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Abstract

We present a geometric approach to 3D motion segmentation ofmultiple moving objects seen in two
perspective views. Our approach is based on the multibody epipolor constraint and itsassociated multibody
fundamental matrix, which are generalizations oftheepipolar constraint and ofthe fundamental matrix
to multiple moving objects. We show how to linearly solve for themultibody fundamental matrix and for
the number of independent motions. We also show how the epipoles ofeach independent motion can be
computed from thenullspace ofthemultibody fundamental matrix, while epipolar lines and fundamental
matrices can be recovered using tensor factorization. Motion segmentation is then obtained from either
the epipoles or the fundamental matrices. We demonstrate the proposed approach to segment a real
image sequence.

1 Introduction

Motion is one of the most important cues for segmenting an image sequence into different objects. Clas
sical approaches to 2D motion segmentation try to separate the image flow into different regions either by
looking for flow discontinuities [14], while imposing some regularity conditions [2], or by fitting a mixture
ofprobabilistic models [9, 16]. The latter isusually done using an iterative process that alternates between
segmentation and motion estimates using the Expectation-Maximization (EM) algorithm [5]. Alternative
approaches are based on local features that incorporate spatial and temporal motion information. Sunilar
features are grouped together using, for example, normalized cuts [13] or the eigenvectors of a similarity
matrix [17].

3D motion segmentation and estimation based on 2D imagery is a more recent problem and various
special cases have been analyzed using a geometric approach: multiple points moving linearly with con
stant speed [8, 12] or in a conic section [1], multiple moving objects seen by an orthographic camera [3, 10],
self-calibration from multiple motions [7], ortwo-object segmentation from two perspective views [18]. Alter
native probabilistic approaches to 3D motion segmentation are based on model selection techniques [15, 10]
or combine normalized cuts with a mixture of probabilistic models [6].

In this paper we generalize the work of Wolf and Shashua [18] by considering a scene with multiple
independently moving objects seen in two perspective views. We introduce the multibody epipolar constraint
as a geometric relationship between camera motion and image points that is satisfied by all image points,
regardless of the body to which they belong to. The multibody epipolar constraint defines the so-called
multibody fundamental matrix, which is a generalization of the fundamental matrix to multiple bodies.
We show how such a matrix can be computed linearly from image measurements, after embedding all
image points in a higher-dimensional space. The number of independent motions can also be derived from
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the corresponding estimation matrix. The epipoles of each independent motion can be computed from
the nullspace of the multibody fundamental matrbc, while epipolar lines and fundamental matrices can be
recovered using tensor factorization. Motion segmentation is then obtained from either the epipoles or the
fundamental matrices. We demonstrate the proposed approach to segment a real image sequence.

2 The Multibody Fundamental Matrix

We consider two frames of a scene containing Uq independent and generally movingobjects. The motion of
eachobject between the two frames is described by the fundamental matrix associated to object
A; = 1,..., no- The image ofa point F* 6 in frame j is denoted by xj € i = 1,... n, j = 1,2. We
drop the superscript when we refer to a generic image point, thus we use (xi,X2) when we refer to an image
pair that could correspond to any object and (xiifc,X2/i:) when we refer to an image pair associated to object
A: = 1,..., n©. We will use x to refer to an arbitrary point in

Given a generic image pair (xi,X2), there exists a k such that x^F^Xi = 0. Therefore, the following
constraint is satisfied between the motion of the objects and the image pair, regardless of the object to which
the image pair belongs to:

L(Xi,X2) = xIf'^Xi = 0. (1)
fc=l

We call (1) the multibody epipolar constraint^ since it isa generaUzation ofthe epipolar constraint [11] valid
for no = 1. The case no = 2 can be found in [18].

