. Therefore, we can define the following embedding (or lifting) from

into

DEFINITION 1 (Veronese map). Given n and K, the Veronese map
of degree n, Un : is defined as:

i/n- [xi,...,x/<:]^ [...,x^...]^, (5)

where is a monomial of the form x"^xj^ ••• with I chosen in
the degree-lexicographic order.

EXAMPLE 1. //x € the Veronese map of degree n is given by:

'̂n(a:i,X2) = [xJ,x7"^X2,xy~^X2,...,xJ]^ (6)

With the so-defined Veronese map, equation (3) becomes the follow
ing linear expression in a € E^*":

Pn(£c) = t'n(®)^a = uk^T^T ' *' = 0 (7)

where a/ € E represents the coefficient of monomial x^. Notice that
each aj is a symmetric multilinear function of (6i, 62,..., 6n), that is
a/ is linear in each 6j and:

a/(i>i, b2, •. •, bn) = a/(ba(i), 6^(2), •••, &<7(n)) for all a € 6„, (8)

where S„ is the permutation group of n elements.

In Algebra, R{K) is adso called a graded ring of polynomials graded by degree.
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EXAMPLE 2. If n —2 and K = 3, then we have

P2(x) = (611X2 + 612X2 + 6i3X3)(621Xi + 622X2 + 623X3)

iy2{x) = [xl,XiX2,XiX3,xl,X2X3,xlf
a = [6n^,611622+612621,611623+613621,6^^, 612623+613622,6136^T

0-2,0,0 01,1,0 01,0,1 00,2,0 00,1,1 00,0,2

REMARK 1 (Symmetric Tensors), Any homogeneous polynomial of de
gree n in K variables is also symmetric n-th order tensors in K vari
ables. Furthermore, the coefficients, a, of polynomial pn{x) can be in
terpreted as the symmetric tensor product of the coefficients bi's of each
polynomial of degree 1, that is:

a ~ Sym(bi (g) 62 <S> •••<2) 6„) = ^ (g) 6^(2) (g)... (8>
oeSn

where ® represents the tensor of Kronecker product and ~ represents
the homemorphism between the symmetric tensor Sym{bi<S>b2<S>.. .<g)6n)
in Sym^{R^) and its symmetric part written as a vector a in

2.1. Estimation of the number of subspaces n

Given a collection of iV > sample points the vector of
coefficients a satisfies the system of linear equations:

Lfl CL — a = 0 6 (9)

N\T^^n(® )

We are now interested in determining whether there exist a unique
solution for a (up to scale) from system (9), i.e. we would like to know
under what conditions we have rank(L„) = M„ —1. It turns out that the
uniqueness of a is very much related to the estimation of the number
of subspaces n as shown by the following proposition and its corollary:

PROPOSITION 1 (Number of subspaces). Assumethat a collection of
N sample points on n different {K —1)-dimensional subspaces
in is given. Consider the Veronese map i'i{x) of degree i, and let
Li G be the matrix defined in (9). If the number of sample
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points in each subspace is big enough and the sample points are in
general position, we have: {> Mi-1, i<n,

= Mt —1, i = n, (10)
< Mi —1, i > n.

Therefore, the number n of subspaces is given by:

n —min{i : rank{Li) = Mj —1}. (11)

Proof. Consider the polynomial Pn{x) as a polynomial over the alge
braically closed field C and assume that each plane aj = 0 is different
from each other. Then the ideal I generated by pn(x) is a radical ideal
with pn(®) as its only generator. According to Hilbert's NuUstellensatz
(see page 380, [3]),there is a one-to-one correspondence between such an
ideal I and the algebraic set (also called algebraic variety in Algebra)

Z{I) = {a:; Vp g I,p{x) = 0} C

associated to it. Hence its generator Pn{x) is uniquely determined by
points in this algebraic set. By definition, Pn{x) has the lowest degree
among all the elements in the ideal /. Hence no polynomial with lower
degree would vanish on all points in these subspaces. Furthermore, since
all coefficients bi are real, if ®-j- y/^y € is in Z{I), both x G
andy € are in theset of(real) subspaces, because bj{x-\-y/^y) =
0 bjx = 0 h bfy = 0. Hence all points on the (real) subspaces
determine the polynomial Pn(x) uniquely and vice-versa. •

COROLLARY 1. The vector of coefficients a of the homogeneous poly
nomial Pn{x) can be uniquely determined as the kernel of the matrix
Ln € from at least —1 points x^ 's on the subspaces, with
at least K —1 points on each subspace.

