

Copyright © 2002, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

LOGICAL ANALYSIS OF

COMBINATIONAL CYCLES

by

Thomas R. Shiple, Robert K. Brayton, Gerard Berry
and Alberto L. Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M02/21

24 June 2002

LOGICAL ANALYSIS OF

COMBINATIONAL CYCLES

by

Thomas R. Shiple, Robert K. Brayton, Gerard Berry and
Alberto L. Sangiovanni-Vincenteili

Memorandum No. UCB/ERL M02/21

24 June 2002

ELECTRONICS RESEARCH LABORATORY

College ofEngineering
University ofCalifornia, Berkeley

94720

Logical Analysis of Combinational Cycles

Thomas R. Shiple Gerard Berry
Advanced Technology Group Esterel Technologies

Synopsys, Inc., Mountain View, CA Villeneuve-Loubet, France

Robert K. Brayton Alberto L. Sangiovanni-Vincentelli
Department of EECS Department of EECS

University of California, Berkeley University of California, Berkeley

June 24, 2002

Contents

1 Introduction 2

2 UIN Delay Model and Ternary Simulation 6
2.1 Circuit and Delay Model 6
2.2 GMW Analj'sis 13
2.3 Teriiarj' Simulation 16
2.4 Malik's Algorithm 19

3 Output-stable Circuits 22

4 Extension to FSMs 24

5 Related Work 27

5.1 Circuit Analysis 27
5.2 Circuit Classification 28

5.3 FSM Extraction 28

6 Summary and Future Work 29

A Proofs 30

A.l Proof of Theorem 13 30

A.2 Proof of Proposition 18 31

Abstract

We classify gate level circuits with combinational cycles based on their input-output behavior.
We define a formal class of circuits, the output-stable circuits, for which the outputs settle to a
unique value, for any input. Since circuits with combinational cycles can exhibit asynchronous
behavior, such as oscillations and race conditions, it is crucial to ground their analysis in a
formal delay model, which previous work in this area did not do. We root our definition of
output-stable circuits in the up-bounded inertial (UIN) delay model. Building on the work of
Brzozowski and Seger in asynchronous circuits, we prove that a practical algorithm proposed
by Malik decides the class of output-stable circuits. Finally, we extend the analysis to circuits
with flip-flops (i.e., finite state machines).

Although proving the correctness of Malik's algorithm provided the impetus for this work,
we also prove a more general result that links ternary simulation with the UIN delay model.
Namely, we prove that ternary simulation on a binary input, with internal variables initialized to
X, computes exactly the steady-state behavior of a circuit under the UIN delay model, starting
from an arbitrary initial state. To our knowledge, this is the first proof of this widely-Eissumed
result.

This paper is theoretical in nature, but it has practical implications. Circuits with com
binational cycles ari.se in practice, especially at higher levels of design. Down.stream analysis
and synthesis tools are notorious for not, handling combinational cycles, or handling them hap
hazardly. This work provides a theoretical basis for classifying such circuits so that tools can
determine whether to reject a cyclic circuit. Furthermore, Malik's algorithm provides two impor
tant by-products: for circuits that are output-stable, an equivalent circuit with no combinational
cycles can be derived, and for circuits that are not, an input vector demonstrating instability
can be produced.

1 Introduction

We analyze the logical behavior of circuits described at the gate level. A combinational cycle in such a
circuit is a structural cycle containing only logic gates. The analysis of circuits without combinational
cycles is straightforward. A Boolean function for each node, in terms of the circuit inputs, can be
derived by applying functional composition in a topological order. These Boolean functions exactly
corre.spond to the steady-state electrical behavior of the circuit.
On the other hand, circuits with combinational cycles are usually avoided because the presence of
cycles can lead to oscillating or unpredictable behavior. However, not all combinational cycles lead to
undesirable behavior. Informally, we say that a circuit is well-behaved if for every input, the output
stabilizes to a unique value within a bounded amount of time. All acyclic circuits are well-behaved
in this sense. Also, some cyclic circuits are well-behaved. For example, for the circuit in Figure 1,
the output is 2 = x, even though there can be an oscillation at node y when x = 0. Other cyclic
circuits may not be well-behaved. In Figure 2, on input x = 0, there exists an assignment of delay
values to the circuit such that the output 2 will oscillate, even though the output of the AND seems
to be forced to 0 (we study this circuit in Section 2.1).
Techniques to analyze combinational cycles are useful because they arise in practical situations.
Consider the following;

1. High-level synthesis, where cycles are created to share datapath resources. An example is
Figure 3, which computes z = if (c) then F(G(x)) else G(F(a:)). Even though the cycle in the
example is false (because c and c are mutually exclusive), Stok [20] notes that such cycles are
undesirable because downstream tools cannot handle cyclic circuits. He solves this problem by
modifying resource sharing to prevent cycles from being created, at the cost of more control
circuitry. Our philosophy is to provide rigorous analysis so that cyclic circuits can be handled
directly.

2. The composition of Mealy machines. When a single FSM is synthesized within the context of
a set of interacting FSMs, the resulting composition may create combinational cycles [21].

3. The specification of reactive programs in synchronous programming languages. A language
like Esterel allows the specification of "zero-delay cycles," and it is the task of the compiler to
determine if such cycles are false.

4. The design of symmetric protocols or resource access strategies, where cycles arise naturally [6].
However, the cycles are false for all reachable states of the design. Such circuits are discussed
in Section 4.

In some cases (1, 3 and 4), combinational cycles arc created intentionally, but with the knowledge
that the cycles are false (i.e., for every input provided by the operating environment, no event can be
propagated around the cycle). In other cases (2 and 3), the cycles may have been created inadver
tently, and the circuit may or may not be well-behaved. Regardless of how or why a combinational
cycle is created, the only issue is whether the resulting circuit is well-behaved at its outputs.
The goal of this paper is to define a class of well-behaved circuits, called the output-stable class, and
demonstrate an algorithm that decides this class (i.e., correctly classifies all circuits). Even though
we are interested in the logical analysis of combinational cycles, the issue of circuit delays cannot
be avoided because they can affect the steady-state behavior of a circuit. Thus, before any class of
well-behaved circuits can be defined, we must state precisely what the underlying delay model is. We
use the up-bounded inertial (UIN) delay model of Brzozowski and Seger [4], because it is simple yet
captures a wide range of behaviors. Roughly, for a delay element with bound D, any pulse of width
at least D is propagated within D time units, and any pulse of width less than D may or may not
be propagated.
We say a circuit with UIN delays is output-stable if for every binary input value, the outputs stabilize
to a unique binary value in bounded time, regardless of the initial state^ of the circuit. This definition

'Intuitively, the state of a logic circuit is the vahie of all the circuit nodes, sometimes called the internal state/, a
formal definition is given in Section 2.

5>
Figure 1: Well-behaved, even though y oscillates when x = 0 (Figure 4b from Malik [13]).

permits indefinite oscillations on internal nodes, although these can beprohibited by simply declaring
all nodes to be outputs. We show that deciding this class isco-NP-complete. Malik [13] proposed an
algorithm to determine if a cyclic circuit is well-behaved, but he did not ground his work in a delay
model. We set out to prove that his algorithm is correct for the UIN delay model. In developing this
proof, we discovered a more general result that links ternary simulation to the UIN delay model, and
which forms a key contribution of this paper.
We define the state vector UIN-SS(A'̂ , D, a) roughly as the steady-state behavior of a circuit N with
maximum UIN delay bound D, when the input is held at a, and the circuit state evolves in time
consistent with the UIN delay model, starting from an arbitrary initial state. In other words, for a
given circuit node y, if the value of y always stabilizes in bounded time to 0 on input a, regardless
ofthe initial state and regardless of the UIN delays, then the y component of UIN-SS(iV, D,a) is 0.
Likewise, ify always stabilizes to 1, then the y component of UIN-SS(yY, D, a) is 1. However, if y can
stabilize to either 0 or 1 or never stabilizes at all, perhaps because of a different initial state or because
of a particular valuation of delays consistent with the UIN delay model, then the y component of
UIN-SS(,Y, D,o.) is X. In this terminologj', a circuit is output-stable on a if U^N-SS(A^ D,a) is not
X for any output.
Computing UlN-SS by trying all possible initial states and all possible delay values is infeasible.
However, ternary, or 3-valued, simulation can be used. In particular, we show that by initializing
all circuit nodes to X and setting the input to o, ternary simulation computes exactly UIN-SS.
Since ternary simulation is the essence of Malik's algorithm, showing that his algorithm decides the
output-stable class is trivial, once we prove that ternary simulation computes UIN-SS.
Given the semantic gap between the world of UIN delays and the world of ternary simulation,
proving the link between these two worlds is not straightforward. Fortunately, we can build on the
extensive theory of asynchronous circuits developed by Brzozowski and Seger [4|. They define the
possible behaviors of a circuit with UIN delays, and then describe two successively more abstract
techniques to analyze the behaviors. First, GMW (greatest multiple winner) analysis is a technique
that abstracts away time for all delay assignments to define a state transition graph for the circuit's
behaviors undera given input o, from a given initialstate. As a directcorollary oftheir work, we show
that GMW analysis can be used to compute UIN-SS, but this is still cumbersome since it involves
traversing a state transition graph for each initial state. The second technique Brzozowski and Seger
describe is a two part ternary simulation algorithm that computes the steady-state behavior under
input a, from a given initial state. Again, given their proof of a tight link to GMW analysis, we
show that this two part algorithm can be used to compute UIN-SS. But this still requires a separate
computation for each initial state.

