

Copyright © 2002, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

SPFDs: A NEW APPROACH TO

FLEXIBILITY IN LOGIC SYNTHESIS

by

Subamarekha Sinha

Memorandum No. UCB/ERL M02/17

24 May 2002

SPFDs: A NEW APPROACH TO

FLEXIBILITY IN LOGIC SYNTHESIS

by

Subamarekha Sinha

Memorandum No. UCB/ERL M02/17

24 May 2002

ELECTRONICS RESEARCH LABORATORY

College ofEngineering
University ofCalifornia, Berkeley

94720

SPFDs : A New Approach to Flexibility in Logic Synthesis

by

Subamarekha Sinha

B. Tech. (Indian Institute of Technology,Kharagpur, India) 1996
M. S. (University of California, Berkeley) 1998

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Electrical Engineering and Computer Sciences

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor Robert K. Brayton, Chair

Professor A. Richard Newton

Professor Theodore A. Slaman

Spring 2002

The dissertation of Subamarekha Sinha is approved:

Chair Date

Date

Date

University of California, Berkeley

Spring 2002

SPFDs: A New Approach to Flexibility in Logic Synthesis

Copyright 2002

by

Subamarekha Sinha

Abstract

SPFDs : A New Approach to Flexibility in Logic Synthesis

by

Subamarekha Sinha

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Robert K. Brayton, Chair

Logic synthesis algorithms convert one representation of a Boolean network into another one that is

more desirable from the point of view of area, delay, power, testability, wireability or other criteria.

The main requirement on such transformations is that it preserves functionality across all required

operating conditions. The quality of the final implementation is strongly influenced by the ability

of a transformation to suitably express and utilize the flexibility inherent in the original implemen

tation of a Boolean network. Depending on the particular transformation, several formalisms have

been developed over the past decade for suitably expressing flexibility. In this dissertation, a new

formalism for expressing flexibility called Sets of Pairs ofFunctions to be Distinguished (SPFDs) is

presented. SPFDs provide a powerful mechanism for expressing flexibilityduring certain logic syn

thesis transformations. The expressive power of SPFDs is compared with previous formalisms for

expressing flexibility. It is proved that the flexibility expressed by them completely contains some

previous formalisms (like Incompletely Specified Functions) and extends (but does not completely

contain) other formalisms (such as Boolean Relations).

An in-depth exposition is provided for various applications of SPFDs. It is argued that

SPFDs provide a more powerful and intuitive mechanism for expressing flexibility in logic and

for rewiring of a network. Any such improved formalism usually comes at the cost of increased

computational expense in using that flexibility. Efficient algorithms are provided for harnessing

this extra flexibility without incurring too much additional overhead. Other interesting applications

of SPFDs to some classical logic synthesis problems like functional decomposition and sequential

synthesis are also presented.

Professor Robert K. Brayton
Dissertation Committee Chair

Tomyfamily: Ma, Bapi, Dilip and Babu.

Contents

List of Figures yi

List of Tables viii

1 Introduction 1

1.1 Design Flow 1
1.2 Flexibility in Logic Synthesis 3

1.2.1 Flexibility in Logic 3
1.2.2 Flexibility in Wiring 5

1.3 Focus of this Work 5

1.3.1 Dissertation Outline 6

2 Preliminaries 8

2.1 Boolean Functions and Relations 8

2.2 Boolean Networks 10

2.3 Boolean Operations 10
2.4 Image and Inverse Image Computations 11
2.5 Binary Decision Diagrams 12
2.6 Conjunctive Normal Form and Satisfiability 12
2.7 Combinational and Sequential Circuits 13
2.8 Notation 13

3 Flexibility in Node Functionality 15
3.1 Flexibility of a node 16

3.1.1 Networks of Single-Output Functions 16
3.1.1.1 Derived Don*t Cares 16

3.1.2 Networks of Multiple-Output Nodes 19
3.1.2.1 Boolean Relation 20

3.1.3 Multiple Boolean Relations 22
3.2 Hexibility Hierarchy 23

3.2.1 Completely Specified Functions 23
3.2.2 Incompletely Specified Functions 24
3.2.3 Multifimctions 24

3.2.4 Boolean Relations 24

CONTENTS 111

3.2.5 Multiple Boolean Relations 24
3.3 Network Representation of Flexibility 25

4 Sets of Pairs of Functioiis to be Distinguished 26
4.1 SPFDs 26

4.1.1 Derivation of the SPFD of a node from its function 27

4.1.2 Graphical Representation of SPFDs 28
4.1.3 SPFDs and Information 28

4.1.4 Notational Representation of SPFDs 29
4.2 Minimum SPFD of a node 30

4.2.1 Algorithm for computing the minimum SPFD of a node 31
4.2.2 Connections to Previous Work 36

4.3 Compatible SPFDs 37
4.3.1 Emulating CODCs using SPFDs 38

4.3.1.1 Additional Notation 39

4.3.1.2 Formal Proof 40

4.4 SPFDs in the Flexibility Hierarchy 42
4.5 Summary 45

5 SPFDs for Network Optimization 46
5.1 SPFD Computation Algorithm 46

5.1.1 Ordering Schemes 46
5.1.2 Computing the SPFD of an node 47
5.1.3 Improvements 49

5.2 Resynthesis Algorithm 50
5.3 Proof of Correcmess 54

5.4 Example 56
5.5 Robust Computations 59

5.5.1 SAT-based scheme 59

5.5.2 Combined Strategy 61
5.6 Making the Results more Predictable 61

5.6.1 Window-based computation 62
5.6.1.1 Region of Change 62
5.6.1.2 Parameterized Image Computation 63

5.6.2 SPFDs and CODCs combined 64

5.6.2.1 Computing the LDCs of a node on demand 65
5.6.2.2 Updating/Invalidating the CODCs and LDCs of the nodes 65

5.7 Results 66

5.8 Summary 70

6 Wire Manipulation Techniques 71
6.1 Previous Work 71

6.2 SPFDs and Rewiring 72
6.3 Wire Replacement in Boolean Networks 75

6.3.1 Results 77

CONTENTS IV

6.4 Don't Care Wires 79
6.4.1 Flow 80
6.4.2 Network of PLAs 80
6.4.3 SPFDs and Compatible Wire Sets 81
6.4.4 An Assignment Problem 85
6.4.5 Two Placement Algorithms 86

6.4.5.1 Mincut PlacementApproach 87
6.4.5.2 Force-Directed Approach 87

6.4.6 Experimental Results 88
6.4.6.1 Some Observations 90

6.5 Partial Don't Care Wires 91
6.6 Summary 91

7 SPFDsand Decomposition 93
7.1 Previous Work 93
7.2 SPFDs and Decomposition 95
7.3 Topologically Constrained Decomposition Problem 97
7.4 Problem Solution 97

7.4.1 Preliminaries 97

7.4.2 Algorithm 98
7.4.3 Defining the Cuts in the Network 100
7.4.4 Synthesizing the nodes in the cut 102

7.4.4.1 Global SPFDs vs Local SPFDs 104

7.4.5 Correctness 105

7.5 Connections with minimum SPFD 106

7.6 Experiments 107
7.7 Summary 109

8 Sequential SPFDs 110
8.1 Previous Work 110

8.2 Motivating Example Ill
8.2.1 Sequential SPFDs 113

8.3 Sequential SPFD Computation 115
8.3.1 Additional Notation 115

8.3.2 Algorithm 117
8.3.3 Theory 118
8.3.4 Previous Work 120

8.3.5 State Encoding Using Sequential SPFDs 121
8.3.6 SequentialSPFDs Using ClassicalIncompatibilityGraph 122

8.4 Resynthesis Procedure 123
8.5 Summary 126

9 Conclusions 128

9.1 Future Work 130

CONTENTS V

Bibliography 132

VI

List of Figures

1.1 Traditional design flow 2

2.1 Shannon Decomposition and Binary Decision Diagram of a simple fimction 12

3.1 Network with single-output nodes 16
3.2 Network with multi-output nodes 19
3.3 Examplecircuit for Boolean relation 20
3.4 Network iVi 21
3.5 Flexibility hierarchy 23
3.6 Networkrepresentation of flexibility 25

4.1 SPEDas a graph 28
4.2 OR gate 29
4.3 The set of nodes marked by dots denotes the separator 30
4.4 Separators: 3^°, yj and yj; the nodes connected by adashed line indicate asepa

rator. Each of these separators can be used in the algorithm comJiiiiispfdibr.sep
for obtaining an SPED ofr)j. The SPED computed using y^ is the minimum SPED
of T}j 33

4.5 Example for Minimum SPED computation 35
4.6 Flexibility hierarchy revisited: BRi denotes the set of Boolean relations that have

a unique input minterm for each output value 44

5.1 SPEDs for the faninsof an OR gate, 0 = A-\-By givenA>f B 47
5.2 Yj and Yk spaces 48
5.3 Example circuit 49
5.4 Example illustrating the advantages of the improvements in Section 5.1.3 49
5.5 Example circuit (Contd) 51
5.6 Yj and Yj spaces 52
5.7 Modifled SPID of 773 under the encoding E 52
5.8 Non-bipaitition of the modified SPED after encoding 53
5.9 SPPT> of / in terms of its local inputs 56
5.10 SPEDs of (pi, /), (52,/) and (^3,/) in terms of the local inputsof / 57
5.11 SPEDs ofg\, p2 and gz in terms of their respective local inputs 57
5.12 Modified SPID of / under encoding E 58

LISTOFHGURES vii

5.13 Relation between rji, rjj andrfk 60
5.14 Resynthesizing a node using its SPFD can potentially change all the nodes in its

transitive fanout 62
5.15 Region of Change of 97j 63
5.16 Parameterized BDD-basedimagecomputation 64

6.1 Rewiring example 73
6.2 Illustration for the proof of Lemma 6.2 74
6.3 Rewiring: the solid lines indicate wires and the dotted lines indicate non-existing

wires 76
6.4 Don7 care wire-basedlogic/physical design flow. 79
6.5 Network J\f^: Wr^^rim is replaced by and is replaced by . 82

7.1 Ashenhurst decomposition 94
7.2 Decomposition chart 94
7.3 Information flow through an OR-gate: Rq is a subset of Kin = Ra U Rb 96
7.4 Problem deflnition 98

7.5 Information flows through the network 99
7.6 Algorithmfor topologically constraineddecomposition problem 101
7.7 After r]j is simplified using its minimum SPFD, the nodes of the above modified

network M' can be synthesized usingsynjspfd 106

8.1 Example sequential circuit Ill
8.2 A combinational circuit derivedfrom the sequential circuit in Example 8.1 112
8.3 Another combinational circuit derived from the sequential circuit in Example 8.1. . 112
8.4 SPFDs obtained after unrolling once 113
8.5 Various levels of unrolling and the corresponding SPFDs 114
8.6 Another example sequential circuit 115
8.7 i?iandi22 116
8.8 Illustration for the proof of Lemma 8.3 119
8.9 M': implementing the transition relation of M 120
8.10 Encoding relation between theoriginal andnewfanin variables, En{Yj^ Yj) 124
8.11 Computing the function of the multivalued node 124
8.12 Revisiting Example 8.1 125
8.13 Re-implementation of Example 8.1 126
8.14 Re-implementation of Example 8.2 127

Vlll

List of Tables

4.1 Functions thatsatisfy SPFD {(00,01), (00,10), (00,11), (01,10), (01,11), (10,11)}. 43

5.1 Comparison of runtimes for different image computationschemes 67
5.2 Comparison of spfd-simplify for different values of I and p = oo vs full simplify. 67
5.3 Comparison of spfd-simplify for differentvalues of p and 2= 2 vs fiill.simplify. . 68
5.4 Comparison ofspfd.simplify with and without CODC bounding for different values

of/andp = oo 69
5.5 Effect of CODC optimization on the examples in Table 5.4 69

6.1 Results for wire_replace 78
6.2 Characterization of Examples 88
6.3 Wirelength Improvement, Mincut 89
6.4 Wirelength Improvement, Force Directed 90

7.1 Results of using syii.5pfd on ISCAS benchmark circuits 107
7.2 Results of using syn.spfd on optimized ISCAS benchmark circuits 108

IX

Acknowledgments

I have been really fortunate to have interacted with some wonderful individuals during my stay in

Berkeley. I would like to take this opportunity to thank them.

Professor Robert Brayton has been my advisor for the last six years. I would like to

thank him for his constantencouragement and guidance during this time. He has been incredibly

patientwithme throughthe years, teaching meeverything about the process of doingresearch. His

enthusiasmand lovefor learningis a great inspirationto me. During my weeklymeetingswith him,

he would discuss aspects of my research in great depth. He never dismissed any of my concerns, no

matter how small they were, as trivial. Hopefully, some of it has rubbed off on me.

I would like to thank Dean Richard Newton for his insightful comments during my qual

ifying examination, that have greatly helped me during the course of my research work. He also

took time off his busy schedule to provide valuable suggestions for improving this dissertation. I

am very grateful to him for that. I am also very thankful to Professor Ted Slaman for introducing

me to the beautiful world of mathematical logic. In addition, I greatly appreciate his interest in my

research work.

I had the opportunity to work quite closely with Dr Andreas Kuehlmann. Working with

him was a great learning experience. His suggestions have greatly helped me in my research. I hope

I have learned something from his thoroughness and meticulousness. I am also grateful to him for

flying in from Austin for attending my qualifying examination.

During my stay here at Berkeley, I have also had the opportunity to work with some cur

rent and former members of the CAD group. I have been lucky to interact with Sunil Khatri, Philip

Chong, Fan Mo and William Jiang during the course of my research. It was a wonderful experience

working with such a talented group ofpeople. A lot of people - TOsin Gosti, Desmond Kirkpatrick,

Abdallah Tabbara, Bassam Tabbara, Luca Carloni, Sunil Khatri, Philip Chong, Fan Mo, William

Jiang - gave me invaluable suggestions when I was preparing for my qualifying examination. I

am very grateful to them for all their help during this stressful period of my graduate life. Special

thanks are due to YujiKukimoto for his great advice during my job hunting process. He was always

available to answer my endless stream of questions. Last sununer, I had the opportunity to work

with Tiziano Villa. I thank him for his interest in my work. His clarity of thought greatly helped me

during the last phases of my research.

I have spent many a wonderful aftemoon in Berkeley chatting with Freddy Mang, talking

about everything under the sun. We went through all the stressful phases ofgraduate school together

and itgreatly helped tohave him around. I have had great fiin making party plans with Niraj Shah
and never really executing them. Sometimes it is more fun to talk about things than actually do

them!

I cannot thank my parents and my brother enough for all their love and support over the

years. They have been a continual source ofstrength forme. Their belief in my abilities has always

helped me in all my endeavors.

Theperson I owethe mostto is Dilip. Hehasfulfilled a variety of roles overthe pastfew

years: fiiend, parent, brother,counselorandphilosopher. I couldn'thave gone through thestresses of

graduate school without his love andsupport. Hispresence in mylifehasbeen a greatsource ofjoy

and happiness, helping me enjoy even the stress-filled graduate life. Thank youfor the wonderful

four yearswe spenttogether! I eagerly lookforward to moregreat timesin the years to come.

Chapter 1

Introduction

1.1 Design Flow

The traditional static CMOS standard cell based design methodology aimed at minimiz

ing the overall gate area and delay. The design process was usually carried out in a top-down

fashion with several distinct, relatively decoupled phases like high level synthesis, logic synthesis

and physical design (Figure 1.1).

During high level synthesis, a Register Transfer Level (RTL) structure was generated

which realized the given behavioral description. Temporal scheduling, and allocation and binding

of hardware were the issues considered at this stage.

The input to the logic synthesisphase was the RTL descriptionof the circuit, and a cell

library. The circuitwas typically represented as a multi-level logicnetwork, that was thenoptimized

for variousdesignobjectiveslike area and delayfor generatinga gate levelnetlist implementedwith

the elementsfrom the givencell library. The optimization phase itself consistedof two sub-phases:

technology-independentand technology-dependentoptimization. The objective of the technology-

independent phase was to simplify the logic level netlist without making any assumptions about

the underlying technology to be used for the actual implementation of the circuit. Each node in the

multi-levellogicnetwork at this stage representedan arbitrarily complexfunction. The network was

then optimized using Boolean and algebraic operations on nodes like node factoring, substitution,

elimination, node simplification using don't cares, etc. The technology-dependent phase took this

netlist as input and transformed it for implementing and optimizing in a particular technology. The

mapped netlist was then input to the physical design tools which placed and routed the netlist thereby

realizing the physical layout of the circuit which had been optimized for area and delay. This flow

CHAPTER 1. INTRODUCTION

Ceil Libi

Behavioural Specification

High Level Synthesis

Logic Description (BLIP Verilog)

Logic Synthesis

Technology Independent Optimization

Technology Dependent Optimization

Technology Mapped Netlist

Physical Design
Placement

Clock Tree

Routing
Extraction

GDSn

Figure 1.1: Traditional design flow.

Netlist Signoff

was the de-facto standard until the mid-90s when most of the delay was in the gates. It made sense

to de-couple logic synthesis from physical design and to focus more on area and delay minimization

of gates during the logic synthesis phase.

As process geometries scale down, interconnect becomes an important factor in deter

mining the delay. This is mainly due to the following two reasons. First, the gate delay depends

mostly on the output capacitance it drives, of which the net capacitance becomes the laigest contrib

utor. Second, the delay of the long nets, which depends on their capacitance, becomes larger than

gate delays. This trend has resulted in a revision of the standard design flow. It has necessitated a

much closer integration between logic synthesis and physical design so that more accurate estima-

CHAPTER 1. INTRODUCTION 3

tion of theoptimization parameters canbe obtained. Another consequence of this trend has been a

modification of the focus of traditional logic synthesis transformations to include more interconnect

specific optimizations. Some recent work hasalready started inthisarea, for instance wireplanning

for logic decomposition [1].

The main focus of this dissertation is improving and enhancing some of the transforma

tions of logic synthesis, specially in the light of the changing scope of the area. At the heart of

any logic synthesis transformation is the flexibility of changing the given network into a different

network for improving some criteria, while still maintaining required input-output functionality.

The input-output functionality specifies what the output(s) of the network should be for each in

put pattem. Depending of the transformation, this flexibility can be modeled and used in different

ways. In the next section, some of the commonly used formalisms for modeling flexibility in certain

fundamental logic synthesis transformations are described in some detail.

1.2 Flexibility in Logic Synthesis

Logic Synthesis is the process of transforming a set of Boolean functions, obtained from

the RTL structure, into a network of gates in a particular technology. The task of logic synthesis is

to transform one representation of a network into another, which is more desirable from the point

of view of area, delay, power, testability, wireability and/or other criteria. Some common transfor

mations include changes in the local functionality of a group of nodes {don't care optimization),

logic restructuring during timing optimization, gate resizing for meeting the area-delay constraints,

modifying the wiring pattem between the nodes in the network, etc. Each of these transformations

exploit the inherent flexibility of the network. Depending on the transformation at hand, this flexi

bility can be modeled in a particular fashion, thereby making it more suitable for manipulation by

the synthesis algorithms.

In the following two sections, the manner in which the inherent flexibility in a Boolean

network is modeled in two important transformations in logic synthesis is presented.

1.2.1 Flexibility in Logic

The transformations that exploit implementation flexibility of a node in a multi-level net

work are described here. This transformation is possible due to the fact that while it is absolutely

necessary to maintain certain required input-output functionality of the network, it not always nec-

CHAPTER 1. INTRODUCTION 4

essary to maintain theidentical local functionality atevery node in the network. This relaxation of

criteria provides the flexibility to transform some nodes in thenetwork and theenvironment of the

node provides theinformation needed forexploiting this additional flexibility. Thebasic task forthe

logic synthesis transformation is to look at a node in a network and try to find different functions,

thataremoredesirable from thepointof view of theoptimization criteria andcanbe used instead of

thecurrent one. A naive approach would try to replace the original function withall possible func

tions and see which one gives thebest solution, whilestill satisfying the input-output functionality.

However, this is computationally tooextensive as thenumber of possible Boolean functions is very

large. Furthermore, some Boolean functions carmot be used asthefunctionality of thenetwork can

change if these functions areused at thenode. Over thepastdecade, a lotof research hasfocussed

on trying to mathematically characterize the flexibility at a node in order to eliminate the ad hoc

nature of thesearch process. Incompletely Specified Functions (ISFs) [2]andBoolean Relations [3]

are the most common formalisms used for representingthe flexibility of a single-outputnode and a

multiple-output node, respectively.

An ISF consists of the onsets the offset and the don't care set. The minterms in the onset

and offset have to produce 1 and 0, respectively. On the other hand, minterms in the don't care

set can produceeither a 0 or a 1. For each assignment of a minterm in the don't care set, a new

function is obtained. This choice can be exercised to obtain several different functions at the node.

A Boolean relation specifies several outputvalues for each inputminterm. For each inputminterm,

anyoutputin the specified setcanbe chosen. As in thecaseof ISFs,depending on thechoiceof the

outputvaluefor each inputminterm, several functions can be derived.

The best function in both cases is chosen depending on the optimizationcriteria. The most

common criteria used is the minimization of area, typically modeled as the number of the literals

in the factored form of the function at the node. These transformations are present to different

extents in all commercial logic synthesis tools. In Chapter 3, an in-depth exposition of the different

formalisms used for expressing this flexibility is provided.

It is necessary to realize that optimizationis often limitedby the expressivepower of the

formalisms chosen to representthe flexibility. This has resultedin the sustainedeffort for improving

the power of the formalism used for representing the implementation flexibility of a node in a

network. For instance. Boolean relations were introduced to represent the implementation flexibility

of a multi-output node since ISFs (which were used to represent the flexibility of a single-output

node) were shown to be inadequate [3].

CHAPTER 1. INTRODUCTION 5

1.2.2 Flexibility in Wiring

Just as the functionality of some nodes in the network can be changed while keeping the

overall networkfunctionality unchanged, the wiresbetween the nodescan alsobe changed without

altering input-output behavior of the circuit. The basic task of this synthesis transformation is to

replace one wire with another, in order to optimize the circuit for certain criteria. The typical

criterion used in the past to select such a change was routability (i.e. whether the new wire is

predicted to be easierto implement in thefinal layout thantheone it is replacing). A lotof work has

been done in the past decadefor characterizing the set of wiresthat can replacea given wire in the

network, without affecting itsfunctionality. Mostof theprevious work in thisareainvolved adding

redundantwiresand therebyrenderingsome of the original wires in the networkredundant [4,5,6]

and hence candidates for removal. This approach is commonly called redundancy addition and

removal. Like the formalisms for expressing the implementation flexibility of a node, the quality

of the results depend on the powerof the formalisms. To improve the quality, this basic idea was

extended in a few otherpapers [5,7,8] to allowsimplefunctionality changes of the nodes, thereby

allowing more wiring changes to be accepted.

Another set of techniques [9,10] performed rewiring by modeling the problem of wire

reconnections by a flow graph and then solving the problem using maxflow-mincut algorithm on

the flow graph.

These techniques do not affect the functionality of the nodes in the network and are suit

able for use during the later stages of the design flow when it may be undesirable to perturb the

network substantially.

1.3 Focus of this Work

In this dissertation, a new formalism. Sets of Pairs of Functions to be Distinguished

(SPFDs)^ for expressing flexibility during some logic synthesis transformations ispresented. The

expressivepower of SPFDs is compared with previous schemes. It is proved that in some cases the

flexibility expressedby SPFDscompletely containsthe flexibility expressedby previousapproaches

and in other cases it extends (but does not completely contain) the flexibility expressed by previous

approaches.

The problems mentioned in the previous section are revisited. It is illustrated how SPFDs

introduced by Yamashita et. al. in thelimited context of FPGA synthesis [11]

CHAPTER 1. INTRODUCTION 6

provide a very powerful and intuitive mechanism for expressing the flexibility in logic and for
rewiring ofanetwork. As mentioned earlier, any improved formalism for expressing flexibility usu

ally comes atthe cost ofan increase in computational expense in using that flexibility. For instance,
while Boolean Relations aremore expressive thanISFs, they arealsomore computationally expen

sive to manipulate. Efficient algorithms are provided for hamessing this extra flexibility without

incurringtoo much additionaloverhead.

Finally, other interesting applications ofSPFDs tosome classical logic synthesis problems

likefunctional decomposition and sequential synthesis are alsoconsidered.

1.3.1 Dissertation Outline

Chapter 2 contains all preliminaries, including thedefinitions and terminology that will

be used in the rest of the dissertation. As mentioned before, flexibility in logic is a well-researched

problem. In Chapter 3, the various schemes arepresented andcompared.

SPFDs are formally introduced in Chapter 4, where they are defined and their ability

for representing flexibility in logic is compared to previous approaches. How an SPFD attached

to a node/wire can be used to represent its information content is also described. This provides

an intuitive explanation of what a node contributes to its surrounding network. There are some

interesting implications and applications of this connection, some of which are presented in later

chapters.

In Chapter 5, theflexibility expressed bySPFDs is usedforoptimizing a network withthe

goal of reducing theoverall literal count. One major problem associated with theincreased flexibil

ity of SPFDs is addressed and techniques are provided for solving them. The results obtained are

compared toprevious schemes. Image Computation-the process ofexpressing minterms inonevari

ablespacein termsof anothervariable space- is an important stepin thenodesimplification process.

Mostprevious imagecomputation approaches usedBinaryDecision Diagrams (BDDs) [12],which

are very efficient for set manipulation but often sufferfrom memory explosion. On the other hand,

SATsolvers (e.g. [13,14]) suffer from the reverseproblem. SATsolversare robust and can handle

largecircuitsbut are inefficient for set manipulation operations. A hybrid approach, combining the

efficiency of BDDs and the robustness of SATsolvers, for imagecomputation is also presented.

Rewiring a given network using the increased flexibihtyexpressedby SPFDs is described

in Chapter 6. Some preliminary theoretical work is presented to compare the power of SPFD-

based rewiring schemes relative to previous rewiring schemes like redundancy addition and removal.

CHAPTER 1. INTRODUCTION 7

described earlier. Two rewiring scenarios are subsequently presented. In one approach, rewiring

a Boolean network in an attempt to reduce the wire count without increasing the literal count is

described. Another approach forperforming SPFD-based rewiring in a combined logic synthesis-

physical design environment is presented. Possible interesting extensions of this approach are also

described.

Aninteresting application ofSPFDs to functional decomposition is presented in Chapter

7. Given a network topology (i.e. the interconnectivity of the nodes) and its required input-output

functionality, an algorithm is provided for synthesizing the nodes in thenetwork. An interesting

metaphor describes a network as a channel thattransfers information from theinputs to theoutputs.

Some possible applications of this algorithmare also presentedhere.

Theconcept forusing SPFDs for sequential circuits is presented as anextension inChap

ter 8. Theoretical results are provided for illustrating that SPFDs can be extended veryeasily for

expressing the classical incompatibility graph of a Finite-State Machine(FSM). An algorithm for

partitioning the state bits in a sequential circuit is provided, thereby possibly increasing the size

of machines thatcan be handled by sequential synthesis tools. The actual implementation of such

techniques is beyond the scope of this dissertation.

Chapter 2

Preliminaries

In this chapter, some basic definitions and concepts thatare essential for describing the

workpresented in this dissertation are presented.

2.1 Boolean Functions and Relations

Tifffinitinn 2.1 A completely specifiedBoolean function / with n inputsand I outputs is a map

ping:

f:B"^ B',

where B = {0,1}. In particular ifl = l, the onsetand offset off are:

onset = {m GB"|/(m) = 1}

offset — {m GB"|/(m) = 0}.

Definition 2.2 Anyvertexin is also called a minterm. A mintermofafunction f is a vertexm

such that f{m) = 1.

Definition 23 An incompletely specified function (ISF) T with n inputs and I outputs is a map

ping:

y',

where Y = {0,1, —}. The onset, offset and don't care set (dcset) ofT: B^ -¥ Y are:

onset = {m G B^\F'{m) = 1}

offset = {m G B^\J^(m) = 0}

dcset = {m G B^\!F{m) = —}.

CHAPTER 2. PRELIMINARIES 9

The symbol - means that thefunction can either be a 0 or 1.

Definition 2.4 ABoolean relation isa one-to-many Boolean mapping TZ : jB" —> BK Ingeneral

TZ(x) C is a set.

Definition 2.5 AJunction f : B^ —> jB*" iscompatible with 7Z ifffor every input minterm x, f{x)

is a memberofR{x).

Let xi, a;2> ••• be the variables of the space B". A vertex or a vector of variables in

B" is represented as x.

Definition 2.6 LetA C B". The characteristic function of A is theJunction f : B" B defined

f{^) = lifx^A, f{x) = 0 otherwise.

Characteristic functions are nothing but a functional representation of a set Any completely speci

fied function / : B" -> B is a characteristic function of its onset.

Definition2.7 A literal is a variable in its true or complementedform (e.g. Xi or"^). A product

term or cube is the conjunction ofsomeset ofliterals (e.g. xi^xs).

Definition 2.8 Let f : B" —^Bbea BooleanJunction, and Xi an inputvariable off. Thecofactor

of f with respectto a literal Xi (xl), shown as fxi {fxi), is a newJunction obtained bysubstituting

1(0)for Xi (^) in every cube in f which contains Xi (^).

Definition 2.9 Let f : B^ B be a Booleanfunction, and Xi an input variable off. TheShan

non's expansion ofa Booleanfunction f with respect to a variable Xi is:

Xifxi Siifxi.

Lemma 2.1 / = Xifx^ + ^fxi-

The iteratedShannondecomposition of a Booleanfunction is a binaiy tree representingthe function

obtained by applying Shannon's expansion with respect to all variables. The leaves are either 0 or

1. Each path of the tree represents a minterm of a function.

Definition 2.10 A coverfor an ISF \J^\ : B" Y is any completely specifiedBooleanJunction f

such that f{m) = 1 if!F(m) = 1, /(m) = 0 ifT(m) = 0, and f(m) = 0 or 1 iJT = —.

There are two coimnon ways for representing the cover of a Boolean function.

CHAPTER 2. PRELIMINARIES 10

Definition 2.11 A sum-of-products representation of the cover ofa Booleanfunction is a sum of

cubes.

Definition 2.12 A factored form ofa cover is either a product or a sum such that:

• A product is either a single literal or a product offactoredforms.

• A sum is either a single literal or a sum offactoredforms.

Both representations have their own advantages and disadvantages and are used depending on the

problem at hand.

2.2 Boolean Networks

Definition 2.13 ABoolean network, M, is a directedacyclicgraph (DAG) such thatfor each node,

rji, in M there is an associated representationofa Booleanjunction fi, and a Boolean variable yi,

where yi = fi. There is a directed edge (r]i, •qf) from qi to qj if fj depends explicitly on yi or yi. A

node qi is afanin ofa node qj if there is a directed edge (qi^ qj) and afanout if there is a directed

edge (qj,qi). Anodeqi is a transitivefanin ofa node qj if there is a directpathfrom qi to qj and

a transitivefanout if there is a directed pathfrom qj to qi. Primary inputs X = (xi, ••• , x„) are

inputsofthe Boolean networkand primary outputs Z = (zi, -•- ^Zm) are its outputs. Intermediate

nodes of theBoolean network have at leastonefaninandonefanout. The globalfunction ff at qi

is thefunction at the node expressed in terms ofprimary inputs.