2.2. Estimation op the subspaces

2.2.1. GPCA as a polynomial factorization problem
Proposition 1 and the linear system of equation (9) allow us to deter
mine the number of subspaces n and the coefficients a of the polyno
mial Pn{x), respectively, from sample points The rest of the
problem becomes now how to recover {6z}"_i from a.

Prom equations (3) and (7) we have that:

Pn{x) =^ Uni.na ~11 (X/
t=i Vj=i
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Therefore, the problem of recovering from o is equivalent to
the following poljmomial factorization problem:

PROBLEM 2 (Factorization of homogeneous polynomials). Given a
homogeneous polynomial Pn{x) G Rn{K), factorize it into n distinct
polynomials in Ri{K). We denote the space of polynomials which ad
mit such a factorization as Rn{K) C Rn(K), and call the elements of
R^(K) factorable polynomials from now on.

REMARK 2 (Factorization of symmetric tensors). Thepolynomial fac
torization problem can also be interpreted as a tensor factorization
problem: Given an n-th order symmetric tensor V in Sym^{R^), find
vectors vi,V2,... ,Vn € such that

V= Sym{vi <8) V2 (8)... <8) v„) = ^ (g) v^^2) O•••<8) ^^(n)

Notice that

u : >Symf{R^)\ (vi, V2> •••?Vn) Sym{vi ®V2<S> Vn)

maps a K Xn-dimensional space to a M^-dimensional space. In general
Mn is much larger than {K x n —nH-1).^ .Therefore, not all symmetric
tensors in the space 5ym"(E^) can be factored in the above way.

2.2.2. Existence and uniqueness of the factorization
Notice that an arbitrary element of Rn{K) is not necessarily feictorable
into n distinct elements of Ri{K), e.g., the polynomial rcf + X1X2 + X2
is not. However, the existence of a factorization for a is guaranteed by
the definition of pn(x) as a product of linear functionals.

However, in practice the vector a will be estimated from noise data,
hence Pn{x) will not necessarily be factorable. Therefore, we will need
to address the issue of the existence of such a factorization and the

projection of a non-factorable pol3momial into a factorable one. We
will delay our study of these two issues to later in this Section.

In relation to the uniqueness of the factorization, it is clear that
each bi can be multiplied by an arbitrary scale to obtain the same a
up to scale. Since the scale of a will be fixed to be 1 when solving (9),
we are actually free to choose the scale of n —1 of the 6j's only. The
following proposition is a consequence of the well-known Gauss Lemma
in Algebra (see page 181, [3]) and guarantees the uniqueness of the
factorization of Pn{x) up to n —1 scales:

^ We here subtract n —1 parameters on the right is because we only have to
consider imit vectors.
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PROPOSITION 2 (Uniqueness of the factorization). Since R is a fac
torial ring, the set of polynomials in K variables R[xi,... ,xj{] is also
factorial, that is any polynomial p G R[xi,..., xk] has a unique factor
ization into irreducible elements. In particular, any element ofRn{K) C
R[xi,... ,Xf{] has a unique factorization.

2.2.3. Solving for the last 2 entries of each bi
Knowing the existence and uniqueness of a solution to the polynomial
factorization problem, we are now interested in finding an algorithm
that recovers the biS from a. To this end, we first consider the last
n + 1 coeflficients of Pn{x):

[a0,...,0,n,0 J ao,...,0,n-l,l ? >ao,...,0,0,n]^ € R"'''\ (12)

which define the following homogeneous polynomial of degree n in the
two variables xj^-i and x^'

n

5^ ao,...,0,nK-unK '̂KSi = H + kK^K) • (13)
i=l

Letting y = xk-iIxk^ we have that:

n n

IJ (^iK-lXK-1 + biKXK) = 0 n + biK) = 0,
i=l 1=1

hence the n roots of the polynomial

fn(y) = ao,...,0,n,02/" + "• ^ ^0,...,0,0,n (14)

are exactly i/t = —biK/biK-i, i = 1,..., n. Therefore, after dividing a
by ^^o,...,o,n,0) we obtain the last two entries of each bi as:

(biK-i , biK) = (1 , -2/i). (15)

If biK-\ = 0 for some i, then some of leading coefficients of fn{y)
axe zero and we cannot proceed as before, because fn{y) has less than
n roots. More specifically, assume that the first £ < n coeflficients

of fn(y) are zero and divide a by the (£ + l)-st coeflficient. In this
case, we can choose (feiic-i,fetA-) = (0,1), for i = 1,...,^, and ob
tain {ibiK-ijbiK)}f~n_£+i from the n —£ roots of fn{y) using equar
tion (15). Finally, if all the coeflficients of fn{y) are equal to zero, we
set {biK-i, biK) = (0,0), for alH = 1,..., n.