• 2

X

Figure 2: Not well-behaved when a: = 0 (Figure 6a from Malik [13]).

X

Figure 3: Sharing of resources leads to a false combinational cycle (Figure 2 from Malik [13]).

Malik's algorithm simplifies the analysis further. First, it initializes the state to X, and hence requires
just one invocation of the algorithm for each input a. Second, it drastically reduces the number of
circuit state variables in the computation by using as variables just a circuit feedback vertex set.
We prove that Malik's algorithm computes UIN-SS by showing its relationship to Brzozowski and
Seger's two part ternary simulation algorithm. Furthermore, we show that the value of UIN-SS is
independent of the delay bounds in the circuit. That is, even though the timing behavior and circuit
settling time depend on the bounds, the possible values of the state after the circuit settles do not
depend on the bounds.
Note that the link we prove between UIN delays and ternary simulation does not hold when some of
the inputs are X; in this case, ternary simulation is conservative. Also note that for acyclic circuits,
ternarj' simulation with binary inputs and X initial state just reduces to binary simulation. In
summary, the interesting case for the result we prove is for cyclic circuits with binary inputs.
We extend the definition of output-stable to circuits with flip-flops, to arrive at the class of con
structive circuits. Beyond the obvious relevance to hardware design, this extension plays a critical
role in compiling programs in Esterel, a language for embedded software. In particular. Berry [1]
shows that an Esterel program is well-behaved if and only if the circuit derived from the program
is constructive. The algorithm for deciding constructive circuits consists of an initial call to Malik's
algorithm, followed by implicit state enumeration over the reachable state space of the flip-flops.
This work has practical applications because many EDA tools, such as cycle-based simulators and
formal verification tools, do not accept circuits with combinational cycles, or they handle them in
an ad-hoc manner. Malik's algorithm enjoys the feature that if a circuit is output-stable, then a
by-product is a functional description for the circuit in the form of a binary decision diagram, whose
direct translation to an acyclic circuit can be used for downstream tools. On the other hand, if it is
not output-stable, then vectors demonstrating instability can be generated to help debug the circuit.

The outline of this paper is as follows. Section 2 introduces the circuit and delay models, and after
describing a sequence of analysis techniques, proves that Malik's algorithm computes UIN-SS. Some
proofs are relegated to the appendix. Section 3 defines output-stable circuits, and shows that Malik's
algorithm decides this class, and that computing this class is co-NP-complete. Section 4 extends
the theory to FSMs. Section 5 reviews related work. Finally, Section 6 provides a summary and
discussion of future work.

2 UIN Delay Model and Ternary Simulation

In this section, we show that Malik's algorithm computes UIN-SS, the steady-state behavior under
the UIN delay model. Given the large semantic gap between these two notions, we introduce several
intermediate analysis methods to help bridge this gap. This section begins by formally defining the
circuit model and delay model, upon which we can define the steady-state behavior, or the set of
UIN-nontransient states. It is followed by subsections on GMW analysis and ternary simulation,
which provide important stepping stones to our final result. The last subsection introduces Malik's
ternary simulation algorithm, and shows that it coincides with the UIN delay model. The notation
and terminology of this section are largely due to Brzozowski and Seger [4].

2.1 Circuit and Delay Model

The goal of this subsection is to define UIN-SS. Before doing so, we need to formally define our
circuit and delay models. Ultimately, the objects we analyze are circuits composed of an arbitrary
interconnection of logic gates, with delays inserted at various points in the circuit. The topology of
a circuit is given by a circuit graph.

Definition 1 [Brzozowski and Seger] A circuit graph is a 5-tuple G = {Al,I,Q,W,S) where

• /T is a set of input vertices, labeled X[, A'2,..., Xn',

• X is a set of input-delay vertices, labeled X\,X2,... ,Xn\

• ^ is a set of gate vertices, labeled y\,y2, • ,yr',

• W is a set of wire vertices, labeled Zi,Z2,-.., Zji and

• ^ Q (A' XX) U((Xu XW) U(W XQ) is a set of directed edges.

Aswe will see, delays can be inserted at the circuit vertices. Input vertices and input-delayvertices are
distinct because it is assumed that all external inputs arrive simultaneously. However, the insertion
of delays at input-delay vertices allows external inputs arriving at different times to be adequately
modeled.

The edge set S has the following interpretation and restrictions. The indegree of input vertices is 0.
Each input-delay vertex is driven by one input vertex, and can drive multiple wire vertices. A wire
vertex is driven by exactly one input-delay or gate vertex, and drives exactly one gate vertex. A gate

6

vertex is driven only by wire vertices. As an example, Figure 4 shows a gate circuit, and Figure 5
gives its corresponding circuit graph. X] is an input vertex, x\ is an input-delay vertex, y\, - ya are
gate vertices, and are wire vertices. Note that for each fanout of a gate there is a distinct
wire vertex Zi to allow different arrival times at each fanout to be modeled.

^3

Zl

1
to

Figure 4: Gate circuit. (Figure 4.5 from Brzozowski and Seger [4].)

Figure 5: Circuit graph corresponding to the gate circuit in Figure 4 (Figure 4.6 from [4].)

For each gate, wire, and input-delay vertex, there is an associated vertex function defined in terms
of the immediate fanin of the vertex. For a gate vertex, this is just the Boolean function of the gate.
For a wire vertex, it is the value of the input-delay or gate vertex driving the wire vertex. Finally,
for an input-delay vertex, the vertex function is Xi, where Xj is the input value provided by the
environment. As an example, in Figure 5, the vertex function for 2/2 is ^"2 = 2:2^3, for zi is Zi = .Ti,
and the input-delay vertex function is A'l.
The objects we analyze are networks. A network N is derived from a circuit graph by associating delay
elements with some subset of input-delay, wire, and gate vertices. The delays are the state holding
elements, and hence the vertices with delays are called state vertices. The minimum requirement
is that each cycle in the circuit graph must contain at least one state vertex, or equivalently, that
the set of state vertices forms a feedback vertex set. The input vertices A'l, A'j,. ..,Xn are always
included in a network. Each state vertex has a state variable Si, a delay bound Di, and an excitation
function Si, defined as follows.

Definition 2 [Brzozowski and Seger] Start with the vertex function. Then repeatedly remove ail
dependencies on vertices that are neither state vertices nor input vertices, by using functional com
position of the vertex functions. The result of this process is the excitation function Si. •

In other words, the excitation functions are the logic functions at each state vertex derived by
collapsing all the logic between state vertices. As an example, for the circuit graph of Figure 5,

suppose we select the vertices y\ and 25 as state vertices. The corresponding network is depicted in
Figure 6 showing the new functional dependencies. There are two set of vertices: the input vertices
(in this case Just Xi), and the state vertices (^1 and 25). The excitation functions of the state vertices
are V̂ = wYi and = 24 + 25 = y\^\ +25.

Figure 6: Network corresponding to the circuit in Figure 4 with state vertices y^ and 25.

A total statec = (a,/;) ofa network is an (TAd- 'm)-tuple ofbinary values, the 7t-tuple a being the value
of the inputs, and the m-tuple bbeing the values of the state variables si, S2,..., s^. For convenience,
we write the total state (a, 6) as a-6. Note that the excitation functions Si are defined over the total
state.

Thus far we have discussed the structure and function of a circuit. Now we introduce the realm of
time. The state vertices are those vertices with delay elements. A delay element has an input A'(^),
an output x{t), and a delay 6{t), as depicted in Figure 7. The signals A'(i) and x{t) vary with time.
They are assumed to be binary and capable of instantaneous changes from 0 to 1 and from 1 to
0. X is unstable at time t if x{t) ^ In network terms, x represents a state variable, and X
its excitation function. The total state a-b is stable if bi = Si{a-b) for each state variable Sj, and is
unstable otherwise. Thus, a-b is stable if the state bcan change only by cliaiigiiig the input a. In the
example in Figure 6, the total state Aj = 1, yi = 1 and 25 = 1 is unstable because yi ^ 11 = 0, but
A'l = 1, 7/1 = 0 and 25 = 0 is stable.
Many delay models have been introduced in the literature, ranging from fixed ideal delay to bi-
bounded inertia] delay [4]. The delay model we adopt is the up-hounded inertial (UIN) delay model [4].
This model captures an infinite range ofpossible behaviors, which in fact isa superset ofthe behaviors
possible in the fixed ideal delay and bi-bounded inertial delay models. Considering such a wide range
of behaviors is conservative, which is appropriate when determining the function of circuits with
combinational cycles. Furthermore, as this paper shows, this delay model permits efficient analysis
via ternary simulation.

x{t)X(t)
m

Figure 7: Delay element.

Definition 3 [Brzozowski and Seger] In the up-bounded inertial delay model, the delay is bounded
from above by a parameter D, 0 < 6{t) < D, and the following two properties must be satisfied:

1. If X changes, then it must have been unstable.
Formally, if a:(t) changes from q to a at time r, then there exists 5 > 0 such that X{t) = a for
T — 6 < t < T.

2. X cannot be unstable for D units of time without changing.
Formally, if X{t) = a (or t < t < t + D, then there exists a time f,T < f < t D, such that
x{t) = Q for f < /. < T-f Z). (Note that this property implies that the in Property 1 must be
less than D.)

Intuitively, if an input pulse is at least D units of time, then the output must respond within D. If
an input pulse is loss than D, then the output may or may not respond. Note that D cannot be
zero; this is to avoid zero-delay loops in the network. Also, note that the delay 6 is itself a function
of time. As an example, Figure 8 shows two possible responses to an input waveform, where D = 2.