Definition 2.14 The support ofa function f is the set ofvariables that f explicitly depends upon.

Definition 2.15 A topological ordering of N from the primary outputs is a linear orderingsuch

thatfor nodes q^qj € M, if qi is a fanout of qj, then qi appears before qj in the linearorder. A

topological ordering of Jf from the primary inputs is a linear ordering such thatfor any two

nodes qi,qj € Af, ifqi is afaninofqj, then qi appears before qj in thelinearorder.

2.3 Boolean Operations

Definition 2.16 Given two Boolean junctions, f : B" B and g : B" -¥ B, the AND operation

h = f.g is dejined as:

h = {x\f(x) = 1 Ag(x) = 1}.

CHAPTER 2. PRELIMINARIES 11

Definition 2.17 Given two Booleanfunctions, f : B" —> B and g : B, the OR operation

h = f g is defined as:

h = = 1 Vg(x) = 1}.

Definition 2.18 Given a Boolean function, f : B^ B, the NOT operation h —f is defined as:

h = {x\f(x) = 0}.

Since sets can be represented using Boolean functions, hence set operations like union, intersection

and complement can be computed using the above operations.

Definition 2.19 Let f : B^ B be a Booleanfunction, and x = (xii, ••• a set of input

variables off. The smoothing off by x is:

s.f =

f ~ fxij + /siT.

If / is interpreted as the characteristic function of a set, the smoothing operator computes

the projection of / to the subspace of B^ orthogonal to the domain of x variables. This is the

smallest Boolean function independent of Xjj, • •• , Xi„ which contains /.

Lemma 2.2 Let f : B^ x B^ B and g : B^ -¥ B be two Booleanfunctions. Then:

Sx(f(x,y)g(y)) = Sx(f(x,y))g{y).

Definition2.20 Let f : B^ ^ B be a BooleanJunction, and x = (iCiu **• j®in) ^ of input

variables off. The consensus off by x is:

^xf — /

f yfjfjj •

This is the largest Boolean function contained in / which is independent of ajij, •• • , Xi„.

2.4 Image and Inverse Image Computations

Definition 2.21 Let f : B" —> B"* be a Booleanfunction and Abe a subset ofB^. The image of

Aby f is the set f{A) = {y e B^\y = /(x), x e A}. If A = B" the image of A by f is also

called the range off.

Definition 2.22 Let f : B" B"* be a Booleanfunction and Abe a subset ofB^. The inverse

imageof A byf is theset f~^(A) = {x € B"|/(x) = y,y GA}.

CHAPTER 2. PRELIMINARIES 12

f = Xi+X2 + X3

Figure2.1: Shannon Decomposition andBinary Decision Diagram of a simple function.

2.5 Binary Decision Diagrams

Binaiy DecisionDiagrams (BDDs) [12] are compactrepresentations of recursive Shan

non decompositions. The decomposition is done with the same order alongevery path from the root

to the leaves. BDDs are uniquefor a givenvariableorderingand hence are canonical formsfor rep

resentingBooleanfunctions. They can be constructed from the Shannon's expansion of a Boolean

function by 1) deleting a node whose two child edges point to the same node, and 2) sharing iso-

morphic subgraphs. Technically the result is a Reduced OrderedBDD (ROBDD) [12],which shall

henceforth be referred to as a BDD. BDDs can be used for representing and efficiently manipulating

sets. The Shannon decomposition and the BDD of a simple function is shown in Figure 2.1.

2.6 Conjunctive Normal Form and Satisfiability

A Conjunctive Normal Form (CNF) [15] is a conjunction (product) of clauses, where a

clause is a disjunction (siun) of literals. For example, 0 = (xi + + 2:3) denotes a CNF

formula with two clauses and three variables.

The Boolean satisfiability problem (SAT)[15] for a CNF formula is formulated as follows:

Given a CNF formula <j>, representing a Boolean function /(xi, ••• , a;„), the satisfiability problem

consistsof identifying a set of assignments to theformulavariables, {a?i = vi, ••• , s„ = Un}, such

CHAPTER 2. PRELIMINARIES 13

thatall clauses are satisfied, i.e. /(vi, ••• , v„) = 1, or proving no suchassignment exists.

A number of logic synthesis transformations like AutomaticTestPattem Generation (ATPG)

and redundancyaddition and removalcan be modeledas SATproblems [16].

2.7 Combinational and Sequential Circuits

Definition 2.23 A circuit is combinational if it computes a Junction which depends only on the

values ofthe inputs applied to the circuit;for each input value, there is a unique output value.

All circuits with an underlying acyclic topology are considered combinational and can be modeled

as a Boolean network. There are circuits containing cycles that are combinational also [17] but

these are unusual and are not considered in the rest of the dissertation.

Definition 2.24 A circuit is sequential if it computes a function that depends both on the present

values ofits inputs and the values applied to the inputs ofthe circuit at someprevious time.

Definition 2.25 A Finite-State Macliine(FSM) is a quintuple:

M = (S,I,0,S,X),

S : finite non-empty set of states, I: finite non-empty set of inputs, O : finite non-empty set of

outputs, S: S XI S transition (or next statefunction), and X: S O outputfunction.

FSMs provide a behavioral view ofsequential circuits. They can be used to describe the transitional

behavior of these circuits. They can be used to distinguish among a finite number of classes of

input histories: these classes are referred to as the intemal states of the machine. FSMs are often

represented graphically as a State Transition Graph (STG).

2.8 Notation

A Boolean network is represented by Jf and its primary inputs and primary outputs as

PI{Af) and PO{M), respectively. A node rjj in network Af is associated with two variables, yj

and y'j. The variables associated with the primary inputs ofJf are collectively denoted as either
X or X', depending on whether the unprimed or primed variables are used. Both X and X' are

referred to as the primary space. Similarly, the variables associatedwith the fanins of a node qj are

collectively denoted as Yj or Yj. In the sequel, both Yj and Yl are often referred toas the fanin

CHAPTER 2. PRELIMINARIES 14

space of rjj. The fanin and fanout nodes of rfj are collectively denoted as FI{r}j) and FO{r}j),
respectively. Similarly, the transitive fanins and transitive fanouts of 77j are collectively denoted as

TFI(r}j) and TFO{r}j), respectively. The primary inputs in the transitive fanin of 17j are denoted

as PI{r}j). Similarly, the primary outputs inthe transitive fanout ofrjj are denoted as POirjj). The
local and global functions ofr)j are denoted asfj and fj, respectively. Adirected edge between rji
and r]j, also called a wire, isdenoted as The expression r)i <f rjj denotes that rji has less

flexibility than rjj. Similarly, rji>f rjj denotes that rji has more flexibility than rjj.

15

Chapter 3

Flexibility in Node Functionality

In thischapter, someformalisms usedfor specifying andexploiting the flexibility in logic

duringcombinational logicsynthesis are reviewed. In particular, two related problems are consid

ered:

• Deriving and representing a set of permissible functions at a node or a set of nodes in the

network.

• Using an appropriate representation of these functions with an associated minimizer to search

for one that best fits the optimization criteria.

These two issues are examined for a node embedded in a network of single-ou^ut func

tions and for a node in a network of multiple-output functions as well. One of the most common

optimization criteria used for this set of logic transformations is minimization of the literal count

of the covers of the functions at each node. It is worthwhile to note that for combinational logic

the classical use of flexibility is in two-level sum-of-products minimization, where the objective

is to find a cover of a function with the least number of product terms. Usually, this problem is

formulated with the input or output don't cares [18] givenfor the function. A don't care is an input

vector for which a function's value can be either 0 or I. Thus in minimizing /, one has the option

of choosing 1 or 0 for this value and in that sense, additional flexibility is given to the minimizer for

making the choice which is best in meeting the minimization criteria. ESPRESSO, developedby

Rudell et. al., is the most commonly used two-level minimizer. For a more detailed explanation of

ESPRESSO, please refer to [18]. Most logic is implemented in multi-level form and so for the rest

of this chapter, the main focus will be on deriving the flexibility of a node in a multi-level network

and using that flexibility to simplify the node.

CHAPTERS. FLEXIBILITYIN NODE FUNCTIONALITY 16

Figure 3.1: Networkwith single-output nodes.

3.1 Flexibility of a node

3.1.1 Networks of Single-Output Functions

The outputs of the Boolean network (shown in Figure 3.1) are associated with a set of

don't cares d(X) = {di{X), ••• , dm(X)), which may beempty insome cases. These arecalled the

externaldon't cares. It is implicitly assumed that thesedon't cares are independent, i.e. the don't

care set of one primary output can be used independently of the don't care sets of otherprimary

outputs.

3.1.1.1 Derived Don't Cares

Oneof the strategies used for multilevel minimization is to use a two-level minimizeras a

subroutine. The algorithmproceedsas follows. The focus is on a single node, say a node r)u of the

Boolean network with the node's current representation given by a cover of its single-output function

fi. Unlike in the two-level case, no don't cares are given a priori for this node, but it is possible to

derive some from the information about the surrounding network. Three classes of don't cares are

derived: External Don't Cares (EXDC), Satisfiability Don't Cares (SDC) and Observability Don't

Cares (ODC) [19].

CHAPTERS. FLEXIBILITYIN NODE FUNCTIONALITY 17

The EXDC is just the given external don't cares for the network. The EXDC is used to

restrict the computations performedfor SDC and ODC, so that only the care inputs are used in their

computation.

The SDC are obtained from the part of the network in the transitive fanin of a node. The

constraintsof the fanin network ensure that certain input patterns of iji can never appear. The SDC

of a node 77,• is given as:

SDC{rn)=
Vj-,V3^TFI{rti)

Since they never occur, the output for fi for these input pattems can be either 0 or 1, i.e. it is a don't

care.

Example 3.1 Consider thefollowing multi-level circuit [20]:

t = sk sabcd + Jdbcd

k = 06 + 06

s = ef -\-ef

r = cd

Ift is simplified using the SDCs,

(k 0 (06+ 06)) + (s 0 {ef + ef)) + (r 0 (cd)),

t = sk skr. Here, in addition to s and k, r has been substituted into t. However, the global

function oft remains unchanged. This technique is used in some commands in SISfor performing

Boolean resubstitution.

The ODC occurs because of the part of the network separating the node from the primary outputs.

The ODC consists of primary input pattems for which toggling the value of the output of rn does

not affect the functionality of the primary outputs, i.e. no primary output is also seen toggling as a

result of the changes at the output at qi. The ODC of a node qi is given by:

ODC(qi) = dzk/dyi.
k=l

CHAPTERS. FLEXIBn.ITYIN NODE FUNCTIONALITY 18

Example 3.2 Considerthefollowing circuit [20]:

fo = 2/1 + 2/2 + ys

yi = xiX2

2/2 = 3:2x3

2/3 = X1X3

The GDC ofyi isequal to dfo/dyi = 2/2 + ya- Similarly, the ODCs ofy2 and 2/3 are{yi +1/3) flw/

(2/1 + 2/2) respectively.

If the function at each zk does not dependon the variable yi, then the computation is a lot

more complicated. Fordetails, please refer to [20]. In general, deriving the complete ODC for a

node in a network is a very computationally intensive problem. This is because modifying a node

using its ODC requires the ODCs of the remaining nodes to be recomputed. Hence, in practice,

only subsets of ODC are used.

One such subset that is commonly used axe the Compatible Observability Don't Cares

(CODCs) proposed by Savoj [20]. The CODCs arecompatible i.e. if a node is modified using its

CODC, the CODCs of the remainingnodes are not affected. The computationof CODCsfor inter

mediate nodes in the network depends on two key operations. One is the computation of CODCs

for the faninedgesof a node,given the CODCof a node and an ordering of the fanins. Suppose a

node r}i has k fanins, </ ••• </ where r/jj will be assigned least flexibility and qi^^ most

flexibility. Then, theCODC of thejth fanin qi^ is given as:

CODC(qi,) = m/dyi,^x)...(a/i/as/fc-l-Vj,J(a/i/5yj) + CODC(77i).

In the first term, dfi/dyj denotes theODC of the fanin qi^ and the restof the terms produce the

compatibility. The second key operation is computing CODCs of each node by intersecting the

CODCs of its fanout edges.

Consider again the networkin the previous example. Let 2/1 >/ 2/2 >/ 2/3- Thus yi has

the most flexibilityand 2/3 has the least flexibility. Then, their CODCs are computed as follows:

di = dfo/dyi = y2 + ya

d2 = (dfo/dyi + Vyj) (dfo/dy2) = yiy2+ ya

da = Wo/dyi Vy,)(dfo/dy2 + Vyj){dfo/dy3) = ym + y2y3

CHAPTERS. FLEXIBILITY IN NODE FUNCTIONALITY 19

•m--

Figure 3.2: Network with multi-output nodes.

Mamtaining compatibility can reduce the don't care sets of some nodes. For example, 2/2 and 2/3

have fewer minterms in their don't care set than their ODCs.

Another related technique for deriving the implementation flexibility of a node is trans-

duction [21]. In transduction, don't cares are represented as permissible functions. Permissible

functions are defined at each node and represent the sets of allowable functions for those nodes. As

in the case ofODCs, permissible functions can be incompatible {Maximum Set ofPermissible Func

tions) or compatible {CompatibleSet ofPermissible Functions). The MaximumSet ofPermissible

Functions (MSPF) is computed for a node rjj in a NCR-gate network Afas follows:

1. Derive a new network Af by replacing rfj with an OR-gate.

2. Given that is the A:th primary output inAf,

= •!
fj(x) if ^ EXDCk and Zk{x) ^ h{x)

— otherwise

It can be shown that the don't cares in the MSPF of a node constitute the ODCs of a node. Thus,

ODCs simply are a generalization of the flexibility provided by MSPFs.

3.1.2 Networks of Multiple-Output Nodes

When the nodes in the network have multiple outputs, as in Figure 3.2, the notion of

don't cares can be generalized so that each node rji with I outputs has a set of don't cares d{X) =

CHAJPTER3. FLEXIBILITYIN NODE FUNCTIONALITY 20

No.

Ni

I \ i

y^ = a -F b-F c () y^ = a-Fb + c

rv. 1

yQ = ah + ac-F be f ^ y-j = ac + be -Fab

\ /

2/4 = 6c + ab (] 2/5 = ttc + ab

2/1 = be 2/2 = a6 2/3 = ac

Figure 3.3: Example circuit for Boolean relation.

(di{X),d2(X), ••• ,di{X)) which provides the flexibility that can beused for deriving a minimum

cover of rji. However, it was shown [3] that don't cares can no longer completely specify the

flexibility of implementation of a multi-output node in a network. The same paperintroduced the

concept of Boolean relations.

3.1.2.1 Boolean Relation

A Boolean relation is a relation between inputs and outputs. Suppose x is a vector of the

inputs of node r}i and y is a vector of itsoutputs. Then, a Boolean relation B(x, y) gives a setof

allowable outputs y foreach input vector x, i.e., theset{y|B(x, y) = 1}gives thesetof allowable

outputs for input x. The reason whyBoolean relations canexpress moreflexibility thandon't cares

is that with a Boolean relation, it is possible to express the fact that for a particular input x, either

01 or 10 are validoutputs. But this fact cannot be represented using don't careSy sincedon't cares

can only be used to represent setsof theform /(x) = —1, /(x) = —0, /(x) = 1—, /(x) = 0—,

noneof which produce the set /(x) = {01,10}.

It is also possible to simplify a cluster of nodes in a network of single output nodes by

CHAPTERS. FLEXIBILITYIN NODE FUNCTIONALITY

2/4 = be

2/1 =bc

^4

0

1

2/5

2/5 = ac

0

11 01

10 11

21

2/3 = ac

(b)

Figure 3.4: Network Ni.

treating the cluster as a single multi-output node.

When using Boolean relations, the input-output flexibility of the network is represented

as a relation 0{x, z) called the output observability relation. This relation specifies the set of

allowable primary outputpattemsfor eachprimaryinputpattern. The Booleanrelationrepresenting

the flexibility of implementing a node r;,- with inputs u and outputs v is given as:

Oi(uj v) = Vx[Vfi,^[Li(x, u) -H L2(x,V, z) 0(x, z)] Li{x, u)],

where Li(ar,u) denotes themapping fromtheprimary inputs x to the inputs u of rji and^2(2?, v, z)

expressesthe mappingfrom (x, u) to the primaryoutputs z.

Consider the network shown in Figure 3.3([3]). Suppose the task is to simplify the

network Ni so that the extemal behavior of the circuit remains unaltered. It is possible to think of

iVi as a multi-output node and derive Boolean relations for this node. Using these Boolean relations,

the network Ni can be modified to the one shown in Figure 3.4(a). This is because the network

CHAPTERS. FLEXIBILITYIN NODE FUNCTIONALITY 22

N2 behaves identically for 2/41/5 = 00,11. Hence, it is possible to modify network Ni to produce

00, when the original network produced 11, as shown in Figure 3.4 (b). This simplification is not

possible with don't caresas thereis no way to express themutual constraint between theoutputs.

A Booleanrelation can not be minimized using a minimizer for minimizingfunctions with

don't cares. A special Boolean relation minimizer is required. One suchminimizer is GYOCRO

[22], a heuristic minimizer patterned on the ESPRESSO paradigm.

3.1.3 Multiple Boolean Relations

The most general set of functions is just an arbitrary subset of functions. Such sets can

be compacted intoMultiple Boolean Relations (MBRs) [23] suchthat the function is in the subset

if and only if it is compatible with one of the relations. It was shown [23] that certain permissible

functions cannot be expressed using Boolean relations. This is because a Boolean relation is a set

of functions of a special type. For example, a Boolean relation represents a set of functions that

are "output correlated" but input uncorrelated. This means that the choice made for one of the

outputsfor a inputaffectswhat the other outputswillbe of that particular input,but does not affect

any of the choices allowed for the other inputs. On the other hand, a set of functions are "input

correlated" if the choice of the output for one input minterm determines the outputs for other input

minterms. An example with input correlation is the set of two 2-outputfunctions {/i, /2} where

/i(0) = 01,/i(l) = 10,/2(0) = 10,/2(1) = 01. This set cannot be represented with a single

Boolean relation since the choice of 01 for input 0 forces the choice of 10 for input 1. Multifimctions

are used for representing a set of functions that are input correlated but output uncorrelated.

A multiple Boolean relation can express both input correlation and output correlation.

Each Boolean relation in the MBR expresses output correlation but the choice of the Boolean rela

tion expresses input correlation.

FPGA rectification [24] refers to the problem ofmodifying the functions of some LUTs in

a network ofLUTs so that a given network specification can be satisfied. Furthermore, the supports

of the LUTs (whose functions can be changed) must remain unchanged. In [23], a procedure is

given for solving this problem using MBRs. This problem cannot be framed using either Boolean

relations or multifiinctions.

In [23], an algorithm for finding all the functions that are contained in a MBR is provided.

It is based on finding the smallest cover ofprimes ofa suitable function derived from the given MBR.

Then, the function that best satisfies the optimization criteria can be selected.

CHAPTERS. FLEXIBILITYIN NODE FUNCTIONALITY

Multiple
Boolean Relation

Boolean Relation Multiple Output MultiFunctions

Multiple Output
Incompletely Specified Functions

Multiple Output
Completely Specified Functions

Single Output Multifunctions

Single Output
Incompletely Specified Functions

Single Output
Completely Specified Functions

23

Figure 3.5: Flexibility hierarchy.

3.2 Flexibility Hierarchy

In the previous sections, some of the commonly used techniques for extracting the flex

ibility of altering the functionality of a node or group of nodes was reviewed. Here, the relative

powerof the differenttechniquesare compared. This is achievedby orderingthem accordingto the

number of functions that can be expressed using the corresponding formalism. Note, that in some

cases, the formalism for expressing flexibility may be slightly different from the technique used to

extract that flexibility. This difference will be pointed out when relevant.

3.2.1 Completely Specified Functions

Completely specified functions lie at the bottom of the hierarchy. A single output com

pletely specified function / isa many-to-one mapping / : -> B; there are2^** possible functions

/. A multiple output completely specified function F is a many-to-one mapping F : B" B"*;

there are (2^")"* = possible functions in F. Inboth cases, there isno choice inthe function

to be implemented; each minterm maps to exactly one output minterm.

CHAPTERS. FLEXIBILn'YIN NODE FUNCTIONALITY 24

3.2.2 Incompletely Specified Functions

This formalism is used to represent the flexibility extracted using don't cares. A single

output incompletely specified function .F is a many-to-one mapping F" : Y, where Y =
{0,1, —} and - indicates that the corresponding output is unspecified (it is allowed to be either

0 or 1). There are 3^" possible single output incompletely specified functions. A multiple output

incompletely specified function .F is a many-to-one mapping F : B" Y^; there are

possible functions.

3.23 Multifunctions

A single output multifunction f is a setof many-to-one mappings f : -¥ B. Each

mapping represents a valid function for the single output. The number of specifications is the

combination (power set) ofall the possible single output completely specified functions : 2^ .A
multiple output multifunction F is m sets ofmappings F : B" B. Each set of mappings rep

resents a set of valid functions for one of the outputs. Since the outputs are chosen independently,

the number of possible specifications is the product of the number of specifications for each out

put : (2^^")"* = 2"*-^^" Multifunctions allow achoice among several given completely specified
functions. Multifunctionscan express input correlation.

This formalism was not usedpreviously for expressing flexibility of nodes in combina

tional networks. In thenextchapter, it is shown thattheflexibility of single-output nodes expressed

using SPFDs is a multifunction.

3.2.4 Boolean Relations

As mentioned before, a Boolean relation TZis &one-to-many multiple output mapping

It : B^ -¥ 2^"". Each of the 2" input minterms maps to a subset of the 2"* possible output

minterms, so there are possible Boolean relations; B C B** x B"*. Boolean relations allow

a choice for each inputminterm among several output minterms. A value chosen for a particular

output may force thevalues onsome remaining outputs; i.e. theoutput values arecorrelated.

3.23 Multiple Boolean Relations

A Multiple Boolean Relation is a set of Boolean relations M = {Bi, B2,••• ,B/},

where 7?^ C B" x B"*. M represents a collection of multiple output functions. There are

CHAPTERS. FLEXIBILITYINNODE FUNCnONALITY 25

Figure3.6: Network representation of flexibility.

such functions andM represents a subset of these, so there are2 possible specifications.

These different formalisms canbeorganized according to theirexpressive power as shown

inFigure 3.5. Anarrow from representation A to representation B indicates that A isstrictly more

expressive than B: A can represent a larger set of specifications, but A is usually more difficult to

represent andminimize than B. Thisflexibility hierarchy wasfirst proposed in [23].

3.3 Network Representation of Flexibility

Another set of logic synthesis tools operate directly on a network representation of flex

ibility, and therefore do not need other representations described earlier i.e. they do not need to

derive separate equations for representing don't cares or other types of flexibility. These meth

ods are based on determining satisfiability of certain conditions; in particular, whether a node in

"testable for stuck-at-0" (or stuck-at-1).

A node is testable for stuck-at-0 if the functionality of the network would change upon

replacing the node with constant 0. Similarly, for a node testable for stuck-at-1. A node that is

nottestable forstuck-at-0 or 1 is called redundant Redundant nodes canbereplaced bya constant

leading tofurther simplifications. Forexample, input x oftheAND-gate inFigure 3.6isnottestable

forstuck-at-0. After replacing it with a constant 0, thenetwork canbe further simplified.

The connection between redundancy removal and implementation flexibility was explored

byBartlett et. al [19]. It was proved that ifeach node inthenetwork isminimized sothat it isprime

and irredundant using the don't care set DC = SDC+ODC+EXDC, then each wire of the network

is irredundant. i.e. the network is 100% single stuck-at-1 and stuck-at-0 testable. In general, one

may have to iterate thisminimization process overallnodes in thenetwork, until nofurther changes

occur, since after minimizing node rji and then node 7?j, it may bepossible tofurther minimize rfj.

Since, these twomethods are equivalent, the network representation of the flexibility for

expressing the implementation flexibility of a node is not used in the rest of this dissertation.

Chapter 4

Sets of Pairs of Functions to be

Distinguished

26

In this chapter, the concept of Sets of Pairsof Functions to be Distinguished (SPFDs) is

introduced. SPFDs were first introduced in the context of FPGA synthesis by Yamashitaet. al. [11].

Here, the notion of SPFDs is generalized to general,Boolean networks and it is shown howthey can

be used to representand extract the implementation flexibility of a node in a multi-level Boolean

network. Later,SPFDs are placed in the flexibility hierarchy described in the previouschapter. The

ideas in this chapter are developed for networks of single-output nodes. However, the same ideas

can be easily extended to multi-output Boolean networks.

4.1 SPFDs

Definition 4.1 AJunction f is said to distinguish a pair ofJunctions gi and g2 ifeither one ofthe

following two conditions is satisfied:

91 < f <92 (4.1)

92 < f <9v (4.2)

Note that this definition is symmetrical between gi and p2. h is possible to think of gi as

the onset for / and g2 as the offset in Condition 4.1 or vice-versa for Condition 4.2.

Example 4.1 Let gi = ab and p2 = fi=b distinguishes gi and g2 but /2 = a does not

distinguish g\ and p2.

CHAPTER4. SETS OFPAIRS OF FUNCTIONS TOBE DISTINGUISHED 27

Definition 4.2 An SPFD

{(pla> 9lb^i •••>{9nai Prid))"

representsa SetofPairs ofFunctions to be Distinguished.

Example 4.2 {(a6,a6), (a6,ah)} is an example ofan SPFD.

Aminterm isaspecial case ofafunction. So, a set ofpairs ofminterms that have tobe distinguished

can also be represented as an SPFD.

Definition 43 Afunction f satisfies an SPFD, iff distinguishes eachpair oftheset, i.e.

[((pio < f < 9ib) + (9ib < f < Pio)l A... A

[teno < f < 9nb) + (9nb < f < Pno)]*

Example 4.3 Thefunction fi=a satisfies the SPFD {(a6, a6), (a6, ab)} since itdistinguishes each

pair in theset. However, thefunction, f2 = b, does notdistinguish thefunctions in the secondpair

in the set and hence does not satisfy the SPFD.

The choice of which of the two conditions to satisfy provides the additional fiexibility of SPFDs.

Ina later section, it is shown that SPFDs represent increased flexibility over don'tcares - the only

condition required is that thefunction implemented at thenodesatisfy its node SPFD.

4.1.1 Derivation of the SPFD of a node from its function

TheSPFD of a node canbederived from itsfunction very easily. TheSPFD states thatall

minterms in the onset of the function haveto be distinguished from all minterms in its offset. For

example, theSPFD of an OR-gate is {(00,01),(00,10),(00,11)}, i.e. theoffset mintenn (00) has

to bedistinguished from all the onsetminterms ({01,10,11}). NotethatthisSPFD canbe satisfied

by the NOR function also.

If a node has a don't care set associated with it, the SPFD derived from its function

specifies that the mintermsin the care onset (i.e. onset mintermsthat are not in the don't care set)

have to be distinguished from the minterms in the care offset.

CHAPTER 4. SETS OF PAIRS OFFUNCTIONS TOBE DISTINGUISHED 28

ah

ah ah

Figure 4.1: SPFD as a graph.

4.1.2 Graphical Representation of SPFDs

An SPFD , R = {(pia,Pi6), •••, (Pno,Pn6)}. can also be represented as a graph, G =

(V,E), where

V = {mjfelmfc e 9ij, l<i<nj = {a,6}},

E = {(mi,mj)|((mi Ggpa) A(m^- Ggpt)) V

((mi GPpft) A(rrij GPpo)), 1 < P < ^}-

Every e £ E 'ls referred to asanSPFD edge. Forinstance, the SPFD inExample 4.2can

be represented by the graph shown inFigure 4.1.

Definition 4.4 Afunction f satisfies anSPFD R = (V, E), iffor each edge {mi, mj) GE,

f{mi) 7^ f{mj).

Thus, the problem of finding a function that satisfies an SPFD can bereduced to a graph

coloring problem. If the SPFD isbipartite i.e. only two colors are required tocolor the SPFD, then

allfunctions that satisfy theSPFD canbeenumerated easily. Fornodes inanetwork ofsingle-output

nodes, theSPFDs aremostly bipartite (how they could become non-bipartite isdescribed in Chapter

5). Hence, for single-output nodes, it is possible to explore a lot more functions than allowed by

previous methods.

4.13 SPFDs and Information

An SPFD can alsobe thought of as a graph that encapsulates information. Forcombina

tional networks, information is the ability to distinguish one primary input mintermfrom another.

Each pairof such minterms is an atomic unit. Each pair in an SPFD associated with a node can

CHAPTER 4. SETS OFPAIRS OFFUNCTIONS TO BE DISTINGUISHED 29

A

O 00

B
10 Ro

Figure 4.2: OR gate.

distinguish some of the primaiy input minterms. Since an SPED can distinguish some of the pri

mary input minterm pairs, hence it provides information. This connection between SPFDs and

information can be exploited in a number of interesting applications of SPED.

4.1.4 Notational Representation of SPFDs

Given an SPED {(pia,^i6), ••- >(yno»5n6)}» it can be denoted as a relation R(XyX')y

whereX and X' denote two sets of variables representing the same input space. For each pair in

the SPED {gia,9ib)y R{9ia(X), gib(X')) = 1, where gia is expressed in terms of the X variables

andgib is expressed in teims of the X' variables. In somecomputations, theSPED is represented as

a symmetric relation. Thus, R{gia{X),gib(X')) = 1 iffR{gib{X)ygia{X')) = 1.

Let X = (a;i, a;2, ••• , x„). The computation,

Ri(XyX') = R{X,X')A(xi^x'i),

denotes the SPED edges that can be distinguishedby the x,th variable i.e. an edge e = (mi, 7712) €

Ri(Xy X') if mi and m2 differin the value of the x,th variable. Similarly, R{Xy X') A (xj = xj)

denotes the edges that cannot be distinguished by the x,th variable.

Example 4.4 Consider the simple OR-gate shown in Figure 4.2. Suppose the input A is associated

with two variables, ya and y'̂ . Similarly, let B be associated with variables yb and y'b. Then,

Ro A (2/0 ^ y'a) = {(00,10), (GO, 11)}and Ro A{ya = 2/i) = {(00,01)}.

In the rest of this chapter, the concept of the minimum SPED ofa node is introduced. The

flexibility expressed by a minimum SPED is compared to that represented by an ODC. Then, a brief

sketch is provided for how compatible SPEDs can be computed for a network. It is also proved

that CODCs can be generated using a version of the SPED generation algorithm. Thus, compatible

SPEDs also represent more flexibility than CODCs.