EXAMPLE 3. Consider the case n = 2 and K = 3 illustrated in

Example 2. The polynomial associated to the last n + 1 entries of a is:

5x25232/^ +(512^23+ ^>13522)2/ +513^23 = (5l22/+ 5l3)(5222/ + 523) = 0, (16)
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whose roots are:

= and y, =-^ (17)
On 022

from which we obtain both (612,613) and (622,624) up to scale.

2.2.4. Projection onto the space of factorable polynomials
The previous section shows that the last two entries of each bi can be
computed up to scale from the coefficients of Pn{x) associated to the
last two variables. Furthermore, those coefficients define a polynomial
of degree n in one variable whose roots are always real. Notice that we
could have chosen a polynomial associated to any other two variables
and the roots of such a polynomial would also be real. Indeed, if one
of the polynomials associated to any two variables has a complex root,
Pn{x) cannot be factorized as the product of polynomials of degree
one. Unfortunately, this condition is only necessary but not sufficient
for determining whether or not a general polynomial p„(x) in Rn{K)
can be factored into a product of polynomials of degree 1, as shown by
the following example:

EXAMPLE 4 (Non-factorable polynomial with real roots). Consider
the polynomial p2(x) = -\-AxiX2 + ^xiX3-\-2x1 +3x2X3-\-xl w -^2(3).
Any sub-polynomial of p2 in 2 variables has real roots. But p is not
factorizable into a product of two polynomials of degree 1.

In practice, the polynomial Pn{x) will be obtained from noisy data,
and hence it may not be an element of Rn{K). Therefore, we may
consider the problem of finding a polynomi^ Pn{x) G {K) that is
"close" to a given polynomial qn(x) e Rn{K). We notice that the space
Rn{K) is not convex, e.g., 2x1+xiX2 € R^(K) and 2a;^-a;ia;2 GR^(K)
but x\ + x\^ R^(K). We also notice that Rn{K) can bedescribed as
an algebraic set in as stated by the following proposition:

PROPOSITION 3 {R^{K) is a semi-algebraic set). The set R^(K) is
homeomorphic to the set

= h{a)},

where h is a semi-algebraic formula.

Proof. The coeflScient vector a G of a polynomial pn(a,x) - here
we exphcitly write the dependency of p„ on its coefficients a - which
can be factored into a product of n polynomials of degree 1 is described
by the first-order formula

n

36i,...,6„ G V® GE^ Pnia.x) = Y[(biX). (18)
T=1
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By Tarski-Seidendberg principle, after eliminating all the quantifiers,
the set of all a's that have such a property must be semi-algebraic.
That is, there is a semi-algebraic formula h equivalent to (18) defining

m

Therefore, the problem of finding the factorable polynomial pn{x) G
R1^{K) "closest to" qn{x) GRn{.K) is equivalent to:

min l|a-c||J. , ,
subject to a G.F ^ '

where a and c are the coefficients of Pn(®) and qn{x)^ respectively, and
II • \\f is a norm in defined as ||a||J- = E(^i)'• •' (»^A:)^anl,...,nK••
While it remains an open problem how to do the projection in generi,
there is a closed form solution for n = 2, as shown by the example
below.

EXAMPLE 5 (Projection of a non-factorable polynomial). Consider
thepolynomial q2{x) = C20X1+C11X1X2+C02X2 and letc = (c2o, Cn, 002)^.
In this case, the semi-albegraic formula defining R![{K) is given by
h{a) = 0,11 ~ 4a20^i02 > 0 and the norm of a is given by ||a||^ =
2a2o+afi-l-2co2. The optimization problem can be solved using Lagrange
multipliers to obtain the projection P2{x) = 020X1 -h 0110:10:2 + <1022:2
q2{x) onto R^{K), with