D = 2

X{t)^

x(t)

x'{t).

0 2 4 6 8

Figure 8: Up-bounded inertial delay waveforms.

Now we move from the behavior of a single delay element to the behavior of a network containing
multiple delay elements. A UIN-history(N, D, a) captures the behavior of a network as it evolves
over time in response to an input a. Since a UIN-history includes the time of every state change (as
we will see next), and since ^ is a function of time, there are an infinite number of UlN-histories for
a given input a. For state variable s,:, Si{t) is the value of Si at time t, and Si{X{t)-s(t)) is the value
of the corresponding excitation at time t, where X{t)-s{t) gives the value at time t of the total state.

Definition 4 [Brzozowski and Seger) A UIN-history{N, D, a) of a network N for some input value
a is an ordered triple /j = (0,-Y(t), s(i)). where^

• 0 is a strictly increasing sequence 0 = {to,ti,...) of real numbers giving the instants at which
the state vector s changes.

• A'(<) maps the real numbers to B", and satisfies A(i) = a for all t > to.

• s{t) maps the real numbers to and satisfies the properties that:

1. s{t) is constant during any interval ti <t < tj+i, for all i > 0,

2b = {0,1}.

2. 7^ 5(^i), for each i > 1. i.e., s(t) changes at each U,

3. if the sequence (to, •••, ^r) is finite, then for all t > tr we have s(t) = b^, for some
^ Qm o' 6^ Is a staBlc total state of N, and

4. if the sequence •••) is infinite, then only a finite number of state changes occur in
any finite time interval (i.e., non-Zeno).

• For each variable Sj, the input/output waveform Sj{X{t)-s{t))/sj(t) is consistent with the
assumption that variable Sj is represented by the delay-free excitation function Sj in series
with an up-bounded inertial delay. In other words, the input/output waveform satisfies the two
properties of UIN delays in Definition 3.

Note that the definition of UIN-history places no restriction on the initial state s(io)- A UIN-history
can be seen as a timed sequence of states. Also, one can associate a corresponding untimed history
giving the sequence of states through which the network passes. For a given UlN-historj', we say that
s{tj) is reachable from s{ti) if tj > U. As an example, consider the network in Figure 9, where D\ = I,
D2 = 3 and D3 = 2. A UIN-history(A^ D, 1) is given by 0 = (0,0.5,3.0,4.3), X{t) = 1 for all t>0,
and .s(t) is given by the waveforms .Si, .S2, Ss in Figure 9. One can verify that these waveforms are
consistent with the properties of UIN delays, for the specified delay bounds. For example, S2 follows
the change on si after 2.5 time units, which is less than D2 = 3. The corresponding untimed history
for S1S2S3 is (001,101, 111,110).

X

51

52

53

Si
-CD

0

•CD
52

CD- '̂3

1

Figure 9: A UIN-history(A', D, 1); D\ = I, D2 = 3 and = 2. Delay elements are associated with
the state vertices Si, S2 and S3.

Ultimately, we are only interested in the steady-state behavior of a network, that is, after the "tran
sients" have died off. Because each inertial delay is up-bounded, the network can remain in the
"transient" phase after an input change for only a bounded time, before passing into the "nontran-
sient" phase. The following definition and theorem make this notion precise.

10

Definition 5 [Brzozowski and Seger] Let N be a network with maximuin delay bound D. Let N be
started in state b with the input held constant at a. A state b' is said to be UlN-transient{N, D, a, b)
with limit r for a-b if it is reachable from b and there exists a real number r > 0 such that in every
UIN-history the condition t >t implies s{t) 6'. •

That is, a state is UIN-transient with limit r if the network cannot be in that state after time r.

Theorem 6 (Brzozowski and Seger) Let N be a network with m up-bounded delays with upper
bound D. Suppose N is in state b at time 0 and the input is held constant at a from time 0 until
time t > (2'" —2)D. Then the state of the network at time t is not a LTN-transient(jV, D, a, 6) state
with limit r = (2"^ —2)D.

In other words, by waiting at most (2"* —2)D time, the network has enough time to pass through
any transients. We call a state UlN-nontransient if it is reachable and not UIN-transient. In the
sequel, UIN-nontransient states will always be with limit (2"* —2)D. It is important to note that
Theorem 6 follows from the properties of UIN delays, and is not a statement about any particular
analysis technique.
Before proceeding further, we briefly introduce the least upper bound, or lub^ of ternary algebra.
This will receive further treatment in Section 2.3, but here we define lub{0,0} = 0, lub{l,l} = 1,
lub{0,1} = lub{l,0} = X. This can be naturally extended to the lub of sets of binary values, and
the lub of sets of binary vectors.
Given the definitions of UIN-nontransient states and of lub, we can define UIN-SS, the steady-state
behavior of a circuit. This is the key definition of Section 2.

Definition 7 Let N be a network with maximum delay bound D, with the input held constant at
a. U1N-SS(A^, D, a) € {0,1, X}"^ is the least upper bound of the states A' can be in after (2"^ —2)D
time, starting from any initial state b. That is,

UlN-SS(A,D,c) = lub{UIN-nontransient(A,£),a,6)|ft e B""}.

UIN-SS summarizes the UIN-nontransient states of a network for any UIN-liistory, starting from
any state. At first glance, it would seem impossible to compute UIN-SS since an infinite number of
discrete delay values would need to be considered for each delay element. In fact, UIN-SS can be
computed in polynomial time using ternary simulation, as shown later.
We will see that UIN-SS is precisely the information needed to decide if a network is output-stable.
However, it turns out that the selection of state variables (i.e., the placement of delays) can affect
the value of UIN-SS, and hence the value of the circuit outputs, as illustrated by the following
example. Consider the output z in Figure 10, with the input a: = 0. Let N] be the network with
just one state variable, yi. The excitation function for is 5i = x -t- {yi-yi) = x. Hence, UIN-
nontransient(A^i, D, 0,6) = 0, and thus UIN-SS(Ah, D,0) = t/i = 0, and 2 = 0. Now let N2 be the
network with state variables yi and ?/2, and corresponding excitation functions 5i = a;+ (^-2/2) and
S2 = 2/1- Furthermore, let the delay bounds be Di — = 1.5, the starting state be 2/1 = 0 and y2 = \,
and the input be a: = 0. Then the UIN-histories(.Ar, D, 0) shown in Figure 11 are possible, which
implies that both 01 and 10 are UlN-nontransient(;V2, D, 0,01) states. Thus, UIN-SS(A2>T^;0) =

11

y\

2/2

X

Figure 10: Different placement of delay elements affects output value.

2/1 r

2/2

1

0 1 2 3 4 5 6

Figure 11: UIN-histories(yV, D, 0) for A2 with Di = £>2 = 1.5.

12

lub{01,10} = XX. Since the output ^ equals S\, and Si(0-01) = 1 and Si(0-10) = 0, the output can
be either 0 or 1.

Each choice of where delay elements are placed corresponds to a diflferent network. Because different
networks derived from the same circuit can have different output behaviors, we want to identify a
particular network for each circuit as the representative network of the circuit. The most conservative
choice is to assume that each gate, wire and input-delay vertex can have a delay independent of the
others. This is called a complete network. This assumption is warranted for two reasons. First, the
selection of all circuit vertices as state vertices matches the reality of having independent sources
of delay at each and every circuit element. One generally should not make assumptions about the
correlation of delays to ensure the functional correctness of a circuit. The second reason is that
adopting this conser\'ative model allows us to leverage the power of ternary simulation to simplify
the analysis of circuits with up-bounded inertial delays. Henceforth, when we refer to UIN-SS for a
given circuit, we are referring equivalently to the corresponding complete network.

2.2 GMW Analysis

We have defined UIN-SS for circuits directly in terms of the UIN delay model as the luh of the
UIN-nontransient states over all UIN-histories. Our goal is to prove that Malik's algorithm computes
UIN-SS; conceptually, this is a big jump. In this subsection, we describe GMW analysis, which helps
us bridge this gap by abstracting away time in UIN-histories to yield a state transition graph.
General multiple winner (GMW) analysis is a technique to determine the response of a network to
a given input. The technique is called ''general" because the relative values of the delays are not
specified. The only assumption is that the delays are bounded from above; this is consistent with the
UIN delay model. Even though we are ultimately interested in the analysis of complete networks (our
representatives for circuits), this subsection continues with arbitrary networks without complicating
the discussion.

For a total state a-b, the set of unstable state variables is defined as

U{a-b) —{si Ihi ^ 5i(a-I>)}.

That is, a state variable Si is unstable with respect to state a-6 if applying the corresponding excitation
function Si to a-b yields a value different from the current value 6,. State a-6 is stable i^U{a•b) = 0.
The GMW relation Ra C B"' x B"' describes how the state of network N evolves with the input
held constant at a: bRab' means that the state may change from b to 6'. Intuitively, Ra is the state
transition graph for input a.

Definition 8 [Brzozowski and Seger] For any b E B*",

• if W(a-6) = 0, i.e., b transitions to itself if it is stable

• bRab^, if U{a-b) 7^ 0, and /C is any nonempty subset of U{a-b), where means bwith all the
variables in JC complemented.

