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PART 1:

USING PTOLEMYII

The chapters in this part describe how to construct Ptolemy II models for web-based modeling or
building applications. The first chapter includes an overview of Ptolemy II software, and a brief
description of each of the models of computation that have been implemented (and some that are just
planned). It describes the package structure of the software, and includes as an appendix a brief tutorial
on UML notation, which is used throughout this document to explain the structure of the software. The
second chapter is a tutorial on building models using Vergil, a graphical user interface where models
are built pictorially. The third chapter discusses the Ptolemy II expression language, which is used to
set parameter values. The next chapter gives an overview of actor libraries. These three chapters, plus
one of the domain chapters, will be sufficient for users to start building interesting models in the
selected domain. The fifth chapter gives a tutorial on designing actors in Java.The sixth chapter
explains MoML, the XML schema used by Vergil to store models. And the seventh chapter, the final
one in this part, explains how to construct custom applets.





Introduction

Author: Edward A. Lee

1.1 Modeling and Design

The Ptolemy project studies heterogeneous modeling, simulation, and design of concurrent sys
tems. The focus is on embedded systems [50], particularly those that mix technologies including, for
example, analog and digital electronics, hardware and software, and electronics and mechanical
devices. The focus is also on systems that are complex in the sense that they mix widely diiferent oper
ations, such as signal processing, feedback control, sequential decision making, and user interfaces.

Modeling is the act of representing a system or subsystem formally. A model might be mathemati
cal, in which case it can be viewed as a set ofassertions about properties of the system such as its func
tionality or physical dimensions. A model can also be constructive, in which case it defines a
computational procedure that mimics a set of properties of the system. Constructive models are often
used to describe behavior of a system in response to stimulus from outside the system. Constructive
models are also called executable models.

Design is the act of defining a system or subsystem. Usually this involves defining one or more
models of the system and refining the models until the desired fimctionality is obtained within a set of
constraints.

Design and modeling are obviously closely coupled. In some circumstances, models may be
immutable, in the sense that they describe subsystems, constraints, or behaviors that are externally
imposed on a design. For instance, they may describe a mechanical system that is not under design, but
must be controlled by an electronic system that is under design.

Executable models are sometimes called simulations, an appropriate term when the executable
model is clearly distinct from the system it models. However, in many electronic systems, a model that
starts as a simulation mutates into a software implementation of the system. The distinction between
the model and the system itself becomes blurred in this case. This is particularly true for embedded
software.

Embedded software is software that resides in devices that are not first-and-foremost computers. It
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is pervasive, appearing in automobiles, telephones, pagers, consumer electronics, toys, aircraft, trains,
security systems, weapons systems, printers, modems, copiers, thermostats, manufacturing systems,
appliances, etc.A technically active personprobably interacts regularly withmore piecesof embedded
software than conventional software. A key feature of embedded software is that it engages thephysi
cal world, and hence has temporal constraints that desktop software does not share.

A major emphasis in Ptolemy II is on the methodologyfor defining andproducing
embedded software together with the systems within which it is embedded.

Executable models are constructed under a model of computation, which is the set of "laws of
physics" that govern the interaction of components in the model. If the model is describing a mechani
cal system, then the model of computation may literally be the laws ofphysics. More commonly, how
ever, it is a set ofrules that are more abstract, and provide a framework within which a designer builds
models. A set ofrules that govern the interaction ofcomponents is called the semantics of the model of
computation. A model of computation may have more than one semantics, in that there might be dis
tinct sets of rules that impose identical constraints on behavior.

The choice ofmodel of computation depends strongly on the type ofmodel being constructed. For
example, for a purely computational system that transforms a finite body of data into another finite
body of data, the imperative semantics that is common in programming languages such as C, C-H-,
Java, and Matlab will be adequate. For modeling a mechanical system, the semantics needs to be able
to handle concurrency and the time continuum, in which case a continuous-time model ofcomputation
such that found in Simulink, Saber, Hewlett-Packard's ADS, and VHDL-AMS is more appropriate.

The ability of a model to mutate into an implementation depends heavily on the model of compu
tation that is used. Some models of computation, for example, are suitable for implementation only in
customized hardware, while others are poorly matched to customized hardware because of their intrin
sically sequential nature. Choosing an inappropriate model of computation may compromise the qual
ity of design by leading the designer into a more costly or less reliable implementation.

A principle of the Ptolemy project is that the choices of models of computation
strongly affect the quality ofa system design.

For embedded systems, the most useful models of computation handle concurrency and time. This
is because embedded systems consist typically of components that operate simultaneously and have
multiple simultaneous sources ofstimuli. In addition, they operate in a timed (real world) environment,
where the timeliness of their response to stimuli may be as important as the correctness of the
response.

The objective in Ptolemy II is to support the construction and interoperability of
executable models that are built under a wide variety ofmodels ofcomputation.

Ptolemy II takes a component view of design, in that models are constructed as a set of interacting
components. A model of computation governsthe semanticsof the interaction, and thus imposesa dis
cipline on the interaction of components.

Component-based design in Ptolemy II involves disciplined interactions between
components governed by a model ofcomputation.
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1.2 Architecture Design

Architecture description languages (ADLs), suchas Wright [3] and Rapide [62], focus on formal
isms for describing the rich sorts of component interactions that commonly arise in software architec
ture. Ptolemy II, by contrast, mightbe calledan architecture design language,because its objective is
not so much to describe existing interactions,but rather to promote coherent software architecture by
imposing some structureon those interactions. Thus, while an ADL might focus on the compatibility
ofa sender and receiver in two distinct components, we would focus on a pattern ofinteractions among
a set of components. Insteadof, for example,verifyingthat a particularprotocol in a singleport-to-port
interaction does not deadlock [3], we would focus on whether an assemblage of components can dead
lock.

It is arguable that our approach is less modular, because components must be designed to the
framework. Typical ADLs can describe pre-existing components, whereas in Ptolemy II, such pre
existing components would have to wrapped in Ptolemy II actors. Moreover, designing components to
a particular interface may limit their reusability, and in fact the interface may not match their needs
well. All of these are valid points, and indeed a major part of our research effort is to ameliorate these
limitations. The net effect, we believe, is an approach that is much more powerful than ADLs.

First, we design components to be domain polymorphic, meaning that they can interact with other
components within a wide variety of domains. In other words, instead of coming up with an ADL that
can describe a number of different interaction mechanisms, we have come up with an architecture
where components can be easily designed to interact in a number of ways. We argue that this makes
the components more reusable, not less, because disciplined interaction within a well-defined seman
tics is possible. By contrast, with pre-existing components that have rigid interfaces, the best we can
hope for is ad-hoc synthesis of adapters between incompatible interfaces, something that is likely to
lead to designs that are very difficult to understand and to verify. Whereas ADLs draw an analogy
between compatibility of interfaces and type checking [3], we use a technique much more powerful
than type checking alone, namely polymorphism [52].

Second, to avoid the problem that a particular interaction mechanism may not fit the needs of a
component well, we provide a rich set of interaction mechanisms embodied in the Ptolemy II domains.
The domains force component designers to think about the overall pattem of interactions, and trade off
uniformity for expressiveness. Where expressiveness is paramount, the ability of Ptolemy II to hierar
chically mix domains offers essentially the same richness ofmore ad-hoc designs, but with much more
discipline. By contrast, a non-trivial component designed without such structure is likely to use a
melange, or ad-hoc mixture of interaction mechanisms, making it difficult to embed it within a com
prehensible system.

Third, whereas an ADL might choose a particular model of computation to provide it with a for
mal structure, such as CSP for Wright [3], we have developed a more abstract formal framework that
describes models of computation at a meta level [56]. This means that we do not have to perform awk
ward translations to describe one model of computation in terms of another. For example, stream based
communication via FIFO channels are awkward in Wright [3].

We make these ideas concrete by describing the models of computation implemented in the
Ptolemy II domains.
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1.3 Models of Computation

There is a rich variety of models of computation that deal with concurrency and time in different
ways. Each gives an interaction mechanism for components. In this section, we describe models of
computation that are implemented in Ptolemy II domains. Our focus has been on models of computa
tion that are most useful for embedded systems. All of these can lend a semantics to the same bubble-
and-arc, or block-and-arrow diagram shown in figure 1.1. Ptolemy II models are (clustered, or hierar
chical) graphs of the form of figure 1.1, where the nodes are entities and the arcs are relations. For
most domains, the entities are actors (entities with functionality) and the relations connecting them
represent communication between actors.

1.3.1 Communicating Sequential Processes - CSP

In the CSP domain (communicating sequential processes), created by Neil Smyth [90], actors rep
resent concurrently executing processes, implemented as Java threads. These processes communicate
by atomic, instantaneous actions called rendezvous (or sometimes, synchronous message passing). If
two processes are to communicate, and one reaches the point first at which it is ready to communicate,
then it stalls until the other process is ready to communicate. "Atomic" means that the two processes
are simultaneously involved in the exchange, and that the exchange is initiated and completed in a sin
gle uninterruptable step. Examples of rendezvous models include Hoare's communicating sequential
processes (CSP) [40] and Milner's calculus ofcommunicating systems (COS) [67]. This model ofcom
putation has been realized in a number of concurrent programming languages, including Lotos and
Occam.

Rendezvous models are particularly well-matched to applications where resource sharing is a key
element, such as client-server database models and multitasking or multiplexing of hardware
resources. A key feature of rendezvous-based models is their ability to cleanly model nondeterminate
interactions. The CSP domain implements both conditional send and conditional receive. It also
includes an experimental timed extension.

1.3.2 Continuous Time - CT

In the CT domain (continuous time), created Jie Liu [59], actors represent components that interact
via continuous-time signals. Actors typically specify algebraic or differential relations between inputs
and outputs. The job of the director in the domain is to find a fixed-point, i.e., a set of continuous-time
functions that satisfy all the relations.

FIGURE 1.1. A single syntax (bubble-and-arc or block-and-arrow diagram)
can have a number of possible semantics (interpretations).
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The CT domain includes an extensible set of differential equation solvers. The domain, therefore,
is useful for modeling physical systems with linearor nonlinear algebraic/differential equation descrip
tions, suchas analog circuits andmanymechanical systems. Its model of computation is similar to that
used in Simulink, Saber, and VHDL-AMS, and is closely related to that in Spice circuit simulators.

Embeddedsystems frequently contain components that are best modeled using differential equa
tions, such as MEMS and other mechanical components, analog circuits, and microwave circuits.
These components, however, interact with an electronic system that may serve as a controller or a
recipient of sensor data. This electronic system may be digital. Joint modeling of a continuous sub
system with digital electronics is known as mixedsignal modeling [60]. The CT domain is designed to
interoperate with other Ptolemy domains, such as DE, to achieve mixed signal modeling. To support
such modeling, the CT domain models of discrete events as Dirac delta functions. It also includes the
ability to precisely detect threshold crossings to produce discrete events.

Physical systems often have simple models that are only valid over a certain regime of operation.
Outside that regime, another model may be appropriate. A modal model is one that switches between
these simple models when the system transitions between regimes. The CT domain interoperates with
the FSM domain to create modal models. Such modal models are often called hybrid systems.

1.3.3 Discrete-Events - DE

In the discrete-event (DE) domain, created by Lukito Muliadi [71], the actors communicate via
sequences ofevents placed in time, along a real time line. An event consists of a value and time stamp.
Actors can either be processes that react to events (implemented as Java threads) or functions that fire
when new events are supplied. This model of computation is popular for specifying digital hardware
and for simulating telecommunications systems, and has been realized in a large number ofsimulation
environments, simulation languages, and hardware description languages, including VHDL and Ver-
ilog.

DE models are excellent descriptions of concurrent hardware, although increasingly the globally
consistent notion oftime is problematic. In particular, it over-specifies (or over-models) systems where
maintaining such a globally consistent notion is difficult, including large VLSI chips with high clock
rates. Every event is placed precisely on a globally consistent time line.

The DE domain implements a fairly sophisticated discrete-event simulator. DE simulators in gen
eral need to maintain a global queue ofpending events sorted by time stamp (this is called a priority
queue). This can be fairly expensive, since inserting new events into the list requires searching for the
right position at which to insert it. The DE domain uses a calendar queue data structure [12] for the
global event queue. A calendar queue may be thought of as a hashtable that uses quantized time as a
hashing function. As such, both enqueue and dequeue operations can be done in time that is indepen
dent of the number of events in the queue.

In addition, the DE domain gives deterministic semantics to simultaneous events, unlike most
competing discrete-event simulators. This means that for any two events with the same time stamp, the
order in which they are processed can be inferred from the structure of the model. This is done by ana
lyzing the graph structure of the model for data precedences so that in the event of simultaneous time
stamps, events can be sorted according to a secondary criterion given by their precedence relation
ships. VHDL, for example, uses delta time to accomplish the same objective.
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1.3.4 Distributed Discrete Events - DDE

The distributeddiscrete-event (DDE) domain, created by John Davis [21], can be viewed either as
a variant of DE or as a variant of PN (described below). Still highlyexperimental, it addresses a key
problem with discrete-event modeling, namely that the global eventqueue imposes a central point of
control on a model, greatly limiting the ability to distributea model over a network. Distributingmod
els might be necessary either to preserve intellectual property, to conserve network bandwidth, or to
exploit parallel computing resources.

The DDE domain maintains a local notion of time on each connection between actors, instead of a
single globally consistent notion of time. Each actor is a process, implemented as a Java thread, that
can advance its local time to the minimum of the local times on each of its input connections. The
domain systematizes the transmission of null events, which in effect provide guarantees that no event
will be supplied with a time stamp less than some specified value.

1.3.5 Discrete Time - DT

The discrete-time (DT) domain, written by Chamberlain Fong [25], extends the SDF domain
(described below) with a notion of time between tokens. Communication between actors takes the
form of a sequence of tokens where the time between tokens is uniform. Multirate models, where dis
tinct connections have distinct time intervals between tokens, are also supported. There is considerable
subtlety in this domain when multirate components are used. The semantics is defined so that compo
nent behavior is always causal, in that outputs whose values depend on inputs are never produced at
times prior to those of the inputs.

1.3.6 Finite-State Machines - FSM

The finite-state machine (FSM) domain, written by Xiaojun Liu, is radically different from the
other Ptolemy II domains. The entities in this domain represent not actors but rather state, and the con
nections represent transitions between states. Execution is a strictly ordered sequence of state transi
tions. The FSM domain leverages the built-in expression language in Ptolemy II to evaluate guards,
which determine when state transitions can be taken.

FSM models are excellent for expressing control logic and for building modal models (models
with distinct modes of operation, where behavior is different in each mode). FSM models are amena
ble to in-depth formal analysis, and thus can be used to avoid surprising behavior.

FSM models have some key weaknesses. First, at a very fundamental level, they are not as expres
sive as the other models of computation described here. They are not sufficiently rich to describe all
partial recursive functions. However, this weakness is acceptable in light of the formal analysis that
becomes possible. Many questions about designs are decidable for FSMs and undecidable for other
models of computation. A second key weakness is that the number of states can get very large even in
the face of only modest complexity. This makes the models unwieldy.

Both problems can often be solved by using FSMs in combination with concurrent models of com
putation. This was first noted by David Harel, who introduced that Statecharts formalism. Statecharts
combine a loose version of synchronous-reactive modeling (described below) with FSMs [34]. FSMs
have also been combined with differential equations, yielding the so-called hybrid systems model of
computation [36].

The FSM domain in Ptolemy II can be hierarchically combined with other domains. We call the
resulting formalism "*charts" (pronounced "starcharts") where the star represents a wildcard [31].
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Since most other domains represent concurrent computations, *charts model concurrent finite state
machineswith a variety of concurrencysemantics. When combinedwith CT,they yield hybrid systems
and modal models. When combined with SR (described below), they yield something close to State-
charts. When combined with process networks, they resemble SDL [89].

1.3.7 Process Networks - PN

In the process networks (PN) domain, created by Mudit Goel [32], processes communicate by
sending messages through channels that can buffer the messages. The sender of the message need not
wait for the receiver to be ready to receive the message. This style of communication is often called
asynchronous message passing. There are several variants of this technique, but the PN domain specif
ically implements one that ensures determinate computation, namely Kahn process networks [44].

In the PN model of computation, the arcs represent sequences ofdata values (tokens), and the enti
ties represent functions that map input sequences into output sequences. Certain technical restrictions
on these functions are necessary to ensure determinacy, meaning that the sequences are fully specified.
In particular, the function implemented by an entity must be prefix monotonic. The PN domain realizes
a subclass of such functions, first described by Kahn and MacQueen [45], where blocking reads ensure
monotonicity.

PN models are loosely coupled, and hence relatively easy to parallelize or distribute. They can be
implemented efficiently in both software and hardware, and hence leave implementation options open.
A key weakness of PN models is that they are awkward for specifying control logic, although much of
this awkwardness may be ameliorated by combining them with FSM.

The PN domain in Ptolemy II has a highly experimental timed extension. This adds to the blocking
reads a method for stalling processes until time advances. We anticipate that this timed extension will
make interoperation with timed domains much more practical.

1.3.8 Synchronous Dataflow - SDF

The synchronous dataflow (SDF) domain, created by Steve Neuendorffer, handles regular compu
tations that operate on streams. Dataflow models, popular in signal processing, are a special case of
process networks (for the complete explanation of this, see [55]). Dataflow models construct processes
of a process network as sequences of atomic actor firings. Synchronous dataflow (SDF) is a particu
larly restricted special case with the extremely useful property that deadlock and boundedness are
decidable. Moreover, the schedule of firings, parallel or sequential, is computable statically, making
SDF an extremely useful specification formalism for embedded real-time software and for hardware.

Certain generalizations sometimes yield to similar analysis. Boolean dataflow (BDF) models
sometimes yield to deadlock and boundedness analysis, although fundamentally these questions are
undecidable. Dynamic dataflow (DDF) uses only run-time analysis, and thus makes no attempt to stat
ically answer questions about deadlock and boundedness. Neither a BDF nor DDF domain has yet
been written in Ptolemy II. Process networks (PN) serves in the interim to handle computations that do
not match the restrictions of SDF.

1.3.9 Giotto

The Giotto domain, created by Christoph Meyr Kirsch, realizes a model of computation developed
by Tom Henzinger,Christoph Kirsch, Ben Horowitz and Haiyang Zheng. This domain has a time-trig
gered flavor, where each actor is invoked periodically with a specified period. The domain is designed
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to work with the FSM domain to realize modal models. It is intended for hard-real-time systems,
where resource allocation is precomputed.

1.3.10 Synchronous/Reactive - SR

In the synchronous/reactive (SR) domain, written by Paul Whitaker [93] implements a model of
computation [8] where the arcs represent data values that are aligned with global clock ticks. Thus,
they are discrete signals, but unlike discrete time, a signal need not have a value at every clock tick.
The entities represent relations between input and output values at each tick, and are usually partial
functions with certain technical restrictions to ensure determinacy. Examples of languages that use the
SR model of computation include Esterel [10], Signal [9], Lustre [18], and Argos [63].

SR models are excellent for applications with concurrent and complex control logic. Because of
the tight synchronization, safety-critical real-time applications are a good match. However, also
because of the tight synchronization, some applications are overspecified in the SR model, limiting the
implementation altematives. Moreover, in most realizations, modularity is compromised by the need
to seek a global fixed point at each clock tick. The SR domain implementation in Ptolemy II is similar
to the SR implementation in Ptolemy Classic by Stephen Edwards[22].

1.3.11 Timed Multitasking - TM

The timed multitasking (TM) domain, created by Jie Liu, supports the design of concurrent real
time software. It assumes an underlying priority-driven preemptive scheduler, such as that typically
found in a real-time operating systems (RTOS). But the behavior of models is more deterministic than
that obtained by more ad hoc uses of an RTOS.

In TM, each actor executes (conceptually) as a concurrent task. It is a timed domain, meaning that
there is a notion of "model time" that advances monotonically and uniformly. Each actor has a speci
fied execution time T, and it delays the production of the outputs until it has had access to the CPU for
that specified amount of time (in model time, which may or may not match real time). Actors execute
when they receive new inputs, so the execution is event driven. Conceptually, the actor begins execu
tion at some time t, and its output is produced at time t + T+ P, where T is the declared execution time,
and P is the amount of time where the actor is suspended due to being preempted by a higher priority
actor. At any given model time /, the task with the highest priority that has received inputs but not yet
produced its outputs has the CPU. All other tasks are suspended.

TM offers a way to design real-time systems that is more deterministic than ad hoc uses of an
RTOS. In particular, typically, a task produces outputs at a time that depends on the actual execution
time of the task, rather than on some declared parameter. This means that consumers of that data may
or may not see updates to the data, depending on when their execution occurs relative to the actual exe
cution time. Thus, the computational results that are produced depend on the actual execution time.
TM avoids this by declaring the time that elapses before production of the outputs. By maintaining
model time correctly, TM ensures that the data computation is deterministic, irrespective ofactual exe
cution time.

1.4 Choosing Models of Computation

The rich variety of concurrent models of computation outlined in the previous section can be
dauntingto a designer faced with having to select them. Most designers today do not face this choice
becausethey get exposed to only one or two. This is changing, however, as the levelof abstraction and
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domain-specificity of design software both rise. We expect that sophisticated and highly visual user
interfaces will be needed to enable designers to cope with this heterogeneity.

An essential difference between concurrent models of computation is their modeling of time.
Some are very explicit by taking time to be a real number that advances uniformly,and placing events
on a time line or evolving continuous signals along the time line. Others are more abstract and take
time to be discrete. Others are still more abstract and take time to be merely a constraint imposed by
causality. This latter interpretation results in time that is partially ordered, and explains much of the
expressiveness in process networks and rendezvous-based models of computation. Partially ordered
time provides a mathematical framework for formally analyzing and comparing models of computa
tion [56].

A grand unified approach to modeling would seek a concurrent model of computation that serves
all purposes. This could be accomplished by creating a melange, a mixture of all of the above, but such
a mixture would be extremely complex and difficult to use, and synthesis and simulation tools would
be difficult to design.

Another alternative would be to choose one concurrent model of computation, say the rendezvous
model, and show that all the others are subsumed as special cases. This is relatively easy to do, in the
ory. It is the premise of Wright, for example [3]. Most of these models of computation are sufficiently
expressive to be able to subsume most of the others. However, this fails to acknowledge the strengths
and weaknesses of each model of computation. Rendezvous is very good at resource management, but
very awkward for loosely coupled data-oriented computations. Asynchronous message passing is the
reverse, where resource management is awkward, but data-oriented computations are natural^ Thus,
to design interesting systems, designers need to use heterogeneous models.

1.5 Visual Syntaxes

Visual depictions of systems have always held a strong human appeal, making them extremely
effective in conveying information about a design. Many of the domains of interest in the Ptolemy
project use such depictions to completely and formally specify models.

One ofthe principles ofthe Ptolemy project is that visual depictions ofsystems can
help to offset the increased complexity that is introduced by heterogeneous modeling.

These visual depictions offer an alternative syntax to associate with the semantics of a model of com
putation. Visual syntaxes can be every bit as precise and complete as textual syntaxes, particularly
when they are judiciously combined with textual syntaxes.

Figmes 1.2 and 1.3 show two different visual renditions of Ptolemy II models. Both renditions are
constructed in Vergil, the visual editor framework in Ptolemy II designed by Steve Neuendorffer. In
figure 1.2, a Ptolemy II model is shown as a block diagram, which is an appropriate rendition for many
discrete event models. In this particular example, records are constructed at the left by composing
strings with integers representing a sequence number. The records are launched into a network that
introduces random delay. The records may arrive at the right out of order, but the Sequence actor is
used to re-order them using the sequence number.

1. Considerthe difference betweenthe telephone (rendezvous) and email (asynchronous messagepassing). If you
are trying to schedule a meeting between four busy people, getting them all on a conference call would lead to a
quick resolutionof the meetingschedule. Schedulingthe meeting by email could take several days, and may in
fact neverconverge. Othersortsof communication, however, are far moreefficientby email.
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Figure 1.3 also shows a visual rendition of a Ptolemy II model, but now, the components are repre
sented by circles, and the connections between components are represented by labeled arcs. This visual
syntax is a familiar way to represent finite state machines (FSMs). Each circle represents a state of the
model, and the arcs represent transitions between states. The particular example in the figure comes
from a hybrid system model, where the two states, Separate and Together, represent two different
modes of operation of a continuous-time system. The arcs are labeled with two lines, the first of which
is a guard, and the second of which is an action. The guard is a boolean-valued textual expression that
specifies when the transition should be taken, and the action is a sequence of commands that are exe
cuted when the transition is taken.

The visual renditions in figures 1.2 and 1.3 are both constructed using the same underlying infra
structure, Vergil, built by Stephen Neuendorffer. Vergil, in turn, in built on top of a GUI package called
Diva, developed by John Reekie and Michael Shilman at Berkeley. Diva, in tum, is built on top of
Swing and Java 2D, which are part of the Java platform from Sun Microsystems. In Vergil, a visual
editor is constructed as an assembly of components in a Ptolemy II model. Thus, the system is config
urable and customizable, and a great deal of infrastructure can be shared between the two distinct
visual editors of figures 1.2 and 1.3.

Visual representations of models have a mixed history. In circuit design, schematic diagrams used
to be routinely used to capture all of the essential information needed to implement some systems.
Schematics are often replaced today by text in hardware description languages such as VHDL or Ver-
ilog. In other contexts, visual representations have largely failed, for example flowcharts for capturing
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the behavior of software. Recently, a numberof innovative visual formalisms havebeen garnering sup
port, including visual dataflow, hierarchical concurrent finite state machines, and object models. The
UML visual language for objectmodeling has been receiving a great deal of attention. The static struc
ture diagrams of UML, in fact, are used fairly extensively in the designofPtolemy II itself(see appen
dix A of this chapter). Moreover, the Statecharts diagrams of UML are very similar to a hierarchical
composition of the FSM and SR domains in Ptolemy II.

A subset of visual languages that are recognizable as "block diagrams" represent concurrent sys
tems. There are many possible concurrency semantics (and many possible models of computation)
associated with such diagrams. Formalizing the semantics is essential if these diagrams are to be used
for system specification and design. Ptolemy II supports exploration of the possible concurrency
semantics. A principle of the project is that the strengths and weaknesses of these altematives make
them complementary rather than competitive. Thus, interoperability of diverse models is essential.

1.6 Ptolemy II Architecture

Ptolemy II offers a unified infrastructure for implementations of a number of models of computa
tion. The overall architecture consists of a set of packages that provide generic support for all models
of computation and a set of packages that provide more specialized support for particular models of
computation. Examples of the former include packages that contain math libraries, graph algorithms,
an interpreted expression language, signal plotters, and interfaces to media capabilities such as audio.
Examples of the latter include packages that support clustered graph representations of models, pack-

File View Edit Graph Debug Help

' I ^ i TTTT i'L 1"
iigiHULJUEaiaiisira

-A- annotation
-P- parameters
-V-reQUlreVerslon=2.1-clevel "
O state

V2

Stickiness

The sticky masses system has two modes of operation,

"Separate" and "TogeUier," corresponding to whether

the point masses are stuck together. The "init" state

has a transition that is used to initialize the 'Separate'

model (double click on that transition to see its actions).

aDs(Foii»)> SUCMnss

Separais pi ' P1; Separata.pZ • PI; Sapamte.vl = VI: Sppatato.vZ « VI

tDoctied_rtPre9Bnt

Tpgether.p « Pi;Toe«ftef.v"(VUV2y2.0: TogetnerwcHnese* 10,0

Look Inside the states to see the model

of the system behavior in the corresponding

mode of operation.

FIGURE 1.3. Visual rendition ofa Ptolemy II model as a state transition diagram in Vergil (FSM domain).

Heterogeneous Concurrent Modeling and Design



Introduction

ages that support executable models, and domains, which are packages that implement a particular
model of computation.

Ptolemy II is modular, with a careful package structurethat supports a layeredapproach. The core
packages support the data model, or abstract syntax, of Ptolemy II designs. They also provide the
abstract semantics that allows domains to interoperate with maximum information hiding. The UI
packages provide support for our XML file format, called MoML, and a visual interface for construct
ing models graphically. The library packages provide actor libraries that are domain polymorphic,
meaning that they can operate in a variety of domains. And finally, the domain packages provide
domains, each of which implements a model of computation, and some of which provide their own,
domain-specific actor libraries.

1.6.1 Core Packages

The core packages are shown in figure 1.4. This is a UML package diagram. The name of each
package is in the tab at the top of each box. Subpackages are contained within their parent package.
Dependencies between packages are shown by dotted lines with arrow heads. For example, actor
depends on kernel which depends on kernel.util. Actor also depends on data and graph. The role of
each package is explained below.

actor This package supports executable entities that receive and send data through ports.
It includes both untyped and typed actors. For typed actors, it implements a sophis
ticated type system that supports polymorphism. It includes the base class Director
that is extended in domains to control the execution of a model,

actor.lib This subpackage contains the non-graphical domain polymorphic actors. The
actor.lib package is discussed further in section 1.6.4.

actor.lib.gui This subpackage contains graphical domain polymorphic actors,
actor.process This subpackage provides infrastructure for domains where actors are processes

implemented on top ofJava threads,
actor.sched This subpackage provides infrastructure for domains where actors are statically

scheduled by the director, or where there is static analysis of the topology of a
model associated with scheduling,

actor.util This subpackage contains utilities that support directors in various domains. Spe
cifically, it contains a simple FIFO Queue and a sophisticated priority queue called
a calendar queue.

data This package provides classes that encapsulate and manipulate data that is trans
ported between actors in Ptolemy models. The key class is the Token class, which
defines a set of polymorphic methods for operating on tokens, such as addQ, sub-
tractQ, etc.

data.expr This class supports an extensible expression language and an interpreter for that
language. Parameterscan have values specifiedby expressions. These expressions
may refer to other parameters. Dependencies between parameters are handled
transparently, as in a spreadsheet,where updating the value ofone will result in the
update of all those that depend on it.

data.type This package contains classes and interfaces for the type system,
graph This package provides algorithms for manipulating and analyzingmathematical

graphs. This package is expected to supply a growing library of algorithms. These
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FIGURE 1.4. The core packages shown here support the data model, or abstract syntax, of Ptolemy 11
designs. They also provide the abstract semantics that allows domains to interoperate with maximum infor
mation hiding.
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algorithms support scheduling and analysis of Ptolemy II models.
kernel This package provides the softwarearchitecture for the Ptolemy II data model, or

abstract syntax.This abstractsyntax has the structureof clusteredgraphs. The
classes in this package support entities with ports, and relations that connect the
ports. Clustering is where a collection of entities is encapsulated in a single com
posite entity, and a subset of the ports of the inside entities are exposed as ports of
the composite entity.

kernel.util This subpackage of the kemel package provides a collection ofutility classes that
do not depend on the kemel package. It is separated into a subpackage so that these
utility classes can be used without the kemel. The utilities include a collection of
exceptions, classes supporting named objects with attributes, lists ofnamed
objects, a specialized cross-reference list class, and a thread class that helps
Ptolemy keep track of executing threads.

math This package encapsulates mathematical ftmctions and methods for operating on
matrices and vectors. It also includes a complex number class, a class supporting
fractions, and a set of classes supporting fixed-point numbers.

1.6.2 Overview of Key Classes

Some of the key classes in Ptolemy II are shown in figure 1.5. This is a UML static stmcture dia
gram (see appendix A of this chapter). The key syntactic elements are boxes, which represent classes,
the hollow arrow, which indicates generalization (or subclassing), and other lines, which indicate asso
ciations. Some lines have a small diamond, which indicates aggregation. The details of these classes
will be discussed in subsequent chapters.

Instances of all of the classes shown can have names; they all implement the Nameable interface.
Most of the classes generalize NamedObj, which in addition to being nameable can have a list of
attributes associated with it. Attributes themselves are instances ofNamedObj.

Entity, Port, and Relation are three key classes that extend NamedObj. These classes define the
primitives of the abstract syntax supported by Ptolemy II. They are fully explained in the kemel chap
ter. ComponentPort, ComponentRelation, and ComponentEntity extend these classes by adding sup
port for clustered graphs. CompositeEntity extends ComponentEntityand represents an aggregation of
instances of ComponentEntity and ComponentRelation.

The Executable interface, explained in the actors chapter,defines objects that can be executed. The
Actor interface extends this with capability for transporting data through ports. AtomicActor and Com-
positeActor are concrete classes that implement this interface. The Executable and Actor interfaces are
key to the Ptolemy II abstract semantics.

An executable Ptolemy II model consists of a top-level CompositeActor with an instance of Direc
tor and an instance of Manager associated with it. The manager provides overall control of the execu
tion (starting, stopping, pausing). The director implements a semantics of a model of computation to
govem the executionof actors containedby the CompositeActor.

Director is the base class for directors that implement models of computation. Each such director
is associated with a domain. We have defined in Ptolemy II directors that implement continuous-time
modeling (ODE solvers), process networks, synchronous dataflow, discrete-event modeling, and com
municating sequential processes.
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1.6.3 Domains

The domains in Ptolemy II are subpackages of the ptolemy.domains package. The common
domains are shown in figure 1.6, the experimental domains and less commonly used domains are
shown in figure 1.7. These packages generally contain a kernel subpackage, whichdefines classes that
extend thosein the actoror kernel packages of Ptolemy II.The lib subpackage, whenit exists, includes
domain-specific actors.

1.6.4 Library Packages

Most domains extend classes in the actor package to give a specific semantic interpretation to an
interconnection of actors. It is possible, and strongly encouraged, to define actors in such a way that
they can operate in multiple domains. Such actors are said to be domain polymorphic. Actor that are
domain polymorphic are organized in the packages shown in figure 1.8. These packages are briefly
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FIGURE 1,5. Some of the key classes in Ptolemy II. These are defined in the kernel, kernei.utii, and actor
packages. They define the Ptolemy II abstract syntax and abstract semantics.
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described below:

actor.lib This subpackage is the main library of polymorphic actors,
actor.lib.comm This subpackage provides actors that communicate via the serial and parallel

ports. These actors work only under Windows,

actor.lib.gui This subpackage is a library ofpolymorphic actors with user interface components,
such as plotters,

actor.lib.conversions

This subpackage provides domain polymorphic actors that convert data between

actor
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FIGURE 1.6. Package structure of common Ptolemy II domains.
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different types.

actor

domains

csp

kernel
lib

CSPActor

CSPDirector

CSPReceiver

ConditionalBranch

ConditionalBranchActor

ConditionalBranchContFoller

ConditlonalReceiver

ConditionaiSend

demo

gr

kernel

GRActor

GRDebug
GRDirector

GRRecelver

GRScheduler

demo

petrinet

kernel

PetriNetActor

PetriNetDirector

Place

lib

Box3D

CircularSweepSD
Cone3D

CyIinder3D
GRShadedShape
GRTransform

Keylnput3D
Mouselnput3D
PolyCylinder3D
Rotate3D

Scale3D

Sphere3D
TextString3D
Torus3D

Translate3D
ViewScreen

dde

kemel

DDEActor

DDEDirector

DDEIOPort
DDERecelver

DDEThread

FeedBackDelay
NullToken

PrioritizedTimedQueue

RecelverComparator
TimeKeeper

lib

demo

tm

kemel

ScheduleUstener

ScheduIePlotter

TMActor

TMDirector

TMEvent

TMEventComparator
TMReceiver

lib

TMCompositeFacade

kernel

lllegalOutputException
SRDirector

SROptimlzedScheduIer
SRRandomizedScheduler

SRReceiver

UnknownTokenException

demo

demo

lib

Absent

AbsentToken

ButtonTime

InstantaneousDialogGenerator
Latcb

NonStrictDelay
NonStrictDisplay
NonStrictLogicFunctlon
NonStrictThreeBitAdder

SingleTokenCommutator
SingleTokenDistributor
Undefined

FIGURE 1.7. Package structure ofexperimental and less commonly used domains.
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actor.lib.javasound
Thispackageprovidessoundactorson systemsthat are running Java 1.3 or later.

actor.lib.logic This subpackageprovides actors that perform logical functions like AND, OR and
NOT.

actor.lib.net This subpackage provides actors that communicate using Datagrams,

1.6.5 User Interface Packages

The UI packages provide support for our XML file format, called MoML, and a visual interface
for constructing models graphically, called Vergil. These packages are organized as shown in figure
1.9. The intent of each package is described below:

actor.gui This subpackage contains the configuration infrastructure, which supports modular
construction ofuser interfaces that are themselves Ptolemy II models.
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FIGURE 1.8. Packages containing dotnain-polymorphic actors.
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FIGURE 1.9. Packages in Ptolemy II that support user interfaces, including the MoML XML schema and
the Vergil visual editor.
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actor.gui.style This package contains classes that decorate attributes to serve as hints to a user
interface about how to present these attributes to the user,

gui This package contains generically useful user interface components,
media This package encapsulates a set of classessupportingaudio and imageprocessing,
moml This package contains classes support our XML modeling markup language

(MoML), which is used to describe Ptolemy II models.

moml.fUter This package provides backward compatibility between Ptolemy release. We hope
to replace it with an XSL based solution in a future release,

plot This package and its subpackages provides two-dimensional signal plotting wid
gets.

vergil This package and its subpackages contains the Ptolemy II graphical user interface.
It builds on Diva, a toolkit that extends Java 2D. For more information about Diva,
see http://www.gigascale.org/diva

1.6.6 Capabilities

Ptolemy II is a second generation system. Its predecessor, Ptolemy Classic, still has many active
users and developers, and may continue to evolve for some time. Ptolemy II has a somewhat different
emphasis, and through its use of Java, concurrency, and integration with the network, is aggressively
experimental. Some of the major capabilities in Ptolemy II that we believe to be new technology in
modeling and design environments include:

T\4 • »
• Higher level concurrent design in Java . Java support for concurrent design is very low level,

based on threads and monitors. Maintaining safety and liveness can be quite difficult [48]. Ptolemy
II includes a number of domains that support design of concurrent systems at a much higher level
of abstraction, at the level of their software architecture. Some of these domains use Java threads
as an underlying mechanism, while others offer an alternative to Java threads that is much more
efficient and scalable.

• Better modularization through the use ofpackages. Ptolemy II is divided into packages that can be
used independently and distributed on the net, or drawn on demand from a server. This breaks with
tradition in design software, where tools are usually embedded in huge integrated systems with
interdependent parts.

• Completeseparation ofthe abstract syntaxfrom the semantics. Ptolemy designs are structured as
clustered graphs. Ptolemy II defines a clean and thorough abstract syntax for such clustered
graphs, and separates into distinct packages the infrastructure supporting such graphs from mecha
nisms that attach semantics (such as dataflow, analog circuits, finite-state machines, etc.) to the
graphs.

• Improved heterogeneity via a well-definedabstract semantics. Ptolemy Classic provided a worm-
hole mechanism for hierarchically coupling heterogeneous models of computation. This mecha
nism is improvedin PtolemyII throughthe use of opaque compositeactors,which provide better
support for models of computation that are very different from dataflow,the best supported model
in Ptolemy Classic. These include hierarchical concurrent finite-state machines and continuous-
time modeling techniques.

• Thread-safe concurrent execution. Ptolemymodels are typically concurrent, but in the past, sup-
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port for concurrent execution of a Ptolemy modelhas beenprimitive. PtolemyII supportsconcur
rency throughout, allowing for instance for a model to mutate(modify its clusteredgraph
structure) whilethe user interface simultaneously modifies the structure in different ways. Consis
tency is maintainedthroughthe use of monitors and read/write semaphores [40] built upon the
lower level synchronization primitives ofJava.

• Asoftware architecture based on object modeling. Since Ptolemy Classicwas constructed,soft
ware engineering has seen the emergence of sophisticated object modeling [66][84][87] and
designpattem [28] concepts. Wehave applied these conceptsto the designofPtolemy II, and they
have resulted in a more consistent, cleaner, and more robust design. We have also applied a simpli
fied software engineering process that includes systematic design and code reviews [81].

• A trulypolymorphic typesystem. Ptolemy Classic supported rudimentarypolymorphism through
the "anytype" particle. Even with such limited polymorphism, type resolution proved challenging,
and the implementation is ad-hoc and fragile. Ptolemy II has a more modem type system based on
a partial order oftypes and monotonic type refinement functions associated with functional blocks.
Type resolution consists of finding a fixed point, using algorithms inspired by the tj^je system in
ML [69]. The type system is described in [96] and [97].

• Domain-polymorphic actors. In Ptolemy Classic, actor libraries were separated by domain.
Through the notion of subdomains, actors could operate in more than one domain. In Ptolemy II,
this idea is taken much further. Actors with intrinsically polymorphic functionality can be written
to operate in a much larger set of domains. The mechanism they use to communicate with other
actors depends on the domain in which they are used. This is managed through a concept that we
call a process level type system.

• Extensible XML-basedfdeformats. XML is an emerging standard for representation of informa
tion that focuses on the logical relationships between pieces of information. Hiunan-readable rep
resentations are generated with the help of style sheets. Ptolemy II will use XML as its primary
format for persistent design data.

1.6.7 Future Capabilities

Capabilities that we anticipate making available in the future include:

• Interoperability through software components. Ptolemy II will use distributed software component
technology such as CORBA, Java RMI, or DCOM, in a number ofways. Components (actors) in a
Ptolemy II model will be implementable on a remote server. Also, components may be parameter
ized where parameter values are supplied by a server (this mechanism supports reduced-order
modelingswhere the model is provided by the server). Ptolemy II models will be exported via a
server. And finally, Ptolemy II will support migrating software components.

• Code generation. Ptolemy II has an evolving code generation mechanism that is very different
from that in Ptolemy Classic. In Ptolemy Classic, each component has to have a definition in the
target language, and the code generator merely stitches together these components. In Ptolemy II,
components are defined in Java, and the Java definition is parsed. An API for performing optimi
zation transformations on the abstract syntax tree is defined, and then compiler back ends can be
used to generate target code. A preliminary implementation of this approach is described in [91]
and [92].

• Integrated verification tools. Modem verification tools based on model checking [37] could be
integrated with Ptolemy II at least to the extent that finite state machine models can be checked.
Webelieve that the separationof control logic from concurrency will greatlyfacilitateverification.
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since only much smaller cross-sections of the system behavior will be offered to the verification
tools.

Reflection ofdynamics. Javasupports reflection of staticstructure, but not of dynamic properties
of process-based objects. For example, the data layoutrequired to communicate with an object is
available through the reflection package,but the communication protocol is not.Weplan to extend
the notion of reflection to reflect such dynamic properties of objects.
Meta modeling. The domains in Ptolemy II are constructed based on an intuitive understanding of
a useful class of modeling techniques, and then the support infrastructure for specifying and exe
cuting models in the domain are built by hand by writing Java code. Others have built tools that
have the potential of improving on this situation by meta modeling. In Dome (from Honeywell)
and GME (from Vanderbilt), for example, a modeling strategy itself is modeled, and user inter
faces supporting that modeling strategy are synthesized from that model. We can view the current
component-based architecture ofVergil as a starting point in this direction. In the future, we expect
to see much more use ofPtolemy II itselfto define and construct Ptolemy II domains and their user
interfaces.
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Appendix A: UML — Unified Modeling Language

UML (the unified modeling language) [26][80] defines a suite of visual syntaxes for describing
variousaspects of softwarearchitecture. Wemake heavy use of two of these visual syntaxes, package
diagrams and static structurediagrams. These syntaxesare summarized here. As with most descriptive
syntaxes, any use of the syntax involvescertain stylistic choices.These stylistic choices are not part of
UML, but nonetheless can be important to understanding the diagrams. We explain the style that we
use here.

A.1 Package Diagrams

Figures 1.4 and 1.6 show UML package diagrams, which have a simple syntax. A package is
given as a box with a tab, with the tab containing the name of the package. Subpackages are enclosed
in the box of the parent package, and package dependencies are indicated with arrows. A package
dependency occurs when a Java file in a package includes a class in another package (using import in
Java).

A.2 Static Structure Diagrams

Figure 1.5 is a different kind ofUML diagram, called a static structure diagram or class diagram.
It represents the relationships between classes, including inheritance relationships, containment rela
tionships, and cross references. These relationships are called an object model, and represent many
essential features about the design.

A.2.1 Classes

A simplified static structure diagram for some Ptolemy II classes is shown in figure 1.10. In this
diagram, each class is shown in a box. The class name is at the top of each box, its attributes are below
that, and its methods below that. Thus, each box is divided into three segments separated by horizontal
lines. The attributes are members of the Java classes, which may be public, package fnendly, pro
tected, or private. Private members are prefixed by a minus sign as for example the _container
attribute of Port. Although private members are not visible directly to users of the class, they may
nonetheless be a useful part of the object model because they indicate the state information contained
by an instance ofthe class. Public members have a leading "+" and protected methods a leading "#" in
a UML diagram. There are no public or protected members shown in figure 1.10. The type of a mem
ber is indicated after a colon, so for example, the _container method of Port is of type Entity.

Methods, which are shown below attributes, also have a leading "+" for public, "#" for protected,
and for private. Our object models do not show private methods, since they are not inherited and
are not visible in the interface to the object. Figure 1.10 shows a number of public methods and one
protected method, _linkO in Port. The retum value of a method is given after a colon, so for example,
getContainerQ of Port returns an Entity.

Although not usually included in UML diagrams, our diagrams show class constructors. They are
listed first among the methods and have names that are the same as the name of the class. No retum
type is shown. For completeness, our object models typicallyshow all public and protected methodsof
these classes, although a proper object model might only show those relevant to the issues being dis
cussed. Figure 1.10 does not show all methods, so that we can simplify the discussion of UML. Our
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diagrams do not include deprecated methods or methods thatarepresent in parent classes.
Arguments to a method or constructorare shown in parentheses, with the typesafter a colon, so for

example, ComponentEntity shows a singleconstructor that takestwo arguments, one of type Compos-
iteEntity and the other of type String.

A.2.2 Inheritance

Subclasses are indicated by lines with white triangles (or outlined arrow heads). The class on the
side of the arrow head is the superclass or base class. The class on the other end is the subclass or
derived class. The derived class is said to specialize the base class, or conversely, the base class to gen
eralize the derived class. The derived class inherits all the methods shown in the base class and may
override or some ofthem. In our object models, we do not explicitly show methods that override those
defined in a base class or are inherited from a base class. For example, in figure 1.10, ComponentEn
tity has all the methods of Entity and NamedObj, and may override some of those methods, but only

NamedObj

(Interfaces

Bxecutable Entity
L""

Portcontainer 0..n

-.container: Entity

+Entity()
'•-getPcitUstO: List

+Port{)
+getCmtainerO: Entity
#.link(r: Relation)

♦firefj

ComponentEntity

-.container: CompositeEntity

+ComponentEntity(container: CompositeEntity.name; String)
+getContainer(): CompositeEntity
♦isAtomicQ: boolean

(Interfaces

Actor

*inputPoi1UstO: List
*outputPottUstO: List

A

AtomlcActor

*AtomicActor(containef: CompositeActor. name: String)

container

0..1

0..1

0..n

CompositeEntity

+CompositeEntity(container;CompositeEntity.name: String)
*entitytJst():List

0..1

CompositeActor

*CompositeActor(container: CompositeActor.name: String)

FIGURE 1.10. Simplified staticstructurediagram for some Ptolemy11 classes.This diagramillustrates fea
tures of UML syntax that we use.
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shows the one method it adds. Thus, the complete set of methods of a class is cumulative. Everyclass
has its own methods plus those of all its superclasses.

An exception to this is constructors. In Java, constructors are not inherited. Thus, in our class dia
grams, the only constructors available for a class are those shownin the box definingthe class. Figure
1.10 does not show all the constructors of these classes, for simplicity.

Classes shown in boxes outlined with dashed lines, such as NamedObj in figme 1.10, are fully
described elsewhere. This is not standard UML notation, but it gives us a convenient way to partition
diagrams. Often, these classes belong to another package.

A.2.3 Interfaces

Figure 1.10 also shows two examples of interfaces^ Executable and Actor. An interface is indi
cated by the label "«Interface»" and by italics in the name. An interface defines a set of methods
without providing an implementation for them. It cannot be instantiated, and therefore has no construc
tors. When a class implements an interface, the object model shows the relationship with a dotted-line
with an arrow. Any concrete class (one that can be instantiated) that implements an interface must pro
vide implementations of all its methods. In our object models, we do not show those methods explic
itly in the concrete class, just like inherited methods, but their presence is implicit in the relationship to
the interface.

One interface can extend another. For example, in figure 1.10, Actor extends Executable. This
means that any concrete class that implements Actor must implement the methods of Actor and Exe
cutable.

We will occasionally show abstract classes, which are like interfaces in that they cannot be instan
tiated, but unlike interfaces in that they may provide default implementations for some methods and
may even have private members. Abstract classes are indicated by italics in the class name. There are
no abstract classes in figure 1.10.

A.2.4 Associations

Inheritance and implementation are types of associations between entities in the object model.
Associations ofother types are indicated by other lines, often annotated with ranges like "0..n" or with
diamonds on one end or the other.

Aggregations are shown as associations with diamonds. For example, an Entity is an aggregation
of any number (0..n) instances of Port. More strongly, we say that a Port is contained by 0 or 1
instances of Entity. By containment, we mean that a port can only be contained by a single Entity. In a
weaker form of aggregation, more than one aggregate may refer to the same component. The stronger
form of aggregation (containment) is indicated by the filled diamond, while the weaker form is indi
cated by the unfilled diamond. There are no unfilled diamonds in figure 1.10. In fact, they are fairly
rare in Ptolemy II, since many of its architectural features depend on containment relationships, where
an object can have at most one container.

The relationship between ComponentEntity and CompositeEntity is particularly interesting. An
instance of CompositeEntity can contain any number of instances of ComponentEntity, but Composi
teEntity is derived from ComponentEntity. Thus, a CompositeEntity can contain any number of
instances of either ComponentEntity or CompositeEntity. This is the classic Composite design pattem
[28], which supports arbitrarily deeply nested containment hierarchies.

In figure 1.10, a CompositeActor is an aggregation of AtomicActors and CompositeActors. These
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twoaggregation relations are derived fromtheaggregation relationship between ComponentEntity and
CompositeBntity. This derived association is indicated witha dashed linewith an openarrowhead.
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Appendix B: Ptolemy II Naming Conventions

We have made an effort to be consistent about naming of classes, methods and members. This
appendix describes our policy.

B.l Classes

Class names are capitalized with intemal word boundaries also capitalized (as in "CompositeEn-
tity"). Most names are made up of complete words ("CompositeBntity" rather than "CompEnt")^
Interface names suggest their potential (as in "Executable," which means "can be executed").

Despite having packages to divide up the namespace, we attempt nonetheless to keep class names
unique. This helps avoid confusion and bugs that may arise from having Java import statements in the
wrong order. In many cases, a domain includes a specialized version of some more generic class. In
this case, we create a unique name by prefixing the generic name with the domain name. For example,
while Director is a base class in the actor package, DEDirector is a derived class in the DE domain.

For the most part, we try to avoid prefixing actor names with the domain name, e.g., we define
Delay rather than DEDelay. Occasionally however, the domain prefix is useful to distinguish two ver
sions of some similar functionality, both of which might be useful in a domain. For example, the DE
domain can use actors derived from Transformer or from DETransformer, where the latter is special
ized to DE.

B.2 Members

Member names are not capitalized, although intemal word boundaries usually are (e.g. "declared-
Type"). If the member is private or protected, then its name begins with a leading imderscore (e.g.
"_declaredType").

B.3 Methods

Method names are similar to member names, in that they are not capitalized, except on intemal
word boundaries. Private and protected methods have a leading underscore. In text referring to meth
ods, the method name is followed by open and close parentheses, as in "getNameQ." Usually, no argu
ments are given, even if the method takes arguments.

Method names that are plural, such as insideRelationsQ, usually retum an enumeration (or some
times an array, or an iterator). Methods that retum Lists are usually of the form portListQ.

I. There are some (perhaps regrettable) exceptions to this, such as NamedObj.
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Using Vergil
Authors: Edward A. Lee

Steve Neuendorffer

2.1 Introduction

There are many ways to use Ptolemy II. It can be used as a framework for assembling software
components, as a modelingand simulation tool, as a block-diagram editor,as a system-level rapid pro
totyping application, as a toolkit supporting research in component-based design, or as a toolkit for
building Javaapplications. Thischapterintroduces its use as a modeling and simulation tool.

In this chapter, we describe how to graphically construct models using Vergil, a graphical user
interface (GUI) for Ptolemy II. Figure 2.1 shows a simple Ptolemy II model in Vergil, showing the
graph editor, one of several editors available in Vergil. Keep in mind as you read this document that
graphical entry of models is only one of several possible entry mechanisms available in Ptolemy II.
Moreover, only some of theexecution engines (called domains) aredescribed here. A major emphasis
of Ptolemy II is to provide a framework for the construction of modeling and design tools, so the spe
cificmodeling anddesign tools described here should be viewed as representative of ourefforts.

2.2 Quick start

Thetraditional firstprogramming example is one thatprints"Hello World." Whybreaktradition?

2.2.1 Starting Vergil

First start Vergil. From the commandline, enter "vergil", or selectVergil or PtolemyII in the Start
menu, or click on a WebStart link on a web page supporting the web edition.You should see an initial
welcome window that looks like the one in figure 2.2. Feel free to explore the links in this window.
Most useful is probably the "Quick tour" link.
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I utilities

' I director libraiv
' I actor library

' I more libraries

Signal Source

Carrier Source

Noise Source

FIGURE 2.1. Example of a Vergil window.

Fiia View Help

FIGURE 2.2. Initial welcome window

This model shows a simple periodogram spectral estimate of a
modulated sirrusoid in noise. The top-level parameters control
the carrier frequency, the signal frequency, and the noise
level. Notice that the two peaks are centered at the carrier
frequency, with their distance from the carrier given by the
signal frequency. The sample rate is assumed to t>e8kHz.

The blocks with red outlines are hierarchical.

Right dick and select 'Look Inside*.
These generate sinusoids, one for the

signal and the other for the carrier.
Time Domain Display

Expressions

t signal'carrier *noise

Spectrum Frequency Domain Display

The Expression block calculates a mathematical exprassion, as shown.

Sefec! "Run Window* from the View menu to execute the model.
Try changing the parameters in the run wirrdow.

^x}

Ptolemy II Version 2.0.1

What's new

Documentation

Ptolemy II



2.2.2 Creating a New Model

Create a new model by selecting File->New->Graph Editor in the welcome window. You should
see something like the window shown in figure 2.3. Ignoring the menus and toolbar for a moment, on
the left is a palette of objects that can be dragged onto the page on the right. To begin with, the page on
the right is blank. Open the actor library in the palette, and go into the sources library. Find the Const
actor and drag an instance over onto the blank page. Then go into the sinks library and drag a Display
actor onto the page. Each of these actors can be dragged around on the page. However, we would like
to connect one to the other. To do this, drag a connection from the output port on the right of the Const
actor to the input port of the Display actor. Lastly, open the director library and drag an SDFDirector
onto the page. The director gives an execution meaning to the graph, but for now we don't have to be
concerned about exactly what that is.

Now you should have something that looks like Figure 2.4. The Const actor is going to create our
string, and the Display actor is going to print it out for us. We need to take care of one small detail to
make it look like Figure 2.4: we need to tell the Const actor that we want the string "Hello World". To
do this we need to edit one of the parameters of the Const. To do this, either double click on the Const
actor icon, or right click on the Const actor icon and select "Configure". You should see the dialog box
in Figure 2.5. Enter the string "Hello World" for the value parameter and click the Commit button. Be
sure to include the double quotes, so that the expression is interpreted as a string.

You may wish to save your model, using the File menu. File names for Ptolemy II models should
end in ".xml" or ".moml" so that Vergilwill properly process the file the next time you open that file.

File View Edit Oraph Debug Help

fzl z Iml zI
-J utilities
' I director iibrarv

_J actor library

I rrtore libraries

FIGURE 2.3. An empty Vergil Graph Editor.
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2.2.3 Running the Model

To run the example, go to the View menu and select the Run Window. If you click the "Go" button,
you will see a large number of strings in the display at the right. To stop the execution, click the "Stop"
button. To see only one string, change the iterations parameter of the SDF Director to 1, which can be
done in the run window, or in the graph editor in the same way you edited the parameter of the Const
actor before. The run window is shown in Figure 2.6.

2.2.4 Making Connections

The model constructed above contained only two actors and one connection between them. If you
move either actor (by clicking and dragging), you will see that the connection is routed automatically.
We can now explore how to create and manipulate more complicated connections.

First create a model in a new graph editor that includes an SDFDirector, a Ramp actor (found in
the sources) library, a Display actor, and a SeqiiencePlotter actor, found in the sinks library, as shown

File Jflsw Edit Graph Debug Help

" 'I TTTT^rr i

I DE Director

- "^FSM Director
i "^CSP Director
- "^CT Director
' CTEmbedded Director

S -_j experimental director librs
_J actor iibratv

S j sources

i 13 Clock
- • Const
- El CurrentTime

SOF Lector

Display

SDF Director

FIGURE 2.4. The Hello Worldexample.

value: ['Hello World"

I Commit Add I Remove I Edit Styles I Cancel j

FIGURE 2.5. The Const parameter editor.

.JnlJll
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in Figure 2.7. Suppose we wish to route the output of the Ramp to both the Display and the Sequence-
Plotter. Ifwe simply attempt to make the connections, we get the exception shown in Figure 2.7. Don't
panic! Exceptions are normal and common. The key line in this exception report is the last one, which
says

Attempt to link more than one relation to a single port.

The line above that gives the names of the objects involved, which are

Object names: .<Unnamed Object>.Ramp.output and .<Unnamed
Obj ect>.relation2

File View Debug Help

Model parameters:

has no parameters.

DIrectorparameters:

vectorizaConFaclor;[i

execution finished.

FIGURE 2.6. Execution of the Hello World example.

Error encountered In:

<llnl< port="Ramp-OUtpur relation="rel3tlon2*»

Object names: .^Unnamed Object>.Ramp.output and .<Unnamed Ob)ect>.relation2:

Attempt to link more than one relation to a singie port.

Skip element SIdp remaining errors Dlsplaystacktrace

FIGURE2.7. Exceptionthat occurs if you attempt to simply wire the outputof the Rampin Figure2.8 to the
inputs of the other two actors.

SDF Director

SeouencePlotter

FIGURE 2.8. Three unconnected actors in a model.
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In Ptolemy II models, all objects have a dotted name. The dots separate elements in the hierarchy.
Thus, ".<Unnamed Object>.Ramp.output" is an object named "output" contained by an object named
"Ramp", which is containedby an unnamed object (the model itself). The model has no name because
we have not assigned one (it acquires a name when we save it).

Why did this exception occur? Ptolemy II supports two distinct flavors of ports, indicated in the
diagrams by a filled triangle or an unfilled triangle. The output port of the Ramp actor is a single port,
indicated by a filled triangle, which means that it can only support a single connection. The input port
of the Display and SequencePIotter actors are multiports, indicated by unfilled triangles, which means
that they can support multiple connections. Each connection is treated as a separate channel, which is a
path from an output port to an input port (via relations) that can transport a single stream of tokens.

So how do we get the output of the Ramp to the other two actors? We need an explicit relation in
the diagram. A relation is represented in the diagram by a black diamond, as shown in Figure 2.9. It
can be created by either control-clicking on the background or by clicking on the button in the toolbar
with the black diamond on it.

Making a connection to a relation can be tricky, since if you just click and drag on the relation, the
relation gets selected and moved. To make a connection, hold the control button while clicking and
dragging on the relation.

In the model shown in Figure 2.9, the relation is used to broadcast the output from a single port to
a number of places. The single port still has only one connection to it, a connection to a relation. Rela
tions can also be used to control the routing of wires in the diagram. However, as of the 2.0 release of
Ptolemy II, a connection can only have a single relation on it, so the degree to which routing can be
controlled is limited.

To explore multiports, try putting some other signal source in the diagram and connecting it to the
SequencePIotter or to the Display. If you explore this fully, you will discover that the SequencePIotter
can only accept inputs of type double, or some type that can be losslessly converted to double, such as
int. These data type issues are explored next.

0

SOF Director Control-click to create a new relation

SequencePIotter

FIGURE 2.9. A relation can be used to broadcast an output from a single port.

Click here to create

a relation, or control-
click on the background.
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2.3 Tokens and Data Types

In the example of Figure 2.4, the Constactor creates a sequenceof values on its output port. The
values are encapsulated as tokens^ and sent to the Display actor, which consumes them and displays
them in the run window.

The tokensproducedby the Constactorcan have any value that can be expressedin the PtolemyII
expression language. Wewill say more about the expressionlanguage in chapter3, "Expressions",but
for now, try giving the value 1 (the integer with value one), or 1.0 (the floating-point number with
value one), or {1.0} (An array containing a one), or {value=l, name="one"} (A record with two ele
ments: an integer named "value" and a string named "name"), or even [1,0;0,1] (the two-by-two iden
tity matrix). These are all expressions.

The Const actor is able to produce data with different types, and the Display actor is able to display
data with different types. Most actors in the actor library are polymorphic, meaning that they can oper
ate on or produce data with multiple types. The behavior may even be different for different types.
Multiplying matrices, for example, is not the same as multiplying integers, but both are accomplished
by the MultiplyDivide actor in the math library. Ptolemy II includes a sophisticated type system that
allows this to be done efficiently and safely.

To explore data types a bit further, try creating the model in Figure 2.10. The Ramp actor is listed
under sources and the AddSubtract actor is listed under math. Set the value parameter of the constant
to be 0 and the iterations parameter of the director to 5. Running the model should result in 5 numbers
between 0 and 4, as shown in the figure. These are the values produced by the Ramp, which are having
the value of the Const actor subtracted from them. Experiment with changing the value of the Const
actor and see how it changes the 5 numbers at the output.

Now for the real test: change the value of the Const actor back to "Hello World". When you exe
cute the model, you should see an exception window, as shown in Figure 2.11. Do not worry; excep
tions are a normal part of constructing (and debugging) models. In this case, the exception window is
telling you that you have tried to subtract a string value from an integer value, which doesn't make
much sense at all (following Java, adding strings is allowed). This is an example of a type error.

Exceptions can be a very useful debugging tool, particularly ifyou are developing your own com
ponents in Java. To illustrate how to use them, click on the Display Stack Trace button in the exception
window of Figure 2.11. You should see the stack trace shown in Figure 2.12. This window displays the
execution sequence that resulted in the exception. For example, the line

SDF Director

Ramp

AddSubtract Display
0

f C -

Const

Q—'

FIGURE 2.10. Another example, used to explore data types in Ptolemy 11.
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at ptolemy.data.IntToken.subtract(IntToken.java:547)

indicates that the exception occurred within the subtractQ method of the class ptolemy.data.IntToken,
at line547 of the source file IntToken.java. Since Ptolemy II is distributed with source code (except in
the Windows installer versionand the Web StartWeb Edition), this can be very useful information. For
type errors, you probably do not need to see the stack trace, but if you have extended the system with
your own Java code, or you encounter a subtle error that you do not understand, then looking at the
stack trace can be very illuminating.

To find the file IntToken.java referred to above, find the Ptolemy II installation directory. If that
directory is SPTII, then the location of this file is given by the full class name, but with the periods

SDF Director

Subtraction not supported on ptolerny.data.Infroken minus ptolemy.data.StringTol<en.

[ Dismiss j Display StackTrace j

AddSubtract

FIGURE 2.11. An example that triggers an exception when you attempt to execute it. Strings cannot be sub
tracted from integers.