C20 + -^^02 cii —Acii C02 + Ac2o . .
"20 = 1_X2 ^ ^_ ;^2 "02 = ^_ ^2 ' (20)

where
min(cfi -4c2oco2,0)

A =

IkllJ. + v'||crp-(<^-4c,C2)2

2.2.5. Solving for the first K —2 entries of each bi
We have demonstrated how to obtain the last two entries of each hi
from the roots of a polynomial of degree n in one variable. We are
now left with the remaining K —2 entries of each 6i. For the sake of
simplicity, let us start with the following example:

EXAMPLE 6. Consider the case n = 2 and K = 3 illustrated in

Example 2. We know how to compute 612, 613, 622 o,n,d 624 os described
in Example 3, and would like to compute 611 and 621. We notice that the
coefficients of the monomials which are linear in xi (aij,o cmd 01,0,1^)
are linear in bu and 621- Thus we can write:

(21)622 bi2 'bn' <11,1,0

. ^23 &13 . . b2i. . ^1,0,1.

from which we can linearly solve for bn and 621 •



12 Vidal and Ma

We know generalize Example 6 to arbitrary K and n. We assume
that we have computed bij, i = 1,... ,n, j = J 1,... K for some J,
starting with the case J = K-2, and show how to linearly solve for
2 = 1,..., n. As in Example 6, the key is to consider the coefficients of
Pn{x) associated to monomials of the form Xj
linear in xj. These coefficients are of the form ao,...,o,i,nj+i,...,nif
are linear in bu. Therefore, we can Hneaxly solve for 6/j from:

[Vj/ ••• yj]
" bij '

p

b2J

. bnJ .

x^ which are
and

ao,...,0,l,n-2,l 0

L O0,...,0,l,0,0,...,n-l

(22)

where Vf are the coefficients of the following homogeneous polynomial
of degree n —1 in AT —J variables:

i-l / K \ n / K

Si'(®) = n E n E bejXj]. (23)
e=i \j=J+i / e=i+i \j=J+i

2.2.6. Uniqueness of the solution of the factorization algorithm
Equation (22) admits a solution by the definition of a. Hence, the
only question left is whether the solution is unique, or equivalently
whether the vectors ..., are linearly independent. The following
proposition gives a necessary and sufficient condition for uniqueness:

PROPOSITION 4 (Uniqueness of the solution given by the algorithm).
The vectors {V/jjl-i are linearly independent if and only iffor all r ^ s,
1 < r,s < n, (brj+i,brj+2:'",brK) and {bsj+i,bsj+2, •••,bsK) are
pairwise linearly independent. Furthermore, the vectors {V/^are
linearly independent if and only if the polynomial fn{y) has distinct
roots and at most one of its leading coefficients is zero.

Proof. We do the proof by induction on n. Let hf(x) = J2^=j+i hjXj.
By definition, the vectors V/ are linearly independent if

h'^'£aihi-- hUhl,---hi = 0 (24)
t=l

if and only if a, = 0,aj G M, i = 1,..., n. If n = 2, (24) reduces to:

affii + a2hi = 0. (25)
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Therefore V/ is independent from V/ if and only if hf is independent
from h^,which happens ifandonly if (6u+i, 617+2, •. •, bi^) is indepen
dent from (627+1,627+2, •••, 62A'). Now assume the that the proposition
is true for n —1. After dividing (24) by h{ we obtain:

^ =0. (26)
^1 1=2 ^ V

polynomial in Rn-iiK—J)

If q:i = 0, then the proof reduces to the case n —1, which is true by the

induction hypothesis. If ai ^ 0, then must belong to Rn-ii^ —

J), which happens only if h{ is proportional to some /i/, i = 2,..., n,
i.e. if (6i7+i, 6i7+2,•••, 6ia:) is proportional to some (6,7+1,617+2, •••, biK)-
The fact that the choice of /if as a divisor was arbitrary completes
the proof of the first part. As for the second part, by construction the
vectors {brK-i^brK) and {bsK-i^bsK) are independent if and only if the
roots of fn(y) are distinct and fn(y) has at most one leading coefficient
equal to zero. •

2.2.7. Obtaning a unique solution for the degenerate cases
Proposition 4 states that in order for the K —2 linear systems in (22)
to have a unique solution, we must make sure that the polynomial
fn(y) is non degenerate, i.e. fn{y) has no repeated roots and at most
one of its leading coefficients is zero. One possible approach to avoid
non-uniqueness is to choose a pair of variables {xj,Xji) for which the
corresponding polynomial fn{y) is nondegenerate. The following propo
sition guarantees that we can do so if n = 2. Unfortunately the result
is not true for n > 2 as shown by Example 7.