No other pairs of states are related by B„. •

13

The model is called "multiple winner," because in an unstable state, anynonempty subset ofunstable
state variables can change at the same time. Note that Ra makes no reference to an initial state.
The relation Ra can be depicted as a directed graph, where an edge from b to h' indicates that hRab'.
A state bmay have more than one immediate successor, indicating a race condition. A state bwith a
self-loop indicates that a-b is stable. Ra{b) denotes the graph Rq restricted to those states reachable
from 6. As an example, consider the RS-latch in Figure 12, with inputs r and s and state variables
q and z. The graph of Rqi is shown in Figure 13. Each pair of binary values is a state qz. An
underlined value (e.g., 0) indicates that the corresponding variable is unstable in that state. Only
unstable variables can change. The states 01 and 00 each have one unstable variable, so each has a
unique successor state. The state 11 has two unstable variables, so it has three successor states, one
for each nonempty subset ofunstable variables. State 10 is stable, so it has a self-loop. In this case,
the graph for i?oi(ll) (the subgraph induced by those states reachable from 11, holding the input
constant at 01) is the same as i?oi-

Figure 12: RS-latch.

Figure 13: Possible state sequcnees over qz, for the RS-latch with input rs = 01.

For GMW analysis, there is a concept corresponding to the UIN-nontransient states. Consider the
fragment of a GMW relation of Figure 14, for some input a (states Oil and 110 and their incident
edges are not shown). The cycle (000,010) is called transient because there exi.sts a variable (the
third one) that is unstable and has the same value (0) in everj*^ state ofthe cycle. Since all delays are
up-bounded, the network cannot remain in this cycle indefinitel5^ Contrast this to the nontransient
cycle (001,111). The network can remain in this cycle indefinitely because each unstable variable
changes value during the cycle. As an aside, the network is not constrained to remain in this cycle,
since it can transition to the stable state 101 whenever it is in state 001.
Thosestates that are in a nontransient cycle, or follow a nontransient cycle, are called GMW-outcome
states. Formally, Brzozowski and Seger define GMW-outcome(yV, a, 6), the outcome states of b,

14

100 ^ 000^, , 010

transient cycle
ooi;^^ 111

V.
\

Q2 nontransicnt cycle

o-

Figure 14: A fragment of a GMW relation.

as that set of states in the graph Ra{b) that are reachable from b via a nontransient cycle. For
the graph in Figure 14, GMW-outcome(A^ a, 100)= {001, 111,101} and GMW-out.come(A^ a, 101)=
{101}, Note that states of a transient cycle can be GMW-outcome states of b, as long as they are
reachable from b via a nontransient cycle. The next result establishes the correspondence between
the UIN-nontransient states and the GMW-outcome states. This result is critical because it makes

an exact link between the physical world of delay models and the more abstract world of GMW
analysis.

Theorem 9 (Brzozowski and Seger) Let N he a network with maximum delay hound D. Let N
be staHed in state b with input held constant at a. Then
UIN-nontransient (A*, D,a,b) = GMW-outcome(A, a, b).

As an example of GMW-outcome states, for the network N2 from Figure 10, the GMW relations
over yiy2 for x = 0 and x = 1 are shown in Figure 15. When x = 1, yiy2 stabilizes to 11. However,
when a: = 0 and the starting state is 01, 10 or 11, both 01 and 10 are nontransient states, and hence
GMW-outcome states. This corroborates the earlier analysis based on UIN-nontransient states.

^ O ^
. 00. . 00.

OiC ifi 01 ^ 10

o
Figure 15: GMW relation over yiy2 for network A*2.

The definition of UIN-SS(A^ D, a) is based on the UIN-nontransient(A, D, o, fc) states of a net
work, where the network has a specific maximum delay bound D. One might wonder if the set
of UIN-nontransient states changes as the delay bounds change. The answer is no: all that matters
is that the delays are up-bounded. Since the actual delay of a delay element with bound Di can
dynamically vary from any^ value greater than 0 to Di, any relative ordering of events seen in a
network with maximum bound D can also be achieved with maximum bound D', and vice versa.

15

Theorem 10 Consider two networks N and N' that are exactly the same, except that N has maxi
mum UIN delay bound D and N' has maximum UIN delay bound D'. Let a be an input and b be an
internal state. Then UIN-nontransient(iV, D, a, b) = UIN-nontransient (iV, D', a, b).

Proof The definition of the GMW relation B.a is independent of the delay bounds (it only as
sumes they are finite), and hence the definition of GMW-outcome(Af'', c,6) is independent of the
delay bounds. Given the equality of GMW-outcome(7V, a, 6) and UIN-nontransient(.'V, D, a, 6) in
Theorem 9, the result follows triviallj'. •
The next proposition reduces the computation of UTN-SS to the GMW-oiitcome states, and provides
us a step towards proving the correctness of Malik's algorithm.

Proposition 11 Let N be a network, and a an input value. Then

lub{GMW-outcome(yV, a, &)|6 6 B^} = UIN-SS(iV, D,a).

Proof Trivial, since by Theorem 9, UlN-nontransient(iV, D,o,fe) = GMW-outcome(iV, a, 6). •

2.3 Ternary Simulation

In theory, GMW analysis could be used to compute the GMW-outcome states of an input change.
However in practice, constructing the graph of Ea, which has 2"" vertices, and traversing it is
computationally intractable. Ternary simulation is an efficient means to "summarize" the set of
GMW-outcome states, and it turns out is sufficient to compute UlN-SS.
Ternary simulation uses a third value, X, to denote an uncertain or changing value on a wire. The
set {0, l.X} is partially ordered on the "uncertainty" relation C where,

0 C 0,1 C TX C X,0 CX, and 1 C X.

When s Qt, wc say that t covers s. Likewise, the vector (^1,^2, -••itn) covers (si, S2,.... s„) if si C tj,
for all i. Any nonempty subset of {0, l.X} has a least upper bound, or luh. In particular, lub{0} = 0,
lub{l} = 1, and the lub of every other nonempty subset is equal to X.
A ternary function'̂ f is a mapping from {0,1,X}" to {0,1,X}. For any Boolean function / there
exists a natural ternary extension, defined as follows:

f(a) = lub{/(t) 11 C a).

Figure 16 shows the ternary extension for several Boolean functions. They follow the basic rule that
a 0 or 1 output value can be deduced whenever there is sufficient information available at the inputs.
For example, a 0 at any input of an AND gate forces the output to 0. An important property of the
ternary extension f of any Boolean function / is monotonicity:

a C b implies f(a) E f(b).

That is, if b is at least as uncertain as a, then the output f(b) is at least as uncertain as f(a).

^Following Brzozowski and Seger's convention, boldface is used to refer to ternary valued functions, relations, and
variables.

16

NOT AND 0 1 X OR 0 1 X XOR 0 1 X

0 1 0 0 0 0 0 0 1 X 0 0 1 X

1 0 1 0 1 X 1 1 1 1 1 1 0 X

X X X 0 X X X X 1 X X X X X

Figure 16: Ternary extension for the NOT, AND. OR, and XOR functions.

Given a binary network N with n inputs and m state variables, its ternary extension N is just N with
each excitation function Si ; {0,1}"+"^ -> {0,1} replaced by its ternary extension Sj : {0,1, ^
{0,1,X}. The vector of ternary excitation functions is denoted by S. This corresponds to the
interpretation of the network in Scott's ordered Boolean domain B± = {±,0,1}, familiar in other
communities [8, 16].
Given the definition of ternary network N, we can now describe Brzozowski and Seger's algorithm
for ternary simulation, which they adapted from Eichelbcrgcr [7]. The idea is to determine the
nontransient behavior of a network starting from a binary valued initial state h, with the input held
constant at a. The first part of the algorithm, TernSim-A, takes as input the network N and the
total state a-b, and propagates maximum uncertainty throughout the network, while leaving the
input fixed at a. That is, as the network is simulated on a-b, for each state vertex, the lub of the
current value and the next value is taken as the new state value. For example, for a state variable
with value 1 at the output of an AND gate, if there is a 0 input, then the state variable changes to
X. In fact, all changes are from 0 or 1 to X. This process continues until the total state is ternary
stable, i.e., s = S(a-s).

TernSim-A (N, a, b)
h:=0;
,0 = b;
repeat

h := /i + ±

s^ := lub{s''~\ S(a-s''"^)};
until s'' = s''"';

s'' denotes the ternary vector of state values at each iteration. The final value of s'* is denoted by
TernSim-A(N, a, 6). Due to the monotonicity of the ternarj' extensions of the excitation functions,
it can be shown that TernSim-A converges in at most m steps. The application of TernSim-A to the
RS-latch of Figure 12 is illustrated in Figure 17, where the input is rs = 01 and the initial state is
qz = 01, and rs-qz is shown at each step.
TernSim-B is the second part of the ternary simulation algorithm. It takes a network , binary input
value a and ternary state value s, and removes as much uncertainty as possible from s, while holding
the input constant at a. For example, if an AND with output X has a 0 input, then the output will
change to 0. In this part, all changes are from X to 0 or 1. Brzozowski and Seger apply TernSim-B
to the result of TernSim-A, but we will see that Malik's algorithm is most similar to TernSim-B by
itself, applied to the vector X*".

17

TernSim-A TernSim-B

01 01 01 XX

1 1
01 OX 01 xo

1
01 xx OMO

o o

Figure 17: TernSiiii-A arid TernSirn-B in operation on the RS-latch, over states rs-qz.