Although we have written the multibody epipolar constraint as a function ofxi and X2, both xi and X2
are actually repeated Uo times as follows:

L(Xi,...,Xi,X2,...,X2). (2)
no n„

If the segmentation ofthe points were known, i.e., ifwe knew that pair (xijfe,X2fc) belonged to object k, then
we could write (2) as the multilinear expression L(xii,... ,xi„„,X2i,... ,X2n„) to which we could associate
the tensor product F^ ® F^ (8) •••(gi F"". Since the segmentation of the points is unknown, we obtain the
sjonmetric expression (2) instead, from which we cannot estimate the full tensor, but only its symmetric
part:

where is the set of permutation of ng letters. We call T the fundamental tensor, since it is just the
symmetric tensor product of all the fundamental matrices.

It turns out that one can convert the tensor F into a matrix F that can be estimated linearly from image
measurements. To see this, we realize that the multibody epipolar constraint is a homogeneous polynomial
ofdegree n© in theentries ofxi and X2. For example, ifwe letxi = {x,y, zY, then (1) viewed asa function
of xi can be written as a linear combination of the following monomials .. ,z^ }.
We conclude that (1) can be seen as bi-linear expression after embedding the image points into a higher-
dimensional space.

More explicitly, let Nn„ = {no + l)(no+ 2)/2 and let ^n„ : F^ be the nJ/^-order lifting:

^n„(xi) = [ a:"" x^"~^z ••• z^" ]^. (4)

The multibody epipolar constraint (1) can be re-written as:

(X2)^F£n„ (Xl) = 0 (5)

where F € is a matrix representation of the fundamental tensor T. We call F the multibody
fundamental matrix since it is a natural generalization of the fundamental matrix to the case of multiple
moving objects.



3 Estimation of the Multibody Fundamental Matrix

In this section, we present a linear algorithm for estimating the multibody fundamental matrix F and the
number of independent motions tiq from a set of n image pairs. Even though it is out of the scope of the
paper to provide a robust algorithm for estimating F in the presence of noise, in Theorem 1we provide a
statistically optimal function from which F can be estimated using non-linear optimization techmques.

3.1 Linear estimation of F

Since (5) is linear on the entries of F, the multibody fundamental matrbc can be computed up to scale as
the solution of the linear system:

Xn„(Xl,X2)/ =

^n„(x^)^*^n„(xrr.

where A*B \s the Kronecker product ofAandB and / € is the stack ofthe columns ofF. It is clear
that the minimnni number of image points needed to linearly recover F &om (6) is

n>w2,-l= (7)

Notice that when there is only one object, we have N\ = 3 and the associated fundamental matrix can be
computed from 8 points.

3.2 Number of independent motions

Prom theprevious analysis one may think that inorder to determine themultibody fundamental matrix, one
needs to know the number of motions beforehand. It turns out that for 3D points in general configuration
and for general and independent motions, one can determine Uq from the rank of the matrices Xk as shown
by the following lemma:

Lemma 1 Assume that the collection ofimage points corresponds to 3D points in general configuration and
that the motions ofthe objects are general and independent. Let Xfc(xi,X2) be the matrix defined in (6), but
computed using the -order lifting o/xi and X2. Then:

'Nl ifk<no
rank{xk) = * - I if k = no (8)

r <Nl-\ if k> Uq.

Therefore the number of independently moving objects is given by:

Uo - min{fe : rank{xk) = - !}• (®)

3.2.1 Optimal estimation of F

In the presence ofnoise, the solution of (6) may be a biased estimator of the true multibody fundamental
matrix. As in the single bodycase, it is possible to obtain an unbiased estimator by minimizing a non-linear
objective function. The following theorem gives the expression for the optimal function for estimating F.

Theorem 1 Let (xi,X2) = (xi,X2) + (ni,n2) be an image pair corrupted with i.i.d zero mean Gaussian
noise. Let Din„{x.) ^ be the Jacobian ofthe lifting in„ and let 63 —(0,0,1)^. The optimal function
for estimating F is given by:

/ = 0, (6)



An approximated function obtained after neglecting higher-order terms is:

For no = 1 we have £i(x) = x and Dii{-x.) = h, thus we obtain the standard errorfunction:

TfP^--^ ^2)
~h ll[e3]xF^X2||2+ ||[e3]xFXil|2-

4 Motion Segmentation from the Multibody Fundamental Matrix

Given themultibody fundamental matrbc, we are now interested inrecovering thesegmentation oftheimage
points and the motion parameters. We show how this can be done from the epipoles of each fundamental
matrix and the epipolar lines of each image point.