PROPOSITION 5 (Choosing a good pair of variables when n = 2).
Given the polynomial P2{x)y there exist a pair of variables (xj, xy) such
that the associated polynomial f2{y) is nondegenerate.

Proof. For the sake of contradiction, assume that for any pair of vari
ables {xj,Xj>) the associated polynomial f2(y) has a repeated root or
the first two leading coefficients are zero. Proposition 4 implies that for
3fi j 7^ ft (bijtbij') is parallel to (62^,62 '̂), hence, all the 2x2 minors
of the matrix B = [61 62]^ G are equal to zero. This implies that
61 is parallel to 62, violating the assumption of distinct subspaces. •

EXAMPLE 7 (A polynomial with repeated roots). Consider the fol
lowing polynomial in 723(3);

Pz(x) = (xi + X2 + a;3)(xi + 2x2 + 2x3)(xi -1- 2x2 + a;3)-
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The associated polynomials in two variables are 4a;2 + 10x2X3 + 8a;2a;3 +
2x1, + 4x1X3 + 5x1X3 + 2x3 and x\ + 5x1x2 + 8x1X2 + 4x2,
them having repeated roots.

We conclude that, even though the uniqueness of the factorization is
guaranteed by Proposition 2, there are some cases for n > 2 for which
our factorization algorithm (based on solving for the roots a polynomial
of degree n in one variable plus K —2 linear systems in n variables)
will not be able to provide the unique solution. The reason for this is
that our algorithm is not using all the coejBficients in a, but only the
ones for which the problem is linear.

One possible algorithm to obtain a unique solution for these de
generate cases is to solve polynomials of degree r in n —r variables.
We will not pursue this direction here. Instead, we will try to find a
linear transformation on x, hence on the 6y's, that gives a new vector
of coefficients a' whose associated polynomial fn{y) is non-degenerate.
It is clear that we only need to modify the entries of each bi associ
ated to the last two variables. Thus, we consider the following linear
transformation L : -

x = Ly =

1 0

0 1

0 0

0 t t

0 t t

1 t t

1 t

0 1

y-

Under this transformation, the polynomial Pn{x) becomes:

Pniv) = Pn(Ly) Ly =
i=l

n
1=1

(

K-\

YL +
i=i

\

K-2

^ hK-1
.

VK-l +

K-l

i ^ij + ^iK
J=1

KM

(27)

VK

Therefore, the polynomial associated to and will have dis
tinct roots for all t G R, except for the t's which are roots of the
following second order polynomial:

Kk-i{'^)KkW —KK-l{t) '̂rKW (28)
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for some r ^ s, 1 < r,s < n. Since there are a total of n(n + l)/2
such polynomials, each of them having at most 2 roots, we can choose
t arbitrarily, except for n(n + 1) values.

Once t has been chosen, we need to compute the coefficients a'
of the new polynomial The following proposition establishes the
relationship between a and a':

PROPOSITION 6. Let a and a' be the coefficients of the polynomials
Pn{x) € Rn(K) and Pn(y) = Pn(Lx) e Rn{K), respectively, where
L : R^ is a non-singular linear map. Then L induces a linear
transformation T : R^" —* R^", a y-* a' = Ta. Furthermore, the
column ofT associated to (ini,n2,...,nK given by the coefficients of the
polynomial:

(ej-y)"' (ely)"^ ...

where ij is the j-th row of L.

Proof. Let Pn(®)»9n(®) € Rn{K) and a.peR. Then the polynomial
ctpn(x) + Pqn(x) is transformed by L into apn{Ly) + pqn(Ly). There
fore T is linear. Now in order to find the column of T associated to

ani,n2,...,nKJ ^ipply transformation T to the mono
mial where is

the standard basis for R^. We obtain (e^Ly)"'{e'̂ Ly)'̂ ^ •••(e^Ly)"^,
that is, (4y)"' (i^y)"' ••• (ej^y)"". m

REMARK 3. Due to the upper triangular structure of L in (27), the
matrix T will be lower triangular. Furthermore, since each entry of
L is a polynomial of degree at most 1 in t, the entries of T will be
polynomials of degree at most n int.