Subtraction not supported on ptolemy.dala.lnfToken minus ptotemy.data.StrlngToksn.

ptolemy.kernel.ucil.IllegalActionException: Subtraction not supported on ptoleav.da ^

at ptolemy.data.Token.subttactReverse(Token.java:357)

at ptolemy.data. IntToken. sub tract (IntToken. java: 547)

at ptolemy. actor, lib.AddSubtract. fire (AddSubtract. java: 169)

at ptolemy.actor.Atom!cActor.Iterate(AtomicActor.java;261) __
at ptolemy.actor, sched. StatlcScliedulingbicector.£ire(Scatlc3chedulingI>irect

at ptolemy.actor.ComposlteActor.fire(CompositeActor.java:249)

at ptolemy. actor.Manager. Iterate (Manager, java: 461)

I at ptolemy.actor.Manager.execute(Manager.java:244]
j at ptolemy.actor.Manager. tun(Hanaget. java:614)
I at java. lang.Thread. tun(Thread. java: 484)

FIGURE 2.12. Stack trace for the exception shown in Figure 2.11.
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replaced by slashes; in this case, it is at SPTII/ptolemy/data/IntToken.java (the slashes mightbe back
slashes under Windows).

Let's try a smallchangeto the model to get something that doesnot triggeran exception. Discon
nect the Const from the lowerport of theAddSubtractactor and connect it instead to the upperport, as
shown in Figure 2.13. You can do this by selecting the connection and deleting it (using the delete
key), then adding a new connection, or by selecting it and dragging one of its endpoints to the new
location. Notice that the upper port is an unfilled triangle; this indicates that it is a multipart, meaning
thatyou can makemorethanone connection to it. Nowwhenyou run the model you shouldseestrings
like "OHelloWorld", as shown in the figure.

There are two interesting things going on here. The first is that, as in Java, strings are added by
concatenating them. The second is that the integers from the Rampare convertedto strings and concat
enated with the string "Hello World". All the connections to a multiport must have the same type. In
thiscase,the multiport has a sequence of integers coming in (fromtheRamp) and a sequence of strings
(from the Const).

Ptolemy II automatically converts the integers to strings when integers are provided to an actor
that requires strings. But in this case, why does the AddSubtract actor require strings? Because it
would not work to require integers; the string "Hello World"would have to be converted to an integer.
As a rough guideline, Ptolemy II will perform automatic type conversions when there is no loss of
information. An integer can be converted to a string, but not vice versa. An integer can be converted to
a double, but not vice versa. An integer can be converted to a long, but not vice versa. The details are
explained in the Data chapter, but many users will not need to imderstand the full sophistication of the
system. You should find that most of the time it will just do what you expect.

To further explore data types, try modifying the Ramp so that its parameters have different types.
For example, try making init and step strings.

2.4 Hierarchy

Ptolemy II supports (and encourages) hierarchical models. These are models that contain compo
nents that are themselves models. Such components are called composite actors. Consider a small sig
nal processing problem, where we are interested in recovering a signal based only on noisy
measurements of it. We will create a composite actor modeling a communication channel that adds
noise, and then use that actor in a model.

SDF Director

Ramp

Const

'Hetlo Wortd*

AddSubtract

• +

W-

Display

-E

FIGURE 2.13. Addirion ofa string to an integer.
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2.4.1 Creating a Composite Actor

First open a new graph editor and drag in a Typed Composite Actor from the utilities library. This
actor is going to add noise to our measurements. First, using the context menu (obtained by right click
ing over the composite actor), select "Customize Name", and give the composite a better name, like
"Channel", as shown in Figure 2.14. Then, using the context menu again, select "Look Inside" on the
actor. You should get a blank graph editor, as shown in Figure 2.15. The original graph editor is still
open. To see it, move the new graph editor window by dragging the title bar of the window.

2.4.2 Adding Ports to a Composite Actor

First we have to add some ports to the composite actor. There are several ways to do this, but click
ing on the port buttons in the toolbar is probably the easiest. Youcan explore the ports in the toolbar by
lingering with the mouse over each button in the toolbar. A tool tip pops up that explains the button.

typed composite actor

"d31
^ Configure

's^ New name; [channel
snow name; {7

GelDocumentatIo:

Configure Ports
Customize Name I

Listen to Actor

FIGURE 2.14. Changing the name of an actor.

Configure

Cus omtze Name

Oet Documentation

Configure Ports

Usten to Actor

Fill Viiw guii Oiipn Debug Hfiq

ubiiuis

I director library
Jj aclorlibrary

i mote libraries

FIGURE 2.15. Looking inside a composite actor.
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The buttons are summarized in Figure 2.16. Create an input port and an output port and rename them
inputand outputrightby clickingon the ports and selecting "Customize Name".Note that, as shown in
Figure 2.17, you can also right click on the background of the composite actor and select Configure
Ports to changewhether a port is an input, an output, or a multiport. The resulting dialog also allows
you to set the type of the port, although much of the time you will not need to do this, since the type
inference mechanism in Ptolemy II will figure it out from the connections.

Then using these ports, create the diagram shown in Figure 2.18^ The Gaussian actor creates val
ues from a Gaussian distributed random variable, and is found in the random library. Now if you close
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FIGURE 2.16. Summary of toolbar buttons for creating new ports.
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FIGURE 2.17. Right clicking on the background brings up a dialog that can be used to configure ports.
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FIGURE 2.18. A simple channel model defined as a composite actor.

1. Hint: to create a connection starting on one of the external ports, hold down the control key
when dragging.
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this editor and return to the previous one, you should be able to easily create the model shown in Fig
ure 2.19. The Sinewave actor is listed under and the SequencePlotter actor is found in sinks.
Notice that the Sinewave actor is also a hierarchical model, as suggested by its red outline (try looking
inside). If you execute this model (you will probably want to set the iterations to something reasonable,
like 100), you should see something like Figure 2.20.

2.4,3 Setting the Types of Ports

In the above example, we never needed to define the types of any ports. The types were inferred
from the connections. Indeed, this is usually the case in Ptolemy II, but occasionally, you will need to
set the types of the ports. Notice in Figure 2.17 that there is a position in the dialog box that configures
ports for specifying the type. Thus, to specify that a port has type boolean, you could enter boolean
into the dialog box. There are other commonly used types: complex, double, fixedpoint, general, int,
long, matrix, object, scalar, string, and unknown. Let's take a more complicated case. How would you
specify that the type of a port is a double matrix? Easy:

[double]

This expression actually creates a 1 by 1 matrix containing a double (the value of which is irrelevant).
It thus serves as a prototype to specify a double matrix type. Similarly, we can specify an array of com-

SDF Director

Sinewave Channel SeQuencePlotter

FIGURE 2.19. A simple signal processing example that adds noise to a sinusoidal signal.
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plex numbers as

{complex}

In the Ptolemy II expression language, square braces are usedfor matrices, and curlybraces are used
for arrays. What about a record containing a string named "name" and an integer named "address"?
Easy:

{name=string, address=int}

2.5 Annotations and Parameterization

In this section, we will enhance the model in Figure 2.19 in a number of ways.

First, notice from Figure 2.20 that the noise overwhelms the sinusoid, making it barely visible. A
useful channel modelwouldhave a parameterthat sets the level of the noise. Look inside the channel
model, and add a parameter by dragging one in from the utilities library, as shown in Figure 2.21.
Right click on the parameter to change its name to "noisePower". (In order to be able to use this
parameter in expressions, the name cannot have any spaces in it.) Also, right click or double click on
the parameter to change its default value to 0.1.

Now we can use this parameter. First, let's use it to set the amount of noise. The Gaussian actor
has a parameter called standardDeviation. In this case, the power of the noise is equal to the variance
of the Gaussian, not the standard deviation. If you recall from basic statistics, the standard deviation is
equal to the square root of the variance. Change the standardDeviation parameter of the Gaussian
actor so its value is "sqrt(noisePower)", as shown in Figure 2.22. This is an expression that references
the noisePower parameter. We will explain the expression language in the next chapter. But first, let
check our improved model. Return to the top-level model, and edit the parameters of the Channel actor
(by either double clicking or right clicking and selecting "Configure"). Change the noise power from
the default 0.1 to 0.01. Run the model. You should now get a relatively clean sinusoid like that shown
in Figure 2.23.

Note that you can also add parameters to a composite actor without dragging from the utilities
library by clicking on the "Add" button in the edit parameters dialog for the Channel composite. This
dialog can be obtained by either double clicking on the Channel icon, or by right clicking and selecting
"Configure", or by right clicking on the background inside the composite and selecting "Edit Parame
ters".

sJandardOeviatlon: lsqrt(nols8Power)

Commit | Add j Remove I Edit Styles | Cancel

FIGURE 2.22. The standard deviation of the Gaussian actor is set to the square root of the noise power.
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Thereare several otheruseful enhancements you couldmake to this model. Trydragging an anno
tation from the utilities libraryand creating a title on the diagram. Also, try setting the title of the plot
by clicking on the second button from the right in the row of buttons at the top right of the plot. This
buttonproducesthe tool tip "Set the plot format" and bring up the format control window.

2.6 Navigating Larger Models

Sometimes, a model gets large enough that it is not convenient to view it all at once. There are four
toolbarbuttons, shown in Figure 2.27 that help. These buttons permit zooming in and out. The "Zoom
reset" button restores the zoom factor to the "normal" one, and the "Zoom fit" calculates the zoom fac
tor so that the entire model is visible in the editor window.

In addition, it is possible to pan over a model. Consider the window shown in Figure 2.25. Here,
we have zoomed in so that icons are larger than the default. Thepan window at the lower left shows the
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noisePower: 0.1

AddSubtract
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FIGURE 2.21. Adding a parameter to the channel model.



entiremodel,with a red box showing the visibleportionof the model. By clicking and dragging in the
pan window, it is easy to navigate around the entire model. Clicking on the "Zoom fit" button in the
toolbar results in the editor area showing the entire model, just as the pan window does.

2.7 Domains

A key innovation in Ptolemy II is that, unlike other design and modeling environments, there are
several available models ofcomputation that define the meaning of a diagram. In the above examples,
we directed you to drag in an SDFDirector without justifying why. A director in Ptolemy II gives
meaning (semantics) to a diagram. It specifies what a connection means, and how the diagram should
be executed. In Ptolemy II terminology, the director realizes a domain. Thus, when you construct a
model with an SDF director, you have constructed a model "in the SDF domain."

The SDF director is fairly easy to understand. "SDF" stands for "synchronous dataflow." In data
flow models, actors are invoked (fired) when their input data is available. SDF is particularly simple
case of dataflow where the order of invocation of the actors can be determined statically from the
model. It does not depend on the data that is processed (the tokens that are passed between actors).

But there are other models of computation available in Ptolemy II. It can be difficult to determine
which one to use without having experience with several. Moreover, you will find that although most
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execution nnlshed.

FIGURE 2.23. The output of the simple signal processing model in Figure 2.19.with noise power = .01
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FIGURE 2.24. Summary of toolbar buttons for zooming and fitting.
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actors in the librarydo something in any domain in whichyou use them, they do not always do some
thing useful. It is important to understand the domain you are working with and the actors you are
using. Here,we givea very brief introduction to some of the domains. Butwe begin firstby explaining
some of the subtleties in SDF.

2.7,1 SDF and Multirate Systems

So far we have been dealing with relatively simple systems. They are simple in the sense that each
actor produces and consumes one token from each port at a time. In this case, the SDF director simply
ensures that an actor fires after the actors whose output values it depends on. The total number of out
put values that are created by each actor is determined by the number of iterations, but in this simple
case only one token would be produced per iteration.

It turns out that the SDF scheduler is actually much more sophisticated. It is capable of scheduling
the execution ofactors with arbitrary prespecified data rates. Not all actors produce and consumejust a
single sample each time they are fired. Some require several input token before they can be fired, and
produce several tokens when they are fired.

One such actor is a spectral estimation actor. Figure 2.26 shows a system that computes the spec
trum of the same noisy sine wave that we constructed in Figure 2.19. The Spectrum actor has a single
parameter, which gives the order of the FFT used to calculate the spectrum. Figure 2.27 shows the out
put of the model with order set to 8 and the number of iterations set to 1. Note that there are 256 out-
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FIGURE 2.25. The pan window at the lower left has a red box representing the visible are of the model in
the main editor window. This red box can be moved around to view different parts of the model.
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put samples output from the Spectrum actor. This is because the Spectrum actor requires 2'̂ 8, or 256
inputsamples to fire, andproduces 2'̂ 8, or 256 output samples when it fires. Thus, one iteration of the
model produces 256 samples. The Spectrum actor makes this a multirate model, because the firing
rates of the actors are not all identical.

It is common in SDF to construct models that require exactly one iteration to produce a useful
result. In some multirate models, it can be complicated to determine how many firings of each actor
occur per iteration of the model. See the SDF chapter for details.

A second subtlety with SDF models is that if there is a feedback loop, as in Figure 2.28, then the
loop must have at least one instance of the SampleDelay actor in it (found in the/low control library).
Without this actor, the loop will deadlock. The SampleDelayactor produces initial tokens on its output,
before the model begins firing. The initial tokens produced are given by a the initialOutputs parameter,
which specifies an array of tokens. These initial tokens enable downstream actors and break the circu
lar dependencies that would result otherwise from a feedback loop.

A final issue to consider with the SDF domain is time. Notice that in all the examples above we
have suggested using the SequencePlotter actor, not the TimedPlotter actor, which is in the same sinks
library. This is because the SDF domain does not include in its semantics a notion of time. Time does

SDF • rector

Sinewave Channel Spectrum SequencePlotter

FIGURE 2.26. A multirate SDF model. The Spectrum actor requires 256 tokens to fire, so one iteration of
this model results in 256 firings ofSinewave. Channel, and SequencePlotter, and one firing of Spectrum.
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FIGURE 2.27. A single iteration of the SDF model in Figure 2.26 produces 256 output tokens.
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not advance as an SDF model executes, so the TimedPlotter actor would produce very uninteresting
results, where the horizontal axis value would always be zero. The SequencePlotter actor uses the
index in the sequence for the horizontalaxis. The first token received is plotted at horizontalposition
0, the secondat 1, the third at 2, etc. The next domainwe consider,DE, includesmuch strongernotion
of time, and it is almost always more appropriate in the DB domain to use the TimedPlotter actor.

2.7.2 Discrete-Event Systems

In discrete-event (DE) systems, the connections between actors carry signals that consist of events
placed on a time line. Each event has both a value and a time stamp, where its time stamp is a double-
precision floating-point number. This is different from dataflow, where a signal consists of a sequence
of tokens, and there is no time significance in the signal.

A DE model executes chronologically, processing the oldest events first. Time advances as events
are processed. There is potential confusion, however, between model time, the time that evolves in the
model, and real time, the time that elapses in the real world while the model executes (also called wall-
clock time). Model time may advance more rapidly than real time or more slowly. The DE director has
a parameter, synchronizeToRealTime, that, when set to true, attempts to synchronize the two notions of
time. It does this by delaying execution of the model, if necessary, allowing real time to catch up with
model time.

Consider the DE model shown in Figure 2.29. This model includes a PoissonClock actor, a Cur-
rentTime actor, and a WallClockTime actor, all found in the sources library. The PoissonClock actor
generates a sequence of events with random times, where the time between events is exponentially dis
tributed. Such an event sequence is known as a Poisson process. The value of the events produced by
the PoissonClock actor is a constant, but the value of that constant is ignored in this model. Instead,
these events trigger the CurrentTime and WallClockTime actors. The CurrentTime actor outputs an
event with the same time stamp as the input, but whose value is the current model time (equal to the
time stamp of the input). The WallClockTime actor an event with the same time stamp as the input, but
whose value is the current real time, in seconds since initialization of the model.

The plot in Figure 2.29 shows an execution. Note that model time has advanced approximately 10
seconds, but real time has advanced almost not at all. In this model, model time advances much more
rapidly than real time. If you build this model, and set the synchronizeToRealTime parameter of the
director to true, then you will find that the two plots coincide almost perfectly.

A significant subtlety in using the DE domain is in how simultaneous events are handled. Simulta
neous events are simply events with the same time stamp. We have stated that events are processed in
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FIGURE 2.28. An SDF model with a feedback loop must have at least one instance of the SampleDelay
actor in it.
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chronological order, but if twoevents havethe sametime stamp, thenthere is someambiguity. Which
oneshould be processed first? If the twoevents are on the samesignal, then theansweris simple: pro
cess first the one that was produced first. However, if the two events are on different signals, then the
answer is not so clear.

Consider the model shownin Figure2.30, whichproduces a histogram of the interarrival timesof
events from the PoissonClock actor. In this model, we calculate the difference between the current
event time and the previous event time, resulting in the plot that is shown in the figure. The Previous
actor is a zero-delay actor, meaning that it produces an output with the same time stamp as the input
(except on the first firing, wherein this caseit produces no output). Thus,whenthePoissonClock actor
produces an output, there will be two simultaneous events, one at the input to the plus port of the
AddSubtractactor, and one at the input of the Previous actor. Should the director fire the AddSubtract
actor or the Previous actor? Either seems OK if it is to respect chronological order, but it seems intui
tive that the Previous actor should be fired first.

It is helpful to know how the AddSubtract actor works. When it fires, it adds all available tokens
on the plus port, and subtracts all available tokens on the minus port. If the AddSubtract actor fires
before the Previous actor, then the only available token will be the one on the plus port, and the
expected subtraction will not occur. Intuitively, we would expect the director to invoke the Previous
actor before the AddSubtract actor so that the subtraction occurs.

How does the director deliver on the intuition that the Previous actor should be fired first? Before

executing the model, the DE director constructs a topological sort of the model. A topological sort is
simply a list of the actors in data-precedence order. For the model in Figure 2.30, there is only one
allowable topological sort:

• PoissonClock, CurrentTime, Previous, AddSubtract, HistogramPlotter

In this list, AddSubtract is after Previous. So the when they have simultaneous events, the DE director

DE Director

CurrentTlme

PoissonClock

WallClockTlme

-

TimedPlotter
OM

FIGURE 2.29. Model time vs. real time (wall clock time).
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fires Previous first.

Thus, the DE director, by analyzing the structureof the model,usuallydelivers the intuitive behav
ior, where actors that produce data are fired before actors that consume theirresults, evenin thepres
ence of simultaneous events.

Thereremains onekey subtlety. If the model has a directed loop,then a topological sort is notpos
sible. In the DB domain, every feedback loop is required to have at least one actor in it that introduces
a time delay, such as the TimedDelay actor, which can be found in the domain specific library under
discrete-event (this libraryis shownon the left in Figure 2.31). Considerfor examplethe model shown
in Figure 2.31. That model has a Clock actor, which is set to produce events every 1.0 time units.
Those events trigger the Ramp actor,which produces outputs that start at 0 and increase by 1 on each
firing. In this model, the output of the Ramp goes into an AddSubtractactor, which subtracts from the
Ramp output its own prior outputdelayedby one time unit. The result is shown in the plot in the figure.

Occasionally, you will need to put a TimedDelay actor in a feedback loop with a delay of0.0. This
is particularly true if you are buildingcomplex models that mix domains, and there is a delay inside a
composite actor that the DE director cannot recognize as a delay. The TimedDelayactor with a delay of
0.0 can be thought of as a way to let the director know that there is a time delay in the preceding actor,
without specifying the amount of the time delay.

2.7.3 Continuous-Time Systems

The continuous-time domain (CT) is another relatively mature domain with semantics consider
ably different from either DE or SDF. In CT, the signals sent along connections between actors are
continuous-time signals, or in some cases, discrete-events that behave similarly to those in DE, with
some restrictions. The typical application of the CT domain is to model differential equations. Con
sider the following set of three differential equations:

DE Director

PoissonClock CurrentTime
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FIGURE 2.30. Histogram of interarrival times, illustrating handling of simultaneous events.
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Xj = C{X2-X^) (1)
X2 = (X,-X3)X, -X2
X3 = Xj •X2 - 6 •X3

There arethree variables, x,, X2, andXj, andthree constants, Cf, X,and b. The variables vary contin
uously with time, and hence represent continuous-time signals. The notation Xj refers to the time
derivative of X].

A model of these differential equations in the CT domain is shown in Figure 2.32. As is customary
in modeling differential equations, we use integrators instead of differentiators. Integrators are much
more numerically robust. They are arranged in a feedback loop, so that the input to an integrator is
simply the derivative of the output. Thus, the output of Integrator 7 is X], and its input is X]. A feed
back loop is used to specifythe value of x, in terms of Xj, X2, and X3.

This set of differential equations describe a famous chaotic system called a Lorenz attractor. It is a
special case of a family of nonlinear feedback systems that exhibit strange attractor behavior. The
"attractors" are the two nodes in the plot in Figure 2.32 that the trace seems to be alternately orbiting.
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FIGURE 2.31. Discrete-event model with feedback, which requires a delay actor such as TimedDeiay.
Notice the library of domain-specific actors at the left.
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The model in Figure 2.32 illustrates several points. First, in CT, every feedback loop must contain
an integrator. Second, theXYPlotter actoris usedto plot X2 vs. Xj. Third, threeinstances of theExpres
sion actor are used instead of complex block diagrams to specify arithmetic expressions. Use of the
Expression actor is explained in Chapter 3, "Expressions".

The CT domain can also handle discrete events. These events are usually related to a continuous-
time signal, for example representing a zero-crossing of the continuous-time signal. The CT director is
quite sophisticated in its handling of such mixed signal systems. For details, refer to the CT chapter.

2.7.4 FSM and Modal Models

The finite-state machine domain (FSM) in Ptolemy II is a relatively less mature domain (but
mature enough to be useful) with semantics very different from the domains covered so far. An FSM
model looks different in Vergil. An example is shown in Figure 2.33. Notice that the component library
on the left and the toolbar at the top are different for this model. We will explain how to construct this
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FIGURE 2.32. Realization of the Lorenz attractor model in the CT domain.
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model.

First, the FSM domain is almost always used in combination with other domains in Ptolemy II to
create modal models. A modal model is one that has modes, which represent regimes of operation.
Each mode in a modal model is represented by a state in a finite-state machine. The circles in Figure
2.33 are states, and the arcs between circles are transitions between states.

A modalmodel is typically a component in a largermodel. You can createa modalmodelby drag
ging one in from the utilities library. By default, it has no ports. To make it useful,you will probably
need to addports. Figure 2.34showsa top-level continuous-time model with a singlemodalmodel that
has been renamedBall Model. It represents a bouncing ball. Three outputs have been added,but only
the top one is used. It gives the vertical distance of the ball from the surface on which it bounces.

If you create a new modal model by dragging it in from the utilities library, and then look inside,
you will get an FSM editor like that in Figure 2.33, except that it will be almost blank. The only items
in it will be the ports you have added. Youmay want to move these ports to reasonable locations.
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FIGURE 2.33. Finite-state machine model used in the bouncing ball example.
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FIGURE 234. Top-level of the bouncing ball example. The Ball Model actor is an instance ofmodal model
from the utilities library. It has been renamed.
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To create a finite-state machine like that in Figure 2.33, drag in states (white circles). You can
rename these states by right clicking on them and selecting "Customize Name". Choose names that are
pertinent to your application. In Figure 2.33, there is an init state for initialization, afree state for when
the ball is in the air, and a stop state for when the ball is no longer bouncing. Youmust specify the ini
tial state of the FSM by right clicking on the background of the FSM Editor, selecting "Edit Parame
ters", and specifying an initial state name. In this example, the initial state is init.

To create transitions, you must hold the control button on the keyboard while clicking and drag
ging from one state to the next (a transition can also go back to the same state). The handles on the
transition can be used to customize its curvature and orientation. Double clicking on the transition (or
right clicking and selecting "Configure") allows you to configure the transition. The dialog for the
transition from init tofree is shown in Figure 2.35. In that dialog, we see the following:
• The guard expression is true, so this transition is always enabled. The transition will be taken as

soon as the model begins executing. A guard expression can be any boolean-valued expression
that depends on the inputs, parameters, or even the outputs of any refinement of the current state
(see below). Thus, this transition is used to initialize the model.

• The output actions are empty, meaning that when this transition is taken, no output is specified.
This parameter can have a list of assignments of values to output ports, separated by semicolons.
Those values will be assigned to output ports when the transition is taken.

• The set actions contain the following statements:

free.initialPosition = initialPosition; free.initialVelocity = 0.0

The "free" in these expressions refers to the mode refinement in the "free" state. Thus, "free.ini-
tialPosition" is a parameter of that mode refinement. Here, its value is assigned to the value of the
parameter "initialPosition". The parameter "free.initialVelocity" is set to zero.

• The reset parameter is set to tnte, meaning that the destination mode should be initialized when the
transition is taken.

• The preemptive parameter is set tofalse. In this case, it makes no difference, since the init state has
no refinement. Normally, if a transition out of a state is enabled and preemptive is true, then the
transition will be taken without first firing the refinement.

To create a refinement for a state, right click on the state, and select "Add Refinement". You will see a
dialog like that in Figure 2.39. You can specify the class name for the refinement, but for now, it is best
to accept the default. Once you have created a refinement, you can look inside a state. For the bouncing

guardExpression: jtme
outputActions: I
setActions; ^iPosltion =InitialPosition; free.lnttialVelocity= 0.0
reset ftrue
preemptive: jralse
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FIGURE 2.35. Transition dialog for the transition from inil tofree in Figure 2.33.
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ball example, the refinement of thefree state is shown in Figure 2.37. This model exhibits certain key
properties of state refinements:

• Refinements must contain directors. In this case, the CTEmbeddedDirector is used. When a con
tinuous-time model is used inside a mode, this director must be used instead of the default
CTDirector {see the CT chapter for details).

• The refinement has the sameportsas the modalmodel, and canread inputvalueand specifyoutput
values. When the state machine is in the state of which this is the refinement, this model will be
executed to read the inputs and produce the outputs.

• In this case, the refinement simply defines the laws of gravity. An acceleration of-10 m/sec
(roughly) is integrated to get the velocity. This, in turn, is integrated to gel the vertical position.

• A ZeroCrossingDetector actor is usedto detect whenthe vertical positionof the actor is zero.This
results in production of an event on the (discrete) output bump. Examining Figure 2.36, you can
see that this event triggers a state transition back to the samefree state, but where the initialVeloc-
ityparameteris changedto reverse thesign and attenuateit by the elasticity. This results in the ball
bouncing, and losing energy.

As you can see from Figure 2.33, when the position and velocity of the ball drop below a specified
threshold, the state machine transitions to the state stop, which has no refinement. This results in the
model producing no further output. The result of an execution is shown in Figure 2.38. Notice that the
ball bounces until it stops, after which there are no further outputs.

This model illustrates an interesting property of the CT domain. The stop state, it turns out, is
essential. Without it, the time between bounces keeps decreasing, as does the magnitude of each
bounce. At some point, these numbers get smaller than the representable precision, and large errors
start to occur. Try removing the stop state from the FSM, and re-run the model. What happens? Why?

fillOnWrapup; [true
legend: j
startlngDalaset: [o

Remove Edit Styles Cancel

FIGURE 2.36. Parameters of the SequencePlotter actor.

CTEmbedded Director jhis modelsthe dynamics ofa ball

falling in a gravitational field.

ZeroCfDssingDetector
I 1 bomp

FIGURE 2.37. Refinement of thefree state of the modal model in Figure 2.33.
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Modal models can be used in any domain. Their behavior is simple. When the modal model is
fired, the following sequence ofevents occurs:

• The refinement of the current state, if there is one, is fired (unlesspreemptive is true, and one of the
guards on outgoing transitions evaluates to true).

• The guard expressions on all the outgoing transitions are evaluated. If none are true, the firing is
complete. If one is true, then that transition is taken. If more than one is true, then an exception is
thrown (the FSM is nondeterministic).

• When a transition is taken, its output actions and set actions are evaluated.
• If reset is true, then the refinement of the destination mode (if there is one) is initialized.

2.8 Using the Plotter

Several of the plots shown above have flaws that can be fixed using the features of the plotter. For
instance, the plot shown in Figure 2.27 has the default (uninformative) title, the axes are not labeled,
and the horizontal axis ranges from 0 to 255^, because in one iteration, the Spectrum actor produces
256 output tokens. These outputs represent frequency bins that range between -K and 7i radians per
second.

Position

m va
\iim

10 15

time (sec)

FIGURE 2.38. Result ofexecution of the bouncing ball model.

20 25

1. Hint: Notice the "xl0^" at thebottom right, which indicates that the label "2.5" stands for"250"
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The SequencePlotter actorhas somepertinentparameters, shown in Figure 2.36. The xlnit param
eter specifies the value to use on the horizontal axis for the first token. The xUnit parameter specifies
the value to increment this by for each subsequent token. Setting these to "-PI" and "PI/128" respec
tively results in the plot shown in Figure 2.40.

Thisplot isbetter, but stillmissing useful information. Tocontrol more precisely the visual appear
ance of the plot, clickon the second button from the right in the row of buttons at the top right of the
plot. This button brings up a format control window. It is shown in Figure 2.41, filled in with values

Name: |free
Class; jpiolemv.vergil.fsm.modal.Refinemenl

OK Cancel

FIGURE 2.39. Dialog for creating a refinement of a state.

FIGURE 2.40. Better labeled plot, where the horizontal axis now properly represents the frequency values.

Tttle: [Spectrum
XLabel: jrrsquency
YLabel: jdi
XRange: [.3.141692653589793, 3.11704896098361
YRange: [-30-37674614413320,17.833077945296893
Marks: _

' Grid: r
XRange: [-3.141692653589793, 3.11704896098361 p
YRange: [-30-37674614413328,17.833077945296893 Connect t?

(* none points dots various ^ pixels Use Color (♦

XTlcks: [,14159, •PI/2 -1-570795.0 0,0. PI/21 -570795, PI 3,14159
YTicks: I

/^ply I Cancel

FIGURE 2.41. Format control window for a plot.
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that resultin the plot shownin Figure2.42. Mostof theseare self-explanatory, but the following point
ers may be useful:

The grid is turned off to reduce clutter.

• Titles and axis labels have been added.

• The X range and Y range are determined by the fill button at the upper right of the plot.
• Stem plots can be had by clicking on "Stems"

Individual tokens can be shown by clicking on "dots"

• Connecting lines can be eliminated by deselecting "connect"

• The X axis label has been changed to symbolically indicate multiples of PI/2. This is done by
entering the following in the X Ticks field:

-PI -3.14159, -Pl/2 -1.570795, 0 0.0, PI/2 1.570795, PI 3.14159

The syntax in general is:

label value, label value,...

where the label is any string (enclosed in quotation marks if it includes spaces), and the value is a
number.

FIGURE 2.42. Still better labeled plot.
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3.1 Introduction

In Ptolemy II, models specify computations by composing actors. Many computations, however,
are awkward to specify this way. A common situation is where we wish to evaluate a simple algebraic
expression, such as "sin(27C (x-1))." It is possible to express this computation by composing actors in a
block diagram, but it is far more convenient to give it textually.

The Ptolemy II expression language provides infrastructure for specifying algebraic expressions
textually and for evaluating them. The expression language is used to specify the values ofparameters,
guards and actions in state machines, and for the calculation performed by the Expression actor. In
fact, the expression language is part of the generic infrastructure in Ptolemy II, and it can be used by
programmers extending the Ptolemy II system. Such extensions are described in the Data Package
chapter. In this chapter, we describe how to use expressions from the perspective ofa user rather than a
programmer.

3.2 Simple Arithmetic Expressions

3.2.1 Constants and Literals

The simplest expression is a constant, which can be given either by the symbolic name of the con
stant, or by a literal. By default, the symbolic names of constants supported are PI, pi, E, e, true, false,
i, and j. for example,

Pl/2.0
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is a validexpression that refers to the symbolic name "PI" and the literal "2.0." The constants i andj
are complex numbers with value equal to 0.0 + 1.Oi.

Numerical values without decimal points, such as "10" or "-3" are integers. Numerical values with
decimal points, such as "10.0" or "3.14159" or "18." are doubles. Integers followed by the character
"1" (el) or "L" are long integers. Integers beginning with a leading "0" are octal numbers. Integers
beginningwith a leading "Ox" are hexadecimal numbers. For example, "012" and "OxA" are both the
integer 10. In releases later than Ptolemy II 2.0.1, but not including 2.0.1 itself, integers followedby
"ub" or "UB" are unsigned bytes, as in "Sub". Literal string constants are also supported. Anything
between quotes, "...", is interpreted as a string constant.

A complex is defined by appending an "i" or a "j" to a double for the imaginary part. This gives a
purely imaginary complex number which can then leverage the polymorphic operations in the Token
classes to create a general complex number. Thus "2 + 3i" will result in the expected complex num
ber. You can optionally write this "2 + 3*i".

3.2.2 Summary of Supported l^pes

The types currently supported in the expression language are boolean, unsigned byte, complex,
fixedpoint, double, int, long, array, matrix, record, and string. The composite types, array, matrix, and
record, are described below in section 3.4. Note that there is no float (as yet). Use double or int instead.
A long is defined by appending an integer with "1" (lower case L) or "L", as in Java. A fixed point
number is defined using the "fix" function, as will be explained below in section 3.6.

3.2.3 Variables

Expressions can contain references to variables within the scope of the expression. For example,

PI*x/2.0

is valid if "x" is a variable in scope. In the context of Ptolemy II models, the variables in scope include
all parameters defined at the same level of the hierarchy or higher. So for example, if an actor has a
parameter named "x" with value 1.0, then another parameter of the same actor can have an expression
with value "Pl*x/2.0", which will evaluate to n /2.

Consider a parameter P in actor Y which is in tum contained by composite actor Y. The scope of an
expression for F includes all the parameters contained by X and Y, plus those of the container of Y, its
container, etc. That is, the scope includes any parameters defined above in the hierarchy.

You can add parameters to actors (composite or not) by right clicking on the actor, selecting "Con
figure" and then clicking on "Add", or by dragging in a parameter from the utilities library. Thus, you
can add variables to any scope, a capability that serves the same role as the "let" construct in many pro
gramming languages.

3.2.4 Operators

The arithmetic operators are +, -, *, /, and %. Most of these operators operate on most data
types, including matrices. The operator computes "to the power of where the power can only be an
integer. The bitwise operators are &, |, #, and ~. They operate on integers, where & is bitwise and, ~ is
bitwisenot, and | is bitwise or, and # is bitwise exclusive or (after MATLAB).
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Therelational operators are <, <=, >, >=, == and !=.Theyreturn booleans. Boolean-valued expres
sions can be used to give conditional values. The syntax for this is

boolean ? valuel : value2

If the boolean is true, the value of the expression is valuel; otherwise, it is value2.
The logical boolean operators are &&, ||,!, & and |. Theyoperate on booleans and returnbooleans.

The difference between logical && and logical & is that & evaluates all the operands regardless of
whether their value is now irrelevant. Similarly for logical || and |. This approach is borrowed from
Java.

The « and » operators performs arithmetic left and right shifts respectively. The »> operator
performs a logical right shift, which does not preserve the sign.

3.2.5 Comments

In expressions, anything inside /*...*/ is ignored, so you can insert comments.

3.3 Uses of Expressions

3.3.1 Parameters

The values ofmost parameters ofactors can begiven as expressions^ The variables in the expres
sion refer to other parameters that are in scope, which are those contained by the same container or
some container above in the hierarchy. They can also reference variables in a scope-extending
attributey which includes variables defining units, as explained below in section 3.7. Adding parame
ters to actors is straightforward, as explained in the previous chapter.

3.3.2 Expression Actor

The Expression actor is a particularly useful actor found in the math library. By default, it has one
output an no inputs, as shown in Figure 3.1(a). The first step in using it is to add ports, as shown in (b)
and (c), resulting in a new icon as shown in (d). Note: In (c) when you click on Add, you will be
prompted for a Name (pick one) and a Class. Leave the Class entry blank and click OK. You then spec
ify an expression using the port names, as shown in (e), resulting in the icon shown in (f).

3.3.3 State Machines

Expressions give the guards for state transitions, as well as the values used in actions that produce
outputs and actions that set values of parameters in the refinements of destination states. This mecha
nism was explained in the previous chapter.

1. The exceptions are parameters that are strictly string parameters, in which case the value of
the parameter is the literal string, not the string interpreted as an expression, as for example
thefunction parameter of the TrigFunction actor, which can take on only "sin," "cos,"
"tan", "asin", "acos", and "atan" as values.
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3.4 Composite Data Types

3.4.1 Arrays

Arrays are specified with curly brackets, e.g., "{1, 2, 3}" is an array of integers, while "{"x",
"y", "z"}" is an array of strings. An array is an ordered list of tokens of any type, with the only con
straint being that the elements all have the same type. Thus, for example, "{1, 2.3}" is illegal because
the first element is an integer and the second is a double. The elements of the array can be given by
expressions, as in the example "{2*pi, 3*pi}." Arrays can be nested; for example, "{{1,2}, {3,4, 5}}"
is an array of arrays of integers.

3.4.2 Matrices

In Ptolemy II, arrays are ordered sets of tokens. Ptolemy II also supports matrices, which are more
specialized than arrays. They contain only primitive types, currently boolean, complex, double, fixed-
point, int, and long. Matrices cannot contain arbitrary tokens, so they cannot, for example, contain
matrices. They are intended for data intensive computations.

Matrices are specified with square brackets, using commas to separate row elements and semico
lons to separate rows. E.g., "[1, 2, 3; 4, 5, 5+1]" gives a two by three integer matrix (2 rows and 3 col
umns). Note that an array or matrix element can be given by an expression, but all elements must have

Expression
Expression

EwresKon

expression: k+cosMi

Configure

Cusiomize Name

Get Documentation

Listen to Actor

output ^ ^ ^ ^ output type;lunknownC input output C muttiport |uiirv.iu«ii

input C output C muttiport

^ )"P"1 ^ output muttiport

xtype: lunlrnown

ytype; lunlmown

Commit I Add Remove Heip Cancel

Expression

Commit j Add Remove Edit Styles Cancel

FIGURE 3.1. Illustration of the Expression actor.



Expressions

the sametype,and that type mustbe one of the typesfor whichmatrices are defined. A rowvectorcan
be given as "[1,2, 3]" and a columnvectoras "[1; 2; 3]". Some MATLAB-style array constructors are
supported. For example, "[1:2:9]" givesan arrayof oddnumbers from 1to 9, and is equivalent to "[1,
3, 5, 7, 9]." Similarly, "[1:2:9; 2:2:10]" is equivalent to "[1, 3, 5, 7, 9; 2, 4, 6, 8, 10]." In the syntax
"[p:g:r]",/7 is the first element, q is the stepbetween elements, and r is an upperboundon the last ele
ment. That is, the matrix will not contain an element larger than r.

Reference to matrices have the form "name{n, m)" where name is the name ofa matrix variable in
scope,n is the row index, and m is the columnindex. Index numbers start with zero, as in Java, not 1,
as in MATLAB.

3.4.3 Records

A record token is a composite type where each element is named, and each element can have a dis
tinct type. Records are delimited by curly braces, with each element given a name. For example,
" {a=l, b=" f oo"}" is a record with two elements, named "a" and "b", with values 1 (an integer) and
"foo" (a string), respectively. The value of a record element can be an arbitrary expression, and records
can be nested (an element of a record token may be a record token).

3.5 Functions and Methods

3.5.1 Functions

The expression language includes an extensible set of functions, such as sinQ, cosQ, etc. The func
tions that are built in include all static methods of the java.lang.Math class and the
ptolemy.data.expr.UtilityFunctions class. This can easily be extended by registering another class that
includes static methods. The functions currently available are shown in Figures 3.2 and 3.3, with the
argument types and return types^

One slightly subtle function is the randomQ function shown in Figure 3.2. It takes no arguments,
and hence is written "random ()". It returns a random number. However, this function is evaluated
only when the expression within which it appears is evaluated. The result of the expression may be
used repeatedly without re-evaluating the expression. The randomQ function is not called again. Thus,
for example, if the value parameter of the Const actor is set to "random ()", then its output will be a
random constant, i.e., it will not change on each firing.

3.5.2 Methods

Every element and subexpression in an expression represents an instance of the Token class in
Ptolemy II (or more likely, a class derived from Token). The expression language supports invocation
of any method of a given token, as long as the arguments of the method are of type Token and the
return type is Token (or a class derived from Token, or something that the expression parser can easily
convert to a token, such as a string, double, int, etc.). The syntax for this is (token).methodName{args),
where methodName is the name of the method and args is a comma-separated set of arguments. Each
argument can itself be an expression. Note that the parentheses around the token are not required, but

1. At this time, in release 2.0, the types must match exactly for the expression evaluator to work. Thus, "sin(l)"
fails, because the argument to the sinQ function is required to be a double.
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function argument type(s) return type description

abs double double absolute value

abs int int absolute value

abs long long absolute value

acos double double arc cosine

asin double double arc sine

atan double double arc tangent

atan2 double, double double angle of a vector

ceil double double ceiling function

cos double double cosine

exp double double exponential function (e^argument)

floor double double floor function

lEEEremainder double, double double remainder afler division

log double double natural logarithm

max double, double double maximum

max int, int int maximum

max long, long long maximum

min double, double double minimum

min int, int int minimum

min long, long long minimum

pow double, double double first argument to the power of the second

random double random number between 0.0 and 1.0

rint double double round to the nearest integer

round double long round to the nearest integer

sin double double sine function

sqrt double double square root

tan double double tangent function

toDegrees double double convert radians to degrees

toRadians double double convert degrees to radians

FIGURE 3.2. Functions available to the expression language from the java.lang.Math class.
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might be useful forclarity. Asanexample, the ArrayToken class has a getElement(int) method, which
can be used as follows:

{1, 2, 3}.getElement(1)

Thisreturns the integer2. Another useful function of array token is illustrated by the following exam
ple:

{1, 2, 3}.length()

which retums the integer 3.

The MatrixToken classes have three particularly useful methods, illustrated in the following exam
ples:

[1, 2; 3, 4; 5, 6].getRowCount()

which retums 3, and

[1, 2; 3, 4; 5, 6].getColumnCount()

function argument type(s) return type description

frecMemory none long Return the approximate number of bytes available for
future memory allocation.

gaussian double, double double Gaussian random variable with the specified mean, and
standard deviation

gaussian double, double, int, int double matrix Gaussian random matrix with the specified mean, stan
dard deviation, rows, and columns

property string string Return a property with the specified name from the
environment, or an empty string if there is none.

readPiie string string Get the string text in the specified file. Retum an empty
string if the file is not foimd.

readMatrix string double matrix Read a file that contains a matrix of reals in MATLAB

notation.

repeat int, general array Create an array by repeating the specified token the
specified number of times.

totalMemory long none Retum the approximate number ofbytes used by current
objects plus those available for future object allocation.

findFile string string Retum an absolute file name given one that is relative to
the user directory or the classpath.

FIGURE 3.3. Functions available to the expression language from the ptolemy.data.expr.UtilityFunctions
class. This class is still at a preliminary stage, and the function it provides will grow over time.
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which returns 2, and

[1, 2; 3, 4; 5, 6] .toArrayO

which returns {1, 2, 3,4, 5, 6}. The latter function can be particularly useful for creating arrays using
MATLAB-stylesjoitax. For example, to obtain an array with the integers from 1 to 100, you can enter:

[1:1:100] .toArrayO

The getQ method ofRecordToken accesses a record field, as in the following example:

{a=l, b=2}.get("a")

which returns 1.

The Token classes from the data package form the primitives of the language. For example the
number 10 becomes an IntToken with the value 10 when evaluating an expression. Normally this is
invisible to the user. The expression language is object-oriented, of course, so methods can be invoked
on these primitives. A sophisticated user, therefore, can make use of the fact that "10" is in fact an
object to invoke methods of that object.

In particular, the convertQ method of the Token class might be useful, albeit a bit subtle in how it
is used. For example:

double.convert(1)

creates a DoubleToken with value 1.0. The variable double is a built-in constant with type double. The
convertQ method of DoubleToken converts the argument to a DoubleToken, so the result of this
expression is 1.0. A more peculiar way to write this is

(1.2).convert(1)

Any double constant will work in place of 1.2. Its value is irrelevant.

The convertQ method supports only lossless type conversion. Lossy conversion has to be done
explicitly via a function call.

3.6 Fixed Point Numbers

Ptolemy II includes a preliminary fixed point data type. We represent a fixed point value in the
expression language using the following format:

fix(value, totalBits, IntegerBits)

Thus, a fixed point value of 5.375 that uses 8 bit precision of which 4 bits are used to represent the
integer part can be represented as:

fix(5.375, 8, 4)
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The value can also be a matrix of doubles. The values are rounded, yielding the nearest value repre-
sentable withthe specified precision. If thevalueto represent is outof range, thenit is saturated, mean
ing that the maximum or minimum fixedpoint valueis returned, depending on the sign of the specified
value. For example,

fix(5.375, 8, 3)

will yield 3.968758, the maximum value possible with the (8/3) precision.
In addition to the fixQ function, the expression language offers a quantizeQ function. The argu

ments are the same as those of the fixQ function, but the retum type is a DoubleToken or DoubleMa-
trixToken instead of a FixToken or FixMatrixToken. This function can therefore be used to quantize
double-precision values without ever explicitly working with the fixed-point representation.

To make the FixToken accessible within the expression language, the following functions are
available:

To create a single FixPoint Token using the expression language:
fix(5.34, 10, 4)

This will create a FixToken. In this case, we try to fit the number 5.34 into a 10 bit representation
with 4 bits used in the integer part. This may lead to quantization errors. By default the round
quantizer is used.

• To create a Matrix with FixPoint values using the expression language:
fix([ -.040609, -.001628, .17853 ], 10, 2)

This will create a FixMatrixToken with 1 row and 3 columns, in which each element is a Fix-
Point value with precision(10/2). The resulting FixMatrixToken will try to fit each element of
the given double matrix into a 10 bit representation with 2 bits used for the integer part. By
default the round quantizer is used.

To create a single DoubleToken, which is the quantized version of the double value given, using
the expression language:

quantize(5.34, 10, 4)

This will create a DoubleToken. The resulting DoubleToken contains the double value obtained by
fitting the number 5.34 into a 10 bit representation with 4 bits used in the integer part. This may
lead to quantization errors. By default the round quantizer is used.

• To create a Matrix with doubles quantized to a particular precision using the expression language:
quantized -.040609, -.001628, .17853 ], 10, 2)

This will create a DoubleMatrixToken with 1 row and 3 columns. The elements of the token are

obtained by fitting the given matrix elements into a 10 bit representation with 2 bits used for the
integer part. Instead ofbeing a fixed point value, the values are converted back to their double rep
resentation and by default the round quantizer is used.

3.7 Units

Ptolemy II supports units systems, which are built on top of the expression language. Units sys
tems allow parameter values to be expressed with units, such as "1.0 * cm", which is equal to "0.01 *
meters". These are expressed this way (with the * for multiplication) because "cm" and "meters" are
actually variables that become in scope when a units system icon is dragged in to a model. A few sim-
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pie units systems are provided (mainly as examples) in the utilities library.
A model using one of the simple provided units systems is shown in figure 3.4. This unit system is

called BasicUnits; the units it defines can be examined by double clicking on its icon, or by invoking
Configure, as shown in figure 3.5. In that figure, we see that "meters", "meter", and "m" are defined,

FIGURE 3.4. Example of a model that includes a unit system.
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FIGURE 3.5. Units defined in a units system can be examined by invoking Configure on its icon.
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and are all synonymous. Moreover, "cm" is defined, and givenvalue "0.01*meters", and "in", "inch"
and "inches" are defined, all with value "2.54*cm".

In the example in figure 3.4, a constantwith value"1.0 * meter" is fed intoa Scale actorwith scale
factor equal to "2.0/ms". This produces a result with dimensions of length over time. If we feed this
result directly into a Displayactor, then it is displayed as "2000.0meters/seconds", as shownin figure
3.6, top display. The canonical units for lengthare meters, and for time are seconds.

In figure 3.4, we also take the result and feed it to the InUnitsOfactor,which performs divides its
input by its argument, and checks to make sure that the result is unitless. This tells us that 2 meters/ms
is equal to about 78,740 inches/second.

The InUnitsOf actor can be used to ensure that numbers are interpreted correctly in a model, which
can be effective in catching certain kinds of critical errors. For example, if in figure 3.4 we had entered
"seconds/inch" instead of "inches/second" in the InUnitsOf actor, we would have gotten the exception
in figure 3.7 instead of the execution in figure 3.6.

Units systems are built entirely on the expression language infrastructure in Ptolemy II. The units
system icons actually represent instances of scope-extending attributes, which are attributes whose
parameters are in scope as if those parameters were directly contained by the container of the scope-
extending attribute. That is, scope-extending attributes can define a collection of variables and con
stants that can be manipulated as a unit. In version 2.0 ofPtolemy II, two fairly extensive units systems
are provided, CGSUnitBase and ElectronicUnitBase. Nonetheless, these are intended as examples
only, and can no doubt be significantly improved and extended.

File yev Debug Help

{"go J Pause

Model parameters:

units bas no parameters.

Director parameters:

vectorlzatlonFactor: [T

executionlinlstied.

FIGURE 3.6. Result of running the model in figure 3.4.

2000.0 • aetecs / seconds

0740.15748031496

ScalarToken.inUnltsOf Tbe units ofthls token; meters/seconds are not the same as the units of the argument seconds / meters

r Dismiss ]] DIsplayStackTrace

FIGURE 3.7. Example ofan exception resulting from a units mismatch.
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4.1 Overview

Ptolemy II focuses on component-based design. In this design approach, components are aggre
gated and connected to construct a model. One of the advantages of component-based design is that
reuse of components becomes possible. Polymorphism is one of the key tenets of object-oriented
design. It refers to the ability of a component to adapt in a controlled way to the type of data being sup
plied. For example, an addition operation is realized differently when adding vectors than when adding
scalars. In Ptolemy II, use ofpolymorphism maximizes the potential for reuse ofcomponents.

We call this classical form ofpolymorphism data polymorphism, because objects are polymorphic
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with respect to data types. A second form ofpolymorphism, introduced in Ptolemy II, is domainpoly
morphism^ where a component adapts in a controlled way to the protocols that are used to exchange
data between components. For example, an addition operation can accept input data delivered by any
of a number of mechanisms, including discrete events, rendezvous, and asynchronous message pass
ing.

Ptolemy II includes libraries ofpolymorphic actors that use both kinds of polymorphism to maxi
mize reusability. Actors from these libraries can be used in a broad range of domains, where the
domain provides the communication protocol between actors. In addition, most of these actors are data
polymorphic, meaning that they can operate on a broad range of data types. In general, writing data
and domain polymorphic actors is considerably more difficult than writing more specialized actors.
This chapter discusses some of the issues.

4.2 Actor Classes

Figure 4.1 shows a UML static structure diagram for the key classes in the ptolemy.actor.lib pack
age (see appendix A of chapter 1 for an introduction to UML). All the classes in figure 4.1 extend
Tj^jedAtomicActor, except TimedActor and SequenceActor, which are interfaces. TypedAtomicActor
is in the ptolemy.actor package, and is described in more detail in the Actor chapter. For our purposes
here, it is sufficient to know that TypedAtomicActor provides a base class for actors with ports where
the ports carry typed data (encapsulated in objects called tokens).

None of the classes in figure 4.1 have any methods, except those inherited from the base classes
(which are not shown). The classes in figure 4.1 do, however, have public members, most ofwhich are
instances of TypedlOPort. By convention, actors in Ptolemy II expose their ports and parameters as
public members, and much of the fimctionality ofan actor is accessed through its ports and parameters.

Many of the actors are transformers, which extend the Transformer base class. These actors read
input data, modify it in some way, and produce output data. Some other actors that also have this char
acter, such as AddSubtract, MultiplyDivide, and Expression, do not extend Transformer because they
have somewhat unconventional port names. These actors are represented in figure 4.1 by the box
labeled "... Other Actors ...".

The stacked boxes labeled "... Transformers ..." and "... Other Actors ..." in figure 4.1 are not stan
dard UML. They are used here to refer to a set of actors that are listed below. There are too many
actors to show them individually in the static structure diagram. The diagram would lose its utility
because of the resulting clutter.

Most of the library actors can be used in any domain. Some domains, however, can only execute a
subset of the actors in this library. For example, the CT (continuous time) domain, which solves ordi
nary differential equations, may present data to actors that represent arbitrarily spaced samples of a
continuous-time signal. Thus, the data presented to an actor cannot be assumed by the actor to be a
sequence, since the domain determines how closely spaced the samples are. For example, the Sample-
Delay actor would produce unpredictable results, since the spacing of samples is likely to be uneven
over time.

The TimedActor and SequenceActor interfaces are intended to declare assumptions that the actor
makes about the inputs. They are empty interfaces (i.e., they contain no methods), and hence they are
used only as markers. An actor that implements SequenceActor declares that it assumes its inputs are
sequences of distinct data values, and that it will produce sequences of distinct data values as outputs.
In particular, the input must not be a continuous-time waveform. Thus, any actor that will not work
properly in the CT domain should declare that it implements this interfaced Most actors do not imple-
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ment SequenceActor,because they do not care whether the input is a sequence.
An actor that implements the TimedActor interfacedeclares that the current time in a model exe

cution affects its behavior. Currently, all domains can execute actors that implement TimedActor,
because all directors provide a notion of current time. However, the results may not be what is
expected. The SDF (synchronous dataflow)domain, for example,does not advancecurrent time. Thus,
if SDF is the top-level domain, the current time will always be zero, which is likely to lead to some
confusion with timed actors.

♦Input:TypedlOPott(muttl)

5

•Interface*

TimedActor

TimodSource

TypedAtomicActor

♦output:TypedlOPort
♦trigger: TypedlOPort(Token,iTnltl)

RandomSource

Transformer

♦Input:TypetllOPort
♦output: TypedlOPort

... Tnansfbrmers ...OttierActors.

•Interface*
SequencoActof

SequenceSourca

♦stopTime:Parameter(Dout)leToken) ♦seed: Paranietef(LongToken) ♦firingCountUmit:Parameter(IntToken)

A

-Timed Sources .RandomSources. . SequenceSouices.

FIGURE 4.1. Key actor base classes and interfaces.

1. Unfortunately,a scan of the current actor library (as ofversion 2.0) will reveal that we have not been very rigor
ous about this, and many actors that make a sequential assumption about the input fail to implement this inter
face.
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4.3 Actor Summaries

In this section, we summarize the actors that are providedin the defaultVergil actor library, shown
at the left-hand side of the window in figure 4.2. Note that this library is organized for user conve
nience, and the organization does not exactly match the package structure. Here, we give brief descrip
tions of each actor to give a high-level view of what actors are available in the library. Refer to the
class documentation for a complete description of these actors (in Vergil, you can right-click on an
icon and select "Get Documentation" to get the detailed documentation for an actor).

Some general terms that may be useful in interpreting the descriptions are:

lub: Least upper bound, referring particularly to data types. For typical data polymorphic actors,
the output data type is the lub of the input data types. This means that each input data type can be
losslessly converted to the type of the output. In some cases, the output data type also depends on
the type of parameters. See the data package chapter for more detail.

muitiport: A port that links to any number ofchannels. Ports described below are multiports only
if they say so explicitly. Multiports can be left disconnected in all domains, in which case no
inputs are read. Multiports resolve to a single data type, so all channels must have the same data
type.

It is also useful to know some general patterns ofbehavior.

• Unless otherwise stated, actors will read at most one input token from each input channel of each
input port, and will produce at most one output token. No output token is produced unless there are
input tokens.

• Unless otherwise stated, actors can operate in all domains except the FSM (finite state machine)

File View Edil Graph Debug Help

^ ubiiBes
_1j dlreclorlibrsrv

% I sources

ffl Jj sinks
S _l 10
Si I random
Sr I math
S- I flow control

S ] realtime
3i 2j logic
S Jj conversions
s; Jj anay
S: _J signal processing
i£ _J domain speclilc

more llorarles

s.- I espenmentai domains
S _j automata

S .jcomrn
5i _j Maitao
S _J matrix

_l regression test actors

FIGURE 4.2. The default Vergil actor library is shown at the left, expanded to the first level.
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domain, where components are instances oftheState class. Additionally, actors thatimplement the
SequenceActoror TimedActor interfaces may be rejectedby somedomains.

4.3.1 Sources

A source actor is a source of tokens. Most source actors extend the Source base class, as shown in
figure 4.1. Suchactorshave a trigger inputport, whichin somedomains serves to stimulate an output.
In the DE (discrete event) domain, for example, an inputat the trigger port causes the current value of
the source to be producedat the time stamp of the trigger input. The trigger port is a multiport, mean
ing that multiple channels can be connected to it. The trigger port can also be left unconnected in
domains that will invoke the actor automatically (SDF, CT, DT, PN,...). There is no need for a trigger
in these domains.

Some source actors use the fireAtQ method of the director to request that the actor be fired at par
ticular times in the future. In domains that do not ignore fireAtQ, such as DE, such actors will fire
repeatedly even if there is no trigger input. In the DE domain, the fireAtQ method schedules an event
in the future to refire the actor.

Source actors that extend TimedSource have a parameter called stopTime. When the current time
of the model reaches this time, then the actor requests of the director that this actor not be invoked
again. stopTime can be used to generate a finite source signal. By default, the stopTime parameter has
value 0.0, which indicates unbounded execution.

Source actors that extend SequenceSource have a parameter called firingCountLimit. When the
number of iterations of the actor reaches this limit, then the actor requests of the director that this actor
not be invoked Zigdim.. firingCountLimit can be used to generate a finite source signal. By default, the
firingCountLimit parameter has value 0, which indicates unbounded execution.

In the summary below, we show the names of ports and parameters in italics, and their types in
parentheses. The type indicator "general" means that the port accepts any token. If the port is marked
"multiport" then the port can be linked to multiple channels. Some of the most useful actors are Clock,
which is used extensively in DE models to trigger regularly timed events; Ramp, which produces a
counting sequence; Const, which produces a constant; and Pulse, which produces an arbitrary
sequence.

Clock (extends TimedSource)
Ports: trigger (input multiport, general), output (type of elements of values).
Parameters: offsets (array ofdoubles), period (double), stopTime (double), values (array).

Produce a piecewise-constant, periodic signal (or at minimum, a sequence ofevents corresponding
to transitions in this signal). This actor uses fireAtQ to schedule firings when time matches the
transition times.

Const

Ports: trigger (input multiport, general), output (type of value).
Parameters: value (general).

Produce a constant output with value given by value.
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CurrentTime (extends TimedSource)
Ports: trigger (input multiport, general), output (double).
Parameters: stopTime (double).

Produce an output token with value equal to the current time (the model time when the actor is
fired).

Interpolator (extends SequenceSource)
Ports: trigger (input multiport, general), output (type of elements of values)).
Parameters: firingCountLimit (int), indexes (array of ints), order (paX), period (int),

values (array of doubles).

Produce an output sequence by interpolating a specified set ofvalues. This can be used to generate
complex, smooth waveforms.

PoissonClock (extends TimedSource)
Ports: trigger (input multiport, general), output (type of elements of values).
Parameters: meanlime (double), stopTime (double), values (array).

Produce a piecewise-constant signal where transitions occur according to a Poisson process (or at
minimum, a sequence ofevents corresponding to transitions in this signal). This actor uses fireAtQ
to schedule firings at time intervals determined by independent, identically distributed exponential
random variables with mean meanTime.

Pulse (extends SequenceSource)
Ports: trigger (input multiport, general), output (type of elements of values).
Parameters: firingCountLimit (int), indexes (array of ints), repeat (boolean), values (array).

Produce a sequence of values at specified iteration indexes. The sequence repeats itself when the
repeat parameter is set to true.

Ramp (extends SequenceSource)
Ports: trigger (input multiport, general), output (lub(//i/Y, step)).
Parameters:firingCountLimit (int), init (general), step (general).

Produce a sequence that begins with the value given by init and is incremented by step after each
iteration. The types of init and step are required to support addition.

SequentialClock (implements SequenceActor)
Ports: output (type ofelements of values).
Parameters: offsets (array of doubles), per/off (double), values (array).

Output a sequence ofvalues at the times given by the offsets parameter.

Sinewave

Ports: output (double).
Parameters:frequency (double),(double), samplingFrequency (double).

Output a sinusoidal waveform.

SketchedSource (implements SequenceActor)
Ports: trigger (input multiport, general), output (double).
Parameters: dataset (int), length fm\),period (int).

Output a signal that has been sketched by the user on the screen.
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TimedSinewave

Ports: trigger (input multiport, general), output (double).
Parameters:frequencylnHz (double), magnitude (double),/7/ia5e (double).

Output a sinusoidal waveform at times specified by the trigger.

VariableClock (extends TimedSource)
Ports: trigger (input multiport, general), periodControl(iaput, double),

output (type of elements of values).
Parameters: offsets (array ofdoubles),per/orf (double), stopTime (double), values (array).

An extension of Clock with an input to dynamically control the period.

WallClockTime

Ports: trigger (input multiport, general), output (double).

Output the elapsed real time in seconds. This actor also appears in the "real time" directory of the
Vergil actor library.

4.3.2 Sinks

Sink actors are the ultimate destinations for tokens. Sink actors have no outputs, and include actors
that display data in plots, textual form, or tables.

Many of these actors are shown in figure 4.3, which shows a UML static structure diagram. Sev
eral of these sinks have both time-based and sequence-based versions. TimedPlotter, for example, dis
plays a plot of its input data as a function of time. SequencePlotter, by contrast, ignores current time,
and uses for the horizontal axis the position of an input token in a sequence of inputs. XYPlotter, on
the other hand, uses neither time nor sequence number, and therefore implements neither TimedActor
nor SequenceActor. All three are derived from Plotter, a base class with a public member, plot, which
implements the plot. This base class has afillOnWrapup parameter, which has a boolean value. If the
value is true (the default), then at the conclusion of the execution of the model, the axes of the plot will
be adjusted to just fit the observed data.

All of the sink actors implement the Placeable interface. Actors that implement this interface have
graphical widgets that a user of the actor may wish to place on the screen. Vergil constructs a display
panel by placing such actors. More customized placement can be achieved by calling the placeQ
method of the Placeable interface in custom Java code.

BarGraph
Ports: input (multiport, array of doubles).
Parameters: fillOnWrapup (boolean), iterationsPerUpdate (int), legend (string),

startingDataset (int).

Plot bar graphs, given arrays of doubles as inputs.

Discard

Ports: input (multiport, general).

Consume and discard input tokens.
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Display
Ports: input (multiport, general).
Parameters: columnsDisplayed (int)^ rowsDisplayed (int), title (string).

Display input tokens in a text area on the screen.

HistogramPlotter
Ports: input (multiport, double).
Parameters: binOffset (double), binWidth{dov^\€)yfillOnWrapup (boolean), legend (string).

Display a histogram of the data on each input channel.

RealTimePlotter

Ports: input (multiport, double).
Parameters: fillOnWrapup (boolean), legend (string), startingDataset (int).

Plot input data as a function of elapsed real time.

Recorder

Ports: input (multiport, general).
Parameters: capacity (int).

Record all input tokens for later querying.

SequencePlotter
Ports: input (multiport, double).
Parameters:fillOnWrapup (boolean), legend (string), startingDataset (int), xinit (double),

xUnit (double).

Plot the input tokens vs. their index number.

SequenceScope
Ports: input (multiport, double).
Parameters:fillOnWrapup (boolean), legend persistence (int), startingDataset (int),

width (int), xInit (double), xUnit (double).

Plot sequences that are potentially infinitely long in an oscilloscope style.