CHAPTER 4. SETS OFPAIRS OFFUNCTIONS TO BE DISTINGUISHED

3^7 rr i 11 t n i ^4-
Xi X2 rC3 Xn-lXn

Figure 4.3: Thesetof nodes marked bydotsdenotes the separator yj.

30

4.2 Minimum SPFD of a node

Definition4.5 Given the SPFDs of its primary outputs, the minimum SPFD ofa node rij is the

minimum set ofedges thathaveto bedistinguished bythenode. Once thenodefunction is modified

using itsminimum SPFD, thefunctionalities ofsome nodes in thenetwork may have tobe changed

to ensure correctfunctionality of the network. However, theJunctions of the nodes in the transi

tivefanin of thenodeshould remain unchanged. Also, the topology of the network should remain

unchanged, exceptpossibly the removal ofrjj.

So, the minimum SPFD of a node denotes the unique information that is provided by

the node to the outputsof the networkfor ensuringcorrect functionality of the network,given the

networktopologyand the information providedby its fanins.

CHAPTER 4. SETS OFPAIRS OFFUNCTIONS TO BE DISTINGUISHED 31

Definition 4.6 Aseparator containing rjj isa setofnodes, S = S'\J rjj, thatsatisfies thefollowing

conditions:

1. The primary inputs of the network are completely disconnected from the primary outputs

when all the nodes in S are removed.

2. Anode7jk £ S that is a transitivefanin of rjj has tofanout to a nodenot in the transitivefanin

ofrjj.

In the next section, an algorithm is provided for computing the minimum SPFD of rjj using the

notion of the separator. The second condition in the definition of the separator ensures that the

functionalities of the nodes in the transitive fanin of rjj will remain unchanged afterrjj is modified

to satisfy its minimum SPFD.

4.2.1 Algorithm for computing the minimum SPFD of a node

Here, the algorithm for computing the minimum SPFD of thenoderjj is described. Con

sider the separator setyj (shown inFigure 4.3) containing rjj.

It includes:

1. The node ?7j.

2. All the primary inputs ofAf that are not in the transitive fanin ofrjj.

3. All nodes (including primary inputs) in the transitive fanin of rjj that fanout to at leastone

node thatis not in the transitive fanin of rjj.

It is easy to see that removing thesenodes will disconnect the primary outputs from the primary

inputs. Also, each node in yj that is a transitive fanin of rjj has a fanout to at least onenode notin

thetransitive fanin of rjj. Hence, yj is a separator containing rjj.

Algorithm com_niiiispfdJorj5ep(A/', 3^^):

I. Foreach Zk € PO{Af)

(a) Compute Uj^ = {rji\rji eyj and{rji GFI(rjp) such that (rjp ^ yj)A(rjp GTFI(zk))}}.

Uk contains all the nodes in theseparator yj thatprovide all the information required

byzk.

CHAPTER 4. SETSOFPAIRS OFFUNCTIONS TOBE DISTINGUISHED 32

(b) Derive the SPFD ofZk in terms ofthe primary inputs. This SPFD specifies that all the

primary input minterms inthe onset ofZk have to be distinguishedJrom all the primary

input minterms in theoffset of Zk- Letit bedenoted bySk-

(c) Compute the SPFDs ofall the nodes in Uk \ {rjj}- Given a node m e Uk\ {rjj}, its
SPFD Si specifies that the primary input minterms in the onset ofrji (ff) have to be
distinguishedfrom the primary input minterms in the offset ofrn (ff).

(d) Compute

Ok =

Ok denotes the setofedges that can bedistinguished by all the nodes in Uk\ {rjj}.

(e) Compute Rjk = Sk AUk. Thus, Rjk denotes the edges in Sk, the SPFD ofZk, that
cannotbedistinguished bytheothernodes in yj and hence haveto bedistinguished by

rjj.

2. Rj = GiLiRjk, where mis the number ofprimary outputs ofAf.

Once the function atrjj issimplified using afunction that satisfies itsminimum SPFD, the

SPFDs ofthe nodes between yj and the primary outputs ofAf may have tobemodified. This isdue

to the fact that the information content of these nodes may have to be modified to account for the

reduced information available at rjj,due to itsnew simplified function. These nodes will then have

to beresynthesized using their new SPFDs. Ina later chapter, the algorithm forcomputing thenew

functionalities of the affected nodes is provided.

The same algorithm can be used with different separators ofrjj (say yj and yj illustrated
in Figure 4.4). In orderto satisfy Condition 2 of thedefinition of a separator, the otherseparators

ofTjj should be lie between the nodes in yj and the primary outputs ofAf. Thus, yj isthe separator
closest to the primary inputs. In the sequel, yj is denoted as yj to differentiate it from other
separators. The SPFD computed in Step 2of algorithm comjninspfd-forjsep using separator yj
is denoted as Rj.

Next, it is argued that Rj computed using separator yj has the least number of edges,
when compared to any other Rj.

Lemma 4.1 LettheSPFDof noderji bedenoted as Ri{X, X'). Then,

Ri(X,X') C

whereRk{X, X') is the SPFD ofrjk.

CHAPTER 4. SETS OFPAIRS OFFUNCTIONS TO BE DISTINGUISHED 33

:>'(= w.'

-t-'-i-r r f I t f t t ! t
^n—l^n

Figure 4.4: Separators: yj, yj and yj; the nodes connected by adashed line indicate aseparator.
Each of these separators can be used in the algorithm eomjmiiispfdibr^ep for obtaining an SPFD
ofTjj. The SPFD computed using yj isthe minimum SPFD ofr)j.

Proof Assume thereexists anedge(m, m') € Ri{Xy X') such that(m, m') ^ Jf').

This implies that (m, m') ^ Rk(Xy X') for any fanin rjk of rji. Hence, m and m' can produce the

same outputs for each of the fanins of 77i, i.e. the image of m and m' onto the fanin space Yi of rji,

willboth produce the sameminterm y. But, m and m' have to be distinguished at the outputof iji.

This implies that the same minterm y £Yi has to produce two different values at the output of 7)i.

This is impossible since all the nodes in A/* are deterministic. •

Theorem 4.1 computed using the separator y^ in com-minspfdTor-sep has the least number
ofedges.

Proof Suppose there exists another separator which can be used in the above algorithm to produce

CHAPTER 4. SETS OFPAIRS OFFUNCTIONS TO BE DISTINGUISHED 34

an SPFD with fewer edges (Step 2of comjninspfdJforjsep). Let this new separator be 3^^ and the
SPFD computed for rjj using yj inalgorithm comjDiinspfd-forjsep be Rj.

It is known that is the separatorclosest to the primary inputs. Thus y^ can only contam
nodes that are either in y^or are in the transitive fanout of nodes in yj. By Lemma 4.1, the SPFD
of a node is always a subset of the union of the SPFDs of its fanins. Hence Ck computed in Step

1(d) using separator yj is asubset of Ck computed using yj. Hence Rj has to be asuperset of Rj
since Sk is the same in both computations in Step 1(e). •

Theorem 4.2 Ifany two minterms that are connected by an edge in R^ evaluate to the same value
at theoutput ofrjj, thenetwork specification cannot be satisfied if thefunctionality of thenodes in

the transitivefanin ofrij and the topology of the network is unchanged.

Proof It is provedbelow that given the functionality of the nodes in the transitive fanin of r}j and

the topology ofAf, if any two minterms have an edge between them in Rjy then they cannot be
assigned the same value without affecting networkfunctionality. Assume thereexists an edge e =

(m, m') € Rj such that mand m! can be assigned the same value at the output ofTfj. By Step 1(e)
of comjniiispfd-forjsep, e has to belongto the SPFD of some primary output Let that primary

output be Zk. Furthermore, e ^ Ok-

Thus e is not distinguished by any of the other nodes in Uk- Since the functionalities

of the nodes in the transitive fanin of r}j and the topology of Af remains unchanged (i.e. no new

wires are added between previously unconnected nodes), m and m' evaluate to the samevalue for

all the nodes in Uk (computed in Step 1(a) of comjiiiiispfdJbr^p) other than rjj. By the above

assumption, m and w! also evaluate tothesame value at theoutput ofTfj. Hence, m and m' evaluate

to the same value for all the nodes in Uk-Let y denote the minterm obtained by computing the image

of bothm and m' from the primary inputs to the nodes in Uk- Since e = (m, mf) belongs to the

SPFD of zfc, m and m' have to evaluate to different values at the output of zk- This implies that the

same minterm y at Uk can produce different values at zk (this is because the nodes in Uk uniquely

determine the valueat Zk)- This is impossible sinceAf is deterministic. •

In Chapter 7, it is argued that no edges have to be added to Rj for ensuring that the
network functionality can be maintained after suitable modification of the functions of the nodes

lying between yj and the primary outputs. Thus, is the minimum SPFD ofrfj.
While the separator yj (shown in Figure 4.3) provides the minimum SPFD, itmay still

be beneficial to use the same algorithm with different separators (say and 3^2 illustrated in Figure

4.4). Each separator provides an SPFD that is a superset of the minimum SPFD. However, it may be

CHAPTER 4. SETS OFPAIRS OFFUNCTIONS TO BE DISTINGUISHED 35

Zk = X1X2 + yx2 + yx3

y = X1X2 + X1X3

Xi X2 X3

Figure 4.5: Example for Minimum SPED computation.

more efficient to use a separator closer to the primary outputs since the number of nodes that have

to resynthesized can be reduced.

It may also be useful to compute the minimum information that rjj provides to another

nodeTjp in the network, where r}p is suchthat all pathsfromrjj to the primary outputs have to pass

through 7jp. Thiscouldbe useful because it may be undesirable to change the network beyond r}p

for efficiency.

Definition 4.7 A node T]p is a dominator of another node r)j, if all pathsfrom r}j to theprimary

outputshave topass through rjp.

Definition 4.8 Let rjp be dominatorof rjj. The minimum SPFD of rjj wrt to r}p is the unique

information that r}j provides to r}p such that thefunctionalities ofthe nodes in the transitivefanout

of rjp can remain unchangedafter rjj is simplified with its minimum SPFD. Thefunctionalities of

nodes in the transitivefanin ofrjj and the topology ofthe networkmust remain also unchanged.

For computing the minimum SPFDof rjj wrt to its dominator rjp, the sub-network consisting of rjp

and all the nodes in its transitive fanin is taken as the input networkAf for com jninspfdi6r.sep.

The node rjp is treated as the primary output Its SPID is derived from its original function and its

ODC. ^th these modifications, the same algorithm can be used.

Definition 4.9 The minimum SPFD of a wire is the set ofedges in the minimumSPFD of

rjj that can onlybe distinguishedby theJunction at rjk-

The concept of the minimum SPFD of a node wrt to one of its dominators and the minimum SPFD

of a wire has applications in rewiring (Chapter 6). Obviously, the notion of a dominator can be

extendedto a set of nodes dominatingrjj.

CHAPTER 4. SETS OFPAIRS OFFUNCTIONS TO BE DISTINGUISHED 36

Unless otherwise specified, the minimum SPFD of a node rjj refers to Rj computed wrt

to the primary outputs using the separator yj. To differentiate this special separator from the other

separators, it is referred to as the minimum separator. For all other minimum SPFD computations,

the parameters will be explicitly mentioned.

Example 4.5 Consider the circuit shown in Figure 4.5. Theseparator is {xuX2iXz,y). Since all

the primary inputs are included in the separator, all the information to Zk can be directly provided

by them. Hence, the minimum SPFD is empty. So, the node y can be replaced with a constant node.

But, thefunctionality ofZkhas to be modified to reflect the changes in y.

4.2.2 Connections to Previous Work

Theorem 43 Ifa mintermis an ODC ofr^j, then it does not appear in the minimum SPFD ofrjj.

ProofLet m be an ODCof Tjj. Assume it appears in the minimum SPFDof rjj and let m belongto

the onset of Zk.

Sincem appears in the minimum SPFDof rjj, thereexistsa minterm m in theoffsetof zk

such that (m, m) is not distinguished by any other node in the separatori.e. for all the other nodes

in the minimum separator m and m produce the same output value. Also, m can be set to have the

same output valueas m without affectingnetworkbehavior since m is an ODC of T}j. Then all the

nodes in the separator set will have identical values for m and m and hence cannot produce different

values at Zk (as Zk is a deterministic function). But m and m belong to the onset and offset of Zk,

respectively and need to be distinguished. Hence (m, m) has to be distinguished by some other

node in the separator. Thus the assumption that m belongs to the minimumSPFD of r}j is incorrect.

•

Notehowever that it is not true that if a minterm is missing in the minimum SPFD of rjj,

it is also an ODC. In the previous example, the minimum SPFD of y was zero but its ODC is given

as xiX2 + X2Xz + X2Xz. So, the minterm X1X2X3 does not belong to the minimum SPFD of y but it

is not an ODC of y either. This is due to the fact that the minimum SPFD algorithm requires the re-

computation ofthe functionalities ofthe nodes between yj and the primary ouq)uts. But, the ODC
computation does not require that. So, minimum SPFDs allow more changes to the functionality of

a node compared to ODCs.

Theorem 4.4 Ifan output observability relation 0(x, z) can be represented as an SPFD, anyfunc-

CHAPTER 4. SETS OFPAIRS OFFUNCTIONS TO BE DISTINGUISHED 37

tion that is compatible with the Boolean relation

Oj{u,v) = Va [Vti,z [Li{x,u) + L2(x, V, 2) + 0(x, z)] + Li (x, u)]

ofr)j also satisfiesits minimum SPFD.

Proof Since the observabilityrelation can be represented as an SPFD, each primaiy output has an

SPFD that specifies what pairs of minteims it has to distinguish. Consider a function / that is

compatible with the Boolean relation Oj. Assume / does not satisfy the minimum SPFD. Hence

there exists an edge e = (m, m') in the minimum SPFD of r)j such that /(m) = f(m'). By

Theorem 4.2, if both m and m' are assigned the same value, the network functionality is affected

if the functionalities of the fanins and the network topology are left unchanged. But in the above

computation of the Boolean relation, neither of them are changed. Hence, m and m' cannot be

assignedthe same value in the function /. Thus the assumptionthat / does not satisfythe minimum

SPFD is incorrect. •

In Section4.4, a Boolean relation is provided that cannot be expressed using SPFDs. If the output

observability relation of the network is one such Boolean relation, then the above theorem is no

longer valid.

4.3 Compatible SPFDs

As in the case of ODCs, it is not practical to simplifyeach node in Af using its minimum

SPFD, recompute the functions of all the nodes in the transitive fanout of y and then move on to the

next node. Hence, the notion of compatibility is particularly important for SPFDs. In this section,

a brief sketch of a procedure that computes compatible SPFDs for all the nodes in the network is

provided. Thus, two nodes can be changedusing their SPFDs withouthaving to re-compute their

SPFDs from scratch. Or, in information-theoretic terms, the information provided by the nodes are

compatible. For convenience, compatibleSPFDs are simply referredto as SPFDs in the rest of this

dissertation. In the next chapter,a detailedexplanation of an efficient algorithmused for computing

SPFDs of all the nodes in the network is provided. Here, an intuitive explanation of the algorithm

is presented.

SPFDs can be computed for an entire network by starting at the primary outputs. The

SPFD of a primary output specifies that the care onset of its function has to be distinguished from

CHAPTER 4. SETS OFPAIRS OFFUNCTIONS TO BE DISTINGUISHED 38

thecareoffset of its function'. Keeping in mind thatonlyonepathis necessary, thealgorithm starts

at a primary output, and assigns to eachof its immediate inputs, a subsetof the information that the

inputis responsible for. This assignment is not necessarily unique. Eachpieceof information (a pair

of primary input minterms that the output must distinguish) can be assigned to exactly one of the

faninwires of that outputnode. The algorithmthen considersa node rjj in the next levelawayfrom

the primaryoutputs. After all the primaryoutputs havedistributedinformation requirementsto their

fanins, the information assigned to eachfanout wireof rjj is summed for obtaining the information

rjj must propagate to its fanouts. This required information is then distributed to the fanins of rjj.

As the network is traversed backward, each node is assigned a set of information requirements; this

is an SPED for the node.

The SPFDs are compatible in the sense that the information content of each SPFD is

made compatibleto the information content of the SPFD of other nodes that can possibly affect it.

Of course, depending on the manner of distributing the edges of the SPFD of a node to its fanins,

different results can be obtained. In the next section, a particular scheme for distributing the SPFD

edges of a node to its fanins is considered, that can be used for deriving CODCs using SPFDs.

Other interesting schemes for distributing the SPFD edges of a node to its fanins are also presented

in other chapters of this dissertation.

4.3.1 Emulating CODCs using SPFDs

Consider a node rjp with n fanins, {771,772, ••• ,77n}. The ordering between the fanins,

denoted as O, is given as:

771 >/ 772 >/ • ♦ • >/ 77n.

Thus, 771 has the greatest flexibility and rjn has the least flexibility. The SPFDs of rjp and its fanins

areexpressed in terms of Yp and Yp (the fanin spaces of rjp). In therestof this section, rji is often

referred to as the ith fanin of T}p.

Algorithmcompute-codc_with^pfd(77p, O):

1. Compute the SPFD ofrjp. Denote this as Rp{Yp^ Yp).

Rp(yp,Y;) = fp(y,)7;{Y;)+Tp(Yp)fp(Y;).

Thus, Rp(Ypt Yp) specifies thatthe onset ofrip hastobedistinguishedfrom the offset ofrip.

^The careonset andcareoffset arederived from theonsetandoffset by intersecting them withthecomplement of the
external don't care set, respectively.

CHAPTER 4. SETS OFPAIRS OFFUNCTIONS TO BE DISTINGUISHED 39

2. Process thefanins in order startingfrom rji to rjn-

3. For eachfanin r}i, repeat thefollowing steps:

(a) Compute

= H fe = !/*)•
fc=(t+l)

Thus, R*{Yp^Yp) denotes the edges in Rp(Yp,Yp) that can be distinguished by rn but
cannot be distinguished by the nodes with lesserflexibility.

(b) Fork = l,(i-l)

i. Compute

mYp,Y;)=mYp,Y;) a {RkiYp,Y^) a (j,* ^ »i)).

Thus, Rl(Ip, Yp) ismodifiedby removing the edges in itthat are already in Rk{Ypy Yp)
and can be distinguished by rik-

(c) Remove the minterms in Yp) that no longer have any edges connected to them

and make the remaining Ri(Yp, Yp) completely connected. Let this SPFD be denoted

asRi{Ypy Yp). This is the SPFD ofrji.

In the next few sections, it is proved that the algorithm computexodc.with.spfd can be

used for computing the CODCs of the fanins of a node.

4.3.1.1 Additioual Notation

CiiXp) denotes the CODC of 7?i obtained by using Savoj's algorithm and the ordering

given in Section 4.3.1. Thus,

Ci{Yp) = (dfp/dy^ + VpJ ... (dfp/dyi.^ +

Given the SPFD RiiXp^ Yp) ofafanin r)i obtained from the algorithm computejcodc.with-spfd, let

Vi{Xp) = 3Y.Ri{Yp,Y;).

Vi{Yp) denotes the set ofall minterms that have atleast one edge attached tothem in Ri(Yp^ Yp).
Considera mintermm of the space. The notationm{j) is used to refer to the valueof

the jth fanin in the minterm m. Also, m(J = a) denotesthe mintermthat is obtainedby settingthe

value of the jth fanin to a in minterm m. The minterm obtained by toggling the value of the jth

fanin in minterm m is denotedas m(j 4-)-

CHAPTER 4. SETS OFPAIRS OFFUNCTIONS TO BE DISTINGUISHED 40

4.3.1.2 Formal Proof

Theorem 4.5 For eachfanin, a minterm m GCi{Yp) iffit isnot present in Ri{Yp^ Yp). Orinother

words.

Ci(Y,.) = Vi(Yf).

Proof Proof by induction on i.

Base Case:

Consider the case of the first fanin i.e. i = 1.

(^): Consider a minterm m in Ci(Yp). Assume thatm G /p. It is easyto see that for all

Th€j^,7nand mdiffer insome other position besides the value ofthe first fanin. Thus, m will not
be included in i2i(lp, Yp) and hence will not be included in i?i(lp,Yp). Thus, C\{Yp) C Vi(Yp).

(-^) : Similarly, consider a minterm m ^ Ci(Yp). Then, m G {dfp/dyi). Assume

m Gfp. So, this implies that there must exist a minterm m e fp such that m = m(l i). Now, the
edge e = (m,m) can only bedistinguished by 771 and thus has tobeincluded inRi{Ypj Yp). Thus,

mGVi(Yp). Hence, QKiy CVi{Yp) ori^^ CCi(yp). Hence, Ci{Yp) = Vi(Y^.
Inductive Step:

Assume it is truefor all fanins less than (i —1). Now, it has to be proved for the ith fanin.

(4-): It has to be shown that if a minterm m is an elementof Ci(lp), then it is not an

element ofVi{Yp). Let m GCi(Yp). Let m Gfp. Also assume that m GVi(Yp). Thus, there must

exist a minterm m such that the edge e = (m, m) GRi{Ypi Yp) and the following two conditions

are satisfied:

1. m and m are same in the values of the fanins greater than i. (Step 3(a) of the algorithm.)

2. e = (m, m) isnot contained inthe SPFD RkiXpy Yp), where k <i and m(k) ^ m{k).

Since m GCi(Yp), hence m is notsensitive to thevalue of theith fanin. So, it is easy toseethatm

and m differ in more fanins besides the ith fanin. Let this subset of fanins be denoted as S. Now,

both m and m cannot simultaneously appear in the SPFD Rk(Yp, Yp) ofany rfk GS. Otherwise,

condition(2) wouldnot be satisfiedby the edge e = (m, m).

Let J C S such that m is a CODC for the fanins in J. Consider the minterm,

m' = m{l = m(Z)); {{rfi € J) A (rji = 77i)}.

Thus m' is obtained from m by setting the values of the fanins in J and the value of rji equal to their

coitesponding values in m. Since, by assumptionm is a CODC of the fanins in J and of Tji, hence

CHAPTER 4. SETS OFPAIRS OFFUNCTIONS TO BE DISTINGUISHED 41

m' e fp. Thus, theedge e' = (m', m) needs to bedistinguished. It is easy to seethat this edge can

only bedistinguished by one ormore fanins inS\J Som has tobelong tothe SPFD Rk(Yp, Yp)

of a fanin 77^, suchthat rjkS S\J. Also, sincem is nota CODC of anyfanin 77/fc G5 \ J, hence by

IH, m has tobelong tothe corresponding SPFD RkiYp, Yp).

Hence, there exists at least one fanin 77^, where fc < i, such that both m and rh appear in

its SPFD RkiYp, Yp). Hence, by Step 3(c) of the algorithm, e G Yp). Thus, the algorithm

will not include e in Yp). Hence, acontradiction occurs. Thus, CiiXp) C Vi{Yp).
(->): It hasto be shown thatif a minterm m doesnotappear in Vi (ip), thenit is a CODC.

Consider a minterm, m ^ Vi{Yp). Letm Gfp. Thishappens in eitheroneof the twocases:

1. 771 does not appear in Step 3(a) of the algorithm. This means that for every 7n G /p, tti and

rh alwaysdiffer in some rjjy wherej > i. Thus, togglingthe valuesof all the fanins < i (i.e

771 •• •77i) in 771 will necessarily yield a minterm m' such thatm' Gfp. Thus,

Thus, 771 is a CODC of fanin 77,.

2. There exists edges inR*{Yp, Yp) in Step 3(a) but are not included injRi(ip, Yp). This implies

that for each such edge e = (m, rh) (i) m and rh are identical in all the fanins > i and (ii) m

and m differ in the ith fanins and some other fanin jy where j < i. Hence, just by toggling

the value of the ith bit in m, it cannot become an offset minterm. Thus,

m Gdfp/dyi.

So, m is definitely an ODC. In order to show that it is a CODC, it has to be shown that it is

alsocompatible with the CODCs of the fanins from {771, •• • , 77i_i}. Proofby contradiction.

Assume that m is not compatible with the CODCs of the previous fanins. Let 777 be a CODC

ofa subset J of the fanins {771, ••• , rji-i}^. Construct a minterm m' asfollows:

m' = m{k 4,), {{k = i) U{r)k € J)}.

It is obtained from m by toggling the values of the fanins in J and the value of rji. Since, m

is notcompatible with the CODCs of the previous fanins, hence m' hasto belong to fp. Now,

the edge e' = (m, m') has to be distinguished. But, e' can only be distinguished only by the

^By construction, m' andrh differonlyin thesefanins.
^Note thatif m is nota CODC of any fanin < yi, thenit has to be compatible withtheirCODCs.

CHAPTER 4. SETS OFPAIRS OFFUNCTIONS TO BE DISTINGUISHED 42

fanins in J or by fanin rji. Since, m is a CODC for the fanins in J, hence by IH, m doesnot

appear in theSPFDs of thefanins in J. Thus, e can bedistinguished only by fanin rji. But,

thiscontradicts the initial assumption that m doesnot appear in Vi{Yp). Hence, m is bothan

ODCof r]i and it is alsocompatible with the CODCs of thefanins from 771, ••• , rji-i. Hence,

m is a CODC.

Thus, Vi(Yp) C Ci{Yp). Hence,

Ci(Yp) = Vi{Yp).

•

Hence, the above theoremshowsthat CODCs can be computedusing compute^pfd.withjcodc.

Thus, SPFDs can represent all the flexibility that CODCs represent.

4.4 SPFDs in the FlexibUity Hierarchy

In this section, SPFDs are placed in the flexibility hierarchy shown in Figure 3.5. First,

it is argued that the flexibility expressed by SPFDs cannot be expressed by either multi-output

multifiinctions or Boolean relations. Each of these formalisms are considered in turn.

The following example illustrates why the flexibility of SPFDs cannot be completely cov

ered by multifiinctions. Consider the following problem: Given a set of single-output or multi-

outputnodes in a network, suppose it is necessary that some pairs of minterms have to be distin

guishedby the groupof nodes. Also, supposeit is sufficient, if for eachpairof minterms, the output

of a single node in the set is different. This problem can be very easily formulated using SPFDs.

The set of minterm pairs that have to be distinguishedforms the SPFD for the group of nodes. Any

validcoloring of this SPFD can providefunctions for all the nodes in the set that satisfiesthe given

condition. The set of functions represented by this SPFD cannot be captured by any multi-output

multifunction since these are incapable of expressing any kind of output correlation. Hence, the re

quirement that only one output needs to differ for a particular pair of minterms cannot be expressed

by them.

Similarly, a Boolean relation cannot express all the flexibility that an SPFD can repre

sent. Considerthe following SPFD {(00,01), (00,10), (00,11), (01,10), (01,11), (10,11)}. Any

function that satisfies the SPFD has to assign different values to all the minterms in the SPFD. The

functions shown in Table 4.1 satisfy the SPFD.

CHAPTER 4. SETS OFPAIRS OFFUNCTIONS TO BE DISTINGUISHED

input fi /2 /3 /4
00 00 01 10 11

01 01 10 11 00

10 10 11 00 01

11 11 00 01 10

43

Table 4.1: Functions that satisfy SPED {(00,01), (00,10), (00,11), (01,10), (01,11), (10,11)}.

But all these functions cannot be captured by a singleBoolean relation. This is because

Boolean relations cannot capture input correlation. Hence, therequirement thattheoutput value of

one input minterm has to be distinguished from the output values of all the other input minterms

cannot be captured using a Boolean relation.

Thus, the flexibility expressed by SPFDs cannot be captured using eithermulti-output

multifiinctions orBoolean relations. Thefunctions thatsatisfy anSPED can becaptured bya special

type of MBR. This MBR consists of a single Boolean relation and set of constraints:

1. The Boolean relation specifies that each input minterm can take any value from the set

{0, ••• ,n}, where n is the number of inputminterms.

2. Theconstraints arederived from theedges in theSPED graph. Each edgee = (m,m') in the

SPED graphis translated intoa constraint thatstatesthat theoutputproduced by m cannotbe

equal to the output producedby m'.

All functions that are compatible with this MBRdefinitely satisfy the SPED. This is because any

function / that satisfies this MBR ensures that for any two minterms m, m' that have an edge

between them in theSPED graph, /(m) f(m'). Similarly, all functions thatarecaptured by the

SPED are also functions that are contained in the above MBR.

SPEDs cancompletely captureall theflexibility expressed by multi-output multifiinctions.

This is because multi-ouqiut multifiinctions express only input correlations, which can be easily

expressed using SPEDs. Ontheotherhand, the flexibility ofBoolean relations cannotbecompletely

captured using SPEDs. As an example, consider the following Boolean relation:

00

01

10

11

0

1

0,1

1,2

CHAPTER 4. SETS OFPAIRS OFFUNCTIONS TO BE DISTINGUISHED

Multiple Boolean Relation
Multiple Output SPFDs

Boolean Relation
Multiple Output MultiFunctions

Multiple Output

Incompletely Specified Functions

Multiple Output

Completely Specified Functions

Single Output Multifunctions
(Single Output SPFDs)

Single Output
Incompletely SpeciHedFunctions

Single Output
Completely Specified Functions

44

Figure 4.6: Flexibility hierarchy revisited: BRi denotes the set of Boolean relations that have a
unique input minterm for each output value.

All the functions that are compatible with this Boolean relation cannotbe captured using an SPFD

because 10 has to be distinguished from GO or 01 but not both, and 01 can't have output value 2.

Only a subset or superset of the functions can be represented using an SPFD. However, there are

some specific kinds of Boolean Relations thatcanbe represented using SPFDs. One such typeis

given below.

Lemma 4.2 Suppose a Boolean Relation has n outputvalues. If a Boolean Relation has a unique

minterm for each output value, then an SPFD can be constructed such that all colorings of the

SPFD with n colors can provide a function that is compatible with the Boolean Relation, modulo

renaming.

TheSPFDcan beconstructedby addingan edgebetweenanytwominterms that havenon-overlapping

output parts. Sincethe Boolean relation has n output values, the unique minterms of each output

value fonii a clique of size n in the SPFD. Thus, any coloring of the SPID with n colors will

uniquely determine the output values of theseminterms. Any otherminterm will have an edge to

all theuniqueminterms thatdon't produce the sameoutputvalue. Hence, theoutputvalues of these

minterms can alsobe uniquelydetermined. Hence,this SPFD can captureall the functions captured

CHAPTER 4. SETS OFPAIRS OFFUNCTIONS TO BE DISTINGUISHED 45

by the Boolean Relation.

Example 4.6 Consider thefollowing:

00 ^ 0

01 1

10 0,1

11 -> 2

The SPFD that can captureall thefunctions that are compatible with thisBoolean relationsis .-{C00,

II), (00, 01), (01, II), (II, 10)}. Theedge (11,10) implies that 10cannotoutputa 2, butcanoutput

any other value.