TernSim-B (N, a, s)
h := 0;
t« := s;
repeat

h := /i + Ij

until

The final value of t'' is denoted by TernSim-B(N, a,s). It can be shown that TemSim-B converges
in at most m stops. TcrnSini-B is illustrated in the right hand side of Figure 17, where the input is
still rs = 01 and the initial state is the final value from TeriiSim-A, qz = XX.
TernSim-B iscomputing thegreatest fixed point ofthe excitation functions, over thedomain {0,1, X}"*
As such, there are other ways of computing this fixed point [8], but we are interested not in the
method, but only in the result, which can be shown computes UIN-SS.

Proposition 12 Let N be a complete network, and a an input value. Then,

lub{TernSim-B(N, a, TernSim-A(N, a, 6))|6 € B"*} = UIN-SS(yV, D. a).

Proof Brzozowski and Segershow that the result ofTernSim-B, applied to the result ofTernSim-A,
is exactly equal to the luh of the set. of GMW-outcome states starting in the total state a-h. That, is,
TernSim-B(N, o, TernSim-A(N, a,b)) = hib GMW-outcome(A^, a, b).
Next, note that the lub of a collection of sets is equal to the lub of the lub of each set in the collection.
Hence, lub{GMW-outcome(yV, a,6)|6 e = lub{lub GMW-outcome(A'', a,6)|6 e B""}. The result
follows then by using the above Brzozowski and Seger result along with Proposition 11. •
Proposition 12 provides a stepping stone to our final proofof correctness, but for efficiency, we want
to skip TernSim-A and use just TeruSiin-B. The following theorem shows how to compute UIN-SS
using just TernSiin-B; this constitutes the first significant result of the paper.

Theorem 13 Let N he a complete network, and a an input value. Then

TeruSim-B(N,a, X"^) = UIN-SS(A^£>, a).

18

The proof of this theorem is presented in Section A.l. Given that the definition of UIN-SS refers
to all possible initial states b, it is intuitive that TernSim-B starting from the initial state com
putes UIN-SS. However, proving this requires the intermediate results on GMW analysis and the
combination of TernSim-A and TernSim-B.

Using a complete network would seem to complicate the computation of UIN-SS due to the large
number of state variables. Fortunately, we will see in Section 2.4 that it suffices to apply TernSim-B
to a network containing only feedback variables.

2.4 Malik's Algorithm

Independently of the work of Brzozowski and Seger, Malik [13] devised a BDD-based algorithm for
determining whether or not a network is well-behaved. In this section, we describe the core of his
algorithm, which computes the response of a circuit to an input a.
The algorithm proposed by Malik works with symbolic input values; here, we begin by presenting
his algorithm for a concrete input a. Before the algorithm is invoked, a vector y of k gate vertices,
constituting a feedback vertex set, is selected to serve as the state variables of the circuit. The
algorithm starts with the feedback variables initialized to X (line 2). In each round, the input a and
the current values of the feedback variables are propagated through the network to compute the new
value at each gate vertex (lines 5-6). At the end of each round, the values of the feedback variables
are updated with the new values of the feedback gate vertices (lines 7-8). The algorithm terminates
when one complete round fails to change the value of any feedback variable.

Malik's Algorithm
1 h:=0;

2 yO:=X^
3 repeat
4 h:=h-\-l:

5 for each gate vertex in topological order
6 Fj(a-y''-^) := Vj(a-Fi(a-y''-^)-F2(a-y^-^)-... •F|5|(a-y''"M);
7 for each feedback vertex

8 Yi := Sj(a-y''~'); /* where is the excitation equation of y, */
9 until y'' = y''~^;

It turns out that this algorithm is essentially TernSim-B, applied to a circuit with delay elements on
the feedback edges what Brzozowski and Seger call a feedback-vertex netAvork. Theorem 13 states
that TernSim-R applied to a complete network computes UIN-SS. What remains to prove is that it
is sufficient to apply TernSim-B to a feedback-vertex network. To show this, we need to reason on
networks that do not include all vertices as state vertices. First, we define the depth of a vertex in a
network as the longest path from an input or state vertex to that vertex.

Definition 14 Consider a vertex v in a circuit graph G, and a network N derived from G. The
depth of V in AT is:

depth{v) =
0 if V is an input or state vortex in iV,
1 -I- m'dx{depth(u)\{u,v) € £*} otherwise.

19

Since the state vertices are required to form a feedback-vertex set, the depth of v is uniquely defined.
•

A value for each of the state vertices and inputs uniquely determines the value for each of the
remaining vertices of the circuit graph. These values are computed by the set of circuit equations of
the network.

Definition 15 Let a-h be a total state of network N. Let v be a vertex with vertex function V

(assumed to be defined over all circuit vertices). The circuit equation F of u is defined inductively
on the depth of v.

F{a-b) = <
Oj if V corresponds to input vertex Xi,
hi if V corresponds to state variable Sj,
V'(a,Fi(a-6)-F2(a-6)-... •F|jn.|w|+|c;i(a-6)) otherwise.

R.emember that input and state vertices have depth 0 by definition. The value of F on a-b is uniquely
defined because it only depends on the values of vertices with lower depth. •

At first glance, the definitions of circuit equations and excitation functions appear similar. However,
note that excitation functions are defined only for state vertices, whereas circuit equations are defined
for all vertices. Also, for a state vertex, the circuit equation is just the state variable itself, whereas
the excitation function is the composition of the circuit equations driving the state vertex. As an
example, for the network in Figure 6, the circuit equation for xi is A'l, for yi is ?/i, and for 1/2 is
ViX]. Now we introduce Rrzozowski and Seger's concept of a reduced network, which is derived from
a network by removing a state variable.
Consider a ternary network N with state variables Si, S2,..., s^. Sj is a legal reduction variable if the
correspondingexcitation function Sj does not depend on any input excitation function Xj. nor on the
value of Sj itself. Note that this specifically excludes input-delay variables as legal reduction variables.
A reduced network N of N is created by removing a legal reduction variable, and re-expressing the
remaining functions in terms of the remaining variables. Without loss of generality, assume that the
variable to be removed is s^.

Definition 16 [Brzozowski and Seger] Let N be a ternary network and a legal reduction variable.
Then the reduced network N has the state variables Si, S2,..., excitation functions

Sj(a-s) = Si(a-s-S^(a-s-X)) for 1 < i < m,

and circuit equations

F,(a.s) =I =
X)) otherwise.

Note that when evaluating S^, the value of s„, is immaterial, since is assumed to be independent
of Sjm- •

Brzozowski and Sogcr state the following theorem, which says that TernSim-B gives the same result
on N and N, with respect to the variables present in N, for an arbitrary set of legal reduction
variables. Such a set has the property that any variable in the set remains a legal reduction variable
even after any subset of other variables in the set has been removed.

20

Proposition 17 (Brzozowski and Seger) Let as be a total state o/N. Let R. C {1,2,..., m},
where Vz € R, Si is a legal reduction variable and Sj is stable on as (i.e., Sj = S/(a-s)j . Let N be
the reduced version of N with respect to the variables R. Then for every remaining variable Si

TernSim-B(N, o, s)^ = TernSim-B(N, a, s)^.

As a corollary to Proposition 17, TernSim-B gives the same result when applied to N and any
feedback-vertex network N, with respect to the feedback vertices. The next step is to extend Propo
sition 17 to the values computed by the circuit equations. The following result is proved by induction
on vertex depth, and appears in Section A.2.

Proposition 18 Let N be a complete, ternary network with m state variables. Let as he a total state
of N. Let N 6e 0 reduced version of N where the eliminated variables are legal reduction variables
and are stable on as. Then for 1 < z < 77z

TernSim-B(N, a, s)j. = Fi(a-TernSim-B(N,a, s)).

That is, the value of state variable s, found byTernSim-B on complete network N is the same as that
computed by the corresponding circuit equation evaluated on the result of TernSim-B when applied to
the reduced network N.

Now we are ready to state the main theorem of this section, namely that TernSim-B computes UIN-SS
when applied to a feedback-vertex network, with state variables initialized to X.

Theorem 19 Let N be a complete network and N be a ternary, feedback-vertex network of N, where
k is the number offeedback vertices and n is the num.ber of inputs. Let t^ = TernSim-B(N, a,
Then

F(a-t®) = UIN-SS(A',D,a),

where F represents the vector of circuit equations in N.

Proof By Theorem 13,

UIN-SS(A, D, a) = TernSim-B(N, a, X"^).

Since each eliminated state variable is ternary stable on total state a-X"^, we can apply Proposition 18
to yield

TernSim-B(N, a, X"') = F(a-t^).

•

There are still two minor differences to resolve between TernSim-B applied to a feedback-vertex net
work, the focus of Theorem 19, and Malik's algorithm. The first is that the feedback-vertex network
of TernSim-B requires the presence of the n input-delay state variables, since by definition these are
not legal reduction variables. However, for the special case where all state variables are initially X,
the input-delay variables arc not needed since in the first round of TernSim-B, the only variables to
change value are the input-delay variables: they change from X to their corresponding input value.
Thus, running TernSim-B on a network with the input-delay variables absent is equivalent to starting
TernSim-B from the second round with these variables present.

21

The second difference is that Malik's algorithm gives an explicit procedure for evaluating the non-
feedback values (lines 5-6), whereas TernSim-B does not specify a procedure for this. Hence, in
this regard Malik's algorithm is a specialization of TernSim-B. In summary. Theorem 19 proves the
correctness of Malik's algorithm for concrete input values.
It is useful to pause to review the series of steps needed to reach Theorem 19.