TimedPlotter

Ports: input (multiport, double).
Parameters:fillOnWrapup (boolean), legend (string), startingDataset (int).

Plot inputs as a function of time.

TimedScope
Ports: input (multiport, double).
Parameters:fillOnWrapup (boolean), legend {sXnn^,persistence (double), startingDataset (int),

width (double).

Plot inputs as a function of time in an oscilloscope style.

XYPlotter

Ports: inputX(multiport, double), inputY (multiport, double).
Parameters:fillOnWrapup (boolean), legend (string), startingDataset (int).

Display a plot of the data on each inputYchannel vs. the data on the corresponding inputXchannel.
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XYScope
Ports: inputX(multiport, double), inputY(multiport, double).
Parameters:fillOnWrapup (boolean), legend persistence (int), startingDataset (int).

Display a plot of the data on each inputYchannel vs. the data on the correspondinginputXchannel
with finite persistence.

4.3.3 I/O

The "io" library (see figure 4.2) consists ofactors that read and write to the file system or network.
Note the the "comm" library under "more libraries" includes a Windows only SerialComm actor that
communicates with serial and parallel ports.

DatagramReader
Ports: trigger (multiport, general), returnAddress (string), returnSocketNumber (int),

output (general).
Parameters: actorBujfferLength (int), blockAwaitingDatagram (boolean), defaultOutput (general),

defauUReturnAddress(string), defaultReturnSocketNumber (int), encoding (string), localSocket-
Number (int), overwrite (boolean), platformBuJferLength (int).

Read datagram packets from the network socket specified by localSocketNumber.

Datagram Writer
Ports: remoteAddress (multiport, string), remoteSocketNumber (multiport, int), data (general),

triggerOutput (general).
Parameters: defaultRemoteAddress (string), defaultRemoteSocketNumber (int), encoding (string),

localSocketNumber (int).

Send input data received on data port as a UDP datagram packet to the network address specified
by remoteAddress and remoteSocketNumber, or by default, by defaultRemoteAddress and
defaultRemoteSocketNumber.

DoubleReader

Ports: trigger (multiport, general), output (multiport, double).
Parameters: refresh (boolean), sourceURL (string).

Read tokens from a URL and output them.

FileWriter

Ports: input (general).
Parameters: filename (string).

Read tokens from any number of input channels and write their string values to the specified out
put file. If no file name is given, then the values are written to the standard output.

4.3.4 Random

The random library (see figure 4.2) consists of actors that generate random data.

Bernoulli

Ports: trigger (input multiport, general), output (boolean).
Parameters: trueProbability (double), seed (long).

Produce a random sequence of booleans (a source of coin flips).
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DiscreteRandomSource

Ports: trigger (input multiport,general),output (tj^e of elementsof values).
Parameters:pm/(array of doubles), seed (long), values (array).

Produce tokens with the given probability mass function.

Gaussian

Ports: trigger (input multiport, general), output (double).
Parameters: mean (double), seed (long), standardDeviation (double).

Produce a random sequence with a Gaussian distribution.

Uniform
Ports: trigger (input multiport, general), output (double).
Parameters: lowerBound (double), seed (long), upperBound (double).

Produce a random sequence with a uniform distribution.

4.3.5 Math

The math library (see figure 4.2) consists mostly of transformer actors, each of which calculates
some mathematical function. Some of these actors operate on type "scalar", meaning all numerical
data types (complex, double, int, long, and fix)^

AbsoluteValue

Ports: input (scalar), output (scalar).

Produce an output on each firing with a value that is equal to the absolute value of the input.

AddSubtract

Ports: plus (multiport, general), minus (multiport, general), output (\\xb(plus,minus)).

Add tokens on the plus input channels and subtract tokens on the minus input channels.

Accumulator

Ports: input (multiport, general), reset (boolean), output {\\xh{input, init)).
Parameters: init (int).

Output the initial value plus the sum of all the inputs since the last time a true token was received
at the reset port.

Average
Ports: input (general), reset (boolean), output (type of input).

Output the average of the inputs since the last time a true token was received at the reset port. The
reset input may be left disconnected in most domains.

Counter

Ports: increment (general), decrement (general), output (int).

An up-down counter ofreceived tokens.

1. In future releases, these actors may operate also on arrays and matrices.
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Differential
Ports: input (general), output (lub(current input, previous input)).

Output the difference between successive inputs.

DotProduct

Ports: inputl (array), input2 (array), output (array).

Output the dot product of two input arrays.

Expression
Ports: output (general).
Parameters: expression (string).

On each firing, evaluate the expression parameter, whose value is set by an expression that may
include references to any input ports that have been added to the actor. The expression language is
described in the Expressions chapter, with the addition that the expressions can refer to the values
of inputs, and to the current time by the variable name "time," and to the current iteration count by
the variable named "iteration." To add input ports to the actor in Vergil, right click on its icon and
select "Configure Ports," and then select "Add."

Limiter

Ports: input (double), output (double).
Parameters: bottom (double), top (double).

Produce an output token on each firing with a value that is equal to the input if the input lies
between top and bottom. Otherwise, if the input is greater than top, output top. If the input is less
than bottom, output bottom.

LookupTable
Ports: input (int), output (type of elements of table).
Parameters: table (array).

Output the value in the array of tokens specified by the table parameter at the index specified by
the input port.

MathFunction

Ports: JirstOperand (double), output (double).
Parameters: function (string).

Produce an output token with a value that is a function of the input(s). The function is specified by
thefunction attribute, where valid functions are exp, log, modulo, sign, square, and sqrt.

Maximum

Ports: input (multiport, scalar), maximumValue (multiport, scalar),
channelNumber (multiport, int).

Broadcast an output token on each firing on maximumValue with a value that is the maximum of
the values on the input channels. The index of this maximum is broadcast on channelNumber.

Minimum

Ports: input (multiport, scalar), minimumValue (multiport, scalar), channelNumber (multiport, int).

Broadcastan output token on each firing on minimum Value with a value that is the minimumof
the values on the input channels. The index of this minimum is broadcast on channelNumber.
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MultiplyDivide
Ports: multiply (multiport, general), divide (muitiport, general), output (lub(/«M//ip(y, divide)).

Multiply tokens on the multiply input channels, anddivide by tokens on thedivide input channels.

Quantizer
Ports: input (double), output (double).
Parameters: levels (array of doubles).

Producean output token with the value in levels that is closest to the input value.

Remainder

Ports: input (double), output (double).
Parameters: divisor (double).

Produce an output token with the value that is the remainder after dividing the token on the input
port by the divisor.

Scale

Ports: input (general), output Q}A){input,factor)).
Parameters:factor (general), scaleOnLeft (boolean).

Produce an output that is the product of the input and thefactor.

TrigFunction
Ports: input (double), output (double).
Parameters:function (string).

Produce an output token with a value that is a function of the input. The function is specified by
thefunction attribute, where valid functions are acos, asin^ atan, cos, sin, and tan.

4.3.6 Flow Control

The flow control actors route tokens or otherwise affect the flow ofcontrol. The output ofsome of
these actors are controlled via a control or select port. The flow control directory of the Vergil actor
library contains a subdirectory named "boolean flow control". Actors in this subdirectory are variants
of actors in the "flow control" directory that have boolean select or control ports.

BooleanMultiplexor
Ports: truelnput {%Qnerdi{),falseInput (general), select (boolean),

output ([vh{truelnput,falselnput)).

Produce as output the token from either truelnput orfalselnput as specified by the select input.
Exactly one token from each input port is consumed.

BooleanSelect

Ports: truelnput {genex?\),falselnput (general), control (boolean),
output {[vh{truelnput,falselnput)).

Produce as output the token from either truelnput orfalselnput as specified by the control input.
Tokens from the port that is not selected are not consumed.
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BooleanSwitch

Ports: input (general), control (boolean), trueOutput(type of input),falseOutput (type of input).

Produce the token readfromthe inputporton eitherthe trueOutput or thefalseOutputport,as
specified by the control input port.

Chop (implements SequenceActor)
Ports: input (general), output (type of input).
Parameters: numberToRead(int), numberToWrite (int), offset (int), usePastlnputs (boolean).

Chop an input sequence and construct from it a new output sequence. This actor can be used, for
example, for zero-padding, overlapping windows, delay lines, etc.

Commutator (implements SequenceActor)
Ports: input (multiport, general), output (type of input).

Interleave the data on the input channels into a single sequence on the output.

Distributor (implements SequenceActor)
Ports: input (general), output (multiport, type of input).

Distribute the data on the input sequence into multiple sequences on the output channels.

Multiplexor
Ports: input (multiport, general), select (int), output (type of input).

Produce as output the token on the channel ofinput specified by the select input. Exactly one token
is consumed from each channel of input in each firing.

RecordAssembler

Ports: output (record).

Produce an output token that results from combining a token from each of the input ports (which
must be added by the user). To add input ports to the actor in Vergil, right click on its icon and
select "Configure Ports," and then select "Add." The name of each field in the record is the name
of the port that supplies the field.

RecordDisassembler

Ports: input (record).

Produce output tokens on the output ports (which must be added by the user) that result from sepa
rating the record on the input port. To add output ports to the actor in Vergil, right click on its icon
and select "Configure Ports," and then select "Add." The name of each field extracted from the
record is the name of the output port to which the value of the field is sent.

RecordUpdater
Ports: input (record), output (record).

Produce an output token that results from the union of the record read from the input port and the
values supplied by the other input ports. The user must create the other input ports. Input ports
with the same name as a field in the original input record are used to update the corresponding
field in the output token.
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Repeat
Ports: input (general), output (type of input).
Parameters: blockSizeiyxii), numberOJTimes (int).

Repeateach input sample(a block of tokens)a specifiednumberof times.

SampleDeiay
Ports: input (general), output (type of input).
Parameters: initialOutputs (array).

Producea set of initial tokens during the initializeO method, and subsequently pass input tokens to
the output. Used to break dependency cycles in directed loops of SDF models.

Select

Ports: input (multiport, general), control (int), output (type of input).

Produce as output the token on the channel of input specified by the control input. Tokens on
channels that are not selected are not consumed.

Sequencer (implements SequenceActor)
Ports: input (general), sequenceNumber (int), output (type of input).
Parameters: startingSequenceNumber (int).

Put tokens in order according to their numbers in a sequence.

Switch

Ports: input (general), control (int), output (multiport, type of input).

Produce the token read from the input port on the channel ofoutput specified by the control input.

Synchronizer
Ports: input (multiport, general), output (multiport, type of input).

Wait until at least one token exists on each channel of input, then consume exactly one token from
each input channel and output each token on its corresponding output channel.

VectorAssembler

Ports: input (multiport, double), output (column vector).

Produce a column vector (i.e., a DoubleMatrixToken with one column) on the output port. This
column vector results from assembling exactly one token from each channel of the input port.

VectorDisassembler

Ports: input (column vector), output (multiport, double).

Read a column vector (i.e., a DoubleMatrixToken with one column) from the input port and send
out individual DoubleTokens to each channel of the output port.

4.3.7 Real Time

The behavior of the real time actors is affected by the amount of elapsed real time.
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Sleep
Ports: input (multiport, general), output (multiport, general).
Parameters: sleepTime (long).

Produce as output the tokens received on input after an amount of real time specified by the
sleepTime parameter.

WallClockTime

Ports: trigger (input multiport, general), output (double).

Output the elapsed real time in seconds. This actor also appears in the "sources" directory of the
Vergil actor library.

4.3.8 Logic

The logic actors perform logical operations on inputs.

Comparator
Ports: left (double), right (double), output (boolean).
Parameters: comparison (string), tolerance (double).

Produce an output token with a value that is a comparison of the input. The comparison is speci
fied by the comparison attribute, where valid comparisons are >, >=, <, <=, and ==.

Equals
Ports: input (multiport, general), output (boolean).

Consume at most one token from each channel of input, and produce an output token with value
true if these tokens are equal in value, and false otherwise.

isPresent

Ports: input (multiport, general), output (multiport, boolean).

Consume at most one token from each channel ofinput, and output a boolean on the corresponding
output channel (if there is one). The value of the boolean is true if the input is present and false
otherwise.

LogicalNot
Ports: input (boolean), output (boolean).

Produce an output token which is the logical negation of the input token.

LogicFunction
Ports: input (multiport, boolean), output (boolean).
Parameters: function (string).

Produce an output token with a value that is a logical function of the tokens on the channels of
input. The fxmction is specified by thefunction attribute, where valid functions are and, or, xor,
nand, nor, and xnor.

4.3.9 Conversions

Ptolemy II has a sophisticated type system that allows actors to be polymorphic (to operate on
multiple data types). Typically, actors express type constraints between their ports and their parame
ters. When actors are connected, these type constraints are resolved to determine the type of each port.
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Conversions between types are automatic if they result in no loss of data. However, sometimes, a
model buildermaywish to force a particular conversion. The actors in the conversions librarysupport
this.

BooleanToAnything
Ports: input (boolean), output (yv^o(falseValue, true Value))
Parameters:falseValue (general), trueValue (general)

Convert a Boolean input token to any data type.

BitsToInt

Ports: input (boolean), output (int).

Convert 32 successive binary inputs into a two's complement integer.

CartesianToComplex
Ports: real (double), imag (double), output (complex).

Convert two tokens representing the real and imaginary of a complex number into their complex
representation.

CartesianToPolar

Ports: X(double), y (double), angle (double), magnitude (double).

Convert a Cartesian pair (a token on x and a token on y) to two tokens representing its polar form
(which are output on angle and magnitude).

ComplexToCartesian
Ports: input (complex), real (double), imag (double).

Convert a token representing a complex number into its Cartesian components (which are output
on real and imag).

ComplexToPolar
Ports: input (complex), angle (double), magnitude (double).

Convert a token representing a complex number into two tokens representing its polar form (which
are output on angle and magnitude).

DoubleToFix

Ports: input (double), output (fix).
Parameters: precision (matrix of ints), quantization (string).

Convert a double into a fix point number with a specific precision, using a specific quantization
strategy.

FixToDouble

Ports: input (fix), output (double).
Parameters: precision (matrix of ints), quantization (string).

Convert a fix point into a double, by first setting the precision of the fix point to the supplied preci
sion, using a specific quantization strategy.
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FixToFix

Ports: input (fix), output (fix).
Parameters: overflow (string),precw/ow (matrix of ints), quantization (string).

Convert a fixpoint intoanother fix pointwithpossibly a different precision, using a specific quan
tizer and overflow strategy,

IntToBits

Ports: input (int), output (boolean).

Convert an input integer into 32 successive binary outputs,

PolarToCartesian

Ports: angle (double), magnitude (double), x (double), y (double).

Converts two tokens representing a polar coordinate (a token on angle and a token on magnitude)
to two tokens representing their Cartesian form (which are output on x andy),

FolarToComplex
Ports: angle (double), magnitude (double), output (complex).

Converts two tokens representing polar coordinates (a token on angle and a token on magnitude)
to a token representing their complex form.

Round

Ports: input (double), output (int).
Parameters:function (string).

Produce an output token with a value that is a rounded version of the input. The rounding method
is specified by thefunction attribute, where valid fimctions are ceil, floor, round, and truncate.

StringToIntArray
Ports: input (string), output (array of integers)

Convert a String to an integer array.

4.3.10 Array

The array library supports manipulations of arrays, which are ordered collections of tokens of arbi
trary type.

ArrayAppend
Ports: input (multiport, array), output (array).

Append arrays on the input channels to produce a single output array.

ArrayElement
Ports: input (array), output (array).
Parameters: index (int).

Extract an element from an array and produce it on the output port.
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ArrayExtract
Ports: input (array), output (array).
Parameters:sourcePosition (int), extractLength (int), destinationPosition (int),

outputArrayLength (int).

Extract a subarray from an array and produce it on the output port.

ArrayLength
Ports: input (array), output (int).

Output the length of the input array.

ArrayToSequence
Ports: input (array), output (type of input element).
Parameters: arrayLength (int), enforceArrayLength (boolean).

Extract all elements from an input array and produce them sequentially on the output port.

SequenceToArray
Ports: input (general), output (array).
Parameters: arrayLength (int).

Collect a sequence of inputs into an array and produce the array on the output port.

4.3.11 Signal Processing

The signal processing library is divided into sublibraries.

Audio

The audio library provides actors that can read and write audio files, can capture data from an
audio input such as a CD or microphone, and can play audio data through the speakers of the comput
ers. It uses the javasound library, which is part of the 1.3 distribution of Java Platform 2 from Sun
Microsystems. The AudioCapture and AudioPlayer actors are unusual in that they have coupled
parameter values. Changing the parameters ofone results in the parameters of the other being changed.
Also, as of this writing, they have the restriction that only one of each may be used in a model at a
time, and that if there are two models that use them, then those two models may not be executed simul
taneously.

AudioCapture
Ports: trigger (multiport, general), output (multiport, double).
Parameters: sampleRate (int), bitsPerSample (int), channels (int).

Capture audio from the audio input port of the computer, or from its microphone, and produce the
samples at the output.

AudioReader

Ports: trigger (multiport, general), output (multiport, double).
Parameters: sourceilRL (string).

Read audio from a URL, and produce the samples at the output.
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AudioPlayer
Ports: input (multiport, double).
Parameters:sampleRate (int), bitsPerSample (int), channels (int).

Playaudio sampleson the audiooutputport of the computer, or fromits speakers.

AudioWriter

Ports: input (multiport, double).
Parameters: pathName (string), sampleRate (int), bitsPerSample (int), channels (int).

Write audio data to a file.

Communications

The communications library, which has barely been started, will eventually collect actors that sup
port modeling and design of digital communication systems. Currently, it contains only three actors.

LineCoder

Ports: input (boolean), output (type of element of table)
Parameters: table (array), wordLength (int).

Read a sequence ofbooleans (of length wordLength) and interpret them as a binary index into the
table, from which a token is extracted and sent to the output.

LMSAdaptive
Ports: input (double), error (input, double), output (double), tapValues (output, array of doubles).
Parameters: decimation (int), decimationPhase (int), stepSize(doub\e), errorDelay(int),

initialTaps(a.rray of doubles).

Filter the input with an adaptive filter, and update the coefficients of the filter using the input error
signal according to the LMS (least mean-square) algorithm.

RaisedCosine

Ports: input (double), output (double)
Parameters: decimation (int), decimationPhase (int), interpolation (int), lengthimX),

excessBW{do}\h\e), root (boolean), symbollnterval (int).

An FIR filter with a raised cosine frequency response. This is typically used in a communication
systems as a pulse shaper or a matched filter.

Filtering

DelayLine
Ports: input (general), output (array).
Parameters: initialValues (array).

In each firing, output the n most recent input tokens collected into an array, where n is the length
of initialValues. In the beginning, before there are n most recent tokens, use the tokens from ini
tialValues.
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DownSample
Ports: input (general), output (type of input).
Parameters:factor (int), phase (int).

Readfactor inputs and produce only one of them on the output.

FIR

Ports: input (general), output (general).
Parameters: decimation (int), decimationPhase (int), interpolation (int), taps (array).

Producean output token with a value that is the input filtered by an FIR filter with coefficients
given by taps.

IIR

Ports: input (double), output (double).
Parameters: numerator (array of doubles), denominator (array of doubles).

Produce an output token with a value that is the input filtered by an IIR filter using a direct form II
implementation.

Lattice

Ports: input (double), output (double).
Parameters: reflectionCoeJficients (array).

Produce an output token with a value that is the input filtered by an FIR lattice filter with coeffi
cients given by reflectionCoefflcients.

LMSAdaptive
Ports: input (double), error (input, double), output (double), tapValues (output, array ofdoubles).
Parameters: decimation (int), decimationPhase (int), j/e/75'/ze(double), errorDelay{int),

initialTapsianay of doubles).

Filter the input with an adaptive filter, and update the coefficients of the filter using the input error
signal according to the LMS (least mean-square) algorithm.

RecursiveLattice

Ports: input (double), output (double).
Parameters: reflectionCoefflcients (array).

Produce an output token with a value that is the input filtered by a recursive lattice filter with coef
ficients given by reflectionCoefflcients.

UpSample
Ports: input (general), output (type of input).
Parameters:factor (ynX),phase(int).

Read one input token and producefactor outputs, with all but one ofthe outputs being a zero ofthe
same type as the input.
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VariableFIR

Ports: input (general), newTaps (input, array), output (general).
Parameters: decimation (int), decimationPhase (int), interpolation (int), blockSize (int).

Filter the input sequence with an FIR filter with coefficients given on the newTaps input port. The
blockSizeparameter specifies the number of successive inputs that are processed for each set of
taps provided on newTaps.

VariableLattice

Ports: input (double), newTaps (input, array of doubles), output (double).
Parameters: blockSize (int).

Filter the input sequence with an FIR lattice filter with coefficients given on the newCoefficients
input port. The blockSizeparameter specifies the number of successive inputs that are processed
for each set of taps provided on newCoeJJicients.

VariableRecursiveLattice

Ports: input (double), newTaps (input, array of doubles), output (double).
Parameters: blockSize (int).

Filter the input sequence with a recursive lattice filter with coefficients given on the newCoeJJi
cients input port. The blockSize parameter specifies the number of successive inputs that are pro
cessed for each set of taps provided on newCoeJJicients.

Image Processing

A preliminary image processing library is provided with the 2.0 release, but it is at a sufficiently
early stage of development that we do not document here. See the on-line documentation.

Spectrum

DB

Ports: input (double), output (double).
Parameters: inputlsPower (boolean), min (double).

Produce a token that is the value in decibels (A:*logio(z)) of the token received, where A: is 10 if
inputlsPower is true, and 20 otherwise. The output is never less than min (it is clipped ifneces
sary).

FFT

Ports: input (complex), output (complex).
Parameters: order (int).

A fast Fourier transform of size 2°''̂ '̂'.

IFFT

Ports: input (complex), output (complex).
Parameters: order (int).

An inverse fast Fourier transform ofsize

LevinsonDurbin

Ports: autocorrelation (input, array of doubles), errorPower (output, array of doubles).

4-22 Ptolemy II



Actor Libraries

linearPredictor (output, array of doubles), reflectionCoefficients (output, array of doubles).

Calculate the linearpredictor coefficients (forbothan FIRand Lattice filter) for thespecified auto
correlation input.

MaximumEntropySpectrum
Ports: input (double), output (double).
Parameters: order (int), numberOflnputs (int), log2resolution{m\).

A fancy spectrum estimator that usesthe LevinsonDurbin algorithm to calculate linearpredictor
coefficients, and then uses those as a parametric model for the random process.

FhaseUnwrap
Ports: input (double), output (double).

A simple phase imwrapper.

SmoothedSpectrum
Ports: input (double), output (double).
Parameters: order (int), numberOflnputs (int), loglresolutioniyaX).

A spectrum estimator called the Blackman-Tukey algorithm, which estimates an autocorrelation
function by averaging products of the input samples, and then calculates the FFT of that estimate.

Spectrum
Ports: input (double), output (double).
Parameters: order (int), numberOflnputs (int), loglresolutioniini).

A simple spectrum estimator that calculates the FFT of the input. For a random process, this is
called the periodogram spectral estimate.

Statistical

A small number of statical actors are provided.

Autocorrelation

Ports: input (general), output (array of type of input).
Parameters: numberOflnputs (int), numberOfLags (int), 6/a5ed(boolean),

symmetricOutput (boolean).

Estimate the autocorrelation by averaging products of the input samples.

PowerEstimate

Ports: input (double), output (double).
Parameters:forgettingFactor (double).

Estimate the power of the input signal.

4.3.12 Continuous Time

The continuous-time library contains a set of actors designed specifically for use in the CT
domain. The continuous time directory of the Vergil actor library contains subdirectories named "event
generators and "waveform generators".
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Integrator
Ports: input (double), output (double).
Parameters: initialState (double).

Integrate the input signal over time to produce the output signal. That is, the input is the derivative
of the output with respect to time. This actor can be used to close feedback loops in CT to define
interesting differential equation systems.

LaplaceTransferFunction
Ports: input (double), output (double).
Parameters: denominator (array of doubles), numerator (array ofdoubles), C

Filter the input with the specified rational Laplace transform transfer function. Note that this actor
constructs a submodel, so it might be interesting to look inside the actor after it is initialized.

LinearStateSpace
Ports: input (multiport, double), output (multiport, double), stateOutput (multiport, double).
Parameters: A (double matrix), B (double matrix), C (double matrix), D (double matrix),

initialStates (double row matrix).

Filter the input with a linear system. Note that this actor constructs a submodel, so it might be
interesting to look inside the actor after it is initialized.

DifferentialSystem
Parameters: stateVariableNames (array of strings), initialStates (array of doubles), C

Filter the input with the specified system, which can nonlinear, and is specified using the expres
sion language. Note that this actor constructs a submodel, so it might be interesting to look inside
the actor after it is initialized.

RateLimiter

Ports: input (double), output (double).
Parameters: risingSlewRate {6o\xh\e),fallingSlewRate (double).

Limit the first derivative of the input signal, and produce the result as an output sequence.

The following actors are in the continuous time event generators library

EventSource

Ports: output (type of element of values)
Parameters: offsets (array of doubles), per/of/ (double), values (array)

Output a set of events at discrete set of time points.

LevelCrossingDetector
Ports: input (unknown), output (type of input), trigger (double)
Parameters: defaultEventValue (double), errorTolerance (double), level (double)

A event detector that converts continuous signals to discrete events when the continuous signal
crosses a level threshold.
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PeriodicSampler
Ports: input (multiport, double), output (multiport, double).
Parameters: samplePeriod (double).

Sample the input signal with the specified rate, producing discrete output events.

TriggeredSampler
Ports: input (multiport, double), trigger (input, general), output (multiport, double).

Sample the input signal at times where the trigger input has a discrete input events.

ThresholdMonitor

Ports: input (double), output (double).
Parameters: thresholdWidth (double), thresholdCenter (double).

Output true if the input value is in the interval [a, 6], which is centered at thresholdCenter and has
width thresholdWidth. This actor controls the integration step size so that the input does not cross
the threshold without producing at least one true output.

ZeroCrossingDetector
Ports: input (double), trigger (input, double), output (double).
Parameters: errorTolerance (double).

When the trigger is zero (within the specified errorTolerance)^ then output the value from the
input port as a discrete event. This actor controls the integration step size to accurately resolve the
time at which the zero crossing occurs.

The following actors appear in the waveform generator director of Vergil.

ZeroOrderHold

Ports: input (double), output (double).

Convert discrete events at the input to a continuous-time signal at the output by holding the value
of the discrete event until the next discrete event arrives.

FirstOrderHold

Ports: input (general), derivative (double), output (double)
Parameters: defaultValue (double), defaultDerivative (double)

Convert discrete events at the input to a continuous-time signal at the output by projecting the
value with the derivative.

4.3.13 Discrete Event

A library of actors is provided to particularly support discrete-event models. In discrete-event
models, signals consist of events placed in time, where time is a double. Events are processed in chro
nological order.

EventButton

Ports: trigger (input, general), output (string)
Parameters: text (string)

Output a token in response to the click of a button.
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EventFilter

Ports: input (multiport, boolean), output (multiport, boolean)

An actor that filters a stream of Boolean Tokens. Every true input token that it receives is repro
duced on the output port. False tokens are discarded. This is usually used to properly trigger other
discrete event actors (such as inhibit and select) based on boolean values.

Inhibit

Ports: inhibit (input, general), input (multiport, general), output (multiport, type of input)
Parameters:

Output a received input token, imless the inhibit port receives a token.

Merge
Ports: input (multiport, general), output (type of input).

Merge input events into a single signal.

PreemptableTask
Ports: input (general), interrupt (boolean), output (type of input)
Parameters: executionJime (double)

Simulate a preemptable task.

Previous

Ports: input (general), output (}.vb{input, initialValue))
Parameters: initialValue (general)

On each iteration, this actor produces the token received on the previous iteration. On the first iter
ation, it produces the token given by the initialValue parameter, if such a value has been set.

Queue
Ports: input (general), output (type of input), trigger (general)

This actor implements an event queue. When a token is received on the input port, it is stored in
the queue. When the trigger port receives a token, the oldest element in the queue is output. If there
is no element in the queue when a token is received on the trigger port, then no output is produced.

Queue WithNextOut
Ports: input (general), nextOut (type of input), output (type of input), trigger (general)
Parameters:

This actor is like the Queue actor above. An additional output port, nextOut, has been added which
allows the model to know what's next to come out. This new output produces a token whenever the
queue has been empty and a new token is queued. It also produces an output whenevera token is
taken from the queue and at least one token remains. Otherwise, no output token is produced at
nextOut. The token produced is the oldest token remaining in the queue.

Sampler
Ports: input (multiport,general), trigger (input,general),output (multiport, type of input).

On each trigger input, produce at the output the most recently seen input.
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SamplerWithDefault
Ports: Ports: input (multiport, general), trigger (input, general), output(multiport, typeof input).
Parameters: initialValue (general)

Outputthe most recent input token when the trigger port receives a token. If no tokenhas been
receivedon the inputport when a tokenis received on the trigger port, then the value of the initial-
Value parameter is produced.

Server

Ports: input (general), newServicelime (input, double), output (type of input).
Parameters: serviceTime (double).

Delay input events until they have been "served" for the specified amount of time.

SingleEvent
Ports: output (type of value).
Parameters: time (double), value (general).

Produce a single event with the specified time and value.

TimedDelay
Ports: input (general), output (type of input).
Parameters: delay (double).

Delay input events by the specified amount.

TimeGap
Ports: input (general), output (double).

Produce at the output the amount of time between input events.

Timer

Ports: input (double), output (type of value).
Parameters: value (general).

Given an input time value, produce value on the output that amount of time in the future.

VariableDelay
Ports: input (general), delay (input, double), output (type of input).
Parameters: defauUDelay (double).

Delay input events by the specified amount.

WaitingTime
Ports: waiter (input, general), waitee (input, general), output (double).

Measure the amount oftime that one event (arriving on waiter) has to wait for an event to arrive on
waitee. There is an output event for every event that arrives on waiter^ where the value of that out
put is the time spent waiting, and the time of the output is time of the arriving waitee event.

4.4 Data Polymorphism

A data polymorphicactor is one that can operateon any of a numberof input data types. For exam
ple, AddSubtract can accept any type of input. Addition and subtraction are possible on any type of
token because they are defined in the base class Token.
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Figure4.4 shows the methods defined in the base class Token. All data exchanged betweenactors
in Ptolemy is wrapped in an instance of Token (or more precisely, in an instance of a class derived
from Token). Notice that addQ and subtractQ are methods of this base class. This makes it easy to
implement a data polymorphic adder.

It is instructive to examine the code in an actor that performs data polymorphic operations. The
fireO method of the AddSubtract actor is shown in figure 4.5. In this code, we first iterate through the
channels ofplus input. The first token read (by the getQ method) is assigned to sum. Subsequently, the
polymorphic addQ method ofthat token is used to add additional tokens. The second iteration, over the
channels at the minus input port, is slightly trickier. Ifno tokens were read from the plus input, then the
variable sum is initialized by calling the polymorphic zeroQ method ofthe first token read at the minus

4-28

♦a(ld(rightArg:Token): Token
+addReverse(leftArg: Token): Token
♦convertftoken : Tokens: Token

••'dividetdi visor: Token); Token
+divideRevefse(dividend: Token): Token

getTypeO: Type
+isEqualTo(token; Token); BooleanToken
+modulo(rightArg: Token); Token
+moduloReverse(leftArg: Token): Token
+muItiply(f'9htFactor: Token): Token
♦multipl^everseCleftFaclof: Token): Token
+one(): Token
+subtracl(fightArg: Token): Token
♦sublractReverse{leftArg: Token): Token
♦zeroQ: Token

FIGURE4.4. The Tokenclass defines a polymorphic interface that includes basic arithmetic operations.

public void fireO throws IllegalActionException {
Token sum = null;

for lint i = 0; i < plus.getWidthO; i++) {
if (plus.hasToken(i)) {

if (sum == null) {
sum = plus.get(i);

} else {

sum = sum.add(plus.get(i));

)

}

)

}
for (int i = 0; i < minus.getWidthO; i++) {

if (minus.hasToken(i)) {
Token in = rainus.get(i);
if (sum == null) {

sum = in.zero0;

)
sum = sum.subtract(in);

)

}
if (sum != null) {

output.send(0, sum);

FIGURE4.5. The fireQmethodof the AddSubtractshows the use of polymorphicadd() and subtractQmeth
ods in the Token class (see figure 4.4).
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port. The zeroQ methodreturnswhatevera zero value is for the token in question.
Not all classes derived from Token override all its methods. For example, StringToken overrides

addO but not subtractO- Adding strings means simply concatenating them, but it ishardto assign a rea
sonable meaning to subtraction. Thus, if AddSubtract is used on strings, then the minusport must not
ever receive tokens. It may be simply left disconnected, in which case minus.getWidthQ returns zero.
If the subtractOmethod of a StringTokenis called, then a runtime exception will be thrown.

4.5 Domain Polymorphism

Most actors access their ports as shown in figure 4.5, using the hasTokenQ, getQ, and sendQ meth
ods. Those methods are polymorphic, in that their exact behavior depends on the domain. For example,
getQ in the CSP domain causes a rendezvous to occur, which means that the calling thread is sus
pended until another thread sends data to the same port (using, for example, the sendQ method on one
of its ports). Correspondingly, a call to sendQ causes the calling thread to suspend until some other
thread calls a corresponding getQ. In the PN domain, by contrast, sendQ retums immediately (if there
is room in the channel buffers), and only getQ causes the calling thread to suspend.

Each domain has slightly different behavior associated with hasTokenQ, getQ, sendQ and other
methods of ports. The actor, however, does not really care. The fireQ method shown in figure 4.5 will
work for any reasonable implementation of these methods. Thus, the AddSubtract actor is domain
polymorphic.

Domains also have different behavior with respect to when the fireQ method is invoked. In pro
cess-oriented domains, such as CSP and PN, a thread is created for each actor, and an infinite loop is
created to repeatedly invoke the fireQ method. Moreover, in these domains, hasTokenQ always retums
true, since you can call getQ on a port and it will not retum until there is data available. In the DB
domain, the fireQ method is invoked only when there are new inputs that happen to be the oldest ones
in the systems, and hasTokenQ retums true only if there is new data on the input port. The design of
actors for multiple domains is covered in the Designing Actors chapter.
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5.1 Overview

Ptolemy is about component-based design. The domains define the semantics of the interaction
between components. This chapter explains the common, domain-independent principles in the design
of components that are actors. Actors are components with input and output that at least conceptually
operate concurrently with other actors.

As explained in the previous chapter, some actors are designed to be domain polymorphic, mean
ing that they can operate in various domains. Others are domain specific. Refer to the domain chapters
in part 3 for domain-specific information relevant to the design of actors. This chapter explains how to
design actors so that they are maximally domain polymorphic. As also explained in the previous chap
ter, many actors are also data polymorphic. This means that they can operate on a wide variety of token
types. Domain and data polymorphism help to minimize the amount of duplicated code when writing
actors.

Code duplication can be also be avoided using object-oriented inheritance. Inheritance can also be
used to enforce consistencyacross a set of classes. Figure 4.1, shows a UML static-structurediagram
for an actor library. Three base classes. Source, Sink, and Transformer, exist to ensure consistent nam
ing of ports and to avoid duplicatingcode associatedwith those ports. Since most actors in the library
extend these base classes, users of the librarycan guess that an input port is named "input" and an out
put port is named "output," and they will probably be right. Using base classes avoids input ports
named "in" or "inputSignal" or something else. This sort of consistency helps to promote re-use of
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actors because it makes them easier to use. Thus, we recommendusing a reasonablydeep class hierar
chy to promote consistency.

5.2 Anatomy of an Actor

Each actor consists of a source code file (or, rarely, a class file) written in Java. Sources are com
piled to Java byte code as directed by the makefile in their directory. Thus, when creating a new actor,
it is necessary to add its name to the local makefile. Vergil, described fully in its own chapter, is the
graphical design tool commonly used to compose actors and other components into a complete pro
gram, a "Ptolemy model." To facilitate use of an actor in Vergil, it must appear in one of the actor
libraries. This permits it to be dragged from the library pallet onto the design canvas. The libraries are
XML files. Many of the actor libraries are in the $PTII/ptolemy/actor/lib directory.

The basic structure of an actor is shown in figure 5.1. In that figure, keywords in bold are features
of Ptolemy II that are briefly described here and described in more detail in the chapters ofpart 2. Italic
text would be substituted with something else in an actual actor definition.

We will go over this structure in detail in this chapter. The source code for existing Ptolemy II
actors, located mostly in $PTII/ptolemy/actor/lib, should also be viewed as a key resource.

5.2.1 Ports

By convention, ports are public members of actors. They represent a set of input and output chan
nels through which tokens may pass to other ports. Figure 5.1 shows a single portportName that is an
instance of TypedlOPort, declared in the line

public TypedlOPort portName;

Most ports in actors are instances of TypedlOPort, unless they require domain-specific services, in
which case they may be instances of a domain-specific subclass, such as DEIOPort. The port is actu
ally created in the constructor by the line

portName = new TypedlOPort(this, "portName", true, false);

The first argument to the constructor is the container of the port, this actor. The second is the name of
the port, which can be any string, but by convention, is the same as the name of the public member.
The third argument specifies whether the port is an input (it is in this example), and the fourth argu
ment specifies whether it is an output (it is not in this example). There is no difficulty with having a
port that is both an input and an output, but it is rarely useful to have one that is neither.

Multiports and SinglePorts. A port can be a singleport or a multiport. By default, it is a singleport. It
can be declared to be a multiport with a statement like

portName.setMultiport(true);

Allportshavea width, whichcorresponds to thenumber of channels the port represents. If a port is not
connected,the width is zero. If a port is a singleport, the width can be zero or one. If a port is a multi-
port, the width can be larger than one.
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/** Javadoc coiment for the class. */

public class ClassUame extends BaseCJass inplements Markerlnterface {

/** Javadoc conanent for constructor. */

public Ciass^a;ne(CoinpositeEntity container, String name)
throws NaneDuplicationException, IllegalActionException (

super(container, name);
// Create and configure ports, e.g. ...
portWame = new TypedIOPort(this, "portWame", true, false);
// Create and configure parameters, e.g. . . .
parameterName = new Parameter (this, 'parameterName');
parameterName. setTypeBguals(BaseType.DODBIiB);

)

lllllllllllllllltllllllltllltllllllllllllllllllltltllllllllllllllll
IIII ports and parameters 11II

/** Javadoc comment for port. */
public TypedlOPort portName;

I** Javadoc comment for parameter. *1
public Parameter parameterName;

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

1111 public methods 1111

/** Javadoc comment for fire method. *1

public void fireO {
super.fire();
... read inputs and produce outputs ...

)

/** Javadoc comment for initialize method. */

public void initialize{) {
super.initialize 0;
... initialize local variables ...

}

I** Javadoc comment for prefire method. */
public boolean prefire0 (

... determine whether firing should proceed and return false if not ...
return super.prefireO ;

}

I** Javadoc comment for postfire method. */
public boolean postfireO {

... update persistent state ...

... determine whether firing should continue to next iteration and return false if not
return super.postfireO ;

)

I** Javadoc comment for wrapup method. */
public void wrapup() {

super.wrapup();
... display final results ...

}

FIGURE 5.1. Anatomy ofan actor.

Heterogeneous Concurrent Modeling and Design 5-3



Designing Actors

Reading and Writing. Data (encapsulated in a token) can be sent to a particular channel of an output
multiport with the syntax

portName. send (channelNumher, token) ;

where channelNumber is the numberof the channel (beginning with 0 for the first channel).The width
of the port, the number of channels, can be obtained with the syntax

int width = partName.getVlidth() ;

If the port is unconnected, then the token is not sent anywhere. The sendQ method does not complain.
Note that in general, if the channel number refers to a channel that does not exist, the sendQ method
does not complain.

A token can be sent to all output channels of a port (or none if there are none) with the syntax

porfcWajne.broadcast (token) ;

If the port is not a multiport then there is only one channel and it is more efficient to use the syntax

portName.send(0, token);

You can generate a token from a value and then send this token it with the syntax

portName.send{0, new IntToken(integerValue)) ;

A token can be read from a channel with the syntax

Token token = portName.get. {channelNumber) ;

You can read from channel 0 of a port and extract the contained value (if you know its type) with the
syntax

double variableName = ( (DoubleToken) portName. get (0) ) . doubleValue () ;

You can query an input port to see whether such a getQ will succeed (whether a token is available or
can be made available) with the syntax

boolean tokenAvailable = portName.hasToken(channeliVumber) ;

You can also query an output port to see whether a sendQ will succeed using

boolean spaceAvailable = portName. hasRoom( channelNumber) ;

althoughwith most currentdomains,the answer is always true. Note that the getQ,hasRoomQ and has-
TokenQ methods throw IllegalActionException if the channel is out of range, but sendQjust silently
returns.
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Ptolemy II includes a sophisticated type system, described fully in theType System chapter. This
type system supports specification of type constraints in theform of inequalities between types. These
inequalities can be easily understood as representing the possibility of lossless conversion. Type a is
less than type b if an instance of a can be losslessly converted to an instance of b. For example,
IntToken is less than DoubleToken, which is less than ComplexToken. However, LongToken is not
less than DoubleToken,and DoubleTokenis not less than LongToken,so these two types are said to be
incomparable.

Suppose thatyou wish to ensure that the type of an output is greater thanor equalto the type of a
parameter. Youcan do so by putting the following statement in the constructor:

porCNaine. setTypeAtLeast (parameterName) ;

This is called a relative type constraint because it constrains the type of one object relative to the type
of another. Another form of relative type constraint forces two objects to have the same type, but with
out specifying what that type should be:

porCNaine. setTypeSameAs (parameterName) ;

These constraints could be specified in the other order,

parameterName. setTypeSameAs (portName) ;

which obviously means the same thing, or

parameCeriVaine. setTypeAtLeast (portName) ;

which is not quite the same.

Another common type constraint is an absolute type constraint, which fixes the type of the port
(i.e. making it monomorphic rather than polymorphic),

portName. setTypeEquals (BaseType. DOtTBLE} ;

The above line declares that the port can only handle doubles. Another form ofabsolute type constraint
imposes an upper bound on the type,

portName.setTypeAtKost(BaseType.COMPLEX);

which declares that any type that can be losslessly converted to ComplexToken is acceptable. By
default, for any input port that has no declared type constraints, type constraints are automatically cre
ated that declares its type to be less than that of any output ports that have no declared type constraints.
If there are input ports with no constraints, but no output ports lacking constraints, then those input
ports will be unconstrained. Conversely, if there are output ports with no constraints, but no input
ports lacking constraints, then those output ports will be unconstrained. Of course, you can declare a
port to be unconstrained by saying

setTypeAtMost(BaseType.GENERAL);
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For full details of the type system, see the Type System chapter.

Examples. To be concrete, consider first the code segment shown in figure 5.2, from the Transformer
class in the ptolemy.actor.lib package. This actor is a base class for actors with one input and one out
put. The code shows two ports, one that is an input and one that is an output. By convention, the Java-
doc* comments indicate type constraints on the ports, if any. If the ports are multiports, then the
Javadoc comment will indicate that. Otherwise, they are assumed to be single ports. Derived classes
may change this, making the ports into multiports, in which case they should document this fact in the
class comment. Derived classes may also set the type constraints on the ports.

An extension of Transformer is shown in figure 5.3, the SimplerScale actor, which is a simplified
version of the Scale actor which is defined in $PTII/ptolemy/actor/lib/Scale.java. This actor produces
an output token on each firing with a value that is equal to a scaled version of the input. The actor is
polymorphic in that it can support any token type that supports multiplication by thefactor parameter.
In the constructor, the output type is constrained to be at least as general as both the input and thefac
tor parameter.

Notice in figure 5.3 how the fireO method uses hasTokenQ to ensure that no output is produced if
there is no input. Furthermore, only one token is consumed from each input channel, even if there is

public class Transformer extends TypedAtomicActor {

/** Construct an actor with the given container and name.
* Qparam container The container.
* 0param name The name of this actor.
* Sexception IllegalActionException If the actor cannot be contained
* by the proposed container.
* @exception NameDuplicationException If the container already has an
* actor with this name.

V

public Transformer(CompositeEntity container. String name)
throws NameDuplicationException, IllegalActionException {

super(container, name);
input = new TypedIOPort(this, "input", true, false);
output = new TypedIOPort(this, "output", false, true);

)

///////////////////////////////////////////////////////////////////
//// ports and parameters ////

/** The input port. This base class imposes no type constraints except
* that the type of the input cannot be greater than the type of the
* output.

*!

public TypedlOPort input;

/** The output port. By default, the type of this output is constrained
* to be at least that of the input.
*/

public TypedlOPort output;

FIGURE 5.2. Code segment showing the port definitions in the Transformer class.

1. Javadoc is a program that generates HTML documentation from Java files based on comments enclosed in "/**
... »r.
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import ptolemy.actor.lib.Transtormer;

import ptolemy.data.IntToken;
import ptolemy.data.expr.Parameter;
import ptolemy.data.Token;
import ptolemy.kernel.util.*;
import ptolemy.kernel.CompositeEntity;

public class SimplerScale extends Transformer {

public SimplerScale(CompositeEntity container, String name)
throws NameDuplicationException, IllegalActionException {

super(container, name);
factor = new Parameter(this, "factor", new IntToken(l));

// set the type constraints,
output.setTypeAtLeast(input);
output.setTypeAtLeast(factor);

}

///////////////////////////////////////////////////////////////////

//// ports and parameters ////

/** The factor.

* This parameter can contain any token that supports multiplication.
* The default value of this parameter is the IntToken 1.
*/

public Parameter factor;

///////////////////////////////////////////////////////////////////

//// public methods ////

/** Clone the actor into the specified workspace. This calls the
* base class and then sets the type constraints.
* @param workspace The workspace for the new object.
* 0retum A new actor.

* ©exception CloneNotSupportedException If a derived class has
* an attribute that cannot be cloned.

*/

public Object clone(Workspace workspace)
throws CloneNotSupportedException (

SimplerScale newObject = (SimplerScale)super.clone(workspace);
newObject.output.setTypeAtLeast(newObject.input) ;
newObject.output.setiypeAtLeast(newObj ect.factor);
return newObject;

}

/** Confute the product of the input and the <i>factor</i>.
* If there is no input, then produce no output.
* Sexception IllegalActionException If there is no director.
*/

public void fireO throws IllegalActionException {
i f (input.hasToken(0)) {

Token in = input.get(0);
Token factorToken = factor.getTokenO;
Token result = factorToken.multiply(in);
output.send(0, result);

)
)

FIGURE 5.3. Code segment from the SimplerScaleactor, showing the handling ofports and parameters.
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more than one token available. This is generally the behavior of domain-polymorphic actors. Notice
also how it uses the multiplyQ method of the Token class. This method is polymorphic. Thus, this
scale actor canoperate on anytoken type that supports multiplication, including all the numeric types
and matrices.

5.2.2 Parameters

Like ports, by convention, parametersare public membersof actors. Figure 5.3 showsa parameter
factor that is an instance of Parameter, declared in the line

public Parameter factor;

and created in the line

factor = new Parameter(this, "factor", new IntToken(1));

The third argument to the constructor, which is optional, is a default value for the parameter. In this
example, the factor parameter defaults to the integer one. Altematively, the default value of the param
eter can be set via an expression, as in

factor = new Parameter(this, "factor");

factor.setExpression("2*PI");

As with ports, you can specify type constraints on parameters. The most common type constraint is
to fix the type, using

parameterName. setTypeEguals (BaseType.DOUBLE) ;

In fact, exactly the same relative or absolute type constraints that one can specify for ports can be spec
ified for parameters as well. But in addition, arbitrary constraints on parameter values are possible, not
just type constraints.

An actor is notified when a parameter value changes by having its attributeChangedQ method
called. Consider the example shown in figure 5.4, taken from the PoissonClock actor. This actor gener
ates timed events according to a Poisson process. One of its parameters is meanTime^ which specifies
the mean time between events. This must be a double, as asserted in the constructor.

The attributeChangedQ method is passed the parameter that changed. (Typically it is being
changed by the user via the Configure dialog.) If this is meanTime, then this method checks to make
sure that the specified value is positive, and if not, it throws an exception. This exception is presented
to the user in a new dialog box. It shows up when the user attempts to commit a non-positive value.
The new dialog requests that the user choose a new value or cancel the change.

A change in a parameter value sometimes has broader repercussions than just the local actor. It
may, for example, impact the schedule of execution of actors. An actor can call the invalidateSched-
uleQ method of the director, which informs the director that any statically computed schedule (if there
is one) is no longer valid. This would be used, for example, if the parameter affects the number of
tokens produced or consumed when an actor fires.

When the type of a parameterchanges, the attributeTypeChangedQ method in the actor containing
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that parameter will be called. The default implementation of this method in TypedAtomicActor is to
invalidate type resolution. Soparameter type change will cause type resolution to be performed in the
model. This default implementation is suitable for most actors. In fact, most of the actors in the actor
library do not override this method. However, if for some reason, an actordoes not wish to redo type
resolution upon parameter type change, the attributeTypeChangedO method can be overridden. But
this is rarely necessary.

5.2.3 Constructors

We have seen already that the major task of the constructor is to create and configure ports and
parameters. In addition, you may have noticed that it calls

super(container, name);

and that it declares that it throws NameDuplicationException and IllegalActionException. The latter is
the most widely used exception, and many methods in actors declare that they can throw it. The former
is thrown if the specified container already contains an actor with the specified name. For more details
about exceptions, see the Kemel chapter.

5.2.4 Cloning

All actors are cloneable. A clone of an actor needs to be a new instance of the same class, with the

public class PoissonClock extends TimedSource {

public Parameter meanTime;
public Parameter values;

public PoissonClock(CompositeEntity container, String name)
throws NcuneDuplicationBxception, IllegalActionException (

super(container, name);
meanTime = new Parameter(this, "meanTime", new DoubleTokend.0));

meanTime.setTypeEquals(BaseType.DOUBLE);

)

/** If the argument is the meanTime parameter, check that it is
* positive.
* ©exception IllegalActionException If the meanTime value is
* not positive.
*/

public void attributeChanged(Attribute attribute) throws IllegalActionException {
if (attribute == meanTime) {

double mean = ((DoubleToken)meanTime.getToken()).doubleValue();
if (mean <= 0.0) {

throw new IllegalActionException(this,
"meanTime is required to be positive. meanTime given: " + mean);

)
) else if (attribute == values) {

ArrayToken val = (ArrayToken)(values.getToken());
_length = val.lengthO;

} else {
super.attributeChanged(attribute);

}

}

FIGURE 5.4. Code segment from the PoissonClock actor, showing the attributeChangedQ method.
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same parameter values, but without any connections to other actors.

Consider the cloneQ methodin figure 5.5, taken from the SimpierScale actor. This method begins
with:

SimpierScale newObject = (SimpierScale)super.clone(workspace);

The convention in Ptolemy II is that each clone method begins the same way, so that cloning works its
way up the inheritance tree until it ultimately uses the cloneQ method of the Java Object class. That
method performs what is called a "shallow copy," which is not sufficient for our purposes. In particu
lar, members of the class that are references to other objects, including public members such as ports
and parameters, are copied by copying the references. The NamedObj and TypedAtomicActor base
classes (see the "The Kernel" chapter) for most actors implement a "deep copy" so that all the con-

tamed objects are cloned, and public members reference the proper cloned objects .

Although the base classes neatly handle most aspects of the clone operation, there are subtleties
involved with cloning type constraints. Absolute type constraints on ports and parameters are carried

public class SimpierScale extends Transformer {

public SimpierScale(CompositeEntity container. String name)
throws NameDuplicationException, IllegalActionException (

super(container, name);
output.setTypeAtLeast(input);
output.setTypeAtLeast(factor);

}

///////////////////////////////////////////////////////////////////

//// ports and parameters ////

/•* The factor. The default value of this parameter is the integer 1. */
public Parameter factor;

///////////////////////////////////////////////////////////////////

//// public methods ////

/** Clone the actor into the specified worlcspace. This calls the
* base class and then sets the type constraints.
* @param wor)cspace The workspace for the new object.
* ©return A new actor.

* ©exception CloneNotSupportedException If a derived class has
* has an attribute that cannot lae cloned.

*/

public Object clone(Workspace workspace) throws CloneNotSupportedException {
SimpierScale newObject = (SimpierScale)super.clone(workspace),•
newObject.output.setTypeAtLeast(newObject.input);
newObject.output.setTypeAtLeast(newObject.factor);
return newObject;

)

FIGURE 5.5. Code segment from the SimpierScale actor, showing the cloneQ method.

2. Be aware that the implementationof the deep copy relies on a strict naming convention. Public members that
referenceports and parameters must have the same name as the object that they are referencingin order to be
properly cloned.

5-10 Ptolemy II



Designing Actors

automatically into the clone, socloneQ methods should never call setTj^eEqualsO- However, relative
type constraints are notcloned automatically because of the difficulty of ensuring thatthe other object
being referred to in a relative constraint is the intended one. Thus, in figure 5.5, the cloneQ method
repeatsthe relativetype constraints that were specifiedin the constructor:

newObj ect.output.setTypeAtLeast(newObject.input);
newObject.output.setTypeAtLeast(newObject.factor);

Note that at no time during cloning is any constructor invoked, so it is necessary to repeat in the
cloneQmethod any initialization in the constructor. For example, the cloneQ method in the Expression
actor sets the values of a few private Variables:

newObject._iterationCount = 1;
newObject._time = (Variable)newObject.getAttribute("time");
newObject._iteration =

(Variable)newObject.getAttribute("iteration");

5.3 Action Methods

Figure 5.1 shows a set ofpublic methods called the action methods because they specify the action
performed by the actor. By convention, these are given in alphabetical order in Ptolemy II Java files,
but we will discuss them here in the order that they are invoked. The first to be invoked is the preini-
tializeQ method, which is invoked exactly once before any other action method is invoked. The preini-
tializeQ method is often use to set type constraints. After the preinitializeQ method is called, type
resolution happens and all the type constraints are resolved. The initializeQ method is invoked next,
and is typically used to initialize state variables in the actor, which generally depends on type resolu
tion.

After the initializeQ method, the actor experiences some number of iterations^ where an iteration is
defined to be exactly one invocation ofprefireQ, some number of invocations of fireQ, and at most one
invocation ofpostfireQ.

5.3.1 Initialization

The initializeQ method of the Average actor is shown in figure 5.6. This data- and domain-poly
morphic actor computes the average of tokens that have arrived. To do so, it keeps a running sum in a
private variable _sum, and a running count of the number of tokens it has seen in a private variable
_count. Both of these variables are initialized in the initializeQ method. Notice that the actor also calls
super.initializeQ, allowing the base class to perform any initialization it expects to perform. This is
essential because one of the base classes initializes the ports. An actor will almost certainly fail to run
properly if super.initializeQ is not called.

Note that the initialization of the Average actor does not affect, or depend on, type resolution. This
means that the code to initialize this actor can be placed either in the preinitializeQ method, or in the
initializeQ method. However, in some cases an actor may require part of its initialization to happen
before type resolution, in the preinitializeQ method, or part after type resolution, in the initializeQ
method. For example, an actor may need to dynamically create type constraints before each execu-
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1

tion . Suchan actormust create its type constraints in preinitializeQ. On the otherhand, an actormay
wish to produce (sendor broadcast) an initial outputtokenonce at the beginning of an execution of a
model. This production can only happen during initializeO, because data transport through ports
depends on type resolution.

5.3.2 Prefire

The prefireQ method is the only method that is invoked exactly once per iteration"*. It returns a
boolean that indicates to the directorwhether the actor wishes for firing to proceed. The fireQ method
of an actor should never be called until after its prefire method has returned true. The most common
use of this method is to test a condition to see whether the actor is ready to fire.

Consider for example an actor that reads from truelnput if a private boolean variable _state is true,
and otherwise reads fromfalselnput. The prefireQ method might look like this:

public boolean prefire{) throws IllegalActionException {
if(_state) {

return truelnput.hasToken(0);

} else {

return falselnput.hasToken(0);

}

}

It is good practice to check the superclass in case it has some reason to decline to be fired. The above
example becomes:

public boolean prefire() throws IllegalActionException {
if(_state) {

return truelnput.hasToken(0) && super.prefire();

public class Average extends Transformer (

public void initializeO throws IllegalActionException {
super, initializeO ;
_count = 0;
_sum = null;

}

///////////////////////////////////////////////////////////////////
//// private members ////

private Token _sum;
private int _count = 0;

FIGURE 5.6. Code segment from the Average actor, showing the initializeO method.

The need for this is relatively rare, but important. Examples include higher-order functions, which are actors that
replace themselveswith other subsystems,and certain actors whoseports are not created at the time they are
constructed, but rather are added later. In most cases, the type constraints ofan actor do not change and are sim
ply specified in the constructor.
Some domains invoke the fire() method only once per iteration, but others will invoke it multiple times (search
ing for global convergence to a solution, for example).
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} else {

return falselnput.hasToken(O) && super.prefire();
}

}

The prefireQ method can also be used to perform an operation that will happen exactly once per
iteration. Consider the prefire method of the Bemoulli actor in figure 5.7:

public boolean prefire() throws IllegalActionException {
if (_randoni.nextDouble () <

((DoubleToken)(trueProbability.getToken())).doubleValue()) {
_current = true;

} else {

_current = false;

}

return super.prefire();

}

This method selects a new boolean value that will correspond to the token creating during each firing
of that iteration.

public class Bernoulli extends RandomSource {

public Bemoulli(CompositeEntity container. String name)
throws NameDuplicationException, IllegalActionException {

super(container, name);

output.setTypeEquals(BaseType.BOOLEAN);

trueProtjability = new Parameter (this, "trueProbability", new DoubleTo)cen(0.5)) ;
trueProlaability.setTypeEquals(BaseType.DOUBLE);

)

public Parameter trueProbability;

public void £ire() {
try {

super.fire0 ;
output.send(0, new Boo1eanToken(_current));

} catch (IllegalActionException ex) {
// Should not be thrown because this is an output port,
throw new InternalErrorException(ex.getMessage());

)

)

public boolean prefire() throws IllegalActionException {
if (_random.nextDouble() < ((DoubleTo)cen) (trueProbability.getTo)cen())) .doubleValueO ) {

_current = true;

} else {
_current = false;

)
return super.prefireO ;

}

private boolean _current;

FIGURE 5.7. Code for the Bemoulli actor, which is not data polymorphic.

Heterogeneous Concurrent Modeling and Design 5-13



Designing Actors

5.3.3 Fire

ThefireO method is the mainpointof execution andis generally responsible forreading inputs and
producingoutputs. It may also read the currentparameter values, and the output may depend on them.
Things to remember when writing fireQ methods are:

• To get data polymorphism, use the methods of the Token class for arithmetic whenever possible
(see the Data Package chapter). Consider for example the Average actor, shown in figure 5.8.
Notice the use of the addQ and divideQ methods of the Token class to achieve data polymorphism.

• When data polymorphism is not practical or not desired, then it is usually easiest to use the set-
TypeEqualsQ to define the type of input ports. The type system will assure that you can safely cast
the tokens that you read to the type of the port. Consider again the Average actor shown in figure
5.9. This actor declares the type of its reset input port to be BaseType.BOOLEAN. In the fireQ
method, the input token is read and cast to a BooleanToken. The type system ensures that no cast
error will occur. The same can be done with a parameter, as with the Bemoulli actor shown in fig
ure 5.9.

• A domain-polymoiphic actor cannot assume that there is data at all the input ports. Most domain-
polymorphic actors will read at most one input token from each port, and if there are sufficient
inputs, produce exactly one token on each output port.

• Some domains invoke the fireQ method multiple times, working towards a converged solution.
Thus, each invocation of fireQ can be thought of as doing a tentative computation with tentative
inputs and producing tentative outputs. Thus, the fireQ method should not update persistent state.
Instead, that should be done in the postfireQ method, as discussed in the next section.

5.3.4 Postfire

The postfireQ method has two tasks:

• updating persistent state, and

• determining whether the execution of an actor is complete.
Consider the fireQ and postfireQ methods of the Average actor in figure 5.8. Notice that the persistent
state variables _sum and _count are not updated in fireQ. Instead, they are shadowed by _latestSum
and _latestCount, and updated in postfireQ.

The return value of postfireQ is a boolean that indicates to the director whether execution of the
actor is complete. By convention, the director should avoid iteratingfurther an actor that returns false.
In other words, the director won't call prefireQ, fireQ, or postfireQ again during this execution of the
model.

Consider the two examples shown in figure 5.9. These are base classes for source actors (those
with no input ports). SequenceSource is a base class for actors that output sequences. Its key feature is
a parameterfiringCountLimit, which specifies a limit on the number of iterations of the actor. When
this limit is reached, the postfireQ method returns false. Thus, this parameter can be used to define
sources of finite sequences.

TimedSource is similar, except that instead of specifying a limit on the number of iterations, it
specifies a limit on the current model time. When that limit is reached, the postfireQ method returns
false.
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public class Average extends Transformer {

... constructor ...

///////////////////////////////////////////////////////////////////
//// ports and parameters ////

public TypedlOPort reset;

///////////////////////////////////////////////////////////////////
//// public methods I III

... clone method ...

public void fireO throws IllegalActionException {
_latestSum = _sum;
_latestCount = _count + 1;
// Check whether to reset,

for (int i = 0; i < reset.getWidthO; i++) {
if (reset.hasToken(i)) {

BooleanToken r = (BooleanToken)reset.get(0);
if (r.booleanValueO) {

II Being reset at this firing.
_latestSum = null;
_latestCount = 1;

)

}

)
if (input.hasToken(0)) {

Token in = input.get(0);
if (_latestSum == null) (

_latestSura = in;
} else {

_latestSum = _latestSum.add{in);

)
Token out = _latestSum.divide(new IntToken(_latestCount)};
output.send(0, out);

}

}

public void initialize(} throws IllegalActionException {
super.initialize 0;
_count = 0;

_sum = null;

}

public boolean postfireO throws IllegalActionException (
_sum = _latestSum;
_count = _latestCount;

return super.postfireO ;

}

///////////////////////////////////////////////////////////////////

//// private members ////

private Token _sum;
private Token _latestSura;
private int _count = 0;
private int _latestCount;

FIGURE 5.8. Code segment from the Average actor, showing the action methods.
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public class SequenceSource extends Source implements SequenceActor {

public SequenceSource(CompositeEntity container, String name)
throws NameDuplicationException, IllegalActionException {

super(container, name);
firingCountLimit = new Parameter(this, "firingCountLimit", new IntTo)cen(0));
firingCountLimit.setTypeEquals(BaseType.INT);

}

public Parameter firingCountLimit;

Designing Actors

public boolean postfireO throws IllegalActionException {
if (_firingCountLimit != 0) {

_iterationCount++;
if (_iterationCount == ((IntTo)cen) firingCountLimit.getTolcenO ) .intValueO ) {

return false;

)

)
return true;

}

protected int _firingCountLimit;
protected int _iterationCount = 0;

public class TimedSource extends Source implements TimedActor {

public TimedSource(CompositeEntity container. String name)
throws NameDuplicationException, IllegalActionException {

super(container, name);
stopTime = new Parameter(this, "stopTime", new DoubleTolcen(0.0));
stopTime.setTypeEquals(BaseType.DOUBLE);

}

public Parameter stopTime;

public boolean postfireO throws IllegalActionException {
double time = ((DoubleTolcen)stopTime.getTo)cen()) .doubleValueO ;
if (time > 0.0 fete getDirectorO .getCurrentTimeO >= time) {

return false;

)
return true;

}

FIGURE 5.9. Code segments from the SequenceSource and TimedSourcebase classes.
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5.3.5 Wrapup

ThewrapupO method is used typically for displaying final results. It is invoked exactly once at the
end of an execution, including whenan exception occurs that stopsexecution (as opposed to an excep
tion occurring in, say, attributeChangedQ, whichdoes not stopexecution). However, whenan actor is
removed from a model during execution, the wrapupQ method is not called.