By construction, the polynomial fh(y) associated to the last two
variables of pJi(y) will have no repeated roots. Threrefore, we can apply
the previously described factorization algorithm to the coefficients a'
of Pniy) obtain the set of transformed normal vectors Since
by definition ofp^ we have = bjL, the original normal vectors are
given by bi = It turns out that, due to the particular structure
of L, we do not actually need to compute L~^. We can obtain
directly from {bJ}"-! and t as follows:

bij — ® •••? 3 L •••) A" 2

biK-l = bj/f-i -1EjL"i^hj, i = l,...,n (29)
biK = b\j^-t EjLi^ bij, i = 1, n.
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EXAMPLE 8. Let n = 3 and K = 3. Then L and T are given by:

L =

T =

1 t t

0 1 t and

0 0 1.

1 0 0 0 0 0 0 0 0 0]
St 1 0 0 0 0 0 0 0 0

St t 1 0 0 0 0 0 0 0

3^2 2t 0 1 0 0 0 0 0 0

6^2 2t'̂ + 2t 2t 2t 1 0 0 0 0 0

Sf 2^2 2t t 1 0 0 0 0

0 t 0 0 1 0 0 0

St^ t^ + 2t'^ 2t'^ + t t 0 St 1 0 0

St^ 2t^ + t2 2^2 t^-\-2t'^ f + t t St" 2t 1 0

t t^ t^ t 1

(30)

(31)

Notice that if P3{x) = + 09X2X3 + 010X3, then the transformed
polynomial isp^iy) = a63/i2/3+(a9+^a6)2/22/3 + (ai0+iO6+tO9)y|. Thus,
the polynomial associated to the last two variables is f^iy) = (09 +
^fl6)2/+ttio+t(o6+09), whichhas more than one leading coefficient equal
to zero for all t. This is not a problem, because the given polynomial,
P3(x), is non-factorable.

2.2.8. GPCA algorithm
We summarize the results of this section with the following GPCA
algorithm

ALGORITHM 1 (GPCA algorithm). Givensample points find
the number of subspaces n and the normal to the subspaces as
follows:

1. Apply the Veronese map of order i, for i —1,2,..., to the vectors
and form the matrix Li in (9). Stop when rank{Li) =

Mi —1 and set the number of subspaces n to be the current i. Then
solve for a from LnO, = 0 and normalize so that ||a|| = 1.

2. a) Divide the resulting a by the first nonzero coefficient of fn{y)-

b) If the first i, 0 < £ < n, coefficients of fn{y) a.re equal to
zero, set {biK-i,biK) = (0,1) for i = !,...,£. Then use (15) to
compute {{biK-i,biK)}i=n_i+i from then-£ roots of fn{y).

c) If all the coefficients of fn{y) are zero, set {biK-i,biK) = (0,1),
fori = l,..,,n.
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d) If (brK-1^ brK) is parallel to {bsK-i, ^s/c) for some r ^ s, apply
the transformation x = Ly in (27) and repeat 2a), 2b) and 2c)
for the transformed polynomialp'ji(y) to obtain{{b[f^_i, blK))U

Given (biK-ubiK), i = solve for {bij}2^i
J = K —2,... ,1. If a transformation L was used in 2 d), then
compute hi from b'̂ and t using equation (29).

3. Estimation of a Mixture of Probabilistic Models

In this section, we apply the theory of GPCA to the estimation of
subspaces for a mixture of probabiUstic models. We assume that the
sample points are drawn from a certain distribution (Gaussian
or uniform) in that is approximately degenerate, i.e. there is at
least one direction in which the variance of the data is approximately
equal to zero. The extreme case in which the variance is equal to zero in
a certain direction(s) corresponds to the ideal case for GPCA in which
the data lies exactly in a linear subspace of which is orthogonal to
the zero variance directions.