It is unclear if there are other types of Booleanrelations that can also be completely capturedusing

SPFDs.

Thus, SPFDs can capture all the flexibility expressed by multi-output multifimctions and

a part of the flexibility expressed by Boolean relations. Hence, the flexibility hierarchy shown in

Figure 3.5 can be re-drawn as shown in Figure 4.6.

4.5 Summary

This chapter provided a detailed exposition of the concept of SPFDs. The relationship

between the SPFD of a node and its information content was described. The minimiiTn SPFD of

a node was defined and an algorithm was provided for computing it. To avoid the computational

expenseof minimizing each node in a networkusing its minimum SPFD, the notion of compatible

SPFDs (similar to CODCs) was proposed. The core idea of the algorithm that can be used for

computing these SPFDs was also described. It was proved that CODCs can be emulated using

compatible SPFDs. Hence compatible SPFDs are strictly more powerful than CODCs. Finally,

SPFDs were placed in the flexibility hierarchydescribed in the previouschapter,by comparing their

ability to express flexibility to that of previously proposed approaches.

46

Chapter 5

SPFDs for Network Optimization

In this chapter, the details of computing compatible SPFDs for nodes in a network are

provided. Then, the algorithms that use these SPFDs for resynthesizing the nodes is described.

Someproblemsof these algorithms are outlinedand alternative solutionsare proposed.The chapter

ends with the results of using SPFDs for network optimization. The results are compared to the

optimization results of CODCs.

5.1 SPFD Computation Algorithm

In this section, a new schemefor computing compatibleSPFDs for the nodes in a network

is presented. The algorithm startsby ordering the nodes in the network. This orderingis then used

for the distribution of SPFD edges during the SPFD computation phase.

5.1.1 Ordering Schemes

The orderingschemeworksas follows: The levelof a node rjj is computedrecursively as:

Level(rij) = 7nax{{Level{7jk) • rjk is afanout of 77^}) + 1,

where nodes with zero fanout have Level = 0 i.e. Level is the maximum distance to any Primary

Output. Given the levels, the computation order of a node is obtained as follows:

• A node with a lower level (nearer the primary outputs) occurs earlier in the ordering.

• Given two nodes at the same level, the node with the mostfanouts is earlier in the ordering.

CHAPTER 5. SPFDS FOR NETWORK OPTIMIZATION 47

Ra o O

ooo
10 Rn

O

11

Figure 5.1: SPFDsfor the fanins of an OR gate, O = A-\- BygivenA>f B.

The nodes are visited, according to their computation order (hrom lowest to highest), and

their SPFDs are computed. Hence, the SPFD of a node is always computed before the SPFDs of its

fanins.

5.1.2 Computing the SPFD of an node

The SPFD computation starts at the primary outputs. The SPFD of a primary output node

is computed from its function. Thus, its SPFD specifiesthat all minterms in the onset of the function

have to be distinguished from the minterms in the offset of the function. In case, an EXDC set is

specified for each primary output, only the care onset has to be distinguished for the care offset

At a internal node rjjy the following twostepsareperformed:

1. The SPFD ofeach ofitsfanout wires is computed.

2. The SPFD ofa node is computedfrom the SPFDs ofitsfanout wires.

The SPFD of each fanout wire is computed as follows:

Given i2/b, the SPFD of a fanout node rjky the edges of Rk that can be distinguishedby rjj

but not by the fanins of r}k later in the ordering are computed(if r)m is later in the orderingthan rjjy

then rjm is given less flexibility than rjj i.e. rjm </ Vj)- Hiis is denotedas Rjk. Thus,

Rjk = A{ JJ (yi = yi)}(yj i-y'j).

Example 5.1 Consider the simple OR-gate shown in Figure 5.1. Its SPFD is given as Ro =

{(00,01), (00,10), (00,11)}. Now, let A >/ B, i.e. A will only distinguish the edges that B

cannotdistinguish. Ofall the edges in Ro, the edge{(00,10)} can onlybe distinguishedby A since

CHAPTERS. SPFDS FOR NETWORK OPTIMIZATION 48

Figure5.2: Yj and Yk spaces.

B is equal tozerofor both the minterms in thepair. Thus theSPFD ofA is{(00,10)}. The SPFD

ofB contains all theremaining edges ofRo i-e. {(00,01), (00,11)}. IfA </ B, then theSPFD of

A would be {(00,10), (00,11)}.

The SPFD at a node is obtainedby first mapping the SPFD of each fanout wire to its local

input space andthen computing theunion of these mapped SPFDs. TheSPFD of eachfanout wire,

Rjk{Yki YQ, ismapped tothe local space ofrij using the following equation:

Ri,(Yj,Y!) = ^y^y,Ri^{YHX)En{Yj,Yk)En(Y;X)-

Theencoding relation £7n(lj-, Yk) provides themapping between theYj and the Yk spaces, shown

in Figure 5.2, and is given by:

En(Yj,Yk) = 3xG(X,Yj)G(X,Yk).

G{X, Yj) denotes the characteristic relation between the primary inputs ofM and the fanins ofTjj.
Thus (mi, 7712) € En(YjyYk) if there exists a primaiy input minterm x thatproduces mi

in the Yj space and m2 in the Yk space.

For the circuit shown in the Figure 5.3, the encoding relation between the Ys and Yi

spaces is:

00 00,01

01 11

10 ^ 10,11

11 11

CHAPTERS. SPFDS FOR NETWORK OPTIMIZATION 49

ni

Figure 5.3: Example circuit.

5.1.3 Improvements

Someadditional improvements can be built into theSPEDcomputation algorithm. During

thecomputation of theSPED Rjk of thefanout wire the edges thataredistinguished by the

SPEDs of thefanins of rjk earlier in the ordering ^areremoved to get Thus,

This process has theeffect ofeliminating some edges from Rjk thathave already been distinguished

(e.e')

Figure 5.4: Example illustrating the advantagesof the improvements in Section 5.1.3.

by other fanins of rjk. The advantage with this scheme is illustrated in Figure 5.4. Assume that node

rji is earlier in the ordering than rjj. Suppose (e, e') belongs to Rk and is distinguished by both rji

and rjj. In both the schemes, let rjj <f rji. In the approach explained in the previous section, (e, e')

^note that the fanins earlier in the orderthan rfj already have SPFDs associated with them since theSPFDs of the
nodes are computed in that order

CHAPTERS. SPFDS FOR NETWORK OPTIMIZATION 50

isassigned tothe SPFD Rjk ofWnj^rjk' Further suppose that (e, e') isrequired by the fanout wire

^ 3ndhence is already included in theSPFD of rji. In the new SPFD computation scheme,
(e, e') will not beincluded in the SPFD ofthe wire Wrj^^rtk- The previous scheme would add (e, e')

to rjj andthusduplicate some information in rji and rfj.

5.2 Resynthesis Algorithm

Here, the algorithm for resynthesizing the nodes in the network using their SPFDs is

presented.

The nodesare resynthesized ina topological orderfromprimaryinputsto primaryoutputs.

Thus, when a particular node is being resynthesized, the new implementations of its fanins are

available. The SPFD of a node is given in terms of its original inputs. Due to the re-implementation

of the fanins, the mapping to these inputs might change. For instance, suppose in the circuit in

Figure 5.3, T}j isconverted from anOR-gate toaninverter, asshown inFigure 5.5. Then the SPFD

of 773 computed in terms of the la space now has to be converted to an SPFD in terms of the new

fanin space Y^.

Themodified SPFD of the node rjj under the new encoding of the inputs is obtained by

the following:

1. The mapping between the oldfanin space Yj and the new fanin space, denoted as Yj, is

computed.

2. The original SPFD in terms of the Yj is translated to a modified SPFD in terms of the Yj

space.

The relation between the old fanin spaceYj and the newfanin spaceYj, shown in Figure

5.6, is given by:

Bn{Yj,Yi) = 3xg(X,Yj)g{X,Yj).

Q(Xj Yj) is the characteristic relation between the primary inputs ofAf and the original fanins of

rjj. Q(X, Yj) is the characteristic relation between the primary inputs ofAf and the resynthesized

fanins of rjj.

'Thishasalready beencomputed since rjm isearlier in theordering.

CHAPTERS. SPFDS FOR NETWORK OPTIMIZATION 51

given as

Figure 5.5: Example circuit (Contd).

Thus the encoding relation, EniYzjYz), between the Yz and Yz space in Figure 5.5 is

00 -> 01

01 00

10 11

11 11,10.

The modifiedSPFD is then computed as:

Rj(Yj,Y!) = 3y.yjRj(Yj,Yj)En{Yj,Yj)En(Yj,Y!).

Note that these steps are very similar to the mapping and translation phase in the SPFD generation

phase.

Figure 5.7 illustrates how the new encoding of the inputs changes the original SPFD of

rjz in Figure 5,3. Notethattheedge (00,11) translates intotwo edges {(01,11), (01,10)}.

CHAPTERS. SPFDS FOR NETWORK OPTIMIZATION

RiiY3,Yi)

original new

m } Krij

Figure 5.6: Yj and Yj spaces.

E

52

R3{Y3,y^)

Figure 5.7: ModifiedSPFD of 773 under the encoding E.

Any function that satisfies the modified SPFD is a valid new function at rij. The new

functions are derived by coloring the modified SPFD graph such that no two minterms that are

connected by an edge have the same color.

With single-output nodes, the modified SPFD is mostly bipartite^. Since most of the

experiments described later involve networks of single-output nodes, the coloring algorithm used

for bipartite SPFDs is explainedin a little more detail below.

The main source of flexibility in bipartite SPFDs is the presence of Strongly Connected

Components (SCCs). The advantage of SCCs is that the minterms in one SCC do not have to be

distinguishedfrom those in another. The coloring algorithm for bipartite SPFDs first enumerates

all the SCCs. Then, for each SCC, one set of minterms is placed in the onset and the other set

of minterms is placed in the offset. But the choice for one SCC is completely independentof the
A ^

choice for another SCC. Hence, if there are k strongly connected components in Rj{Yj,Y-)^ then

'in a later section,it is describedhowthe modified SPFDcan be non-bipartite.

CHAPTERS. SPFDS FOR NETWORK OPTIMIZATION 53

o d SPFD
110111

101 -> 010

E: 001 -> 100

000 010

111 -> 111

010

Figure5.8: Non-bipaitition of the modified SPFDafterencoding.

there are 2^ functionally different ISFs that can be implemented at rjj. The new implementation at
a node is chosen to be the minimum of the minimum covers of all the 2^ ISFs.

Finding the SCCs:

In this section, an implicit algorithm for enumerating all the SCCs is proposed. Given

an SPFD R{zy 2'), the individual SCCs can be obtained as follows. Initially, the two step graph

z') = 3yR(z, y)R(y, z') and the set ofall nodes N(z) = 3y/2(2, y) inthe bipartite graph are
obtained. Then the following steps are performed:

1. Pick zq G N(z).

2. Compute thefixpoint Ei{z), which is all the nodes that can be reachedfrom zq using R2.

Compute Eo{z) = 3yR{yj z)Ei(y), thesetofnodes thatare connected byan edge toa node

in Ei(z). Store (Ei, Eq) as an SCCpair.

new SPFD

3. LetN{z) = N(z)Ei{z) + Eo(z). IfN ^ 0. go to 1.

Note that this algorithm assumes the SPFD jR(2, z') is a symmetric relation. Since these

SPFDs are expressed in terms of the local fanin space, the SPFDs are not too large. Hence, it is not

very expensive to express it as a symmetric relation.

Non-bipartition:

There could be situations where Rj(YjyYl) is not bipartite, even though Rj(YjjYj) is.
Figure 5.8 illustrates one such example. In such a situation, the result is a generalgraph. If the

CHAPTERS. SPFDS FOR NETWORK OPTIMIZATION 54

graph can be colored using k colors, the newfunction can be encoded using logk bits. Thus the

original nodeis replaced by logk nodes,all of whosefanouts are the sameas the original node. This

situation is undesirable since the number of fanins of the fanout nodes may increase. Techniques

are being explored for constraining the SPFD propagation through the network so that under any

encoding, the graph Rj{Yj, YJ) remains bipartite.
In the next section, it is proved that the SPFD of a primary output node can never be

bipartite aftertranslation from the Yj space to the Yj space. Hence, the primary output nodes in a

network of single-output nodes can never be split into multiple nodes. Experiments indicate that

non-bipartite structures occurrarelyeven for internal nodes.

In the sequel, this algorithm of SPFDcomputation followed by resynthesis is referred to

as compute-globaljspfds.

5.3 Proof of Correctness

In this section, it is proved that the algorithm compute-global^pfds always produces an

equivalent network.

Definition 5.1 The original SPFD ofrij is the SPFD Rj(YjjYj) attached to it after the SPFD
computation phase o/compute-globaljpfds.

Definition 5.2 The modified SPFD ofrij isthe SPFD Rj{Yj, YJ) obtained by mapping the original
SPFDfrom theoldfanin space Yj to thenewfaninspace Yj.

Definition 53 The global SPFD ofrij isobtainedfrom its original SPFD RjiXj^ Yj) by composing
each yk GYj by /|(X) and each y'j^^Yj by fk{X'). Itis denoted as Rj{X, X').

Theorem5.1 If the new Junction at every node rjj in the network satisjies its modified SPFD

Rj{Yj,Yj), then italso satisfies its global SPFD Rj{Xj X').

Proof The proof is by induction on the level of eachnode in the circuit The first-level nodes are

functions of the primary inputs only. For any such node rij,

Rj{Yj,Yj) = Rj{X,X') = Rj{Yj,Yj),

since theprimary inputs arenotchanged andhence anyfunction thatsatisfies themodified SPFD of

the node also satisfies its global SPFD.

CHAPTER 5. SPFDS FOR NETWORK OPTIMIZATION 55

Now suppose thatall level n nodes implement theirrespective modified SPFDs. Let tjj be

a level n+1 node. It isproved that ifthe new function atrij satisfies its modified SPFD, Rj(Yjy Yj)y

then it alsosatisfies theglobal SPFD Rj{Xj X'). Proofby contradiction.

Assume rij satisfies Rj{YjjYj) but it does not satisfy Rj(XfX'), where Rj{XjX') is
obtained from RjYj) by composing each yk € Yj by (X) and each GYj by /|{X'). This
means that there exists an edge (x, x') G Rj{X,X') that is not distinguished by the new function

at rij. Now, the edge (x,x') GRj{XjX') corresponds to an edge (y,y') GRj(YjyYj), where y is
the image ofx in the Yj space and y' is the image ofx' in the Yj space. Since, while distributing
the SPFD edges, it is ensured that all the edges of the SPFD of a node are assigned to at least one

of itsfanins, theedge (y,y') has to beassigned to a fanin of T}j andis included in theSPFD of that

fanin. Assume that the fanin is rjk- Since the level of rjk < n, then by the induction hypothesis, rjk

satisfies itsglobal SPFD Rk(XyX'). Since (y,y') G Rk(YkyYj^)y (x,x') G Rk{XyX') and hence

(x,x') is distinguished by rjk- Hence (x,x') GRj{XyX') produces an edge (y,y') GRj(YjyYj)y
where y and y' differ in the bit corresponding to rik- But it is given that the new function at rjj

satisfies Rj(YjyYj) and hence (y,y') has to be distinguished by it. Thus (x,x') also has to be
distinguished by the new function at 77^, leading to a contradiction. Thus the new function at r^j

satisfies Rj {XyX'). •

From the above, itcan be concluded that ifanode rjj satisfies its modified SPFD Rj{Yj, YJ),
then it also satisfies its global SPFD Rj{XyX'). By the inductive proofgiven above, it can be

claimedthat eachnode in the circuit implements its globalSPFD.In particular, each primaryoutput

does so, thereby satisfying the original input-output functionality of the network.

Theorem 5.2 The modified SPFD ofa primary output rfj is always bipartite ina network ofsingle-

output nodes.

Proof It is shown that for every edge e = (7711,7712) G Rj{YjyYj), all the minterms ofMi =
3^^miEn{Yjy Yj) and M2 = 3-^^m2En{Yjy Yj) belong to the original onset and offset, respectively
(or vice versa). Thus all the edges in the modifiedSPFD are only betweenonset mintermsand offset

minterms. Hencethe modified SPFDof a primaryoutputis always bipartite. Proofby contradiction.

Suppose there exists an edge e GRj{Yjy Yj) such that there isaminterm mi GMi and a
minterm m2 G M2 and both mi and m2 belong to the onset. For the edge e to occur in the modified

SPFD, there has to exist at least one edge in the original SPFD that maps to e. Assume that edge

e = (7711,7712) in theoriginal SPFD satisfies the above condition. Theoriginal SPFDof theprimary

output is constracted by adding edges between all onset minterms and all offset minterms. Thus,

CHAPTERS. SPFDS FOR NETWORK OPTIMIZATION 56

mi has to belong to the onset(olfset) and m2 has to belong to the offset(onset). Let mi belong

to the onset and m2 belong to the offset. Then the minterms mi and m2 belong to Mi and M2,

respectively, only because both mi and mi map to ttii and both m2 andm2 niap to 7712. But the

edge (m2, m2) has tobelong tothe original SPFD (since m2 isinthe onset and 7712 Isin the offset).

Hence they have to be distinguished andcannot map to the same minterm 7712 (by Theorem 5.1).

Thus the assumption thatboth mi andm2belong to theonset leads to a contradiction. •

5.4 Example

A simple example is provided for illustrating the execution of compute^obal.spfds.

Consider the following network configuration:

/ = ^3(51^2+^^) where

gi = xz-\- X1X2

92 = "^xs + Xl^

93 — Xi-\- X2^ + ^X3

Let the ordering algorithm retum the ordering : f < 93 < 92 < 9i- Thus, in terms of flexibility,

91 <f 92 <f 93-

000

001

111

Figure 5.9: SPFD of / in terms of its local inputs.

The SPFD of / in terms of it local inputs, pi, 92 and 93, is

{(000, 111), (110, 111), (Oil, 111), (101, 111), (000,001), (110,001), (Oil,001), (101,001)}.

This can also be represented by a bipartitegraph as shown in Figure 5.9. Now, the edges of the

SPFD of / haveto be distributed to its inputs. An edge is assignedto 92 only if it is not distinguished

CHAPTERS, SPFDS FOR NETWORK OPTIMIZATION 57

000

Figure5.10: SPFDs of (^i, /), (52, /) and (^3, /) in termsof the local inputsof /.

001

Qoo

010

11

Figure 5.11: SPFDs of gu 92 and 53 in terms of their respective local inputs.

by gi and similarly an edge is assigned to gz only if it is not distinguishedby both pi and p2- For

example, the edge (Oil, 001) was put on p2 because pi = 0 for both minterms. The SPFDs of the

wires (pi, /), (p2, /) and (p3, /) in terms of thefanins of f (i.e. pi, p2 andgz)are shown inFigure

5.10. The SPFDs of the nodes pi, P2 and p3 (which are in terms of vertices in the x space) are

derived by mapping the SPFDs of the wires (pi, /), (p2, /) and (p3, /) respectively to their input

spaces and are shown in Figure 5.11.

Then the new functions at pi, P2 and gz are derived (as functions of x) using their re

spective SPFDs. The SPFD of pi has two strongly connected components. For the component

{(000,001), (100,001), (000,110), (100,110)}, let {000,100} be in the onsetand {001,110} be

in the oifset. Similarly for thecomponent {(Oil, 010),(101,010), (111, 010)}, let{Oil, 101,111}

be included in theonsetand{010}be in the offset Forderiving the newfunction at p2, let {01,10}

CHAPTERS. SPFDS FOR NETWORK OPTIMIZATION 58

000

010

E: 000 ^ 101

001 000

Oil -> 111

101 100

101 -)» 101

110-> 111

111 010

Figure 5.12: Modified SPFD of / under encoding E.

and {GO, 11} be in the onset and offset, respectively. Similarly for the new function at p3, let

{ODD, 011} be theonsetand{010,110,001}be theoffset. Thus, thenew functions at pi, p2 and

denoted as pi, p2 and respectively are given by:

gi = xixz + X2Xz 4- ^ ^

92 =

gZ = X2X3+^^

The new functions, pi, p2 and gz, provide a new encoding at the inputs of / and thus the SPFD of /

under this encoding is shown in Figure 5.12.

If {000,010} is included in the onset of / and the rest in the offset, the new function at /

is given as = gi. Of course, an inverter has to be inserted at the output to get back the original

function. Even then, the savings in the number of literals is considerable.

In contrast, this optimization cannot be obtained using CODCs. This simple example

illustrates that SPFDs can perform optimizations on circuits when CODCs cannot. Thus SPFDs can

be used to get better optimized circuits.

In the following sections, two main problems associated with SPFD algorithms are ad

dressed: non-robusmess and unpredictability. Non-robustness issues arise due to the memory prob

lems of BDD engines. Altemative schemes are provided in the next section for solving this prob

lem. The increased flexibility ofSPFDs can produce some uncontrolled changes in the network and

thereby adversely affect the predictability ofSPFD-based optimization. In a later section, the causes

of this unpredictability are provided and some solutions are proposed for countering this problem.

CHAPTERS. SPFDS FOR NETWORK OPTIMIZATION 59

5.5 Robust Computations

The first implementation used BDDs for all computations. This worked well for medium

sized circuits. However for larger circuits, computing the relation En(YjyYk) during the SPED

computation phaseand the relation En(Yjy Yj) during the resynthesis phase caused BDD memory

explosion problems.

SAT solvers are known to be more robust than BDD engines. Hence they can handle much

larger circuits without significant memory problems. In the next section, an algorithm is presented

for computing the above relations using a SAT solver.

5.5.1 SAT-based scheme

The algorithm comjencjrelii given below computes En(YjjYk) for any (r)j^7)k) pair in

the network, where rjk is a fanout of r/j, using a constructive approach. En{Yj, Yk) is initialized

to the empty set. Given rjj and its fanout rjkt a SAT instance C is created which contains the

clauses of all nodes in the transitive fanin of rjk. Thus C contains all the information about the

relationshipbetween the faninsof r}k and rjj. Each solutionS returnedby the SATsolveris modified

by projecting out the variables not in Yj or Yk to yield S'. S' is a cube of En{YjjYk) since there

exists a setting of theprimary input variables thatgives S'. 5' is added to En{Yjy 1^). Then C is

modified by adding the clause S' to C. The SAT solver is invoked again and the process is repeated.

The addedclauseS' guidesthe SATsolverand prevents it fromretuminganothersolution S" which

yields S' afterprojecting out all variables not in Yj or Yk. Thus this process guarantees that after

each call to the SAT solver, the cube S' is unique. The algorithm stops when the SATinstance is

not satisfiable. At this point,all cubesof En(Yj, Yk) havebeenenumerated.

Algorithm com-encj^ln (Afy rfjy rjk):

1. En{Yj,Yk) = (l>.

2. Associate a SAT variable yi with each node rji in the network.

3. Writedown SATclausesfor each node in the transitivefcminofrjk to get a SATinstance C.

4. LetV = YjUYk.

5. Call a SATsolver on C. If the instance is unsatisfiable, go to step 7. Given a solution S,

projectout variables that are notpresent in V to get a cube S' of En{YjjYk). Add S' to

CHAPTERS. SPFDS FOR NETWORK OPnmZATION 60

Figure 5.13: Relation between rjiy r)j and

En{Yj^Yk). Thus,

En(yj,Yk) = En(Xi,YH)yjS'

6. Given S', add the complement of S' as a clause to C to get a new SAT instance. Thus,

C = C A S'. Go to step 5.

7. Stop. Output En(Yj,Yk).

Thisalgorithm canbe implemented using anycomplete SAT solver, i.e. onethatcan find

a solution if one exists. In the actual implementation, CHAFF [14], developed by Moskewicz et al.

at Princeton, was used. CHAFFhas an option for enumerating all solutionsof a SATinstanceover

a subset of the variables. So Steps 5 and 6 are implemented in one call to CHAFF.

During the resynthesis process, the relation En{YjyYj) for the node r}j has to be com

puted. The procedure is similar except for some minor changes. InStep 2, two variables yi and y[

are associatedwith each node 7]i in the network. The variable yi is used for expressingthe original

function of rji and the variable y'̂ is used for expressing the new function of rji. In Step 3, clauses

are addedfor both the original and the newfunctions of all nodes in the transitive faninof rjj. V, in

Step 4, is equal to the union of and Yj.

Some additional efficiencies were built in to reduce the run-times:

• While computing the relation En(Yj, Yk) for (Tjj, rjk), if theprimary inputs in the transitive

fanin of r\i (afanin ofrtk) tind r}j are disjoint (as shown in Figure 5.13), then any clauses

pertaining to either rn or any ofits transitivefanins are not added to the SATinstance C in

Step 3.

CHAPTERS. SPFDS FOR NETWORK OPTIMIZATION 61

• After resynthesis, ifa node rji isnotchanged, a new variable y[is notassociated with it. Note

that ideally this is desirable, whenever the globalJunction ofa node is unchanged. However, it

may be too computationally expensive to perform the global check. Instead, a node is tagged

as unchanged, ifthe localJunction ofthe resynthesizednode is the same as the original and all

itsfanins are also tagged unchanged. This is especially efficientsince, in almost all circuits,

there are nodes that remain unchanged after resynthesis. By re-using the same variablefor

theoriginal and thenew node, theSAT solver can establish relations between theYj and the

Yj variables morequickly.

• During resynthesis, the relations RiiXu Yi) for eachfanin rji of the node rjj are also added.

The idea is to provide as much learned information to the SATsolver as possible. The en

coding relations ofthefanins ofrfj can help eliminate some unnecessary combinations early

on.

These have helped to reduce the time taken by the SAT solver to compute the encoding

relations.

5.5.2 Combined Strategy

SAT solvers suffer from efficiency issues, particularly for set manipulation problems.

BDDs,on the otherhand, are verysuitable for set manipulation. Hence,a hybridapproach combin

ing the efficiency of the BDDengine and the robustness of SAT is used. In this approach, BDDs

are usedfor performing the image computations until the number of BDDnodes increases beyond

a certain userdefined limit. Afterthat,a SAT solver is usedfor the remaining image computations.

5.6 Making the Results more Predictable

In this section, the unpredictability that can arise during resynthesis usingSPFDs is de

scribed. This happens because when a node is changed in the network using SPFDs during the

resynthesis procedure, all the nodes in its immediate fanout have to be changed since the mapping

of the fanin spaces of these fanouts changes. This is turn causes the mapping of the fanin spaces

of their fanouts to change. This domino effect as illustrated in Figure 5.14. The problem with

this uncontrolled change is that a choicemade earlyduring the network optimization process can

adversely affect the nodes in the transitive fanout. This effect could manifest itself as an undesirable

increase in the literalcount in the factoredform after SPFD optimization.

CHAPTER 5. SPFDS FOR NETWORK OPTIMIZATION 62

Figure 5.14: Resynthesizing a node using its SPED can potentially change all the nodes in its
transitive fanout.

In the following section, the blocking techniques usedfor avoiding uncontrolled change

and making the results more predictableare explained.

5.6.1 Window-based computation

5.6.1.1 Region of Change

A "region of change" (ROC) denotes thesetof nodes thatcanpossibly be affected during

theresynthesis step. In theinterest ofpredictability, it is good tohave a small ROC. However, a very

small ROC can affect the amount of the flexibility of SPFDs that can be used. In this work, a ROC

contains a nodeandits fanouts up to some level as shown in Figure 5.15. A ROC is parameterized

by I: all nodeswithinI fanout levels of a node rjj ate in the ROC of rjj.

The algorithm spfdjsimplify proceeds from inputs to outputs in topological orderand at

eachnode jjj performs the following steps:

7. Compute theROC at rjj anddetermine thenodes at theouterboundary of thisregion. These

are the nodes that have at least one fanout to a node not present in the ROC. Denote this set

as Uj.

2. Derivean SPFDfor each nodein Ujfrom thefunctionality of thecurrentnetwork. Basically,

theSPFD of each node in Uj specifies that its onsetderivedfrom its currentfunction has to

be distinguishedfrom its offset. This ensures that the changes in Uj are not propagated to

theirfanouts.

3. Compute the SPFDs ofall the nodes in the ROC in reverse topological order as described in

CHAPTERS. SPFDS FOR NETWORK OPTIMIZATION 63

a X

P M

ROC {Rj)

Figure 5.15: Region of Change of t;,-.

Section 5.1.

4. Resynthesize all the nodes in the ROC inforward topological order as described in Section

5.2.

5. If the sum of the literal counts (or some other cost function) of resynthesized nodes in the

ROC is less than that ofthe original, replace all the nodes by their newfunctions.

Since the nodes in the ROC are modified only if the net effect is positive, it is guaranteed

that the final result will be better than or equal to the original result Also note that as I increases,

there are more computations in Steps 3 and 4. So, typically I < 2.

One problem with this scheme is that the non-observability of the boundary nodes of a

ROC is not exploited during the optimization process. In Section 5.6.2, a novel method for combin

ing SPFDs and CODCs for circumventing this problem is described.

5.6.1.2 Parameterized Image Computation

In Section 5.5, a new scheme for image computation combining a SAT solver and a BDD

engine was proposed. Here, another scheme for image computations using BDDs is proposed. This

scheme can be used with the notion of the ROC since only a few nodes are changed at each step.

CHAPTERS. SPFDS FOR NETWORK OPTIMIZATION 64

Primaiy Inputs (p = cxd)

Figure 5.16: Parameterized BDD-based image computation.

The basic idea is illustrated in Fig 5.16. Instead of computing images all the way down

to the primary inputs, only a few levels below the ROC are used for image computation. Parameter

p is used for specifying the cutset that is used for the operation. For p = 1, only the immediate

fanins of the nodes in the ROC are used as a cutset for doing the image computations. For p = 2,

nodes that are fanins of the nodes in the p = 1 cutset are used. As the cutset is moved closer to the

primary inputs, more of the SDCs are taken into account during the image computation. The cutset

consisting solely of primary inputs is denoted as p = oo.

5.6.2 SPFDs and CODCs combined

Here an algorithm for using both CODCs and SPFDs for performing controlled optimiza

tions in the network is sketched.

The algorithm is almost identical to spfdjsimplify except that in Step 2, the LDCs (CODCs

expressed in the fanin space of a node) are used to derive the SPFDs of the boundary nodes. The

rest of the algorithm proceeds exactly as before. Once the nodes in the ROC have been resynthe-

CHAPTERS. SPFDS FOR NETWORK OPTIMIZATION 65

sized, the CODCs/LDCs of some of the nodes in the networkmay no longerbe valid. For a detailed

explanation of why this happens, please refer to [25].

In the following two sections, an algorithm is provided for computing the LDCs of the

boundary nodes (if they become invalid). A naive approach would invalidate the CODCs/LDCs of

all the nodes in the network after the resynthesis step. However, in reality, only a few nodes have

invalid CODCs/LDCs after the resynthesis step. These nodes are identified in Section 5.6.2.2.