4.1 Estimation of the epipolar lines

Given an image in the first frame Xi, let I2 = F^xi,k = l,...no. Then there exists a k such that I2
corresponds to the epipolar line passing through X2, i.e., there exists a ksuch that x^l^ = 0. Since

L(x, xi) =fj x^F*=Xi =fj x'̂ l^ = (x)^F£n„(xi), (13)
k=l fc=l

we conclude that F£„„(xi) represents the coordinates of the symmetric tensor

^ (14)
ff^Sno

Similarly, F^^„„(x2) represents the coordinates of the symmetric tensor

^ (15)
aesno

where ij = F*'̂ X2 and there exists a k such that xfIj = 0.
We conclude that finding the epipolar line I2 associated to X2 is equivalent to factorizing the tensor

F£n„(xi) into its no components I2, •••, 12" checking which one of them satisfies xj'lj = 0. Similarly,
one can find the epipolar line li.

In order to solve for the epipolar lines, we need to be able to factorize a symmetric tensor into its rio
components. For no = 2 this can be done using the eigenvalue decomposition as follows:

1. Convert a = F£n„(xi) e K® to the rank-2 symmetric matrix [18]:

A =

ai ot2/2 03/2
0:2/2 04 0:5/2
03/2 O5/2 oe

2. Find the eigenvalue decomposition of = UhU"^, A= dtog(Ai, A2,0). Then:

[11 ii]=t/ y/\xr\ spn(Ai)VTO
Vl^ spn(A2)-v/|̂ .

J_
V2'



The key for solving the problem for tiq = 2is the existence of the SVD, A—£/SK^, for matrices (second-
order tensors) that converts Ainto a diagonal matrix. Even though there are multilinear versions of the
singular value decomposition for tIq > 2 [4], it is not possible to ensure that E will be diagonal in general.

We are interested ina special case in which the tensor to be factorized is symmetric. Therefore, we will
exploit the structure of the problem to propose an iterative scheme that solves the factorization problem.
The main idea isto reduce the problem to the case rio = 2, which we know how to solve, by fixing theother
factors. We give the details of the case rio = 3 below andbriefly outline the case n© > 3.

Let be the coordinates of the symmetric part of the third-order tensor x (8) y ® z, where
X= (xi,a:2,a;3)^, y = (2/1,2/2,1/3)^ and 2= (21,22,2:3)^. We have:

a = = G(z) (x(8>y + y<S>x)

zi 0 0 0 0 0

22 2i 0 0 0 0

Z3 0 2l 0 0 0 X12/1

0 22 0 2l 0 0 X12/2 + 3:22/1
0 23 22 0 21 0 X12/3 + 3:32/1

0 0 23 0 0 21 X22/2

0 0 0 22 0 0 X22/3 + 3:32/2

0 0 0 23 22 0 X3y3

0 0 0 0 23 22

0 0 0 0 0 23 _

X12/1 0 0

{xiy2 + X2yi) xiyi 0

(xiyz + xsyi) 0 xiyi

X2y2 (xiy2 + a:2yi) 0
(X22/3 + 3:32/2) (xi2/3 + 3:3^1) (3:12/2 + 3:2^1)

xsyz 0 (xi2/3 + 3:32/1)
0 X2y2 0

0 (X22/3 + 3:32/2) 3:22/2
0 X32/3 (X22/3 + 3:32/2)
0 0 X32/3

21

22

23

= /f(x,y)z.

(16)

(17)

These equations are homogeneous in x,y and z, so in order to solve the problem we can further impose the
constraint ||x|| = ||y|| = ||z|| = 1. Given the form of the equations, this can be done regardless of the norm of
a. We solve the equations as follows: Given zwe solve linearly for x(8)y = (G^(z)G(z)) G^(z)a and given
x®y-l-y®xwe solve linearly for z = (H^(x,y)II(x,y)) H^(x,y)a. We have observed experimentally
that this iterative algorithm converges to the correct solution with random initiaUzation for z. In most of
the cases the number of iterations required for convergence is between 5and 30, although there are c^es for
which convergence is slow. After the algorithm has converged, x and y are obtained from the factorization
ofx®y + y®x using the algorithm for rio = 2.