UIN-SS(/'V, O, a) = Iub{UIN-nontransient(A'̂ , O, a,6)|6 € Definition 7
= Iub{GMW-outcome(A'̂ . o, 6)|6 G5""} Proposition 11
= Iub{TernSim-B(N,a, TernSim-A(N, a, ft))|6 GB^} Proposition 12
= TcrnSim-B(N, a,X"') Theorem 13
= F(a-TernSim-B(N,o,X^+"))) Theorem 19

As presented, Malik's algorithm would have to be executed 2" times, once foreach input combination,
to compute UIN-SS(iV, D. a) for all a. In fact, the algorithm proposed by Malik works on sjunbolic
input values, using BDDs. In effect, all 2" cases are handled in parallel, with possible sharing of work
among the cases.
The conversion from the explicit algorithm to the symbolic algorithm is straightforward. A ternary
valued circuit equation, which is updated on each iteration, is stored at each vertex. These equations
are defined over the circuit inputs. Since the inputs are assumed to be binary valued, the functions
to be represented are of the form F : {0,1}" {0,1,X}. Such functions are in turn represented
by a pair of boolean functions and F®, where F^ (resp. F®) is the characteristic function of the
set of inputs for which F evaluates to 1 (resp. 0). The set of inputs for which F evaluates to X is
computed as F'^ = F^ + F". The functions F^ and F® are represented by BDDs.
To start the algorithm, each input is initialized to a Boolean symbolic variable, and each circuit
equation corresponding to a feedback vertex is initialized to the function X. As before, within each
round, the gates are visited in topological order. For each gate, the new circuit equation is computed
by combining the circuit equations of lower depth according to the Boolean operation implied by
the vertex function V. For example, if V is the Boolean conjunction of two vertices represented
by the equations G and H, then the new circuit equation for F is given by F^ = and
F° = G® + //®. The algorithm repeats until none of the circuit equations at the feedback vertices
change from one round to the next. Convergence is guaranteed within k rounds, where k is the
number of feedback vertices. Correctness of the symbolic algorithm follows from the fact that it is
just a symbolic implementation of the explicit algorithm.

3 Output-stable Circuits

The ultimate motivation for the previous section is to classify circuits with combinational cycles
that are well-behaved. With UIN-SS defined, and a proof that Malik's algorithm computes UIN-SS,
it is straightforward to define the class of output-stable circuits, and show that Malik's algorithm
decides this class. As a reminder, when we refer to a circuit, we are equivalently referring to its
corresponding complete network. Intuitively, a circuit with up-bounded inertial delays is output-
stable if for every input value, there exists a unique output value to which the circuit stabilizes in
bounded time, regardless of the initial state of the circuit. Or in other words, no output evaluates to
X in UIN-SS(i'V, D, a), for any a.

22

Definition 20 A circuit with maximum delay bound D is output-stable if for every input value a,
and every output vertex UIN-SS(iV, £), a) - ^ X. m

Several points are worth noting. First, as stated, this condition is vacuously true if the circuit has
no input vertices. In order to avoid the vacuous case, a dummy input connected to nothing could
he added to the circuit. This case will not be discussed in the .sequel. Second, we saw in Section 2.2
that the property of output-stability is in fact independent of the maximum delay bound D. Third,
an acyclic circuit is trivially output-stable because the outputs are functionally determined by the
inputs.
Referring back to Malik's algorithm in Section 2.4, his test for output-stability is that for every
output vertex j, Fj(a-y^) 7^ X, where M is the final value of h in the algorithm. By Theorem 19,

= UIN-SS(iV, D,a)^, and hence given the definition ofoutput-stability, Malik's algorithm
trivially decides this class.
For tlie symbolic version of Malik's algorithm, when the algorithm terminates, the circuit equations
Fi,F2,...,Fp of the outputs are examined. If ^ 0 for some 1 < j < P, then any satisfying
assignment of Ff gives an input valuation for which output j is not output-stable. If Fj^ = 0 for all
1 ^ i ^ then the circuit is output-stable, and Fj gives the Boolean function representing output
j. Since Fj is represented as a BDD, which has a trivial transformation to an acyclic, multi-level
circuit, then a by-product of the algorithm is an equivalent acyclic implementation of the circuit.
Malik mentions that the test for output-stability can be done with respect to a care set of inputs.
Such a set expresses a constraint on the combinations of input values that can occur. If all of the
satisfying assignments for Fj^, for 1 < j < p, fall outside ofthe set of care inputs, then the circuit is
still output-stable.
Even though the class of output-stable circuits is decidable, it is intrinsically hard due to the inherent
need to check stability on all 2^ input values. Malik gave a proof of this within his informal context,
but here we provide a proof for our circuit model, using our terminology.

Theorem 21 Deciding if a circuit is output-stable is co-NP-complete.

Proof We show that deciding if a circuit is not output-stable is NP-complete.
Membership in NP: To show that a circuit is not output-stable, one needs to produce an input
a oil which an output is unstable. A guess can be verified in time polynomial in the circuit size by
applying TernSim-B and examining the result, in accordance with Theorem 19.
NP-hardness: The reduction is from Boolean sativsfiability. Let / be a Boolean function that we
wish to check for satisfiability. Consider the circuit in Figure 18. Clearly, 2 is not output-stable if
and only if f is satisfiable. •

/

Figure 18: 2 is not output-stable if and only if f is satisfiable.

As a side note, the work of Kautz [11] is often cited as proving the existence of logic functions
whose minimal circuit implementation using 2-input NOR gates must have combinational cycles.

23

Interestingly, the example circuit he gives actually fails the test for output-stability, under the UlN
delay model. In particular, he suggests a class ofm-input, m-output logic functions, which for m = 3,
have the form:

Zi = 0L'iX2 + Xi X2

Z2 = x^x^-hx^xa

23 = XIX3X2X3

He claims that the minimum 2-input NOR gate implementation is the circuit in Figure 19, which
has a combinational cycle. However, for the input Xi = I, X2 = 1 and X3 = 0, 23 is not uniquely
determined. In particular, if we seleet {i/s} as the feedback-vertex set, and apply Malik's algorithm,
2/3 will be initialized to X, and remain at X, thus forcing 23 to X. The key point is that the signal
2/2 has two paths to the gate at and these two paths may have different delays; this can cause an
oscillation at 2/3, and hence at 23.

Figure 19: Kautz's circuit with a combinational cycle.

4 Extension to FSMs

The definition ofoutput-stability can be naturally extended to circuits with flip-flops. This leads us
to thenotion ofconstructivity, a term coined by Berry to reflect the relationship between constructive
logic and stable circuits [1]. Before defining constructivity, we must discuss changes to the circuit
model, and the interaction with the environment.
We can view a circuit with flip-flops as depicted in Figure 20. We refer to the union of the primarv
inputs u and the flip-flop outputs x asthe combinational inputs, and the union ofthe prirnai*}' outputs
2 and the flip-flop inputs y as the combinational outputs. With respect to the definition of total state
in Section 2.1, the concatenation ofu and x forms the vector a, and the concatenation ofu;, y and 2
forms 6. We assume that an initial set of valuations for the flip-flops is supplied.

24

combinational
part ^ 3^ Z

Fignre 20: The variables of a circuit.

For the interaction with the environment, we assume that the circuit is driven by a global clock with
period greater than (2"^ —2)D, so that any combinational output that will eventually stabilize, has
time enough to do so. Also, the environment provides inputs and samples outputs at the clock ticks.
Furthermore, it is assumed that at each clock tick, all the combinational nodes (those driven by logic
gates) "forget" their values from the previous clock cycle, and thus are incapable of storing state.
Thus, the state of the circuit from one clock cycle to the next is just the value of the flip-flops. This
restriction is not entirely natural for hardware circuits because combinational wires can in fact store
state (think of an RS-latch). However, besides being a conservative design principle, it brings the
additional benefit that constructive circuits are insensitive to inputs glitching before the clock tick,
since these glitches cannot change the value of the flip-flops. Hence, these circuits are closed under
cascade composition. That is, if each of N\ and N2 is constructive, then N\ driving yV2, or N2 driving
A'l, is also constructive. However, connecting N\ and N2 in a cycle is not guaranteed to preser\^e
constructivity because new combinational cycles can be created.
We are now ready to define the class of constructive circuits. A circuit is constructive if for every input
sequence, starting from an initial state of the flip-flops, there exists a unique combinational output
sequence. That is, both the latch inputs and primary outputs must be unique. The corresponding
decision problem is PSPACE-hard, as shown by a reduction from single state reachability [17].
Another way of describing constructivity is that the combinational part of the FSM is output-stable
for every primary input value and reachable state of the flip-flops. Since constructivity takes state
reachability into account, it is easy to see that constructivity is more permissive than requiring
output-stability for all combinational input values. In particular, consider an output that is not
stable for a given valuation of the flip-flops (i.e., a state): even if this state is not reachable, the
circuit is not output-stable. However, it may still be con.structive. For example, consider the circuit
of Figure 21 with initial state 10. The circuit is not output-stable because when X}X2 = 11, then
y2 is unstable. On the other hand, the circuit is constructive, because starting from yiy2 = 10, the
external state X\X2 = 11 cannot be reached after the first clock tick.
The motivation for constructivity comes from software, in particular from the synchronous language
Esterel. The condition that combinational wires forget their state is natural in this domain because
the combinational wires represent the automatic variables, which are initialized on each invocation

they do not remember their previous value. Also, in this domain the flip-flops represent static
variables, whose assignment should be unique — corresponding to the condition that the flip-flop
inputs are unique at each clock cycle. This application is thoroughly explored in [1], where Berry

25

—O

Xi

A

2/1 ,, r

y2 X2

A

Figure 21: Constructive, but not output-stable.

defines the constructive semantics of pure Esterel. He shows that an Esterel program is constructive
(in the sense of his semantics) if and only if the circuit derived from the program is constructive (in
the sense defined here). This "full abstraction theorem" is very powerful because it provides a means
of automatically classifying Esterel programs as legal (i.e., constructive) or illegal. The fact that the
theorem connects the abstract world of programs to the concrete world of circuits with delays also
points to the universality of constructivity.
Next, we describe a BDD-based algorithm that decides the class of constructive circuits. Roughly, in
the first step, we calculate all the combinational input values that cause an unstable combinational
output. Then in the second step, we perform FSM reachability to determine if any of these "bad"
combinational inputs are possible. In more detail, in the first step, we use Malik's algorithm to
implicitly test output-stability for each of the combinational input values. A by-product of this
algorithm is a pair of Boolean functions F/ (?/., x) and F^(u,x) for each combinational output i. Then
we compute

unstableDomain{u, x) = ^F^{u,x) =
i i

The set unstableStates is just the projection of unstableDamain onto the flip-flop inputs:

unstableStates{x) = 3u unstableDomain{u,x).