An actor may lock a resource (whichit intendsto release in wrapupQ for example). Or its designer
may have another reason to ensure that wrapupQ always is called, even when the actor is removed
from an executingmodel. This can be achievedby overriding the setContainerQ method. In this case,
the actor would have a setContainerQ method which might look like this:

public void setContainer(CompositeEntity container)
throws IllegalActionException, NameDuplicationException {

if (container != getContainer()) {
wrapup();

}

super.setContainer(container);

}

When overriding the setContainerQ method in this way, it is best to make wrapupQ idempotent
(implying that it can be invoked many times without causing harm), because future implementations of
the director might automatically unlock resources of removed actors, or call wrapupQ on removed
actors.

5.4 Time

An actor whose behavior depends on current model time should implement the TimedActor inter
face. This is a marker interface (with no methods). Implementing this interface alerts the director that
the actor depends on time. Domains that have no meaningful notion oftime can reject such actors.

An actor can access current model time with the syntax:

double currentTime = getDirector().getCurrentTime();

Notice that although the director has a public method setCurrentTimeQ, an actor should never use it.
Typically, only another enclosing director will call this method.

An actor can request an invocation at a future time using the fireAtQ, fireAtCurrentTimeQ, or fire-
AtRelativeTimeQ method of the director. These method retums immediately (for a correctly imple
mented director). The fireAtQ and fireAtRelativeTimeQ methods each take two arguments, an actor
and a time. The fireAtCurrentTimeQ method takes only one argument, an actor. The director is respon
sible for performing one iteration of the specified actor at the specified time. This method can be used
to get a source actor started, and to keep it operating. In its initializeQ method, it can call fireAtQ with
a zero time. Then in each invocation ofpostfireQ, it calls fireAtQ again. Notice that the call should be
in postfireQ not in fireQ because a request for a future firing is persistent state.

Note that while fireAtQ can safely be called by any of the actors action methods, code which exe
cutes asynchronously from the director should avoid calling fireAtQ. Examples of such code include
the private thread within the DatagramReader actor and the serialEventQ callback method of the Seri-
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alComm actor. Because these process hardware events, which can occurat any time, they instead use
the fireAtCurrentTimeO niethod. When fireAtQ was used (before fireAtCurrentTimeQ was Avritten)
exceptions were occasionally thrown as model time advanced just as a firing was being requested at
the previous (formerly current) model time.

5.5 Icons

An actor designer can specify a custom icon when defining the actor. The Ramp actor, for
instance, specifies the icon shown in 5.10

Ramp

FIGURE 5.10. The Ramp icon.

with the following text:

<svg>

<rect x="-30" y="-20" width="60" height="40" style="fill:white"/>
<polygon points="-20,10 20,-10 20,10" style="fill:grey"/>

</svg>

This is XML, using the schema SVG (scalable vector graphics). The Ptolemy II visual editor (Vergil)
is built on top of a graphics package called Diva, which has limited support for SVG As of this writ
ing, the SVG elements that are supported are shown in figure 5.11. The positions in SVG are given by
real numbers, where the values are increasing to the right and down from the origin, which is the nom
inal center of the figure. The Ramp icon contains a white rectangle and a polygon that forms a triangle.

Most of the elements in figure 5.11 support style attributes, as summarized in the table. A style
attribute has value keywordwalue. It can also have multiple keywordwalue pairs, separated by semico
lons. For example, the keywords currently supported by the rect element are "fill", "stroke" and
"stroke-width". The "fill" gives the color of the body of the figure (for figures for which this makes
sense), while the "stroke" gives the color of the outline. The supported colors are black, blue, cyan,
darkgray, gray, green, lightgray, magenta, orange, pink, red, white, and yellow, plus any color sup
ported by the Java Color class getColorQ method. The "stroke-width" is a real number giving the
thickness of the outline line, where the default is 1.0.

The image element, although tempting, is problematic in the current implementation. Images are
very slow to load. It is not recommended.

5.6 Code Format

Ptolemy software follows fairly rigorous conventions for code formatting. Although many ofthese
conventions are arbitrary, the resulting consistency makes reading the code much easier, once you get
used to the conventions. We recommend that if you extend Ptolemy II in any way, that you follow
these conventions. To be included in future versions of Ptolemy II, the code must follow the conven-
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tions.

A template thatcorresponds to these rules canbe found in$(PTII)/doc/coding/templates. There are
also templates for other common files. In general, consult the template or highly rated (green) code if
you have questions that are not covered here.

Several useful toolsare provided in the directories under $PTII/util/ to help enforce the stan
dards. lisp/pt javastyle. el is a lisp module for GNU Emacs that has appropriate indenting
rules, testsuite/j indent is a unix script that uses Emacs and the above module to properly
indentmany files at once, testsuite/ptspell is a script that checks Java code and prints out an
alphabetical list of unrecognized spellings. It properly handles namesWithEmbeddedCapitalization
and has a list of author names, testsuite/chkjava is a Unix script for checking various other
potentiallybad things in Java code, such as debuggingcode, and FIXME's.

SVG element Attributes

reel x: horizontal position of the upper left comer
y: vertical position of the upper left comer
width: the width of the rectangle
height: the height of the rectangle
style: fill, stroke, stroke-width

circle cjc: horizontal position of the center of the circle
cy: vertical position of the center of the circle
r: radius of the circle

style: fill, stroke, stroke-width

ellipse cx: horizontal position of the center of the ellipse
cy: vertical position of the center of the ellipse
rx: horizontal radius of the ellipse
ry. vertical radius of the ellipse
style: fill, stroke, stroke-width

line xl: horizontal position of the start of the line
yl: vertical position of the start of the line
x2: horizontal position of the end of the line
y2: vertical position of the end of the line
style: stroke, stroke-width

polyline points: List ofx,y pairs of points, vertices of line segments, delimited by commas or spaces
style: stroke, stroke-width

polygon points: List ofx,y pairs of points, vertices of the polygon, delimited by commas or spaces
style: fill, stroke, stroke-width

text x: horizontal position of the text
y: vertical position of the text
style: font-family, font-size, fill

image x: horizontal position of the image
y: vertical position of the image
width: the width of the image
height, the height of the image
xlinhhref. A URL for the image

FIGURE 5.11. SVG subset currently supported by Diva, useful for creating custom icons.
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5.6.1 Indentation

Nested statements should be indented 4 characters, as in:

if (container != null) {

Manager manager = container.getManager();
if (manager != null) {

manager.requestChange(change);

}

}

Closing brackets should be on a line by themselves, aligned with the beginning of the line that contains
the open bracket. Tabs are 8 space characters, not a Tab character. The reason for this is that code
becomes unreadable when the Tab character is interpreted differently by different programs. Do not
override this in your text editor. Long lines should be broken up into many small lines. The easiest
places to break long lines are usually just before operators, with the operator appearing on the next
line. Long strings can be broken up using the + operator in Java, with the + starting the next line. Con
tinuation lines are indented by 8 characters, as in the throws clause of the constructor in figure 5.1.

5.6.2 Spaces

Use a space after each comma:

Right: foo(a, b);

Wrong: foo(a,b);

Use spaces around operators such as plus, minus, multiply, divide or equals signs, and after semi
colons:

Right: a = b + 1;

Wrong: a=b+l;

Right: for(i =0; i < 10; i += 2)

Wrong: for(1=0 ;i<10;i+=2)

5.6.3 Comments

Comments should be complete sentences and complete thoughts, capitalized at the beginning and
with a period at the end. Spelling and grammar should be correct. Comments should include honest
information about the limitations of the object definition.

Comments for base class methods that are intended to be overridden should include information

about what the method generally does, along with a description of how the base class implements it.
Comments in derived classes for methods that override the base class should copy the general descrip
tion from the base class, and then document the particular implementation. In general comments with
FIXME's and implementation details should be used liberally in the code, but never in the interface
description. (The interface description is the sum of all the Javadoc comments. These are the com
ments that will be visible in Vergil via the Get Documentation right-click menu choice.) If something
is important to know when using the actor, put it in one of the Javadoc comments. Otherwise, put the
comment elsewhere.
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5.6.4 Names

In general, the names of classes, methods and members should consist of complete words sepa
rated using internal capitalization^. Class names, and only class names have their first letter capital
ized, as in AtomicActor. Method and member names are not capitalized, except at internal word
boundaries, as in getContainerO- Protected or privatemembers andmethods are preceded by a leading
underscore as in _protectedMethodO.

Static final constants should be in uppercase, with words separated by underscores, as in
rNFINITE_CAPACITY. A leadingunderscore shouldbe used if the constant is protected or private.

Packagenames shouldbe short and not capitalized, as in "de" for the discrete-event domain.
In Java, there is no limit to name sizes (as it should be). Do not hesitate to use long names.

5.6.5 Exceptions

A number of exceptions are provided in the ptolemy.kemel.util package. Use these exceptions
when possible because they provide convenient arguments of type Nameable that identify the source
of the exception by name in a consistent way.

A key decision you need to make is whether to use a compile-time exception or a run-time excep
tion. A run-time exception is one that implements the RuntimeException interface. Run-time excep
tions are more convenient in that they do not need to be explicitly declared by methods that throw
them. However, this can have the effect of masking problems in the code.

The convention we follow is that a run-time exception is acceptable only if the cause of the excep
tion can be tested for prior to calling the method. This is called a testableprecondition. For example, if
a particular method will fail if the argument is negative, and this fact is documented, then the method
can throw a run-time exception if the argument is negative. On the other hand, consider a method that
takes a string argument and evaluates it as an expression. The expression may be malformed, in which
case an exception will be thrown. Can this be a run-time exception? No, because to determine whether
the expression is malformed, you really need to invoke the evaluator. Making this a compile-time
exception forces the caller to explicitly deal with the exception, or to declare that it too throws the
same exception. In general, we prefer to use compile-time exceptions wherever possible.

When throwing an exception, the detail message should be a complete sentence that includes a
string that fully describes what caused the exception. For example

throw 111ega1ActionException(this,
"Cannot append an object of type: "
+ obj.getClass().getName() + "because "
+ "it does not implement Cloneable.");

Note that the exception not only gives a way to identify the objects that caused the exception, but also
why the exception occurred. There is no need to include in the message an identification of the "this"
object passed as the first argument to the exception constructor. That object will be identified when the
exception is reported to the user.

5. Yes, there are exceptions (NamedObj, CrossRefList, lOPort). Many discussions dealt with these names, and we
still regret not making them complete words.
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5.6.6 Javadoc

Javadoc is a program distributed with Java that generates HTML documentation files from Java
source code files. Javadoc comments begin with "/**" and end with The comment immediately
preceding a method, member, or class documents that member, method, or class. Ptolemy II classes
include Javadoc documentation for all classes and all public and protected members and methods. Pay
special attention to the first sentence of each method comment. This first sentence is all that will
describe the method in the Javadocs. Private members and methods need not be documented. Docu

mentation can include embedded HTML formatting. For example, by convention, in actor documenta
tion, we set in italics the names of the ports and parameters using the syntax

/** In this actor, inputs are read from the <i>input</i> port ... */

By convention, method names are set in the default font, but followed by empty parentheses, as in

/** The fireO method is called when ... */

The parentheses are empty even if the method takes arguments. The arguments are not shown. If the
method is overloaded (has several versions with different argument sets), then the text of the documen
tation needs to distinguish which version is being used.

It is common in the Java community to use the following style for documenting methods:

/** Sets the expression of this variable.
* @param expression The expression for this variable.

*/

public void setExpression(String expression) {

}

We use instead the imperative tense, as in

/** Set the expression of this variable.
* ©param expression The expression for this variable.

*/

public void setExpression(String expression) {

}

The reason we do this is that our sentence is a well-formed, grammatical English sentence, while the
usual convention is not (it is missing the subject). Moreover, calling a method is a command "do this,"
so it seems reasonable that the documentation say "Do this." The use of imperative tense has a large
impact on how interfaces are documented, especially when using the Listener design pattern. For
instance, the Java.awt.event.ItemListener interface has the method;

j "k "k

* Invoked when an item has been selected or deselected.

* The code written for this method performs the operations
* that need to occur when an item is selected (or deselected).
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*/

void itemStateChanged(IteinEvent e) ;

A naive attempt to rewrite this in imperativetense might result in:

/ * *

* Notify this object that an item has been selected or deselected.
*/

void itemStateChanged(ItemEvent e);

However, this sentence does not capture what the method does. The method may be called in order to
notiiy the listener, but the listener does not "notify this object". The correct way to concisely document
this method in imperative tense (and with meaningful names) is:

/ * *

* React to the selection or deselection of an item.

*/

void itemStateChanged(ItemEvent event);

The annotation for the arguments (the @param statement) is not a complete sentence, since it is
usually presented in tabular format. However, we do capitalize it and end it with a period.

Exceptions that are thrown by a method need to be identified in the Javadoc comment. An
©exception tag should read like this:

* ©exception MyException If such and such occurs.

Notice that the body always starts with "If, not "Thrown if, or anything else. Just look at the Javadoc
output to see why this occurs. In the case of an interface or base class that does not throw the excep
tion, use the following:

* ©exception MyException Not thrown in this base class. Derived
* classes may throw it if such and such happens.

The exception still has to be declared so that derived classes can throw it, so it needs to be documented
as well.

The Javadoc program gives extensive diagnostics when run on a source file. Our policy is to for
mat the comments until there are no Javadoc warnings.

5.6.7 Code Organization

The basic file structure that we use follows the outline in figure 5.1, preceded by a one-line
description of the file and a copyright notice. The key points to note about this organization are:
• The file is divided into sections with highly visible delimiters. The sections contain constructors,

ports and parameters (and other public members, if there are any), public methods, protected meth
ods, protected members, private methods, and private members, in that order. Note in particular
that although it is customary in the Java community to list private members at the beginning of a
class definition, we put them at the end. They are not part of the public interface, and thus should
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not be the first thing you see.

Within eachsection, methods appearin alphabetical order, in orderto easilysearch for a particular
method. If you wishto group methods together, try to namethemso that theyhave a common pre
fix. Static methods are generally mixed with non-static methods.
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Authors: Edward A. Lee

Steve Neuendorjfer

6.1 Introduction

Ptolemy II models might be simulations (executable models ofsome other system) or implementa
tions (the system itself). They might be classical computer programs (applications), or any ofa number
of network-integrated programs (applets, servlets, or CORBA services, for example).

Models can be specified in a munber of ways. You can write Java code that instantiates compo
nents, parameterizes them, and interconnects them. Or you can use Vergil (see the Vergil chapter
above) to graphically construct models. Vergil stores models in ASCII files using an XML schema
called MoML. MoML (which stands for Modeling Markup Language) is the primary persistent file
format for Ptolemy II models. It is also the primary mechanism for constructing models whose defini
tion and execution is distributed over the network.

This chapter explains MoML. Most users will not need to edit MoML files directly. Use Vergil
instead. Occasionally, however, it is useful to examine and/or edit MoML files directly.

MoML is a modeling markup schema in the Extensible Markup Language (XML). It is intended
for specifying interconnections of parameterized components. A MoML file can be executed as an
application using any of the following commands,

ptolemy filename.xml
ptexecute filename.xml
vergil filename.xml
moml configura tion. xml fi I ename. xml

These commands are defined in the directory $PTll/bin, which must be in your path', where $PTll
is the location of the Ptolemy II installation. In all cases, the filename can be replaced by a URL. The
ptolemy command assumes that the file defines an executable Ptolemy II model, and opens a control
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panel to execute it. The ptexecute command executes it without a control panel. The vergil
command opens a graphical editor to edit and execute the model. The moml command uses the speci
fied configuration file (a MoML file containing a Ptolemy II configuration) to invoke some set of cus
tomized views or editors on the model. The filename extension can be ".xml" or ".moml" for MoML

files. And the same XML file can be used in an applet^.
To get a quick start, try entering the following into a file called test. xml (This file is also avail

able as $PTII/ptolemy/moml/demo/test.xml):

<?xml versions"1.0" standalone="no"?>

<!DOCTYPE entity PUBLIC "-//UC Berkeley//DTD MoML 1//EN"
"http://ptolemy.eecs.berkeley.edu/xml/dtd/MoML_l.dtd">

<entity name="test" class="ptolemy.actor.TypedCorapositeActor">
<property name="director"

class="ptolemy.domains.sdf.kernel.SDFDirector"/>
<entity name="ramp" class="ptolemy.actor.lib.Ramp"/>
<entity name="plot" class="ptolemy.actor.lib.gui.SequencePlotter"/>
<relation name="r" class="ptolemy.actor.TypedlORelation"/>
<link ports"ramp.output" relations"r"/>
<link ports"plot.input" relations"r"/>

</entity>

This code defines a model in a top-level entity called "test". By convention, we use the same name for
the top-level model and the file in which it resides. The top-level model is an instance of the Ptolemy II
class ptolemy.actor.TypedCompositeActor. It contains a director, two entities, a relation, and
two links. The model is depicted in figure 6.1, where the director is not shown. It can be run using the
command

ptolemy test.xml

You should get a window looking like that in figure .6.2. Enter "10" in the iterations box and hit the
"Go" button to execute the model for 10 iterations (leaving the default "0" in the iterations box exe
cutes it forever, until you hit the "Stop" button).

ramp

output

test

FIGURE 6.1. Simple example in the file $PTll/ptolemy/moml/demo/test.xml.

1. These commands are executed this way on Unix systems and on Windows systems with Cygwin installed. On
other configurations, the equivalent commands are invoked in some other way.

2. An applet is a Java program that is downloaded from a web server by a browser and executed in the client's
computer (usually within a plug-in for the browser).
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The structure of the above MoML text is explained in detail in this chapter. A more interesting
example is given in the appendix to this chapter. You may wish to refer to that example as you read
aboutthe details. The next chapterexplains how to bypassMoMLandwrite applets directly. The chap
ter after that describes the actors libraries that are included in the current Ptolemy II version.

6.2 MoML Principles

The key features of MoML include:

• Web integration. MoML is an XML schema. XML, the popular extensible markup language{9^'\,
provides a standard syntax and a standard way of defining the content within that syntax. The syn
tax is a subset of SGML[95], and is similar to HTML. It is intended for use on the Intemet, and is
intended for precisely this sort of specialization into schemas. File references are via URIs (in
practice, URLs), both relative and absolute, so MoML is equally comfortable working in applets
and applications.

• Implementation independence. MoML is designed to work with a variety of tools. A modeling tool
that reads MoML files is expected to provide a class loader in some form. Given the name of a
class, and possibly a URL for the class definition, the class loader must be able to instantiate it.
Classes might be defined in MoML or in some base language such as Java. In Java, the class loader
could be that built in to the JVM. In C++ or other languages, the class loader would have to be
implemented by the modeling tool. Ptolemy II can be viewed as a reference implementation of a
MoML tool that uses Java as its base language.

• Extensibility. Components can be parameterized in two ways. First, they can have named proper
ties with string values. Second, they can be associated with an extemal configuration file that can
be in any format understood by the component. Typically, the configuration will be in some other
XML schema, such as PlotML or SVG (scalable vector graphics).

• Classes and inheritance. Components can be defined in MoML as classes which can then be
instantiated in a model. Components can extend other components through an object-oriented
inheritance mechanism.

File Debug H^lp

I Go I
Director parameters:

Iterations:

vectorizationFactor:

execution finished.

Resume

1 2 3

FIGURE 6.2. Simple example of a Ptolemy II model execution control window.
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• Semantics independence. MoML defines no semantics for an interconnection of components. It
represents only the hierarchical containment relationships between entities with properties, their
ports, and the connections between their ports. In Ptolemy 11, the meaning of a connection (the
semantics of the model) is defined by the director for the model, which is a property of the top-
level entity. The director defines the semantics of the interconnection. MoML knows nothing
about directors except that they are instances of classes that can be loaded by the class loader and
assigned as properties.

6.2.1 Clustered Graphs

A model is given as a clustered graph, which is an abstract syntax for representing netlists, state
transition diagrams, block diagrams, etc. An abstract syntax is a conceptual data organization. A par
ticular clustered graph configuration is called a topology. A topology is a collection of entities and
relations. Furthermore, entities have ports and relations connect the ports. We consistently use the term
connection to denote the association between connected ports (or their entities), and the term link to
denote the association between ports and relations. Thus, a connection consists ofa relation and two or
more links.

The concept of an abstract syntax can be contrasted with a concrete syntax, which is a persistent,
readable representation of the data. For example, EDIF is a concrete syntax for representing netlists.
MoML is a concrete syntax for the clustered graph abstract syntax. Furthermore, we use the visual
notation shown in figure 6.3, where entities are depicted as rounded boxes, relations as diamonds, and
entities as filled circles.

The use ofports and hierarchy distinguishes our topologies from mathematical graphs. In a mathe
matical graph, an entity would be a vertex, and an arc would be a connection between entities. A vertex
could be represented in our schema using entities that always contain exactly one port. In a directed
graph, the connections are divided into two subsets, one consisting of incoming arcs, and the other of
outgoing arcs. The vertices in such a graph could be represented by entities that contain two ports, one
for incoming arcs and one for outgoing arcs. Thus, in mathematical graphs, entities always have one or
two ports, depending on whether the graph is directed. Our schema generalizes this by permitting an
entity to have any number ofports, thus dividing its connections into an arbitrary number ofsubsets.

A second difference between our graphs and mathematical graphs is that our relations are multi-
way associations, whereas an arc in a graph is a two-way association. A third difference is that mathe-

Connectio

Link • Link

Re ation

Connections Connection

Port

Entity

FIGURE 6.3. Visual notation and terminology.
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matical graphs normally have no notion of hierarchy (clustering).
Relations are intended to serve a mediators, in the sense of the Mediator design pattem[28].

"Mediator promotes loose coupling by keeping objects from referring to each other explicitly..." For
example, a relationcouldbe used to directmessagespassedbetweenentities. Or it could denotea tran
sition between states in a finite state machine, where the states are represented as entities. Or it could
mediate rendezvous between processes represented as entities. Or it could mediate method calls
between loosely associated objects, as for example in remote method invocation over a network.

6.2.2 Abstraction

Composite entities (clusters) are entities that can contain a topology (entities and relations). Clus
tering is illustrated by the example in figure 6.4. A port contained by a composite entity has inside as
well as outside links. Such a port serves to expose ports in the contained entities as ports of the com
posite. This is the converse of the "hiding" operator often found in process algebras. Ports within an
entity are hidden by default, and must be explicitly exposed to be visible (linkable) from outside the
entity^. The composite entity with ports thus provides an abstraction ofthe contents ofthe composite.

6.3 Specification of a Model

In this section, we describe the XML elements that are used to define MoML models.

FIGURE 6.4. Ports (P3 and P4) are linked to relations (R1 and R2) below their container (El) in the hierar
chy. They may also be linked to relations at the same level (R3 and R4).

3. Unless level-crossinglinks are allowed. MoML supports these, but they are discouraged.
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6.3.1 Data Organization

As with all XML files, MoML files have two parts, one defining the MoML languageand one con
taining the model data. The firstpart is calledthe document typedejinition, or DTD. Thisdualspecifi
cationof content andstructure is a key XMLinnovation. The DTDfor MoML is given in figure 6.5. If
you are adept at reading these, it is a complete specification of the schema. However, since it is not
particularly easy to read, we explain its key features here.

Every MoML file must either contain or refer to a DTD. The simplest way to do this is with the
following file structure:

<?xml version="l.0" standalone="no"?>

<!DOCTYPE entity PUBLIC "-//UC Berkeley//DTD MoML 1//EN"
"http://ptolemy.eecs.berkeley.edu/xinl/dtd/MoML_l.dtd">

<entity naine="jnodeinajne" class="classnajne">

model definition ...

</entity>

Here, "model defini tion" is a set of XML elements that specify a clustered graph. The syntax for
these elements is described in subsequent sections. The first line above is required in any XML file. It
asserts the version ofXML that this file is based on (1.0) and states that the file includes extemal refer
ences (in this case, to the DTD). The second and third lines declare the document type (model) and
provide references to the DTD.

The references to the DTD above refer to a "public" DTD. The name of the DTD is

-//UC Berkeley//DTD MoML 1//EN

which follows the standard naming convention of public DTDs. The leading dash indicates that
this is not a DTD approved by any standards body. The first field, surrounded by double slashes, is the
name of the "owner" of the DTD, "UC Berkeley." The next field is the name of the DTD, "DTD
MoML 1" where the "1" indicates version 1 of the MoML DTD. The final field, "en" indicates that the
language assumed by the DTD is English. The Ptolemy II MoML parser requires that the public DTD
be given exactly as shown, or it will not recognize the file as MoML.

In addition to the name of the DTD, the doctype element includes a URL pointing to a copy of
the DTD on the web. If a particular MoML tool does not have access to a local copy of the DTD, then
it finds it at this web site.

The "entity" element may be replaced by a "class" element, as in:

<?xml version="l.0" standalone="no"?>

<!DOCTYPE class PUBLIC "-//UC Berkeley//DTD MoML 1//EN"

"http://ptolemy.eecs.berkeley.edu/xml/dtd/MoML_l.dtd">
<class name="modelname" class="classname">

class definition ...

</class>

We will say more about class definitions below.
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<!ELEMENT class (class | configure | deleteEntity | deletePort | deleteRelation | director |
doc I entity ] group j import | input | link | port | property | relation | rename |
rendition | unlink)*>

<!ATTLIST class name CDATA #REQUIRED
extends CDATA #IMPLIED

source CDATA #IMPLIED>

<!ELEMENT configure (#PCDATA)>
<!ATTLIST configure source CDATA #IMPLIED>

<!ELEMENT deleteEntity EMPTY>
<!ATTLIST deleteEntity name CDATA #REQUIRED>

<!ELEMENT deletePort EMPTY>

<!ATTLIST deletePort name CDATA #REQUIRED>

<!ELEMENT deleteProperty EMPTY>
<!ATTLIST deleteProperty name CDATA #REQUIRED>

<!ELEMENT deleteRelation EMPTY>

<!ATTLIST deleteRelation name CDATA #REQUIRED>

<!ELEMENT doc (#PCDATA)>

<!ATTLIST doc name CDATA #IMPLIED>

<"ELEMENT entity (class | configure | deleteEntity | deletePort | deleteRelation | director |
doc I entity | group | import | input | link | port | property | relation | rename |
rendition | unlink)*>

OATTLIST entity name CDATA #REQUIRED
class CDATA #IMPLIED

source CDATA #IMPLIED>

<!ELEMENT group ANY>

<!ATTLIST group name CDATA #IMPLIED>

<!ELEMENT input EMPTY>
<!ATTLIST input source CDATA #REQUIRED>

<!ELEMENT link EMPTY>

CATTLIST link insertAt CDATA SIMPLIED

insertlnsideAt CDATA #IMPLIED
port CDATA #REQUIRED
relation CDATA #IMPLIED

vertex CDATA #IMPLIED>

<(ELEMENT port (configure | doc | property | rename)*>
<!ATTLIST port class CDATA #IMPLIED

name CDATA #REQUIRED>
<!ELEMENT property (configure | doc | property | rename)*>
<!ATTLIST property class CDATA #IMPLIED

name CDATA #RBQUIRED
value CDATA #IMPLIED>

<(ELEMENT relation (configure | doc | property | rename | vertex)*>
<(ATTLIST relation name CDATA #REQUIRED

class CDATA #IMPLIED>

<(ELEMENT rename EMPTY>

<(ATTLIST rename name CDATA #REQUIRED>
<(ELEMENT unlink EMPTY>

<(ATTLIST unlink index CDATA #IMPLIED

insidelndex CDATA #IMPLIED

port CDATA #REQUIRED
relation CDATA #IMPLIED>

<(ELEMENT vertex (configure | doc | location | property | rename)*>
<(ATTLIST vertex name CDATA #REQUIRED

pathTo CDATA #IMPLIED
value CDATA #IMPLIED>

FIGURE 6.5. MoML version 1.2 DTD.
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6.3.2 Overview of XML

An XML document consists of the header tags "<?xml ... ?>" and "<! doctype ... >" fol
lowed by exactly one element. The element has the structure:

start tag

body

end tag

where the start tag has the form

<elementName attributes>

and the end tag has the form

</elemen tName>

The body, if present, can contain additional elements as well as arbitrary text. If the body is not
present, then the element is said to be empty; it can optionally be written using the shorthand:

<elementNaine attributes/>

where the body and end tag are omitted.

The attributes are given as follows:

<elementName attributeNaine="attributeValue" . . ./>

Which attributes are legal in an element is defined by the DTD. The quotation marks delimit the value
of the attributes, so if the attribute value needs to contain quotation marks, then they must be given
using the special XML entity "&quot;" as in the following example:

<elementName attributeName="Sc.quot; foo&quot; "/>

The value of the attribute will be

"foo"

(with the quotation marks).

In XML "&quot;" is called an entity, creating possible confusion with our use of entity in
Ptolemy II. In XML, an entity is a named storage unit of data. Thus, "&quot;" references an entity
called "quot" that stores a double quote character.

6.3.3 Names and Classes

Most MoML elements have name and class attributes. The name is a handle for the object being
defined or referenced by the element. In MoML, the same syntax is used to reference a pre-existing
object as to create a new object. If a new object is being created, then the class attribute (usually) must
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be given. If a pre-existing object is being referenced, or if theMoML reader hasa built-in default class
for the element, then the classattribute is optional. If the class attribute is given, then the pre-existing
object must be an instance of the specified class.

A name is either absolute or relative. Absolute names begin with a period and consist of a
seriesof name fieldsseparatedby periods,as in ".x.y.z".Each name field can have alphanumeric char
acters, spaces, or the imderscore character. The first field is the name of the top-level model or
class object.The second field is the name of an object immediatelycontainedby that top-level.

Any name that does not begin with a period is relative to the current context, the object defined or
referencedby an enclosing element. The first field of such a name refers to or defines an object imme
diately contained by that object. For example, inside of an object with absolute name ".x" the name
*yz" refers to an object with absolute name ".x.y.z".

A name is required to be unique within its container. That is, in any given model, the absolute
names of all the objects must be unique. There can be two objects named "z", but they must not be
both contained by ".x.y".

Not much more will be said about classes. Particular implementations of MoML can use this field
as necessary to specify different variations of the basic syntactic objects. The class names that are used
in the Ptolemy II implementation ofMoML are always fully qualified Java class names. In addition, in
Ptolemy II a MoML file can be referenced as a class in the same way

6.3.4 Top-Level Entities

A very simple MoML file looks like this:

<?xinl version="l.0" standalone="no"?>

<!DOCTYPE entity PUBLIC "-//UC Berkeley//DTD MoML 1//EN"

"http;//ptolemy.eecs.berkeley.edu/xml/dtd/moml.dtd">

<entity naine= "jnodelnajne" class="classname">
</entity>

The entity element has name and class attributes, and defines a Ptolemy II model. This value of the
class attribute must be a class that instantiable by the MoML tool. For example, in Ptolemy II, we can
define a model with:

<?xinl version=" 1. 0" standalone="no"?>

<!DOCTYPE entity PUBLIC "-//UC Berkeley//DTD MoML 1//EN"
"http://ptolemy.eecs.berkeley.edu/xml/dtd/moml.dtd">

<entity name="ptilmodel" class="ptolemy.actor.TypedCompositeActor">
</entity>

Here, ptolemy. actor. TypedCompositeActor is a class that a Java class loader can find and that
the MoML parser can instantiate. In Ptolemy II, it is a container class for clustered graphs representing
executable models or libraries of instantiable model classes. A model can be an instance of

ptolemy. kernel .util .NamedObj or any derived class, although most useful models will be
instances ofptolemy. kernel. Compos iteEntity or a derived class. TypedCompositeAc
tor, as in the above example, is derived from CompositeEntity.
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6.3.5 Entity Element

A model typically contains entities, as in the following Ptolemy II example:

<?xinl version=" 1. 0" standalone="no" ?>

<!DOCTYPE entity PUBLIC "-//UC Berkeley//DTD MoML 1//EN"
"http://ptolemy,eecs.berkeley.edu/xml/dtd/moml.dtd">

<entity naine="ptilmodel" class="ptolemy.actor.TypedCompositeActor">
<entity name="source" class="ptolemy.actor.lib.Ramp"/>
<entity name="sink" class="ptolemy.actor.lib.SequencePlotter"/>

</entity>

Notice the common XML shorthand here of writing "<entity ... />" rather than "<entity
... ></entity>." Of course, the shorthand only works if there is nothing in the body of the entity
element.

An entity can contain other entities, as shown in this example:

<entity name="ptilmodel" class="ptolemy.actor.TypedCompositeActor">
<entity name="container" class="ptolemy.actor.TypedCompositeActor">

<entity name="source" class="ptolemy.actor.lib.Ramp"/>
</entity>

</entity>

An entity must specify a class unless the entity already exists in the containing entity or model. The
name of the entity reflects the container hierarchy. Thus, in the above example, the source entity has
the full name ". ptilmodel. container. source".

The definition of an entity can be distributed in the MoML file. Once created, it can be referred to
again by name as follows:

<entity name="top" cla.ss=" classname">
<entity name="x" class="classname"/>

<entity name="x">
<property name="y">

</entity>

</entity>

The property element (see section 6.3.6 below) is added to the pre-existing entity with name "x" when
the second entity element is encountered.

In principle, MoML supports multiple containment, as in the following:

<entity name="top" class="classname">
<entity name="x" class="classname"/>

<entity name="y" class="classname">
<entity name=".top.x"/>

</entity>

</entity>
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Here, the element named "x" appears both in "top" and in ".top.y", i.e. the same instance appears in
twodifferent places. Thus, it would havetwo full names, ".top.x"and".top.y.x". However, Ptolemy II
does not support this, as it implements a strict container relationship, where an object can have only
one container. Thus, attemptingto parse the above MoMLwill result in an exceptionbeing thrown.

6.3.6 Properties

Entities (and some other elements) can be parameterized. There are two mechanisms. The simplest
one is to use the property element:

<entity name="source" class="ptolemy.actor.lib.Ramp">
<property name="init"

value="5"

class="ptolemy.data.expr.Parameter"/>
</entity>

The property element has a name, at minimum (the value and class are optional). It is common for the
enclosing class to already contain properties, in which case the property element is used only to set the
value. For example:

<entity name="source" class="ptolemy.actor.lib.Ramp">
<property name="init" value="5"/>

</entity>

In the above, the enclosing object (source, an instance of ptolemy. actor. lib. Ramp) must already
contain a property with the name init. This is typically how library components are parameterized. In
Ptolemy II, the value of a property may be an expression, as in "Pl/50". The expression may refer to
other properties of the containing entity or of its container. Note that the expression language is not
part of MoML, but is rather part of Ptolemy II. In MoML, a property value is simply an uninterpreted
string. It is up to a MoML tool, such as Ptolemy II, to interpret that string.

A property can be declared without a class and without a pre-existing property if it is a pure prop
erty, one with only a name and no value. For example:

<entity name="source" class="ptolemy.actor.lib.Ramp">
<property name="abc"/>

</entity>

A property can also contain a property, as in

<property name="x" value="5">

<property name="y" value="10"/>

</property>

A second, much more flexible mechanism is provided for parameterizing entities. The configure
element can be used to specify a relative or absolute URL pointing to a file that configures the entity,
or it can be used to include the configuration information in line. That information need not be MoML
information. It need not even be XML, and can even be binary encoded data (although binary data can-
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not be in line; it must be in an external file). For example,

<entity name="sink" class="ptoleiny.actor.lib.SequencePlotter">
<configure source="urJ"/>

</entity>

Here, url can give the name of a file containing data, or a URL for a remote file. (For the Sequence-
Plotter actor, that external data will have PlotML syntax; PlotML is another XML schema for config
uring plotters.) Configure information can also be given in the body of the MoML file as follows:

<entity name="sink" class="ptolemy.actor.lib.SequencePlotter">
<configure>

configure information
</configure>

</entity>

With the above syntax, the configure information must be textual data. It can contain XML markup
with only one restriction: if the tag "</configure>" appears in the textual data, then it must be pre-
ceeded by a matching "<configure>". That is, any configure elements in the markup must have bal
anced start and end tags.^

You can give both a source attribute and in-line configuration information, as in the following:

<entity naine="sink" class="ptolemy.actor.lib.SequencePlotter">
<configure source="url">

configure information
</configure>

</entity>

In this case, the file data will be passed to the application first, followed by the in-line configuration
data.

In Ptolemy II, the configure element is supported by any class that implements the Configurable
interface. That interface defines a configureQ method that accepts an input stream. Both extemal file
data and in-line data are provided to the class as a character stream by calling this method.

There is a subtle limitation with using markup within the configure element. If any of the elements
within the configure element match MoML elements, then the MoML DTD will be applied to assign
default values, if any, to their attributes. Thus, this mechanism works best if the markup within the
configure element is not using an XML schema that happens to have element names that match those
in MoML. Altematively, if it does use MoML element names, then those elements are used with their
MoML meaning. This limitation can be fixed using XML namespaces, something we will eventually
implement.

XML allow markup to be included in arbitrary data as long as it appears within either a processing instructionor
a CDATA body. However, for reasons that would only baffle anyone familiar with modem programming lan
guages,processing instmctionsand CDATA bodiescannotbe nestedwithinone another. The MoMLconfigure
element can be nested, so it offers a much more flexible mechanism than the standard ones in XML.
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6.3.7 Doc Element

Some elements can be documented using the doc element. For example,

<entity name="source" class="ptolemy.actor.lib.Ramp">
<property name="init" value="5">

<doc>Initialize the ramp above the default because... </doc>
</property>

<doc>

This actor produces an increasing sequence beginning with 5.
</doc>

</entity>

With the above syntax, the documentation information must be textual data. It can include markup, as
in the following example, which uses XHTML^ formatting within the doc element:

<entity name="source" class="ptolemy.actor.lib.Ramp">
<doc><Hl>Using HTML</Hl>Text with <I>markup</I>.</doc>

</entity>

An alternative method is to use an XML processing instruction as follows:

<entity name="source" class="ptolemy.actor.lib.Ramp">
<doc><?xhtml <Hl>Using HTML</Hl>Text with <I>markup</I>.?></doc>

</entity>

This requires that any utility that uses the documentation information be able to handle the xhtml pro
cessing instruction, but it makes it very clear that the contents are XHTML. However, for reasons we
do not understand, XML does not allow processing instructions to be nested, so this technique has its
limitations.

More than one doc element can be included in an element. To do this, give each doc element a
name, as follows:

<entity name=" entityname" class="classjaajne">
<doc name= "docuaine">

doc contents

</doc>

</entity>

The name must not conflict with any preexisting property. If a doc element or a property with the spec
ified name exists, then it is removed and replaced with the property. If no name is given, then the doc
element is assigned the name "_doc".

A common convention, used in Ptolemy II, is to add doc elements with the name "tooltip" to
define a tooltip for GUI views of the component. A tooltip is a small window with short documenta-

5. XHTML is HTML with additional constraints so that it conforms with XML syntax rules. In particular, every
start tag must be matched by an end tag, something that ordinary HTML does not require (but fortunately, does
allow).
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tion that pops up when the mouse lingers on the graphical component.
Note that the same limitation of using markup within configure elements also applies to doc ele

ments.

6.3.8 Ports

An entity can declare a port:

<entity naine="A" class=" classnaine">
<port naine="out"/>

</entity>

In the above example, no class is given for the port. If a port with the specified name already exists in
the class for entity A, then that port is the one referenced. Otherwise, a new port is created in Ptolemy
II by calling the newFortQ method of the container. Altematively, we can specify a class name, as in

<entity name="A" class="classname">
<port naine="out" class='' classname" />

</entity>

In this case, a port will be created if one does not already exist. If it does already exist, then its class is
checked for consistency with the declared class (the pre-existing port must be an instance of the
declared class). In Ptolemy II, the typical classname for a port would be

ptolemy.actor.TypedlOPort

In Ptolemy II, the container of a port is required to be an instance ofptolemy.kemel.Entity or a derived
class.

It is often useful to declare a port to be an input, an output, or both. To do this, enclose in the port a
property named "input" or "output" or both, as in the following example:

<port naine="out" class="ptolemy.actor.IOPort">
<property name="output"/>

</port>

This is an example of a pure property. Optionally, the property can be given a boolean value, as in

<port name="out" class="ptolemy.actor.IOPort">
<property name="output" value="true"/>

</port>

The value can be either "true" or "false", where the latter will define the port to not be an output. A
port can be defined to be both an input and an output, as follows

<port name="out" class="ptolemy.actor.IOPort">
<property name="output" value="true"/>
<property name="input" value="true"/>
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</port>

Itisalsosometimesnecessarytodeclarethataportisamultiport.Todothis,encloseintheporta
propertynamed"multiport"asinthefollowingexample:

<portname="out"class="ptolemy.actor.IOPort">
<propertynaine="multiport"/>

</port>

TheenclosingportmustbeaninstanceoflOPort(oraderivedclasssuchasTypedlOPort),orelsethe
propertyistreatedasanordinaryproperty.Aswiththeinputandoutputattribute,themultiportprop
ertycanbegivenabooleanvalue,asin

<portname="out"class="ptolemy.actor.IOPort">

<propertyname="multiport"value="true"/>
</port>

IfaportisaninstanceofTypedlOPort(forlibraryactors,mostare),thenyoucansetthetypeof
theportinMoMLasfollows:

<portname="out"class="ptolemy.actor.IOPort">

<propertyname="type"

value="double"

class="ptolemy.actor.TypeAttribute"/>
</port>

Thisisoccasionallyusefulwhenyouneedtoconstrainthetypesbeyondwhatthebuilt-intypesystem
takescareof.Thenamesofthebuilt-intypesare(currently)boolean,booleanMatrix,complex,com-
plexMatrix,double,doubleMatrix,fix,fixMatrix,int,intMatrix,long,longMatrix,object,string,and
general.Thesearedefinedintheclassptolemy.data.type.BaseType.

6.3.9RelationsandLinks

Toconnectentities,youcreaterelationsandlinks.Thefollowingexampledescribesthetopology
showninfigure6.6:

<entityname="top"class="classnaine">
<entityname="A"class="classnaine">

<portname="out"/>

</entity>
<entityname="B"class="classnaine">

<portname="out"/>

</entity>
<entityname="C"class="classnajne">

<portname="in">

<propertyname="multiport"/>
</port>

</entity>
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<relation naine="rl" class="classname"/>

<relation naine="r2" class="ciassname"/>

<link port="A.out" relation="rl"/>
<link port="B.out" relation="r2"/>
<link port="C.in" relation="rl"/>
<link port="C.in" relation="r2"/>

</entity>

In Ptolemy II, the typical classname for a relation would be ptolemy.actor.TypedlORelation.
The classname may be omitted, in which case the newRelationQ method ofthe container is used to cre
ate a new relation. The container is required to be an instance ofptolemy.kemel.CompositeEntity, or a
derived class. As usual, the class attribute may be omitted if the relation already exists in the contain
ing entity.

Notice that this example has two distinct links to c. in from two different relations. The order of
these links may be important to a MoML tool, so any MoML tool must preserve the order in which
they are specified, as Ptolemy II does. We say that C has two links, indexed 0 and 1.

The link element can explicitly give the index number at which to insert the link. For example,
we could have achieved the same effect above by saying

<link port="C.in" relation="rl" insertAt="0"/>
<link port="C.in" relation="r2" insertAt="1"/>

Whenever the insertAt option is not specified, the link is always appended to the end of the list of
links.

When the insertAt option is specified, the link is inserted at that position, so any pre-existing links
with larger indices will have their index numbers incremented. For example, ifwe do

<link port="C.in" relation="rl" insertAt="0"/>
<link port="C.in" relations"r2" insertAt="l"/>
<link ports"C.in" relations"r3" insertAts"l"/>

then there will be a link to rl with index 0, a link to r2 with index 2 (note! not 1), and a link to r3 with

FIGURE 6.6. Example topology.
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index 1.

If the specified index is beyond the existing number of links, then null links (i.e. links to nothing)
are created to fill in. So for example, if the first link we create is given by

<link port="C.in" relation="r2" insertAt="l"/>

thenthe port will have two links, not one,but the firstone will be an emptylink. If we then say

<link port="C.in" relation="r2"/>

then the port will have three links, with the first one being empty. Ifwe then say

<link port="C.in" relation="r2" insertAt="0"/>

then there will befour links, with the second one being empty.

Normally, it is not necessary in MoML to specify whether a link occurs on the inside of a port or
on the outside. This can be determined automatically by identifying the relation.For example, in figure
5.4, port P4 is linked on the inside to relation R2 and on the outside to relations R3 and R4.

However, close examination of the DTD reveals that the relation attribute is optional. If the rela
tion attribute is not present, then a null link is inserted. However, if you do not specify a relation, then
there is no way to determine whether an inside null link or an outside null link was intended. MoML
defines the default to be an outside null link. To specify an inside null link, use the insertlnsideAt
attribute. For example, to insert a null link on the inside of P4 in figure 6.4 prior to the link to R2, use:

<entity name="EO.El">

<link port="P4.in" insertInsideAt="0"/>
</entity>

Note that the index number is not the same thing as the channel number in Ptolemy 11. In Ptolemy
11, a relation may have a width greater than one, so a single link may represent more than one channel
(actually, it could even represent zero channels if that relation is not linked to another ports).

6.3.10 Classes

So far, entities have been instances of extemally defined classes accessed via a class loader. They
can also be instances of classes defined in MoML. To define a class in MoML, use the class element,
as inthe following example:^

<?xml version="1.0" standalone="no"?>

<!DOCTYPE class PUBLIC "-//UC Berkeley//DTD MoML 1//EN"

"http://ptolemy.eecs.berkeley.edu/xml/dtd/moml.dtd">

<class naine="Gen" extends="ptolemy.actor.TypedCompositeActor">
<entity name="ramp" class="ptolemy.actor.lib.Ramp">

<port name="output"/>

<property name="st0p" value="2*PI/50"/>

6. This is a simplified version of the Sinewave class, whose complete definition is given in the appendix.
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</entity>
<entity name="sine" class="ptoleniy.actor.lib.TrigFunction">

<port naine="input"/>
<port name="output"/>

</entity>
<port naine="output" class="ptolemy.actor.TypedlOPort"/>
<relation naine="rl" class="ptoleiny.actor.TypedlORelation"/>
<relation name="r2" class="ptolemy.actor.TypedlORelation"/>
<link port="ramp.output" relation="rl"/>
<link port="sine.input" relation="rl"/>
<link port="sine.output" relations"r2"/>
<link ports"output" relations"r2"/>

</class>

The class element may be the top-level element in a file, in which case the doctype should be
declared as "class" as done above. It can also be nested within a model. The above example specifies
the topology shown in figure 6.7. Once defined, it can be instantiated as if it were a class loaded by the
class loader:

<entity names"instancename" class="classname"/>

or

<entity names"instancename" classs"classname" sources"uri"/>

The first form can be used if the class definition can be found from the classname. There are two ways
that this could happen. First, the classname might be an absolute name for a class defined within the
same top level entity that this entity element is in. Second, the classname might be sufficient to find the
class definition in a file, much the way Java classes are found. For example, if the classname is
ptolemy.actor.lib.Sinewave and the class is defined in the file $PTII/ptolemy/actor/
lib/sinewave. xml, then there is no need to use the second form to specify the URL where the class
isdefined. Specifically, the CLASSPATH^ is searched for a file matching the classname. By conven
tion, the file defining the class has the same name as the class, with the extension ". xml" or ". moml".

In the first of these techniques, the class name follows the same convention as entity names, except

A X
V outpuy • ^nput T • output

FIGURE 6.7. Sine wave generator topology.

7. CLASSPATH is an environment variable that Java uses to find Java classes. The Ptolemy 11 implementation of
MoMLsimply leveragesthis so that MoML classescan also be found if they are on the CLASSPATH.
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thata classname referring toa class defined within thesame MoML top-level must be absolute. In fact,
a class is an entitywiththeadditional feature thatonecancreate newinstances of it with theentity ele
ment. Consider for example,

<?xml version="l.0" standalone="no"?>

<!DOCTYPE entity PUBLIC "-//UC Berkeley//DTD MoML 1//EN"
"http://ptolemy.eecs.berkeley.edu/xml/dtd/moml.dtd">

<entity name="top" extends="ptolemy.kernel.CompositeEntity">
<class name="Gen" extends="ptolemy.actor.TypedCompositeActor">

class definition ,,.

</class>

<entity name="derived" class=".top.Gen"/>
</entity>

Here, the entity derived is an instance of . top.Gen, which is defined within the same MoML top
level. The absolute class name is ". top. Gen".

The ability to give a URL as the source of a class definition is very powerful. It means that a model
may be build from component libraries that are defined worldwide. There is no need to localize these.
Of course, referencing a URL means the usual risks that the link will become invalid. It is our hope
that reliable and trusted sources of components will emerge who will not allow this to happen.

The Gen class given at the beginning of this subsection generates a sine wave with a period of 50
samples. It is not all that useful without being parameterized. Let us extend itand add properties:^

<class name="Sinegen" extends="Gen">
<property name=" ScimplingFrequency"

value="8000.0"

class="ptolemy.data.expr.Parameter">
<doc>The sampling frequency in Hertz.</doc>

</property>

<property name="frequency"

value="440.0"

class="ptolemy.data.expr.Parameter">

<doc>The frequency in Hertz.</doc>
</property>

<property name="ramp.s tep"

value="frequency*2*PI/samplingFrequency">
<doc>Formula for the step size.</doc>

</property>

<property name="ramp.ini t"
value="phase">

</property>

</class>

This class extends Gen by adding two properties, and then sets the properties of the component entities
to have values that are expressions.

8. This is still not quite as elaborate as the Sinewave class defined in the appendix, which is why we give it a
slightly different name, Sinegen.
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6.3.11 Inheritance

MoML supports inheritance by permitting you to extend existing classes. For example, consider
the following MoML file:

<?xml version="l.0" standalone="no"?>

<!DOCTYPE entity PUBLIC "-//UC Berkeley//DTD MoML 1//EN"
"http://ptolemy.eecs.berkeley.edu/xml/dtd/moml.dtd">

<entity name="top" class="ptolemy.kernel.CompositeEntity">
<class name="base" extends="ptolemy.kernel.CompositeEntity">

<entity name="el" class="ptolemy.kernel.ComponentEntity">
</entity>

</class>

<class name="derived" extends=".top.base">
<entity name="e2" class="ptolemy.kernel.ComponentEntity"/>

</class>

<entity name="instance" extends=".top.derived"/>
</entity>

Here, the "derived" class extends the "base" class by adding another entity to it, and "instance" is an
instance of derived. The class "derived" can also give a source attribute, which gives a URL for the
source definition.

6.3.12 Directors

Recall that a clustered graph in MoML has no semantics. However, a particular model has seman
tics. It may be a dataflow graph, a state machine, a process network, or something else. To give it
semantics, Ptolemy II requires the specification of a director associated with a model, an entity, or a
class. The director is a property of the model. The following example gives discrete-event semantics to
a Ptolemy II model:

<entity name="top" class="ptolemy.actor.TypedCompositeActor">
<property name="director"

class="ptolemy.domains.de.kernel.DEDirector">
<property ncime="stopTime" value="100 . 0"/>

</director>

</entity>

This example also sets a property of the director. The name of the director is not important, except that
it cannot collide with the name of any other property in the model.

6.3.13 Input Element

It is possible to insert MoML from another file or URL into a particular point in your model. For
example:

<entity name="top" class="...">
<entity name="a" class="...">

<input source="url"/>
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</entity>
</entity>

This takes the contents of the URL specified in the source attribute of the input element and places
them inside the entity named "a". The base of the current document (the one containing the import
statement) is used to interpret a relative URL, or if the current document has no base, then the current
working directory is used, or if that fails, the current CLASSPATH.

6.3.14 Annotations for Visual Rendering

The abstract syntax of MoML, clustered graphs, is amenable to visual renditions as bubble and arc
diagrams or as block diagrams. To support tools that display and/or edit MoML files visually, MoML
allows a relation to have multiple vertices that form a path. Links can then be made to individual verti
ces. Consider the following example:

<relation name="r" class="ptolemy.actor.TypedIORelation">
<vertex name="vl" class="classname" value="location"/>

<vertex name="v2" class="classnajne" value="location" pathTo="vl"/>
</relation>

<link port="A.out" relation="r" vertex="vl"/>
<link port="B.in" relation="r" vertex="vl"/>
<link port="C.in" relation="r" vertex="v2"/>

This assumes that there are three entities named A, B, and C. The relation is annotated with a set of
vertices, vl and v2, which will normally be rendered as graphical objects. The vertices are linked
together with paths, which in a simple visual tool might be straight lines, or in a more sophisticated
tool might be autorouted paths. In the above example, vl and v2 are linked by a path. The link ele
ments specify not just a relation, but also a vertex within that relation. This tells the visual rendering
tool to draw a path from the specified port to the specified vertex.

Figure 6.8 illustrates how the above fragment might be rendered. The square boxes are icons for
the three entities. They have ports with arrowheads suggesting direction. There is a single relation,
which shows up visually only as a set of lines and two vertices. The vertices are shown as small dia
monds.

A vertex is exactly like a property, except that it has an additional attribute, pathTo, used to link
vertices, and it can be referenced in a link element. Like any other property, it has a class attribute,
which specifies the class implementing the vertex. In Ptolemy II, the class for a vertex is typically
ptolemy.moml.Vertex. Like other properties, a vertex can have a value. This value will typically spec
ify a location for a visual rendition. For example, in Ptolemy II, the first vertex above might be given
as

FIGURE 6.8. Example showing how MoML might be visually rendered.
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<vertex name="vl"

class="ptolemy.inoinl .Vertex"

value="184.0, 93.0"/>

This indicates that the vertex should be rendered at the location 184.0,93.0.

Ptolemy II uses ordinary MoML properties to specify other visual aspects of a model. First, an
entity can contain a location property, which is a hint to a visual renderer, as follows:

<entity name="ramp" class="ptolemy.actor.lib.Ramp">
<property name="location"

class="ptolemy.moml.Location"
value="50.0, 50.0"/>

</entity>

This suggests to the visual renderer that the Ramp actor should be drawn at location 50.0,50.0.
Ptolemy II also supports a powerful and extensible mechanismfor specifyingthe visual rendition

of an entity. Consider the following example:

<entity name="ramp" class="ptolemy.actor.lib.Ramp">
<property name="location"

class="ptolemy.moml.Location"
value="50.0, 50.0"/>

<property name="iconDescription"
class="ptolemy.kernel.util.SingletonAttribute">

<configure><svg>

<rect x="0" y="0" width="80" height="20"
style="fill:green;stroke:black;stroke-width:5"/>

</svg></configure>

</property>

</entity>

The SingletonAttributeclass is used to attach an XML description of the rendition, which in this case
is a wide box filled with green. The XML schema used to define the icon is SVG (scalable vector
graphics), which can be found athttp://www.w3.org/TR/SVG/.^

The rendering of the icon is done by another property of class XMLIcon, which need not be
explicitly specified because the visual renderer will create it if it isn't present. However, it is possible
to create totally customized renditions by defining classes derived from XMLIcon, and attaching them
to entities as properties. This is beyond the scope of this chapter.

6.4 Incremental Parsing

MoML may be used as a command language to modify existing models, as well as being used to
specify complete models. This technique is known as incremental parsing.

9. Currently, the Divagraphicsinfrastructure, which is usedby Vergil to renderthese icons,only supportsa small
subset of SVG Eventually, we hope it will support the full specification.
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6.4.1 Adding Entities

Consider for example the simple model created as follows:

<?xinl version="1.0" standalone="no"?>

<!DOCTYPE entity PUBLIC "-//UC Berkeley//DTD MoML 1//EN"

"http://ptolemy.eecs.berkeley.edu/xml/dtd/moml.dtd">
<entity name="top" class="ptolemy.actor.TypedCompositeActor">

... contents of the model ...

</entity>

Later, the following MoML element can be used to add an entity to the model:

<entity name=".top">
<entity name="inside" class="ptolemy.actor.TypedCompositeActor"/>

</entity>

The name of the outer entity ". top" is the name of the top-level model created by the first segment of
MoML. (Recall that the leading period means that the name is absolute.) The line

<entity name=".top">

defines the context for evaluation of the element

<entity name="inside" class="ptolemy.actor.TypedCompositeActor"/>

Any entity constructed in a previous parsing phase can be specified as the context for evaluation of a
new MoML element.

Ofcourse, the MoML parser must have a reference to the context in order to later parse this incre
mental element. This is accomplished by either using the same parser, which keeps track of the top-
level entity in the last model it parsed, or by calling the setTopLevel() or setContextQ methods of the
parser, passing as an argument the model.

6.4.2 Using Absolute Names

Above, we have used the fact that an entity element can refer to a pre-existing element by name.
That name can be relative to the context in which the entity element exists, or it can be absolute. If it is
absolute, then it must nonetheless be properly contained by the enclosing entity. The following exam
ple is incorrect, and will trigger an exception:

<entity name="top" class="ptolemy.actor.TypedCompositeActor">
<entity name="a" class="ptolemy.actor.TypedCompositeActor"/>
<entity name="b" class="ptolemy.actor.TypedCompositeActor">

<entity name=".top.a"/>
</entity>

</entity>

The ".top. a" cannot be specified within "b" because it is alreadycontained within "top."
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6.4.3 Adding Ports, Relations, and Links

A port or relation can be added to an entity that has been previously constructed by the parser. For
example, assuming that . top. inside has been constructed as before, we can add a port to it with the
following MoML segment:

<entity name=".top.inside">
<port naine="input" class="ptolemy.actor.TypedIOPort"/>

</entity>

A relation and link can then be added as follows:

<entity naine=" . top" >
<relation name="r" class="ptolemy.actor.TypedIORelation"/>
<link port="inside.input" relation="r"/>

</entity>

6.4.4 Changing Port Configurations

A port that is an input can be converted to an output with the following MoML segment:

<port name="portnaine">

<property name="input" value="false"/>
<property name="output" value="true"/>

</port>

A port can be made into a multiport as follows:

<port name="portnajne">

<property name="multiport" value="true"/>
</port>

6.4.5 Deleting Entities, Relations, and Ports

An entity that has been previously constructed by a parser can be deleted by evaluating MoML.
For example, assuming that . top. inside has been constructed as before, we can delete it with the
following MoML segment:

<entity name=".top">
<deleteEntity name="inside"/>

</entity>

Any links to ports of the entity will also be deleted. Similarly, relationscan be deleted using the dele-
teRelation element, and ports can be deleted using the deletePort element.

6.4.6 Renaming Objects

A previouslyexistingentity can be renamed using the rename element,as follows:
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<entity name="entityNcUoae">
<rename name="newName"/>

</entity>

The new name is required to not have any periods in it. It consists of alphanumeric characters, the
underscore, and spaces.

6.4.7 Changing Documentation, Properties, and Directors

Documentation is attached to entities using the doc element (see section 6.3.7). A doc element can
optionally be given a name; if no name is given, then the name is implicitly "_doc". To replace a doc
element, just give a new doc element with the same name. To remove a doc element, give a doc ele
ment with the same name and an empty body, as in

<doc name=" docnajne"></doc>

or

<doc name="docname"/>

Properties can have their value changed using the property element (see section 6.3.6) with a new
value, for example:

<property naine="propertyname" valne="propertyvalue"/>

A property can be deleted using the deleteProperty element

<deleteProperty naine="propertyname" />

Since a director is a property, this same mechanism can be used to remove a director.

6.4.8 Removing Links

To remove individual links, use the unlink element. This element has three forms. The first is

<unlink port="portnajne" relation="relationname"/>

This unlinks a port from the specified relation. If the port is linked more than once to the specified rela
tion, then all links to this relation are removed. It makes no difference whether the link is an inside link
or an outside link, since this can be determined from the containers of the port and the relation.

The second and third forms are

<unlink port="portname" index="linknumber"/>
<unlink port="partname" insidelndex="linknumber" />

These both remove a link by index number. The first is used for an outside link, and the second for an
inside link. The valid indices range from 0 to one less than the number of links that the port has. If the
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port is not a multiport, then there is at most one valid index,number0. If an invalid index is given then
the element is ignored. Note that the indexes of links above that of the removed link will be decre
mented by one.

The unlink element can also be used to remove null links. For example, if we have created a link
with

<link port="portname" relation="r" insertAt="l"/>

where there was previously no link on this port, then this leaves a null link (not linked to anything)
with index 0 (see section 6.3.9), and of course a link to relation r with index 1. The null link can be
removed with

<unlin)c port="portname" insidelndex="0"/>

which leaves the link to r as the sole link, having index 0.

Note that the index is not the same thing as the channel number. A relation may have a width
greater than one, so a single link may represent more than one channel (actually, it could even repre
sent zero channels if that relation is not linked to other suitable ports).

6.4.9 Grouping Elements

Occasionally, you may wish to incrementally parse a set of elements. For example, in the Ptolemy
II implementation, the parser has a method for setting the context, so you could set the context to a
CompositeEntity and then create several entities by parsing the following MoML:

<entity name="firstEntity" class="classname"/>
<entity name="firstEntity" class="classuame"/>
<entity name="firstEntity" class="classname"/>

However, the XML parser will fail to parse this because it requires that there be a single top-level ele
ment. The group element is provided for this purpose:

<group>

<entity name="firstEntity" class="classname"/>
<entity name="firstEntity" class="classname"/>
<entity name="firstEntity" class="classname"/>

</group>

This element is ignored by the parser, in that it does not define a new container for the enclosed enti
ties. It simply aggregates them, leaving the context the same as it is for the group element itself.

The group element may be given a name attribute, in which case it defines a namespace. All
named objects (such as entities) that are immediately inside the group will have their names modified
by prepending them with the name of the group and a colon. For example,

<group name="a">

<entity name="b" class=" classnajne">
<entity name="c" class="classname"/>
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</entity>
</group>

The entity "b" will actually be named "a:b". The entity "c" will not be affected by the group name. Its
full name, however, will be "a:b.c".

If the namespace given is "auto" then the group tag has a particular special effect. Each element
contained immediatelywithin the group that has a name will be assigned a new unique name within
the container based on the specified name. Hence, if the specified name is "foo", but the container
already contains an object named "foo", then a new object will be created with name "foo2" or "foo3".
This feature ofthe group element seems rather bizarre, but it proves convenient when using MoML to
cut and paste. In order to paste a group of objects into a container, those objects have to be assigned
names that do not collide with names of objects already in the container. The following MoML will
have that effect:

<group naine="auto">

<entity name="b" class="classname">
<entity name="c" class="classname"/>

</entity>
</group>

In this example, automatic naming is only applied to objects immediately contained by the group.
Thus, the entity with name "b" may in fact be created with name "b2" (if there is already a "b"), but the
entity with name "c" will have name "c".

6.5 Parsing MoML

MoML is intended to be a generic modeling markup language, not one that is specialized to
Ptolemy II. As such, Ptolemy II may be viewed as a reference implementation of a MoML tool. In
Ptolemy II, MoML is supported primarily by the moml package.