5.6.2.1 Computing the LDCs of a node on demand

The LDC of a node rji is only computed on demand i.e. it is only computed if rji is a

boundary node of the current ROC being processed:

7. IfLDC ofrji is valid, then return.

2. If the CODC ofrji is valid, then compute the LDCfrom it using an image computation step

and return. (Note that either SATor BDDs can be usedfor this step.)

3. Let TFOi be the nodes in the transitivefanout ofrji in reverse topological order.

4. For each rjk G TFOi, do thefollowing.•

(a) IfCODC ofT)k is valid, then return that. Else, go to the next step.

(b) Determine the CODC of each fanout wire Vk- order to obtain this, first

determine thefanin minterms ofru which are insensitiveto the value ofrik. Then, make

them compatible with the fanins ofrji that already have CODCs associated with them.

Thisgives the CODCofw^^-^nr

(c) Intersect the CODCs ofall thefanout wires ofrjk to get the CODC of-qk-

5. Obtain the LDC ofqifrom its CODC by expressingit in terms ofthefanin space Yi.

5.6.2.2 Updating/Invalidating the CODCs and LDCs of the nodes

If the nodes in a ROC are changed, then it is necessary to update or invalidate the CODCs

and/or LDCs of some of the nodes in the network.

Givena node rjj with ROC Rj, the nodes in the transitive fanin of the nodes in Uj have

invalid CODCs and hence invalid LDCs. This is because the observability of these nodes may have

CHAPTERS. SPFDS FOR NETWORK OPTIMIZATION 66

changed, due to the changes in the functionalities of the nodesin their transitive fanout (dueto the

resynthesis of the nodes in Rj).

TheCODCs of thenodes in Uj arevalid. However, their LDCs areinvalid and need to be

updated. TheLDC ofeach node rji in Ujcanbeeasily updated according to thefollowing formula:

Li(Yi) = 3YiEn{Yi,Yi)Li{Yi).

The CODCs of the nodes in the transitive fanoutof Uj are validbut theirLDCs may no longerbe

validbecauseof possiblechangesin the SDCs of the network. Hence, the LDCs of these nodes are

invalidated (note that the LDCs are directlyupdated from the old LDCs wheneverpossible to avoid

unnecessary image computations).

This schemeof usingboth SPFDsand CODCsfor optimizingthe nodes in a ROCis called

CODC bounding. Only the primaryinputs(p = oo) are used for imagecomputation in the CODC

bounding algorithm. It is implemented as an option"-code" of spfd .simplify.

5.7 Results

Table 5.1 compares the efficiency and robustness of the different image computation

schemesused in spfd.simplify forp = oo. Colurrm 2 gives the runtimes for spfdjsimplify (2 = 2)

when it uses the BDD-based image computation scheme. Colunms 3 and 4 give similar results for

the SAT-based and the BDD+SAT-based image computation schemes, respectively. The improved

robustness of the SAT-based schemes (both the pure and the integrated approach) over the pure

BDD-based scheme is evident in the last three examples. For these large examples, the BDD-based

method ran out of memory but both the SAT-based scheme and the integrated BDD+SAT-based

scheme completed. The advantage in terms of efficiency of the BDD+SAT-based scheme over a

pure SAT-based imagecomputation is evidentin the runtimes. The improvement is becauseBDDs

(which are typically efficient for set manipulations) were used at the beginning and the more time

consuming SAT-based scheme was used only when the number of BDD nodes in the BDD manager

was large therebycausingmemoryrelatedproblemsfor BDDs. In these experiments, theBDD node

limit was set to 480000. Thus, the integrated BDD+SAT-based scheme exploitsthe efficiency of the

BDDs for the smaller circuits and the robustness of the SAT solver for the larger circuits, thereby

making the integrated approach both robust and efficient.

The command spfd-simplify used the scheme described in Section 5.6 to optimize the

network. Table 5.2 gives the results of spfd.£implify for various window sizes (of the ROC) and

CHAPTERS. SPFDS FOR NETWORK OPTIMIZATION

circuit BDD Runtime(s) SAT Runtime(s) BDD+SAT Runtime(s)

9symml 149.2 275.4 149.2

b9 8.1 36.2 8.1

cmb 0.5 2.4 0.5

cordic 6.4 17.85 6.4

frg2 232.6 5981.6 232.6

i9 463 1444.0 463

lal 4.4 13.785 4.4

k2 288.6 376.5 288.6

terml 28.0 211.7 28.0

ttt2 6.0 43.5 6.0

x2 1.2 3.7 1.2

x3 76.5 1202.5 76.5

x4 20.2 306.3 20.2

C2670 - 1852.3 1760.2

C3540 - 2784.2 2756.0

C6288 - 4499.9 3294.3

Table5.1: Comparison of runtimes for different image computation schemes.

circuits original full_simplify 1=2;p = oo 1=1;p = CO

9symml 277 270 270 268

b9 236 188 190 190

cmb 62 59 59 59

cordic 194 155 155 155

frg2 2010 1454 1438 1438

i9 1453 1132 1078 1078

lal 223 184 150 194

k2 2928 2889 2664 2664

ttt2 341 268 230 242

terml 625 336 233 251

x2 71 60 58 58

x3 1345 1200 1166 1169

x4 672 568 534 534

C2670 2043 - 1710 1710

C3540 2934 - 2654 2654

C6288 4800 - 4699 4699

C7522 6098 - 4239 4239

% imprv 0 12.30 20.53 19.00

Table 5.2: Comparison of spfdjsimplify for different values of I and p = oo vs full jsimplify.

67

CHAPTERS. SPFDS FOR NETWORK OPTIMIZATION

circuits original full-simplify l=2;p=l l=2;p=2 1=2; p = CO

9syminl 277 270 268 269 270

b9 236 188 190 190 190

cmb 62 59 59 59 59

cordic 194 155 155 155 155

ffg2 2010 1454 1792 1728 1438

lal 223 184 194 184 150

k2 2928 2889 2664 2664 2664

terml 625 336 468 422 233

ttt2 341 268 277 246 230

x2 71 60 59 57 58

x4 672 584 592 536 534

C2670 2043 - 2043 2043 1710

% imprv 0 16.07 12.77 15.64 22.23

68

Table 5.3: Comparison of spfdjsimplify fordifferent values ofp and l = 2vs fiiU^implify.

how they compare to fuUjsimplify (Column 3). Columns 4 and 5 give the results obtained by

using a ROC that includes all fanouts within twolevels (I = 2) andonelevel (I = 1)of the node

respectively.

Table 5.3 provides a comparison of the results of spfd.£implify for different values ofp.

Colunm 3 gives the results for fuU-simplify. Columns 4,5 and 6 provide results for p = 1, p = 2

andp = CO, respectively. TheROCwindow wassetto i = 2. Forp = 1andp = 2,BDDs wereused

for image computation andfor p = oo, SAT was used. The results for C2670 indicate that while

the BDD-basedfuUjsimplify ran out of memory, spfd-simplify (that also used BDDsfor p = 1,2

) completed without anymemory problems. Also,thequality of the results improved as the cut was

moved closer to the primary inputs. This is expected as moreof the SDCswere takeninto account

when the image computation useda cutsetcloserto the primary inputs. However, it is interesting to

note that even for a cutset close to the ROC (p = 1), some optimizations were obtained. This factor

can be exploited in medium to largecircuitsfor achieving somepreliminary optimizations.

Table 5.4 comparesspfdjsimplify (only SPFDs) with spfd^implify -code (SPFDs with

CODC bounding)for Z= 1 and 1 = 2. Columns3 and 4 give the results with and withoutCODC

bounding for 1 = 2, respectively. Columns 5 and 6 give the corresponding results for Z = 1.

The results indicate that CODC bounding did not achieve much improvement except for the last

example. This is probably because for these examples, CODCs did not provide much additional

improvement. This is supported by Table 5.5 whichgivesthe effectof usingfuUjsimplify withand

CHAPTERS. SPFDS FOR NETWORK OPTIMIZATION

circuit original ss -codc(l = 2) ss (1= 2) ss -codc(l = 1) ss(l=l)

cmb 62 59 59 59 59

terml 645 233 233 253 253

ttt2 341 233 235 235 246

x3 1345 1166 1166 1169 1169

x4 672 533 533 533 533

apex6 904 842 844 849 854

apex? 289 262 262 261 261

9symml 277 271 271 265 268

frg2 2010 1407 1436 1315 1436

% imprv 0 20.18 19.93 20.43 19.22

69

Table 5.4: Comparison of spfdjsimplify with and without CODC bounding for different values of I
and p = oo.

circuit original full_simplify full-Simplify -d

cmb 62 59 60

terml 625 369 348

ttt2 341 276 271

x3 1345 1209 1209

x4 672 569 570

apex6 904 885 886

apex? 289 256 256

9symml 277 270 270

frg2 2010 1522 1645

% imprv 0 14.68 14.16

Table 5.5: Effect of CODC optimization on the examples in Table 5.4.

without CODCs'̂ . Except for the lastexample, theeffect of CODCs on network optimization was

very limited. It was found that only for a few large examples in the MCNC benchmark circuits was

the effect of CODCs on network optimization pronounced. However, the runtimes of spfd jsimplify

-code for these circuits were excessive and hence for them the effectiveness of spfd simplify -code

over spfd^implify could not be tested. The blowup in runtimes of spfd-simplify -code was mainly

because the CODCs of many of the nodes in the network had to be recomputed quite often.

^The-d option of full^implify doesnotuseCODCs.

CHAPTER 5. SPFDS FOR NETWORK OPTIMIZATION 70

5.8 Summary

This chapter provided an in-depth exposition to the various algorithms for SPFD-based

network optimization. SPFDs can be unreliable fornetwork optimization since modifying a node

can affect the nodes in its transitive fanout adversely. To counter this, the notion of a ROC was

introduced. The results on benchmark circuits were favorable. In general, the quality of results was

found toimprove asthevalue ofI was increased. However, theruntimes can bequite large forI > 2.

Altemative image computation schemes werealsoproposed. TheSAT-based imagecom

putation algorithm was implemented using CHAFF. This enabled SPED optimization on much

larger examples than BDD-based methods. However, the SAT-based method can berelatively slow

for smaller circuits. To deal with this problem, an integratedscheme that initially used BDDs for

image computation and automatically switched to a SAT-based computation when thenumber of

nodes in the BDD manager exceeded a certainuser specified limit was also proposed. The results

indicated that the integrated approach nicely combines the efficiency of BDD engines with the ro

bustness of SAT techniques. This scheme is general and can be used in other applications where

BDD-based computations blow up. For instance, it can be used to make fiill^implify work for

larger circuits. A scheme for parameterized image computation was also proposed thatuseda pa

rameterp for controlling the cutset through which the image computation was performed. This

schemeenabledthe use of BDD-basedSPFD optimization for large circuits. It will be interestingto

explore otherschemes such as partitioned BDDs andBDD subsetting/supersetting to increase the

portionof the circuitfor whichBDDs can still be used.

71

Chapter 6

Wire Manipulation Techniques

In this chapter, first a brief overview of rewiring is provided and it is argued that SPFDs

provide a more general framework for rewiring a given network. Then a few different flavors of

rewiring are explored.

6.1 Previous Work

The basic idea of rewiring is to replace one wire with another without changing the func

tionality of the network. Rewiring can have a number of interesting application. For instance, a

wire on the critical path can be replaced with another wire that is not on the critical path or a wire

in a heavily congested routing area can be replaced with another in a less congested area. Most of

the previous work in this area used ATPG-based methods [4,5,6]. The common idea in all these

algorithms is the ability of adding a redundant wire and in the process, making some of the other

wires redundant, which can then be removed. These techniques are often referred to as redundancy

addition and removal (RAR). The algorithm proceeds as follows: Given a wire wu first the set of

mandatory assignments for testing the fault at wt are identified. A wire is redundant only if the

set of mandatoiy assignments are inconsistent. Then, a new wire Wr is added so that the set of

mandatory assignments for wt become inconsistent. In addition, it is necessary to check that Wr is

redundant, so that the functionality of the network is unchanged after addition of Wr- This basic idea

of making some wires redundant by adding other redundant wires was first proposed in [4] and was

further extended in [5] by allowing changes in functionality of certain nodes for rendering a par

ticular target wire redundant. However, the changes allowed were small since only the assignment

of the don't care minterms of the function could be altered. This rewiring scheme has been applied

CHAPTER 6. WIRE MANIPULATION TECHNIQUES 72

to post-layout logicrestructuring for improving the routability of the circuit. More recently, there

has been work on rewiringbased on functional synunetries [7]. Here, an implication supergate is

constructed for detecting the functional symmetries. It is shown that wires of the supergate can be

swappedwithoutchanging the networkfunctionality. In some recent work [8,26], the requirement

that the added wire had to be redundant was dropped. In [26], some simple functionality changes

were allowed for eliminating the error introduced by the irredundant wire. The main problem with

the approach was it required the use of a formal verification tool for guaranteeing the correctness

of the modified circuit. The work in [8] attempted to eliminate the use of formal verification by

finding some necessary and sufficient conditions under which a new irredundant wire could replace

an original wire without affecting network functionality. However, the nature of the functionality

changes allowed to the nodes, if any, is unclear.

Some related work has been done using the concept of global flow analysis [9]. This

technique performs rewiring by modeling the problem of rewiring using a flow graph and then

solving it using the maxfiow-mincut algorithm on the corresponding flow graph. The advantage of

this approach over ATPG methods was that it could simultaneously add and remove many redundant

wires at the same time. One drawback of this method was that it allowed only fanout reconnections.

This work was extended by [10] for allowing both fanin and fanout reconnections. However,

these methods are similar to ATPG-based methods in the sense that they still try to make the wires

redundant by making them untestable. Hence they don't allow any functionality changes of the

remaining nodes in the network.

6.2 SPFDs and Rewiring

SPFDs provide a powerful tool for rewiring. As mentioned, SPFDs can be used for repre

senting the information content of a wire in the network. This notion can be exploited for rewiring

the circuit. Suppose the SPFDs assigned to a wire from node rjk to ?7„, denoted as is a

subset of the SPFD assigned to node rjm- Then a fanout firom 7?^ is a candidate replacement for

since suppliesno less informationthan Wn^-^rtn- The node rjm can also be called

an alternate source for the wire w,^^^r}n- Of course if the replacement is made, the logic function

at node may have to change (because the infonnation being supplied is in a different form), but

such a function always exists. When a wire Wrfj^^rfn provide any unique infonnation to

node 77n» it can be removed. Again, the function at rjn has to be changed to account for the different

flow of information.

CHAPTER 6. WIRE MANIPULATION TECHNIQUES 73

Figure 6.1: Rewiringexample.

Consider the circuit shown in Figure 6.1:

zi = 9b-\-gb

g = ab-\-ab

Z2 = 6 + c

For wire {g, z), the SPFD is A = {(00,10), (01,11)} (in the set Ay each minterm is of the form

gh). If the minterms of A is expressed in terms of the primary inputs, a and 6, then a new SPFD

A' = {(00,10), (11,01)} is obtained (the minterms in A' are of the form ab). The primary input

a can distinguish both pairs in A'. Hence a fanout from a is a candidate wire forreplacing (p,zi).

Simplifying zi gives zi = a. In contrast, redundancy removal based rewiring cannot simplify the

circuit. This is because there are no mandatory assignments for propagating a stuck-at-fault on g.

This is due to thepresence of an XORgatealongthepathbecausethe outputof an XORis sensitive

to the both its inputs. SPFDs, on the other hand, look for the actual information content and are

not affected by the kinds of gates. Moreover SPFDsprovide more flexibility for implementing the

function. Anyfunction that distinguishes all the edges of the SPFD is a suitable implementation.

Using SPFDs, theonsetandoffsetminterms in theoriginal function canbe swapped, thereby deriv

ingmany different functions, many of which cannot be obtained by ATPG-based techniques (which

can work mainly with the don't care set).

A systematic exploration of the link between SPFDs and other tools for rewiring would

be of interest. It is believed that SPFDs provide more rewiring opportunities than the RAR-based

rewiringapproachesand the global flow techniquesproposed by Berman et. al [9]. In the rest of the

section,some initialarguments are presented for illustrating that the simpleRAR methodproposed

CHAPTER 6. WIRE MANIPULATION TECHNIQUES 74

Tjp is a dominator of rjn

Figure 6.2: Illustration for the proof of Lemma 6.2.

by Cheng et. al. can be emulated using SPFDs. Thus the SPEDrewiring is at least as powerful as

RAR.

As mentioned, the basic idea in RAR techniques is to make a wire redundant by adding

another redundant wire. It is proved that the same result can be obtained using SPFDs.

Lemma 6.1 Ifa wire is redundant, then its minimum SPFD wrt the primary outputs is empty.

Proof Assume that the wire is s-a-0 redundant Thus, it can be set to zero and an equivalent circuit

will be obtained. Therefore, this wire provides no information to the circuit and hence its minimum

SPFD (wrt to the primary outputs) is empty. •

Ifthe minimum SPFD is empty, it is not necessary that the wire is s-a-0 or s-a-1 redundant.

This is illustrated by the example in Figure 6.1. The minimum SPFD of the wire (6,5) is empty,

but the wire can be tested for both s-a-0 and s-a-I faults. This is because even though the minimum

SPFD of a wire is empty, the current function implementation at the node ensures that some of the

necessary information comes in from that wire. Hence it may not be enough to set it to zero; new

functions have to be derived at all nodes in the transitive fanout of the wire. However since the

minimum SPFD is empty, after setting the wire to a constant zero, the functions of its destination

CHAPTER 6. WIRE MANIPULATION TECHNIQUES 75

nodeand the transitive fanoutsof itsdestination nodecan alwaysbe modified to obtainan equivalent

circuit.

Lemma 6.2 If the RAR techniques say thatthe wire Wa = Wrjj-^rjp is an alternative wirefor wire

wt = Wrff^-yrfn (Figure 6.2), where rjp is a dominatorofr)n, thenthe minimum SPFD ofwt wrt to rjp

is contained in the SPFD ofrjj derivedfrom itsfunction. Theminimum SPFD ofwt wrt to rfp is not

empty in the original network Af.

Proof According to RAR, when the new wire Wa is added the functionalities of the nodes beyond

Tjp arenotchanged. Hence the new function of rjp afterthe addition of Wa mustbe contained within

itsODC inAf. Consider two networks, Afi and Afz. Af\ consists of rjp and all its transitive fanins.

Af2 consists of rjp and all its transitive fanins and the newly added wire Wa and the nodes in the

transitive fanin ofrjj. It isgiven that the minimum SPFD ofwt wrt to r}p isnot empty inAf. This is

thesame astheminimum SPFD of wt wrtto rjp inAfi (since thecomputation of theminimum SPFD

ofWt wrt to rjp inAf only looks atAfi). Hence the minimum SPFD ofwt wrt to rjp isnot empty in

Afi. On the other hand, in A/2, wt becomes redundant after adding Wa- Hence its minimum SPFD

(wrt to the primaryoutput of A/2 i.e. rjp) is empty (Lenuna 6.1). Since the information requiredat

the output of rjp is the same in Afi and A/2, the edges in the minimum SPFD of wt wrt to rjp now

haveto be containedin the SPFD of rjj derivedfrom its function. •

In the rest of the chapter, two different SPFD-based rewiring schemes are proposed and

some preliminaryresults are provided. The basic idea is the same as that describedearlier. But some

changes are made for ease of computation and for incorporating different metrics for rewiring.

6.3 Wire Replacement in Boolean Networks

The objective here is replacing a wire to node rjj with a wire from anothernode

rja, originally not a fanin of node rjj, such that a new iiinction fj can be foimd, whichdepends on

rja but not on rjk. Moreover, the change in the functionality of rjj must not affect the rest of the

network. The basic idea is illustrated in Figure 6.3. The function fj muststill satisfy the SPFDat

rjj andsome gain should beobtained bythisreplacement.

In the next few paragraphs,the algorithm used for identifyingalternatewiresand a resyn-

thesis processusing a chosen altemate wire is described.

The algorithm proceeds in topological order from primary inputs to primary outputs and

attempts to changethe wiringof each nodein the network. In orderto avoid a changein the wiring

CHAPTER 6. WIRE MANIPULATION TECHNIQUES 76

o
Vs

rtk '?'=

Figure 6.3: Rewiring: the solid lines indicate wires andthedotted lines indicate non-existing wires.

at a node from affecting the remainder of the circuit, the SPFD of each node is derived from its

CODC. The CODC is used instead of the ODC since the ODC computation is more expensive, and

once a node is modified, the ODCs of the remaining nodes will have to be re-computed. This idea

is similar to the ROC idea used in Chapter5 for blocking the changes made to a single node in a

network.

Consider a node r}j in the network. Let Rj(YjjYj) denote its SPFD derived from its

original function and its CODC. The unique set ofedges in Rj{Yj, Yj) that can only bedistinguished

by rjk iscomputed. Let this be denoted as R^j^(YjjY!). Thus,

RT(yi<Y!) = R^(Yj,Y!) A + aj).

Then candidate nodes {tjs} are sought that can distinguish all the minterms in R^piXj»^')-
A necessary and sufficient condition is that H{ys) = 0, where H(y8) is derived by the following

steps:

7. Substituteyi = f?(X)inR '̂'(Yj,Y()foreachyieYjtoobtainR'j '̂*(X,Y!).

2. Compute R^-{ys, Yj) = {Sx(ys = Yj)}.

3. Substitute y'̂ = /f(A") in yj)for each y[€ Yj to obtain R^p{ys, A").

4. Compute H(ys) = {^xiva = /s(a:))-R]y*"(2/s, A")}.

H(ya) has the property that if ^ 0, then there exists at least one pair of minterms

in R^j^(Yjj Yj) that cannot be distinguished by rja and hence rja cannot be acandidate.

CHAPTER 6. WIRE MANIPULATION TECHNIQUES 77

Since it is not practical to consider all the nodes in the network, only a subset is consid

ered; only the fanins of rjk and the nodes in their transitive fanout are considered. Of course, nodes

in the transitive fanout of rjj cannotbe considered.

After the set of candidate nodes S is obtained, a new function at rjj is derived for each

r)a € S. The procedure is similarin spirit to the resynthesis algorithm presented in Chapter 5. The

main difference is in the derivation of the modified SPFD.

The modified SPFD of -qj is obtained in the new space:

Yj = {yi € Ij*,i 7^ A;} U{2/a}.

Then a new minimized function at node qj is obtained from this modified SPFD as described in

Chapter 5. If the number of literals in the factored form of the new function is less than the number

in the factored form of /j, the replacement is done. In case of a tie in the number of literals, the

replacement is also done if the level of qg is less than the level of qk. Otherwise, the next node in

the candidate set is selected and the same procedure repeated.

This procedure is implemented SIS as a command, wire-replace.

6.3.1 Results

The results for wire-replace are shown in the Table 6.1. The initial circuits were obtained

by optimizing the original blif circuits using scriptrugged. These were then subjected to an itera

tion of wire-replace until no gain was obtained. The number of wires, the number of literals in the

factored form of the network and the ratio of these results to the output of scriptrugged are under

the heading (wire-replace)"". For iS, the values of the previous iteration are used, since the program

ran out of memory before the iterations could converge. The third set of columns was obtained

by taking the result of (wire-replace)''' and repeating scriptrugged followed by (wire j^place)*

until no gain was recorded. For k2 and tooJargSy the program ran out of memory even before the

first iteration was over. At the bottom of the table the average ratios for both experiments and for

both wires and for literals is computed. On average a 11% reduction in wires and 6% in literals

after (wire-replace)* is obtained. Better results are obtained for the repetition of scriptrugged and

(wirej'eplace)*, a 19% reduction in wires and 12% in literals. Note that all the computations are

done using HDDs.

CHAPTER 6. WIRE MANIPULATION TECHNIQUES

script.rugged (wirejreplace)* (script.rugged, (wirejreplace)*)*

NAMES wires literals wires ratio literals ratio wires ratio literals ratio

apex6 650 741 625 0.962 724 0.977 621 0.955 715 0.965

apex? 222 245 203 0.914 235 0.959 198 0.892 226 0.922

b9 115 122 111 0.965 119 0.975 112 0.974 122 1

bbara 51 63 46 0.902 60 0.952 49 0.961 61 0.968

bbsse 140 140 119 0.85 126 0.9 102 0.729 110 0.786

C1908 378 540 352 0.931 525 0.972 352 0.931 525 0.972

c432 205 205 186 0.907 222 1.083 186 0.907 222 1.083

c499 344 552 300 0.872 552 1 300 0.872 552 1

c8 128 139 127 0.992 138 0.993 125 0.977 136 0.978

cht 165 165 164 0.994 165 1 163 0.988 164 0.994

cse 213 215 201 0.944 204 0.949 162 0.761 183 0.851

dkl6 348 348 316 0.908 321 0.922 187 0.537 245 0.704

dkl7 88 89 40 0.455 53 0.596 37 0.42 51 0.573

exl 279 280 255 0.914 258 0.921 219 0.785 229 0.818

ex2 172 172 142 0.826 160 0.93 134 0.779 151 0.878

ex3 84 86 82 0.976 85 0.988 45 0.536 62 0.721

ex4 91 91 82 0.901 85 0.934 71 0.78 78 0.857

ex5 71 71 60 0.845 67 0.944 26 0.366 51 0.718

ex6 108 109 92 0.852 103 0.945 89 0.824 96 0.881

f51in 60 91 39 0.65 83 0.912 45 0.75 70 0.769

ftgl 79 136 44 0.557 127 0.934 51 0.646 127 0.934

6^2 833 886 696 0.836 792 0.894 690 0.828 735 0.83

i6 391 457 391 1 457 1 391 1 457 1

i7 518 584 517 0.998 583 0.998 517 0.998 583 0.998

18 1012 1015 980 0.968 988* 0.973*

19 587 596 584 0.995 596 1 580 0.988 592 0.993

k2 1112 1120 1067 0.96 1082 0.966 * *

klrkman 300 308 137 0.457 198 0.643 85 0.283 126 0.409

lal 89 105 82 0.921 101 0.962 79 0.888 102 0.971

planet 614 617 586 0.954 593 0.961 555 0.904 589 0.955

si 429 430 349 0.814 381 0.886 275 0.641 298 0.693

sand 612 613 566 0.925 574 0.936 521 0.851 550 0.897

scf 983 985 970 0.987 974 0.989 870 0.885 917 0.931

set 63 79 57 0.905 78 0.987 55 0.873 75 0.949

sse 140 140 119 0.85 126 0.9 102 0.729 110 0.786

styr 596 596 550 0.923 555 0.931 431 0.723 482 0.809

tennl 130 179 97 0.746 152 0.849 93 0.715 103 0.575

tooJarge 266 347 253 0.951 234 0.674 * *

ttt2 184 219 160 0.87 206 0.941 122 0.663 163 0.744

vda 611 615 607 0.993 612 0.995 571 0.935 579 0.941

xl 285 298 279 0.979 295 0.99 279 0.979 295 0.99

x2 44 48 43 0.977 48 1 39 0.886 46 0.958

x3 720 787 650 0.903 753 0.957 628 0.872 705 0.896

x4 367 386 347 0.946 381 0.987 332 0.905 367 0.951

z4ml 29 41 28 0.966 38 0.927 28 0.966 38 0.927

AVERAGE 0.888 0.936 0.807 0.871

Table 6.1: Results for wire-replace.

78

CHAPTER 6. WIREMANIPULATION TECHNIQUES

Wire choices

PLA-based decomposition

SPFD-based don't care
wire generation

Placement based on

wire choices

Resjmthesis

Final placement

Layout

Figure 6.4: Don't care wire-based logic/physical design flow.

6.4 Don't Care Wires

79

The results in the previous section illustrate the rewiring ability of SPFDs. In this section,

rewiring is performed in an integrated synthesis- placement engine so that a more sophisticated

metric can be used for rewiring.

First a brief description of the flow of the algorithm is provided. Then some of the steps

in the flow are examined in greater detail

CHAPTER6. WIREMANIPULATION TECHNIQUES 80

6.4.1 Flow

The basic flow is shown in Figure 6.4. An initial network is first minimized using the

usual logic synthesis methods. Then it isdecomposed and clustered into PLAs with thetarget ofab

sorbing asmany wires aspossible intemally ineach FLA, with theconstraint that the resulting FLA

network hasnocycles. During thisclustering no placement information is known, so a heuristic is

used that the smaller the number of wires, the better the clustering. This usually leads to a smaller

numberof FLAs. During clustering, the logic is minimized and the FLA folded. Then the result

is assessed for being within given bounds on the number of rows and columns (dictated mainly by

delay and noise constraints withinthe FLA) of the resultingFLA structures.

After clustering, a set of compatible alternates is generated for each input wire. SFFDs

areusedforgenerating alternate wires. Thesealtemates areused ina flooiplanning algorithm where

duringeachmovethebestchoiceof altematewiresfor eachlocalinputis usedto evaluate the move.

Once the final placement and final netlist are chosen, the logic insidea FLA may changeand may

no longer fit within the row and column bounds; however, the experiments indicate that the FLA

areas are usually well controlled in this process. Note that the numberof inputs and outputs does

not change for a given FLA.

6.4.2 Network of PLAs

Recent work on noiseless fabrics [27] led to a re-examination of the use of multi-level net

works where each logic node is implementedas a FLA. This is a general logic synthesis technique,

and has been shown to have advantages even for implementationswhere noise is not a concem. In

some sense the FLAs are similar to the initial applicationof SFFDs to FFGAs; each node contains a

significant logic function, andif thatlogic function changes, thearearequirement for implementing

the function does not change much. For FFGAs, the area does not change at all if the number of

inputsdoes not change. For FLAs, the area may changebut typically if the numberof inputs does

not change, the area change can be controlled(it is possible to use bit pairing, folding, etc to keep

the area within bounds). FLAs offer some additional advantages in that the layout for each FLA

is regularand can be accurately characterized in terms of its electrical characteristics (delay, noise,

etc.).

In the experiments, the FLAs are of medium size (e.g. 10-15 inputs, 1-5 outputs, 15-25

cubes).

CHAPTER 6. WmE MANIPULATION TECHNIQUES 81

6.4.3 SPFDs and Compatible Wire Sets

The basic idea is similarto that presented in the previous section, where a wire replaces

another wire if it can provide all the required information. However since it is desirable to retain

the freedom of choosing an alternate wire for one wire, independentof the choices made for the

other wires, the sets of alternate wires are made compatible. The idea is similar to the concept

of logic don cares, where it is desirable to be able to choose the function for a particular node

independent of the values chosen for the other nodes. So compatible sets must guarantee that the

union of information coming into a node through its input wires is always enough to supply the

information required for that node's output requirements.

Let Skj denote the set of alternate sources for wire The sets of alternate wires

are constructed using the algorithm, computejcomp^lts.