The next step is to perform symbolic reachability analysis. We would like to derive a next state
function for each flip-flop, so that we have the flexibility of employing reachability methods that
exploit the determinism of functions (as opposed to the nondeterminism of relations). However, in
general, the next states are not functionally determined. For example, in Figure 21, state 11 has
four possible next states. Nonetheless, there is a way around this contradiction- as long as we limit
ourselves to the stableStates (the complement of unstableStates), then F^ {u,x) gives the correct value
for the next state. Thus, we use the function F^{u,x) corresponding to each flip-flop as the next
state function.

Reachability then works as follows. Before each BFS step of reachability, the set of states to be
explored is intersected with the set of unstableStates. If this intersection is non-empty, then "not-
constructive" is returned. Otherwise, it is safe to perform the next reachability step. If the fixed
point is reached, then "constructive" is returned. In this case, the BDDs for the functions Fl(u,x)
can be used directly to derive an acyclic combinational part of the circuit.
The above algorithm first appeared in [18]. More recently, Namjoshi and Kurshan proposed a more
efficient algorithm based on satisfiability [14].

26

5 Related Work

We divide related work into three categories.

1. Circuit analysis: These works provide techniques to analyze the behavior of circuits, without
attempting to classify well-behaved circuits.

2. Circuit classification: These works classify circuits bsised on their well-behavedness.

3. FSM extraction: These works provide algorithms to extract finite state machines from transistor-
level netlists. Their classification of well-behaved circuits is implicit in the result of their algo
rithms.

5.1 Circuit Analysis

Brzozowski and Seger [4] study asynchronous circuits under various delay models. In particular,
for the up-bounded inertial delay model, they present two methods to analyze the behavior of a
circuit, as discussed in Section 2. This work does not classify well-behaved circuits. However, it is
pivotal to our research because it provides the delay model and techniques upon which we define and
analyze well-behaved circuits.

Burch et al. [5] model logic gates by ternary-valued relations, where the third value, ±, represents
an oscillating or intermediate voltage. By using JL, oscillating behaviors caused by combinational
cycles are preserved when gates are composed (by taking the intersection of their corresponding
ternarj'-valued relations). This is in contrast to the use of Boolean relations to model gates, where
oscillating behaviors "disappear" when gates are composed. Burch uses the ternary model to solve
various substitution and rectification problems for gate-level circuits. However, they do classify
well-behaved circuits, or relate the ternary model to a delay model.

Maler and Pnueli [12] provide an elegant method to translate asynchronous circuits, described
at the gate-level, into timed automata. They use a delay model equivalent to the bi-bounded inertial
delay model of Brzozowski and Seger; this is more general than the up-bounded inertial delay model
we use because it allows the specification of a lower bound on the delay.
Foreach gate in the circuit, they introduce a delay element with an associated timer (or clock). They
prove that the resulting timed automaton has the .same I/O behavior over time as the original circuit,
for the given delay model. Using the timed automaton, they are able to perform state reachability
and solve several synthesis problems. However, they do not address the well-behavedness problem,
nor is it immediate how this problem can be solved within their framework.
The use of timers complicates the analysis considerably. We show for the up-bounded inertial delay
model that output-stability is independent of the delay bounds in the circuit, and hence translating
to timed automata is unnecessary. Whether this is necessary for the bi-bounded inertial delay model
remains an open question.

27

5.2 Circuit Classification

Malik [13] inspired our research. He notes that combinational cycles do arise in practice, but that
no method for rigorously analyzing such circuits had ever been proposed. To remedy this situation,
he introduced the class of "combinational" circuits to capture well-behavedness, and proposed using
ternarj' simulation to decide whether or not a circuit is combinational. However, his work is not
ba.sed on a delay model. We show that his procedure classifies circuits under the UIN delay model.

Halbwachs and Maraninchi [9] define a class of well-behaved circuits called consistent circuits.
Basically, they view a circuit as a system of Boolean equations (one equation for each gate), and
consider the solutions of this system. For a given input valuation, if the system has at least one
solution, and the output has the same value for all solutions, then the circuit is deemed weakly
consistent. As a special case, if there is exactly one solution, then the circuit is strongly consistent.
This cIeiss is not comparable to our class of output-stable circuits. The circuit in Figure 1 is output-
stable, but it is not weakly consistent because there is no consistent assignment to variable y when
a: = 0. On the other hand, the circuit in Figure 2 is strongly consistent, but not output-stable. It is
strongly consistent because 0 is the only consistent value for y in the system of equations. It is not
output-stable because when x = 0, y can in fact oscillate.

5.3 FSM Extraction

FSM extraction techniques in the literature are less formal. First, theydo not address the underlying
delay model. They simply accept as input to their own tools the output of a circuit extraction tool,
like TRANAUVZE [3] or ANAMOS [2], without formal regard to how the tool does the extraction.
Second, they do not formally classify those circuits that can be represented by an FSM (i.e., are
well-behaved), and those that cannot. Instead, they implicitly define well-behavedness by the result
of their extraction algorithms: if the algorithm is successful in extracting an FSM, then the circuit
can be considered well-behaved, otherwise not. Third, there is no proof that, when the algorithm is
able to extract an FSM, that this FSM has the same behavior as the original circuit.
Shiple's thesis [17] provides detailed descriptions of the works of Singh and Subrahmanyam [19],
Pandey ei al. [15], and Kam and Subrahmanyam [10]. In the interest ofspace, here we only provide
a critique of the paper by Singh and Subrahmanyam. They propose a method to extract FSMs, at the
Boolean function level, from transistor netlists. They employ TRANALYZE as a preprocessor, which
generates a network of zero-delay logic blocks and unit-delay elements, from a transistor netlist. The
unit-delay elements are introduced by TRAKALYZE to break feedback loops and to model charge
storage nodes. An assignment ofvalues to the unit-delay elements is called a configuration] this is the
state of the network. TRANALV ZE uses a 4-valued algebra in deriving logic gates from transistors.
Ironically though, it uses a 2-valued algebra to simplify the logic gates that compose a zero-delay
logic block. Hence, the expression y-y is simplified to 0. For this reason, the circuit in Figure 2 is
simplified by TRANALYZE to z = x. and thus Singh classifies it as well-behaved. This is counter to
our classification.

This work also suffers from two other weaknesses. The first is embodied in the critical assumption
that if there exists a stable binaiy- configuration corresponding to a given input, then the circuit will
settle in that configuration when the input is applied. This assumption ignores the possibility that

28

the circuit may settle into an indefinite, race-free oscillation. The second weakness is that for a given
input and current configuration, only one next configuration is possible. This is inherent in the fact
that TRANALYZE uses functions, and not relations, to model the outputs of zero-delay logic blocks.
Thus, different next configurations arising from critical races cannot be modeled.

6 Summary and Future Work

We have defined a formal class of gate level circuits whose outputs settle to a unique value, for every
input. This definition is grounded in the up-bounded inertial delay model. We have shown that
Malik's algorithm of BDD-based ternary simulation decides this class. This result follows easily once
we proved that Malik's algorithm exactly computes the steady-state behavior of a circuit with UIN
delays. Given the large semantic gap between the definition of UIN delays and ternary simulation,
we have turned to Brzozowski and Seger's extensive theory on asynchronous circuits to bridge this
gap.

For circuits that are indeed output-stable, an important by-product of the decision procedure is
an acyclic circuit having the same input/output behavior. This is an important feature, as many
high-level EDA tools do not accept circuits with combinational cycles.
We extended the theory of output-stability to circuits containing flip-flops. The resulting class of
constructive circuits distinguishes between behavior in the reachable and unreachable state space,
but does not permit combinational wires to hold state. However, due to this last restriction, the
inputs can have glitches, and consequently, this class is closed under cascade composition. This class
exactly coincides with the class of constructive Esterel programs.
There are several directions for future work. The first is to extend the analysis to allow transistors and
tri-state devices. The second direction, for output-stable circuits, is to derive acyclic implementations
that preserve as much structure of the original circuit as possible, so that, the changes are not too
drastic. The third direction is to explore decision procedures for output-stability under different
delay models, such as bi-bounded inertial dela}"^ and ideal delay. Given the exact relationship we
have shown between the UIN delay model and ternary simulation, if a different delay model yields
diflPerent steady-state behavior than UIN delays, then ternary simulation definitely cannot be used.
Intuitively, there needs to be a match between the choice of delay model and the algorithm used for
classification. For ternary simulation, the outcome is independent of the order in which the gates are
evaluated. In practice, this means that an event can be "lost". For example, an event can occur at
a gate input that would make that gate output unstable. However, that gate may not be evaluated
immediately, and in the meantime, the evaluation of other gates could cause the event to disappear,
thus making the gate .stable again. This situation is analogous to what happens in the UIN delay
model, when an event can be lost because it is shorter than the inertial delaj'.
Contrast this situation to using an ideal delay model, where every event, regardless of its duration,
must be propagated. To keep track of the events to be propagated, a count must be maintained for
each variable, giving the number of pending events. Clearly ternary simulation is not compatible
with the concept of pending events.