In our experiments, we will consider mixtures of n = 2 and n = 4
probabilistic models in a A" = 2 dimensional space. In all cases the
mean is assumed to be zero, and the standard deviation is 1 along the
direction of the subspace and e < 1 along the direction orthogonal
to the subspace, where the parameter e represents the eccentricity of
the covariance matrix^. In all cases, we will choose the sample points
in subspace n > 1 to be a rotated version of those in subspace 1.
Therefore, we will use data that is purposely statistically dependent

Figures 2a) and 2b) show mixtures of n = 2 Gaussian and Uniform
distributions, respectively, with the main direction of each subspace
superimposed. The eccentricity of the covariance matrix is e = 0.15
and the angle between the two subspaces of 6 = 10°. We observe
that it is quite difficult to group data points belonging to the same
subspace, even if we knew the true direction for each subspace. This
is particularly true for the Gaussian distribution, because it is zero
mean, and hence most of the data for both subspaces is concentrated
around the origin. Therefore, we should not expect GPCA to give good
segmentation results for this type of data. Instead, we should expect
GPCA to give a good estimate of the direction of the subspaces in spite
of the grouping, because GPCA does not use the grouping to estimate
the subspaces as most algorithms do.

^ The eccentricity is defined as the square root of the ratio between the smallest
and the largest singuleir value of the covariance matrix S.
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-2.S -2 -1.S -1 -0.5 0 0.5 1 1.5 2 2.5

(a) Gaussian distribution

'2.5 -2 -1.5 -1 -0.5 0 0.5 1.5 2 2.5

(b) Uniform distribution

Figure 2. A mixture of n = 2 probabilistic models with a) Gaussian and b) Uniform
distributions. The number of data points is 100 per subspace. Points in susbpace 1
are denoted with a o and points in subspace 2 are denoted with a •. The eccentricity
of the covariance matrix for both distributions is e = 0.15 and the angle between
the two subspaces of 6 = 10®.

Figure 3 presents simulation results for a mixture of 2 Gaussian
distributions with an eccentricity of 0.15 for different values of the
angles between the two subspaces 9. We observe that there is a high
rate of missclassification (around 20 to 35%) for small 6. As 9 increases,
the missclasification reduces to 10% approximately. In spite of these
high missclasification rates, the estimation of a basis for the subspaces
is remarkably good: the error in the estimation of the subspaces is
approximately of 1°, with a maximum error of 2.1° for an angle between
subspaces of only 9 = 10°.

Figure 4 presents simulation results for a mixture of 2 Gaussian
distributions with an angle between subspaces of 45^®s for different
values of the the eccentricity. As expected, the rate of missclassification
increases with the exentricity of the covariance matrix and so does the
error in the estimation of the subspaces. Again, in spite of extremely
high missclasification rates, the estimation of a basis for the subspaces
is obtained with an error of less than 5°.

4. Two-View Multibody Structure from Motion

In this section, we apply GPCA to the problem of estimating the 3D
motion of multiple moving objects from 2 perspective views. We here
give a brief summary on how GPCA can be used to solve the problem
and refer the reader to [6] for the details.

Assume we are given with a pair of images (a;i,a;2) of a point p
undergoing one out of possibly many motions, say with
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Figure 3. Estimation of the subspaces for a mixture of two Gaussians as a fimction
of the angle between the subspaces. The number of data points is 100 for each
Gaussian, and the eccentricity of the covariance matrix is 0.15.
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Figure 4- Estimation of the subspaces for a mixture of four Gaussians as a function
of the eccentricity of the covariance matrix. The number of data points is 100 for
each Gaussian, and the angle between subspaces is 45°.
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^ j^3x3 Ti 7^ 0 € representingthe camera rotation and trans

lation (calibrated case) or the homography and epipole (uncalibrated),
respectively. If (a;i,aj2) is undergoing motion then it must satisfy the
so-called epipolar constraint x^FiXi —0, where Fi = TiRi e is
the fundamental matrix associated to motion i. Since we do not know

the motion associated to a given an image pair (xi,a;2)j as we did
in (3), we can only enforce the following constraint:

(32)

which we call the multibody epipolar constraint
While the GPCA constraint (3) is a product of linear forms, the

multibody epipolar constraint is a product of bilinear forms, which
makes the multibody structure fr')m motion a much harder problem. It
is true that one can convert esich epipolar constraint x^FiXi = 0 into
the linear constraint (x2 <8> a!i)^/t, where G R® is the stack of the
columns of Fj. However, it is not possible to apply GPCA with K = 9
to the resulting product of linear forms, because 'S>IR^) ^ '̂n(K^)
as shown in [6]. Instead, we use a clever geometric analysis of the
multibody structure from motion problem to convert the bilinear fac
torization problem into two GPCA problems with AT = 3, as described
below:

1. Multibody fundamental matrix: The Veronese map i^n can be used
to convert the multibody epipolar constraint (32) into the following
bilinear constraint in and ^n(x2)'

i^n(®2)^Fl/„(xi) = 0, (33)

where F, the so-called multibody fundamental matrix, is a matrix in
j^MnxMn —(nH-l)(n-i-2)/2. Eaxdi entry ofF isa symmetric
multilinear function of the entries of Fj. Notice that equation (33)
can be re-written in Unear form as {i^n(x2)<S>f = 0, where
/ is the stack of the columns of F.