For Tio > 3 we do as follows. Ifrio is even, then we factorize the tensor in no/2 second-order tensors. If
rio is odd, thenwe factorize it in (n© —l)/2 second-order tensors and 1 first-order tensor.

4.2 Estimation of the epipoles

The right and left epipoles Tf and T} associated with motion k are the right and left nullspace of
respectively. In order tosolve for and we will look for a set of linear constraints on the lifted epipoles
£„„(rf) and We will basically show that the lifted epipoles lie on the intersection of the" nullspace
of the epipolar lines and the nullspace of the multibody fundamental matrix. For rio ~ 2this will be enough
to uniquely recover the epipoles. For rio ^ 3additional polynomial constraints will be needed. For example,
the caseno = 3 can be solved from a second-order polynomial in one variable.

Let (xi,X2) be an image pair and let h = F'=^X2 and I2 = F'̂ xi (for some unknown k) be the associated
epipolar lines which can be computed using the algorithm in Section 4.1. Since = 0 and I2T2 = 0, we



obtain:

= = 0 and =7nAhVlnAT}) = 0, (18)

where is the same as »except for some coefficients resulting from raising a trinomial to the power.
For example, for x = (x,y, z)^, we have

£2(x) = (x^, 2xy, 2xz, ,2yz, ,
4(x) = (x^,3x^y, 3x^2,3xy2,6xy2,3x2^, y^,3y^2,3yz^,z^)''.

Equation (18) gives one linear constraint on the lifted epipoles. Additional constraints can be derived
from Lemma 2, which generalizes the case no = 2 [18]:

Lemma 2 (Relationship between the nuUspace of F and that of F'^) Let F be the multibody fun
damental matrix associated to the fundamental matrices ,..., F"", Let Ti and T2 be the left and right
epipoles associated to F*^, i.e., = 0 andT^^F^ = 0. Then Ffn„(Tf) = 0 awd ^
A: = 1,. ..Uq.

Proof: For

the span of i
Since F*Tf = 0 and.r any Xe we have f„„(x)^Ff„„(rf) = L{x,Tf) = Si

„„(K^) equals we have Ff„„(T*) = 0. Similarly fn„(F2 )^F = 0.

In general we have rank(F) = 7V„„ —Ug when the lifted epipoles are linearly independent. Let V =
[ui ••• v„„] € R'*'"" bea basis for thenull space ofF. Then for any epipole Ti we have in„{Ti) = VA,
for some vector of coefficients A€ R"°. We would like to find Asuch that VX € fn„(K^)- Since Is a
three-dimensional manifold in R^"", there are Nn„ —3 independent constraints on A. Given the form of
such constraints are actually homogeneous polynomials of degree Ug on the no —1 independent entries of A^.

For Ug = 2 the nullspace of € R '̂̂ ® is one-dimensional. Therefore, we obtain a unique

solution for ^(7^), hence Tf. Notice that the previous computation was done for an arbitrary image pair
(xi,X2). Thus one can compute the epipole Ti associated to each image pair. Image pairs with the same
epipole belong to the same moving object, hence segmentation of the image points is trivially obtained (See
Section 5 for details).

For Ug = 3, let W = [wi,W2] € RiO'*^ Jqj. ^.j^g nullspace of
F

for some A € R satisfies the following set of second-order polynomials:enATi) = W

ai • X® •

Q!2 x^y
Q!3 X^2

0:4 xy^
"5 xyz

Q!6 X22

Ot^

"8 y^z
0:9 yz^
aio _ 2®

0:20:4 = aiar

0:30:6 = 0:1Oio ^

0:30:9 = 0:7010 ^

02O3 = Q1O5 ^

0403 = Q507 ^

OfeOg = O5O10 ^

W^(e2eJ - eieJ)W

]w'̂ {ezel-eiel^)W

]w'̂ {esel-e7e'[o)W

]W^(e2el' - eiel)W

]W^ieiel - e5eJ)W

]W^ieeel - eseJi)^

€ We have

A

1

A

1

A

1

A

1

A

1

A

1

= 0

= 0

= 0

= 0

= 0

= 0

(19)

where ei, i = 1,..., 10 is the standard basis for R^®. There will be one common root to these second-order
polynomials, from which one obtains the epipole Tf. As before, one can find the epipole associated to each
image pair and segment image pairs depending on their associated epipoles (See Section 5 for details).