Algorithm computejcomp^lts(AO:

J. Startingfrom the primary outputs and proceeding in a backward topological order,for each

nodeTij in thenetwork, and eachofits inputwires assignSPFDsusingtheprocedure

described in Section 5.1, Rj and Rwr,^^r,j denote the required information ofr)j and
respectively. Once this is done, each SPED represents the set of minterms which must be

distinguished by that node or wire.

2. Initializefor each node rjj,

ex{Vj) = {r?j} UTFO(rjj).

andfor each inputwire ofrjj, let Skj = Skj will eventually represent the set of

alternate wiresfor

3. Startingfwm the primary inputs and proceeding in some topologicalorder, at each node rjj,

do thefollowing:

(a) LetC = ex(r}j)

(b) For eachfanin wire ofrjj:

i. Find anrja eC such that Q Rs-

a. Include rja in Skj, Skj = Skj U{%}-

HI Foreach rjp € {TFI{7js) Urjs}, update ex{7jp) = ex{Tjj) Uex{r)p). (This isdone to

avoid cycles in the resulting network.)

iv. Thiscontinues until no more nodes can be added to Skj'

CHAPTER 6. WIRE MANIPULATION TECHNIQUES

/ \
/ I

82

Figure 6.5: Network JV': is replaced by and is replaced byWr,,^-^r)y

Given thesetofalternate wires {5ibj}, analternate is picked foreach wire intheoriginal

circuit such that some optimization criteria such as total wirelength isminimized ^ Let Af' denote
the new network that is obtained by replacing each original wire in Af with its chosen alternate.

Note that the functions of the nodes in Af' cannot be the same as their corresponding functions

in jV as the fanin supports of a node could be different in Af and Af'. The new functions of the

nodes inAf' arecomputed in a topological orderfrom the primary inputs to theprimary outputs. At

each node rjj GAf, a new SPED is derived byexpressing itsoriginal SPED (obtained after Step

1 of compute.comp-alts) in terms of thefanins of rjj in Af. This new SPED is then colored for

obtaininga new function at rjj.

In the rest of the section, it is proved that the new network Af derived above always

implements the same functionality asthe original network Af.

Definition 6.1 Given a set of sets of nodes S = a selection is a ordered set of nodes

{??!.•••»l\Skj\} that Tik GSkj.

Definition 6.2 Given any selection of {iSfcj}, the network derivedfrom the selection is obtained

^The algorithm forpicking a suitable alternate foreachwirein the network is described in Section 6.4.4.

CHAPTER 6. WIRE MANIPULATION TECHNIQUES 83

from the original network M by replacing each wire in Af by a wire Wr)p-i.rjj such that

rjp G Skj.

Definition 6.3 Aset ofsetsS = {5^^} is compatible iffor each selection, there exist logicfunc

tions at each node such that the network derivedfrom that selection can implement the specifications

at the primary outputs.

Definition 6.4 The old global SPFD of a node(wire), is the SPFD attached to it in

Af after Step I o/computejcomp^lts. It is expressed in termsof the primary inputsofAf and is

denoted as

Definition 6.5 The rewired SPFD ofa node rjj is the SPFD obtained by expressing its old global

SPFDin terms ofthefaninsof rjj in thenew network Af, afterall thenodes in the transitivefanin

ofT}j have been resynthesized in Af. Itisdenoted asRj.

Theset{Skj} obtained bytheprocedure hasthefollowing property:

Lemma 6.3 Foranyselection of{Skj}, thenetwork derivedfrom theselection is acyclic.

Proof Assume there exists a selection such that the network derived from it is cyclic. This occurs

only if the situation shown in the Figure 6.5 exists in the new network. This in turn can happen only

if compute.comp^ts puts in Skj and 7)3^ in It is argued below that this is impossible.

In compute.comp^ts, the sets are built in a particular order (Step 3). Suppose Skj is

constructed before Snm- Since 775^ G Skj, then for each rjp in the transitive fanin of rja^, ea;(77p)

includes all the nodes in ex{Tjj) (Step3(b)(iii)) of the algorithm). Now jjaz € ex{r)j) since it is in

the transitive fanout of rjj in the original network. Thus rja^ G ex{r}m)' Hence when the set Snm

is being constructed in a later step in the algorithm, the node 7753 will not be included in the set C

(Step 3(a)) and hence can never be included in the set Snm-

Lemma 6.4 Given a setofsetsofnodes {5^^}satisfying thefollowing two properties:

1. for any selection, the network derivedfrom it is acyclic, and

2. JJa G Skj >

LetAf denote thenew network derivedfrom anygiven selection of{Skj}• Anyfunction thatsatisfies

the rewired SPFD ofa node in Af also satires its old global SPFD.

CHAPTER 6. WIRE MANIPULATION TECHNIQUES 84

Proof By Lemma 6.3, any selection is guaranteed to produce an acyclic network. Thus A/"' can

always belevelized. The above theorem isproved byinduction on the levels ofAf'.

Base Case Consider a node rfj of level 1. For each fanin rjk of r}j in AA, the selection

picks a node, rfp G5fcj. Note that Tjp has to be a primary input, since rjj is a level 1node in Af'.
Condition 2 ensures that ^ Rp- Hence, R^ = Rj. Thus, any function that satisfies jRJ
also necessarily distinguishes all the edges in

InductiveStep Given thatthefunctions of all the nodes inAf' of level < k satisfy their

rewired SPFDs, it is necessary to prove the above theorem is true for all nodes of level (k + 1).

Assume that'snottrue. Then there exists a node rjj of level {k+1) such thatitsnew function satisfies

its rewired SPED jRJ, but an edge e = (x, x') in its old global SPED Rj is not distinguished by the
new function. According to the SPED computation algorithm in Step 1 of coinputejcomp.nlts,

each edge inRj has tobeassigned toa fanin ofrjj inAf. Thus, Rj C ♦ where

FI-^(rjj) denotes the fanins ofrjj in Af. Condition 2ensures that any alternate source rjp ofafanin
wire satisfies the following condition : ^ Rv- Hence, Rj C

where FI- '̂(rjj) denotes the fanins ofrjj in Af. Thus the edge (x, x') necessarily belongs to the
old global SPED ofa fanin ofrjj inAf. Let the fanin berjp. Since, the level of7jp<k inAf, then

by the induction hypothesis, the function at rjp satisfies itsold global SPED Rp. Thus x and x' have

to evaluate to different values at the output of rjp. This implies that theedge (x,x') in Rj has to

produce an edge (y, y') in the rewired SPED, since x maps to a minterm y in the new fanin space

andx' maps to a different minterm yf Hence theedge (y,y') definitely exists in therewired SPED.

Thus any function that satisfies its rewired SPED also satisfies its old global SPED. •

Theorem6.1 Any set ofsetsofnodes {Skj} satisfying:

1. for any selection, the network derivedfrom it is acyclic, and

2. rjs CSkj Rwri,.-¥j,j ^ Rs'

is compatible.

Proof Lemma 6.4 proves that if eachnodein Af is implemented using a function that satisfies its

rewired SPED, the old global SPED of the node is also satisfied. This is also true for all the primary

outputs ofAf. Theoldglobal SPED ofa primary output distinguishes itsonsetminterms inAffrom

its offset minterms. Thus the specifications at the primary outputs (given by the original network

Af) are satisfied in Af if each node in Af is implementedusing a function that satisfies its rewired

SPED. Hence the set of setsof nodes {Skj} is compatible. •

CHAPTER 6. WIRE MANIPULATION TECHNIQUES 85

Thus to form a compatible set of alternate wires it is sufficient to make sure that whatever

netlist is chosen, it is acyclic andthateachalternate's SPFD covers theoriginal input'sSPFD.

The rewiring done here has the property that the global SPFDs of the nodes remains

unchanged. In Section 6.5, conditions wherethe global SPFDs of the nodes may no longerbe the

sameafterrewiring areexplored. This will require more complicated algorithms for computing the

functions at the nodes in the networkafter rewiring. In Chapter7, an algorithm that can be usedfor

synthesizingthe nodes under these more relaxed conditionsis provided.

In the next few sections, the placement algorithms that are used in the flow are described.

For convenience of explanation, a slightly different terminology from the previoussections is used.

Each PLA has inputpins and output pins. A net consistsof an outputpin and all its wires. If

is an alternate wirefor then rja is an altematesourcefor the inputpin that supplies to Tjk-

6.4.4 An Assignment Problem

In the experiments, the total wire length was used as the cost function to be minimized.

Note that indirectly, this controls total area, routability, and power, but not necessarily worstcase

delay. For example, a significant area increase will result in an increase in total wire length. Eval

uating the total wire length of a placement requires that a best selection of altemate wires be made

for that placement. Thus the following problem is obtained.

Alternate Wire Choice Problem (AWC)Givena pointplacement ofpins, and a set

ofcandidate sourcesfor each pin,find the selectionwhichminimizes the sum ofthe halfperimeters

ofthe bounding boxes ofthe nets.

Theorem 6.2 (Chong) TheAltemate Wire Choice (AWC) Problem is NP-complete.

Branch and bound techniques can be applied to solve AWC exhaustively. However, for

efficiency the following algorithm is proposed.

Procedure 6.1 (Semi-greedyAlgorithmfor AWC)

PHASE I.

1. For each pin with altemate wires, temporarily disconnect it from the current net

2. For each net form the bounding boxes of the currently connected pins. These partial bounding

boxes form a lower bound on the total wire length.

CHAPTER6. WIREMANIPULATION TECHNIQUES 86

3. Foreach pin with alternate wires, if itspin position isinside one ofthe partial bounding boxes

for its candidate wires (theoriginal wire plus its alternates), assign it to thatnet. No increase

hasbeen caused bythisassignment, andhence thepartial assignment seen sofarmustbe part

of an optimum assignment.

4. Foreach remaining pinwith alternate wires, compute the"delta" costs if it isassigned toeach

of the candidate nets. There is a net assignment which increases the total net lengthby the

least amount. Choose this assignment and update the chosen net.

5. Continue step4 until all pins havebeenassigned.

PHASE II.

1. Foreach pinwhich isanextreme ofthebounding boxofitscurrently assigned net, temporarily

release it fromits assignment, andcompute thebestnet to put it in and its deltadecrease cost

in doingthis. Note that the deltadecrease is nonnegative.

2. Choose the pinwiththe maximum deltadecrease andreassign thepin to the new net.

3. Repeat 1 and 2 until the best delta is 0.

Notes:

• After PHASE I, there may be pins that can be moved to different nets to improve the total

cost.

• AfterStep2 in PHASEH, the deltasneedto be updated efficiently.

• During PHASE n, a pin may be reassigned more than once. To speed up the process, one

may want to "lock" a pin once it is reassigned once.

• AfterPHASEU (withno locking), the solution is locallyoptimal, in that thereis no pin which

can be moved to a new net such that the total cost is decreased. However, there might be a set

of pins that can be reassigned all at oncewhich decreases the cost.

6.4.5 Two Placement Algorithms

For this work, total wirelength, measured by the half-perimeterbounding box for each

net, is used as the metric for the final design. By minimizing overall wirelength, the total wiring

utilizationfor the design and hence minimizeoverallcongestion is reduced.

CHAPTER 6. WIRE MANIPULATION TECHNIQUES 87

Note that the half-perimeter bounding box metric is affected by the locations of the pins

on the PLAs. However, since the exact pin locations are not available, these locations are estimated

by the center points of blocks.

If thealternate wirechoices foreachinputpinareconsidered andthenetworkis optimized

forbothareaandtotalwirelength, a twodimensional solution space-physical placement and logical

wire-is obtained. Given a physical placement of the blocks as points in the physical dimension,

choosing the best set of logical wires is NP-complete (Theorem 6.2). Similarly given a set of

wires, choosing the bestplacement is alsohard. Heretwoapproaches are provided for tackling this

combined problem.

6.4.5.1 Mincut Placement Approach

One of the approaches uses a mincut placementalgorithm [28] to evaluatethe placement

of a netlistwithalternate wires. This method differs from traditional mincut placement techniques

by using alternate wires to change the cut costs during the recursive bipartitioning of the design.

Choosingaltematesfor wireson a cut net may preventthat particularnet from being cut at all, thus

reducingthe cost. Therefore the cost of a partitionis evaluated by accounting for such effects. This

reduction in cut cost will generally translate to a reduction in wire length for the final placement;

alternate choiceswhichprevent nets frombeingcut duringbipartitioning willgenerally correspond

to the selection of shorter local wires.

The FM partitioning algorithm [29] was modified to account for alternate wires. After

recursive bipartitioning is applied to a design, partitions are adjoined in a quadrature fashion [28]

to obtain a placement. As well, additional wire length minimizationheuristics are used to guide the

placement.

After mincut partitioning, a low-temperature simulated annealing, based on a sequence

pair representation [30], is used to further improve the layout. In the annealingprocess, after each

random move on the sequencepair, the layout is derivedand the greedy AWCalgorithm is applied

to givethe best wire lengthbasedon the wirechoices. Onceannealing is done, a greedycompaction

method is applied, which evaluates the best location for each cell for minimal wire length. Finally,

the AWC problem is solved for this layout using branch and bound to obtain the final wire choices.

6.45.2 Force-Directed Approach

Another approach uses a force-directed placement algorithm. The force-directed placer

is incremental, so the AWC subroutine can be easily embedded. At each step the new position of

CHAPTER 6. WIRE MANIPULATION TECHNIQUES

Regular Maximum

PLAs/ APins Alts APins Alts

Design IPins #(%) # #(%) #

alu2-5 18/233 32(13.7) 28.44 37(15.9) 37.43

apex6-5 37/553 21(3.8) 16.10 27(4.9) 81.56

apex7-4 12/157 9(5.7) 22.22 12(7.6) 38.75

apex7-5 11/146 5(3.4) 14.40 6(4.1) 55.83

count-4 6/67 4(6.0) 12.75 4(6.0) 30.25

count-5 6/68 3(4.4) 21.67 3(4.4) 35.00

terml-4 15/186 23(12.4) 19.61 29(15.6) 37.03

terml-5 12/170 11(6.5) 32.55 15(8.8) 44.00

ttt2-4 7/73 7(9.6) 14.00 7(9.6) 15.29

ttt2-5 8/85 9(10.6) 15.22 10(11.8) 18.30

x4-5 24/269 19(7.1) 34.05 28(10.4) 32.64

88

Table 6.2: Characterization of Examples.

the cells is computedin terms of the forcesactingon the cells, where theforces are generated from

the existing wires attached to each PLA. Then AWCis invokedto determine if better wire choices

exist All input and output ports are fixed on the chip boundaryso that no trivial solution(all cells

collapse into one single point) will be derived. Toovercomecell overlaps,the algorithmintroduced

in [31] is used, while some modifications are made to improve speed. The basic idea is to form a

density field in the chip area. Cells in this field tend to move towards those areas with lower density

and away from areas with higher density.

6.4.6 Experimental Results

Twoexperimentswere performedfor investigating the contributionof altemate wires.

Experiment I: The first experimentwas to decomposeeach example into a set of PLAs

as described in Section 6.4.2. Table 6.2 shows the results of this decomposition. The number

following the design name is related to the maximum physical width allowed for each PLA in the

decomposition [27]. The resulting number of PLAs for each design is shown in the PLAscolumn,

and the total number of input pins on these PLAs is shown in the IPins part.

Don't care wires were generated for each of these examples. The number of pins with

altemate wires for each example is shown in the APins colunm under the Regular heading (the

Maximum colunms are described in Experiment n below). The percentage (in parentheses) of input

pins which have altemate choices is also shown. The average number of altemate choices for each

CHAPTER 6. WIRE MANIPULATION TECHNIQUES

Design Init Reg Resyn Max

alu2-5 6143.5 19.8 16.8 20.9

apex6-5 18053.5 0.0 3.3 0.0

apex?-4 2843.5 2.2 13.9 13.3

apex7-5 2512.0 6.2 15.5 7.0

count-4 758.0 4.2 8.0 0.0

count-5 849.0 0.0 0.0 0.0

terml-4 4748.0 8.9 34.3 14.2

terml-5 4057.0 4.2 16.4 16.0

ttt2-4 1251.0 22.4 23.1 22.4

ttt2-5 1116.0 14.2 0.0 0.0

x4-5 4590.5 0.0 0.0 0.0

average 4265.6 7.5 12.0 8.7

Table 6.3: Wirelength Improvement, Mincut.

89

of these pins is shown in the Alts column.

The following comparisons were performed:

1. The PLAs were placed without using alternate wires. The total wire lengths for these initial

placements (using the two placement methods) are shown in the Init column of Tables 6.3

and 6.4.

2. The same placement algorithms were applied on the network of PLAs using alternate wires.

The percentage improvement in wire length over the initial placement is shown in the Reg

column in the two tables.

3. The chosen best wires were returned to logic synthesis and the functionalities of the PLAs

were determined according to the wire choices. Another placement was performed using

the new PLA areas, and the resulting wire lengths were compared to the initial results. The

improvement in wire lengths over the initial placement is shown in the Resyn column in the

tables.

Experiment U: In the results for Experiment I, a fairly high correlation is observed

between the improvement in wire length and the percentage of wires that have altemates. Note that

the percentage of wires with altemates for the examples is small (on average about 7.5%). As an

additional experiment, the effect of having more wires with altemates was determined. For this,

the acyclic constraint was ignored when generating altemates. In addition, for each wire

CHAPTER 6. WIRE MANIPULATION TECHNIQUES

Design Init Reg Resyn Max

alu2-5 6492.0 6.4 7.6 7.4

apex6-5 22253.0 7.7 1.1 9.9

apex7-4 3097.0 1.8 0.7 3.3

apex7-5 2688.0 9.5 5.7 10.4

count-4 788.0 5.1 4.7 3.9

count-5 823.0 0.8 1.5 1.1

terml-4 5374.0 11.9 2.8 4.2

terml-5 6112.0 0.8 1.5 1.8

ttt2-4 1111.0 3.5 3.1 11.4

ttt2-5 1649.0 5.3 12.4 3.8

x4-5 6148.0 3.4 1.5 1.9

average 5139.5 5.1 3.9 5.4

Table 6.4: Wirelength Improvement, Force Directed.

90

the minimum set of edges distinguished by it in the SPFD of T}j was computed and another wire

was designated asan alternate if itsSPFD covered this smaller SPFD. The resulting number ofpins

with alternate wires and the average number of choices for eachof theseis shown in the Maximum

colunms ofTable 6.2. This generated only a few more wires with alternates (their average increased

to 9%), although the average number of alternates on wires with at least one altemate increased

substantially.

The wire length improvement over the initial placement using these extended sets of al

temate wires is shown in the Max columns of Tables 6.3 and 6.4. This figure loosely indicates an

upper bound on the possible improvement due toaltemate wires alone, and should becompared to

theReg column since resynthesis was notdone. As expected, theresults obtained correlate with the

increased number of wires with altemates.

6.4.6.1 Some Observations

Although not presented in Tables 6.3 and 6.4, there was a change in total areas of the

placed designs when altemate wires were used. For all experiments, the worst-case final placed

area increase was 8%. This small increase in area is partly due to the choice of total wirelength as

a metric; sinceminimizing area was not the main intention,the final designarea can be expectedto

increase afterreplacing a wire with its altemate. Also,after selection of altematewiresthe network

has to be resynthesized, and so a changein the PLAareasat that stageis alsopossible.

CHAPTER 6. WIRE MANIPULATION TECHNIQUES 91

As noted, the gains in wirelength achieved is very much correlated with the percentage

of pins which have alternates. When these were increased from 7.5% (Regular) to 9% (Maximum)

in Experiment HI, the gain in wire length improvement went from 7.5% to 8.7% for the mincut

placement, and 5.1% to 5.4% for the force-directed technique.

In some cases, there was an increase in wire length when alternate wires were introduced.

There are two explanations for this. First, the placement algorithms do not guarantee a global min

imum, so different local minima can be obtained. Second, using the mincut placement technique,

there is no directrelationbetweenthe cut sizes in the recursivebipartitioning and the finalplacement

wirelengths. Thus a selection of alternate wires which reduces the cost of a cut may in fact increase

the total wirelength. For cases where using alternate wires increases the total wirelength, the results

were ignored and instead the initial placement generated without alternate wires was used.

6.5 Partial Don't Care Wires

This idea is an extension of the don't care wires described in the previous section. In the

previous section, it was mentioned that a positivecorrelation was observedbetween the improve

ment in wirelength and the percentage of wires that have alternate wires. This motivated the search

for more alternate wires.

The idea here is to relax the conditions an alternate wire must satisfy, thereby possibly

increasing the number of wires with alternate wires. Thus, a wire can be an alternate

wire for another wire if it can provide only a part of the information that the original wire

provides. The actual amount of information that the alternate wire has to provide can be a parameter

of the algorithm. The wire is then called a partial don't care wire of

The resynthesis problem can become more involved with partial don't care wires. This is

because some of the original information of the network might be missing when the original wires

are replaced by their partial don't care wires. It is the task of the resynthesis algorithm to fill in

the missing information. An algorithm presented in the next chapter can be used for the resynthesis

problem.

6.6 Summary

Rewiring using SPFDs was described in this chapter. Two different rewiring scenarios

were presented. Rewiring in Boolean networks produced some significant reduction in wire count

CHAPTER 6. WIRE MANIPULATION TECHNIQUES 92

and literal count. Analogous to a logic don't care^ the concept of don't care wires waspresented.

Rewiring in an integrated synthesis-placement environment using don't care wires also provided

some encouraging results. Theinteresting conclusion is thatthere was a positive correlation between

an increasein the number of alternatewire and an improvement in wirelength. A generalization of

don't care wires calledpartial don't care wires was also proposed. Experiments need to be done

for evaluatingthe benefit of this generalization.

Some initial arguments were provided forproving thatSPFD-based rewiring canbe more

powerful than some other previous approaches, like RAR. It will be interesting to conduct a more

thorough theoretical and practical investigation for exactly determining the added advantages of

SPFD-based rewiring.

93

Chapter 7

SPFDs and Decomposition

In this chapter, the idea of using SPFDs for a particular kind of functional decomposition

called topologically constrained logic decomposition is explored. First a very brief overview of the

previous work on functional decomposition is provided, and then some motivation is given about

why SPFDs can be used for functional decomposition. A generalization of the traditional functional

decomposition problem is proposed and it is shown how SPFDs can be used for solving the problem.

7.1 Previous Work

Decomposition is a fundamental problem in logic synthesis. Its goal is to break a function

into smaller functions. The problem can be stated as:

F(X) = G(H(Xi),X2),

X1UX2 = X.

Generally, G and H are less complex than F. It is known, in the worst case that the circuit size

realizing an n-input logicfunction is 0(2**/n). If F(X) has a decomposition G{H{Xi)yX2), the

worst case for the decomposed circuit is 0(2"^/ni + 2"2+i/(n2 + 1)), where ni = |Xi| and

712 = 1^21. Thus functional decomposition can reduce the circuit size exponentially.

The first systematic study of decomposition [32] characterized the existence of a simple

disjointdecomposition of a function. This is a specialcase of the aboveequations,whereX1 r\X2 =

(j) and G is a single output function. The problem is shown in Figure 7.1.

The set Xi is called the bound set and X2 the free set. This procedure is described in

some detail for explaining the basic idea behind functional decomposition.

CHAPTER?. SPFDS AND DECOMPOSITION

X = Xi\jX2

Figure 7.1: Ashenhurstdecomposition.

00 01 11 10

0 0 1 0

1 1 0 1

Figure 7.2: Decomposition chart.

94

The necessary and sufficient condition for the existence of a decomposition was given in

termsof the decomposition chartD(Xi\X2) for F for the partition Xi\X2. A decomposition chart

is a truth-table of F where the vertices of B" = {0,1}" are arranged in a matrix. The columns

of the matrix correspond to the vertices of = B®, and its rows correspond to the vertices of

= B"~® = B^. The entries in D{Xi\X2) are the values that F takes for all possible input

combinations. For example, if F(a, 6,c) = abc -f o^c -H 6c, the decomposition chart for F for the

partitiona6|c is shownin Figure 7.2.

Ashenhurst provedthe following result, whichrelatesthe existenceof a decomposition to

the number of distinct columns in the decomposition chart D{Xi\X2)-

Theorem 7.1 (Ashenhurst) A simple disjoint decomposition exists ifand only if the corresponding

decomposition chart has at most two distinct columns.

Two vertices xi and X2 in B® are compatible if they have the same colunm patterns. For an in

completely specified function, a don't care entry - cannot cause two colunms to be incompatible.

Thus, two columns Cj and Cj arecompatible if for each row fc, either Ci(fc) = —, or Cj{k) = —,

or Ci(fc) = Cj{k). For a completely specified function, compatibility is an equivalence relation and

the set of vertices that are mutually compatible form an equivalence class. Hence the colunm multi

plicity of the decomposition chart is the number of equivalence classes. For incompletely specified

CHAPTER?. SPFDS AND DECOMPOSITION 95

functions, the compatibility relation is not an equivalence relation, i.e. there may be a case when

i ^ j A j ^ but i k. So, a column may be contained in two or more compatible sets and a

nontrivial procedure, called "minimum set covering" procedure, is needed for determining column

multiplicity.

Since then, many more complicated functional decomposition models have been intro

duced that don't require either the bound set and the free set to be disjoint or the node G to have

a single output. Recent research in the field also includes work on BDD-based methods aimed at

improving the efficiency ofdecomposition [33, 34].

7.2 SPFDs and Decomposition

Before the connection between SPFDs and decomposition is explored, the connection

between SPFDs and information content is briefly reviewed. An SPFD attached to a node specifies

which pairs of primary input minterms have to be distinguishedby the node. This can be thought

of as the information content of the node, since it tells what information the node contributes to its

surrounding network.

Example 7.1 Consider the simplenode shown in Figure 7.3. InputA has the ability to distinguish

00 and 01from 10 and 11. Similarly, input B has the ability to distinguish 00 and 10from 01 and 11.

Thus, the two inputs together can distinguish every input mintermfrom every other input minterm.

However, the output ofthe node only has the abilityfor distinguishing 00from 10, 01 and 11.

Any single-outputnode that dependson more than one input alwaysresults in a loss of information.

Only a single-input single-output node (buffer or inverter) does not lose information. Also, an n-

inputn-outputnode, whosefunction is reversible (i.e. for each input combination there is exactly

one output combination, and vice versa) does not lose information.

Now consider the problem of disjoint decomposition. Consider the example shown in

Figure 7.1 and look at it in terms of information flow. The original function F required that the

onset minterms have to be distinguished from the offset minterms. Each input of F does a part of

the distinguishing job. Now, if F has to be re-implemented as the decomposed circuit shown in

Figure 7.1, it is necessary that the new node G should be able to do all the distinguishing that the

inputs in X\ did for the function at F. In order to achieve this, consider the following algorithm,

com-decomp-w_spfd.

Algorithm comjdecomp_w_spfd(F, Ari|X2):

CHAPTER?. SPFDS AND DECOMPOSITION 96

00
01

Ra

01
10 Ro

11

B

10

Rb

11

Figure7.3: Information flow throughan OR-gate: Rq is a subsetof Rjn = Ra U Re-

1. Compute the SPFD ofF in terms ofthe input space X = Xi U X2- Denote it as Rp-

2. Remove all edges ofRp that can be distinguished by the inputs in X2. Denote this new SPFD

as R'.

3. Existentially quantify out the variables associated with the inputs in X2from R! to get the

SPFD ofthe node G. Denote this SPFD as Rq-

The new function at G can be obtained by coloring Rq- Similarly, the new function at F

canbe obtained by expressing Rp in terms of (xgUX2) andcoloring it.

Theorem 7J2 Fora completely specifiedfunction F anda givenpartition (X1IX2), any twominterms

belong to the same compatible ifand only if there exists a coloring ofRq such that that the two

minterms can be colored with the same color.

Proof : It is shown that all minterms in the same compatible can be colored with the same color

in Rg' Assume that it is not true. Thus there exists two minterms m\ and 7712 that belong to the

same compatible but cannot be colored with the same color. This happens only if there exists an

edge e between mi and m2 in the SPFD Rq- This implies there exists a minterm y € such that

F{rnijy) yt F{m2, y). However,in that case mi and m2 cannot belong to the same compatible.

CHAPTER?. SPFDS AND DECOMPOSITION 97

<r-: If two minterms mi and m2 in the SPFD of Rq can be colored with the same color,

then it implies that no edge exists between them. Therefore,

^y€Bt{F(muy) = F{m2,y)).

Thus, mi and m2 belong to the same compatible. •

SPFDscan also be usedfor obtaining a non-disjoint decomposition. If a fanin Xibelongs

only to X2, then it has to be assigned to the SPFD of partition X2. On the other hand, if a fanin Xj

belongs to both Xi and X2, then it is possible to assign an edge distinguished by Xi to either the

SPFDof partition Xi or theSPFDof partition X2. Assigning it to Xi couldincrease thecomplexity

of G whereas assigning it to X2 could increase the complexity of H.

Given that SPFDs can be used for obtaining simple functional decompositions, an inter

esting decomposition scheme can be developed.

7.3 Topologically Constrained Decomposition Problem

A generalization of the decomposition idea to an arbitrary network of nodes is shown

in Figure7.4. Here, instead of specifying the free set and the bound set, the topology of the net

work is given i.e. the fanin and fanout connections of all the nodes in the network are provided.

The problem is to determine the functionalities of the nodes so that the network implements the

required outputfunctions. The nodes in the networkcan havemultiple outputs(or equivalently can

be multi-valued). The configuration could be generated by a wireplanning algorithm, where the

conununication betweenthe boxes is specified but the actualcontents of each box is not specified.

In the rest of this chapter, the condition that the network topology has to satisfy in order to

ensure that the network can be synthesized is provided, and a particular approach based on SPFDs

is presented for synthesizing the nodes.

7.4 Problem Solution

7.4.1 Preliminaries

Definition 7.1 A cut is a set of nodes in the network that when removed completely isolates the

primary inputsfrom the primary outputs.

Obviously, a network can have many cuts.

CHAPTER?. SPFDS AND DECOMPOSITION

PRIMARY OUTPUTS

7 7

—

7

V

7

V "*•

7

V

7

V

7

'5<^

7 7

t

1

PRIMARY INPUTS

98

Figure 7.4: Problem definition.

Consider a node rjj in network Af. LetLj denote its level in thenetwork. denotes

the maximum SPED of rjj. The SPED of rij that is used for deriving its function is denoted as Rj.

The synthesized function at r]j isdenoted as fj. Rj isexpressed either in terms ofthe {Yj UYJ)
space or the (X UX') space.

7.4^ Algorithm

In this algorithm, the analogy of information flow through the network is used. The

network specification specifies what information needs to be passed on from the primary inputs to

the primary outputs. As mentioned earlier, SPEDs can be used for denoting the information content

of a node. So the network function specification can be thought of as the information content of the

primary outputs and can be re-expressed as SPEDs associated with the primary outputs. Similarly,

the information content of the primary inputs can be expressed as SPEDs associated with the primary

inputs. It is instructive to think of SPEDs of the primary outputs as the required informatioii and

the SPEDs of the primary inputs as the avaUable information (as shown in Figure 7.5). The task

of the synthesis process is to determine the information flow through the nodes in the network so

that the required information is present at the primary outputs. A network can be thought of as

CHAPTER?. SPFDS AND DECOMPOSITION

?