The moml package contains the classes shown in figure 6.9 (see appendix A of chapter 1 for UML
syntax). The basis for the MoML parser is the parser distributed by Microstar. The parseQ methods of
the MoMLParser class read MoML data and construct a Ptolemy II model. They return the top-level
model. The same parser can then be used to incrementally parse MoML segments to modify that
model.

The EntityLibrary class takes particular advantage of MoML. This class extends CompositeEntity,
and is designed to contain a library of entities. But it is carefully designed to avoid instantiating those
entities until there is some request for them. Instead, it maintains a MoML representation of the library.
This allows for arbitrarily large libraries without the overhead of instantiating components in the
library that might not be needed.

Incremental parsing is when a MoML parser is used to modify a pre-existing model (see section
6.4). A MoML parser that was used to create the pre-existing model can be used to modify it. If there is
no such parser, then it is necessary to call the setToplevel () method of MoMLParser to associate
the parser with the pre-existing model.

Incremental parsing should (usually) be done using a change request. A change request is an active
object that makes a modification to a Ptolemy model. They are queued with a composite entity con
tainer by calling its requestChangeQ method. This ensures that the mutation is executed only when it is
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safe to modify the structure of themodel. TheclassMoMLChangeRequest (seefigure 6.9) can be used
for this purpose. Simply createan instance of this class,providing the constructor with a string con
taining the MoML code that specifies the change.

The exportMoMLQ methods of Ptolemy II objects can be used to produce a MoML file given a
model. Thus, MoML can be used as the persistent file format for Ptolemy II models

6.6 Exporting MoML

Almost any Ptolemy II object can export a MoML description of itself. The following methods of
NamedObj (and derived classes) are particularly useful:

exportMoML(): String

exportMoML(output: Writer)

com.mlcrostarjcml.HanderBase

+CANCEL: Int

♦CONTINUE : int

♦RETHROW: int

«lnlerface»

ErrorHandler

|'*'attribute(name: String, value: String. isSpedlied: boolean) ;
|+cbar0al3(clata: chaiQ. start; int. length: Int) !
j-^doctypeDeclCnante: String, publicID: String, systemID; Siring):
l+endDocumenlO i
i't-endElen>ent{name: String) |
•'•'erxlExtemalEntityCsystemlO: String) j
|+error(message; Siring,systemID: String,line; int,column: int)|
i'r'ignorabIeWhilespace(data: charQ, start: int, length.inti
j'^processinglnstruction(target; String, data; String)
j+resolveEntlty(publiclD; String, systemID: String)
i+startDocumentO
|+startElemenl(n3me: String)
!'«'StartExtemalEntity(systemID: String)

♦enableEnt>rSklpping(enable: boolean)
♦handleErTor(element:String, context: NamedObj, exception: Exception)

icom.mlcro8tar.xmlJ(mlPar8er:

! Configurable

I CompositeEntlty |

EntltyLlbrary

•.parser: MoMLParser

♦MoML DTD 1 : Slrino

base: URL

current: Object
currentElement: String
handler: ErrorHandler

.manager: Manager

.panel: Container

.parser: XmlParser

.toplevel: NamedOtrj

.workspace: Workspace

♦MoMLParserO

♦MoMLParserfw:Workspace)
♦MoMLParserfw:Workspace, loader: ClassLoader)
♦getTopLevetO;NamedObj

♦parsejbase: URL,input: URL)
♦parsejbase: URL, input: InputStream): NamedOt)]
♦parsefbase: URL, reader: Reader): NamedOt^
♦parsefinput: String): NamedObj
♦parsejbase: URL,text: String)
♦parseFilejfilenamo: String)
♦resell)

♦searchForOasslname: Siring, source ; String): ComponentEntity
♦setContext(context:NamedObj)
♦setErrorHandlerfhandler: EnorHandlerl

♦setModifiedfmodified:boolean)

♦setToplevel(toplevel:NamedObj)
ff_currentExtemalEnlityQ: String

uses Li„.i—,0..n O.^n-

StreamErrorHandler

♦StreamEnerHandlerl)

♦StreamEnerHandlerlout:OutputStream)

I ChangeRequest

•♦execute!)

MoMLChangeRequest

♦EntityUbraryO

♦EnlilyUbrary(workspace:Workspace)
♦EntityUbraryjcontainer:CompositeEntlty, name: Siring)
♦populate!)

>_base: URL
•.context; NamedObj
•.parser: MoMLParser
•.propagating: boolean
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♦MoMLChangeRequestjoriginator:ObjecL request: String)
♦MoMLChangeRequestjoriginator: ObjecL context: NamedObj, request: String)
MoMLChangeRequestjoriginalor; Object, context: NamedObj, request: String, base;URL)

♦oetDeferredToParenlfobiect: NamedObil: NamedObI

FIGURE 6.9. Classes supporting MoML parsing in the moml package.
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exportMoML(output: Writer, depth: int)
exportMoML(output: Writer, depth: int, name: String)
_exportMoMLContents(output: Writer, depth: int)

Sinceany object derived from NamedObj can exportMoML, MoML becomes an effective persistent
format for PtolemyII models. Almosteverything in PtolemyII is derivedfrom NamedObj. It is much
more compact than serializing the objects,and the description is much more durable (since serialized
objects are not guaranteedto load properly into future versions of the Java virtual machine).

There is one significant subtlety that occurs when an entity is instantiated from a class defined in
MoML. Consider the example:

<entity name="top" class="ptolemy.kernel.CompositeEntity">
<class name="master" extends="ptolemy.kernel.ComponentEntity">

<port name="p" class="ptolemy.kernel.ComponentPort"/>
</class>

<entity name="derived" class=".top.master"/>
</entity>

This model defines one class and one entity that instantiates that class. When we export MoML for this
top-level model, we get:

<entity name="top" class="ptolemy.kernel.ComposIteEntity">
<class name="master" extends="ptolemy.kernel.ComponentEntity">

<port name="p" class="ptolemy.kernel.ComponentPort">

</port>

</class>

<entity name="derived" class=".top.master">
</entity>

</entity>

Aside from some minor differences in syntax, this is identical to our specification above. In particular,
note that the entity "derived" does not describe its port "p" even though it certainly has such a port.
That port is implied because the entity instantiates the class ". top .mas ter".

Suppose that using incremental parsing we subsequently modify the model as follows:

<entity name=".top.derived">
<port name="q" class="ptolemy.kernel.ComponentPort"/>

</entity>

That is, we add a port to the instantiated entity. Then the added port is exported when we export
MoML. That is, we get:

<entity name="top" class="ptolemy.kernel.CompositeEntity">
<class ncime="master" extends="ptolemy.kernel.ComponentEntity">

<port name="p" class="ptolemy.kernel.ComponentPort">
</port>

</class>

<entity name="derived" class=".top.master">
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<port name="q" class= "ptolertiy.kernel .ComponentPort">
</port>

</entity>

</entity>

This is what we would expect. The entity is based on the specified class, but actually extends it with
additional features. Those features are persistent.

Properties are treated more simply. They are always described when MoML is exported, regardless
ofwhether they are defined in the class on which an entity is based. The reason for this is that proper
ties are usually modified in instances, for example by giving them new values.

There is an additional subtlety. Ifa topology is modified by making direct kernel calls, then export-
MoMLQ will normally export the modified topology. However, if a derived component is modified by
direct kemel calls, then exportMoMLQ will fail to catch the changes. In fact, only if the changes are
made by evaluating MoML will the modifications be exported. This actually can prove to be conve
nient. It means that if a model mutates during execution, and is later saved, that a user interface can
ensure that only the original model, before mutations, is saved.

6.7 Special Attributes

The moml package also includes a set of attribute classes that decorate the objects in a model with
MoML-specific information, as shown in figure 6.10. These classes are used to decorate a Ptolemy II

Settable

I'^getExpressionO:String ;
!+setExpression(expression: String);

I

Location

-.location; doubleQ
-.vatueLlsteners: Ust

+Location(container; NamedObj, name; String)
+Locatton(w; Workspace)
-faddValueUstenertlistener: ValueUstener)
-•^tLocationO: doublefl
-KemoveValueUsteneitiistener: ValueUstener)
♦setLocationQocation:doubleD)

•Jinked: Vertex
'.ports: Ust

/\

Wertex(cootainer: Relation, name: String)
••addUnkedPort(pott: Port)
••getUnkedVertexO; Vertex
•HinkedPortsO: Ust
+removeUnkedPort(port: Port)
•^setUnkedVertex(vertex: Vertex)
•••Vertex(w: Workspace)

Attribute Documentation

-.value: String
•tcoosolldatefobiect: NamedObi): Strino

•••getValueO: String
••'setValue(value: String)

J<r

MoMLAttributo

•_momlDescription: Ust SingletonConfigurableAttributej iSingletonAttribute

'•'MoMLAttribute(container: NamedObi, name: String)
-•-MoMLAttribute^w: Workspace)
'•'3ppendMoMLDescription(moml: String)
•»writeMoMLDescription(cutput: Writer, depth : int)

CompositeEntlty • LibraryAttribute

-t-UbraryAttributeO
-••UbraryAttributeCworkspace: Workspace)
+UbraryAttribute(container: NamedObj. name: String)
••^tUbraryO: CompositeEntlty
♦setUbrar^library:CompositeEntlty)

ParserAttribute

•••ParserAttributeCcontainer: NamedObj, name: String)
♦getParserO: MoMLParser
♦setParserjparser; MoMLParser)

FIGURE 6.10. Attributes in the moml package.
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object with additional information that is relevant to a GUI or otheruser interface. For example, the
Location class is used to specify the location of visual rendition of a component in a visual editor. A
Vertex decorates a relation with one of several visual handles to which connections can be made. A
MoMLAttribute decorates an object with a property that can describe itself with arbitrary MoML.
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Appendix C: Example

Figures 6.11 and 6.12 show a simple Ptolemy II model in the SDF domain. Figure 6.13 shows the
execution window for this model. This model generates two sinusoidal waveforms and multiplies them
together. This appendix gives the complete MoML code. The MoML code is divided into two files.
The first of these defined a component, a sinewave generator. The second creates two instances of this
sinewave generator and multiplies their outputs. The code listings are (hopefully) self-explanatory.

C.l Sinewave Generator

The Sinewave component is defined in the file $PTII/ptolemy/actor/lib/Sinewave.xml, which is
listed below. This file defines a MoML class, which can then be referenced by the class name
ptolemy.actor.lib.Sinewave. The Vergil rendition of this model is shown in figure 6.11.

<?xiiil version='l.0" standalone="no'?>

<!DOCTyPE class PUBLIC '-//UC Berkeley//DTD MoHL 1//EN"
•http://ptolemy.eecs.berkeley.edu/xinl/dtd/MoML_l.dtd">

<class nanie='Sinewave" extends='ptoleiny.actor.TypedCompositeActor•>
<property name="_createdBy' class="ptolemy.kernel.util.VersionAttribute*

value="2.0-beta'xdooThis composite actor generates a sine wave.</doc>
<property name="samplingFreguency" class=*ptolemy.data.expr.Parameter" value="8000.0">

<doc>The sampling frequency, in the same units as the frequency.</doc>
</property>

<property name='frequency* class="ptolemy.data.expr.Parameter" value="440.0'>
<doc>The frequency of the sinusoid, in the same units as the sampling frequency.</doc>

</property>

<property name=*phase" class="ptolemy.data.expr.Parameter" value="0.0">
<doc>The phase, in radians.</doc>

</property>

<property name="_vergilSize' class="ptolemy.actor.gui.SizeAttribute" value="[600, 450]">
</property>

<property naine="_vergilLocation" class='ptolemy.actor.gui.LocationAttribute" value="[104, 102)">
</property>

<property name="annotation" class='ptolemy.kernel.util.Attribute">
<property name="_hideName" class='ptolemy.kernel.util.SingletonAttribute">
</property>
<property name="_iconDescription" class="ptolemy.kernel.util.SingletonConfigurableAttribute">

<configurexsvgxtext x="20' y="20"
style="font-size:14; font-family:SansSerif; fill:blue">Generate a sine wave.</text>

File View Edit Graph Help

'•1^1
_J utilities
_j director library
" I actor library

_J Graphics

FIGURE 6.11. Rendition of the Sinewave class in Vergil 1.0.
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</svg></configure>
</property>

<propertyname="_smallIconDescription"
class="ptolemy.kernel.util.SingletonConfigurableAttribute">
<configure>

<svg>

<textx="20"style="font-size:14;font-family:SansSerif;fill:blue"y="20">-A-</text>
</svg>

</configure>
</property>
<propertyname="_controllerFactory"class="ptolemy.vergil.basic.NodeControllerFactory">
</property>
<propertyname="_editorFactory"class='ptolen:y.vergil.toolbox.AnnotationEditorFactory'>
</property>
<propertyname="_location"class="ptolemy.moml.Location"value="25.0,20.0">
</property>

</property>
<portname="output"class="ptolemy.actor.TypedIOPort">

<propertyname="output"/>
<doc>Sinusoidalwaveformoutput.</doc>
<propertyname="_location"class="ptolemy.moml.Location"value="460.0,225.0">
</property>

</port>
<entityname="Ramp"class="ptolemy.actor.lib.Ran5>">

<propertyname="firingCountLimit"class="ptolemy.data.expr.Parameter"value="0">
</property>
<propertyname="init"class="ptolemy.data.expr.Parameter"value="phase">
</property>
<propertyname="step"class="ptolemy.data.expr.Parameter"

value="frequency*2*PI/samplingFrequency">
</property>
<propertyname="_location"class="ptolemy.moml.Location"value="140.0,225.0">
</property>
<portname="output"class="ptolemy.actor.TypedIOPort">

<propertyname="output"/>
</port>
<portname="trigger"class="ptolemy.actor.TypedIOPort">

<propertyname="input"/>
<propertyname="multiport"/>

</port>
</entity>
<entityname="SineFunction"class="ptolemy.actor.lib.TrigFunction">

<propertyname="function"class="ptolenv-'^ernel.util.StringAttribute"value="sin">
<propertyname="style"class="ptolemy.actor.gui.style.ChoiceStyle">

<propertyname="acos"class="ptolemy.kernel.util.StringAttribute"value="acos">
</property>
<propertyname="asin"class="ptolemy.kernel.util.StringAttribute"value="asin">
</property>
<propertyname="atan"class="ptolemy.kernel.util.StringAttribute"value="atan">
</property>
<propertyname="cos"class="ptolemy.kernel.util.StringAttribute"value="cos">
</property>
<propertynarae="sin"class="ptolemy.kernel.util.StringAttribute"value="sin">
</property>

<propertyname="tan"class="ptolemy.kernel.util.StringAttribute"value="tan">
</property>

</property>
</property>
<propertyname="_icon"class="ptolemy.vergil.icon.AttributeValueIcon">

<propertyname="attributeName"class="ptolemy.kernel.util.StringAttribute"value="function">
</property>
<propertyname="displayWidth"class="ptolemy.data.expr.Parameter"value="6">
</property>

</property>
<propertyname="_location"class="ptolemy.moml.Location"value="195.0,110.0">
</property>
<portname="input"class="ptolemy.actor.TypedIOPort">

<propertyname="input"/>
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</port>

<port name="output" class="ptolemy.actor.TypedIOPorf>
<property name='output'/>

</port>
</entity>
<relation name='relationl" class='ptolemy.actor.TypedIORelation'>
</relation>

<relation name='relation2" class='ptolemy.actor.TypedIORelation">
</relation>

<link port="output" relation="relationl"/>
<link port="Ranip.output" relation='relation2*/>
<link port="Sine Function.input" relation="relation2"/>
<link port="Sine Function.output" relation="relationl"/>

</class>

C.2 Modulation

The top-level is defined in the file $PTII/ptolemy/moml/demo/modulation.xml, which is listed
below. The Vergil rendition of this model is shown in figure 6.12, and its execution is shown in figure
6.13.

^x]

File View Edit Graph Debug Help

director

signal display

1 utilities

' Iflirectorlibrary

_J actor tibrary

' t more libraries

1 1

j

1

na

FIGURE 6.12. Rendition of the modulation model in Vergil 1.0.



<?xml version=*1.0" standalone='no"?>

<!DOCTYPE entity PUBLIC "-//UC Berkeley//DTD MoML 1//EN"
•http://ptolemy.sees.berkeley.edu/xinl/dtd/MoML_l.dtd">

<entity nanie="modulation" class=*ptolemy.actor.TypedCorrpositeActor'>
<property naine=*_createdBy class=•ptolemy.kernel.uti1 .VersionAttribute" value="2.0-beta">
</property>
<doc>Multiply a low-frequency sine wave (the signal) by a higher frequency one (the carrier).</doc>
<property naine="freguencyl" class="ptolemy.data.expr.Parameter" value="PI*0.2">

<doc>Frequency of the carrier</doc>
</property>
<property naine="£requency2" class="ptolemy.data.expr.Parameter" value="PI*0.02">

<doc>Frequency of the sinusoidal signal</doc>
</property>
<property name="director" class="ptolemy.domains.sdf.kernel.SDFDirector">

<property name='iterations" class=°ptolemy.data.expr.Parameter" value="100">
<doc>Number of iterations in an execution.</doc>

</property>
<property name="vectorizationFactor" class="ptolemy.data.expr.Parameter" values'1">
</property>

<property name="_location" class="ptolemy.moml.Location" value="62.0, 23.0">
</property>

</property>
<entity name="carrier" class="ptolemy.actor.lib.Sinewave">

<doc>This composite actor generates a sine wave.</doc>
<property name="samplingFrequency" class="ptolemy.data.expr.Parameter" value='2*PI">

<doc>The sampling frequency, in the same units as the frequency.</doc>
</property>
<prop6rty name="frequency" class="ptolemy.data.expr.Parameter" value="frequencyl*>

<doc>The frequency of the sinusoid, in the same units as the sampling frequency.</doc>
</property>
<property name="phase" class=*ptolemy.data.expr.Parameter" value="0.0*>

<doc>The phase, in radians.</doc>
</property>

<property name="_vergilSi2e" class="ptolemy.actor.gui.SizeAttribute" value="[600, 450]">
</property>
<property name="_vergilLocation* class="ptolemy.actor.gui.LocationAttribute" value="[104, 102]'>
•</property>

<property name="annotation" class="ptolemy.kernel.util.Attribute">
<property name=*_hideName" class="ptolemy.kernel.util.SingletonAttribute'>
</property>

<property name="_iconDescription" class='ptolemy.kernel.util.SingletonConfigurableAttribute">

File View Debug Help

Model parameters

frequencyl: |pr0.2
frequency2: Iprnno

Director parameters:

Iterations; [To
vectorlzallonFaclor: IT"

execubon finished

FIGURE 6.13. Execution window for the modulation model.
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<configure><svg>
<text x="20" y="20" style="font-size:14; font-family:SansSerif; fill:blue">

Generate a sinewave.</text>

</svg></configure>
</property>
<property name="_smallIconDescription"

class="ptolemy.kernel.util.SingletonConfigurableAttribute">
<configure>

<svg>

<text x="20"

style="font-size:14; font-family:SansSerif; fill:blue' y="20">-A-</text>
</svg>

</configure>
</property>

<property name="_controllerFactory" class="ptolemy.vergil.basic.NodeControllerFactory*>
</property>

<property name="_editorFactory" class="ptolemy,vergil.toolbox.AnnotationEditorFactory">
</property>

<property name="_location" class="ptolemy.moml.Location" value="215.0, 250.0">
</property>

</entity>
<entity name="signal" class="ptolemy.actor.lib.Sinewave">

<doc>This con^josite actor generates a sine wave.</doc>
<property naine="samplingFrequency" class="ptolemy.data.expr.Parameter" value="2*PI">

<doc>The sampling frequency, in the same units as the frequency.</doc>
</property>
<property name="frequency" class="ptolemy.data.expr.Parameter" value="frequency2">

<doc>The frequency of the sinusoid, in the same units as the sampling frequency.</doc>
</property>
<property name="phase" class="ptolemy.data.expr.Parameter" value="0.0">

<doc>The phase, in radians.</doc>
</property>
<property name="_vergilSize" class="ptolemy.actor.gui.SizeAttribute" value="[600, 450]">
</property>
<property name="_vergilLocation" class="ptolemy.actor.gui.LocationAttribute" value="[104, 102)">
</property>
<property name="annotation" class="ptolemy.kernel.util.Attribute">

<property name="_hideName" class="ptoleiry.kernel.util.SingletonAttribute">
</property>

<property name="_iconDescription" class="ptolemy.kernel.util.SingletonConfigurableAttribute">
<configure><svg><text x="20" y="20"

style="font-size:14; font-family:SansSerif; fill:blue">Generate a sinewave.</text>
</svg></configure>

</property>
<property name="_smallIconDescription" class="ptolemy.kernel.util.SingletonConfigurableAt-

tribute">

<configure>
<svg>

<text x="20"

style="font-size:14; font-family:SansSerif; fill:blue" y=*20">-A-</text>
</svg>

</configure>
</property>

<property name="_controllerFactory" class= "ptolemy.vergil.basic.NodeControllerFactory">
</property>

<property name="_editorFactory" class="ptoleiiv.vergil.toolbox.AnnotationEditorFactory">
</property>

<property name="_location" class="ptolemy.moml.Location" value="143.0, 135.0">
</property>

</entity>
<entity narae="mult" class="ptolemy.actor.lib.MultiplyDivide">

<property name="_location" class="ptolemy.moml.Location" value="347.0, 196.0">
</property>

<port name="multiply" class="ptolemy.actor.TypedIOPort">
<property name="input"/>
<property name="multiport"/>

</port>
<port name="divide" class="ptolemy.actor.TypedIOPort">
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<property name="input"/>
<property name="multiport"/>

</port>

<port narae="output" class="ptoleniy.actor.TypedIOPort'>
<property name=•output"/>

</port>

</entity>
<entity name="display" class="ptolemy.actor.lib.gui.SequencePlotter">

<property naine="fillOnWrapup* class="ptolemy.data.expr.Parameter" value="true">
</property>
<property name="startingDataset" class="ptolemy.data.expr.Parameter" value="0">
</property>
<property name="xlnit" class="ptolemy.data.expr.Pareimeter" value="0.0">
</property>
<property name="xUnit" class="ptolemy.data.expr.Parameter" value="1.0">
</property>
<property name="_location" class="ptolemy.moml.Location" value="479.99998474121094, 135.Q">
</property>

<port name="input" class="ptolemy.actor.TypedIOPort">
<property name="input"/>
<property name="multiport"/>

</port>
<configure><?plotml

<!DOCTYPE plot PUBLIC "-//UC Berkeley//DTD PlotML 1//EN"
"http://ptolemy.eecs.berkeley.edu/xml/dtd/PlotML_l.dtd">
<plot>
<title>Modulated Waveform Exan^le</title>
<xLabel>sample count</xLabel>
<yLabe1>ampli tude</yLabe1>
<xRange min="1.0" max="100.0"/>
<yRange min="-1.0" max="1.0"/>
<noGrid/>

</plot>?>

</configure>
</entity>
<relation name="rl" class="ptolemy.actor.TypedIORelation">
</relation>

<relation narae="r2" class="ptolemy.actor.TypedIORelation">
<vertex name="vertexO" class="ptolemy.moml.Vertex" value="279.0, 141.0">
</vertex>

</relation>

<relation name="r3" class="ptolemy.actor.TypedIORelation">
</relation>

<link port="carrier.output" relation="rl"/>
<link port="signal.output" relation="r2"/>
<link port="mult.multiply" relation="rl"/>
<link port="mult.multiply" relation="r2"/>
<link port="mult.output" relation="r3"/>
<link port="display.input" relation="r2"/>
<link port="display.input" relation="r3"/>

</entity>
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PART 2:

SOFTWARE ARCHITECTURE

The chapters in this part describe the software architecture of Ptolemy II. The first chapter covers the
kernel package, which provides a set of Java classes supporting clustered graph topologies for models.
Cluster graphs provide a very general abstract syntax for component-based modeling, without assum
ing or imposing any semantics on the models. The actor package begins to add semantics by providing
basic infrastructure for data transport between components. The data package provides classes to
encapsulate the data that is transported. It also provides an extensible type system and an interpreted
expression language. The graph package provides graph-theoretic algorithms that are used in the type
system and by schedulers in the individual domains. The plot package provides a visual data plotting
utility that is used in many of the applets and applications. Vergil is the graphical front end to Ptolemy
II and Vergil itself uses Ptolemy II to describe its own configuration.





Custom Applets

Authors: Edward A. Lee

Christopher Hylands

7.1 Introduction

Ptolemy II models can be embedded in applets. In most cases, the MoMLApplet class can be used.
For the MoMLApplet class, the model is given by a MoML file, which can be created using Vergil.
The URL for the MoML file is given by the modelURL applet parameter in the HTML file.

Occasionally, however, it is useful to create an applet that exercises more control over the display
and user interaction, or constructs or manipulates Ptolemy II models in ways that cannot be done in
MoML. In such cases, the PtolemyApplet class can be useful. The MoMLApplet class is derived from
PtolemyApplet, as shown in figure 7.1 (see appendix A ofchapter 1 for UML syntax). Developers may
either use PtolemyApplet directly or extend it to provide a more sophisticated user interface or a more
elaborate method for model construction or manipulation.

The PtolemyApplet class provides four applet parameters:

• background: The background color, tj^jically given as a hex number of the form "ttrrggbb" where
rr gives the red component, gg gives the green component, and bb gives the blue component.

• controls: This gives a comma-separated list ofany subset of the words "buttons", "topParameters",
and "directorParameters" (case insensitive), or the word "none". Ifthis parameter is not given, then
it is equivalent to giving "buttons", and only the control buttons mentioned above will be dis
played. Ifthe parameter is given, and its value is "none", then no controls are placed on the screen.
If the word "topParameters" is included in the comma-separated list, then controls for the top-level
parameters of the model are placed on the screen, below the buttons. If the word "directorParame
ters" is included, then controls for the director parameters are also included.

• modelClass: The fully qualified class name of a Java class that extends NamedObj. This class
defines the model.

• orientation: This can have value "horizontal", "vertical", or "controls_only" (case insensitive). If
it is "vertical", then the controls are placed above the visual elements of the Placeable actors. This
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|ptolemy.gui.BasIcJAppleti

•Interfaces

ExecuOonUstener

k}-
1

kexecutionError(m: Manager,ex: Exception)!
!+executlDnFinished(m: Manager) |
j+managerStateCh3nged(m: Manager) j

MoMLParser

j+par5e(base: URL, in:InputStreamjj

creates

PtolemyApplat

-•-background; applet parameter
-•i:ontrols; applet parameter
-•-modelClass: applet parameter
-•-orientation: applet parameter
#_manager: Manager
#_setupOK: boolean
#_toplevel: NamedObj
#_workspace: Workspace

-•-PtolemyApplotO
#_createModel(workspace : Workspace): NamedObj
# createVlewO
#-go()
#_stop()

MoMLApplet

parameter

CompositeActor |
•fMoMLAppletO
+_createModel(w: Wortcspace, fiiterGraptilcalClasses : taoolean) createsj

Custom Applets

JPanel

ModelPane j

FIGURE 7.1. UML static structure diagram for PtolemyApplet, a convenience class for constructing applets.
PtolemyApplet is in the ptolemy.actor.guipackage.

is the default. If it is "horizontar', then the controls are placed to the left of the visual elements. If
it is "controls_only" then no visual elements are placed.

The use of these applet parameters is explained in more detail below.

7.2 HTML Files Containing Applets

An applet is a Java class that can be referenced by an HTML file and accessed either locally or
over the web and run in a secure manner on the local machine in a web browser. Unfortunately, many
browsers available today are shipped with an earlier version ofJava that does not provide features that
Ptolemy II requires. The work around is to use Sun's Java Plug-In, which invokes the 1.3 version of
the Java Runtime Environment (JRB), instead of the default Java runtime that is shipped with the
browser. The Java Plug-in is installed when the JRE or the Java Development Kit (JDK) is installed.
Unfortunately,using the Java Plug-in makes the applet HTML more complex. There are two choices:

1. Use fairly complex JavaScript to determine which browser is running and then to properly select
one of three different ways to invoke the Java Plug-in. This method works on the most different
types ofplatforms and browsers. The JavaScript is so complex, that rather than reproduce it here,
pleasesee one of the demonstration html files such as $PTII/ptolemy/domains/sdf/demo/Butterfly/
Butterfly.htm. Sunprovides a free tool calledHTMLConverter that will automatically generatethe
html code, see the Java Plug-in home page at http://java.sun.coni/products/plugin/.
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2, Use the muchsimpler<applet> ...</applet> tag to invokethe Java Plug-in. This methodworks on
manyplatforms and browsers, but requires a morerecentversion of the Java Plug-in, andwill not
workunderNetscape Communicator 4.x. However, all is not lost forNetscape Communicator 4.x
users, since the appletviewer command that is included with the Java Developmen kit will dis
play applets written using the simpler format.

For details about the above two choices, see http://java.sun.com/products/plugin/versions.html.
Sample HTML for the <applet> . . . </applet> style of custom applet is shown in figure 7.2. An

HTML file containing the segment shown in figure 7.2 can be found in $PTII/doc/tutorial/
TutorialAppletLhtm, where SPTII is the home directory of the Ptolemy II installation. Also in that
directory are a number of sample Java files for applets, each named TutorialApplet«.java, where n is
an integer starting with 1. These files contain a series of applet definitions, each with increasing
sophistication, that are discussed below. Each applet has a corresponding TutorialAppletw.htm file.

Since our example applets are in a directory $PTII/doc/tutorial, the codebase for the applet is "../.."
in figure 7.2, which is the directory SPTII. This permits the applets to refer to any class in the Ptolemy
II tree.

There are some parameters in the HTML in figure 7.2 that you may want to change. The width and
the height, for example, specify the amount of space on the screen that the browser gives to the applet.

7.3 Defining a Model in a Java File

PtolemyApplet supports two techniques for instantiating models:

1. The model can be defined as a Java class that extends NamedObj, with the class name given by the
modelClass applet parameter in the HTML file.

2. The model can be defined as a Java class that extends PtolemyApplet and overrides the protected
method _createModelO to create the model, and optionally overrides the _createViewO method to
create the visual display for the model.

The first of these is simpler, so we begin by explaining this technique.

7.3.1 A Model Class as a Composite Actor

If the model is defined in a Java class that extends NamedObj, then we can use the modelClass
applet parameter to pass the class name to PtolemyApplet and invoke the PtolemyApplet code from
the applet. PtolemyApplet will then construct our model and provide the basic functionality we need.

<APPLET

code = "ptolemy/actor/gui/PtolemyApplet"
codebase =

width = "800"

height = "SOO"
>

<PARAM NAME = "modelClass" VALUE = "doc.tutorial.TutorialAppletl" > \
No Java Plug-in support for applet, see

<a href="http://java.sun.com/products/plugin/"><code>http://java.sun.cora/products/plugin/</code><
</APPLET>

FIGURE 7.2. An HTML segment that invokes the Java 1.3 Plug-in under both most browser, except
Netscape 4.x. This text can be found in $PTll/doc/tutorial/TutorialAppletl .htm.
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In figure 7.3 is a listing of an extremely simple applet that runs in the discrete-event (DE) domain.
The first line declares that the applet is in a package called "doc.tutorial," which matches the directory
name relative to the codebase specified in the HTML file. In the next several lines, the applet imports
the following classes fi'om Ptolemy II:

• TypedCompositeActor: Our model extends TypedCompositeActor, which itself eventually
extends NamedObj. This is the typical top-level container class for models in most Ptolemy II
domains.

• PtolemyApplet: This base class creates a top-level composite actor called _toplevel, a manager
called _manager, and a workspace called _workspace (all protected members of the class, shown
in figure 7.1). We will see shortly how to use these.

• Clock: This is an actor that generates a clock signal, which by default is a sequence of events
placed one time unit apart and altemating in value between 1 and 0.

• TimedPlotter: This is an actor that plots functions of time.

• DEDirector: The discrete-event domain director that manages execution of the model.

• lllegalActionException: This exception thrown on an attempt to perform an action that
would result in an inconsistent or contradictory data structure if it were allowed to complete.

• NameDuplicationException: This exception is thrown on an attempt to add a named object to
a collection that requires unique names, and finding that there already is an object by that name in
the collection.

• Workspace: An object for synchronization and version tracking of groups of objects.

Next, the construct:

package doc.tutorial;
import ptolemy.actor.TypedCompositeActor;
import ptolemy.actor.gui.PtolemyApplet;
import ptolemy.actor.lib.Clock;
import ptolemy.actor.lib.gui.TimedPlotter;
import ptolemy.domains.de.kernel.DEDirector;
import ptolemy.kernel.util.lllegalActionException;
import ptolemy.kernel.util.NameDuplicationException;
import pto1emy.kernel.util.Workspace;

public class TutorialAppletl extends TypedCompositeActor {
public TutorialAppletl(Workspace workspace)

throws lllegalActionException, NameDuplicationException {
super(workspace);

// Create the director.

DEDirector director = new DEDirector(this, 'director');
setDirector(director);
director.stopTime.setExpression("10.0");

// Create two actors.

Clock clock = new Clock(this,'clock');
TimedPlotter plotter = new TimedPlotter(this,"plotter');

// Connect them.

connect(clock.output, plotter.input);

)

)

FIGURE7.3. An extremelysimple applet that runs in the DE domain. This text can be found in SPTll/tuto-
rial/Tutorial Applet 1.Java.
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public class TutorialAppletl extends TypedCompositeActor { ... }

defines a class called TutorialAppletl that extends TypedCompositeActor. The new class provides a
constructor that takes one argument, the Workspace into which to place the model:

public TutorialAppletl{Workspace workspace)

throws IllegalActionException, NameDuplicationException {...}

The body of the constructor first invokes the constructor in the base class with:

super(workspace);

It then creates a DE director.

DEDirector director = new DEDirector(this, "director");

The director implements the discrete-event model ofcomputation, which controls when the component
actors are invoked and how they communicate. The next line tells the model to use the director:

setDirector(director) ;

The next line sets a director parameter that controls the duration of an execution of the model:

director.stopTime.setExpression("10.0");

If we don't set the stop time, then the model will run forever, or until the user hits the stop button. The
next few lines create an instance of Clock and an instance of TimedPlotter, and connect them together:

// Create two actors.

Clock clock = new Clock(this,"clock");

TimedPlotter plotter = new TimedPlotter(this,"plotter");

// Connect them.

connect(clock.output, plotter.input);

The constructors for Clock and TimedPlotter take two arguments, the container (a composite actor),
and an arbitrary name (which must be unique within the container). This example uses the variable
this, which refers to the class we are creating, a TypedCompositeActor, as a container. The connec
tion is accomplished by the connectQ method of the composite actor, which takes two ports as argu
ments. Instances of Clock have one output port, output, which is a public member, and instances of
TimedPlotter have one input port, input, which is also a public member.

7.3.2 Compiling

To compile this class definition, you must tell the Java compiler where to find the Ptolemy classes
by using the -classpath command line argument. For example, in bash or a similar shell, assuming the
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environment variable PTII is set to the location of the Ptolemy II installation:

bash-2.02$ cd $PTII/doc/tutorial

bash-2.02$ javac -classpath TutorialApplet:!.java

(The part before the "$" is the prompt issued by bash). Java requires that classes are defined in files
that have the same name as the class. The Ptolemy II style convention is to extend this notion and have
HTML files have the same name as the model they use, so the HTML file that runs the model in
TutorialAppletl.java is named TutorialAppletl.htm.

You should now be able to run the applet with the command:

bash-2.02$ appletviewer TutorialAppletl.htm

The result of running the applet is a new window which should look like that shown in figure 7.4. The
following applet parameters are useful to customize the display:

• controls: This gives a comma-separated list ofany subset of the words "buttons", "topParameters",
and "directorParameters" (case insensitive), or the word "none". If this parameter is not given, then
it is equivalent to giving "buttons", and only the control buttons mentioned above will be dis
played. If the parameter is given, and its value is "none", then no controls are placed on the screen.
If the word "topParameters" is included in the comma-separated list, then controls for the top-level
parameters of the model are placed on the screen, below the buttons. If the word "directorParame
ters" is included, then controls for the director parameters are also included.

• orientation: This can have value "horizontal", "vertical", or "controls_only" (case insensitive). If
it is "vertical", then the controls are placed above the visual elements of the Placeable actors. This
is the default. If it is "horizontal", then the controls are placed to the left of the visual elements. If
it is "controls_only" then no visual elements are placed.

FIGURE 7.4. Result of running the (all too simple) applet of figure 7.3.
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For example, if the HTML includes the following lineswithin the APPLET element:

<PARAM NAME="controls" VALUE="buttons, directorParaineters">

<PARAM NAME="orientation" VALUE="horizontal">

then the result of execution looks like figure 7.5. The layout is now horizontal, with the controls to the
left of the displays instead of on top, and the director parameters have been made available to the
applet user.

7.3.3 Executing the Model in an Application

A model created as above can also be executed as an application, in addition to running it as a
mode. Any class that extends CompositeActor, the base class for TypedCompositeActor, can be exe
cuted using the CompositeActorApplicationclass, shown in figure 7.6. The command is simply:

bash-2.02$ cd $PTII/doc/tutorial
bash-2.02$ java -classpath \

ptolemy.actor.gui.CompositeActorApplication \
-class doc.tutorial.TutorialAppletl

The result will look like figure 7.5. This ability to use the same class definition in both an applet and an
application is convenient.

7.3.4 Extending PtolemyApplet

Another way to use PtolemyApplet is to define the model as a Java class that extends it and over
rides the protected method _createModel() to create a model and optionally overrides the

Go; Pause Resume

Director parameters:

startTltne:

stopTime:

stopWhenOueuelsEmiity:

synchromzeToFtealTline:

isCQAdaptive:

minBinCount:

binCouiitFactor:

execution finished.

8 10

FIGURE 7.5. Result of running the applet of figure 7.3 with horizontal layout, and including the director
parameters.
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_createViewO protectedmethod to create a custom display. ExtendingPtolemyApplet gives the devel
oper the opportunity to control the look and feel of the applet in as much detail as necessary, including
creating completely customized displays and controls.

In figure 7.7 we define the same applet by extending PtolemyApplet instead of extending Typed-

7-8

CompositeActorAppiication

#_commandFlags; StringQ
#_commandOptions: StringDO
#_commandTemplate: String
#_openCount: int
#_mod8ls: List
# test: boolean

+ComponentActorApplication()
•t-nnaintaras: Strinafll

+processArgs(args: StringQ)
+report(ex; Exception)
+report{message: String)
+report(message : String, ex: Exception)
•<-startRun(model: ComposlteActor)
•••stopRun(model: ComposlteActor)
+waitForFinlsh()
#_parseArg(arg : String): boolean
#_parseArgs(args: StringQ)
#_usage(): String

ComposlteActor

1..n

FIGURE 7.6. Any class that extends ComposlteActor can be executed using the CompositeActorAppli-
cation class.

package doc.tutorial;
import ptolemy.actor.TypedCompositeActor;
import ptolemy.actor.gui.PtolemyApplet;
import ptolemy.actor.lib.Clock;
import ptolemy.actor.1ib.gui.TimedPlotter;
import ptolemy.domains.de.kernel.DEDirector;
import ptolemy.kernel.util.NamedObj;
import ptolemy.kernel.util.Workspace;

public class TutorialApplet2 extends PtolemyApplet {
public NamedObj _createModel(Workspace workspace)

throws Exception {
TypedCompositeActor toplevel = nev; TypedCon^ositeActor(workspace)

// Create the director.

DEDirector director = new DEDirector(toplevel,
director.stopTime.setExpression("10.0");

•director");

// Create two actors.

Clock clock = new Clock(toplevel,"clock");
TimedPlotter plotter = new TimedPlotter(toplevel,"plotter")

II Connect them.

toplevel.connect(clock.output, plotter.input);
return toplevel;

FIGURE 7.7. A simpleappletthatextendsPtolemyApplet insteadof extending TypedCompositeActor. This
text can be found in $PTll/doc/tutorial/TutorialApplet2.java.
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CompositeActor. This class overrides the _createViewO method,which takes a Workspace as an argu
ment and returns a NamedObj. Note that since we are no longer extendingTypedCompositeActor, we
need to instantiate a TypedCompositeActor named toplevel and use it wherewe used "this" in the pre
vious example. Otherwise, the code is very similar to that in figure 7.3.

Wecan improvethis appletby giving the user more specializedcontrol over its execution.

7.3.5 Using Model Parameters

Typically, a model has a set of parameters that you wish for the user to be able to control in the
applet. Suppose for example that in the above applet you wish for the user to be able to control the stop
time of the director and the period of the clock actor. You can modify the Java code in figure 7.3 as
shown in figure 7.8. This code uses the Parameter class to define two top-level parameters. The follow
ing lines create the top-level parameters:

Pareimeter stopTime = new Parameter(this, "stopTime");

package doc.tutorial;
import ptolemy.actor.TypedCompositeActor;
import ptolemy.actor.gui.PtolemyApplet;
import ptolemy.actor.lib.Clock;
import ptolemy.actor.lib.gui.TimedPlotter;
iiQport ptolemy.data.expr.Parameter;
import ptolemy.domains.de.kernel.DEDirector;
import ptolemy.kernel.util.IllegalActionException;
import ptolemy.kernel.util.NameDuplicationException;
import ptolemy.kernel.util.Workspace;

public class TutorialAppletB extends TypedCompositeActor {
public TutorialApplet3(Workspace workspace)

throws IllegalActionException, NameDuplicationException {
super(workspace);

// Create model parameters
Parameter stopTime s new Parameter(this, "stopTime");
Parameter clockPeriod s new Parameter(this, "clockPeriod");

// Give the model parameters default values.
StopTime.setBxpression("10.0");
clockPeriod.setExpression("2.0");

// Create the director

DEDirector director = new DEDirector(this, "director");
setDirector(director) ;

// Create two actors.

Clock clock = new Clock(this,"clock");

TimedPlotter plotter = new TimedPlotter(this,"plotter");

// Set the user controlled parameters,

director.stopTime.setExpression("stopTime");
clock.period.setBxpression("clockPeriod");

// Connect the actors,

connect(clock.output, plotter.input);
)

FIGURE 7.8. Code that adds model parameters control to the applet. This code can be found in $PTll/doc/
tutorial/TutorialAppletS.java.
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Parameter clockPeriod = new Parameter(this, "clockPeriod");

The default values of these two parameters are set by the following lines:

stopTime.setExpression("10.0");
clockPeriod,setExpression("2.0");

Finally, the values of the director and Clock actor parameters are coupled to these top-level parameters
by the lines

director.StopTime.setExpression("stopTime");
clock.period.setExpression("clockPeriod");

The expressions being set here can be much more elaborate. The expression language is documented in
the Data Package chapter. Here, the expressions each contain a single variable reference, referring to
the top-level parameters by name.

In order for the top-level parameters to appear in the controls of an applet, we must configure the
HTML file as shown in figure 7.9. The line

<PARAM NAME="controls" VALUE="buttons, topParameters">

accomplish the objective. The result of invoking the appletviewer on the HTML file in figure 7.9 is
shown in figure 7.10.

7.3.6 Adding Custom Actors

The intent of Ptolemy II is to have a reasonably rich set of actors in the actor libraries. However, it
is anticipatedthat model builders will often need to define their own, custom actors. This is relatively
easy to do, as discussed in the Designing Actors chapter. By convention, when a specialized actor is
created for a particular applet or application, we store that actor in the same directory with the applet or
application, rather than in the actor libraries. The actor libraries are for generic, reusable actors.

<APPLET

code = "ptolemy/actor/gui/PtolemyApplet"
codebase =

width = "800"

height = "300"
>

<PARAM NAME = "modelClass" VALUE = "doc.tutorial.TutorialAppletB" > \
<PARAM NAME = "controls" VALUE = "buttons, topParameters" > \
<PARAM NAME = "orientation" VALUE = "horizontal" > \

No Java Plug-in support for applet, see
<a href="http://java.sun.com/products/plugin/"><code>http://java.sun.com/products/plugin/</code></a

</APPLET>

FIGURE7.9. The HTML that displaysmodel parameters for the applet user to control.This file can be
found in $PTlI/doc/tutorial/TutorialApplet3.htm
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7.3.7 Using Jar Files

A jar file is a Java Archive File that contains multiple .class files. Applets that are being down
loaded over the net will start up more quickly if all the relevant Java .class files are collected together
into one or more jar files. This dramatically reduces the number of HTTP transactions.

Models in the Ptolemy II demo directories typically use three separate jar files;
ptolemy/ptsupport.jar— A jar file containing classes from ptolemy.kemel, ptolemy.actorand
other packages, see $PTII/ptolemy/makefiIe for a complete list;

• "pXoXemyIdom2ims.ldomain!domain.— A domain specific jar file such as de.jar, where domain is
replaced by a domain name;
ptolemy/domains/</o/nflm/demo/£>ewio/Z)emo.jar — A model-specific jar file. Models with sophis
ticated GUIs that use Listeners can result in multiple .class files per .java file, so having ajar file
can help download speeds.

The third jar file is not needed if the model resides in a single .class file. To use jar files, you must
modify the HTML shown in figure 7.2 to read as shown in figure 7.11.

An important downside of using jar files is that during Java development, one must regenerate the
jar files each time a Java file is recompiled. If you are developing an applet, you may want to avoid
using jar files, or only include jar files that are from packages that are not actively being developed.

How Jarfdes are built. To know which jar files in the Ptolemy II tree you might need for your applet,
you need to know how the jar files are constructed. The short story is that every package has ajar file
that includes subpackages. Since the package structure mirrors the directory structure, it is easy to
peruse the Ptolemy II tree {rooted at SPTII) and look for jar files. There are a few exceptions; for exam
ple, domain jar files, such as de.jar, do not include the demos, even though the demos are in a subpack-
age of the domain package.

jGo; Pause Resume | Stop

Model parameters:

stopTiine:

clockPeriod:

execution finished.

0123450789

FIGURE 7.10. Result of running the applet of figure 7.8 with horizontal layout, and including the top-level
parameters.
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The longer story is that the make install rule in Ptolemy II makefiles builds various jar files
that contain the Ptolemy II .class files. In general, make install builds a jar file in each directory that
contains more than one .class file. If a directory contains subdirectories that in turn contain jar files,
then the subdirectory jar files are expanded and included in the upper level jar file. For example, the
$PTII/ptolemy/kemel/makefile contains:

# Used to build jar files
PTPACKAGE = ptolemy.kernel

PTDIST = $(PTPACKAGE)$(PTVERSION)

PTCLASSJAR =

# Include the .class files from these jars in PTCLASSALLJAR
PTCLASSALLJARS = \

util/util.jar
PTCLASSALLJAR = kernel.jar

In this case make install will build ajar file called kernel. j ar that contains all the .class files in
the current directory and the contents of$PTII/ptolemy/kemel/util/util.jar.

7.3.8 Hints for Developing Applets

When developing applets, you may find it easier to test using appletviewer instead of invoking a
full browser.

Other hints may be found in $PTII/doc/coding/applets.htm

<APPLET

code = "ptolemy/actor/gui/PtolemyApplet'
codebase =

width = "800"

height = "300"
archive="ptolemy/ptsupport.jar, ptolemy/domains/de/de.jar"
>

<PARAM NAME = "modelClass" VALUE = "doc.tutorial.TutorialAppletS" >
<PARAM NAME = "controls" VALUE = "buttons, topParameters" >

<PARAM NAME = "orientation" VALUE = "horizontal" >
SJo Java Plug-in support for applet, see
<a href="http://java.sun.com/products/plugin/"><code>http://java.sun.com/products/plugin/</code><

«/APPLET>

FIGURE7.11. An HTML segmentthat modifies that of figure 7.2 to usejar files.This text can be found in
$PTIl/doc/tutorial/tutorialApplet4.htm.

/a>
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8.1 Abstract Syntax

The kernel defines a small set of Java classes that implement a data structure supporting a general
form of uninterpreted clustered graphs, plus methods for accessing and manipulating such graphs.
These graphs provide an abstract syntax for netlists, state transition diagrams, block diagrams, etc. An
abstract syntax is a conceptual data organization. It can be contrasted with a concrete syntax, which is
a syntax for a persistent, readable representation of the data, such as EDIF for netlists. A particular
graph configuration is called a topology.

Although this idea of an uninterpreted abstract syntax is present in the original Ptolemy kemel
[14], in fact the original Ptolemy kemel has more semantics than we would like. It is heavily biased
towards dataflow, the model of computation used most heavily. Much of the effort involved in imple
menting models of computation that are very different from dataflow stems from having to work
around certain assumptions in the kemel that, in retrospect, proved to be particular to dataflow.

A topology is a collection of entities and relations. We use the graphical notation shown in figure
8.1, where entities are depicted as rounded boxes and relations as diamonds. Entities have ports,
shown as filled circles, and relations connect the ports. We consistently use the term connection to
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denote the association between connected ports (or their entities), and the term link to denote the asso
ciation between ports and relations. Thus, a connection consists of a relation and two or more links.

The use ofports and hierarchy distinguishes our topologies from mathematical graphs. In a mathe
matical graph, an entity would be a vertex, and an arc would be a connection between entities. A vertex
could be represented in our schema using entities that always contain exactly one port. In a directed
graph, the connections are divided into two subsets, one consisting of incoming arcs, and the other of
outgoing arcs. The vertices in such a graph could be represented by entities that contain two ports, one
for incoming arcs and one for outgoing arcs. Thus, in mathematical graphs, entities always have one or
two ports, depending on whether the graph is directed. Our schema generalizes this by permitting an
entity to have any number ofports, thus dividing its connections into an arbitrary number of subsets.

A second difference between our graphs and mathematical graphs is that our relations are multi-
way associations whereas an arc in a graph is a two-way association. A third difference is that mathe
matical graphs normally have no notion ofhierarchy (clustering).

Relations are intended to serve as mediators, in the sense of the Mediator design pattem of
Gamma, et at. [28]. "Mediator promotes loose coupling by keeping objects from referring to each
other explicitly..." For example, a relation could be used to direct messages passed between entities. Or
it could denote a transition between states in a finite state machine, where the states are represented as
entities. Or it could mediate rendezvous between processes represented as entities. Or it could mediate
method calls between loosely associated objects, as for example in remote method invocation over a
network.

8.2 Non-Hierarchical Topologies

The classes shown in figure 8.2 support non-hierarchical topologies, like that shown in figure 8.1.
Figure 8.2 is a UML static structure diagram (see appendix A of chapter 1).

8.2.1 Links

An Entity contains any number of Ports; such an aggregation is indicated by the association with
an unfilled diamond and the label "0..n" to show that the Entity can contain any number of Ports, and
the label "0..1" to show that the Port is contained by at most one Entity. This association is uses the
NamedList class shown at the bottom offigure 8.2 and defined fully in figure 8.3. There is exactly one

Connection

Link Link

Relation ^
ConnectionConnection ^

s

3

Port

Entity

FIGURE 8.1. Visual notation and terminology.
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instance ofNamedList associated with Entity, and it aggregates the ports.

A Port is associated with any numberof Relations (the association is calleda and a Relation
is associated withanynumber of Ports. Linkassociations use CrossRefList, shown in figure 8.3.There
is exactly one instance of CrossRefList associated witheachport and eachrelation. The linksdefine a
web of interconnected entities.

On theport side, linkshavean order. Theyare indexed from0 to n, where n is the number returned
by the numLinksQ method ofPort.

8.2.2 Consistency

A major concern in the choice of methods to provide, and in their design, is maintaining consis
tency. By consistency we mean that the following key properties are satisfied:
• Every link betweena port an a relation is symmetric and bidirectional. That is, if a port has a link

to a relation, then the relation has a link back to that port.

• Everyobject that appears on a container's list of contained objectshas a back reference to its con
tainer.

In particular, the design of these classes ensures that the _container attribute of a port refers to an entity
that includes the port on its _portList. This is done by limiting the access to both attributes. The only
way to specify that a port is contained by an entity is to call the setContainerQ method ofthe port. That
method guarantees consistency by first removing the port from any previous container's _portList,

NamedObj

Entity

--portList: NamedUst

+Entity()
'̂ Enti^name: String)
'••Entl^workspace: Workspace)
+Enti^\Morkspace: Workspace, name; String)
+connectedPortUst(): List
••connectionsCtrangedlport: Port)
+getPcrt(name: String): Port
+linkedRelationUst(): List
-••newPortCname: String): Port
+portList(): List
•••removeAIIPortsO
#_addPort(port: Port)
#_removePort(port: Port)

1..1

Port

container +Port()
+Port(vw)rkspace: Workspace)
+Port{container: Entity,name: String)
•••connectedPortListO: List
•••InsertLinkOnt; index, relation: Relation)
•^isUnked(r: Relation); boolean
rtlnkedRelationListO: List
-r-llnkedRelatlonsO; Enumeration
rtlnk(rel3tion: Relation)
+numlJnks(): int
-••setContainef(entity: Entity)
••'un!lnk(index: Int)
-••unllnk(rel3tion: Relation)
•t-unIlnkAII()
ii_checkContalner(contalner: Entity)
#_ctieckUnk(relation: Relation)

-.container: Entity
•_relationsLlst: CrossRefList

0..1I

p..n

ports Inlist I0..n
0..n

port list NamedUst

0..n
tink

link
0..n

CrossRefList

1..1

A"

Relation

•_portLlst: CrossRefList
♦RelatlonQ

-••Relation^name: String)
'^Relation(w: Workspace, name; String)
'•'Rel3tion(w: Workspace)
'HInkedPortLlstO: List
•HinkedPortUst(except; Port): Ost
•HinkedPcrtsO: Enumeration
'HtumLinksO: int
♦unHnkAllQ

FIGURE 8.2. Key classes in the kernel package and their methods supporting basic (non-hierarchical) topol
ogies. Methods that override those defined in a base class or implement those in an interface are not shown.

'+" indicates public visibility, indicates protected, and indicates private. Capitalized methods areThe'
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*DEEP:'nt
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0_changeListenefs: List
#_rfebugging: boolean
#_rfebugListeners: UnkedUst
#_uniqueNamelndex: Int
(i.woitapace: Workspace
'.attributes; NamedUst
'.MoMLInfo: MoMLInfo

rtame: String

♦NantedObJO

♦NamedObjjname: String)
♦NamedOt^(w; Workspace, nante: String)
♦N3medObj(w; Workspae)
♦addChangeListener(Iistener:ChangeUstener)
♦3ddDebugLlstener(l:DebugUstener)
♦attributeChanged(a:Attribute)
♦attributeUstO: List
♦atttibuteUst((ilter: Class): Ust
♦attributeTypeChanged(a: Attribute)
♦clone(de5tlnation: Workspace); Object
♦deepContalns{lnslde: NamedObj): boolean
♦depthlnHierarchyO:int
♦descrfptlonjdetail: Int): String
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♦exixxtMoML(name:String)
♦exi>ortMoML(output; Writer)
♦exportMoML(output: Writer, depth : int)
♦exportMoML(output: Writer, depth: InLname: String)
♦getAttribute(name; String); Attribute
♦getAttribulejname: String, c: Class): Attribute
♦getMoMLInfoO: MoMLInfo
♦getNamejparent: NamedObj); String
♦removeChangeUstenerjlistener: ChangeUstener)
♦removeOebugUstenerjl:DebugUstener)
♦requestChange(change:ChangeRequest)
'•«etDeferMoMLOefinitionTo<defefTo: NamedObj)
-•setModeiErrorHandlerfharxller; ModelErrorHandler)
♦toplevelO; NamedObj
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♦workspaceO: Workspace
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0_debiig(event: DebugEvent)
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tf.debugjpl; Siring, p2:Siring, p3:String, p4:String)
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ff_exportMoMLContents(output: Writer, depth: int)
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#_removeAtlribute(attiibute: Attribute)
ff_splitName(name: Siring) iiSlfingQ

A

0..n

on-

NamedObJ.MoMLInfo
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♦deferredFrom: List

-HfeferTo: NamedObj
♦elementName: Siring
•tsource: Siring

♦MoMLInfojowner; NamedObj)
♦getDeferredFromQ:Ust

-.container: NamedObj
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♦handleError(contexl:NamedObj, exception: lllegalAclionExceptlon)

A

Workspace

BaslcModelErrorHsndler

-.directory: UnkedUst
-.name: String
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-.readonly; boolean
-.writer:Thread
♦WorkspaceO

♦Worksp3ce(name: String)
♦3dd(item; NamedObj)
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♦directoryUstO: List
♦doneReaiSngO

'•doneWritingO
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♦getWriteAccessO

♦IncrVersionO

♦IsReadOnlyO: boolean
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♦removeAllO
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ff_description(delail: InL indent: int bracket: inl): Siring

calls getReadDepthO

PtolemyThread

ffreadPeplh: inl

♦PlolemyThreadQ

♦RotemyThreadjtarget: Runnable)
♦RolemyThreadllarget:Runnable, name: Siring)
♦RolemyThreadjname: Siring)
♦RotemyThreadjgroup: ThreadGroup, target; Runnable)
♦PtolemyThread(group: ThreadGroup, target; Runnable, name; Siring)
♦PtolemyThreadjgroup: ThreadGroup, name: String)
♦getReadPepthj): Int

•Interface*

DebugEvent

*getSourcaO • NamedOti
0..n MoStringQ: String

•Interface*

DebugLlstener

*event(event: DetmgEvent)
♦messagefmessage;String)

RecorderUstener

♦RecorderUslenerO

-igelMessagesO: Siring
♦resetO

03i attributes list

•utility*
NamedUst

-.container: Nameable
namedlist: UnkedUst

♦NamedUst()
♦NamedUstjcontainer: Nameable)
♦NamedUstjorlglnal: NamedUst)
♦appendjelement: Nameable)
♦doneO:Object
♦elemenlUst(): Ust
♦lirstO: Nameable
♦getfname;String): Nameable
♦includes(element:Nameable): boolean
♦insertAfler(name:String, element; Nameable)
♦inseftBefore(name:String, element: Nameable)
♦lastO: Nameable
♦prepend(element;Nameable)
♦remove(elemenl:Nameable)
♦remove(name;String): Nameable
♦removeAllO

♦sizeO: Int

StreamListener

♦SIreamUstenerO

♦StreamUster>er(stream:OutputStream)

•Interface*

Settable

♦NONE: Settable.Vislbllitv

♦EXPERT :Settable.Vlslbililv

♦addVaIueUstener(llstenef:ValueUslener)
'•getExpresslonO: String
♦gelVislbllltyO: Setlable.VisiblSty
♦removeValueUstenerO: ValueUslener)
♦selExpression(expresslon:String)
♦selVisibility(visibllily: Settable.Vislbltily)
♦validaleO

/\

StringAttribute

♦StringAttribule(contalner:NamedObj, name: Siring)

FIGURE 8.3. Support classes in the kemel.util package.
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then adding it to the new container's port list. A port is removed from an entity by calling setCon-
tainerQ with a null argument.

A change in a containment association involves several distinct objects, and therefore must be
atomic, in the sense that other threads must not be allowed to intervene and modify or access relevant
attributes halfway through the process. This is ensured by synchronization on the workspace, as
explained belowin section8.6. Moreover, if an exception is thrown at anypoint duringtheprocess of
changing a containment association, anychanges thathavebeenmademustbe undone so thata consis
tent state is restored.

8.3 Support Classes

The kernel package has a subpackage called kemel.util that provides underlying support classes,
some of which are shown in figure 8.3. These classes define notions basic to Ptolemy II of contain
ment, naming, and parameterization, and provide generic support for relevant data structures.

8.3.1 Containers

Although these classes do not provide support for constructing clustered graphs, they provide rudi
mentary support for container associations. An instance of these classes can have at most one con
tainer. That container is viewed as the owner of the object, and "managed ownership" [48] is used as a
central tool in thread safety, as explained in section 8.6 below.

In the base classes shown in figure 8.2, only an instance ofPort can have a non-null container. It is
the only class with a setContainerQ method. Instances of all other classes shown have no container,
and their getContainerQ method will return null. In the classes of figure 8.3, only Attribute has a set
ContainerQ method.

Every object is associated with exactly one instance of Workspace, as shown in figure 8.3, but the
workspace is not viewed as a container. The workspace is defined when an object is constructed, and
no methods are provided to change it. It is said to be immutable, a critical property in its use for thread
safety.

8.3.2 Name and Full Name

The Nameable interface supports hierarchy in the naming so that individual named objects in a
hierarchy can be uniquely identified. By convention, the full name of an object is a concatenation of
the full name of its container, if there is one, a period and the name of the object. The full name is
used extensively for error reporting. A top-level object always has a period as the first character of its
full name. The full name is returned by the getFullNameQ method of the Nameable interface.

NamedObj is a concrete class implementing the Nameable interface. It also serves as an aggrega
tion of attributes, as explained below in section 8.3.4.

Names ofobjects are only required to be unique within a container. Thus, even the full name is not
assured ofbeing globally unique.

Here, names are a property of the instances themselves, rather than properties of an association
between entities. As argued by Rumbaugh in [88], this is not always the right choice. Often, a name is
more properly viewed as a property of an association. For example, a file name is a property of the
association between a directory and a file. A file may have multiple names (through the use of sym
bolic links). Our design takes a stronger position on names, and views them as properties ofthe object.
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much as we view the name of a person as a property of the person (vs. their employee number, for
example, which is a property of their association with an employer).

8.3.3 Workspace

Workspace is a concrete class that implements the Nameable interface, as shown in figure 8.3. All
objects in a topology are associated with a workspace, and almost all operations that involve multiple
objects are only supported for objects in the same workspace. This constraint is exploited to ensure
thread safety, as explained in section 8.6 below.

8.3.4 Attributes

In almost all applications ofPtolemy II, entities, ports, and relations need to be parameterized. The
base classes shown in figure 8.3 provide for these objects to have any number of instances of the
Attribute class attached to them. Attribute is a NamedObj that can be contained by another NamedObj,
and serves as a base class for parameters.

Attributes are added to a NamedObj by calling their setContainerQ method and passing it a refer
ence to the container. They are removed by calling setContainerO with a null argument. The Named
Obj class provides the getAttributeQ method, which takes an attribute name as an argument and returns
the attribute, and the attributeListQ method, which returns a list of the attributes contained by the
object.

By itself, an instance of the Attribute class carries only a name, which may not be sufficient to
parameterize objects. Several derived classes implement the Settable interface, which indicates that
they can be assigned a value via a string. A simple attribute implementing the Settable interface is the
StringAttribute. It has a value that can be any string. A derived class called Variable that implements
the Settable interface is defined in the data package. The value of an instance ofVariable is typically an
arithmetic expression.

An attribute that is not an instance of Settable is called a pure attribute. Its mere presence has sig
nificance.

Attribute names can be any string that does not include periods, but it is recommend to stick to
alphanumeric characters, the space character, and the underscore. Names beginning with an underscore
are reserved for system use. The following names, for example, £ire in use:

Table 8.1 :Names of special attributes

name class use

_createdBy ptolemy.kemel.util.VersionAttribute Version ofPtolemy II that last wrote the Tile.

_doc ptolemy.actor.gui.Documentation Default documentation attribute name.

_generator ptolemy.codegen.gui.GeneratorTableauAttribute Parameters for code generators.

_icon ptcIemy.vergil.toolbox.Editorlcon Icon tenderer attribute.

_iconDescription ptolemy.kemel.util.StringAttribute XML description ofan icon.

_library ptolemy.moml.LibraryAttribute Associates an actor library with a model.

JibraryMarker ptolemy.kemel.util. Attribute Marks its container as a library vs. a composite entity.