^One entry of Acan always be eliminated because ^rtoOK^) is a homogeneous space.



4.3 Estimation of the Fundamental Matrices

Let eui = 1...3 be the standard basis for and let //= be the colimm of the k*'' fundamental matrix,
for i = 1..3 and k = L..no. For all x € we have:

L(x, Ci) = JJ x^F'̂ Ci = JJ =4„(x)''F£„„(ei). (20)
A:=l fc=l

Therefore Finoi^i) represents the coordinatesof the symmetric tensor

ffGSno

We conclude that in order to find the columns of each of the fundamental matrices, we need to factorize this
tensor into its tIo components. This can be done with the techniques of Section 4.1. Since the factorization
problem is symmetric in each of the factors of the tensor, we do not know which column corresponds to
which fundamental matrix. Also, the factorization process outputs these colunms with unit norm, hencethe
relative scale between two colunms of each fundamental matrix is also lost. To solve this problem, we use
the algorithm in [18] which can be summarized as follows

• Find all possible fundamental matrices from all colunm combinations.

• Find one row for each fundamental matrix from the factorization of F^£n„{^) and use them to find
the unknown scales between the columns.

• Build one multibody fundamental matrix from each possibility and compare it to the correct one to
obtain the correct fundamental matrices for each motion.

5 Experimental Results

Figure 1 shows two frames of a motion sequence containing two cars and a box with the tracked features
superimposed. We tracka total of n = 173 point features: 44 for the first car, 48 for the second and 81 for
the box. The segmentation of the image points was obtained as follows:

1. Estimate Uo from (9) and F from (6) using all the image points. We obtain rio = 3.

2. For each image point x\, i = 1,... ,n:

(a) Factorize the tensor Fino(*i) Wo = 3 candidate epipolar lines.

(b) Estimate the unique epipolar line I2 as the factor of the tensor that minimizes (1^^
(c) Estimate the epipole T* as (W*[A* 1]^), where is abasis for the left nullspace of [F in„ (1|)]

and A* € R is the solution of the polynomials in (19).

3. Form the segmentation matrix <S = T^T € R"''", where T = [T^ ••• T") € We should have
= 1 if points i and j belong to the same object. Alternatively, one can threshold the second

eigenvectorof S to obtain the segmentation, as shown in [17].

Figure 2(a) plots the segmentation matrix S and Figure 2(b) plots its second eigenvector. Notice the
correct block diagonal structure of the «S, except for some outliers. We obtained the correct segmentation
by thresholding the second eigenvector.



\

(a) First frame (b) Second frame

Figure 1: A motion sequence with two cars and a box. Tracked features are marked with a 'o' for the first
car, a for the second car and an '/i' for the box.

20 40 60 60 100 120 140 160

(a) Segmentation matrix S
0 20 40 60 80 100 120 140 160

(b) Second eigenvectorof S

Figure 2: Motion segmentation results. The correct segmentation is obtained from the second eigenvector
ofS. Thefirst 44 points correspond to the first car, the next 48 to the second, and the last 81 to the box.

6 Conclusions

We have introduced the multibody fundamental matrix and showed that it is a geometric entity which is
at the core of 3D motion segmentation. We showed how to linearly solve for the multibody fundamental
matrix from the multibody epipolar constraint. We also showed how to solve for epipolar lines, epipoles,
fundamental matrices and motion segmentation using a purely geometric approach. Experimental results on
a real image sequence showed theapplicability oftheproposed algorithms to multibody motion segmentation
from two perspective views.
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