SPFDs of POs: REQUIRED INFORMATION

7

V V

? 7

w

7

-V

7

7 7 7

SPFDs OF Pis : AVAILABLE INFORMATION

Figure 7.5: Information flows through the network.

99

a lossy information channel. For this method to work, it is necessary to ensure that the available

information is not less than the required infoimation. This translates into a topology constraint given

in the following lemma.

Lemma 7.1 The networkM ofempty nodeshas tosatisfythefollowing requirement: eachprimary

output should have at least one path to each primary input in its true support.

Proof Let Xi be a primary input in the true support of a primary output Zfc. It is proved by contra

diction that at least one path has to exist between x,- and Zk for ensuring correct functionality.

Assume no path exists between Xi and Zk in Jf. Since x,- is in the true support of Zk^

dzkfdxi is not empty. Hence there existsat least one pair of minterms mi = x^m and m2 = x7m

such that mi belongs to the onset of Zk and m2 belongs to the offset of Note that mi and m2

differ only in the value of Xj. According to the above assumption, the primary input Xj does not lie

in the transitive fanin of Zk (since no path exists between Xj and Zk). Thus, the values of the primary

inputs in the transitive fanin of zk are identical for both mi and m2 and is equal to m. Since mi

and m2 belong to the onset and offset of z^, respectively, this implies m has to produce different

values at the output of Zkfor ensuring correct functionality. This is impossible since Zkimplements

a deterministic function. Thus the assumption that no path exists between Xj and z^ is incorrect. •

CHAPTER?. SPFDS AND DECOMPOSITION 100

Note that there are many topologies that can satisfy Lenrnia 7.1. For example, a two

level network thatexpresses a primary outputsolelyin termsof the primary inputsis alsoa network

topology thatsatisfies Lemma 7.1.This lemma isnotuseful forgenerating any multi-level network

topologies. Interesting topologies canbe generated using theconcept ofpartial don't care wires,

briefly described in Section 6.5. However, this is beyond the scopeof thisdissertation andwillnot

be discussed further here. The condition in Lenuna 7.1, however, ensures that each edge in the

SPED of a primary output is contained in theSPFDs of oneor moreprimary inputs in its transitive

fanin. This wayof firaming the problemin termsof SPFDsenables us to utilizesomeof the familiar

techniques ofSPFD manipulation fordetermining theflow of information through thenetwork from

the primary inputs to the primary outputs.

Several otherpapers[35,36] exploittheconnection betweeninformation flow andsynthe

sis. In the first paper, an evolutionary approach towards network synthesis is used, where a function

iscorrected byaddingeithera fewconstants or variables until it becomesthespecified function. The

algorithm presented in the second paperusesa function expressed in terms of its primary inputs as

its startingpoint and progressively decomposes the function at each step until some user-defined

limit like the number of fanins of each node is reached. This method looks at the information con

tent of each node for determining a function of the fanins. At each node, either a serial or parallel

decomposition is allowed. However, this methoddoes not use a fixednetworktopology.

The basic idea of the algorithm is to ensure that the information necessary to meet the

network specification is not lost on the way from the primary inputs to the primary outputs. It

accomplishes this by defining a set of cuts in the network starting from the primary inputs and

movingtowardsthe primary outputs, and ensuring that each cut has the necessaryinformation. The

general flow of the algorithm is shown in Figure 7.6.

There are two basic steps in the algorithm:

1. Defining the cuts in the network.

2. Computing the SPFDs of the nodes in the cut and synthesizing these nodes using their respec

tive SPFDs.

Many schemes could be used for either of two steps; one scheme for each step is proposed.

7.43 Defining the Cuts in the Network

The procedure goes as follows:

CHAPTER?. SPFDS AND DECOMPOSITION

Z + +

Network Topology, Af.
Input-OutputSpecificationof jV, S.

Levelize Af. Let max
denote the majdnmin level

of any node in N.

Set i = l.

Construct c ut Ci in Af.

Synthesize all nodes in Ci.

No Yes

101

Functions of all the nodes in Af
s.t. S is satisfied.

Figure 7.6: Algorithm for topologically constrained decomposition problem.

1. Levelize all the nodes in the networkstartingfrom theprimary inputs. For each primary input

Vu Hvi) = 0- ttny other node rji GAf,

Lirji) =max{L{'nj) : {r}j € FI(r]i))} -f 1.

2. Let max denote the maximum levelofany node in the network. Define the cuts in the network

startingfrom the primary inputs to the primary outputs. So,for i = 0, ••• , max,

(a) For each primary output Zk, compute Cik to include

i. All nodes in the transitivefanin ofzk with level = i

a. All nodes with level < i that directlyfanout to a node with level > i in the transitive

fanin ofZk-

CHAPTER?. SPFDS AND DECOMPOSITION 102

Thus,

Cik = {»/j|(»7j€rF/(2t))A(Lfe) = i)}

<i)A [3,,(i(»)p) > i) A{rjp € FO(r)j)) A(»)p € rF/(2t))]}.

Construct Ci = UfcCifc. 7%M5 Cj includes all nodes in J\f with level= i and all nodes

with level < i thatdirectlyfanout toa node with level > i. Note thatCi isa cut inAfas

removing these nodes will completely disconnect the primary inputsfrom the primary

outputs. Cik denotesthe subset of nodesofCi which provides all the information to a

primary output Zk.

Co consists of the primary inputs of Af. A node rjj definitely appears in cut

Furthermore, let Imax = max{L{rjk)\7]k € FO(Tjj)}. Then rjj also appears in a cut Ci, where

L{rjj) <i < Imax. Thus two cuts inA/" can share some nodes.

7.4.4 Synthesizing the nodes in the cut

Here, the algorithm for synthesizing the nodes in a particular cut C» is described. The

main requirement that has to be satisfied after the synthesis step is that for each primary output

Zk, Cik must be able to provideall the information that Zk requires. In the rest of the section, the

algorithmthat ensmes that this condition is satisfiedis presented.

The cuts are synthesized from the primary inputs to the primary outputs. Hence when the

nodes in Cj are being synthesized,all the nodes in cuts Ci, ••• , Ci-i havealready been synthesized.

The nodes in Ci that have already been synthesized are denoted as CJ". These are the nodes of

level< i. The nodes in Ci with level = i have to be synthesized and are denoted as C". Note that

Ci = CJ* U CT.

The algorithm syn.cuts first orders the nodes in Ci accordingto some heuristic such that

that all the nodes in CJ* are earlier in the ordering thanall the nodes in C". It thencomputes the

maximum SPFDof eachnodein C^. Thismaximum SPED denotes thetotalsetof edgesthata node

can distinguish,derived solely from the distinguishingabilityof its fanins. The SPFD computation

then proceeds from the nodes earlier in the ordering to the ones lat^ in the ordering. At each

node T)j, its SPFD Rj is derived from its maximum SPFD as follows:. For each primary output

Zk € PO(rjj), thealgorithm determines theedges inRk{X,X') thatcarmot bedistinguished bythe

remaining nodes in Cik i^ik is the subset of nodes of Cj that provide all the information to Zk). The

CHAPTER?. SPFDS AND DECOMPOSITION 103

node's SPFD Rj is simply the union ofall these edges. The new function atrjj is derived from Rj.

Then the algorithm moves to the next node in the cut.

Algorithm syn_cuts(Ci):

7. Assume that eachprimary outputZk has an SPFD Rk(Xy X') associatedwithit.

2. Order thenodesin Ci. Allthenodesin Cf shouldbe earlier in theorderingthan all thenodes

in C^.

3. For each node T)j € CJ*, compute the maximum SPFD ofthe node and denote itasR^°^.

Rf^(X,X') =

where Rp{XyX') is the SPFDof 7)p expressed in terms of theprimary input space^. Thus

R!p°^(Xy X') denotes the maximum set ofedges that rjj can distinguish. However, ifall the
edges in are assigned to Rj, a lot of information will be duplicated in the network.

Hencetheamountofredundantinformation in Rj is minimized in thenextstep.

4. Process the nodes in C" in order, starting from the one earliest in the ordering. For each

node rjj G C^, do thefollowing:

(a) Foreach Zk GPO(r}j),

i. Determine theedgesin theSPFD of Zk that can onlybedistinguished byr}j accord

ing to the ordering computed in Step 2. Hence,from

Rjk(Xy X') = Rf^(Xy X') ARk(Xy X')y

A. Remove the edges that are distinguished by the SPFDs ofthe nodes in Cik that

are earlier in the ordering. Thus, for each rjn < Vj'

RjkiXyX') <r- Rjk(XyX')ARn(XyX').

B. Remove the edges that can be distinguished by the nodes in Cik that are later

in theordering. Thus, for each rfm > Vj'

Rjk{XyX') ^ Rjk(XyX') ARSr(XyX').

(b) Rj{X,X') = Ul,^Rji(XyX'), where n = |PO(7?j)|.

^Since rfp is a fanin of-qj, hence it hasalready been synthesized andhasanSPFD associated with it.

CHAPTER?. SPFDS AND DECOMPOSITION 104

(c) Compute

Rj(Y^,Y;) = ^x '̂Q{X,Yj)G(X\Yi)Rj(X,X').

This is theimage ofRj(X, X') to thelocal input space ofrjj.

(d) Determine the newJunction at rjj by coloring Rj{Yj, YJ) and minimizing the resulting
ISFusing ESPRESSO-MV Letthis newJunction befj. Note thatfj canbemulti-valued,

in general.

5. Stop.

7.4.4.1 Global SPFDsvs Local SPFDs

In all the above computations, the SPFDs wereexpressed in terms of the primary inputs

(global SPFDs) instead of thelocal inputs (local SPFDs). While computations ofglobal SPFDs can

befairly memory intensive, thedisadvantages ofexpressing theSPFDs ofthenodes interms of the

local fanin space are two-fold:

1. Expressing the SPFD in terms of the local space can add some extra useless edges. For

instance, suppose the primary input edge (s, x') produces the edge (y,y') in the local fanin

space ofrjj. Now, ifthe inverse image of (y, y') iscomputed back tothe primary input space,

then in addition to (x,a;'), a few more edges may be obtained. Hence, expressing in

terms of the local inputs could add some useless edges. This, in tum, may result in some

useless edges in theSPFD Rj thatis usedforderiving thenew function at rjj.

2. Translating the SPFD from onelocal space to another alsoresults in some loss of precision

due to early existential quantification. Thus, suppose it is necessary to remove the edgesin

the SPFD Rp ofrjp from the SPFD R^*^. The current algorithm would do the following (as
shown in Step 4(a)(i)(A)):

Rj(Yj,Yj) = 3xMRT'"iX,X')Rp{X,X'))G(X,Yj)g{X,Yl).

On the other hand, if all the SPFDs were expressed in terms of the local fanin spaces, the

computation would be the following:

Rj(Yj,Yl) = RT'̂ iYj.Yj) A(3y^,Y,Rp(Yp,Y;)En(Yj,Yp)En(YjX)h

where En(Yjj Yp) = "^xQiX^ Yj)G{Xy Yp). So in the second equation, first thequantifica

tion is done and then the conjunction. This could result in some additional edges. This is

particularly thecaseif thenodes do notshare anyprimary inputs as thenEn{Yj^ Yp) = 1.

CHAPTER?. SPFDS AND DECOMPOSITION 105

In practice, these disadvantages were indeed operative. Hence all the computations are performed

on global SPFDs.

7.4.5 Correctness

Lemma 7.2 Givena primary output Zk, let and denote the synthesized and unsynthesized

nodes ofCik, respectively. Then,

q.-i)ife = cSbUC'"".

where = {»Jp|(J7p € FI(rij)) A(jjj € CS,)}-

Proof

Consider a node, rjp € Either rjp fans out to at least one node in the transitive fanin of Zk

of level > z or else the maximum level of its fanouts in the transitive fanin of Zk is = i. In the first

case, it belongs to In the second case, it belongs to the

Any node rjp G has level < i and fans out to at least one node of level > i in the transitive fanin

of Zk. Thus Tjp € Consider a noderjp G Let it be the fanin of a noderjj in CJjj.. Note

that Tjj G TFI{zk). This is because rjj and Hrjj) = i. Moreover, sinceL{rjj) = z, hence

HVp) < (^ —!)• Two casesmustbe distinguished:

1. L{r}p) = (z —1): Since rjj G TFI{zk) and rjp G FI{rjj), hence rjp is a transitive fanin of

primaiyoutputZfc. Hencerjp G

2. L{rjp) < (z —1): Since rjp fans outto r7j(whose level = z), hence it fans outto rjj with level

> (z - 1). Also, rjj GTFI(zk). Thus rjp G

•

Theorem 73 If the topology constraint given by Lemma 7.1 is satined, each primary output Zk

can always be synthesized to satisfy its network specification. The internal nodes in the network can

be multi-valued after synthesis.

Proof The above is proved for an arbitrary primaiy output Zk.

Base case: The topology constraint ensures that Cofc has all the information that Zk requires.

Inductive step: Suppose Cik has all the information required by Zk- It is proved that the algorithm

syn.cuts ensures that will have all the information that Zk requires.

CHAPTER?. SPFDS AND DECOMPOSITION 106

0

Xi X2 X3 ^n—l^n

Figure 7.7: After rjj issimplified using itsminimum SPFD, thenodes of theabove modified network
Af can be synthesizedusing ^n^pfd.

Assume that'snottrue. Then thereexists anedgee = (x, x') GRk(XfX') thatcannot be

distinguished after synthesizing the nodes in C(i+i)fc. This happens only if e isnotinthe SPFDs of

the nodes in or in the maximum SPFD of the nodes in Since the maximum SPFD

of a node is simply the union of the SPFDs of its fanin nodes, e does not belong to the SPFDs of

any of the fanin nodes of fanins of the nodes in together with the nodes in

form the nodes in Oik (Lemma 7.2). Thus e does not belong to the SPIDs of the nodes in

Oik' But this contradicts the assumption that e can be distinguished by the nodes in Cik- •

The entire algorithm (comprised of defining the cuts in a network and synthesizing the

nodes in each cut using synjcuts) is referred to as syn-spfd.

7.5 Connections with TniniTniim SPFD

The ideas presented in the previous section also support the claim that computed us

ing (shown in Figure 4.4) in com_iiiiiispfd-forj5ep is indeed the minimum SPFD of rjj. In

Theorem 4.2, it was proved that all the minterms that have an edge between them in R^ have to

CHAPTER?. SPFDS AND DECOMPOSITION

circuits original syn^pfd % MV-nodes

apex7 292 278 9.09

cht 236 199 0

cmb 62 76 7.14

cc 99 102 0

cu 90 88 0

f51m 195 194 0

lal 224 223 8.92

ttt2 339 292 8.51

terml 625 341 24.07

x2 71 53 11.11

Average 0 -8.27 6.88

107

Table 7.1: Results of using synjspfd on ISCAS benchmark circuits.

be distinguished at the output of rjjj after rjj has been simplified. Here, the reverse claim is made.

Thus if all the mintermsthat don't appear in are assigned the same value at the output of the T)j

after simplification, correctfunctionality at the primary outputs can still be guaranteed by simply

modifying thenodes between 3^° andtheprimary outputs. This isbecause is acutinthenetwork

and it has all the information required by the primary outputs even after simplifying rjj using Rj.

Thus, I^ is indeed the minimum SPFD ofrjj.
The algorithm presented in the previous section can be applied for resynthesizing the

nodes with some minor modifications. The modifications arise in the definition of the cuts. Here,

the separator yj should be treated as the cut Cq. Applying the algorithm presented in the previous
section on the modified network^ Af (shown in Figure 7.7)determines thefunctionalities of all the

nodes in between y^ and the primary outputs ofthe original network. For instance, for the circuit
in Figure 4.5, after setting y to zero, the new functionat z is given as z = xiX2 + x^.

This schemecan also be used when the minimum SPFD of rjj is computedusing any of

the other separators, say yj, shown in Figure 4.4.

7.6 Experiments

In this section, someexperiments that wereperformed for determining the practical fea

sibility of the above scheme are described. As mentioned before, the algorithm synjspfd needs a

^All thenodesin the transitive fanin of rjj in theoriginal network except theonesin are removed.

CHAPTER?. SPFDS AND DECOMPOSITION

circuits script.rugged synjspfd % MV-nodes simplify

apex7 246 260 3.03 254

cht 165 162 9.75 162

cmb 51 58 16.67 53

cc 63 64 0 64

cu 60 62 0 60

fSlm 119 115 8.33 115

lal 106 107 0 107

ttt2 219 252 23.4 236

terml 176 163 6.67 157

x2 48 49 0 49

Average 0 2.99 6.78 0.36

Table7.2: Results of using syn^pfd on optimized ISCAS benchmark circuits.

108

network topology and an input-output specifications as its starting point. For this work, circuits

from the ISCAS benchmark suite (or their derivatives) were used and their topology information

and input-outputspecificationserved as the starting point The experiments were set up to test if the

procedures are valid and if they can closely reproduce the original circuit.

In the first set of experiments, the initial topology of a given ISCAS benchmark circuit

and its input-output specification was used as the starting point. Thus, given the topology of the

original circuit, ^n-spfd was used for synthesizing the nodes in these networks. The initial results

are shown in Table 7.1. Colunms 2 and 3 show the literal counts of the original circuit and the circuit

after using syn_spfd. An average improvement of 8.27% in literal count was obtained after using

syn-spfd^. One negative artifact of the greedy edge distribution scheme used in synxuts is that

some of the nodes may be multi-valued This is because a node that appears later in the ordering

in a cut may have to distinguish many edges and its SPED graph may no longer be bipartite. Practical

results, however, indicate that on average only 6.88% of the nodes were multi-valued (Colunm 4).

Table 7.2 provides results of using synjspfd on optimized ISCAS benchmark circuits.

In this experiment, a circuit was optimized using scriptrugged and the topology of the optimized

circuit was used as the starting point of synjspfd. The input-output specification was the function

ality of the original circuit This experiment was set up to test if the algorithm works under tighter

^This improvement is because many of the original circuits are not optimized and the synthesis procedure has the
opportunity of removing some redundancies.

^Note thata solution exists for thegiven starting topology andthe input-output specification in which all thenodes
are binary. This solution is the original circuit

CHAPTER?. SPFDS AND DECOMPOSITION 109

topology constraints. The results indicate the optimized circuit can be reproduced quite closely.

Even though, the results were worse than the original optimized circuit in somecases, the average

increase in literalcountwasonlyabout3%. The average percentage of nodesthatweremulti-valued

is 6.78%. The results of Table 7.2 should be viewed from the pointof view of a real application. In

a realapplication, a solution is not available. Onlythe topology and the input-output specifications

of the network will be provided. There would be no way for judging the quality of the solution

returnedby syn.£pfd. Table 7.2 supports the claim that the solution is pretty good. In addition,

network optimization methods that do not alter the topology like fullsimplify can be applied for

improving the solution. The results of running fiilljsimplify [37] is shown in Column 5 in Table

7.2. Thus essentially the heavily starting optimized circuit can be recovered.

The preliminary results indicate that it is possible to use the algorithm described in this

chapterfor synthesizing the nodes in a networkfrom its topology and its input-ouq)ut specification.

In the experiments with the topologies of the unoptimized circuits, there was also a reduction in the

literal count with respect to the original circuit. Also, in practice, it was found that on average less

than 7% of the nodes were multi-valuedin both the optimized and unoptimized topologies.

One problem with this approach is non-robustness. This is mainlydue to the laige memory

requirements of the global SPFDs.

7.7 Summary

In this chapter, the synthesisprocess for "topologically constraineddecomposition"was

presented. The initial results were quite encouraging. One problem was the memory usage of the

global SPFDs. There are a few approaches for dealing with this problem. It may be beneficial from

the memory perspectiveto represent the global SPFDs as asymmetric relations. Another possible

help in this direction is the use of SAT as described in Chapter 5. Also, instead of working on an

entire network, this algorithm could be applied to portions of a partitioned network.

The partial don't care wires introduced in the previous chapter could be used for obtaining

the initial network topology. This algorithm could also be useful in wireplanning scenarios where

the interconnect structure is planned out before the node functionalities are decided.

110

Chapter 8

Sequential SPFDs

In this chapter, the concept of sequential SPFDs is introduced. First, an example is pro

vided for illustrating how sequential SPFDs can be used to reduce the number of state bits. Then

a generalprocedure is provided for state reencoding using sequential SPFDs and the correctness of

the algorithmis also established. A procedurefor resynthesizing the circuitusing the newlyderived

state encoding is also described.

8.1 Previous Work

The classical computation of equivalence classes of states for FSMs was introduced in

[38]. There has been a whole body of work on the minimization of FSMs (c.f. [39]). Most of

these approaches suffer state space explosion. In addition, the benefits of state minimization do

not necessarily translate to the final implementation of the sequential circuit. Approaches based

on structural techniques try to solve this problem by working directly on the sequential circuit.

The circuit structure is used to extract the set of unreachable states which are later used as don't

cares for circuit optimization ([40], [41]). However, these approaches still have to represent the

entire state space and can potentially run into the state space explosion problem. To cope with

this problem, local transformation techniques such as ATPG-based methods [42] and retiming and

resynthesis [43] have been used. These are currently the most widely used techniques, but were

designed with efficiencyas the main consideration. As a result, sequential freedom is not completely

explored, due to limited time-frame expansion. The approach presented here avoids the state space

explosion problem by using a partition of the state space while exploring more sequential freedom.

CHAPTERS. SEQUENTIAL SPFDS

i-(o^
1

0001 OOlOJ

111

output

Figure 8.1: Example sequential circuit.

8.2 Motivating Example

Example 8.1 Figure 8.1 gives a simple example ofa sequential circuit and its corresponding State

Transition Graph (STG). It consists offour latches connected in series to form a shift register. The

output of the fourth register is the only primary output of the circuit. The initial value of the first

register is 1, the others 0. This circuit is sequentially redundant and could be implemented with two

registers only.

Combinational optimization treats the register inputs as primary outputs and the register

outputs as primary inputs, and optimizes the combinational network between these boundaries. For

the example in Figure 8.1, the resulting combinational network is shown in Figure 8.2. Clearly,

combinational optimization techniques based on CODCs or SPFDs will not produce any circuit

reduction.

Another way to apply combinational optimization techniques to a sequential circuit is to

ignore the register inputs of the circuit. Thus, the circuit used during combinational optimization

will have the primary inputs plus register outputs of the sequential circuit as its primary inputs, and

the primary outputs of the sequential circuit as its primary outputs. However, the register outputs

are constrained to combinations that correspond to states that are reachable. Using this approach,

the example of Figure 8.1 yields the combinational optimization problem shown in Figure 8.3.

CHAPTERS. SEQUENTIAL SPFDS

Pi
P2
P3
P4.

a ik

-Pi
-P2
-P3
Pk{2

PI:pi(l) + ...+P4(l)
PO :Pi (2) + ... + P4(2)

Figure8.2: A combinational circuitderived from the sequential circuitin Example 8.1

R* (reachable states): 1000,0100,0010,0001

O\pl(l)
1

i

H =P^
P4(l) 1

Pi(2)

pi{2)

PI:pi(l) + ...+P4(l)

P0:pi(2)

Figure 8.3: Anothercombinational circuit derivedfrom the sequentialcircuit in Example 8.1.

0001

112

Applying SPFDson thiscombinational circuit,the SPEDof theprimaryoutput,whichis the sameas

forPi (2), requires that all minterms thatproducea 1 haveto be distinguished from all theminterms

that produce a 0. Its SPFD in terms of the present state bits (pi(l),p2(l),P3(l),P4(l))» denoted

Ri, is shown in Figure 8.3: the minterm (0001) must be distinguishedfrom the minterms (1000),

(0100) and (0010). The SPFDs of the remaining state bits are empty. Thus, the union of the SPFDs

of all state bits yields Ri. These are exactly the state pairs that produce different outputs in one

transition. Thus SPFDs can provide information about the transitions of a sequential circuit, but

it is not sufficient to just capture the information about one time frame. Informally speaking, it is

necessary to unroll the circuit multiple times and determine the SPFDs at each node in a sequential

circuit by computing the union of the SPFDs of the node in all time frames. These are called

CHAPTERS. SEQUENTIAL SPFDS

R* : 1000,0100,0010,0001

Pl(l)

P4(l)

1000 0001

0100 0010

R2

g(l)

Pi (2)

P4(2)

1000 0001

o D
u

Pi(3)

P4(3)

1000 0001

o

0100 0010

Figure 8.4: SPFDs obtained after unrolling once.

113

sequential SPFDs.

8.2.1 Sequential SPFDs

Consider a single unrolling of the circuit in Figure 8.1 which yields the combinational

optimization problem shown in Figure 8.4. Denote the first andsecond copies by C(l) and C(2).

respectively. The resulting combinational circuit has one primary output pi(3) and four primary

inputs, pi(l), p2(l), J>3(1) and p4(l).

Computing the SPFDs of all the nodes in the circuit and expressing the union of the

SPFDs of the present statebits of C7(2) and C(l) in terms of the present state bits of C(2) and

C(l), respectively yields Ri{i) and R2W as shown in Figure 8.4. jRi(1) is exactly the sameas

Ri in Figure 8.3. i22(l) denotes the state pairs that produce different outputs after exactly two

transitions. Hencethe unionof the two SPFDs,R2 = R2W + -^1(1).givesall those statepairs that

produce different outputs in one or twotransitions. Unrolling the circuit oncemoreandcomputing

the SPFDs of all three copies gives Rz shown in Figure 8.5(a). It has an edge between any two

states that can produce different outputs in one, two or three transitions.

Unrollingthe circuit any further producesno additionaledges. Thus Rz includesall pairs

of states that must be distinguished. If a pair of states s and s' has no edgebetween them, thenthe

CHAPTERS. SEQUENTIAL SPFDS

R*:1000,0100,0010,0001

(a)

114

(b)

C{1) C(2) cm

Pi(3)

0001

0100 0010

Ci^

IP1(1) Pi(2) Pi (3)
]

Pi(4)
1

T

=rLb • • =71^ • —, 1-
P4ll)

- 1
P4l2)

_ 1

P4(4) %

Pi (5)

P4(5)

0001

0100 0010

R4

Figure 8.5: Variouslevels of unrolling and the corresponding SPFDs.

sequential circuit behaves identically, irrespective of whether it starts from sot s'. Hence these two

states could be merged. The graph R3 can be colored to obtain equivalence classes for the states.

Four colors are needed and hence two state bits are required to implement the circuit

Thisexample illustrates how progressive unrolling adds edges between statepairs (s, s')

that behave differently in the future. In this particular example, since all states behave differently,

no additional information over the fact that the set of reachable states has four states and can be

colored with four colors is gained.

The next example illustrates how sequential SPFDs can provide useful information that

cannot be gained just by examining the set of reachable states.

CHAPTERS, SEQUENTIAL SPFDS 115

output

^ooo) —

000 0010

Figure 8.6: Another example sequential circuit.

Example 8.2 Consider the circuit in Figure 8.6. It is similar to that in Figure 8.1 except that the

primary output ofthe circuit is now the OR ofthefirst and third register outputs. The resultsfor no

unrolling and one unrolling are shown in Figure 8.7 and are denoted R\ and R2 respectively. Ri

and R2 denote the state pairs thatproduce differentoutputs in one and two transitions, respectively.

Here Ri = R2, so the unrolling process is stopped. Unrolling the circuit any further does not

produce any more state pairs that behave differently in thefuture. Since Ri is bipartite, only one

state bit is required to implement the circuit.

Thus, SPFDs can give useful relations between states which can be exploited for deriving

a new state encoding. In the following section, a general procedure which uses SPFDs for re-

encoding the state space is provided. The correctness of the procedure is also established.

8.3 Sequential SPFD Computation

8.3.1 Additional Notation

For a sequential circuit M, denote the set of states by S, the set of transitions by T, the

presentstate bits by P, and next state bits by P'. Let Pi € P denote a presentstate bit of M and

CHAPTERS. SEQUEimALSPFDS 116

oi(l)

R*:1000.0100,0010,0001

Pi(li
1000 0001

0010 0100

Piin
1000 0001

0010 0100

Figure 8.7: Ri and R2.

G P'denote the next statebit corresponding to Pi. LetP = ,Pfc},denotea partition

of P, where each Vi is an individual part of P. Each node rjj G M has a sequential SPED PJ

associated with it.

Let C be the combinational circuit obtained from M where its primary inputs are the

primary inputs plus the present state inputs of M, and primary outputs are the primary outputs and

the next state outputs of M.

CHAPTERS. SEQUENTIAL SPFDS 117

8.3.2 Algorithm

The algorithm comjseqjspfds starts with the combinational circuit C obtained from M

without unrolling. It computes theSPFDs of all nodes in C and uses them to update thesequential

SPFDs of the nodes in M, whichare initially empty. The SPFDs associated with the presentstate

bits denote the information that they have to provide for ensuring correct functionality after one

time frame. Next, the SPFD of eachpresent state bitpi is attached to the primary output of C that

corresponds to p\. Then theSPFDs of C are re-computed. In general, the step computes the

sequential SPFDs of the nodesrequired for correctness in < i timeframes. The process stopswhen

no more edges are added to any node in the network.

Algorithm com-seqjspfds(M, V):

1. R* = ReachMate(M).

2. For each node r)j e M, Rj

3. Obtain the combinational circuit Cfiom M.

4. Restrict the present state inputs ofC so that it allows only R*; these are used to restrict the

number of input combinations that can be used during the image computation steps. The

initial SPFDs on the PCs ofC that are also PCs in M are givenby theJunctions ofthe gates

driving these outputs. The SPFDs of the remainingPCs ofC (i.e., the next state bits ofM)

are empty.

5. Compute^pfds(C).

6. Update-spfds(M).

7. repeat{

(a) ModifyMatejpfds(M, V).

(b) Attach empty SPFDs to the PCs of C that are also PCs of M and the SPFDs of the

present state bits ofM to the POs ofC that correspond to the next state bits ofM.

(c) Compute-spfds(C).

(d) Update^pfds(M).

}until(no change in SPFDs ofnodes).