_location ptolemy.moml.Location Records the location of a visual rendition of an object.
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Table 8.1:Nanies of special attributes

name class use

_nonStrictMarker ptolemy.kemel.util.Attribute Marks its container as a non-strict entity.

_parser ptolemy.moml.ParserAttribute Records the MoML parser used.

_url ptolemy.moml.URLAttribute Identifies the URL for the model definition.

_vergilLocation ptolemy.actor.gui.LocationAttribute Location of the vergil window.

_vergilSize ptolemy.actor.gui.SizeAttribute Size of the graph pane in the vergil window.

8.3.5 List Classes

Figure 8.3 shows two list classes that are used extensively in Ptolemy II. NamedList implements
an ordered list of objects with the Nameable interface. It is unlike a hash table in that it maintains an
ordering of the entries that is independent of their names. It is unlike a vector or a linked list in that it
supports accesses by name. It is used in figure 8.3 to maintain a list of attributes, and in figme 8.2 to
maintain the list ofports contained by an entity.

The class CrossRefList is a bit more interesting. It mediates bidirectional links between objects
that contain CrossRefLists, in this case, ports and relations. It provides a simple and efficient mecha
nism for constructing a web of objects, where each object maintains a list of the objects it is linked to.
That list is an instance of CrossRefList. The class ensures consistency. That is, ifone object in the web
is linked to another, then the other is linked back to the one. CrossRefList also handles efficient modi
fication of the cross references. In particular, if a link is removed from the list maintained by one
object, the back reference in the remote object also has to be deleted. This is done in 0(1) time. A more
brute force solution would require searching the remote list for the back reference, increasing the time
required and making it proportional to the number of links maintained by each object.

8.4 Clustered Graphs

The classes shown in figure 8.2 provide only partial support for hierarchy, through the concept ofa
container. Subclasses, shown in figure 8.4, extend these with more complete support for hierarchy.
ComponentEntity, ComponentPort, and ComponentRelation are used whenever a clustered graph is
used. All ports of a ComponentEntity are required to be instances ofComponentPort. CompositeEntity
extends ComponentEntity with the capability of containing ComponentEntity and ComponentRelation
objects. Thus, it contains a subgraph. The association between ComponentEntityand CompositeEntity
is the classic Composite design pattern [28].

8.4.1 Abstraction

Composite entities are non-atomic (isAtomicQreturn false). They can contain a graph (entities and
relations). By default, a CompositeEntity is transparent (isOpaqueQ retums false). Conceptually, this
means that its contents are visible from the outside. The hierarchy can be ignored (flattened)by algo
rithms operating on the topology. Some subclasses of CompositeEntity are opaque (see the Actor
Package chapter for examples). This forces algorithms to respect the hierarchy, effectivelyhiding the
contents of a composite and making it appear indistinguishable from atomic entities.

A ComponentPort contained by a CompositeEntity has inside as well as outside links. It maintains
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NamedObj CrossRefUst

1..1

Port

7S

-.container: Entity
-.relationsList: CrossRefList

container +Port{)
+Port(workspace: Woritspace)
•••Port(container; Entity, name: String)
+connectedPortList(): Ust
+insertLtnk(int: index, relation: Relation)
+isUnked(r; Relation): troolean
+iinkedReiationList(): List
+iinkedReiations(): Enumeration
+iink(rel3tion: Relation)
+numLinksO: int
+setContainer{entity: Entity)
'Kiniink(index: Int)
•Hjnlink(relation: Relation)
+unlinkAII{)
#_ctieckContainer(container; Entity)
#_ctteckLink(relation: Relation)

-_portList: NamedList

+Entily()
♦Entily(name: String)
+Entity(wo(kspace: Worttspace)
+Entity(woiksp3ce: Wortcspace, name: String)
+connectedPortList(): List
+connectionsCtianged{port: Port)
+g8tPort(name: String): Port
•••linkedRelationListO: List
+newPort(name: String): Port
-••portList(): List
♦removeAllPoftsO

ii>_addPort(port: Port)
#_removePort(port: Port)

0..n

ports in list

ComponentEntity

-.container: ComposHeEntity

-r-ComponentEntityO
•••ComponentEntity{workspace; Workspace)
+ComponentEntit^container: CompositeEntity, name: String)
•••isAtomicO; t>oolean
•••isOpaqueO: txxitean
••'SetContairter(cont3iner: CompositeEntity)
#.ctieckContainer(container: CompositeEntity)

#_containedEntities: NamedList
containedRelations; NamedList

0..n

container i 0..

CompositeEntity

port list NamedLst

1..1

0..n

link
0..n

•_portList: CrossRefList

+RelationO
+Relation(name: String)
-•-Relationjw: Workspace, name:String)
•••Relationlw: Workspace)
+linkedPortUst(): List
••-tinkedPortList(except: Port): List
+[inkedPorts{): Enumeration
+numLinks(): int
•i-unllnkAIIO

ComponentPort

-.insideLinks: CrossRefList

+ComponentPort()
>ComponentPort(workspace: Workspace)
+ComponentPort(container: ComponentEntity, name: String)
-KleepConnectedPortListO: List
-KleeplnsidePortListO: List
•••insertlnsideLink(index: int, relation; Relation)
+insidePortList(): List
•I'insideRelationListO; List
••-insideRelationsO; Enumeration
••'isDeeplyConnected(port: ComponentPort): tsoolean
-•-isinsideLinkedCrelation: Relation): Iroolean
-•-isOpaqueO: txwiean
••-lit}eraILink(relation; ComponentRelation)
•••numlnsideLinksO: int
-HinlinkAIIInsideO
+unlinkinside(index: int)
-Kinlinkinsidejrelation: Relation)
#_checkLiberalLink{relation: Relation)
#_deepConnectedPortList(patti: LinkedList)

0..n

ComponentRelatton

-.container: CompositeEntity

A

+CompositeEntityO
+CompositeEntity(workspace: Workspace)
+CompositeEntity(container: CompositeEntity, name : String)
-i-allAtomicEntityListO; List
••'allowLeve[CrossingConnect(t>oole: txx>lean)
'•connect(port1: ComponentPort, port2: ComponentPort): ComponentRelation
+connect(port1: ComponentPort, port2: ComponentPort, name: String): ComponentRelation
•HteepEntityListO: List
-r-entityListO: List
+entityList(fiIter:Class): List
-r-exportLinksOndentation; int, filter; Collection); String
-*'ge£ntity(n3me: String): ComponentEntity
+getRelation(name: String): ComponentRelation
+newRelation(name: String): ComponentRelation
♦numEntitiesO: int
-••numRelationsO: int
-•felationListO: List
•HemoveAIIEntitiesO
••removeAIIRelationsO
#.8ddEntity(entity: C^ponentEntity)
#.8ddRelation(relation: ComponentRelation)
lf.removeEntity(entity: ComponentEntity)
#.removeRelation(relation: ComponentRelation)

+ComponentRelation()
+ComponentRelation(workspace: Workspace)
-•-ComponentRelationlcontainer: CompositeEntity, name: String)
+deeplinkedPortList(): List
••'SetContainer(cont3iner; CompositeEntity)
#.checkContainer(container: CompositeEntity)

0..1 0..n containee

FIGURE 8.4. Key classes supporting clustered graphs.
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two lists of links, those to relations inside and those to relations outside. Such a port serves to expose
ports in the contained entities as ports of the composite. This is the converse of the "hiding" operator
often found in process algebras [67]. In Ptolemy, ports within an entity are hidden by default, and must
be explicitly exposed to be visible (linkable) from outside the entity^ The composite entity with ports
thus provides an abstraction of the contents of the composite.

A port of a composite entity may be opaque or transparent. It is defined to be opaque if its con
tainer is opaque. Conceptually, if it is opaque, then its inside links are not visible from the outside, and
the outside links are not visible from the inside. If it is opaque, it appears from the outside to be indis
tinguishable from a port of an atomic entity.

The transparent port mechanism is illustrated by the example in figure 8.5^. Some ofthe ports in
figure 8.5 are filled in white rather than black. These ports are said to be transparent. Transparent ports
(P3 and P4) are linked to relations (R1 and R2) below their container (El) in the hierarchy. They may
also be linked to relations at the same level (R3 and R4).

ComponentPort, ComponentRelation, and CompositeBntity have a set of methods with the prefix
"deep," as shown in figure 8.4. These methods flatten the hierarchy by traversing it. Thus, for example,
the ports that are "deeply" connected to port PI in figure 8.5 are P2, P5, and P6. No transparent port is
included, so note that P3 and P4 are not included.

Deep traversals of a graph follow a simple rule. If a transparent port is encountered from inside,
then the traversal continues with its outside links. If it is encountered from outside, then the traversal
continues with its inside links. Thus, for example, the ports deeply connected to P5 are PI and P2.
Note that P6 is not included. Similarly, the deepEntityListQ method of CompositeBntity looks inside
transparent entities, but not inside opaque entities.

Since deep traversals are more expensive than just checking adjacent objects, both ComponentPort
and ComponentRelation cache them. To determine the validity of the cached list, the version of the

FIGURE 8.5. Transparent ports (P3 and P4) are linked to relations (R1 and R2) below their container (El)
in the hierarchy.They may also be linked to relations at the same level (R3 and R4).

1. Unless level-crossing links are allowed, which is discouraged.
2. In that figure, every object has been given a unique name. This is not necessary since names only need to be

unique within a container.In this case, we could refer to PS by its full name .E0.E4.P5(the leading period indi
cates that this name is absolute). However,using unique names makes our explanations more readable.
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workspace is used. As shown in figure 6.3, the Workspace class includes a getVersionQ and incrVer-
sionQ method. All methods of objects within a workspace that modify the topology in any way are
expected to increment the version count of the workspace. That way, when a deep access is performed
by a ComponentPort, it can locally store the resulting list and the current version of the workspace.
The next time the deep access is requested, it checks the version of the workspace. If it is still the same,
then it returns the locally cached list. Otherwise, it reconstructs it.

For ComponentPort to support both inside links and outside links, it has to override the linkQ and
unlinkQ methods. Given a relation as an argument, these methods can determine whether a link is an
inside link or an outside link by checking the container of the relation. If that container is also the con
tainer of the port, then the link is an inside link.

8.4.2 Level-Crossing Connections

For a few applications, such as Statecharts [34], level-crossing links and connections are needed.
The example shown in figure 8.6 has three level-crossing connections that are slightly different from
one another. The links in these connections are created using the liberalLinkQ method of Component-
Port. The linkQ method prohibits such links, throwing an exception if they are attempted (most appli
cations will prohibit level-crossing connections by using only the linkQ method).

An alternative that may be more convenient for a user interface is to use the connectQ methods of
CompositeEntity rather than the linkQ or liberalLinkQ method of ComponentPort. To allow level-
crossing links using connectQ, first call allowLevelCrossingConnectQ with a true argument.

The simplest level-crossing connection in figure 8.6 is at the bottom, connecting P2 to P7 via the
relation R5. The relation is contained by El, but the connection would be essentially identical if it were

FIGURE 8.6. An example with level-crossing transitions.

8-10 Ptolemy II



The Kernel

contained by any other entity. Thus, the notion of composite entities containing relations is somewhat
weaker when level-crossing connections are allowed.

The other two level-crossing connections in figure 8.6 are mediatedby transparent ports. This sort
of hybrid could come about in heterogeneous representations, where level-crossing connections are
permitted in some parts but not in others. It is important, therefore, for the classes to support such
hybrids.

To support such hybrids, we have to modify slightly the algorithm by which a port recognizes an
inside link. Given a relation and a port, the link is an inside link if the relation is contained by an entity
that is either the same as or is deeply contained (i.e. directly or indirectly contained) by the entity that
contains the port. The deepContainsQ method ofNamedObj supports this test.

8.4.3 Tunneling Entities

The transparent port mechanism we have described supports connections like that between PI and
P5 in figure 8.7. That connection passes through the entity E2. The relation R2 is linked to the inside of
each of P2 and P4, in addition to its link to the outside of P3. Thus, the ports deeply connected to PI
are P3 and P5, and those deeply connected to P3 are PI and P5, and those deeply connected to P5 are
PI andP3.

A tunneling entity is one that contains a relation with links to the inside of more than one port. It
may of course also contain more standard links, but the term "tunneling" suggests that at least some
deep graph traversals will see right through it.

Support for tunneling entities is a major increment in capability over the previous Ptolemy kernel
[14] (Ptolemy Classic). That infrastructure required an entity (which was called a star) to intervene in
any connection through a composite entity (which was called a galaxy). Two significant limitations
resulted. The first was that compositionality was compromised. A connection could not be subsumed
into a composite entity without fundamentally changing the structure of the application (by introduc
ing a new intervening entity). The second was that implementation of higher-order functions that
mutated the graph [55] was made much more complicated. These higher-order functions had to be
careful to avoid mutations that created tunneling.

8.4.4 Cloning

The kernel classes are all capable of being cloned, with some restrictions. Cloning means that an
identical but entirely independent object is created. Thus, if the object being cloned contains other

FIGURE 8.7. A tunneling entity contains a relation with inside links to more than one port.
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objects, then those objects are also cloned. If those objects are linked, then the links are replicated in
the new objects.The cloneQmethod in NamedObj provides the interfacefor doing this. Each subclass
provides an implementation.

There is a key restriction to cloning. Because they break modularity, level-crossing links prevent
cloning. With level-crossing links, a link does not clearly belong to any particular entity. An attempt to
clone a composite that contains level-crossing links will trigger an exception.

8.4.5 An Elaborate Example

An elaborate example of a clustered graph is shown in figure 8.8. This example includes instances
of all the capabilities we have discussed. The top-level entity is named "HO." All other entities in this
example have containers. A Java class that implements this example is shown in figure 8.9. A script in
the Tel language [76] that constructs the same graph is shown in figure 8.10. This script uses Tel
Blend, an interface between Tel and Java that is distributed by Scriptics.

The order in which links are constructed matters, in the sense that methods that return lists of
objects preserve this order. The order implemented in both figures 8.9 and 8.10 is top-to-bottom and
left-to-right in figure 8.8. A graphical syntax, however, does not generally have a particularly conve-

FIGURE 8.8. An example ofa clustered graph.
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public class ExampleSystem {
private Con^ositeEntity eO, e3, e4, e7, elO;
private Con®ionentEntity el, e2, eS, e6, e8, e9;
private CoinponentPort pO, pi, p2, p3, p4, p5, p6, p7, p8, p9, plO, pll, pl2, pl3, p4;
private ConrponentRelation rl, r2, r3, r4, r5, r6, r7, r8, r9, rlO, rll, rl2;

public ExampleSystem0 throws IllegalActionException, NameDuplicationException {
eO = new CompositeEntityO ;
eO.setNameCEO") ;

e3 = new CompositeEntity(eO, "El")
e4 = new CompositeEntity(e3, "E4")
e7 = new CompositeEntity(eO, "£7")
elO = new CompositeEntity(eO, "ElO");

el = new ComponentEntity(e4, "El")
e2 = new ComponentEntity(e4, "E2")
e5 = new ComponentEntity(e3, "E5")
e6 = new ComponentEntity(e3, "E6')
e8 = new ComponentEntity(e7, "E8")
e9 = new ComponentEntity(elO, "E9");

pO =
pi =
p2 =
p3 =
p4 =

P5 =
p6 =

P7 =
p8 =

P9 =
plO

pll
pl2
pl3
pl4

(ComponentPort)

(ComponentPort)
(ComponentPort)
{ComponentPort)
(ComponentPort)

(ComponentPort)
(ComponentPort)
(ComponentPort)
(ComponentPort)
(ComponentPort)

; (ComponentPort)
: (ComponentPort)
: (ComponentPort)
: (ComponentPort)

: (ComponentPort)

e4.newPort

el.newPort

e2 .newPort

e2.newPort

e4.newPort

e5 .newPort

eS.newPort

e3.newPort

e7.newPort

e8.newPort

"PO")

"PI")

"P2")

"P3")

"P4")

"P5")

"P6")

"P7")

"P8")

"P9")

e8.newPort("PlO");

e7.newPort("PI1");

elO.newPort("P12")

elO.newPort("P13")

e9.newPort("Pl4");

rl = e4.connect(pi, pO, "Rl");
r2 = e4.connect(pi, p4, "R2");
p3.1inlt(r2) ;
r3 = e4.connect(pi, p2, "R3");
r4 = e3.connect(p4, p7, "R4");
r5 = e3.connect(p4, p5, "R5");
e3.allowLevelCrossingConnect(true);
r6 = e3.connect(p3, p6, "R6");
r7 = eO.connect(p7, pl3, "R7");
r8 = e7.connect(p9, p8, "R8");
r9 = e7.connect(plO, pll, "R9");
rlO = e0.connect(p8, pl2, "RIO");
rll = elO.connect(pl2, pl3, "Rll");
rl2 = elO.connect(pl4, pl3, "R12");
pll.link(r7);

FIGURE 8.9. The same topology as in figure 8.8 implemented as a Java class.

Heterogeneous Concurrent Modeling and Design 8-13



The Kernel

nient way to completely control this order.

The results of various method accesses on the graph are shown in figure 8.11. This table can be
studied to better understand the precise meaning of each of the methods.

8.5 Opaque Composite Entities

One of the major tenets of the Ptolemy project is that of modeling heterogeneous systems through
the use ofhierarchical heterogeneity. Information-hiding is a central part of this. In particular, transpar
ent ports and entities compromise information hiding by exposing the internal topology ofan entity. In
some circumstances, this is inappropriate, for example when the entity internally operates under a dif-

8-14

Create composite entities
set eO [java::new pt.kernel.CompositeEntity EO]
set e3 [java::new pt.kernel.CompositeEntity $eO E3]
set e4 [java::new pt.kernel.CompositeEntity $e3 E4]
set e7 [java::new pt.kernel.CompositeEntity $eO E7]
set elO [java::new pt.kernel.Con^JositeEntity $eO ElO]

# Create component entities,
set el [java::new pt.kernel,
set e2 [java::new pt.kernel,
set e5 [java::new pt.kernel,
set e6 [java::new pt.kernel,
set e8 [java::new pt.kernel,
set e9 [java::new pt.kernel.

# Create ports,
set pO [$e4 newPort PO]
set pi [$el newPort PI]
set p2 [$e2 newPort P2]
set p3 [$e2 newPort P3]
set p4 [$e4 newPort P4]
set p5 [$e5 newPort P5]
set p6 [$e6 newPort P6]
set p7 [$e3 newPort P7]
set p8 [$e7 newPort P8]
set p9 [$e8 newPort P9]
set plO [$e8 newPort PIO]
set pll [$e7 newPort Pll]
set pl2 [$elO newPort P12]
set pl3 [$elO newPort P13]
set pl4 [$e9 newPort P14]

# Create links

set rl [$e4 connect $pl $pO Rl]
set r2 [$e4 connect $pl $p4 R2]
$p3 link $r2
set r3 [$e4 connect $pl $p2 R3]
set r4 [$e3 connect $p4 $p7 R4]
set r5 [$e3 connect $p4 $p5 R5]
$e3 allowLevelCrossingConnect true
set r6 [$e3 connect $p3 $p6 R6]
set r7 [$eO connect $p7 $pl3 R7]
set r8 [$e7 connect $p9 $p8 R8]
set r9 [$e7 connect $plO $pll R9]
set rlO [$eO connect $p8 $pl2 RIO]
set rll [$elO connect $pl2 $pl3 Rll]
set rl2 [$elO connect $pl4 $pl3 R12]
$pll link $r7

ComponentEntity $e4 El]
ComponentEntity $e4 E2]
ComponentEntity $e3 E5]
ComponentEntity $e3 E6]
ComponentEntity $e7 E8]
ComponentEntity $elO E9]

FIGURE 8.10. The same topology as in figure 8.8 described by the Tel Blend commands to create it
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ferentmodel of computationfrom its environment. The entity shouldbe opaque in this case.
An entity can be opaque and composite at the same time. Ports are defined to be opaque if the

entity containing them is opaque (isOpaqueQ returns true), so deep traversals of the topology do not
cross these ports, even though the ports support inside and outside links. The actor package makes
extensive use of such entities to support mixed modeling. That use is described in the Actor Package
chapter. In the previous generation system, Ptolemy Classic, composite opaque entities were called
wormholes.

8.6 Concurrency

Concurrency is an expected property in many models. Network topologies may represent the
stmcture of computations which themselvesmay be concurrent,and a user interfacemaybe interacting
with the topologies while they execute their computation. Moreover, Ptolemy II objects may interact
with other objects concurrently over the network via RMI or CORBA.

Both computations within an entity and the user interface are capable of modifying the topology.
Thus, extra care is needed to make sure that the topology remains consistent in the face of simulta
neous modifications (we defined consistency in section 8.2.2).

Concurrency could easily corrupt a topology if a modification to a symmetric pair of references is
interruptedby another thread that also tries to modify the pair. Inconsistency could result if, for exam
ple, one thread sets the reference to the container of an object while another thread adds the same

Table 8.1:Methods ofComponentRelation

Method Name R1 R2 R3 R4 RS R6 R7 R8 R9 RIO Rll R12

getLinkedPorts PI PI PI P4 P4 P3 P7 P9 PIO P8 P12 PI4

PO P4 P2 P7 P5 P6 P13 P8 Pll PI2 PI3 PI3

P3 Pll

deepGetLinkedPorts PI PI PI PI PI P3 PI P9 PIO P9 P9 PI4

P9 P2 P3 P3 P6 P3 PI PI PI PI PI

P14 P9 P5 P9 P3 P3 P3 P3 P3

PIO P14 P14 PIO P9 PIO PIO PIO

P5 PIO PIG PI4

P3

Table 8.2: Methods of ComponentPort

Method Name PC PI P2 F3 P4 PS P6 P7 P8 P9 PIO Pll P12 P13 P14

getConnectedPorts PO PI PI P7 P4 P3 PI3 PI2 P8 Pll P7 P8 P7 P13

P4 P4 P5 Pll PI3 Pll

P3 P6

P2

deepGetConnectedPorts P9 PI PI P9 PI P3 P9 PI PI PI PI P9 PI PI

PI4 P9 P14 P3 PI4 P3 P3 P3 P3 P3 P3

PIO PI4 PIO PIO PIO PIO P9 P9 PIO PIO

P5 PIO P5 PI4 PI4

P3 P5

P2 P6

FIGURE 8.11. Key methods applied to figure 8.8.
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object to a different container's list of contained objects. Ptolemy II prevents such inconsistencies from
occurring. Such enforced consistency is called thread safety.

8.6.1 Limitations of Monitors

Java threads provide a low-level mechanism called a monitor for controlling concurrent access to
data structures. A monitor locks an object preventing other threads from accessing the object (a design
pattem called mutual exclusion). Unfortunately, the mechanism is fairly tricky to use correctly. It is
non-trivial to avoid deadlock and race conditions. One of the major objectives of Ptolemy II is provide
higher-level concurrency models that can be used with confidence by non experts.

Monitors are invoked in Java via the "synchronized" keyword. This keyword annotates a body of
code or a method, as shown in figure 8.12. It indicates that an exclusive lock should be obtained on a
specific object before executing the body of code. If the keyword annotates a method, as in figure
8.12(a), then the method's object is locked (an instance ofclass A in the figure). The keyword can also
be associated with an arbitrary body of code and can acquire a lock on an arbitrary object. In figure
8.12(b), the code body represented by brackets {...} can be executed only after a lock has been
acquired on object obj.

Modifications to a topology that run the risk of corrupting the consistency of the topology involve
more than one object. Java does not directly provide any mechanism for simultaneously acquiring a
lock on multiple objects. Acquiring the locks sequentially is not good enough because it introduces
deadlock potential, i.e., one thread could acquire the lock on the first object block trying to acquire a
lock on the second, while a second thread acquires a lock on the second object and blocks trying to
acquire a lock on the first. Both methods block permanently, and the application is deadlocked. Neither

8-16

public class A (
public synchronized void fooO

}

(a)

public class B {
public void foo{) {

synchronized(obj)

(b)

public class C extends NamedObj {
public void fooO {

synchronized(workspace()) {

}

try {

workspace{).getReadAccess()
// ... code that reads

} finally {
workspace().doneReading();

)

(d)

try {

workspace 0.getWriteAccess{)
// ... code that writes

} finally {
workspace () .doneWritingO ;

}

(e)

(c)

FIGURE 8.12. Using monitors for thread safety. The method used in Ptolemy II is in (d) and (e).
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thread can proceed.

One possible solution is to ensure thatlocks arealways acquired in thesame order[48]. Forexam
ple, we could use thecontainment hierarchy andalways acquire locks top-down in the hierarchy. Sup
pose for example that a body of code involves two objects a and b, where a contains b (directly or
indirectly). In thiscase, "involved" means thatit either modifies members of the objects or depends on
their values. Then this body ofcode would be surrounded by:

synchronized(a) {

synchronized (b) {

}

If all code that locks a and b respects this same order, then deadlockcannotoccur. However, if the
code involvestwo objectswhere one does not containthe other, then it is not obviouswhat orderingto
use in acquiring the locks. Worse, a change mightbe initiated that reverses the containment hierarchy
whileanotherthread is in the processof acquiring lockson it. A lock must be acquiredto read the con
tainment structure before the containment structure can be used to acquire a lock! Some policy could
certainlybe defined,but the resulting code would be difficult to guarantee.Moreover, testing for dead
lock conditions is notoriously difficult, so we implement a more conservative, and much simpler strat
egy.

8.6.2 Read and Write Access Permissions for Workspace

One way to guarantee thread safety without introducing the risk of deadlock is to give every object
an immutable association with another object, which we call its workspace. Immutable means that the
association is set up when the object is constructed, and then cannot be modified. When a change
involves multiple objects, those objects must be associated with the same workspace. We can then
acquire a lock on the workspace before making any changes or reading any state, preventing other
threads from making changes at the same time.

Ptolemy II uses monitors only on instances of the class Workspace. As shown in figure 8.3, every
instance of NamedObj (or derived classes) is associated with a single instance of Workspace. Each
body of code that alters or depends on the topology must acquire a lock on its workspace. Moreover,
the workspace associated with an object is immutable. It is set in the constructor and never modified.
This is enforced by a very simple mechanism: a reference to the workspace is stored in a private vari
able of the base class NamedObj, as shown in figure 8.3, and no methods are provided to modify it.
Moreover, in instances of these kemel classes, a container and its containees must share the same
workspace (derived classes may be more liberal in certain circumstances). This "managed ownership"
[48] is our central strategy in thread safety.

As shown in figure 8.12(c), a conservative approach would be to acquire a monitor on the work
space for each body ofcode that reads or modified objects in the workspace. However, this approach is
too conservative. Instead, Ptolemy II allows any number of readers to simultaneously access a work
space. Only one writer can access the workspace, however, and only if no readers are concurrently
accessing the workspace.

The code for readers and writers is shown in figure 8.12(d) and (e). In (d), a reader first calls the
getReadAccessQ method of the Workspace class. That method does not return until it is safe to read
data anywhere in the workspace. It is safe if there is no other thread concurrently holding (or request-
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ing) a write lock on the workspace (the thread calling getReadAccessQ may safely hold both a read
and a write lock). When the user is finished reading the workspace data, it must call doneReadingO-
Failure to do so will result in no writer ever again gaining write access to the workspace. Because it is
so important to call this method, it is enclosed in the finally clause of a try statement. That clause is
executed even if an exception occurs in the body of the try statement.

The code for writers is shown in figure 8.12(e). The writer first calls the getWriteAccessQ method
of the Workspace class. That method does not retum until it is safe to write into the workspace. It is
safe if no other thread has read or write permission on the workspace. The calling thread, of course,
may safely have both read and write permission at the same time. Once again, it is essential that done-
WritingO be called after writing is complete.

This solution, while not as conservative as the single monitor of figure 8.12(c), is still conservative
in that mutual exclusion is applied even on write actions that are independent of one another if they
share the same workspace. This effectively serializes some modifications that might otherwise occur in
parallel. However, there is no constraint in Ptolemy II on the number of workspaces used, so sub
classes of these kernel classes could judiciously use additional workspaces to increase the parallelism.
But they must do so carefully to avoid deadlock. Moreover, most of the methods in the kernel refuse to
operate on multiple objects that are not in the same workspace, throwing an exception on any attempt
to do so. Thus, derived classes that are more liberal will have to implement their own mechanisms sup
porting interaction across workspaces.

There is one significant subtlety regarding read and write permissions on the workspace. In a mul
tithreaded application, normally, when a thread suspends (for example by calling waitQ), if that thread
holds read permission on the workspace, that permission is not relinquished during the time the thread
is suspended. If another thread requires write permission to perform whatever action the first thread is
waiting for, then deadlock will ensue. That thread cannot get write access until the first thread releases
its read permission, and the first thread cannot continue until the second thread gets write access.

The way to avoid this situation is to use the waitQ method of Workspace, passing as an argument
the object on which you wish to wait (see Workspace methods in figure 8.3). That method first relin
quishes all read permissions before calling wait on the target object. When waitQ returns, notice that it
is possible that the topology has changed, so callers should be sure to re-read any topology-dependent
information. In general, this technique should be used whenever a thread suspends while it holds read
permissions.

8.6.3 Making a Workspace Read Only

Acquiring read and write access permissions on the workspace is not free, and if it is performed
often, it can significantly degrade performance. Thus, in some situations, an application may simply
wish to prohibit all modifications to the topology for some period of time. This can be done by calling
setReadOnlyO on the workspace (see Workspace methods in figure 8.3). Once the workspace is read
only, requests for read permission are routinely (and very quickly) granted, and requests for write per
mission trigger an exception. Thus, making a workspace read only can significantly improve perfor
mance, at the expense of denying changes to the topology.

8.7 Mutations

Often it is necessary to carefully constrain when changes can be made in a topology. For example,
an application that uses the actor package to execute a model defined by a topology may require the
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topology to remain fixedduring segments of the execution. During thesesegments, the workspace can
be made read-only (see section 8.6.3), significantly improving performance.

The util subpackage of the kernel package provides support for carefully controlled mutations that
can occur during the execution of a model. The relevant classes and interfaces are shown in figure
8.13. Also shown in the figure is the most useful mutation class, MoMLChangeRequest, which uses
MoML to specify the mutation. That class is in the moml package.

The usage pattern involves a source that wishes to have a mutation performed, such as an actor
(see the Actor Package chapter) or a user interface component. The originator creates an instance of
the classChangeRequest and enqueues that request by callingtherequestChangeQ of anyobject in the
Ptolemy II hierarchy. That objecttypically delegates the request to the top-level of the hierarchy, which
in turn delegates to the manager. When it is safe, the managerexecutes the changeby callingexecuteQ
on each enqueued ChangeRequest. In addition, it informs any registered change listeners of the muta-

Object
NamedOb]

request'change
;#_changeListeners: List
:'faddCh3ngeListener(listener: ChangeLlstener)
|4-re(noveChangeListener(!istener: ChangeLlstener

specifies thelist oflisteners :+re<)uestChange(fequest: ChangeRequest)

ChangeRequest

.description: String

.exception: Exception

.listeners; List

.errorReported: boolean

.source: Object

.pending: boolean

.persistent: boolean

'•'ChangeRequesttsource: Object, description; String)
+addChangeListener(listener: ChangeLlstener)
♦executeO

+getDescription(): String
+getSource(): Object
+isErrorReported(); boolean
'•'isPersistentO: txiolean
+rerTtoveChangeListener(listener; ChangeLlstener)
'••setErrorReportedjreported: boolean)
+setListeners(listeners: List)
+selPersistent(persistent: b^lean)
+waitForCompletion()
#_executeO

delegates change request to i

Manager ;

1
executes the chanqe

1

i

notifies of comple

(Interface*

ChangeLlstener

+changeExecutBd(change: ChangeRequest)
*changeF^ed(change: ChangeRequest, error; Exception)

moml package

•_base; URL
-.context; NamedObj
-.parser: MoMLParser
-.propagating: boolean

MoMLChangeRequest

StreamChangeListener

-_oulput: PrintStream
-•-StreamChangeListenerO
-•-StreamChangeListener(out: OutpulStream)

-•-MoMLChangeRequest(originator: Object, request: String)
-^Molt4LC:hangeRequest(originator; Object, context: NamedObj, request; String)
-•-MoMLChangeRequestjoriginator; Object, context: NamedObj, request: String, base: URL)
^aetDeferredToParentfoblect: NamedObii: NamedOfai

FIGURE 8.13. Classes and interfaces that support controlled topology mutations. A source requests topology
changes and a manager performs them at a safe time.
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tions so that they can react accordingly. Their changeExecutedQ method is called if the change suc
ceeds, and their changeFailedQ method is called if the change fails. The list of listeners is maintained
by the manager, so when a listener is added to or removed from any object in the hierarchy, that request
is delegated to the manager.

8.7.1 Change Requests

A manager processes a change request by calling its executeQ method. That method then calls the
protected _executeO method, which actually performs the change. If the _executeO method completes
successfully, then the ChangeRequest object notifies listeners of success. If the _executeO method
throws an exception, then the ChangeRequest object notifies listeners of failure.

The ChangeRequest class is abstract. Its _executeO method is undefined. In a typical use, an origi
nator will define an zinonymous inner class, like this:

CompositeEntity container = ... ;
ChangeRequest change = new ChangeRequest(originator, "description") {

protected void _execute() throws Exception {
. . . perfoxTTi change here . . .

}

};

container.requestChange{change);

By convention, the change request is usually posted with the container that will be affected by the
change. The body of the _executeO method can create entities, relations, ports, links, etc. For example,
the code in the _executeO method to create and link a new entity might look like this:

Entity newEntity = new MyEntityClass(originator, "NewEntity");
relation.link(newEntity.port);

When _executeO is called, the entity named newEntity will be created, added to originator (which is
assumed to be an instance of CompositeEntity here) and linked to relation.

A key concrete class extending ChangeRequest is implemented in the moml package, as shown in
figure 8.13. The MoMLChangeRequest class supports specification of a change in MoML. See the
MoML chapter for details about how to write MoML specifications for changes. The context argument
to the second constructor typically gives a composite entity within which the commands should be
interpreted. Thus, the same change request as above could be accomplished as follows:

CompositeEntity container = ... ;
String moml = "<group>"

+ "<entity name=\"\" class=\"MyEntityClassX"/>"
+ "<link port=\"portnameX" relation=X"relationnameX"/>"
+ "</group>";

ChangeRequest change =
new MoMLChangeRequest(originator, container, moml);

container.requestChange(change);
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8.7.2 NamedObj and Listeners

The NamedObjclass provides addChangeListenerQ and removeChangeListenerQ methods,so that
interested objects can register to be notified when topology changes occur. In addition, it provides a
method that originators can use to queue requests, requestChangeQ.

A change listener is any object that implements the ChangeListener interface, and will typically
include user interfaces and visualization components. The instance of ChangeRequest is passed to the
listener. Typically the listener will call getOriginatorO to determine whether it is being notified of a
change that it requested. This might be used for example to determine whether a requested change suc
ceeds or fails.

The ChangeRequest class also provides a waitForCompletionQ method. This method will not
return until the change request completes. If the request fails with an exception, then waitForComple
tionQ will throw that exception. Note that this method can be quite dangerous to use. It will not return
until the change request is processed. If for some reason change requests are not being processed (due
for a example to a bug in user code in some actor), then this method will never retum. Ifyou make the
mistake of calling this method from within the event thread in Java, then if it never retums, the entire
user interface will freeze, no longer responding to inputs from the keyboard or mouse, nor repainting
the screen. The user will have no choice but to kill the program, possibly losing his or her work.

8.8 Exceptions

Ptolemy II includes a set of exception classes that provide a uniform mechanism for reporting
errors that takes advantage of the identification of named objects by full name. These exception are
summarized in the class diagram in figme 8.14.

8.8.1 Base Class

KernelException. Not used directly. Provides common functionality for the kemel exceptions. In par
ticular, it provides methods that take zero, one, or two Nameable objects an optional cause (a Throw-
able) plus an optional detail message (a String). The arguments provided are arranged in a default
organization that is overridden in derived classes.

The cause argument to the constructor is a Throwable that caused the exception. The cause argu
ment is used when code throws an exception and we want to rethrow the exception but print the stack-
trace where the first exception occurred. This is called exception chaining.

JDK1.4 supports exception chaining. We are implementing a version of exception chaining here
ourselves so that we can use JVMs earlier than JDKl .4.

In this implementation, we have the following differences from the JDK1.4 exception chaining
implementation:

* In this implementation, the detail message includes the detail message from the cause argument.
• In this implementation, we implement a protected _setCauseO method, but not the public init-

CauseQ method that JDKl .4 has.

8.8.2 Less Severe Exceptions

These exceptions generally indicate that an operation failed to complete. These can result in a
topologythat is not what the caller expects, since the caller's modifications to the topologydid not suc-
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.cause: Throwable

.message: String

iRuntlmeException
i
i

KemelException

-.cause: Throwable
-.message: String

KemelRuRtimeExceptlon

The Kernel

+KemeIRuntimeExcepUon()
+KemetRuntimeException(objects; Cotlectlon,cause: Throwable,detail: String)
+KemetRuRtlmeException(o1: Nameable, o2: Nameable, cause: Throwable. detail: String)
+Keme[RuntlmeException(object: Nameable. detail: String)
'•'KemetRuntlmeExceptionidetall: String)
+KemeiRuntimeException(c3use: Throwable. detail: String)
+getC3use(): Throwable
+getMessage(): String
'•'PrintStackTraceO

printStackTrace(printStream; printStream)
+prlntStackTrace(printWriter: PrintWriter)
ll.setCause(cause; Throwable)
#_setMessage(message: String)

♦KernelExceptIon{)
+KemeIException(ol; Nameable. o2; Nameable, detail: String)
♦KemelException(o1; Nameable. o2; Nameable. cause; Throwable. detail: String)
♦oenerateMessaoefol: Nameable. o2: Nameable. cause: Throwable. detail: Strinot: String

/\

♦oenerateMessaoefDretix:Strino. cause: Throwable. detail: Strinol: String

InternalErrorException

♦getCauseO:Throwable
♦oetFullNameloblect:Nameablel: Strino

♦getMessageO:String
♦oetNamefobiect: Nameablel: String

♦PrintStackTraceO
♦printStackTrac8(priRtStream:PrintStream)
♦printStackTr3ce(prlntWriter:PrintWriter)
♦stackTraceToStrinofthrowabte : Throwatile'l: String

ll.setCause(cause: Throwable)
#.setMessage(message: String)

♦lntemalErrorException(o: Nameable. cause: Throwable. detail: String)
♦lntemalErrorException{detail: String)
♦lnlemalErrorException(cause; Throwable)

InvalldStateException

-.message: String

♦lnvaUdStateException(objects: Coltection, detail: String)
♦lnvatldStateException(obiects: Collection, cause: Throwable. detail: String)
♦InvalldStateExceptioniol: Nameable, o2: Nameable. detail: String)
♦lnv3lldStateExceptlon(o1; Nameable, o2: Nameable, cause: Throwable, detail: String)
♦lnvalidStateException(ob)ect: Nameable, detail: String)
♦lnvaIldStateException(object; Nameable. cause: Throwable. detail: String)
♦lnvalldStateException(detail: String)

NoSuchltemExceptlon

♦NoSuchltemException(object;Nameatde, detail: String)
♦NoSuchltemExceptlon(object: Nameable. cause: Throwable. detail; String)
♦NoSuchltemException(detall: String)

NameDupllcatlonExceptlon

NameDupllcatlonExceptlon(contalner: Nameable. wouldBeContalner: Nameable)
♦NameDupllcatlonException(contalner: Nameatde. wouldBeContalner: Nameable. detail; String)
♦NameDupllcatlonExceptlon(contalner: Nameable.detail: String)

MlegalActlonExceptlon

♦lllegalActionException(object:Nameable)
♦lllegalActionExceptlon(o1:Nameable. o2: Nameable)
♦lllegaIActiORException(o1:Nameable. o2: Nameable. detail; String)
♦lltegaIActionException(o1: Nameable. o2: Nameable. cause; ITtrowable. detail: String)
♦ldegalActionException(object; Nameable. detail: String)
♦ltlegalActionException(object: Nameable, cause: Throwable, detail; String)
♦megalActionExceptionidetall: String)

FIGURE 8.14. Summary ofexceptions defined in the kemel.util package. These are used primarily through
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ceed. However, they should never result in an inconsistentor contradictory topology.

IllegalActionException. Thrown on an attempt to perform an action that is disallowed. For example,
the action would result in an inconsistent or contradictory data stmcture if it were allowed to complete.
Example: an attempt to set thecontainer of an object tobe another objectthatcannot contain it because
it is of the wrong class.

NameDuplicationException. Thrown on an attempt to adda named object to a collection that requires
unique names, and finding that therealready is an objectby that namein the collection.

NoSuchltemException. Thrown on access to an item that doesn't exist. Example: an attempt to remove
a port by name and no such port exists.

8.8.3 More Severe Exceptions

The following exceptions should never trigger. If they trigger, it indicatesa serious inconsistency
in the topology and/ora bug in the code. At the very least, the topology being operated on shouldbe
abandoned and reconstructed from scratch. They are runtime exceptions, so they do not need to be
explicitly declared to be thrown.

KernelRuntimeException. Base class for mntime exceptions. This class extends the basic Java Runt-
imeException with a constructorthat can take a Nameable as an argument. This exceptionsupports all
the constructor forms of KemelException, but is implementedas a RuntimeException so that it does
not have to be declared.. In particular, it providesmethodsthat take zero, one, or two Nameableobjects
an optional cause (a Throwable) plus an optional detail message (a String). The arguments provided
are arranged in a default organization that is overridden in derived classes. The cause argument is used
to implement a form of exception chaining.

InvalidStateException, Some object or set of objects has a state that in theory is not permitted. Exam
ple: a NamedObj has a null name. Or a topology has inconsistent or contradictory information in it,
e.g., an entity contains a port that has a different entity as its container. Our design should make it
impossible for this exception to ever occur, so occurrence is a bug. This exception is derived from the
Java RuntimeException.

InternalErrorException. An unexpected error other than an inconsistent state has been encountered.
Our design should make it impossible for this exception to ever occur, so occurrence is a bug. This
exception is derived from the Java RuntimeException.
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9.1 Concurrent Computation

In the kernel package, entities have no semantics. They are syntactic placeholders. In many of the
uses of Ptolemy II, entities are executable. The actor package provides basic support for executable
entities. It makes a minimal commitment to the semantics of these entities by avoiding specifying the
order in which actors execute (or even whether they execute sequentially or concurrently), and by
avoiding specifying the communication mechanism between actors. These properties are defined in the
domains.

In most uses, these executable entities conceptually (ifnot actually) execute concurrently. The goal
of the actor package is to provide a clean infrastructure for such concurrent execution that is neutral
about the model of computation. It is intended to support dataflow, discrete-event, synchronous-reac
tive, continuous-time, communicating sequential processes, and process networks models ofcomputa
tion, at least. The detailed model of computation is then implemented in a set of derived classes called
a domain. Each domain is a separate package.

Ptolemy II is an object-oriented application framework. Actors [1] extend the concept of objects to
concurrent computation. Actors encapsulate a thread of control and have interfaces for interacting with
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Other actors. They provide a framework for "open distributed object-oriented systems." An actor can
create other actors, send messages, and modify its own local state.

Inspired by this model, we group a certain set of classes that support computation within entities in
the actor package. Our use of the term "actors," however, is somewhat broader, in that it does not
require an entity to be associated with a single thread of control, nor does it require the execution of
threads associated with entities to be fair. Some subclasses, in other packages, impose such require
ments, as we will see, but not all.

Agha's actors [1] can only send messages to acquaintances — actors whose addresses it was given
at creation time, or whose addresses it has received in a message, or actors it has created. Our equiva
lent constraint is that an actor can only send a message to an actor if it has (or can obtain) a reference to
a receiver belonging to an input port of that actor. The usual mechanism for obtaining a reference to a
receiver uses the topology, probing for a port that it is connected to. Our relations, therefore, provide
explicit management of acquaintance associations. Derived classes may provide additional implicit
mechanisms. We define actor more loosely to refer to an entity that processes data that it receives
through its ports, or that creates and sends data to other entities through its ports.

The actor package provides templates for two key support functions. These templates support mes
sage passing and the execution sequence (flow of control). They are templates in that no mechanism is
actually provided for message passing or flow of control, but rather base classes are defined so that
domains only need to override a few methods, and so that domains can interoperate.

9.2 Message Passing

The actor package provides templates for executable entities called actors that communicate with
one another via message passing. Messages are encapsulated in tokens (see the Data Package chapter).
Messages are sent and received via ports. lOPort is the key class supporting message transport, and is
shown in figure 9.2. An lOPort can only be connected to other lOPort instances, and only via lORela-
tions. The lORelation class is also shown in figure 9.2. TypedlOPort and TypedlORelation are sub
classes that manage type resolution. These subclasses are used much more often, in order to benefit
from the type system. This is described in detail in the Type System chapter.

An instance of lOPort can be an input, an output, or both. An input port (one that is capable of
receiving messages) contains one or more instances of objects that implement the Receiver interface.
Each of these receivers is capable of receiving messages from a distinct channel.

The type of receiver used depends on the communication protocol, which depends on the model of
computation. The actor package includes two receivers. Mailbox and QueueReceiver. These are
generic enough to be useful in several domains. The QueueReceiver class contains a FIFOQueue, the
capacity of which can be controlled. It also provides a mechanism for tracking the history of tokens
that are received by the receiver. The Mailbox class implements a FIFO (first in, first out) queue with
capacity equal to one.

9.2.1 Data Transport

Data transport is depicted in figure 9.1. The originating actor El has an output port PI, indicated in
the figure with an arrow in the direction of token flow. The destination actor E2 has an input port P2,
indicated in the figure with another arrow. El calls the sendQ method of PI to send a token r to a
remote actor. The port obtains a reference to a remote receiver (via the lORelation) and calls the putQ
method of the receiver, passing it the token. The destination actor retrieves the token by calling the
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getQ methodof its inputport,which in turn calls the getQ method of the designated receiver.
Domains typically provide specialized receivers. Thesereceivers override getO andputO to imple

mentthe communication protocolpertinentto that domain. A domainthat uses asynchronous message
passing, for example,can usuallyuse the QueueReceiver shown in figure 9.2. A domain that uses syn
chronous message passing (rendezvous)has to provide a new receiver class.

In figure 9.1 there is only a single channel, indexed 0. The "0" argument of the sendQ and getQ
methodsrefer to this channel. A port can support more than one channel, however, as shown in figure
9.3. This can be representedby linking more than one relation to the port, or by linking a relation that
has a width greater than one. A port that supports this is called a multiport. The channels are indexed
0,..., TV- 1, where N is the number of channels. An actor distinguishes between channels using this
index in its sendQ and getQ methods. By default, an lOPort is not a multiport, and thus supports only
one channel (or zero, if it is left unconnected). It is converted into a multiport by calling its setMulti-
portO method with a true argument. After conversion, it can support any number of channels.

Multiports are typically used by actors that communicate via an indeterminate number ofchannels.
For example, a "distributor" or "demultiplexor" actor might divide an input stream into a number of
output streams, where the number of output streams depends on the connections made to the actor. A
stream is a sequence of tokens sent over a channel.

An lORelation, by default, represents a single channel. By calling its setWidthQ method, however,
it can be converted to a bus. A multiport may use a bus instead of multiple relations to distribute its
data, as shown in figure 9.4. The width ofa relation is the number of channels supported by the rela
tion. If the relation is not a bus, then its width is one.

The width ofa port is the sum of the widths of the relations linked to it. In figure 9.4, both the
sending and receiving ports are multiports with width two. This is indicated by the "2" adjacent to each

sendfO.t)
receiver.put(t)

token ty

FIGURE 9.1. Message passing is mediated by the lOPort class. Its sendQ method obtains a reference to a
remote receiver, and calls the putQ method of the receiver, passing it the token t. The destination actor
retrieves the token by calling the getQ method of its input port.

send(0,t0}
receiver.put(tO)

^end(l.tl) token toy

receiver.put(tl)

token ty

FIGURE 9.3. A port can support more than one channel, permitting an entity to send distinct data to distinct
destinations via the same port. This feature is typically used when the number ofdestinations varies in dif
ferent instances of the source actor.
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FIGURE 9.2. Port and receiver classes that provide infrastructure for message passing under various com-
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port. Note that the widthof a port couldbe zero, if thereare no relations linkedto a port (sucha port is
said to be disconnected). Thus, a port may have width zero, even though a relation cannot. By conven
tion, in Ptolemy II, if a token is sent from such a port, the token goes nowhere. Similarly, if a token is
sent via a relation that is not linked to any input ports, then the token goes nowhere. Such a relation is
said to be dangling.

A given channel may reach multiple ports, as shown in figure 9.5. This is represented by a relation
that is linked to multiple input ports. In the default implementation, in class lOPort, a reference to the
token is sent to all destinations. Note that tokens are assumed to be immutable, so the recipients cannot
modify the value. This is importantbecause in most domains, it is not obvious in what order the recip
ients will see the token.

The sendQ method takes a channel number argument. If the channel does not exist, the sendQ
method silently returns without sending the token anywhere. This makes it easier for model builders,
since they can simply leave ports unconnected if they are not interested in the output data.

lOPort provides a broadcastQ method for convenience. This method sends a specified token to all
receivers linked to the port, regardless of the width of the port. If the width is zero, of course, the token
will not be sent anywhere.

9.2.2 Example

An elaborate example showing all of the above features is shown in figure 9.6. In that example, we
assume that links are constructed in top-to-bottom order. The arrows in the ports indicate the direction
of the flow of tokens, and thus specify whether the port is an input, an output, or both. Multiports are
indicated by adjacent numbers larger than one.

The top relation is a bus with width two, and the rest are not busses. The width ofport PI is four.

send(0,t0)

E1 P1

send(1,t1)

receiver.put(tO)
receiver.put(tl)

get(O), get(1)

E2

tokento. t1y

FIGURE 9.4. A bus is an lORelation that represents multiple channels. It is indicated by a relation with a
slash through it, and the number adjacent to the bus is the width of the bus.

P2 E2

'• \ recelver.put{t)
send(0,t)

El PI ® A ® F

. J \ ^ '
receiver.put(t) lU

rAn
get(0)token (done

oft)
E3

get(0)

token

FIGURE 9.5. Channels may reach multiple destinations. This is represented by relations linking multiple
input ports to an output port.
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Its first two outputs (channels zero and one) go to P4 and to the first two inputs ofP5. The third output
ofPI goes nowhere. The fourth becomes the third input ofP5, the first input ofP6^and the only input
ofP8, which is both an input and an output port. Ports P2 and P8 send their outputs to the same set of
destinations, except that P8 does not send to itself. Port PS has width zero, so its sendQ method returns
without sending the token anywhere. Port P6 has width two, but its second input channel has no output
ports connected to it, so calling get(l) will trigger an exception that indicates that there is no data. Port
P7 has width zero so calling getO with any argument will trigger an exception.

9.2.3 Transparent Ports

Recall that a port is transparent if its container is transparent (isOpaqueQ returns false). A Com-
positeActor is transparent unless it has a local director. Figure 9.7 shows an elaborate example where
busses, input, and output ports are combined with transparent ports. The transparent ports are filled in
white, and again arrows indicate the direction of token flow. The Jacl code to construct this example is
shown in figure 9.8.

By definition, a transparent port is an input if either

• it is connected on the inside to the outside of an input port, or

• it is connected on the inside to the inside of an output port.

That is, a transparent port is an input port if it can accept data (which it may then just pass through to a
transparent output port). Correspondingly, a transparent port is an output port if either

• it is connected on the inside to the outside of an output port, or

• it is connected on the inside to the inside of an input port.

Thus, assuming PI is an output port and P7, PS, and P9 are input ports, then P2, P3, and P4 are both
input and output ports, while P5 and P6 are input ports only.

Two of the relations that are inside composite entities (R1 and R5) are labeled as busses with a star
(*) instead of a number. These are busses with unspecified width. The width is inferred from the topol
ogy. This is done by checking the ports that this relation is linked to from the inside and setting the
width to the maximum ofthose port widths, minus the widths ofother relations linked to those ports on
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FIGURE 9.6. An elaborate example showing several features of the data transport mechanism.
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FIGURE 9.7. An example showing busses combined with input, output, and transparent ports.

set eO [java::new ptolemy.actor.CompositeActor] $rl setWidth 0
$eO setDirector $director $r2 setWidth 3
$eO setManager $inanager $r4 setWidth 2

$r5 setWidth 0
set el [java:mew ptolemy.actor.CompositeActor $eO El]
set e2 [java::new ptolemy.actor.AtomicActor $el E2) $pl link $rl
set e3 [java;;new ptolemy.actor.CompositeActor $eO E3] $p2 link $rl
set e4 [java::new ptolemy.actor.AtomicActor $e3 E4] $p3 link $rl
set e5 [java::new ptolemy.actor.AtomicActor $e3 E5] $p4 link $rl
set e6 [java::new ptolemy.actor.AtomicActor $eO E6] $p2 link $r2

$p5 link $r2
set pi [java::new ptolemy.actor.lOPort $e2 PI false true] $p2 link $r3
set p2 [java::new ptolemy.actor.lOPort $el P2] $p5 link $r3
set p3 [java::new ptolemy.actor.lOPort $el P3] $p6 link $r3
set p4 [java::new ptolemy.actor.lOPort $el P4] $p3 link $r4
set p5 [java::new ptolemy.actor.lOPort $e3 P5] $p7 link $r4
set p6 [java::new ptolemy.actor.lOPort $e3 P61 $p5 link $r5
set p7 [java::new ptolemy.actor.lOPort $e6 P7 true false] $p8 link $r5
set p8 [java::new ptolemy.actor.lOPort $e4 P8 true false] $p5 link $r6
set p9 [java::new ptolemy.actor.lOPort $e5 P9 true false] $p9 link $r6

$p6 link $r7
set rl [java::new ptolemy.actor.lORelation $el Rl] $p9 link $r7
set r2 [java::new ptolemy.actor.lORelation $eO R2]
set r3 [java::new ptolemy.actor.lORelation $eO R3]
set r4 [java::new ptolemy.actor.lORelation $eO R4]
set r5 [java::new ptolemy.actor.lORelation $e3 R5]
set r6 [java::new ptolemy.actor.lORelation $e3 R6]
set r7 [java::new ptolemy.actor.lORelation $e3 R7]

$pl setMultiport true
$p2 setMultiport true
$p3 setMultiport true
$p4 setMultiport true
$p5 setMultiport true
$p7 setMultiport true
$p8 setMultiport true
$p9 setMultiport true

FIGURE 9.8. Tel Blend code to construct the example in figure 9.7.
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the inside. Each such port is allowed to have at most one inside relation with an unspecified width, or
an exception is thrown. If this inference yields a width of zero, then the width is defined to be one.
Thus, R1 will have width 4 and R5 will have width 3 in this example. The width ofa transparent port is
the sum of the widths of the relations it is linked to on the outside (just like an ordinary port). Thus, P4
has width 0, P3 has width 2, and P2 has width 4. Recall that a port can have width 0, but a relation can
not have width less than one.

When data is sent from PI, four distinct channels can be used. All four will go through P2 and P5,
the first three will reach P8, two copies of the fourth will reach P9, the first two will go through P3 to
P7, and none will go through P4.

By default, an lORelation is not a bus, so its width is one. To turn it into a bus with unspecified
width, call setWidthQwith a zero argument. Note that getWidthQwill nonetheless never retum zero (it
returns at least one). To find out whether setWidthQ has been called with a zero argument, call
isWidthFixedO (see figure 9.2). If a bus with unspecified width is not linked on the inside to any trans
parent ports, then its width is one. It is not allowed for a transparent port to have more than one bus
with unspecified width linked on the inside (an exception will be thrown on any attempt to construct
such a topology). Note further that a bus with unspecifiedwidth is still a bus, and so can only be linked
to multiports.

In general, bus widths inside and outside a transparent port need not agree. For example, if M<N
in figure 9.9, then first M channels from PI reach P3, and the last N-M channels are dangling. If
M>N, then all N channels from PI reach P3, but the last M-N channels at P3 are dangling.
Attempting to get a token from these channels will trigger an exception. Sending a token to these chan
nels just results in loss of the token.

Note that data is not actually transported through the relations or transparent ports in Ptolemy II.
Instead, each output port caches a list of the destination receivers (in the form of the two-dimensional
array returned by getRemoteReceivers()), and sends data directly to them. The cache is invalidated
whenever the topology changes, and only at that point will the topology be traversed again. This sig
nificantly improves the efficiency of data transport.

9.2.4 Data Transfer in Various Models of Computation

The receiver used by an input port determines the communication protocol. This is closely bound
to the model of computation. The lOPort class creates a new receiver when necessary by calling its
_newReceiver() protected method. That method delegates to the director returned by getDirectorQ,
calling its newReceiverQ method (the Director class will be discussed in section 9.3 below). Thus, the
director controls the communication protocol, in addition to its primary function of determining the
flow of control. Here we discuss the receivers that are made available in the actor package. This should
not be viewed as an exhaustive set, but rather as a particularly useful set of receivers. These receivers

FIGURE 9.9. Bus widths inside and outside a transparent port need not agree..
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are shown in figure 9.2.

Mailbox Communication. The Director base class by default returns a simple receiver called a Mail
box. A mailbox is a receiver that has capacity for a single token. It will throw an exception if it is
empty and getQ is called, or it is full and putQ is called. Thus, a subclass of Director that uses this
should schedule the calls to putQ and getQ so that these exceptions do not occur, or it should catch
these exceptions.

Asynchronous MessagePassing. This is supportedby the QueueReceiverclass.A QueueReceiver con
tains an instance of FIFOQueue, from the actor.util package, which implements a first-in, first-out
queue. This is appropriate for all flavors of dataflow as well as Kahn process networks.

In the Kahn process networks model of computation [44], which is a generalization of dataflow [55],
each actor has its own thread ofexecution. The thread calling getQ will stall ifthe corresponding queue
is empty. If the size of the queue is bounded, then the thread calling putQ may stall if the queue is full.
This mechanism supports implementation of a strategy that ensures bounded queues whenever possi
ble [78].

In the process networks model ofcomputation, the history of tokens that traverse any connection is
determinate under certain simple conditions. With certain technical restrictions on the functionality of
the actors (they must implement monotonic functions under prefix ordering of sequences), our imple
mentation ensures determinacy in that the history does not depend on the order in which the actors
carry out their computation. Thus, the history does not depend on the policies used by the thread
scheduler.

FIFOQueue is a support class that implements a first-in, first-out queue. It is part of the actor.util
package, shown in figure 9.10. This class has two specialized features that make it particularly useful
in this context. First, its capacity can be constrained or unconstrained. Second, it can record a finite or
infinite history, the sequence of objects previously removed from the queue. The history mechanism is
useful both to support tracing and debugging and to provide access to a finite buffer ofpreviously con
sumed tokens.

An example of an actor definition is shown in figure 9.11. This actor has a multiport output. It

public class Distributor extends TypedAtomicActor {

pviblic TypedlOPort _input;
public TypedlOPort _output;

public Distributor(CompositeActor container. String name)
throws NameDuplicationException, IllegalActionException (

super(container, name);
_input = new TypedlOPort(this, "input", true, false);
_output = new TypedlOPort(this, "output", false, true);
_output.setMultiport(true);

}

public void fireO throws IllegalActionException {
for (int i=0; i < _output.getWidth(); i++) {

_output.send(i, _input.get(0));
)

}

FIGURE 9.11. An actor that distributes successive input tokens to a set of output channels.
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reads successive input tokens from the input port and distributes them to the output channels. This
actor is written in a domain-polymorphic way, and can operate in any of a number of domains. If it is
used in the PN domain, then its input will have a QueueReceiver and the output will be connected to
ports with instances QueueReceiver.

RendezvousCommunications. Rendezvous, or synchronous communication, requires that the origina
tor of a token and the recipient of a token both be simultaneously ready for the data transfer. As with
process networks, the originator and the recipient are separate threads. The originating thread indicates
a willingness to rendezvous by calling sendQ, which in turn calls the putQ method of the appropriate
receiver. The recipient indicates a willingness to rendezvous by calling get() on an input port, which in
turn calls getQ of the designated receiver. Whichever thread does this first must stall until the other
thread is ready to complete the rendezvous.

This style of communication is implemented in the CSP domain. In the receiver in that domain, the
putQ method suspends the calling thread if the getQ method has not been called. The getQ method sus
pends the calling thread if the put() method has not been called. When the second ofthese two methods
is called, it wakes up the suspended thread and completes the data transfer. The actor shown in figure
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FIGURE 9.10. Static structure diagram for the actor.util package.
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9.11 works unchanged in the CSP domain, although its behavior is different in that input and output
actions involve rendezvous with another thread.

Nondeterministic transfers can be easily implemented using this mechanism. Suppose for example
that a recipient is willing to rendezvouswith any ofseveraloriginatingthreads. It could spawna thread
for each. These threads should each call getQ,which will suspend the thread until the originator is will
ing to rendezvous. When one of the originating threads is willing to rendezvous with it, it will call
putO- The multiple recipient threads will all be awakened, but only one of them will detect that its ren
dezvous has been enabled. That one will complete the rendezvous, and others will die. Thus, the first
originating thread to indicate willingness to rendezvous will be the one that will transfer data. Guarded
communication [4] can also be implemented.

Discrete-Event Communication. In the discrete-event model of computation, tokens that are trans
ferred between actors have a time stamp^ which specifies the order in which tokens should be pro
cessed by the recipients. The order is chronological, by increasing time stamp. To implement this, a
discrete-event system will normally use a single, global, sorted queue rather than an instance of FIFO-
Queue in each input port. The kemel.util package, shown in figure 9.10, provides the CalendarQueue
class, which gives an efficient and flexible implementation of such a sorted queue.

9.2.5 Discussion of the Data Transfer Mechanism

This data transfer mechanism has a number of interesting features. First, note that the actual trans
fer of data does not involve relations, so a model of computation could be defined that did not rely on
relations. For example, a global name server might be used to address recipient receivers. To construct
highly dynamic networks, such as wireless communication systems, it may be more intuitive to model
a system as an aggregation of unconnected actors with addresses. A name server would return a refer
ence to a receiver given an address. This could be accomplished simply by overriding the getRemoteR-
eceiversQ method of lOPort or TypedlOPort, or by providing an altemative method for getting
references to receivers. The subclass of lOPort would also have to ensure the creation of the appropri
ate number ofreceivers. The base class relies on the width of the port to determine how many receivers
to create, and the width is zero if there are no relations linked.

Note further that the mechanism here supports bidirectional ports. An lOPort may return true to
both the isInputO and isOutputQ methods.

9.3 Execution

The Executable interface, shown in figure 9.12, is implemented by the Director class, and is
extended by the Actor interface. An actor is an executable entity. There are two types ofactors, Atom-
icActor, which extends ComponentEntity, and CompositeActor, which extends CompositeEntity. As
the names imply, an AtomicActor is a single entity, while a CompositeActor is an aggregation of
actors. Two further extensions implement a type system, TypedAtomicActor and TypedCompositeAc-
tor.