2. Estimation ofn and F: Given a set ofN image pairs{(sci,
one cmi form a matrix Li G R^^^^ whose j-th row is given by
(i/i{x2)'S>i^i{x]))^. Prom this matrix, one candetermine the number
of motions n as min{2 : rank(Li) = Nf —1}, and the multibody
fundamental matrix F from the linear system L„/ = 0.

3. Estimation of epipolar lines: Given an image xi in the first frame,
the epipolar lines associated to it are defined as £{ = FiXi and
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one of such lines passes through the corresponding image X2 in
the second frame, i.e. iiX2 = 0. Now given the multibody fun
damental matrix F, one can prove that Fun{xi) € repre
sents the coefficients of the following homogeneous polynomial in
x: f(x) = Therefore, one can compute the epipolar
lines associated to any image point xi using steps 2 and 3
of the GPCA Algorithm 1 for A = 3.

4. Estimation of epipoles: The epipoles are the vectors such
that IfFi = 0. Thus, given an arbitrary epipolar line £, thereexist
one epipole Tj such that = 0, which implies that i satisfies the
following polynomial: g{£) = {Ti£) •••{T^£) = 0. Therefore, given
a set of epipolar lines {£^}^-i computed from the previous step, one
can apply to them the GPCA Algorithm 1 with K = n to obtain
the epipoles provided that the epipoles are distinct.

5. Estimation of fundamental matrices: Let /J € and
/f 6 E^ be the columns of the fundamental matrix Fi € E^^^
associated to motion i. Given x = {xi,X2,X3) GE^, one can prove
that the vector Fun{x) € E^" represents the coefficients of the
following homogeneous polynomial in y:

Kv) = ((3^1/1 +2^2/1 + '' •((a^i/i +X2f'i +xzflfy^ .
Therefore, given F one can estimate the columns of each funda
mental matrix and more generally any linear combination of them
{xifi + X2fi + aJa/v }?-i (up to scale) using steps 2 and 3 of the
GPCA Algorithm 1 with K = 3. However:

a) We do not know the fundamental matrix to which the recovered
vectors belong to, because the GPCA problem is symmetric;

b) The recovered vectors are obtained up to scale only.

The first problem is easily solvable: if the recovered vector cor
responds to Ft, then it must be perpendicular to the previously
computed Tj (again we assume that the epipoles are distinct). As for
the second problem, for each ilet £l, j = 1,...,m be the recovered
vectorcorresponding to x^ that is perpendicular to Tj. The aj-^ 's can
be chosen arbitraryly, but we choose x^ = (1,0,0)^, = (0,1,0)
and x^ = (0,0,1)^. Then there exist unknown scales Aj such that:

= ^ifi +4/i +4/?' J > 4
= 3 > 4.
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The fundamental matrices are then given by:

Fi = [/J f, fi] = XUl], (34)
where A|, and Aj are obtained as the solution of the linear
system:

xiff xi£^] ^
4fi 4^i] n

6. Motion Segmentation: Given the fundamental matrices, the image
pair {x{,X2V assigned to group i if X2^ix\ = 0. In the presence
of noise, the image pair is assigned to the group i that minimizes
(x^Fixi)'̂ .

We evaluated the proposed approach to segment a real image se
quence with n = 3 moving objects: a truck, a car and a box. Figure 4
shows two frames of the sequence with the tracked features superim
posed. We used the algorithm in [1] to track a total of iV = 173 point
features: 44 for the truck, 48 for the car and 81 for the box. Figure 4
plots the segmentation of the image points obtained through GPCA.
The obtained segmentation has no mismatches.

(a) First frame (b) Second frame

Figure 5. A motion sequence with two cars and a box. TVacked features are marked
with a 'o' for the first car, a for the second car and an 'a' for the box.
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Figure 6. Motionsegmentation results. Each imagepair is assigned to the fundamen
tal matrix for which the algebraic error is minimized. The first 44 points correspond
to the first car, the next 48 to the second, and the last 81 to the box.
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