CHAPTERS. SEQUENTIAL SPFDS 118

8. Stop.

ReachMates computes the set of reachable states of M starting from the initial states. In

general, any over-approximation of the reachable states can be used. However, the SPFDs of the

nodes are the smallest if the set of reachable states is used. Compute.spfds computes the SPFDs of

all the nodes in C as in the combinational case, described in Chapter 5. The subroutine Update.spfds

uses the SPFDs of the nodes in C for updating the sequential SPFDs of the corresponding nodes of

M. Foreach node rij in M, it computes theunion of the sequential SPFD of rjj stored in M with

the new SPFDattached to the copyof rij in C. During each SPFD computation phase, the present

state bits are treated as primary inputs; hence the SPFD of each present state bit pi is expressed in

terms of the fanins of the fanouts of pi. The subroutine ModifyMatejspfds transforms this SPFD

so that it is expressed in terms of the variables in Vk* where pi G Vk' The set of reachable states

R* are used to restrict the minterm combinations in the SPFD of pi. It only contains edges between

a and b such that a and b are cubes of Vk variablesand are contained in where Sk is obtained

fromR* by existentially quantifying the variables not in Vk-

Fornow, thealgorithm assumes thatV has been chosen. It is important to observe thatthe

algorithm only uses V inthe subroutine ModifyMatejspfds. V isuseful if it isdesirable toperform

partial re-encoding of the state space since each partition can bere-encoded independently. This

avoids building anincompatibility graph over the entire state space. One simple heuristic tochoose

V could group present state bits that have paths to thesame setofprimary outputs. In general, the

structure of thecircuit'stopology canbe usedto find a good partition.

8.3.3 Theory

The ideas presented above are formalized in this section. In general, M is a Mealy ma

chine; itsprimary output logic isa function of the present state and the primary inputs.

Definition 8.1 Apair ofstates (s, s') inS is distinguishable ifthere exists an input sequence such

thatM produces different outputsfor s ands'.

Definition 8.2 Given a state s, the projection ofs onto the set ofvariables Z, denoted as s^, is
obtained byexistential quantification ofall variables not in Zfrom s.

Definition 83 The sequential SPFD ata node qj isthe SPFD R^ associated with itwhen com^eq^pfds
terminates.

CHAPTERS. SEQUENTIAL SPFDS 119

© o 0

0 o

Figure 8.8: Illustration for the proofof Lemma 8.3.

In the sequel, denotes the SPED of r}j after m stepsof comjseqjspfds.

Definitioii 8.4 The SPFD of a part Vk ofV is the union ofthe SPFDs of the present state bits in

Vk' It is denotedas Rp^..

Definition 8.5 Thestate SPFD R is a graph G = (5, E), wherean edge existsbetweentwostates s

ands' ifthere exists a part, Vi € V, such that GR-p^. Here, and areprojections

ofs and s' respectively onto Vi.

First it is shown that the algorithmcom jseq-spfds terminatesand then that the state SPFD

has an edge between a pair of states if they are distinguishable.

Lemma 8.1 The computation ofRj ofa node rjj by com-seqjspfd ismonotonic in k.

Proof Let the SPFD of r}j after kand {k + 1) iterations be denoted as Rj and Rj'*'̂ respectively.
Since Rj"^^ is obtained from Rj by adding SPFDs edges, hence R^ C •

Lemma 8.2 R^ isfinitefor k>0.

Proof The input space of r)j is denoted as 1^-. Rj denotes input combinations that have to be

distinguished after k iterations. Since tjj has a finite number ofinputs, Rj CYj x Yj isfinite. •

Lemma 83 If two reachable states s and s' are distinguishable, then the state SPFD R contains

an edge between them.

CHAPTERS. SEQUENTIAL SPFDS 120

PO P'

n

Figure 8.9: M': implementing the transitionrelation of M.

Proof Bycontradiction. Suppose s and s' aredistinguishable ink steps but(s, s') ^ R. Then, there

must bea setofstates {so, S6, s^} € S such that (s^, Sa) 6 T, (s^, Sb) GT, (so, Sb) GR and

(s'a) sj,) ^ R. This is illustrated inFigure 8.8.

Suppose the algorithm stops after m steps. The stopping criterion requires that no more

additional SPFDedges are added. Since, (soj Sb) G i?, then e = SPED

of at leastonepartition Vk- This implies that there exists a present statebit pj G Vk, such that its

SPFD Rj contains e. Since e € the algorithm would have added e' = (s^',s^') to the SPFD
of a present state bitpi in thenextiteration, where pi eVi. Hence, e' GRpf. This contradicts the

assumption that s^) ^ R. •

Theorem 8.1 ThesequentialSPFDs computedbycom-seq^pfds contains the informationfor cor

rect re-encoding ofa sequential machine.

Proof Rj is monotonic (Lemma 8.1) and finite (Lemma 8.2) for all fc > 0. Thus Rj has a
fixed point and hence com.seqjspfds terminates. By Lemma 8.3, an edge exists in the state SPFD

between any two reachable distinguishable states. •

8.3.4 Previous Work

The work presented in this chapter is similar to classical state minimization of completely

specifiedmachines (c.f. [39]), which progressivelypartitions the state space into equivalenceclasses

until no additional refinements can be made. At this point, the states in an equivalence class can be

merged. Thus each equivalence class contains states which are not distinguishable. By Lemma 8.3,

CHAPTERS. SEQUENTIAL SPFDS 121

the state SPFDcontains an edge between any two states that are distinguishable. Hencethe states

thatcanbe colored withthesamecolorarea subset of anequivalence classobtained bytheclassical

stateminimization. However, two states in the same equivalence class can have an edgebetween

them in the stateSPFD,sincein general, onlycontainment is guaranteed.

Consider thecircuit M', shown inFigure 8.9. M' hasa single multi-valued node 77 which

implements the transition and output relations of M. The inputs of 77 are the primary inputs and

the presentstatevariables of M. The outputs of 77 are the primaryoutputs and next statevariables

of M. The state SPFD obtained by executing com^eqjspfds on M' with V = {P} has an edge

between two states iif they are distinguishable. In this case, the equivalence classes obtained from

the stateSPFDcoincide with the onesobtained by the classical state minimization algorithm. Thus

the additional edgesare due to the particular decomposition of M and the partitioning of the state

bits.

8.3.5 State Encoding Using Sequential SPFDs

The SPFD of each part in the partition can be used to perform a re-encodingof the state

space. For each partPj, itsSPFD Rj>^ is solely expressed in terms of the variables of P,. Rj>^ can

thus be coloredto get a new encodingof the bits of Pj. This procedurecan be repeatedfor each Pj.

This method can accomplish a wide rangeof state encodings depending on the partition

used whilecomputing the SPFDs. On oneextreme, if P = {P}, thenthe SPFDof thatpart is equal

to the state SPFD.Coloring the state SPFD yields a complete re-encodingof the state space. On the

otherextreme, re-encoding using P = {Pi,p2, ••• ,Pm}, where Pi = pi, yields the original state

encoding. A goodpartitionthat uses the initialdecomposition of the circuitcan be used to do partial

re-encoding of the state space. This approach is computationally feasible for very laige machines

since it only encodes a subset of the state variables in each step. Traditional state minimization

algorithms must build an incompatibilitygraph over the entire state space.

The following example illustrates the effect of the different partitions of P on the quality

of state re-encoding.

Example 8.3 Consider the circuit in Figure 8.6 and perform re-encoding of the state space for

different partitions ofP:

1. V — {Pi} where Pi = (pi,P2jP3)P4)' After thefirst step, the SPFDs of p2 and p4 are

obtained. The SPFDs of p2 and p4 are {(0100,1000), (0100,0010)} and {(0001,1000),

(0001,0010)}, respectively. Similarly, after the second step, the SPFDs ofpi and pz are

CHAPTERS. SEQUENTIAL SPFDS 122

{(1000,0100), (1000,0001)} and {(0010,0100), (0010,0001)}. Another step of the algo

rithm adds no more edges and thus the algorithm stops. TheSPFD ofVi is bipartite. Hence,

this SPFD can be colored using two colors^. As a result, the reached states of the original

state space can be encoded as:

1000 ^ 0; 0010 0; 0100 -)• 1; 0001 1;

2. V {VuV2}f where Vi = (pi,P3) and V2 = (P2,P4). After thefirst step, the SPFDsof

P2 and p4 are obtained. The SPFDs ofP2 and p4 in terms ofthe variables in their respective

parts are {(10,00)} and {(01,00)}, respectively. Similarly, after thesecondstep, theSPFDs

ofPi and p3 in terms of variables in their respective parts are {(10,00)} and {(01,00)}.

Thealgorithmterminates in the nextstep. Considerthe effect of re-encoding eachpartition

separately. The SPFD ofVi is {(10,00), (01,00)}. Since it is bipartite, it can be colored

using two colors. Letminterms 00, 01and 10in Vi mapto 1,0 and 0 respectively. Similarly,

V2 can be re-encoded by coloring Rp2' Since R-p^ is also bipartite, it can also be colored

with two colors. Let minterms 00, 01 and 10 in V2 aiap to 0, 1 and 1 respectively. Hence a

circuit with two state bits can be obtained. So, the new encoding ofthe reached states is:

1000 00; 0010 00; 0100 11; 0001 11;

3. -p = {7^1,^2,^3,^4}, where Vi = pi, V2 = P2, V3 = ps andV4 = Pa- The algorithm

terminates in threestepsand computes theSPFDsofall thenodes. The SPFDsofeachpi in

terms qfP^* is{(1,0)}. Re-encoding each partition separately produces no reduction in the

state bits.

8.3.6 Sequential SPFDsUsing Classical Incompatibility Graph

It is interesting to note that the incompatibility graph of M derived using the classical

state minimization algorithms ([39]) canbe directly usedto derive the sequential SPFDs of all the

nodes of M in one step. The procedure is outlined below:

I. TreatM as a specialized combinationcd circuit C where the POs are the POs of M and the

Pis are the Pis ofM plus the state bits of M. The nextstate bits ofM are the inputs of a

dummy node D in C. TheSPFD ofD is the suppliedincompatibility graph.

^This is exactlywhatwasobtained at the endof Section8.2.1.

CHAPTERS. SEQUENTIAL SPFDS 123

2. Compute the SPFDs ofall nodes in C (includingD) in reversetopologicalorderfrom primary

outputs to primary inputs using Compute^pfds.

8.4 Resynthesis Procedure

Given the encoding relation Enc between the old states and the new states and the se

quential SPFDs at all the nodes in M, the original circuit can be resynthesized using the following

algorithm.

Algorithm seq_resyii(M, {i2j}):

1. Proceed in topologicalfashion from primary inputs and present state bits to primary outputs

andpresent state outputs.

2. For each node Tjj, perform thefollowing twosteps:

(a) Compute the mapping between the original andthe newfanin spaces ofnode r)j:

En{Yj,Yj) = 3x,P,P^R*(P){P' = Enc{P))G(X,P,Yj)G(X,P\Yj),

where X is the set of primary inputs, P is the set of old state variables, P® is the

set of new state variables, R*{P) is the set of reachable states, Enc gives the new

encoding of thestates, ^(X,P, Yj) gives the transition relation of theoriginalfanins

andG{X, P®, Yj) the transition relation ofthe newfanins. The process is illustrated in

Figure 8.10.

(b) Obtain the modifiedSPFD as:

Yl) = 3Y,,YlEn(Yj, Y^)En(Y;, Y!)R^(Yj, Yj).

Color it to get an ISFfor the node and minimize it.

3. Attach a new multi-output node F at theoutput of thenext state bits. F has n inputs and m

outputs, where n is the number of original state bits and m is the numberof newstate bits.

It can be implemented as a PLA. Thisnode maps the re-implemented nextstate bits P' onto

their newstate encoding Enc{P'), as shown in Figure8.11.

CHAPTERS. SEQUENTIAL SPFDS

original

PI

Enc

X: Primary Inputs of M
P: Original State bits of M
P®: Encoded State bits of M

Figure 8.10: Encoding relation between theoriginal and new fanin variables, En(YjyYj).

[Enc

Enc

PI

new

Figure8.11: Computing the function of the multivalued node.

124

Example8.4 Figure 8.1 can be redrawn as shown in Figure 8.12. Assume that the sequential

SPFDs of all the nodes are given. Further, let the encoding between the old and the new state

spaces be{(1000,00), (0100,01), (0010,10), (0001,11)}.

The sequential SPFD offi is{(1000,0100), (1000,0010), (1000,0001)}. In terms of its

inputs, theSPFD canbere-written as {(0001,1000), (0001,0100), (0001,0010)}. The SPFD offi

interms ofitsnewfaninsp\andp2 is {(11,00),(11,10),(11,01)}. Thus fi canbere-implemented

as Si = {pi H-pl)- Similarly, the newJunctions off2, fz andf^ are /2 = p\ h = (pf +P2)

CHAPTERS. SEQUENTIAL SPFDS

R* : 1000,0100,0010,0001

P}

Pi
R*

P3

Figure 8.12: Revisiting Example 8.1.

A vwM . A

/4 = p®p| respectively. Theencodingbetween P and P' is

1000 0010

0100 -> 1110

0010 1000

0001 1011.

The newJunction ofthe output node F is given below.

fl /2 /a /4 Pi P2

0 0 1 0 0 0

1 1 1 0 0 1

1 0 0 0 1 0

1 0 1 1 1 1

125

output

Pi

Vl

Ps

Pa

It can be implemented as two binary nodes, n\ and 712.

= hhih^h)

W2 = hhih 0 h)

TheSPFDoftheoutput interms ofitsinputs is{(0001,1000),(0001,0100), (0001,0010)}.

Given the new state encoding, the modified SPFD is {(11,00), (11,01), (11,10)}. Thus the new

junction ofthe output is pfpl-

The above circuit can befurther simplifiedby collapsing fx, f2, h ^tul U ni and 712

to yield the circuit shown in Figure 8.13.

CHAPTERS. SEQUENTIAL SPFDS 126

output

fl=Pl+P2
ni =^©p|
"2 =P2

Intial state: 00

Figure 8.13: Re-implementation of Example 8.1.

Similarly, resynthesizing the circuit in Figure 8.5 using the stateencoding

1000 1; 0100 0; 0010 ^ 1; 0001 0;

and simplifying it yields the circuit in Figure 8.14.

Notethat ingeneral com^eq^pfds followed byseq j'esyn maybe iterated to yieldfurther

reductions.

8.5 Summary

The concept of sequential SPFDs was introduced in this chapter. Given a partition of

the state bits, an algorithm was presented which computes sequential SPFDs for the nodes in a

sequential circuit. Each part in the partition was also associated with an SPED, The SPIDs of these

parts could be used for re-encoding the state space. This approach can be particularly useful for

largermachines as it avoidsbuildingthe incompatibility graph for the entire state space. The effect

of different partitions on the quality of results was illustrated.

Another algorithm used the sequentialSPFDs and a new state encoding for resynthesizing

the sequential circuit. The resynthesis procedure could also be used in conjunction with other state

minimization algorithms for obtaining a new circuit. The two algorithms could be iterated to yield

CHAPTERS. SEQUENTIAL SPFDS

output

Pi

n = pl
Initial state: 1

Figure 8.14: Re-implementation of Example 8.2.

127

new partitions and new encodings. The algorithms worked directly on the current implementation

of the machine and thus only dealt with completely specified machines. A natural extension is to

investigate the application of these ideas to incompletely specified machines.

128

Chapter 9

Conclusions

A newformalismfor expressingflexibility duringlogic synthesiswas studiedin this work.

The contributions of this dissertation are summarized below. Some directions for future work are

also outlined.

In Chapter 4, the concept of Sets of Pairs of Functions to be Distinguished or SPFDs

was introduced. The notion of representing the information content of a node/wire using SPFDs

was presented. The conceptof the minimum SPFD for a node was proposed. An algorithm was

presented for computing the minimum SPFD of a node in a network. It was argued thatnodesim

plification usingthe minimum SPFD could be verycomputationally expensive. Hencethe concept

of thecompatible SPFDof a node was introduced. The flexibility expressed usingSPFDs wascom

pared to several previous formalisms used forexpressing flexibility. It wasshown thatSPFDs area

special typeof Multiple Boolean Relation (MBR). They completely contain the flexibility expressed

by Multi-output multifunctions and theyextend the flexibility expressed by Boolean Relations but

do not completely contain it.

Algorithms for generating compatible SPFDs and for resynthesizing the nodes in a net

work using these SPFDs were described in Chapter5. This SPFD computation is similar to the

CODCcomputation algorithm [20]but the resynthesis process is more involved than the resynthe-

sis phase in CODCs. This is mainly because the SPFDs allow changes to node functionality that

are not allowedby CODCs. The increasedflexibility of SPFDscomes at an increasedcost, both in

terms of robusmess and predictability. While robustness issueshave arisen in other logic synthesis

operations using BDDs, it can become particularly acute for SPFDs. This is mainlybecausemore

information needs to be stored in the BDDs during SPFD manipulations. The robustness problem

waspartiallysolvedby usinga SATsolverand a BDDenginetogether. SATsolversare knownto be

CHAPTER 9. CONCLUSIONS 129

more robust than BDD engines. But they also suffer from the problem of reduced efficiency for set

manipulations. A hybrid scheme combining the robustness of SAT with the efficiency of BDD was

presented for tackling some of the more memory-intensive computations of the algorithms. The

increased flexibility represented by SPFDs can often cause uncontrolled changes in the network.

This could manifest itself as an unpredictability in the optimization results. The notion of a "region

of change" was introduced for limiting the changes allowed by SPFDs, while using some of the

additional flexibility provided by SPFDs.

With the decrease in feature sizes, interconnect effects are becoming more dominant.

SPFDs provide a powerful tool for manipulating the interconnections of a network. At the heart

of this ability is the notion that SPFDs represent the information content of a wire in a network,

in the form of primary input minterm pairs that the wire has to distinguish. This concept was

exploited for using SPFDs for changing the wiring between the nodes in a network in Chapter

6. Somepreliminary intuition wasprovided in orderto explain why SPFD-based rewiring can be

much more powerful than traditional ATPG-based methods. Several different rewiring scenarios

werepresented. SPFD-based rewiring wasusedfor reducing thenumberof interconnections(wires)

in Boolean networks. Theexperiments showed thatthismethod produced a 19% reduction in wire

count and a 12% reduction in literal count. The concept of don't care wires was also proposed.

These refer to alternate wire sets where the choice for one wire is completely independent of the

choice forother wires. The concept issimilar to that ofcompatible logic don'tcares. An algorithm

was presented forgenerating these don'tcarewires, which were subsequently used forminimizing

the total wirelength ofnetworks ofPLAs. Initial experiments were done in an integrated synthesis

and placement environment with favorable results. A 12% reduction in wirelength was obtained

using the don't care wires. Moreover, a positivecorrelation was observed between the number of

wires with don't care setsof wire and improvements in wirelength.

An interesting application ofSPFDs tofunctional decomposition was presented inChap

ter7. It was proved that SPFDs can beused forsolving the Ashenhurst-Curtis decomposition prob

lem. A new type of decomposition problem called the topologically constrained decomposition

problem was introduced. The problem requires synthesizing the nodes ina network sothat a par

ticular functionality is implemented, given a priori the final topology ofthe network. This type of

problem may arisein interconnect-centric algorithms likewireplanning, where the interconnection

between the nodes is decided before the logic in the nodes is fixed. The notion that the network acts

asa lossy channel through which information flows from theprimary inputs to theprimary outputs

was developed. The constrained decomposition problem was formulated in terms of information

CHAPTER 9. CONCLUSIONS 130

flow and an algorithm for synthesizing the nodes in the network using SPFDs (which can represent

information content of a node or wire) was presented.

The concept of sequential SPFDs was proposed in Chapter 8. An algorithm for state

re-encoding of a general, sequential circuit was presented and the correcmess of the method was

established. A procedure for resynthesizing the sequential circuit using the new state encoding was

also presented. The idea of partitioning the statebits of a sequential machinefor dealingwith laige

sequential machines was also proposed.

9.1 Future Work

SPFDs are interestingand seemfundamentalto the synthesisprocess since they represent

how information ispassed along andprocessed bya network. Thisdissertation attempts tohighlight

some of the interesting applications of SPFDs to logic synthesis algorithms. Much work remains in

orderthattheycanbe computed andused efficiently. In thissection, weprovide some directions for

future work.

The basic algorithms for SPFD computation and resynthesis are still quite expensive

which might affect their acceptance by therestof thecommunity. In this dissertation, some tech

niques for improving theefficiency and robustness of SPFDs were provided. However, more work

is required in thisarea. Someotherideas thathavenT beentried include:

1. Using specialized BDD operators for speeding up some repeated operations.

2. Approximating theSPFD computations thereby losing some flexibility butgreatly increasing

efficiency.

3. Using an incremental SAT solver (since the SAT problems generated during SPFD computa

tions are very similar).

Theother problem of SPFDs, namely uncontrolled change, was solved using theconcept of a "re

gion ofchange". Other techniques forcontrolling thechanges induced in thenetwork afteroptimiz

inga few nodes using SPFDs need tobe investigated, such as creating independent partitions in the

networkand using SPFD optimization on each of the independentpartitions.

SPFDscan be a very powerful tool for rewiring. There are many interesting rewiring ap

plications of SPFDs. The concept of don't care wires waspresented and some initial experiments

CHAPTER 9. CONCLUSIONS 131

were presented in Chapter 6. A lot more work can be done in that area. For example, the computa

tion of the don't care wires assumes a random ordering of the wires during the SPFD computation.

The ordering schemecan be made more intelligent depending on the metricbeing optimized such

that "expensive" wires have a greater chance of finding alternates. Different metrics like delay, con

gestion, crosstalk, etc can also be optimized using don't care wires. The conceptof partial don't

care wires was also introduced in the same chapter. These are a generalization of don't care wires,

in that an alternate wire contains only a part of the information provided by the original wire. The

resynthesis process can become more complicated when partial don't care wires are used. Experi

mentsneed to be performed for examining the benefits of usingthisgeneralization.

In Chapter 7, an algorithm was presented for using SPFDs for solving the topologically

constrained decomposition problem. Interesting applications of this technique are being currently

investigated. Any application that can generate an initial topology can beused. Inparticular, topolo

gies that are generated using partial don't care wires should be examined.

Sequential SPFDs provide a whole new area for interesting research problems. Thework

described in Chapter 8 needs an efficient implementation of the ideas presented there. The ben

efits of different partitioning strategies need to be experimentally investigated. It should also be

interesting to explore rewiring possibilities in a network of finite state machines using sequential
SPFDs.

132

Bibliography

[1] W. Gosti, A. Narayan, R.K. Brayton,andA.L. Sangiovanni-VincenteUi. Wireplanning in logic

synthesis. In Proceedings of the IEEEInternational Conference on Computer-Aided Design^

pages 26-33, Nov 1998.

[2] R. K. Brayton, G.D. Hachtel, C.T. McMullen and A.L. Sangiovanni-X^ncentelli. Logic Mini

mization Algorithms for VLSISynthesis. Kluwer Academic Publishers^ 1984.

[3] R. Brayton andF. Somenzi. Boolean Relations and the incomplete specification of logic net

works. In Proceedings of the International Conference on VLSU pages. 231-240, Aug1989.

[4] K-T. Cheng andL.Entrena. Multi-level logic optimization byredundancy addition and removal.

In Proceedings ofEuropeanConference DesignAutomation^ pages313-311yFeb 1993.

[5] S.C. Chang, M. Marek-Sadowska andK.T. Cheng. Perturb andSimplify: Multi-level Boolean

Network Optimizer. In IEEE Transactions on Computer-Aided Design of Integrated Circuits

and SystemSy vol. 15 (no. 12), pages 1494-1504,Nov 1996.

[6] S. Chang and K-T. Cheng. Postlayout LogicRestructuring Using Alternative Wires. In IEEE

Transactions on Computer-Aided Design of Integrated Circuits and SystemSy vol. 16 (no. 6),

pages 587-596, Jun 1997.

[7] C-W. Chang, C-k Cheng, P. Suaris and M. Marek-Sadowska. Fast Post-placement Rewiring

UsingEasilyDetectableFunctionalSymmetries. In ProceedingsoflEEE/ACM DesignAutoma

tion Conferenceypages 286-289, Jun 2000.

[8] C-W. Chang and M. Marek-Sadowska. XWire : Efficient SingleWire Addition and Removal

BeyondRedundancy. In International Workshop on LogicSynthesiSy Jun 2001.

BWUOGRAPHY 133

[9] C. Berman and L. Trevillyan. Global Flow Optimization in Automatic Logic Design. In IEEE

Transactions on Computers^vol. 10 (no. 5), pages 557-564, May 1991.

[10] S. Chang, Z. Wu and H. Yu. Wire Reconnections Based on Implication Flow Graph. In

Proceedingsofthe IEEE International Conference on Computer-AidedDesign, pages533-536,

Nov 2000.

[11] S. Yamashita, H. Sawada, and A. Nagoya. A new method to express functional permissi

bilities for LUT based FPGAs and its applications. In Proceedings of the IEEE International

Conference on Computer-Aided Design, pages 254-261, Nov 1996.

[12] R. Bryant. Graphbased algorithms for Booleanfunction manipulation. In IEEE Transactions

on Computers, vol. C-35 (no. 8), pages 677-691, Aug 1986.

[13] J. R Marques-Silva and K. A. Sakallah. GRASP: A Search Algorithm for Propositional

Satisfiability. In IEEETransactions on Computers, vol. 48 (no. 5), pages 506-521, May1999.

[14] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang andS. Malik. Engineering an efficient SAT

solver. InProceedings oflEEE/ACMDesign Automation Conference, pages 530-535,Jun2001.

[15] S.A. Cook. The complexity of theorem-proving procedures. In Proceedings of3rdAnnual

ACM Symposium on Theory ofComputing, pages 151-158,May 1971.

[16] J. P. Marques-Silva andK.A. Sakallah. Boolean Satisfiability inElectronic Design Automa

tion. In Proceedings of the lEEE/ACM Design Automation Conference, pages 675-680, Jun

2000.

[17] S.Malik. Analysis of Cyclic Combinational Circuits. In Proceedings of IEEEInternational

Conferenceon Computer-AidedDesign, pages 618-625, Nov 1993.

[18] R. Rudell. LogicSynthesis for VLSI Design. Ph.D. thesis, UCBerkeley, 1989.

[19] K. A. Bartlett, R.K. Brayton, G.D.Hatchel, R.M. Jacoby, C.R. Morrison, R. L. Rudell, A.L.

Sangiovanni-\^ncentelli, andA.R. Wang. Multi-level Logic Minimization Using Implicit Don't

Cares. In IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 7 (no. 6), pages 723-740, Jun 1988.

[20] H. Savoj. Don't Cares in Multi-Level Network Optimization. Ph.D. thesis, UC Berkeley,

1992.

BIBLIOGRAPHY 134

[21] S. Muroga, Y. Kambayashi, H. Lai and J. Culliney. The transduction method - design of logic

networks based on permissible functions. In IEEE Transactions on Computers^ vol. C-38 (no.

10), pages 1404-1424, Oct 1989.

[22] Y. Watanabe and R.K. Brayton. Heuristic Minimization of Multiple-Valued Relations. In

Proceedingsofthe IEEE International Conferenceon Computer-AidedDesign, pages 126-129,

Nov 1991.

[23] E. M. Sentovich and R. K. Brayton. Multiple Boolean Relations. In International Workshop

on Logic Synthesis, May 1993.

[24] Y. Kukimoto and M. Fujita. Rectification Method for Lookup-Table Type FPGA's. In Pro

ceedings of the IEEE InternationalConference on Computer-Aided Design, pages54-61, Nov

1992.

[25] R. Brayton. Compatibility observability don't cares revisited. In International Workshop on

Logic Synthesis, Jun 2001.

[26] A. Veneris, M.S. Abadir and I. Ting. Design Rewiring Based on Diagnosis Techniques. In

Proceedings ofASP-DAC, pages 474-484,2001.

[27] S. Khatri, R. Brayton, and A. Sangiovanni-Vincentelli. A VLSI design methodology using a

network of PLAs embedded in a regular layout fabric. Technical Report UCB/ERL M99/50,

Electronics Research Laboratory, University of Califomia, Berkeley, May 1999.

[28] Melvin A. Breuer. Min-cut placement. In Journal ofDesignAutomation and Fault-Tolerant

Computing, vol. 1 (no. 4), pages 343-362, Oct 1977.

[29] C.M. Fiduccia and R.M. Mattheyses. A linear-time heuristic for improving network partitions.

In Proceedings ofthe lEEE/ACMDesign Automation Conference, pages 174-181, Jun 1982.

[30] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani. VLSI module placement based on

rectangle-packing by the sequence-pair. In IEEE Transactions on Computer-AidedDesign of

Integrated Circuits and Systems, vol. 15 (no. 12), pages 1518-1524, Dec 1996.

[31] H. Eisenmann and F.M. Johannes. Generic Global Placement and Floorplanning. In Proceed

ings ofthe lEEE/ACM Design Automation Conference, pages 269-214, Jun 1998.

BIBUOGRAPHY 135

[32] R.L.Ashenhurst. TheDecomposition of Switching Functions. In Proceedings ofInternational

Symposium on the Theory of Switchings pages74-116, Apr 1959.

[33] S. Hassoun, T. Sasao and R. Brayton Logic Synthesis and Verification. KluwerAcademic

PublisherSy 2002.

[34] M.Perkowski andS. Grygiel. A survey of literature onFunctional Decomposition. Technical

Report, Department ofElectricalEngineering, PortlandState University, 1995.

[35] V. Cheushev, S. Yanushkevich, V. Shmerko, C. Muraga and J. Kolodziejcyk. Information

Theory Method forFlexible Network Synthesis. InIEEEInternationalSymposium onMultiple-

Valued Logic, pages 201-206, May 2001.

[36] L.Jozwiak. Information Relationships and Measures inApplication toLogic Design. InIEEE

International Symposium on Multiple-Valued Logic, pages 228-235, May 1999.

[37] A. Mishchenko and R.K. Brayton. Simplification of Non-Deterministic Multi-Valued Net

works. Toappear in International Workshop on LogicSynthesis, Jun 2002.

[38] Z. Kohavi. Switching and Finite Automata Theory. McGraw Hill Publishing Company, 1978.

[39] T. Kam. T. Villa, R. Brayton, and A. Sangiovanni-\^ncentelli. Synthesis of finite state ma

chines : logical optimization. Boston: KluwerAcademicPublishers, 1997.

[40] B.Lin, H. Touati and R. Newton. Don't Care Minimization ofMulti-level Sequential Logic

Networks. In Proceedings of the IEEE International Conference on Computer-Aided Design,

pages 414-417, Nov 1990.

[41] A.Lin,K.Chen, M.Marek-Sadowska andM.Lee. Sequential Permissible Functions andtheir

Application toCircuit Optimization. InEuropean Design andTest Conference, pages 334-339,

Mar 1996.

[42] L.A. Entera and K.T. Cheng. Sequential logic optimization by redundancy addition and re

moval. InProceedings ofthe IEEE International Conference onComputer-AidedDesign, pages

310-315, Nov 1993.

[43] S. Malik, E.M. Sentovich and R.K. Brayton. Retiming and Resynthesis : Optimizing sequen

tial networks with combinational networks. In IEEE Transactions onComputer-Aided Design

ofIntegrated Circuitsand Systems, vol. 10 (no. 1), pages74-84, Jan 1991.

	Copyright notice 2002
	ERL-02-17