The Executable interface defines how an object can be invoked. There are eight methods. The
preinitializeQ method is assumed to be invoked exactly once during the lifetime of an execution of a
model and before the type resolution (see the type system chapter), and the initialize() methods is
assumed to be invoked once after the type resolution. The initializeQ method may be invoked again to
restart an execution, for example, in the *-chart model (see the FSM domain). The prefireQ, fireQ, and
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Executable NamedObJ

♦COMPLETED : static final int

♦NOT READY : static final Int

♦STOP ITERATING: static final mil
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•Interfaces

Runnable

♦ffr»0

*lnitlallzeO
*llerale(counl: Int): int
*post(lmO: boolean
*pfefireO: boolean
*preinitiaIIZBO
*stopFlreO
*termlnateO
*wrapup()

\*runO

A

Director

#_currentTlmo: doulite
container: ComposlteActor

♦DirectorO

♦Director(vw)rkspace:Workspace)
♦Dlrector(container;CompositeEntity, name ; String)
♦fireAt(actor: Actor, time: double)
♦fireAtCurrentTlme(8Ctor: Actor)
♦getCurrentrimeO: double
♦getNextiteratlonT!me<):double
♦initiaiize(3Ctor;Actor)
♦invalidateResolvedTypesO

♦invalidateScbedule()

♦needWriteAccessO: boolean
♦newReceiverO;Receiver
♦requestChange(change:ChangeRequest)
♦requestinitia[ization(actor:Actor)
♦setCurrentTime(newTime: double)
♦stop()

♦transferlnputs(port;iOPort): boolean
♦transferOutputsfport:IOPort); boolean
ff_WTiteAccessRequired(): boolean

•Interfaces

0..2

Actor Manager.State

*getDlreclof(): Director
*getExecutiveDirectorO: Director
*getManagerO: Manager
*inputPontJstO: Mst
*newReceh/er(): Receiver
*outputPottListO: Ust

-.description: String
♦getOescrlptionO: String
♦getManagerO: Manager
•State(descrlption: String)

_i<!

r<3
jComponentEntity CompositeEntity

0..n container

containee 0..1

Manager

♦CORRUPTED:Slate

♦IDLE: State
♦INITIALIZING:State

♦ITERATING:State

♦MUTATING:State

♦PAUSED:State

♦PREINITIALIZING:State

♦RESOLVING TYPES: State

♦WRAPPING UP: State

-.changeRequests: Ust
.container: ComposlteActor
.executlonUsteners: Ust

-_flnlshRequested; boolean
-JteratlonCount: int
-.pauseReqested: boolean
-.state: State
-.thread: PtolemyThread
*JypesResolved: boolean
-.wrIteAccessNeeded: boolean

Actor Package

♦Manager()

♦Managerjname:String)
♦Managerjworkspace: Workspace, name:String)
♦addExecutlonLlstener(llstener: ExecutlonUstener)
♦executeO

♦finlshO

♦getlteratlonCountO:Int
♦getStateO: State
♦initiallze()
♦InvalldateResoivedTypesO

♦iterate(): boolean
♦notifyUstenersOfException(ex:Exception)
♦pause()

♦removeExecutionListener(llstener:ExecutlonUstener)
♦requestChange(change:ChangeRequest)
♦requestlnltiallzation(actor:Actor)
♦resolveTypesO

♦resumeO

♦startRunO

♦tlmeAndMemorvtetartTlme : lonot: String

♦tlmeAndMemorvfstart:lono. totalMem : lorto. freeMem : lonot: Strino

♦wrapupO

If.makeManagerOffca: ComposlteActor)
If.needWriteAccessO: boolean
H.notlfyUstenersOfCompletlonO
#_notlfyUstenersOfStateChange()
#.processChangeRequests()
#.setState(newState; State)

ComposlteActor

[♦DIRECTOR:int
.director: Director

-.manager: Manager

♦AtomlcActorO

♦AtomlcActor(workspace:Workspace)
♦AtomlcActorjcontalner:CompositeEntity, name: String)

♦CompositeActorO

♦CompaslteActor(workspace: Workspace)
♦CompositeActor(contalner:CompositeEntity, name: String)
♦allAtomicEntityUstO: Ust
♦newlnsldeReceiveit): Receiver
♦setDirector(dlrector:Director)
♦setManage^manager: Manager)

9-12

StreamExecutlonLlstener

•Inteifacea

ExecutlonUstener

♦StreamExecutionUstenerO
♦StreamExecutionUstener(out:OutputStream)

*executionError(manager: Manager, excepUon: Exception)
+executionRnished(manager: Manager)
*managerStateChanged(manager: Manager)

FIGURE 9.12. Basic classes in the actor package that support execution.

Ptolemy II



Actor Package

postfireO methods will usually be invoked many times. The fireQ method may be invoked several
times between invocations of prefireQ and postfireQ. The stopFireQ method is invoked to request sus
pension of firing. The wrapupQ method will be invoked exactly once per execution, at the end of the
execution.

The terminateQ method is provided as a last-resort mechanism to interrupt execution based on an
extemal event. It is not called during the normal flow of execution. It should be used only to stop run
away threads that do not respond to more usual mechanism for stopping an execution.

An iteration is defined to be one invocation of prefireQ, any number of invocations of fireQ, and
one invocation of postfireQ. An execution is defined to be one invocation of preinitializeQ, followed
by one invocation of initializeQ, followed by any number of iterations, followed by one invocation of
wrapupQ. The methods preinitializeQ, initializeQ, prefireQ, fireQ, postfireQ, and wrapupQ are called
the action methods. While, the action methods in the executable interface are executed in order during
the normal flow of an iteration, the terminateQ method can be executed at any time, even during the
execution of the other methods.

The preinitializeQ method of each actor gets invoked exactly once. Typical actions of the preini
tializeQ method include creating receivers and defining the types of the ports. Higher-order function
actors should construct their models in this method. The preinitializeQ method cannot produce output
data since type resolution is typically not yet done. It also gets invoked prior to any static scheduling
that might occur in the domain, so it can change scheduling information.

The initializeQ method of each actor gets invoked once after type resolution is done. It may be
invoked again to restart the execution of an actor. Typical actions of the initializeQ method include cre
ating and initializing private data members. An actor may produce output data and schedule events in
this method.

The prefireQ method may be invoked multiple times during an execution, but only once per itera
tion. The prefireQ returns true to indicate that the actor is ready to fire. In other words, a return value of
true indicates "you can safely invoke my fire method," while a false value from prefire means "My
preconditions for firing are not satisfied. Call prefire again later when conditions have change." For
example, a dynamic dataflow actor might return false to indicate that not enough data is available on
the input ports for a meaningful firing to occur.

The fireQ method may be invoked multiple times during an iteration. In most domains, this
method defines the computation performed by the actor. Some domains will invoke fireQ repeatedly
until some convergence condition is reached. Thus, fireQ should not change the state of the actor.
Instead, update the state in postfireQ.

In opaque composite actors, the fireQ method is responsible for transferring data from the opaque
ports of the composite actor to the ports of the contained actors, calling the fireQ method of the direc
tor, and transferring data from the output ports of the composite actor to the ports of outside actors. See
section 9.3.4 below.

In some domains, the fire method initiates an open-ended computation. The stopFireQ method
may be used to request that firing be ended and that the fireQ method return as soon as practical.

The postfireQ method will be invoked exactly once during an iteration, after all invocations of the
fireQ method in that iteration. An actor may return false in postfire to request that the actor should not
be fired again. It has concluded its mission. However, a director may elect to continue to fire the actor
until the conclusion of its own iteration. Thus, the request may not be immediately honored.

The wrapupQ method is invoked exactly once during the execution of a model, even if an excep
tion causes premature termination of an execution. Typically, wrapupQ is responsible for cleaning up
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after execution has completed, and perhaps flushing output buffers before execution ends and killing
active threads.

The terminateO method may be called at any time during an execution, but is not necessarily
called at all. When terminateQ is called, no more execution is important, and the actor should do every
thing in its power to stop execution right away. This method should be used as a last resort if all other
mechanisms for stopping an execution fail.

9.3.1 Director

A director governs the execution of a composite entity. A manager governs the overall execution
of a model. An example of the use of these classes is shown in figure 9.13. In that example, a top-level
entity, EO, has an instance of Director, Dl, that serves the role of its local director. A local director is
responsible for execution of the components within the composite. It will perform any scheduling that
might be necessary, dispatch threads that need to be started, generate code that needs to be generated,
etc. In the example, Dl also serves as an executive director for E2. The executive director associated
with an actor is the director that is responsible for firing the actor.

A composite actor that is not at the top level may or may not have its own local director. If it has a
local director, then it defined to be opaque (isOpaqueQ returns true). In figure 9.13, E2 has a local
director and E3 does not. The contents of E3 are directly under the control of Dl, as if the hierarchy
were flattened. By contrast, the contents of E2 are under the control of D2, which in turn is under the
control of Dl. In the terminology of the previous generation, Ptolemy Classic, E2 was called a worm-
hole. In Ptolemy II, we simply call it a opaque composite actor. It will be explained in more detail
below in section 9.3.4.

We define the director (vs. local director or executive director) of an actor to be either its local
director (if it has one) or its executive director (if it does not). A composite actor that is not at the top
level has as its executive director the director of the container. Every executable actor has a director
except the top-level composite actor, and that director is what is returned by the getDirectorQ method
of the Actor interface (see figure 9.12).

When any action method is called on an opaque composite actor, the composite actor will gener
ally call the corresponding method in its local director. This interaction is crucial, since it is domain-
independent and allows for communication between different models of computation. When fireQ is
called in the director, the director is free to invoke iterations in the contained topology until the stop-

M: Manager

EO Dl: local director

E2 02: local director E3

FIGURE 9.13. Example application, showing a typical arrangement of actors, directors, and managers.
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ping condition for the model of computation is reached.
The postfireQ method ofa director returns false to stop its execution normally. It is the responsibil

ity of the next directorup in the hierarchy (or the manager if the director is at the top level) to conclude
the execution of this director by calling its wrapupQ method.

The Director class provides a default implementation of an execution, although specific domains
may override this implementation. In order to ensure interoperability of domains, they should stick
fairly closely to the sequence.

Two common sequences ofmethod calls between actors and directors are shown in figure 9.14 and
9.15. These differ in the shaded areas, which define the domain-specific sequencing ofactor firings. In
figure 9.14, the fireQ method of the director selects an actor, invokes its prefireQ method, and if that
retums true, invokes its fire() method some number of times (domain dependent) followed by its post
fireQ method. In figure 9.15, the fireQ method of the director invokes the prefireQ method of all the
actors before invoking any of their fireQ methods.

When a director is initialized, via its initializeQ method, it invokes initializeQ on all the actors in
the next level of the hierarchy, in the order in which these actors were created. The wrapupQ method
works in a similar way, deeply traversing the hierarchy. In other words, calling initializeQ on a com
posite actor is guaranteed to initialize in all the objects contained within that actor. Similarly for wra-

PUPO-
The methods prefireQ and postfireQ, on the other hand, are not deeply traversing functions. Call

ing prefireQ on a director does not imply that the director call prefireQ on all its actors. Some directors
may need to call prefireQ on some or all contained actors before being able to return, but some direc
tors may not need to call prefireQ on any contained objects at all. A director may even implement
short-circuit evaluation, where it calls prefireQ on only enough of the contained actors to determine its
own return value. PostfireQ works similarly, except that it may only be called after at least one suc
cessful call to fireQ.

The fireQ method is where the bulk of work for a director occurs. When a director is fired, it has
complete control over execution, and may initiate whatever iterations of other actors are appropriate
for the model of computation that it implements. It is important to stress that once a director is fired,
outside objects do not have control over when the iteration will complete. The director may not iterate
any contained actors at all, or it may iterate the contained actors forever, and not stop until terminateQ
is called. Of course, in order to promote interoperability, directors should define a finite execution that
they perform in the fireQ method.

In case it is not practical for the fireQ method to define a bounded computation, the stopFireQ
method is provided. A director should respond when this method is called by retuming from its fireQ
method as soon as practical.

In some domains, the firing of a director corresponds exactly to the sequential firing of the con
tained actors in a specific predetermined order. This ordering is known as a static schedule for the
actors. Some domains support this style of execution. There is also a family of domains where actors
are associated with threads.

9.3.2 Manager

While a director implementsa model of computation, a manager controls the overall executionof
a model. The manager interacts with a single composite actor, known as a top level compositeactor.
The Manager class is shown in figure 9.12. Execution of a model is implemented by three methods,
executeQ, runQand startRunQ. The startRunQ methodspawns a thread that calls runQ,and then imme-
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diately returns.The runQ method calls executeQ, but catches all exceptionsand reports them to listen
ers (if there are any) or to the standard output (if there are no listeners).

More fine grain control over the execution can be achieved by calling initializeQ, iterateQ, and
wrapupO on the managerdirectly. The executeQ method, in fact, calls these, repeating the call to iter
ateQ until it returns false. The iterate method invokes prefireQ, fireQ and postfireQ on the top-level
composite actor, and returns false if the postfireQ in the top-level composite actor returns false.

An execution can also be ended by calling terminateQ or finishQ on the manager. The terminateQ
method triggers an immediate halt of execution, and should be used only if other more graceful meth
ods for ending an execution fail. It will probably leave the model in an inconsistent state, since it works
by unceremoniously killing threads. The finishQ method allows the system to continue until the end of
the current iteration in the top-level composite actor, and then invokes wrapupQ. FinishQ encourages
actors to end gracefully by calling their stopFireQ method.

Execution may also be paused between top-level iterations by calling the pauseQ method. This
method sets a flag in the manager and calls stopFireQ on the top-level composite actor. After each top-
level iteration, the manager checks the flag. If it has been set, then the manager will not start the next
top-level iteration until after resumeQ is called. In certain domains, such as the process networks
domain, there is not a very well defined concept ofan iteration. Generally these domains do not rely on
repeated iteration firings by the manager. The call to stopFireQ requests of these domains that they sus
pend execution.

9.3.3 ExecutionListener

The ExecutionListener interface provides a mechanism for a manager to report events ofinterest to
a user interface. Generally a user interface will use the events to notify the user of the progress of exe
cution of a system. A user interface can register one or more ExecutionListeners with a manager using
the method addExecutionListenerQ in the Manager class. When an event occurs, the appropriate
method will get called in all the registered listeners.

Two kinds of events are defined in the ExecutionListener interface. A listener is notified of the

completion of an execution by the executionFinishedQ method. The executionErrorQ method indicates
that execution has ended with an error condition. The managerStateChangedQ indicates to the listener
that the manager has changed state. The new state can be obtained by calling getStateQ on the man
ager.

A default implementation of the ExecutionListener interface is provided in the StreamExecution-
Listener class. This class reports all events on the standard output.

9.3.4 Opaque Composite Actors

One of the key features of Ptolemy II is its ability to hierarchicallymix models of computation in a
disciplined way. The way that it does this is to have actors that are composite (non-atomic) and
opaque. Such an actor was called a wormhole in the earlier generation of Ptolemy. Its ports are opaque
and its contents are not visible via methods like deepEntityListQ.

Recall that an instance of CompositeActor that is at the top level of the hierarchy must have a local
director in order to be executable. A CompositeActor at a lower level of the hierarchy may also have a
local director, in which case, it is opaque (isOpaqueQ returns true). It also has an executive director,
which is simply the director of its container. For a composite opaque actor, the local director and exec
utive director need not follow the same model of computation. Hence hierarchical heterogeneity.
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The ports of a composite opaque actor are opaque, but it is a composite (it can contain actors and
relations). This has a number of implications on execution. Consider the simple example shown in fig
ure 9.16. Assume that both EO and E2 have local directors (D1 and D2), so E2 is opaque. The ports of
E2 therefore are opaque, as indicated in the figure by their solid fill. Since its ports are opaque, when a
token is sent from the output port PI, it is deposited in P2, not P5.

In the executionsequencesof figures 9.14 and 9.15, E2 is treatedas an atomic actor by Dl; i.e. D1
acts as an executive director to E2. Thus, the fireQ method ofDl invokes the prefu"eO, fireQ, and post-
fireO methods ofEl, E2, and E3. The fireQ method ofE2 is responsible for transferring the token fi-om
P2 to P5. It does this by delegating to its local director, invoking its transferlnputsQ method. It then
invokes the fireQ method of D2, which in tum invokes the prefireQ, fireQ, and postfireQ methods of
E4.

During its fireQ method, E2 will invoke the fireQ method ofD2, which typically will fire the actor
E4, which may send a token via P6. Again, since the ports ofE2 are opaque, that token goes only as far
as P3. The fireQ method of E2 is then responsible for transferring that token to P4. It does this by dele
gating to its executive director, invoking its transferOutputsQ method.

The CompositeActor class delegates transfer of its inputs to its local director, and transfer of its
outputs to its executive director. This is the correct organization, because in each case, the director
appropriate to the model of computation of the destination port is the one handling the transfer. It can
therefore handle it in a manner appropriate to the receiver in that port.

Note that the port P3 is an output, but it has to be capable of receiving data from the inside, as well
as sending data to the outside. Thus, despite being an output, it contains a receiver. Such a receiver is
called an inside receiver. The methods of lOPort offer only limited access to the inside receivers (only
via the getlnsideReceiversQ method and getReceivers(re/fl//o«), where relation is an inside linked
relation).

In general, a port may be both an input and an output. An opaque port of a composite opaque actor,
thus, must be capableof storing two distinct types of receivers, a set appropriateto the insidemodel of
computation, obtained from the local director, and a set appropriate to the outside model of computa
tion, obtained from its executive director. Most methods that access receivers, such as hasTokenQ or
hasRoomQ, refer only to the outside receivers. The use of the inside receivers is rather specialized,
only for handling composite opaque actors, so a more basic interface is sufficient.

M: Manager

EO Dl: local director

02: local director

FIGURE 9.16. An example ofan opaque composite actor. EOand E2 both have local directors, not necessar
ily implementing the same model ofcomputation.
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9.4 Scheduler and Process Support

The actor package has two subpackages, actor.sched, which provides rudimentary support for
domains that use static schedulers to control the invocation of actors, and actor.process, which pro
vides support for domains where actors are processes. The UML diagrams are shown in figure 9.17
and figure 9.18.

9.4.1 Statically Scheduled Domains

The StaticSchedulingDirector class extends the Director base class to add a scheduler. The sched
uler (an instance of the Scheduler class) creates an instance of the Schedule class which represents a
statically determined sequence of actor firings. The scheduler also caches the schedule as necessary
until it is invalidated by the director. This means that domains with a statically determined schedule
(such as CT and SDF) need only implement the action methods in the director and a scheduler with the

Director

r

StaticSchedulingDirector

.scheduler; Scheduler

-••StatlcSchedulingDirectorO
•••StatlcSchedul!ngDlrector(workspace: Workspace)
+StatlcSchedullngDirector(container: CompositeEntity. name: String)
'fgetSchedulerO: Scheduler
•••invalidateScheduleO
+isScheduleV3lld(): boolean
'fsetScheduler(scheduler; Scheduler)
•«-setScheduleValld(valid: boolean)

ScheduleElement

+ScheduleElementO
+acforrteratorO; Iterator
*SringlteratorO: Iterator
•^getRepetitionsCountO: int
•»setRepetitionsCount(count: int)

1..n
/\

1..1

Schedule

+add(e; ScheduleElement)
+add(index: int, e: ScheduleElement)
+get(index: Int); ScheduleElement
•••iteratorO: Iterator
+remove(index: int)
+size(): int

Rring

+Firing{)
+Firing{a: Actor)
+getActor(): Actor
+setActor(a: Actor)

Scheduler

# DEFAULT SCHEDULER NAME : String

+Scheduler()
•••Scheduler(ws: Workspace)
••getScheduleO; Schedule
•HsValldO: boolean
-tscheduleO: Enumeration
'tsetValid(valld: boolean)
#_m3keSchedulerOf(dir: StaticSchedulingDirector)
#_schedule(): Enumeration

ilnvalidStateException;

throws ->1.

NotSchedulableException

-_unschedulableActors; Enumeration

••'NotSchedutabieException(det3ii: String)
+NotScheduiabieException(obj: Nameable, detail: String)
••'NotSchedulableException(obj1: Nameable, obj2 : Nameable. detail: String)
+NotScheduiableException(actors : Enumeration, detail; String)
+getUnschedulableActor5(): Enumeration
•t'hasUnschedulableActorsO: boolean

FIGURE 9.17. UML static structure diagram for the actor.sched package.
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appropriate scheduling algorithm.

The Schedule base class contains a list of schedule elements, each with a repetitions factor that
determines the number of times that element will be repeated. Since a schedule itself is a schedule ele
ment, schedules can be defined recursively. Another type of schedule element is a firing, which repre
sents a firing of a single actor. An iterator over all firings contained by a schedule is returned by the

Director

ProcessDiractor

#_ROtDone: boolean

-••ProcessDirectorO
-••ProcessDirectoriwoffcspace; Workspace)
-r-ProcessDiiectoricontainer: CompositeEntity, name: String)
#_3CtorBtocke<l(l; LinkedUst)
#_actorBlocked(r: ProcessReceiver)
-•-.actorHasStoppedO
#_3CtorUnBlocked(l: LinkedUst)
#_3CtorUnBlocked(r; ProcessReceiver)
#_addNewT)iread(thr; ProcessThread)
#_areActorsDeadIockedO: boolean
#_areA[tActorsStopped(); boolean
#_decreaseActiveCountO
#_getActtveActorsCount(): long
#_getBlockedActorsCount(): long
#_getProce5sThread(actor: Actor, director: ProcessDirector); ProcessThread
#_lncreaseActiveCount()
#_resolveDeadlock():boolean

CompositeProcessDirector

+CompositeProcessDirector()
-•CompositeProcessDirectortcantainer: CompositeProcessDirector,name: Siring)
-fCompositeProcessDirectortw; Workspace)
'K:reateBranchControtler(ports: iterator)
•••getinputControiierO: BranchControIler
'•'getOutputControilerO: BranchControIler
+stoplnputBranchControlIer{)
-••stopOutputBranchControlIerO
m.areActorsExternallyBlockedO: boolean
lll_controIlerBlocked(c; BranchControIler)
fl_controIlerUnblocked(c: BranchControIler)
#JslnputControIlerBlo^ed(): boolean
#JsOutputControllerBlocked(); boolean
"-tegisterBlockedRcvrsWith^cutiveO: boolean
#_resolvelnternalDeadlock(): boolean

Thread I PtoIemyThread •

!+run()

Runnable

i

Branch

+getConsReceiver(): ProcessReceiver
+getProdReceiver(): ProcessReceiver
-r-isAcUveO:boolean
••'registerReceiverBlocked(r: ProcessReceiver)
+registerReceiverUnbk>cked(r: ProcessReceiver)
+selActive(b: boolean)
•••transferTokenO

BranchControIler

+activateBranches()
+addBranches(p: lOPort)

deactivateBranchesO
-i^etBlockedReceiversO: UnkedList
-^etBranchUstO: UnkedUsl
'•^etParentO: CompositeActor
^hasBranchesQ: boolean
•••isActiveO: brmlean
-••isBlockedO: boolean
-•-setActiveO: boolean
#_branchBlocked(r: ProcessReceiver)
#_branchUnblocked(r: ProcessReceiver)

f (interface*
! Reeevler

(Interface*

ProcessReceiver

+get(b: Branch)
'HsConnectedToBoundaryO: boolean
+isConnectedToBoundarylnside(): boolean
'HsConnectedToBoundar^utsideO: boolean
-HsConsumerRecetverO: boolean
•HsInsideBoundaryO: boolean
•HsOutsideBoundaryO: boolean
-HsProducerReceivetf): boolean
•••isReadBlockedO: boolean
-i-isWriteBlockedO: boolean
+requestFinish()
+reset()
*put(l: Token,b: Branch)

threadFor

Notifythread

•••NotifyThread(lock: Object)
♦Noli^Threadgocks: LinkedUst)

ProcessThread

-•-ProcessThreadjactor: Actor, ifirector: ProcessDirector)
♦getActor(): Actor
«cancelStopThread()
-r-stopThreadO
•TAwapupO

FIGURE 9.18. UML static structure diagram for the actor.process package.
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firinglteratorQ methodon the schedule. In the iterator, the schedule is expandedrecursively, with each
firing repeated the appropriate number oftimes. ^

9.4.2 Process Domains

Many domains,such as CSP, PN and DDE, consist of independent processes that are communicat
ing in some way. These domains are collectively termed process domains. The actor.process package
provides the following base classes that can be used to implement process domains.

ProcessThread. In a process domain, each actor represents an independently executing process. In
Ptolemy II, this is achieved by creating a separate Java thread for each actor [75][48]. Each of these
threads is an instance ofptolemy.actor.ProcessThread.

The thread for each actor is started in the prefireQ method of the director. After starting, this thread
repeatedly calls the prefireQ, fireQ, and postfireQ methods of its associated actor. This sequence con
tinues until the actor's postfireQ method of returns false. The only way for an actor to terminate grace
fully in PN is by retuming from its fireQ method and then returning false in its postfireQ method. If an
actor finishes execution as above, then the thread calls the wrapupQ method of the actor. Once this
method returns, the thread informs the director about the termination of this actor and finishes its own
execution. The actor will not be fired again unless the director creates and starts a new thread for the
actor.

ProcessReceiver. In the process domains, receivers represent the communication and synchronization
points between different threads. To facilitate creating these domains, receivers in process domains
should implement the ProcessReceiver interface. This interface provides extended information about
status of the receiver, and the threads that may be interacting with the receiver.

ProcessDirector and CompositeProcessDirector. These classes are base classes for directors in the
process-based domains. It provides some basic infrastructure for creating and managing threads. Most
importantly, it provides a strategy pattern for handling deadlock between threads. Subclasses usually
override methods in this class to handle deadlock in a domain-dependent fashion. In order to detect
deadlocks, this base class maintains a count of how many actors in the system are executing and how
many are blocked for some reason. This method of detecting deadlock is suggested in [47]. When no
threads are able to run, the director calls the _resolveDeadlockQ method to attempt to resolve the dead
lock.

The initializeQmethod of the process director creates the receivers in the input ports of the actors ,
creates a thread for each actor and initializes these actors. It also initializes the count ofactive actors in

the model to the number of actors in the compositeactor. The prefireQ method starts up all the created
threads. This method returns true by default. The fireQ method of a process director does not actually
fire any contained actors. Instead, each actor is iterated by its associated process thread. The fire
method simply blocks the calling thread until deadlock of the process threads occurs. In this case, the
calling thread is unblockedand the fire method returns. The postfireQ method simply retums true if the
director was able to resolve the deadlock at the end of the fire method, or false otherwise. Retuming
tme implies that if some new data is provided to the composite actor it can resume execution. Retum
ing false implies that this composite actor will not be fired again. In that case, the executive director or
the manager will call the wrapupQ method of the top-level composite actor, which in tum calls the

1. Note that creating an iterator does not require expanding the data stmcture of the schedule
into a list first.
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wrapupO method of the director. This causes the director to terminate the execution of the composite
actor.

Introduction to Java Threads. The process domains, like the rest of Ptolemy II, are written entirely in
Java and take advantage of the features built into the language. In particular, they rely heavily on
threads and on monitors for controlling the interaction between threads. In any multi-threaded environ
ment, care has to be taken to ensure that the threads do not interact in unintended ways, and that the
model does not deadlock. Note that deadlock in this sense is a bug in the modeling environmentywhich
is different from the deadlock talked about before which may or may not be a bug in the model being
executed.

A monitor is a mechanism for ensuring mutual exclusion between threads. In particular if a thread
has a particular monitor, acquired in order to execute some code, then no other thread can simulta
neously have that monitor. If another thread tries to acquire that monitor, it stalls until the monitor
becomes available. A monitor is also called a locky and one is associated with every object in Java.

Code that is associated with a lock is defined by the synchronized keyword. This keyword can
either be in the signature of a method, in which case the entire method body is associated with that
lock, or it can be used in the body of a method using the syntax:

synchronized(object) {

.., //Part of code that requires exclusive lock on object

}

This causes the code inside the brackets to be associated with the lock belonging to the specified
object. In either case, when a thread tries to execute code controlled by a lock, it must either acquire
the lock or stall until the lock becomes available. If a thread stalls when it already has some locks,
those locks are not released, so any other threadswaiting on those locks cannotproceed. This can lead
to deadlock when all threads are stalled waiting to acquire some lock they need.

A thread can voluntarilyrelinquisha lockwhen stallingby calling waitQwhere object is the
object to relinquish and wait on. This causes the lock to become available to other threads. A thread
can also wake up any threads waiting on a lock associated with an object by calling notifyAllQ on the
object. Note that to issue a notifyAllQ on an object it is necessary to own the lock associated with that
object first. By careful use of these methods it is possible to ensure that threads only interact in
intended ways and that deadlock does not occur.

Approaches to lockingused in theprocess domains. One of the key coding patterns followed is to
wrap each waitQ call in a while loop that checks some flag. Only when the flag is set to false can the
thread proceed beyond that point. Thus the code will often look like

synchronized(object) {

while(flag) {
object.wait();

}

}

The advantage to this is that it is not necessary to worry about what other thread issued the notifyAllQ
on the lock; the thread can only continue when the notifyAllQ is issued and the flag has been set to
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false.

One place that contention between threads often occurs is when a thread tries to acquire another
lock only to issue a notifyAllQ on it. To reduce the contention, it often easiest if the notifyAllQ is
issued from a new thread which has no locks that could be held if it stalls. This is often used in the CSP

domain to wake up any threads waiting on receivers after a pause or when terminating the model. The
ptolemy. actor .process .NotifyThread class can be used for this purpose. This class takes
a list of objects in a linked list, or a single object, and issues a notifyAllQ on each of the objects from
within a new thread.

Synchronization Hierarchy. Previously we have discussed how model deadlock is resolved in process
domains. Separate from these notions is a different kind of deadlock that can occur in a modeling envi
ronment if the environment is not designed properly. This notion of deadlock can occur if a system is
not thread safe. Given the extensive use of Java threads throughout Ptolemy II, great care has been
taken to ensure thread safety; we want no bugs to exist that might lead to deadlock based on the struc
ture of the Ptolemy II modeling environment. Ptolemy II uses monitors to guarantee thread safety. A
monitor is a method for ensuring mutual exclusion between threads that both have access to a given
portion of code. To ensure mutual exclusion, threads must acquire a monitor (or lock) in order to
access a given portion of code. While a thread owns a lock, no other threads can access the correspond
ing code.

There are several objects that serve as locks in Ptolemy II. In the process domains, there are four
primary objects upon which locking occurs: Workspace, ProcessReceiver, ProcessDirector and Atomi-
cActor. The danger ofhaving multiple locks is that separate threads can acquire the locks in competing
orders and this can lead to deadlock. A simple illustration is shown in figure 9.19. Assume that both
lock A and lock B are necessary to perform a given set of operations and that both thread 1 and thread
2 want to perform the operations. If thread 1 acquires A and then attempts to acquire B while thread 2
does the reverse, then deadlock can occur.

There are several ways to avoid the above problem. One technique is to combine locks so that
large sets ofoperations become atomic. Unfortunately this approach is in direct conflict with the whole
purpose behind multi-threading. As larger and larger sets ofoperations utilize a single lock, the limit of
the corresponding concurrent program is a sequential program!

Another approach is to adhere to a hierarchy of locks. A hierarchy of locks is an agreed upon order
in which locks are acquired. In the above case, it may be enforced that lockv4 is always acquired before
lock B. A hierarchy of locks will guarantee thread safety [48].

The process domains have an imenforced hierarchy of locks. It is strongly suggested that users of
Ptolemy II process domains adhere to this suggested locking hierarchy. The hierarchy specifies that

Thread 1

O
o

Lock A

Lock B

Thread 2

FIGURE 9.19. Deadlock Due to Unordered Locking.
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locks be acquired in the following order:

Workspace > ProcessReceiver > FrocessDirector > AtomicActor

The way to apply this rule is to prevent synchronized code in any of the above objects from making a
call to code that is to the left of the object in question.

There is one further rule that implementors of process domains should be aware of. A thread
should give up all the read permissions on the workspace before calling the waitQ method on the
receiver object. This commonly happens in the getQ and putQ methods of process receivers, which
implement the synchronization between threads. We require this because of the explicit modeling of
mutual exclusion between the read and write activities on the workspace. If a thread holds read permis
sion on the workspace and suspends while a second thread requires a write access on the workspace
before performing the action that the first thread is waiting for, a deadlock results. Furthermore, a
thread must also regain those read accesses after returning from the call to the waitQ method. For this a
wait(Object object) method is provided in the class Workspacethat releases read accesses on the work
space, calls waitQ on the argument object, and regains read access on the workspace before retuming.
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10.1 Introduction

The data package provides data encapsulation, polymorphism, parameter handling, an expression
language, and a typesystem. Figure 10.1 showsthe key classes in the mainpackage (subpackages will
be discussed later).

10.2 Data Encapsulation

The Tokenclass and its derived classes encapsulateapplicationdata. The encapsulated data can be
transported via message passingbetween Ptolemy II objects. Alternatively, it can be used to parame
terize Ptolemy II objects. Encapsulating the data in such a way provides a standard interface so that
suchdatacanbe handled uniformly regardless of its detailed structure. Suchencapsulation allows for a
great degree of extensibility, permitting developers to extend the library of data types that Ptolemy II
can handle. It also permits a user interface to interact with application data without detailed prior
knowledge of the structure of the data.

Tokens in Ptolemy II, except ObjectToken, are immutable. This means that their value cannot be
changedafter the instanceofTokenis constructed. The value ofa token must therefore be specifiedas
a constructorargument, and there must be no other mechanismfor setting the value. If the value must
be changed, a new instance of Token must be constructed.

There are several reasons for making tokens immutable.

• First, when a token is to be sent to several receivers, we want to be sure that all receivers get the
same data. Each receiver is sent a reference to the same token. If the Token were not immutable.
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Numerical

Token

♦TokenO

'•'addfrightArg: Token): Token
saddReversefleftArg: Token): Token
♦convertftoken : Tokent: Token

'•'divldefdivlsor: Token); Token
+divldeReverse(divtd8nd: Token); Token
+getType(): Type
'•'lsCloseTo(token: Token): BooleanToken
+isCloseTo{token: Token, epsiion; double): BooleanToken
^lsEquatTo(token: Token): BooleanToken
'•-modukKrlghtArg: Token); Token
-r-moduloReversefleftArg; Token): Token
smuItlplyfrlghtFaetor: Token): Token
+multiplyReverse(leftFactor: Token): Token
+one(): Token
+subtraet(rightArg: Token): Token
+subtractReverse(leftArg: Token): Token
♦zeroO: Token

O

SealarToken

#_unitCategoryExponents: intH
+Sca!arToken()
'•-absoluteO: SealarToken
'••compiexValueO: Complex
'fdoubleValueO: double
+fixV3lue(): RxPoint
'•'intValueO: int
'•'inUnitsOffunils: SealarToken): SealarToken
'•'IsLessTbanftoken: SealarToken): BooleanToken
-•-longValueO: long
'•'setUnitCategoryfindex; int)
♦unitStringO: String
#_addCategoryExponents{tcken: SealarToken); intfl
'•'_areUnitsEqual(scalarToken: SealarToken); boolean
ff_copyOfCategoryExponents(): IntQ
ff_isUnitless(); b<)olean
ff_subtractCatego«yExponenls(token: SealarToken): intQ

n

•.fields: Map

Data Package

ArrayToken

•.value: Tokenfl
elementType: Type

♦ArrayTokenfvaluo: Tokenfl)
♦ArrayTokenftype: Type)
♦AtTayToken(init: String)
sarrayValueO: Tokenfl
>getElement(index: int); Token
♦lengthQ: Int

RecordToken

•••RecordTokenflabels: Strlngfl, values; Tokenfl)
+ReeordToken(lnit: String)
♦getflabel; String): Token
•r-labelSetQ: Set

StringToken BooleanToken

-.value: String
•.toStrIng: String

•fFALSE: BooleanToken

•i-TRUE: BooleanToken

-.value: boolean
•••BooleanTokenO
-••BooleanTokenlb: boolean)
•••BooleanTokenfinit: String)
-••booleanValuef); boolean
♦notO: BooleanToken

ObjectToken

•.value: Object
■♦■SttlngTokenO

•••StringTokenCvalue: String)
•(•StrlngValueQ: String

•••ObjectTokenO
'•'ObjectTokenfvalue: Object)
•i-getValueO: Object

.value: FIxPoint

•••FixTokenfvalue : double, bits: int. IntBlts ; Int)
•••FixTokenfvalue; double, precision: Precision)
sFixTokenfvalue: FixPoint)
•»FixToken{init: String)
sconvertToDoubleO: double
♦printQ

TT

UnslgnedByteToken

-.value: long

'•'UnsignedBytaTokenO
•••UnslgnedByteTokenfvalue: byte)
•••UnslgnedByteTokenfvalue: int)
'••UnsignedByteTokenflnit: String)
♦byteValueO: byte
♦unsignedCwvertfvalue : byte): int

ComplexToken LongToken

•.value: Complex -.value: long
•••ComplexTokenO
•i-Complextokenfvalue: Complex)

♦LongTokenO

'••LongTokenfvalue: long)
♦LongTokenflnit: String)

DoubleToken

.value; double

•••OoubteTokenO
-•'OoubleTokenlvalue: double)
•'•DoubleTokenfinit: String)

.value: Int

•••IntTokenO
•••IntTokenfvalue: int)
•••IntTokenfinit; String)

MatrixToken

#PQ CQPY;lnt
ffPO NOT COPY:int

+eomplexMatrlxO; Complexflfl
•(•doubleMatrixfl: doubleflfl
•••getColumnCountO: int
•••getElementAsTokenfrow: int, col: int): Token

getRowCountO: int
•••intMatrixO: intflfl
•••longMatrixf): longQQ
•HxteRightO: Token
•*-toArray(): ArrayToken

IntMatrixTokon LongMatrixToken

BooleanMatrixToken

-.columnCount: int
-.rowCount: int
-.value: booleanflfl

'•'Boolean MatrixTokenfl
'•BooleanMatrixTokenjvalue: booteanflfl)
'•'BooleanMatrixTokenjlnit: String)
'•booleanMatrixO; booteanflfl
'•gelElementAtfrow: int, column: int): boolean

FixMatrixToken

.columnCount; Int

.precision: Precision

.rowCount: int

.value: FixPoinlflfl

'•'FixMatrixTokenO
'•'FIxMatrixTokenfvalue: FixPoinlflfl)
'•'FIxMatrixTokenfinit:String)
'•'getElementAtfrow: int, column: Int): FixPoint
♦fixMatrixQ: FlxPointflfl

-.columnCount: int
-.rowCount: int
-.value: intflfl

'UntMatrixTokenO
'•'IntMatrixTokenfvalue: intflfl)
••IntMatrlxTokenfvalue: Intfl, copy: int)
'•'IntMatrixTokenfvalue; intfl,rows : int, columns: int)
'••IntMatrixTokenfinit: String)
'••getElementAtfrow: int, col: int): int

DoubleMatrixToken

.columnCount: int

.rowCount: Int

.value: doubleflfl

••DoubleMatrixTokenO
-•DoubleMatrixTokenjvalue: doubleflfl)
••DoubleMatrixTokenlvalue: doubleflfl, copy: int)
-•DoubleMatrixTokenjinit: String)
■♦getElementAtfrow: int, column: int): double

-.columnCount: int
-.rowCount: int
-.value: longflfl
'•'LongMatrixTokenO
'•'LongMatrlxTokenfvalue; longflfl)
'•'LongMatrixTokenfinit: String)

LongMatrixTokefvalue: longflfl)
'•getBementAtfrow: int, col: int): long

ComplexMatrixToken

-.columnCount; Int
-.rowCount; int
-.value: Complexflfl

'•ComplexMatrixfl
-•ComplexMatrlxTokenjvalue; Complexflfl)
-•ComplexMatrixTokenivalue: Complexflfl, copy: Int)
••ComplexMatrixTokenflnIt: String)
'•getElementAtfrow; int, column: int): Complex
fl.getlntemalC^plexMatrlxO: Complexflfl

FIGURE 10.1. Static Structure Diagram (Class Diagram) for the classes in the data package.
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then it would be necessary to clone the token for all receivers after the first one.

• Second, we use tokens to parameterize objects, and parameters have mutual dependencies. That is,
the value ofa parameter may depend on the value of other parameters. The value of a parameter is
represented by an instance of Token. If that token were allowed to change value without notifying
the parameter, then the parameter would not be able to notify other parameters that depend on its
value. Thus, a mutable token would have to implement a publish-and-subscribe mechanism so that
parameters could subscribe and thus be notified ofany changes. By making tokens immutable, we
greatly simplify the design.

• Finally, having our Tokens immutable makes them similar in concept to the data wrappers in Java,
like Double, Integer, etc., which are also immutable.

An ObjectTokencontains a reference to an arbitrary Java object created by the user. Since the user
may modify the object after the token is constructed, ObjectToken is an exception to immutability.
Moreover, the getValueQ method retums a reference to the object. That reference can be used to mod
ify the object. Although ObjectTokencould clone the object in the constructor and retum another clone
in getValueQ, this would require the object to be cloneable,which severely limits the use of the Object-
Token. In addition, even if the object is cloneable, since the default implementation of cloneQ only
makes a shallow copy, it is still not enough to enforce immutability. In addition, cloning a large object
could be expensive. For these reasons, the ObjectTokendoes not enforce immutability,but rather relies
on the cooperationfrom the user. Violating this conventioncould lead to unintendednon-determinism.

For matrix tokens, immutability requires the containedmatrix (Java array) to be copied when the
token is constructed, and when the matrix is retumed in response to queries such as intMatrixQ, dou-
bleMatrixQ, etc. This is because arrays are objects in Java. Since the cost of copying large matrices is
non-trivial, the user should not make more queries than necessary. The getElementAtQ methodshould
be used to read the contents of the matrix.

ArrayToken is a token that contains an array of tokens. All the element tokens must have the same
type, but that type can be any token type, including the type of the ArrayToken itself. That is, we can
have an array of arrays. ArrayToken is different from the MatrixTokens in that MatrixTokens contain
primitive data, such as int, double, while ArrayTokencontains Ptolemy Tokens. MatrixTokens are very
efficient for storing two dimensional primitive data, whileArrayToken offersmore flexibility in type
specifications.

RecordToken contains a set of labeled values, like the structure in the C language. The values can
be arbitrary tokens,and they are not requiredto have thesametype. ArrayToken and RecordToken will
be discussed in more detail in the Type System chapter.

10.3 Polymorphism

10.3.1 Polymorphic Arithmetic Operators

One of the goals of the data package is to support polymorphic operations between tokens. For
this, the base Token class defines methods for the primitive arithmetic operations, which are addQ,
multiplyO, subtractQ, divideQ, moduloQ and equalsQ. Derived classes override these methods to pro
vide class specific operation where appropriate. The objectivehere is to be able to say, for example,

a.add(b)

where a and b are arbitrary tokens. If the operation a + b makes sense for the particular tokens, then
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the operation is carried out and a token of the appropriate type is returned. If the operation does not
make sense, then an exception is thrown. Consider the following example

IntToken a = new IntToken(5);

DoubleToken b = new DoubleToken(2.2);

StringToken c = new StringToken("hello");

then

a.add(b)

gives a new DoubleToken with value 7.2,
a.add(c)

gives a new StringToken with value "5Hello", and
a .modulo(c)

throws an exception. Thus in effect we have overloaded the operators +, -, *, /, %, and ==.
It is not always immediately obvious what is the correct implementation of an operation and what

the retum type should be. For example, the result of adding an integer token to a double-precision
floating-point token should probably be a double, not an integer. The mechanism for making such
decisions depends on a type hierarchy that is defined separately from the class hierarchy. This type
hierarchy is explained in detail below.

The token classes also implement the methods zeroQ and oneQ which retum the additive and mul
tiplicative identities respectively. These methods are overridden so that each token type returns a token
of its type with the appropriate value. For numerical matrix tokens, zeroQ returns a zero matrix whose
dimension is the same as the matrix of the token where this method is called; and oneQ retums the left
identity, i.e., it retums an identity matrix whose dimension is the same as the number of rows of the
matrix of the token. Another method oneRightQ is also provided in numerical matrix tokens, which
retums the right identity, i.e., the dimension is the same as the number of columns of the matrix of the
token.

Since data is transferred between entities using Tokens, it is straightforward to write polymorphic
actors that receive tokens on their inputs, perform one or more ofthe overloaded operations and output
the result. For example an add actor that looks like this:

might contain code like:

Token inputl, input2, output;
// read Tokens from the input channels into inputl and input2 variables
output = inputl.add(input2);
// send the output Token to the output channel.

We call such actors data polymorphic to contrast them from domain polymorphic actors, which are
actors that can operate in multiple domains. Ofcourse, an actor may be both data and domain polymor
phic.
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10.3.2 Lossless Type Conversion

For the above arithmetic operations, if the two tokens being operated on have different types, type
conversion is needed. In Ptolemy II, only conversions that do not lose information are implicitly per
formed. Lossy conversions must be explicitly done by the user, either through casting or by other
means. The lossless type conversion relation among different token types is modeled as a partially
ordered set called the type lattice^ shown in figure 10.2. In that diagram, type^f is greater than type B
if there is a path upwards from B \o A. Thus, ComplexMatrix is greater than Int. Type A is less than
type B if there is a path downwards from B \o A. Thus, Int is less than ComplexMatrix. Otherwise,
types A and B are incomparable. Complex and Long, for example, are incomparable.

In the type lattice, a type can be losslessly converted to any type greater than it. This hierarchy is
related to the inheritance hierarchy of the token classes in that a subclass is always less than its super
class in the type lattice. However, some adjacent types in the lattice are not related by inheritance.

This hierarchy is realized by the TypeLattice class in the data.type subpackage. Each node in the
lattice is an instance of the Type interface. The TypeLattice class provides methods to compare two
token types.

Two ofthe types. Numerical and Scalar^ are abstract. They cannot be instantiated. This is indicated

General

Matnx

Numerical

BooleanMatrix FixMatrix I LongMatrix ComplexMatrix

Boolean Scalar

Long

Int

UnsignedByte

IntMatnx

Double

UNKNOWN

FIGURE 10.2. The type lattice.
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in the type lattice by italics.

Typeconversionis done by the static method convertO in the token classes. This method converts
the argument into an instance of the class implementing this method. For example, DoubleToken.con-
vert(Token token)convertsthe specifiedtoken into an instanceof DoubleToken. The convertQ method
can convert any token immediately below it in the type hierarchy into an instance of its own class. If
the argument is higher in the type hierarchy,or is incomparablewith its own class, convertQthrows an
exception. If the argument to convertQis already an instance of its own class, it is returned without any
change.

The implementation of the addQ, subtractQ, multiplyQ, divideQ, moduloQ, and equalsQ methods
requires that the type of the argument and the implementing class be comparable in the type hierarchy.
If this condition is not met, these methods will throw an exception. If the type of the argument is lower
than the type ofthe implementingclass, then the argument is converted to the type of the implementing
class before the operation is carried out.

The implementation is more involved if the type of the argument is higher than the implementing
class, in which case, the conversion must be done in the other direction. Since the convert () method
only knows how to convert types lower in the type hierarchy up, the operation must take place in the
class of the argument. Furthermore, since many of the supported operations are not commutative, for
example, "Hello" + "world" is not the same as "world" + "Hello", and 3-2 is not the same as
2-3, the implementation of the arithmetic operations cannot simply call the same method on the class
of the argument. Instead, a separate set of methods must be used. These methods are addReverseQ,
subtractReverseQ, multiplyReverseQ, divideReverseQ, and moduloReverseQ. The equality check is
always commutative so no equalsReverseQ is needed. Under this setup, a.add(b) means a+b, and
a.addReverse(b) means b+a, where a and b are both tokens. If, for example, when a.add(b) is invoked
and the type of b is higher than a, the addQ method of a will automatically call b.addReverse(a) to
carry out the addition.

For scalar and matrix tokens, methods are also provided to convert the content of the token into
another numeric type. In ScalarToken, these methods are intValueQ, longValueQ, doubleValueQ, fix-
ValueQ, and complexValueQ. In MatrixToken, the methods are intMatrixQ, longMatrixQ, doubleMa-
trixQ, fixMatrixQ, and complexMatrixQ. The default implementation in these two base classes just
throw an exception. Derived classes override the methods if the corresponding conversion is lossless,
returning a new instance of the appropriate class. For example, IntToken overrides all the methods
defined in ScalarToken, but DoubleToken does not override intValueQ. A double cannot, in general, be
losslessly converted to an integer.

10.4 Variables and Parameters

In Ptolemy II, any instance of NamedObj can have attributes, which are instances of the Attribute
class. A variable is an attribute that contains a token. Its value can be specified by an expression that
can refer to other variables. A parameter is identical to a variable, but realized by instances of the
Parameter class, which is derived from Variable and adds no fimctionality. See figure 10.3 and figure .

The reason for having two classes with identical interfaces and functionality. Variable and Parame
ter, is that their intended uses are different. Parameters are meant to be visible to the end user ofa com
ponent, whereas variables are meant to operate behind the scenes, unseen. A GUI, for example, might
present parameters for editing, but not variables.
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Attribute

I «lnterface»
\ptolemy.kernGl.uW.ValueLJstenei\

|+vaIueChanged(settab!e: Sejtab!e)|

«Interface))

ptolemy.data.type. Typeable

\*getTyf)eO: Type
\+getTypeTerm(): InequalityTenn
i+isTypeAcceptable(}: boolean
\+setTypeAtLeast(lesser: Typeable)
\+setTypeAtLeast(typeTerm: Inequ^ityTerm)
\+setTypeAtMost(type: Type)
\+setTypeEquals(type: Type)
\+setTypeSameAs(equal: Typeable)
\+typeConstraintUstO: List

-5-

Variable

.currentExpression: String

.parser: PtParser

.token: Token

+VariableO
+Variable(workspace: Workspace)
•i-Variable(container: NamedObj, name ; String)
+Variable(conta!ner: NamedObj, name : String, token : Token)
+addToScope(variables: Enumeration)
+addToScope(var: Variable)
+getScope(): List
+getToken(): Token
+isKnown(): boolean
+isLazy(): boolean
+propagate()
+removeFromScope(variables: Enumeration)
+removeFromScope(var: Variable)
+reset()
+setLazy(iazy: boolean)
+setToken(token: Token)
+setUnknown(unknown: boolean)
+validate()
#_addScopeDependent(var: Variable)
#_addValueDependent(Variable: var)
#_isLegalInScope(var: Variable)
#_notifyValueListeners()

Parameter

+Parameter()
+Parameter(workspace: Workspace)
+Parameter(container: NamedObj, name: String)
+Parameter(container: NamedObj, name: String, token : Token)

FIGURE 10.3. Static structure diagram for the Variable and Parameter classes in the data.expr
package.
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«Interface)}

ptolemy.kerneLutlLSettable

i+EXPERT: Settable.Visibility

!+FULL: Settable.Visibilltv
!+N0NE : Settable.Visibilitv

|+addValueListener(l: ValueLlstener)
i+getExpression(): String
!+getVisibility(): Settable.Visibility
i+removeValueListener(l: ValueListener)
j-i-setExpression(expression: String)
••••setVisibility(visibility: Settable.Visibillty)
i+validate()

uses to parse PtParser

1..1 0..1

contained
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- classesSearched: List

+PtPafser()
+PtPafser(stream: inputStream)
+PtParser(tm: PtPaiserTokentonager)
+PtParser(stream; Reader)
+PtParser(owner: Variable)
+arr3yCcnstruct()
+bltwiseAndO
r-bitwiseOrO
+disable_tracing{)
+element()
♦enable.tradngO

+funclf()
+functicn{)
+generateParseException(): ParseExceptlon
+generateParseTree{expression: String): ASTPtRcotNode
+generateP3rseTree(st(ingln; String, scope; NamedList); ASTPtRootNode
+generateParseTree(stringin: String, scope; PatserScope): ASTPtRootNode
+getNextToken(): Token
♦oetReolsteredClassesfi:List

+getScopeO: NamedUst
+gelToken(index: int): Token
+getUndefinedUst(expresslon: String): Linkedlist
+loglC3tAnd()
+logic3iEquais{)
+logicaIOr()
+matrixConstruct()
-••piimaiyElementO
r-recordConstructO
♦reoisterConstantfname: String, value: Obiectt

reoisterFunctiorrCiassfnewaassName: Strinoi

'•'Relnit(stfeam: InputStream)
+Relnit(tm; PtParserTokenManager)
+Reinit(stream: Reader)
+relaiional()
+start(): ASTPtRootNode
+sum()
+term()
♦unaryQ

1..1

Generated from RParserjit
using JJTree and JavaCC

ASTPtRootNode

ff.cblldren: ArrayList
ff.dilldTokens: TokenO
#Jd: Int
#_isConstant; boolean
ffJexicaiTokens: List
#_parent: Node
#_parser: PtParser
#_ptToken: ptolemy.data.Token

Ttie root node is the root of the parse
[tree, and isalso the base class for all
other node types.

Registered
Classes

UtllityFunctions

FixPointFunctions

ParseTreeEvaluator

CachedMethod

(interface*

Node

ParserScope

ExplicltScope

*mMChlld(child: Node, index: Int)
*^lClose()
*StGetCmd(index: int): Node
*^tGetNumChildrBn(): int
*MGetParentO: Node
*^tOpenO
*^tSetParent(parent: Node)

Data Package

Generated by
JavaCC

♦ASTRRootNodefp:RParser, i: int)
♦ASTPtRootNodep: int)
>dispiayParseTree(prefix: String)
r-evaluateParseTreeO: ptolemy.data.Token
ff_resolveNode(): ptolemy.data.Token

Constants CorrcreteMatrlxToken CencreteScalaiToken

/\

ASTPtUnaryNode ASTRSumNode ASTRLogicaiNode ASTRBItwiseNode ASTRFunctionatlfNode ASTPtProductNode ASTPtRelatlonalNode

ASTPtArrayConstructNode

ASTPtRecordConstructNode

;

ASTPtMatrixConstnictNode ASTPtMethodCallNode ASTPtFunctlonNode

ff_nRows: int
#_nCoIumns; int

ff.methodName: Siring ff_funcName: String
if.isArrayRef; twolean

FIGURE 10.4. Static structure diagram for the parser classes in the data.expr package
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10.4.1 Values

The value of a variable can be specified by a token passed to a constructor, a token set using the
setTokenQ method, or an expression set using the setExpressionQ method.

When the value of a variable is set by setExpressionQ, the expression is not actually evaluated
until you call getTokenQ or getXypeQ. This is important, because it implies that a set of interrelated
expressions can be specified in any order. Consider for example the sequence:

Variable v3 = new Variable(container,"v3");

Variable v2 = new Variable(container,"v2");

Variable vl = new Variable(container,"vl");
v3.setExpression("vl + v2");

v2.setExpression("1.0");
vl.setExpression("2.0");
v3.getToken();

Notice that the expression for v3 cannot be evaluated when it is set because v2 and vl do not yet have
values. But there is no problem because the expression is not evaluated until getTokenQ is called.
Obviously, an expression can only reference variables that are added to the scope of this variable
before the expression is evaluated (i.e., before getTokenQ is called).Otherwise, getTokenQ will throw
an exception. By default, all variables contained by the same container or any container above in the
hierarchy are in the scope of this variable. Thus, in the above, all three variables are in each other's
scope because they belong to the same container. This is why the expression "vl + v2" can be eval
uated. If two containers above in the hierarchy contain the same variable, then the one lowest in the
hierarchy will shadow the one that is higher.That is, the lower one will be used to evaluate the expres
sion.

A variable can also be reset. If the variable was originally set from a token, then this token is
placed again in the variable, and the type of the variable is set to equal that of the token. If the variable
was originally given an expression, then this expression is placed again in the variable (but not evalu
ated), and the type is reset to null. The type will be determined when the expression is evaluated or
when type resolution is done.

10.4.2 Types

Ptolemy II, in contrast to Ptolemy Classic, does not have a plethora of type-specific parameter
classes. Instead, a parameter has a type that reflects the token it contains.Youcan constrain the allow
able types of a parameter or variable using the following mechanisms:

• You can require the variable to have a specific type. Use the setTypeEqualsQ method.

You can require the type to be at most some particular type in the type hierarchy (see the Type Sys
tem chapter to see what this means).

• You can constrain the type to be the same as that of some other object that implements the Type-
able interface.

You can constrain the type to be at least that of some other object that implements the Typeable
interface.

Except for the first type constraint, these are not checked by the Variable class. They must be checked
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by a type resolution algorithm, which is implemented in the graph package.

The type of the variable can be specified in a number of ways, all of which require the type to be
consistent with the specified constraints (or an exception will be thrown):

• It can be set directly by a call to setTypeEqualsQ. If this call occurs after the variable has a value,
then the specified type must be compatible with the value. Otherwise, an exception will be thrown.
Type resolution will not change the type set through setTypeEquals() unless the argument of that
call is null. If this method is not called, or called with a null argument, type resolution will resolve
the variable type according to all the type constraints. Note that when calling setTypeEqualsQwith
a non-null argument while the variable already contains a non-null token, the argument must be a
type no less than the type of the contained token. To set type of the variable lower than the type of
the currently contained token, setTokenQmust be called with a null argument before setType
EqualsQ.

• Setting the value of the variable to a non-null token constrains the variable type to be no less than
the type of the token. This constraint will be used in type resolution, together with other con
straints.

• The type is also constrained when an expression is evaluated. The variable type must be no less
than the type of the token the expression is evaluated to.

• If the variable does not yet have a value, then the type of a variable may be determinedby type res
olution. In this case, a set of type constraints is derived from the expression of the variable (which
presumably has not yet been evaluated, or the type would be already determined). Additional type
constraints can be added by calls to the setTypeAtLeastQand setTypeSameAsQmethods.

Subject to specified constraints, the type of a variable can be changed at any time. Some of the tjrpe
constraints, however, are not verified until type resolution is done. If type resolution is not done, then
these constraints are not enforced. Tjqje resolution is normally done by the Manager that executes a
model.

The type of the variable may change when setTokenQor setExpressionQ is called.
• If no expression, token, or type has been specified for the variable, then the type becomes that of

the current value being set.

• If the variable already has a type, and the value can be converted losslessly into a token of that
type, then the type is left unchanged.

• If the variable already has a type, and the value cannot be converted losslessly into a token of that
type, then the type is changed to that of the current value being set.

If the type of a variable is changed after having once been set, the container is notified of this by call
ing its attributeTypeChangedQ method. If the container does not allow type changes, it should throw
an exception in this method. If the value is changed after having once been set, then the container is
notified of this by calling its attributeChangedQ method. If the new value is unacceptable to the con
tainer, it should throw an exception. The old value will be restored.

The token retumed by getTokenQ is always of the type given by the getTypeQ method. This is not
necessarily the same as the type of the token that was inserted via setTokenQ. It might be a distinct
type if the contained token can be converted losslessly into one of the type given by getTypeQ. In rare
circumstances, you may need to directly access the contained token without any conversion occurring.
To do this, use getContainedTokenQ.
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10.4.3 Dependencies

Expressions set by setExpressionQ can reference any other variable that is within scope. By
default, the scope includes all variables contained by the same container or any container above it in
the hierarchy. In addition, any variable can be explicitly added to the scope of a variable by calling
addToScopeQ.

When an expression for one variable refers to another variable, then the value of the first variable
obviously depends on the value of the second. If the value of the second is modified, then it is impor
tant that the value of the first reflects the change. This dependency is automatically handled. When you
call getXokenO, the expression will be reevaluated if any ofthe referenced variables have changed val
ues since the last evaluation.

10.5 Expressions

Ptolemy II includes a simple but extensible expression language. This language permits operations
on tokens to be specified in a scripting fashion, without requiring compilation of Java code. The
expression language can be used to define parameters in terms of other parameters, for example. It can
also be used to provide end-users with actors that compute a user-specified expression that refers to
inputs and parameters of the actor. The expression language is described in chapter 3. A key issue, not
mentioned in chapter 3, is that most of the operators in the expression language are overloaded^ so
their implementation depends on the types being operated on. Operator overloading is achieved using
the methods in the Token classes. These methods are addQ, subtractQ, multiplyQ, divideQ, moduloQ,
and equalsQ.

The expression language is extensible. The basic mechanism for extension is object-oriented. The
reflection package in Java is used to recognize method invocations and user-defined constants. We also
expect the language to grow over time, so this description should be viewed as a snapshot of its capa
bilities.

10.5.1 Limitations

The expression language has a rich potential, and only some of this potential has been realized.
Here are some of the current limitations:

• The class ptolemy.data.util.UtilityFunctions containing the utility functions has not yet been fully
written.

• Functions in the math package need to be supported in much the same way that java.lang.Math is
supported.

• Method calls are currently only allowed on tokens in the ptolemy.data package.

• Statements are not supported. It is not clear that they ever will be, since currently the expression
language is strictly functional, and converting it to imperative semantics could drastically change

1. The Ptolemy II expression language uses operator overloading, unlike Java. Although we fully agree that the
designers of Java made a good decision in omitting operator overloading, our expression language is used in sit
uations where compactness of expressions is extremely important. Expressions often appear in crowded dialog
boxes in the user interface, so we cannot afford the luxury ofreplacing operators with method calls. It is more
compact to say "2*(PI + 2i)" rather than "2.multiply(PI.add(2i))," although both will work in the expression lan
guage.
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its flavor.

10.6 Fixed Point Data Type

Ptolemy II includes a preliminary fixed point data type. The FixPoint class in the math package
represents fixed point numbers. The FixToken class encapsulates fixed point data for exchange
between Ptolemy II actors. The precision of fixed point data is denoted in two different ways:

(m/n): The total precision of the output is m bits, with the integer part having n bits. The fractional
part thus has m-n bits.

(w.Ai): The total precision of the output isn + m bits, with the integer part having m bits, and the
fractional part having n bits.

10.6.1 FixPoint Implementation

We will now discuss how the FixPoint data type is implemented in Ptolemy II, and how it interacts
with the Token types and expression parser. The overall UML diagram showing classes involved in the
definition of the FixPoint data type is shown in Figure 10.5

10.6.2 FixPoint

The FixPoint type is written from scratch and it uses at it's core the Java package Biglnteger to
represent the finite precision value that is captured in a FixPoint. The advantage of using the Biglnte
ger package is that it makes this FixPoint implementation truly platform independent and furthermore,
it doesn't put any restrictions on the maximal number ofbits allowed to represent a value.

The FixPoint data type uses an innerclass to represent the Biglnteger. The innerclass is used to
keep track of errors as they may occur. These errors are that an overflow or rounding condition
occurred. The innerclass keeps the Biglnteger and error messages together. Besides the Biglnteger
package, the FixPoint class also relies on the BigDecimal package when converting values from Fix-
Points to doubles and vice versa.

The precision used in the FixPoint data type is represented by class Precision. This class does the
parsing and validation of the various specification styles we want to support. It stores a precision into
two separate integers. One number represents the number of integer bits, and the other number repre
sents the number of fractional bits.

A FixPoint is created by supplying a Biglnteger and a Precision. This seems to be an odd way of
creating FixPoints. That is because the preferred way to create a FixPoint is to use one of the static
quantizer functions in class Quantizer. By selecting either the round or the truncate method, a different
quantizer is chosen to convert a double into a FixPoint.