29

Acknowledgements

The authors would like to thank Stephen Edwards for his mnay valuable suggestions to enhance the
presentation of this work.

A Proofs

A.l Proof of Theorem 13

We first prove the following two lemmas.

Lemma 22 Let N be a complete network. Then Va, 36 such that TernSim-A(N, a,6) = X"' .

Proof Let a € Recall in TemSim-A that.

s" := hi, and

sf := lub{sJ~\Si(a-s''"^)}.

Construct 6 as follows. Consider first an input-delay vertex labeled Si that is driven by input Xj.
Let hi = aj. Since S,- = Xj = Uj, then:

s° = hi = ttj, and
s] = lub{s°, Si(r7,'S°)} = lub{aj. = X.

Hence, after the first iteration, each input-delay variable is set to X.
Next consider a gate variable Si driven by wire variables uh,W2,.. .,Wk. Choose an arbitrary' initial
assignment for u?i,u;2,.... Wk, say 6i, 62,..., 6^. (Note that Wj, for I ^ j ^ k, only fans out to gate
Si since N is complete, so no other gate is constraining the value of Wj.) If Si(a-6) = a, then let
hi = a. Then,

sj = hi = a, and
s- = lub{s?, Si(a-s°)} = lub{a, a} = X.

Hence, after the first iteration, each gate variable is set to X.
At this point, we have constructed the initial value hi for each variable, but we have not shown that
the wire variables are forced to X in TernSim-A. Consider a wire variable s, driven by gate variable
or input-delay variable sj. Then,

sj = liib{sJ,Si(rj,-s^)} = liib{sj,s]} = Iiib{s?,X} = X.

That is, after iteration 1, every gate is driven to X, so that after iteration 2, everj' wire variable is
guaranteed to be driven to X. •

Lemma 23 In TernSim-B, let t? and be two different starting points, //t? C t^, then tf C
for all h > 0, where h is the iteration number in TernSim-B. That is, TernSiin-B is monotonic.

30

Proof By induction on h. The basis is provided by the hypothesis. Suppose • tj. Then
= S(a-ti) • S(a-t2) = where the inequality follows by the monotonicity of S. (Note

that TernSim-B is not guaranteed to converge for an arbitrary tj or t®, because neither t| nor t® is
assumed to be ternary' stable.) •
To prove Theorem 13, we use Proposition 12 for the definition of UTN-SS(A^ D, a).

Proposition 24 Let N be a complete networkf and Si a state vertex. Then, for all i,

TernSim-B(N,a,X"^). = lub{TernSim-B(N,a, TernSim-A(N,fe))|6 €

Proof The proof is by case on the value Sj. First, suppose TeruSim-B(N, a, = X. Combining
this with Lemma 22, we have

lub{TernSim-B(N, a, TernSim-A(N, a, 6))|6 e B^}i
= lub{TernSim-B(N,a,X^), {TernSim-B(N, a, TeniSim-A(N,a,G 8""}}^
= lub{X, {TernSim-B(N, a, TernSim-A(N, a, h))\h G B"'}},;
= X

= TernSim-B(N, a, X"*)^.

Next, suppose TernSim-B(N, a, X*")^ = d G {0,1}. Since for any b, TernSim-A(N, a, 6) C X"*, then
by Lemma 23,

TernSim-B(N, fl, TernSim-A(N, o, &))• C TernSim-B(N, a, X"^)^ = d.

Since d is binary, then TernSim-B(N, a, TcrnSim-A(N, a, = d, and since b was arbitrary, then

lub{TernSim-B(N, a, TernSim-A(N, a,6))|6 G B^}i = d.

fc?s)^^nd tf =TernSim-B(N, a, s)^. Consider avertex Vi of the
cireuit graph. The proof is by induction on the depth of vi in N.
Base: depth(vi) = 0: Since the depth of Vi is zero, it has a corresponding state variable, say Sj, in
N. By Proposition 17, tf = tf. By Definition 15, for a vertex ofdepth 0, Fi(a-t^) = if.
I.H.: For all j < k, where depth{vi) = j, tf = Fi(a-t®).
I.S.: Suppose vertex Vi has depth k, with vertex function V^, and corresponding state variable s, in
N. Since the result, of TernSim-B is ternary stable,

tf = Si(a-t^).

In a complete network, the excitation function and vertex function are the same for any vertex.
Hence,

tf = V<(a-tfi)
= Vi(a-tf-tf-...-tf).

31

By the induction hypothesis,

tf = Vj(a-F,(a-t®)-F2(a-t®)-... -F^lQ-tS)).

Finally, by the definition of circuit equation,

tf = Fi(ot®),

•

References

[1] G. Berry. The Constructive Semantics ofEsterel Draft, version 3.0, available at www.esterel.org.
July 1999.

[2] R. E. Bryant. Boolean analysis of MOS circuits. IEEE Trans. Computer-Aided Design, 6(4):634
649, July 1987.

[3] R. E. Bryant. Extraction of gate level models from transistor circuits by four-valued symbolic
analysis. In Proc. Int'l Conf. on Computer-Aided Design, pages 350 353, Nov. 1991.

[4] J. A. Brzozowski and C.-J. H. Seger. Asynchronous Circuits. Springer-Verlag, New York, 1995.

[5] J. R. Burch, D. Dill, E. Wolf, and G. D. Micheli. Modeling hierarchical combinational circuits.
In Proc. Int'l Conf. on Computer-Aided Design, pages 612-617, Nov. 1993.

[6] R.. de Simone. Note: A small hardware bus arbiter specification leading naturally to correct
cyclic description. Internal note: http://w^vw-sop.inria.fr/meije/verification/esterel/doc.html,
1996.

[7] E. B. Eichelberger. Hazard detection in combinational and sequential switching circuits. IBM
Journal of Research and Development, 9(2):90-99, March 1965.

[8] M. J. C. Gordon. The Denofational Description of Programming Languages. Springer-Verlag,
New York, 1979.

[9] N. Halbwachs and F. Maraninchi. On the symbolic analysis of combinational loops in circuits
and synchronous programs. In Euromicro'95, September 1995. Como, Italy.

[10] T. Kam and R A. Subrahmanyam. Comparing layouts with HDL models: A formal verification
technique. IEEE Trans. Computer-Aided Design, 14(4):503 509, Apr. 1995.

[11] W. H. Kautz. The necessity of closed circuit loops in minimal combinational circuits. IEEE
Trans. Comput., 19(2):162 164, Feb. 1970.

[12] O. Malerand A. Pnueli. Timing analysisof asynchronous circuits using timed automata. In R E.
Camurati and H. Eveking, editors. Proceedings of the Conference on Correct Hardware Design
and Verification Methods, volume 987 of LNCS, pages 189-205, Frankfurt/Main, Germany, Oct.
1995. Springer-Verlag.

32

13] S. Malik. Analysis of cyclic combinational circuits. IEEE Trans. Computer-Aided Design,
13(7):95()-956, July 1994.

14] K. J. Namjoshi and R. P. Kurshan. Efficient analysis of cyclic definitions. In N. Halbwachs and
D. Peled, editors, Proc. Computer Aided Verification, LNCS, pages 394-405, Trento, Italy, July
1999. Springer-Verlag.

15] M. Pandey, A. Jain, R. E. Bryant, D. Beatty, G. York, and S. Jain. Extraction of finite state
machines from transistor netlists by symbolic simulation. In Proc. Int'l Conf. on Computer
Design, pages 596-601, Oct. 1995.

16] G. D. Plotkin. LCF as a programming language. Theoretical Computer Science, 5(3):223 256,
1977.

17] T. R. Shiple. Formal Analysis of Synchronous Circuits. PhD thesis, U.C. Berkeley, Electronics
Research Laboratory, College of Engineering, University of California, Berkeley, CA 94720, Oct.
1996. Memorandum No. UCB/ERL M96/70.

18] T. R. Shiple, G. Berry, and H. Touati. Constructive analysis ofcyclic circuits. In Proc. European
Design and Test Conference, pages 328-333, Mar. 1996.

19] K. J. Singh and P. A. Subrahiiiaiiyam. Extracting RTL models from transistor netlists. In Proc.
Int'l Conf. on Computer-Aided Design, pages 11-15, Nov. 1995.

20] L. Stok. False loops through resource sharing. In Proc. Int'l Conf. on Computer-Aided Design,
pages 345 348, Nov. 1992.

21] Y. Watanabe and R. K. Brayton. The maximum set of permissible behaviors for FSM networks.
In Proc. Int'l Conf. on Computer-Aided Design, pages 316 320, Nov. 1993.

33

	Copyright notice 2002
	ERL-02-21