To change the precision of a FixPoint, you have to use the specific implementation of round and
truncate. If the change of precision can be accommodated, the FixPoint value isn't changed. If the
change cannot be accommodated, then precision is changed and an overflow or quantization error may
occur. The way the overflow error is handled is determined by a mode switch.

mode = 0, Saturate: The fixed point value is set, depending on its sign, equal to the Maximum or
Minimum value possible with the new given precision.
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ptoIemy.data.expr.FlxPolRtFuRct]ons

! !
iptoIemy.data.Token! ♦Hxfvalue: double. numberOfBits: int. InteoerBits: Intt: Token

•t-flxfvalue: Int. numberOfBlts: Int. InteowBlts : Inti: Token

♦fixfvalues : DotibleMatflxToken. numberOfBits : Int. intecefBits: Irrt^: FIxMatrixToken

♦Qiiantizefvalue:double. numberOffiits: int. InleoefBHs: intt: DouMeToken

•muaRtizefvalues : DoubleMatrixToken. rxjmbefOfBits: Int. iRteoefSits: intt : DoubleMatfixToken

Zi

ptoleRny.data.FlxMatrixToken

|ptolemy.data.ScalaiTokeR liptolemy.data.MatrixTokenj
•_columnCount: Int
.precision: Precision
.rowCount: Int
-.value: FixPointPD

i ptoieniy.data.expr.PtParser |

[♦^iei^ritina^sfnw^

ptolemy.data.FixToken

.value: FixPoint
'•'FixToken(vaIue: FixPoint)
+PixToken(vaIue; double, precision: String)
«^FixTokert(v3lue;double, numberOSlts: Int, integerBits: Int)
'•'FixTokenOnit: String)
-r-convertTottoubteO; double
♦nxVaiueQ:FixPonIt

ptolemy.fnath.FlxPoint

♦NOOVERFLOW:Error

♦OVERFLOW:Error

♦ROUNDING:Error

-.precision: Precision
-.value: BIginteger

FixPoint(precislon: Precision, value: Biglnteger)
♦abs{): FixPoint

add(arg: RxPoInt): FixPoint
♦bigDecim8iVaiue(): BigOedmal
♦divide(atg; FixPoint): FixPoint
♦doubieVaiueO: double
♦equ3is(arg:RxPoInt): boolean
♦getError{):Error
♦getPrecislonO: Precision
♦muitipiy(arg; FixPoint): FixPoint
♦subtract(arg : RxPoInt): FixPoint
♦toBitStringO: String

irr
1..1

ptoleRty.matti.FlxPoinLRxValue

♦fixvalue: BIginteger
-.error: Error

♦FixVatueO
♦FixValue(value:BIginteger, error: En-or)
♦abs(): RxValue
♦addjvalue:FixValue); RxValue
♦getErrorO: Error
♦getFractionBits(precision: Precision): FixValue
♦getlRtegefBlts(precision; Precision): FixValue
♦multlply(vatue: FixValue): FixValue
♦negate(): FixValue
sc3ieLeft(delta: int); FixValue
♦scaleRlght(delta: int); FikValue
♦setEnor(eiTOf: Error)

••-FixMatrixTokenO
+FixMatrixToketv(vaJue: FixPointnO)
•••FixMatrixTokenllnit: String)
ffixMatr1x(); FixPointQD
•i-getEiementAt(row: Int. column: int): FixPoint

NxM

ptoIemy.math.Preclslon
1..1

-.length: Int
-.integerBits: int
-.fraction: int

♦Precision(precision: String)
♦Precision(length:Int. integerBits: Int)
♦findMaximumO: BlgDedmal
♦findMlnimumO;BIgOeclmai
♦getFractlonBitLengthO: Int
♦getlnegerBitLengthO: int
♦getNumtterOfBilsO: Int
♦matchThePolnt(precislonA: Precision, PredsionB; Precision); Precision

ptoieiny.math.Quantlzer

♦OVERFLOW TO ZERO : int

♦SATURATE; Inl
♦roundlvalue: BloDecimai. precision : Predsiont: FixPoint

♦roundlvafue:double, precision : Precision!: RxPoInt

♦roundlvalue:RxPoinl. newofecislon: Precision, mode : InB : RxPoInt

♦roundPownlvalue:BloDecimai. precision: Predslont: FixPoint

♦roundDownlvalue: double, ofecislon : Precisiont: FixPoint

♦roundDownlvalue: FixPoint. newPrecislon: ofedslonl: FixPoint
♦roundNearestEventvalue: BloDecimai. precision : Precision!: FixPoint

♦roundNearestEvenfvalue:double, precision: Predslont: FixPoint
♦roundNearestEvenfvalue:RxPoInt. new/Precision: Precision, mode: intt: FixPoint
♦roundloZerolvalue:BioDedmai. precision: Predsiont: FixPoint
♦roundToZerolvalue:double, ofedsion : Predslont: FixPoint

♦roundToZetolvaiue:FixPoint. newPrecislon : Precision, mode: Intt: FixPoint
♦roundUolvalue:double, precision : Precision^: FixPoint

♦roundUofvalue:BioDedmai. precision: Precision^: FixPoint

;namai^B{^lgSJ.FiaPoinl. newofecislon: : RxPointUses for (Svislon

1..1

yava.math.BigIntegeii

«Uses»

IJav&math.BlgDeclmali

ptoiemy.math.FixPolnLEnror

-.description: String
♦Error(descrlptlon: String)
♦getDescrlptionQ: String

FIGURE 10.5. Organization of the FixPoint Data Type.
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mode = 1, Zero Saturate: The fixed point value is set equal to zero.

10.6.3 FixToken

A FixToken is realized by encapsulating a value of the FixPoint type and by implementing all
methods of super class Token using the methods available for FixPoint. Because FixToken is derived
from Token and ScalarToken, it can consequently be used in every data type polymorphic actors. In a
similar way data type FixMatrixToken is created. It encapsulates an two-dimensional array of fixed
point values.

The FixToken class implements all the methods of Token and ScalarToken. However, one specific
methods has been added: convertToDouble. The convertToDouble method converts a fixed point value
into a double representation. The getDouble method defined by Token cannot be used since the con
version from a FixPoint to a double is not lossless and an exception will be thrown when tried.

For details about how to represent Fixed Point numbers in a model, see "Fixed Point Numbers" on
page 3-8
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10.7 Unit System

The unit system in Ptolemy 11 is based on the paper "Automatic Units Tracking" by Christopher
Rettig [83]. The basic idea is to define a suite ofparameters to represent the various measurement units
of a unit system, such as "meter," "cm," "feet," "miles," "seconds," "hours," and "days." In each unit
category ("length" or "time" for example), there is a base unit with respect to which all the others are
specified. If the base unit of length is meters, then "cm" (centimeter) will be specified as
"0.01 * meters". Derived units are specified by just multiplying and dividing base units. For example
"newton" is specified as "meter * kilogram / second'^2".

The unit parameters contain tokens just like other parameters. To track units, the category informa
tion is stored together with measurement data in scalar tokens, and is used when arithmetic operations,
such as add() and multiply(), are performed. The subclasses of ScalarToken, including IntToken and
DoubleToken, override these methods to perform unit checking.

The ptolemy.data.unit package provides three classes (BaseUnit, UnitCategory, and UnitSystem)
that allow a unit system to be specified using MoML, as illustrated in figure 10.6. When such a unit
system is added to the model shown in figure 10.7, the units can be used in expressions to specify the
value of actor parameters. The displayed result of executing the model is " 10.0 * m / s".

Several basic unit systems are provided with Ptolemy II. In the Vergil graph editor, they appear in
the utilities library. A unit system added to a composite actor can only be used inside that actor. The

<property name="Sample" class="ptolemy.data.unit.UnitSystem">
<property name="m" class="ptolemy.data.unit.BaseUnit" value="1.0">

<property name="Length" class="ptolemy.data.unit.UnitCategory"/>
</property>

<property name="cm" class="ptolemy.data.expr.Parameter" value="0.01*m"/>
<property name="s" class="ptolemy.data.unit.BaseUnit" value="1.0">

<property name="Time" class="ptolemy.data.unit.UnitCategory"/>
</property>

<property name="ms" class="ptolemy.data.expr.Parameter" value="0.001*s"/>
</property>

FIGURE 10.6. A sample unit system.

Sample SDF Director

AddSubtract Scale

Consl2
Display

FIGURE 10.7. A model that uses the sample unit system.
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user can customize a unit system by adding units, or create new unit systems based on those provided.
The current implementation ofunit systems has the following limitations:

• Only scalar values can have units.

• The result of calling a function on a value with units is unit-less.
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Appendix D: Expression Evaluation

The evaluation of an expression is done in two steps. First the expression is parsed to create an
abstract syntax tree (AST) for the expression. Then the AST is evaluated to obtain the token to be
placed in the parameter. In this appendix, "token" refers to instances of the Ptolemy II token classes, as
opposed to lexical tokens generated when an expression is parsed.

D.I Generating the parse tree

In Ptolemy II the expression parser, called PtParser, is generated using JavaCC and JJTree. Jav-
aCC is a compiler-compiler that takes as input a file containing both the definitions of the lexical
tokens that the parser matches and the production rules used for generating the parse tree for an expres
sion. The production rules are specified in Backus normal form (BNF). JJTree is a preprocessor for
JavaCC that enables it to create an AST. The parser definition is stored in the file PtParser.jjt, and the
generated file is PtParser.java. Thus the procedure is

PtParser.jjt ^ PtParser.jj ✓ PtParser.java
JJTree ) • f JavaCC

Note that JavaCC generates top-down parsers, or LL(k) in parser terminology. This is different
from yacc (or bison) which generatesbottom-upparsers, or more formally LALR(l). The JavaCC file
also differs from yacc in that it contains both the lexical analyzer and the grammar rules in the same
file.

The input expression string is first converted into lexical tokens, which the parser then tries to
match using the production rules for the grammar. Each time the parser matches a production rule it
creates a nodeobjectand placesit in the abstract syntax tree. The type of node object created depends
on the production rule used to match that part of the expression. For example, when the parsercomes
upon a multiplication in the expression,it creates an ASTPtProductNode.

The parser takes as input a string, and optionally a NamedList of parameters to which the input
expression can refer. ThatNamedList is the symbol table. If the parse is successful, it returns the root
node of the abstract syntax tree (AST) for the given string. Each node object can contain a token,
which represents both the type and value information for that node. The type of the token stored in a
node,e.g. DoubleToken, IntToken etc., represents the typeof the node.Thedatavaluecontained by the
token is the value information for the node. In the AST as it is returned from PtParser, the token types
and values are only resolved for the leaf nodes of the tree.

One of the key properties of the expression language is the ability to refer to otherparameters by
name. Since an expression that refers to other parameters may need to be evaluated several times
(when the referredparameter changes), it is important that the parse tree does not need to be recreated
every time. When an identifier is parsed, the parser first checks whether it refers to a parameterwithin
the currentscope. If it does it createsa ASTPtLeafNode with a reference to that parameter. Note that a
leaf node can have a parameter or a token. If it has a parameter then when the token to be stored in this
node is evaluated, it is set to the token contained by the parameter. Thus the AST tree does not need to
be recreated when a referenced parameter changes as upon evaluation it will just get the new token
stored in the referencedparameter. If the parser was created by a parameter, the parameter passes in a
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reference to itself in the constructor. Then upon parsing a reference to another parameter, the parser
takes care of registering the parameter that created it as a listener with the referred parameter. This is
how dependencies between parameters get registered. There is also a mechanism built into parameters
to detect dependency loops.

If the identifier does not refer to a parameter, the parser then checks if it refers to a constant regis
tered with the parser. If it does it creates a node with the token associated with the identifier. If the
identifier is neither a reference to a parameter or a constant, an exception is thrown.

D.2 Evaluating the parse tree

The AST can be evaluated by invoking the method evaluateParseTreeQ on the root node. The AST
is evaluated in a bottom up manner as each node can only determine its type after the types of all its
children have been resolved. When the type of the token stored in the root node has been resolved, this
token is retumed as the result of evaluating the parse tree.

As an example consider the input string 2 + 3.5. The parse tree retumed from the parser will look
like this:

Step 1: (^root^

Csum)

Q^^ntToken(2) Q^DoubleToken(3.5)

which will then get evaluated to this:

Step 2: C^ll) DoubleToken(5.5)

(sum)
DoubleToken(5.5)

^2ii^ntToken(2) ^-^^^^DoubleToken(3.5)

4

Tree evaluation

4

Tree evaluation

and DoubleToken(5.5) will be retumed as the result.

As seen in the aboveexample, when evaluateParseTreeQ is invoked on the root node, the type and
value of the tokens stored at each node in the tree is resolved, and finally the token stored in the root
node is retumed. If an error occurs during either the creation of the parse tree or the evaluation of the
parse tree, an IllegalArgumentException is thrown with a error message about where the error
occurred.

If a node has more than two children, type resolution is done pairwise from the left. Thus "2 + 3 +
"hello"" resolves to Shello. This is the same approach that Java follows.

Each time the parser encounters a function call, it creates an ASTPtFunctionNode. When this node
is being evaluated, it uses reflection to look for that function in the list of classes registered with the
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parser for that purpose. The classes automatically searched are java.lang.Math and
ptolemy.data.expr.UtilityFunctions. To register another class to be searched when a function call is
parsed, call registerFunctionClassQ on the parser with the full name of the class to be added to the
function search path.

When a parameter has been informed that another parameter it references changed, the parameter
re-evaluates the parse tree for the expression to obtain the new value when getTokenQ is called on the
parameter. It is not necessary to parse the expression again as the relevant leaf node stores a reference
to the referenced parameter, not the token contained in that parameter. Thus at any use, the value of a
parameter is up to date.

D.2.1 Node types

There are currently fourteen node classes used in creating the syntax tree. For some ofthese nodes
the types of their children are fairly restricted and so type and value resolution is done in the node. For
others, the operators that they represent are overloaded, in which case methods in the token classes are
called to resolve the node type and value (i.e. the containedtoken). By type resolutionwe are referring
to the type of the token to be stored in the node.

ASTPtBitwiseNode. This is created when a bitwise operation (&, |, happens. Type resolutionoccurs
in the node. The & and | operators are only valid between two booleans, or two integer types. The ^
operator is only valid between two integer types.

ASTPtLeqfNode. This represents the leaf nodes in the AST. The parser will alwaysplace either a token
of the appropriate type (e.g. IntToken if "2" is what is parsed) or a parameter ina leaf node. A parame
ter is placed so that the parse tree can be reevaluated without reparsing whenever the value of the
parameter changes. No type resolution is necessary in this node.

ASTPtRootNode. Parent class of all the other nodes. As its name suggests, it is the root node of the
AST. It always has only one child, and its type and value is that of its child.

ASTPtFunctionNode. This is created when a function is called. Type resolution occurs in the node. It
usesreflection to call the appropriate function with the arguments supplied. It searches the classes reg
istered with the parser for the function. By default it only looks in java.lang.Math and
ptolemy.data.expr.UtilityFunctions.

ASTPtFunctionallJNode. This is createdwhen a functional if is parsed. Typeresolution occurs in the
node. For a functional if, the first child node must contain a BooleanToken, which is used to chose
which of the other two tokens of the child nodes to store at this node.

ASTPtMethodCallNode. This is created when a method call is parsed. Method calls are currently only
allowed on tokens in the ptolemy.data package. All of the arguments to the method, and the return
type, must be of type Token (or a subclass).

ASTPtProductNode. This is created when a *, / or % is parsed. Type resolution does not occur in the
node. It uses the multiplyO, divideQ and moduloQ methods in the token classes to resolve the nodes
type.

ASTPtSumNode. This is created when a + or - is parsed. Type resolution does not occur in the node. It
uses the addQ and subtractQ methods in the token classes to resolve the nodes type.

ASTPtLogicalNode. This is created when a && or || is parsed. Type resolution occurs in the node. All
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children nodes must have tokens of type BooleanToken. The resolved type of the node is also Boolean-
Token.

ASTPtRelationalNode. This is created when one of the relational operators(!=, =, >, >=, <, <=) is
parsed. The resolved type of the token of this node is BooleanToken. The and "!=" operators are
overloaded via the equalsQ method in the token classes. The other operators are only valid on Scalar-
Tokens. Currently the numbers are converted to doubles and compared, this needs to be adjusted to
take account ofLongs.

ASTPtUnaryNode. This is created when a unary negation operator(!, -) is parsed. Type resolution
occurs in the node, with the resulting type being the same as the token in the only child of the node.

ASTPtArrayConstnictNode. This is created when an array construction sub-expression is parsed.

ASTPtMatrixConstructNode. This is created when a matrix construction sub-expression is parsed.

ASTPtRecordConstructNode. This is created when a record construct sub-expression is parsed.

D.2.2 Extensibility

The Ptolemy II expression language has been designed to be extensible. The main mechanisms for
extending the functionality of the parser is the ability to register new constants with it and new classes
containing functions that can be called. However it is also possible to add and invoke methods on
tokens, or to even add new rules to the grammar, although both of these options should only be consid
ered in rare situations.

To add a new constant that the parser will recognize, invoke the method registerConstant(String
name. Object value) on the parser. This is a static method so whatever constant you add will be visible
to all instances of PtParser in the Java virtual machine. The method works by converting, if possible,
whatever data the object has to a token and storing it in a hashtable indexed by name. By default, only
the constants in java.lang.Math are registered.

To add a new Class to the classes searched for a a function call, invoke the method register-
Class(String name) on the parser. This is also a static method so whatever class you add will be
searched by all instances of PtParser in the JVM. The name given must be the fully qualified name of
the class to be added, for example "java.lang.Math". The method works by creating and storing the
Class object corresponding to the given string. If the class does not exist an exception is thrown. When
a function call is parsed, an ASTPtFunctionNode is created. Then when the parse tree is being evalu
ated, the node obtains a list of the classes it should search for the function and, using reflection,
searches the classes until it either finds the desired function or there are no more classes to search. The

classes are searched in the same order as they were registered with the parser, so it is better to register
those classes that are used frequently first. By default, only the classes java.Lang.Math and
ptolemy.data.expr.UtilityFunctions are searched.
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ll.I Introduction

The Ptolemy II kernel provides extensive infrastructure for creating and manipulating clustered
graphs of a particular flavor. Mathematical graphs, however, are simpler structures that consist of
nodes and edges,without hierarchy. Edges linkpairsof nodes, and therefore aremuchsimpler than the
relations of the Ptolemy II kernel. Moreover, in mathematical graphs, no distinction is made between
multiple edges that may be adjacent to a node, so the ports of the Ptolemy II kernel are not needed. A
large number of algorithms have been developed that operate on mathematical graphs, and many of
theseproveextremely usefulin support of scheduling, type resolution, andotheroperations in Ptolemy
II. Thus, we havecreated thegraph package, which provides efficient datastructures for mathematical
graphs, and collects algorithms for operating on them. At this time, the collection of algorithms is
nowhere near as complete as in somewidely used packages, such as LEDA [65].But this packagewill
serve as a repository for a growing suite of algorithms.

The graphpackage provides basic infrastructure for both undirected and directed graphs. Acyclic
directed graphs, which can be used to model complete partial orders (CPOs) and lattices, are also sup
ported with more specialized algorithms.

The graphs constructed using this package are designed to provide broad support for algorithms
that operateon generic,mathematical graphs. A typical use of this package is to construct a graph that
represents the topology of a CompositeEntity, run a graph algorithm, and extract useful information
from the result. For example, a graph might be constructed that represents data precedences, and a
topological sort might be used to generate a schedule. In this kind of application, the hierarchy of the
original clustered graph is flattened, so nodes in the graph represent only opaque entities.
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11.2 Classes and Interfaces in the Graph Package

Figure 11.1 shows the class diagram of the graph package. The classes Node, Edge, Graph, Direct-
edOraph and DirectedAcyclicGraph support graph construction and provide graph algorithms. Cur
rently, only a limited set of algorithms, such as topological sort and transitive closure, are
implemented; other algorithms will be added as needed. The CPO interface defines the basic CPO
operations, and the class DirectedAcyclicGraph implements this interface. An instance of DirectedA
cyclicGraph is also a finite CPO where all the elements and order relations are explicitly specified.
Defining the CPO operations in an interface allows future expansion to support infinite CPOs and
finite CPOs where the elements are not explicitly enumerated. The InequalityTerm interface and the
Inequality class model inequality constraints over the CPO. The details of the constraints will be dis
cussed later. The InequalitySolver class provides an algorithm to solve a set ofconstraints. This is used
by the Ptolemy II type system, but other uses may arise.

The implementation of the above classes is not synchronized. Ifmultiple threads access a graph or
a set of constraints concurrently, extemal synchronization will be needed.

11.2.1 Node

This simple class models a vertex for inclusion in undirected or directed graphs. More specifically,
all vertices in a graph are Node instances, and each node has an optional weight (an arbitrary object
that is associated with the node). We say that a node is unweighted if it does not have an assigned
weight. It is an error to attempt to access the weight of an unweighted node. Node weights must be
genuine (non-null) objects.

Nodes are immutable.

11.2.2 Edge

This class models a weighted or unweighted edge for a directed or undirected graph. The connec
tivity of edges is specified by source nodes and sink nodes. A directed edge is directedfrom its source
node to its sink node. For an undirected edge, the sourcenode is simply the first node that was speci
fied when the edge was created, and the sink node is the second node. This convention allows undi
rected edges to later be converted in a consistent manner to directed edges, if desired.

On creation of an edge, an arbitrary object can be associated with the edge as the weight of the
edge. Wesay that an edge is unweighted if it does not have an assignedweight. It is an error to attempt
to access the weight of an unweighted edge.

In support of multigraphs, self-loop edges (edges whose source and sink nodes are identical) are
allowed.

Edges are immutable: the sourcenode, sink node, and weight of an edge cannot be changed.

11.2.3 Graph

This class models a graph with optionally-weighted edges and nodes. Nodes and edges of a graph
are instances of Node and Edge, respectively. Thus, each node or edge may have a weight associated
with it. The nodes (edges) in a graph are always distinct, but their weights need not be.

Each node (edge) has a unique, integer label associated with it. These labels can be used, for exam
ple, to index arrays and matrixes whose rows/columns correspond to nodes (edges).
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FIGURE 11.1, Classes in the graph package. A selectedsubsetof class attributesand operations is shown.
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Both directed and undirected graphs can be implemented using this class. In directed graphs, the
order of nodes specified to the addEdge method is relevant, whereas in undirected graphs, the order is
unimportant. Support for both undirected and directed graphs follows from the combined support for
these in the underlying Node and Edge classes. The DirectedGraph class provides more thorough sup
port for directed graphs.

The same node can exist in multiple graphs, but any given graph can contain only one instance of
the node. Node labels, however, are local to individual graphs. Thus, the same node may have different
labels in different graphs. Furthermore, the label assigned in a given graph to a node may change over
time (if the set ofnodes in the graph changes). The weight of a node is identical for all instances of the
node in multiple graphs. All of this holds for edges all well. The same weight may be shared among
multiple nodes and edges.

Multiple edges in a graph can connect the same pair of nodes. Thus, multigraphs are supported.
Once assigned, node and edge weights should not be changed in ways that affect comparison under

the equals method Otherwise, unpredictable behavior may result.

11.2.4 Directed Graphs

The DirectedGraph class is derived from Graph. The addEdge method in DirectedGraph adds a
directed edge to the graph. In this class, the direction of the edge is said to go from a source node to a
sink node.

The computation of transitive closure operations is implemented in this class. The transitive clo
sure is internally stored as a two-dimensional boolean matrix, whose indexes correspond to node
labels. The entry (/,y) is true if and only if there exists a path from the node with label i to the node
with labelj. This matrix is not exposed at the public interface; instead, it is used by this class and its
subclass to do other operations. Once the transitive closure matrix is computed, graph operations like
reachableNodes can be easily accomplished.

Some methods in this class have two versions, one that operates on graph nodes, and another that
operations on node weights. The latter form is called the weights version. More specifically, the
weights versionof an operation takes individual node weights or arrays of weights as arguments, and,
when applicable, returns individualweights or arrays of weights.

Multiple edges in a graph can be directedbetween the same pair of nodes (in the same direction).
Thus, directed multigraphs are supported.

11.2.5 Directed Acyclic Graphs and CPO

The DirectedAcyclicGraph class further restricts DirectedGraph by not allowing cycles. For per
formance reasons, this requirement is not checked when edges are added to the graph, but is checked
whenany of the graph operations is invoked. An exception is thrown if the graph is found to be cyclic.

The CPO interface defines the common operations on CPOs. The mathematical definition of these
operations can be found in [20]. Informal definitions are given in the class documentation. This inter
face is implemented by the class DirectedAcyclicGraph.

Sincemostofthe CPO operations involvethe comparison of two elements, and comparison can be
done in constant time once the transitive closure is available, DirectedAcyclicGraph makes heavy use
of the transitive closure. Also, since most of the operations on a CPO have a dual operation, such as
least upper bound and greatest lower bound, least element and greatest element, etc., the code for the
dual operations can be shared if the order relationon the CPO is reversed. This is done by transposing
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the transitive closure matrix.

11.2.6 Inequality Terms, Inequalities, and the Inequality Solver

TheInequalityTerm interface and Inequality and InequalitySolver classes support the construction
of a set of inequality constraints over a CPOand the identification of a member of the CPOthat satis
fies the constraints. A constraint is an inequality defined over a CPO, which can involve constants,
variables, and functions. As an example, the following is a set of constraintsover the 4-point CPO in
figure 11.2:

a < w

p <jCAa

a< p
where a and p are variables, and a denotes greatest lower bound. One solution to this set of constraints
is a = P = X.

An inequality term is either a constant, a variable, or a function over a CPO. The InequalityTerm
interface defines the operations on a term. If a term consists of a single variable, the value of the vari
able can be set to a specific element of the underlying CPO. The isSettableQ method queries whether
the value of a term can be set. It retums true if the term is a variable, and false if it is a constant or a
function. The setValueQ method is used to set the value for variable terms. The getValueQ method
retums the current value of the term, which is a constant if the term consists of a single constant, the
current value ofa variable if the term consists ofa single variable, or the evaluation ofa function based
on the current value of the variables if the term is a function. The getVariablesQ method retums all the
variables contained in a term. This method is used by the inequality solver.

The Inequality class contains two InequalityTerms, a lesser term and the greater term. The isSatis-
fiedO method tests whether the inequality is satisfied over the specified CPO based on the current
value of the variables. It retums true if the inequality is satisfied, andfalse otherwise.

The InequalitySolver class implements an algorithm to determine satisfiability of a set of inequal
ity constraints and to find the solution to the constraints if they are satisfiable. This algorithm is
described in [82]. It is basically an iterative procedure to update the value ofvariables until all the con
straints are satisfied, or until conflicts among the constraints are found. Some limitations on the type of
constraints apply for the algorithm to work. The method addlnequalityQ adds an inequality to the set of
constraints. Two methods solveLeastO and solveGreatestQ can be used to solve the constraints. The
former tries to find the least solution, while the latter attempts to find the greatest solution. If a solu
tion is found, these methods retum true and the current value of the variables is the solution. The
method unsatisfiedlnequalitiesQ retums an enumeration of the inequalities that are not satisfied based
on the current value of the variables. It can be used after solveLeastQ or solveGreatestQ retumfalse to
find out which inequalities cannot be satisfied after the algorithm runs. The bottomVariablesQand top-
VariablesQ methods retum enumerations of the variables whose current values are the bottom or the

z

FIGURE 11.2. A 4-point CPO that also happens to be a lattice.
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top element of the CPO.

11.2.7 Graph Listeners

The GraphListeneris a class for tracking changes to a graph so that graph properties can be recom
puted only when necessary. Any given computation for the graph (e.g., computation of the transitive
closure of a directed graph) can have a graph listener associated with it. If the registerComputation
method is invoked each time the computation is performed, and results of the computation are cached,
then the obsolete method can be used to determine whether any changes to the graph have occurred
since the time the cached value was computed.

11.2.8 Labeled Lists

LabeledList is a support class for graphs in this package that allows one to construct efficient map
pings from subsets of nodes and/or edges into arbitrary values. A LabeledList is a list of unique objects
(elements) with an assignment from the elements into consecutive integer labels. The labels are con
secutive integers between 0 and N- 1 inclusive, where N is the total number of elements in the list.
This list features 0{ 1) list insertion, 0( 1) testing for membership in the list, 0( 1) access of a list
element from its associated label, and G( 1) access of a label from its corresponding element. The ele
ment labels are useful, for example, in creating mappings from list elements into elements of arbitrary
arrays. More generally, element labels can be used to maintain arbitrary m-dimensional matrices that
are indexed by the list elements (via the associated element labels).

Element labels maintain their consistency (remain constant) during periods when no elements are
removed from the list. When elements are removed, the labels assigned to the remaining elements may
change.

Elements themselves must be non-null and distinct, as determined by the equals method.

This class supports all required operations of the list interface, except for the subList operation,
which results in an UnsupportedOperationException.

11.3 Example Use

11.3.1 Generating A Schedule for A Composite Actor

Figure 11.3 shows an example of using a topological sort to generatea firing schedule for a Com-
positeActor of the actorpackage. The connectivity information among the Actors withinthe composite
is translated into a directed acyclic graph, with each node of the graph represented by an Actor. The
schedule is stored in an array, where each element of the array is a reference to an Actor.

11.3.2 Forming and Solving Constraints over a CPO

The code in Figure 11.4 uses implements the InequalityTerm interface and models the constant
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Object!] generateSchedule(CorapositeActor composite) {
DirectedAcyclicGraph dag = new DirectedAcyclicGraph();
// Add all the actors contained in the composite to the graph.
Iterator actors = composite.deepEntityListO.iterator{) ;
while (actors.hasNextO) (

Actor actor = (Actor)actors.next0;

dag.addNodeWeight(actor);

1

// Add all the connection in the composite as graph edges,
actors = composite.deepEntityList0.iterator 0;
while (actors.hasNextO) {

Actor lowerActor = (Actor)actors.next();

// Find all the actors "higher* than the current one.
Iterator outPorts = lowerActor.outputPortListO.iterator(),
while (outPorts.hasNext0) {

lOPort outputPort = (IOPort)outPorts.next();
Iterator inPorts =

outputPort.deepConnectedlnPortList().iterator();
while (inPorts.hasNextO) {

lOPort inputPort = (IOPort)inPorts.next();
Actor higherActor = (Actor)inputPort.getContainer();
if (dag.containsNodeWeight(higherActor)) {

dag.addEdge(lowerActor, higherActor);
}

}

)

)
return dag.topologicalSort();

FIGURE 11.3. An example of using a topological sort to generate a firing schedule for a CompositeAc-
tor of the actor package.
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import ptolemy.graph.*;
import ptolemy.kernel.util.*;

// A constant InequalityTerm with a String Value,
class Constant implements InequalityTerm {

// Construct a constant term with the specified String value,
public Constant(String value) {

_value = value;

}

// Return the String associated with this term,
public Object getAssociatedObjectO {

return _value;

)

// Return the constant String value of this term,
public Object getValueO {

return _value;

)

// Constant terms do not contain variables, so return an array of size zero,
public InequalityTerm!] getVariables() {

return new InequalityTerm!0];
)

// Initialize the value of this term to the specified CPO element,
public void initialize(Object object) throws IllegalActionException (

throw new IllegalActionException("Constant inequality term cannot be "
+ "initialized. Its value is set in the constructor.');

}

// Constant terms are not settable.

public boolean isSettableO {
return false;

)

// Check whether the current value of this term is acceptable,
public boolean isValueAcceptable() {

return _value 1= null; // Any non-null string value is acceptable.
}

// Throw an Exception on an attempt to change this constant,
public void setValue(Object e) throws IllegalActionException {

throw new IllegalActionException("This term is a constant.");
)

II the String value of this term,
private String _value = null;

Graph Package

FIGURE 11.4. A class that implements the InequalityTerm interface and models the constant term.
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term. The code in Figure 11.5 also implements the InequalityTerm interface and models the variable
term. The values of these terms are Strings. Inequalities can be formed using these two classes.

As another example, the class in Figure 11.6constructsthe 4-point CPO of figure 11.2, forms a set
of constraints with three inequalities, and solves for both the least and greatestsolutions. The inequali
ties are a < w; Z) < a; Z) < z, where w and z are constants in figure 2.3, and a and b are variables.

11 This class is for figure 10.4 of the graph.fm
inport ptolemy.graph.*;
in^jort ptolemy.kernel.util.*;

II A variable InequalityTerm with a String value,
class VaricOsle implements InequalityTerm {

// Construct a variable InequalityTerm with a null initial value,
public Variable!) {
)

// Return the Object associated with this term,
public Object getAssociatedObject() (

return _value;

)

// Return the String value of this term,
public Object getValueO {

return _value;

)

// Return an array containing this variable term,
public InequalityTerm!) getVariables() {

InequalityTerm!] variable = new InequalityTerm!!];
variable!0] = this;
return variable;

}

II Initialize the value of this term to the specified CPO element,
public void initialize(Object object) throws IllegalActionException (

setValue!object);
)

II Variable terms are settable.

public boolean isSettableO {
return true;

)

// Check whether the current value of this term is acceptable,
public boolean isValueAcceptableO {

return _value != null;

)

// Set the value of this variable to the specified String. Not checking
// the type of the specified Object before casting for simplicity,

public void setValue(Object e) throws IllegalActionException (
_value = (String)e;

}

private String _value = null;

FIGURE 11.5. A class that implements the InequalityTerminterface and models the constant term.
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import ptolemy.graph.*;

//An example of forming and solving inequality constraints,
public class TestSolver {

public static void main(String[] argv) {
// construct the 4-point CPO in figure 2.3.
CPO cpo = constructCPOO ;

// create inequality terms for constants w, z and
// variables a, b.
InequalityTerm tw = new ConstantC'w") ;
InequalityTerm tz = new ConstantCz") ;
InequalityTerm ta = new Variable!);
InequalityTerm tb = new Variable!);

// form inequalities: a<=w; b<=a; b<=z.
Inequality iaw = new Inequality!ta, tw)
Inequality iba = new Inequality!tb, ta)
Inequality ibz = new Inequality!tb, tz)

// create the solver and add the inequalities.
InequalitySolver solver = new InequalitySolver!cpo);
solver.addlnequality!iaw);
solver.addlnequality!iba);
solver.addlnequality!ibz);

// solve for the least solution

boolean satisfied = solver.solveLeast!);

// The output should be:
// satisfied=tirue, least solution: a=z b=z

System.out.println!"satisfied=* + satisfied + least solution:"
+ " a=" + ta.getValue!) + " b=" + tb.getValue!));

// solve for the greatest solution
satisfied = solver.solveGreatest!);

// The output should be:
// satisfied=true, greatest solution: a=w b=z
System.out.println!"satisfied=* + satisfied + greatest solution:

+ " a=" + ta.getValue!) + " b=* + tb.getValue!));

}

public static CPO constructCPO!) {
DirectedAcyclicGraph cpo = new DirectedAcyclicGraph!);

cpo. addNodeVJeight! "w");
cpo. addNodeV/eight! "x") ;
cpo. addNodeV/eight 1"y");
cpo. addNodeVJeight!"z*) ;

cpo.addEdge!"x", "w*);
cpo.addEdge!"y", "w");
cpo.addEdge!"z*, "x");
cpo.addEdge!"z", "y');

return cpo;

FIGURE 11.6. An example that constructs the 4-point CPO of figure 11.2.

Graph Package
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The computation infrastructure provided by the basic actor classes is not statically typed, i.e., the
lOPorts on actors do not specify the type of tokens that can pass through them. This can be changed by
giving each lOPort a type. One of the reasons for static typing is to increase the level of safety, which
means reducing the number of untrapped errors [17].

In a computation environment, two kinds of execution errors can occur, trapped errors and
untrapped errors. Trapped errors cause the computation to stop immediately, but untrapped errors may
go unnoticed (for a while) and later cause arbitrary behavior. Examples ofuntrapped errors in a general
purpose language are jumping to the wrong address, or accessing data past the end of an array. In
Ptolemy II, the underlying language Java is quite safe, so errors rarely, if ever, cause arbitrary behav
ior.^ However, errors can certainly gourmoticed for an arbitrary amount oftime. As an example, figure
12.1 shows an imaginary application where a signal from a source is downsampled, then fed to a fast
Fourier transform (FFT) actor, and the transform result is displayed by an actor. Suppose the FFT actor
can accept ComplexToken at its input, and the behavior of the DownSample actor is to just pass every

Source ^FFT (j) Display

FIGURE 12.1. An imaginary Ptolemy 11 application

1. Synchronization errors in multi-thread applications are not considered here.

Heterogeneous Concurrent Modeling and Design 12-1



Type System

second token through regardless of its type. If the Source actor sends instances of CompiexToken,
everything works fine. But if, due to an error, the Source actor sends out a StringToken, then the
StringTokenwill pass through the sampler unnoticed. In a more complex system, the time lag between
when a token of the wrong type is sent by an actor and the detection of the wrong type may be arbi
trarily long.

In languages without static typing, such as Lisp and the scripting language Tel, safety is achieved
by extensive run-time checking. In Ptolemy II, if we imitated this approach, we would have to require
actors to check the type of the received tokens before using them. For example, the FFT actor would
have to verify that the every received token is an instance of CompiexToken, or convert it to Complex-
Token if possible. This approach gives the burden of type checking to the actor developers, distracting
them from their development effort. It also relies on a policy that cannot be enforced by the system.
Furthermore, since type checking is postponed to the last possible moment, the system does not have
fail-stop behavior, so a system may generate an error only after running for an extended period of time,
as figiu-e 12.1 shows. To make things worse, an actor may receive tokens from multiple sources. If a
token with the wrong type is received, it might be hard to identify from which source the token comes.
All these make debugging difficult.

To address this and other issues discussed later, we added static typing to Ptolemy II. This
approach is consistent with Ptolemy Classic. In general-purpose statically-typed languages, such as
C-H- and Java, static type checking done by the compiler can find a large fraction ofprogram errors. In
Ptolemy II, execution of a model does not involve compilation. Nonetheless, static type checking can
correspondingly detect problems before any actors fire. In figure 12.1, if the Source actor declares that
its output port type is String, meaning that it will send out StringTokens upon firing, the static type
checker will identify this type conflict in the topology.

In Ptolemy II, because models are not compiled, static typing alone is not enough to ensure type
safety at run-time. For example, even if the above Source actor declares its output type to be Complex,
nothing prevents it from sending out a StringToken at run-time. So run-time type checking is still nec
essary. With the help of static typing, run-time type checking can be done when a token is sent out
from a port. I.e., the run-time type checker checks the token type against the type of the output port.
This way, a type error is detected at the earliest possible time, and run-time type checking (as well as
static type checking) can be performed by the system instead ofby the actors.

One design principle of Ptolemy II is that data type conversions that lose information are not
implicitly performed by the system. In the data package, a lossless data type conversion hierarchy,
called the type lattice, is defined (see figure 10.2). In that hierarchy, the conversion from a lower type
to a higher type is lossless, and is supported by the token classes. This lossless conversion principle
also applies to data transfer. This means that across every connection from an output port to an input,
the type of the output must be the same as or lower than the type of the input. This requirement is
called the type compatibility rule. For example, an output port with type Int can be connected to an
input port with type Double, but a Double to Int connection will generate a type error during static type
checking. This behavior is different from Ptolemy Classic, but it should be useful in many applications
where the users do not want lossy conversion to take place without their knowledge.

As can be seen from above examples, when a system runs, the type ofa token sent out from an out
put port may not be the same as the type of the input port the token is sent to. If this happens, the token
must be converted to the input port type before it is used by the receiving actor. This kind of run-time
type conversion is done transparently by the Ptolemy II system (actors are not aware it). So the actors
can safely cast the received tokens to the type of the input port. This makes the actor development eas
ier.
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Ousterhout [77] argues that static typing discourages reuse.

"Typing encourages programmers to create a variety of incompatible interfaces,
each interface requires objects ofspecific type and the compiler prevents any other
types ofobjectsfrom being used with the interface, even ifthat would be useful".

In Ptolemy II, typing does apply some restrictions on the interaction of actors. Particularly, actors can
not be interconnected arbitrarily if the type compatibility rule is violated. However, the benefit of typ
ing should far outweigh the inconvenience caused by this restriction. In addition, the automatic run
time type conversionprovided by the system permits ports of different types to be connected (imder
the type compatibility rule), which partly relaxes the restriction caused by static typing. Furthermore,
there is one important component in Ptolemy that brings much flexibility to the actor interface, the
type-polymorphic actors.

Type-polymorphic actors (called polymorphic actors in the rest of this chapter) are actors that can
accept multiple types on their ports. For example, the DownSample in figure 12.1 does not care about
the type oftoken going through it; it works with any type of token. In general, the types on some or all
of the ports of a polymorphic actor are not rigidly defined to specific types when the actor is written, so
the actor can interact with other actors having different types, increasing reusability. In Ptolemy Clas
sic, the ports on polymorphic actors whose types are not specified are said to have ANYTYPE, but
Ptolemy II uses the term undeclared type, since the type on those ports cannot be arbitrary in general.
The acceptable types on polymorphic actors are described by a set of type constraints. The static type
checker checks the applicability of a polymorphic actor in a topology by finding specific types for
them that satisfy the type constraints. This process is called type resolution, and the specific types are
called the resolved types.

In addition to ports, Parameters, which are often used to configure actors, are also typed objects.
By defining a uniform interface for setting up type constraints, Ptolemy II supports type constraints
between Parameters and ports, as well as among ports. This extends the range of type checking to
some of the internal states of actors.

Static typing and type resolution have other benefits in addition to the ones mentioned above.
Static typing helps to clarify the interface of actors and makes them more manageable. Just as typing
may improve run-time efficiency in a general-purpose language by allowing the compiler to generate
specialized code, when a Ptolemy system is synthesized to hardware, type information can be used for
efficient synthesis. For example, if the type checker asserts that a certain polymorphic actor will only
receive IntTokens, then only hardware dealing with integers needs to be synthesized.

To summarize, Ptolemy II takes an approach of static typing coupled with run-time type checking.
Lossless data type conversions during data transfer are automatically executed. Polymorphic actors are
supported through type resolution.

12.2 Formulation

12.2.1 Type Constraints

In a Ptolemy II topology, the type compatibility rule imposes a type constraint across every con
nection from an output port to an input port. It requires that the type of the output port, outType,be the
same as the type of the input port, inType,or less than inTypeunder the type lattice in figure 10.2. I.e.,

outType < inType (2)

Heterogeneous Concurrent Modeling and Design 12-3



Type System

This guarantees that information is not lost during data transfer. If both the outType and iriType are
declared, the static type checker simply checks whether this inequality is satisfied, and reports a type
conflict if it is not.

In addition to the above constraint imposed by the topology, actors may also impose constraints.
This happens when one or both of the outType and inType is undeclared, in which case the actor con
taining the undeclaredport needs to describe the acceptable types through type constraints.All the type
constraints in Ptolemy II are described in the form of inequalities like the one in (2). If a port has a
declared type, its type appears as a constant in the inequalities. On the other hand, if a port has an
undeclared type, its type is represented by a variable, called the type variable, in the inequalities. The
domain of the type variable is the elements of the type lattice. The type resolution algorithm resolves
the undeclared types subject to the constraints. If resolution is not possible, a type conflict error will be
reported. As an example of the inequalityconstraints, consider figure 12.2.

The port on actors A1 has declared type Int; the ports on A3 and A4 have declared type Double;
and the ports on A2 have their types undeclared. Let the type variables for the undeclared types be a,
P, and y, the type constraints from the topology are:

Int<a

Double < p
y < Double

Now, assume A2 is a polymorphic adder, capable of doing addition for integer, double, and complex
numbers, and the requirement is that it does not lose precision during the operation. Then the type con
straints for the adder can be written as:

a<y

p<y
y < Complex

The first two inequalities constrain the output precision to be no less than input, the last one
requires that the data on the adder ports can be converted to Complex losslessly.

These six inequalities form the complete set of constraints and are used by the type resolution
algorithmto solve for a, p, and y.

This inequality formulation is inspired by the type inference algorithm in ML [69]. There, equali
ties are used to represent type constraints. In Ptolemy II, the lossless type conversion hierarchy natu
rally implies inequality relation among the types. In ML, the type constraints are generated from
program constructs. In a heterogeneous graphical programming environment like Ptolemy II, the sys
tem does not have enough information about the function ofthe actors, so the actors must present their

Double

FIGURE 12.2. A topology with types.
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type information by either declaring the type on their port, or specify a set of type constraints to
describe the acceptable types on the imdeclared ports.

This formulation converts type resolution into a problem of solving a set of inequalities. An effi
cient algorithm is available to solve constraints in finite lattices [82], which is described in the appen
dix through an example and in figure 12.3. This algorithm finds the set of most specific types for the
undeclared types in the topology that satisfy the constraints, if they exist.

As mentioned earlier, the static type checker flags a type conflict error if the type compatibility
rule is violated on a certain connection. There are other kind of type conflicts indicated by one of the
following:

• The set of type constraints are not satisfiable.

• Some type variables are resolved to UNKNOWN.

• Some type variables are resolved to an abstract type, such as Numerical in the type hierarchy.

The first case can happen, for example, if the port on actor A1 in figure 12.2 has declared type
Complex. The second case can happen if an actor does not specify any type constraints on an unde
clared output port. This is due to the nature of the type resolution algorithm where it assigns all the
undeclared types to UNKNOWN at the beginning. If the type constraints do not restrict a type variable
to be greater Aan UNKNOWN., it will stay at UNKNOWNafter resolution. The third case is considered

General

Matnx

Numerical

BooleanMatrix FixMatrix / LongMatrix CompIexMatnx

Boolean Scalar

Long

Int

UnsignedByte

IntMatnx

Double

FIGURE 12.3. The Type Lattice
UNKNOWN
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a conflict since an abstract type does not correspond to an instantiable token class.

To avoid the second case above, any output port must either have a declared type, or some con
straints to force its type to be greater than UNKNOWN. This requirement should be easily satisfied on
most actors. A situation that needs some attention is the source actor. A source actor caimot leave its

output port type unconstrained. One way to cope with this is to declare the type at a time after the type
information is known, but prior to type resolution. For example, if the output data is determined by a
parameter set by the user, the parameter can be evaluated during the initialization phase of the execu
tion and the port type can be declared at the end of the initialization, which precedes type resolution.

12.2.2 Run-time l^pe Checking and Lossless Type Conversion

The declared type is a contract between an actor and the Ptolemy II system. If an actor declares an
output port to have a certain type, it asserts that it will only send out tokens whose types are less than
or equal to that type. If an actor declares an input port to have a certain type, it requires the system to
only send tokens that are instances of the class of that type to that input port. Run-time type checking is
the component in the system that enforces this contract. When a token is sent out from an output port,
the run-time type checker finds its type using the run-time type identification (RTTI) capability of the
underlying language (Java), and compares the type with the declared type of the output port. If the type
of the token is not less than or equal to the declared type, a run-time type error will be generated.

As discussed before, type conversion is needed when a token sent to an input port has a type less
than the type of the input port but is not an instance of the class of that type. Since this kind of lossless
conversion is done automatically, an actor can safely cast a received token to the declared type. On the
other hand, when an actor sends out tokens, the tokens being sent do not have to have the exact
declared output port type. Any type that is less than the declared type is acceptable. For example, if an
output port has declared type Double^ the actor can send IntToken from that port. As can be seen, the
automatic type conversion simplifies the input/output handling of the actors.

Note that even with the convenience provided by the type conversion, actors should still declare
the input types to be the most general that they can handle and the output types to be the most specific
type that includes all tokens they will send. This maximizes their applications. In the previous exam
ple, if the actor only sends out IntToken^ it should declare the output type to be Int to allow the port to
be connected with an input with type Int.

If an actor has ports with undeclared types, its type constraints can be viewed as both a require
ment and an assertion from the actor. The actor requires the resolved types to satisfy the constraints.
Once the resolved types are found, they serve the role of declared types at run time. I.e., the type
checkingand type conversionsystemguaranteesto only put tokens that are instancesof the class of the
resolvedtype to inputports, and the actor asserts to only send tokenswhose typesare less than or equal
to the resolved type from output ports.

12.3 Structured Types

Structured types include array and record types. The Array type is implemented by ArrayToken.
As described in the Data Package chapter. ArrayToken contains an array of tokens, and the element
tokens can have arbitrary type. For example, an ArrayToken can contain an array of StringTokens, or
an array of ArrayTokens. In the latter case, the ArrayToken can be regarded as a two dimensional
array. RecordToken contains a set of labeledtokens, like the structure in the C language. It is usefulfor
groupingmultiplepieces of related information together.
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In the type lattice in figure 12.3, array and record types are incomparable with all the base types,
except the top and the bottom elements of the lattice. Note that the lattice nodes Array and Record
actually represent an infinite number of types, so the type lattice becomes infinite.

The order relation between two array types is that type B is less than type A if the element type of
B is less than the element type ofA. This is a recursive definition if the element types are structured
types. For example, Int Array < Double Array, Int Array Array < Double Array Array, where Int Array
Array is an array ofarray. And Int Array and Double Array Array are incomparable.

The order relation between two record types follow the standard depth subtyping and width sub-
typing relations [17]. In depth subtyping, a record type C is a subtype of a record type D if the type of
some fields of C is a subtype of the corresponding fields in D. In width subtyping, a record with more
fields is a subtype ofa record with less fields. For example, we have:

{name: String, value: Int} < (name: String, value: Double)

{name: String, value: Double, id: Int) < {name: String, value: Double)

Here, we use the {label: type, label: type,...} syntax to denote record types.

Type constraints can be specified between the element type of a structvured type and the type of a
Ptolemy object. For example, a type constraint can specify that the type of a port is no less than the
type of the elements of an ArrayToken.

12.4 Implementation

12.4.1 Implementation Classes

All the classes for representing the types and the type lattice are under the data.type package, as
shown in figure 12.4. The Type interface defines the basic operations on a type. BaseTj^je contains a
type-safe enumeration of all the primitive types. The type UNKNOWN corresponds to the bottom ele
ment of the type lattice, it represents a type variable that can be resolved to any type. ArrayType and
RecordType are derived from an abstract class StructuredType. Each type has a convertQ method to
convert a token lower in the type lattice to one of its type. For base types, this method just calls the
same method in the corresponding tokens. For structured types, the conversion is done within the con
crete structured type classes.

The Typeable interface defines a set of methods to set type constraints between typed objects. It is
implemented by the Variable class in the data.expr package and the TypedlOPort class in the actor
package. TypeConstant encapsulate a constant type. It implements the InequalityTerm interface and
can be used to set up type constraints between a typed object and a constant type.

In the actor package, the Actor interface, the AtomicActor, CompositeActor, lOPort and lORela-
tion classes are extended with TypedActor, TypedAtomicActor, TypedCompositeActor, TypedlOPort
and TypedlORelation, respectively, as shown in figure 12.5. The container for TypedlOPort must be a
ComponentEntity implementing the TypedActor interface, namely, TypedAtomicActor or TypedCom
positeActor. The container for TypedAtomicActor and TypedCompositeActor must be a TypedCom
positeActor. TypedlORelation constrains that TypedlOPort can only be connected with TypedlOPort.
TypedlOPort has a declared type and a resolved type. Undeclared type is represented by Base-
Type.UNKNOWN. If a port has a declared type that is not BaseType.UNKNOWN, the resolved type
will be the same as the declared type.
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12.4.2 lype Checking and lype Resolution

Static type checking and type resolution are done in the resolveTypesQ method oflVpedCompos-
iteActor. This method finds all the connection within the composite by first finding the output ports on
deep contained entities, and then finding the deeply connected input ports to those output ports. Trans
parent ports are ignored for type checking. For each connection, if the types on both ends are declared.
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FIGURE 12.4. Classes in the data.type package.
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Static type checking is performed using the type compatibility rule. If the composite contains other
opaque lypedCompositeActors, this method recursively calls the _checkDeclaredTypesO method of
the contained actors to perform type checking down the hierarchy. Hence, if resolveTypesQ is called
with the top levelTypedCompositeActor, typechecking is performed through out the hierarchy.

If a type conflict is detected, i.e., if the declared type at the source end of a connection is greater
than or incomparable with the type at the destination end of the connection, the ports at both ends of

AtomicAetor

TypedAtomlcAetor

j «lntefface»
i Actor

•EH.
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♦attributeTypeChan9ed(attfll)ute : Attribute):void
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•»TypeTerm(port: TypedlOPort)
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i
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•*-TypeAttribute(port: TypedlOPort name: String)
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K}- +TypeEvent(typeab!e : Typeable, oldType: Type, newType: Type)
♦getNewTypeO: Type
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Manager

TypeConfllctException
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> ,_TypeConfiictException(inequalities: List)j ttirw PrypeConflictExceptioniinequalities: List detail: String)
♦InequalityUstQ: List

TypedlORelation

(TypedlORelationO
(TypedlORelationjvwxkspace: Workspace)
♦TypedlORelation(containef: TypedCompositeActor, name: String)

FIGURE 12.5. Classes in the actor package that support type checking.
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the connection are recorded and will be returned in a List at the end of type checking. Note that type
checking does not stop after detecting the first type conflict, so the returned List containsall the ports
that have type conflicts. This behavioris similar to a regular compiler, where compilation will gener
ally continue after detecting errors in the source code.

The TypedActor interface has a typeConstraintListQ method, which retums the type constraints of
this actor. For atomic actors, the type constraints are different in different actors, but the TypedAtomi-
cActor class provides a default implementation, which is that the type of any input port with unde
clared type must be less than or equal to the type of any undeclaredoutput port. Ports with declared
types are not included in the default constraints. If all the ports have declared type, no constraints are
generated. This default works for most of the control actors such as commutator,multiplexer, and the
DownSample actor in figure 12.1. In addition, the typeConstraintListQ method also collects all the
constraints from the contained Typeable objects, which are TypedlOPorts and Variables.

The typeConstraintListQ method in TypedCompositeActor collects all the constraints within the
composite. It works in a similar fashion as the _checkDeclaredTypesQ method, where it recursively
goes down the containment hierarchy to collect type constraints of the contained actors. It also scans
all the connections and forms type constraints on connections involving undeclared types. As with
_checkDeclaredTypesQ, if this method is called on the top level container, all the type constraints
within the composite are returned.

The Manager class has a resolveTypesQ method that invokes type checking and resolution. It uses
the InequalitySolver class in the graph package to solve the constraints. If type conflicts are detected
during type checking or after type resolution, this method throws TypeConflictException. This excep
tion contains a list of inequalities where type conflict occurred. The resolveTypesQ method is called
inside Manager after all the mutations are processed. If TypeConflictException is thrown, it is caught
within the Manager and an KemelException is generated to pass the exception information to the user
interface.

Run-time type checking is done in the sendQ method of TypedlOPort. The checking is simply a
comparison of the type of the token being sent with the resolved tjqje of the port. If the type of the
token is less than or equal to the resolved type, type checking is passed, otherwise, an IllegalActionEx-
ception is thrown.

Type conversion, if needed, is also done in the sendQ method. The type of the destination port is
the resolved type ofthe port containing the receivers that the token is sent to. If the token does not have
that type, the convertQ method on that type is called to perform the conversion.

12.4.3 Setting Up IVpe Constraints

The class Inequality in the graph package is used to represent type constraints. This class contains
two objects implementing the InequalityTerm interface, which represent the lesser and greater terms.
InequalityTerm is implemented by inner classes of TypedlOPort, Variable, ArrayType, and Record-
Type, to encapsulate the type of the port, the variable, and the element type of structured types. In most
cases, type constraints can be set up easily through the methods in the Typeable interface. For exam
ple,

to constrain that the type of a port to be no greater than Double:
port.setTypeAtMost(BaseType.DOUBLE);

to constrain that the type of a port to be no less than the type of a parameter:
port.setTypeAtLeast(parameter);

to specifythat a parametercan only contain an ArrayToken, and to constrainthe type of a port to be no
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less than the element type of that array:

parameter.setTypeEquals(new ArrayType(BaseType.UNKNOWN));

ArrayType arrayType = (ArrayType)parameter.getType();

InequalityTerm elementTerm = arrayType.getElementTypeTerm();
port.setTypeAtLeast(elementTerm) ;

These kinds of constraints appear in source actors such as Clock and Pulse, where the actor outputs a
sequence of values specified by an ArrayToken.

In some actors, monotonic functions can help specify less straightforward constraints. The type
resolution algorithm allows the lesser term to be a monotonic function when searching for the most
specific types. That is, constraints in the form f(a) < b are admitted, where f(a) is a monotonic func
tion of a and b can be a constant or a variable. An example of this appears in the AbsoluteValue actor
in the actor library. Here, one of the type constraints is: If the input type is not Complex, the output
type is the same as the input type, otherwise, the output type is Double. This constraint can be
expressed as f(inputType) < outputType, where

f(inputType) = inputType, if inputType ^ Complex
f(inputType) = Double, if inputType = Complex.

This function is implemented by an inner class FunctionTerm of AbsoluteValue that implements
InequalityTerm. The evaluation is done in the getValueQ method of InequalityTerm as:

public Object getValueO {
// _port is the input port
Type inputType = _port.getType();
return inputType == BaseType.COMPLEX ? BaseType.DOUBLE : inputType;

}

Finally, if the methods in Typeable are not sufficientfor specifying complicated constraints, or the
default implementation of the typeConstraintsQ method in the TypedAtomicActor is not appropriate,
this method can be overridden, but this is rarely needed.

12.4.4 Some Implementation Details

The implementation of the structured types is more involved than the base types. This is because
the base types are atomic, but structured types that contain type variables are mutable entities. For
example, the declaredtype of a port can be UNKNOWNArray, meaningthat it is an array of undefined
element type. After type resolution, that type may be updated to Double Array. Types that are mutable
are variable types. The isConstantQmethod in Type determines if a type contains a type variable. Type
variables are represented by a type initialized to BaseType.UNKNOWN.

When a typed object is cloned, if its type is a variable structured type, that type must be cloned
because the original and the cloned Typeable objects may have different types in the future. Similarly,
when constructing structured types with variable structured types as element types, the element types
must be cloned. However, constant structured types do not need to be cloned. This means that an
instance of a constant StructuredType can be shared by many objects, but an instance of a variable
StructuredType can only have one user. One way to support this is to have bidirectional references
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between a variable structured type and its user, and only allow the type to have one user. But the bidi
rectional references make the implementation complicated, and consistency is hard to maintain. A bet
ter way is to always clone the structured type when its container is cloned, or when constructing a new
instance of StructuredType. This is done in the data package. This implementation incurs some redun
dant cloning, but the overhead is small.

A variable type can be updated to another type, provided that the new type is compatible with the
variable type. For example, a type variable a can be updated to any type, a Array can be updated to Int
Array. However, a Array cannot be updated to Int. If a variable tj^e can be updated to a new type, the
new type is called a substitution instanceof the variable type. This term is borrowedfrom type litera
ture. Formally, a type is a substitution instance of a variable type if the former can be obtained by sub
stituting the type variables of the latter to another type. The method isSubstitutionlnstanceQ in Type
does this check.

The updateTypeQ method in StructuredType is used to change the variable element type ofa struc
tured type. For example, if the types of two ports are Int Array and a Array respectively, and a type
constraint is that the second port is no less than the type of the first, that is, Int Array < a Array^ the
type resolution algorithm will change the type of the second port to Int Array. This step cannot be done
by simply changing the type reference in the second port to an instance of Int Array, since type con
straints may be set up between a and another typed objects. Instead, updateTypeQ only changes the
type reference for a to Int.

12.5 Examples

12.5.1 Polymorphic DownSampie

In figure 12.1, if the DownSampie is designed to do downsampling for any kind of token, its type
constraint is just samplerin < samplerOut, where samplerin and samplerOut are the types of the input
and output ports, respectively. The default type constraints works in this case. Assuming the Display
actor just calls the toStringQ method of the received tokens and displays the string value in a certain
window, the declared type of its port would be General. Let the declared types on the ports of FFT be
Complex, the The type constraints of this simple application are:

sourceOut < samplerin

samplerin < samplerOut

samplerOut < Complex

Complex < General

Where sourceOut represents the declared type of the Source output. The last constraint does not
involve a type variable, so it is just checkedby the static type checkerand not includedin type resolu
tion. Depending on the value of sourceOut, the ports on the DownSampie actor would be resolved to
different types. Some possibilities are:

• If sourceOut = Complex, the resolved types would be samplerin = samplerOut = Complex.
• If sourceOut = Double, the resolved types would be samplerin = samplerOut = Double. At run

time, DoubleTokens sent out from the Source will be passed to the DownSampie actor unchanged.
Before they leave the Downsample actor and are sent to the FFT actor, they are converted to Com-
plexTokens by the system. The ComplexToken output from the FFT actor are instances of Token,
which corresponds to the General type, so they are transferred to the input of the Display without
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change.

• If sourceOut = Strings the set of type constraints do not have a solution, a tj^jeConflictException
will be thrown by the static type checker.

12.5.2 Fork Connection

Consider two simple topologies in figure 12.6. where a single output is connected to two inputs in
12.6(a) and two outputs are connected to a single input in 12.6(b). Denote the types of the ports by al,
a2, a3, bl, b2, bS, as indicated in the figure. Some possibilities of legal and illegal type assignments
are:

• In 12.6(a), if al = Int, a2 = Double^ a3 = Complex. The topology is well typed. At run-time, the
IntToken sent out from actor Al will be converted to DoubleToken before transferred to A2, and
converted to ComplexToken before transferred to A3. This shows that multiple ports with differ
ent types can be interconnected as long as the type compatibility rule is obeyed.

• In 12.6(b), if bl = Int, hi = Doublej and b3 is undeclared. The the resolved type for b3 will be
Double. If bl = Int and b2 = Boolean, the resolved type for b3 will be String since it is the lowest
element in the type hierarchy that is higher than both Int and Boolean. In this case, if the actor B3
has some type constraints that require b3 to be less than String, then type resolution is not possible,
a type conflict will be signaled.

12.6 Actors Constructing Tokens with Structured Types

The SDF domain contains two actors that perform conversion between a sequence of tokens and
an ArrayToken. Typeconstraints in these actors ensiue that the type of the array element is the same as
the type of the sequence tokens. When two SequenceToArray actors are cascaded, the output of the
second actor will be an array of array. Cascading ArrayToSequence with SequenceToArray restores
the sequence. In SequenceToArray, the parameter TokenConsumptionRate of the input port deter
mines the length of the output array, while in ArrayToSequence, the parameter tokenProductionRate
of the output port specifies the length of the input array. If the ArrayToken received by ArrayToSe
quence does not have the correct length, an exception will be thrown.

The actor,lib package contains two actors that assembles and disassembles RecordTokens: Recor-
dAssembler and RecordDisassembler. The former assembles tokens from multiple input ports into a
RecordToken and sends it to the outputport, the latter does the reverse. The labels in the RecordToken

FIGURE 12.6. Two simple topologies with types.
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are the names ofthe input ports. Type constraints ensure that the type of the record fields is the same as
the type of the corresponding ports.

Double Array Double Array Array

"Rouble J~ n jr 1
O SequenceToArrayO •Q SequenceToArrayO—a Double

source

Double Array

Double Array Double

Recorder-•(j) ArrayToSequence(|) •(!) ArrayToSequence(|)
Double Array Array Double Array Double

FIGURE 12.7. Conversion between sequence and array.
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Appendix E: The Type Resolution Algorithm

The type resolution algorithm starts by assigning all the type variables the bottom element of the
type hierarchy, UNKNOWN, then repeatedly updating the variables to a greater element until all the
constraints are satisfied, or when the algorithm finds that the set of constraints are not satisfiable. The
kind of inequality constraints the algorithm can determine satisfiability are the ones with the greater
term (the right side of the inequality) being a variable, or a constant. The algorithm allows the left side
of the inequality to contain monotonic functions of the type variables, but not the right side. The first
step of the algorithm is to divide the inequalities into two categories, Cvar and Ccnst. The inequalities
in Cvar have a variable on the right side, and the inequalities in Ccnst have a constant on the right side.
In the example of figure 12.2, Cvar consists of:

Int<a

Double < P

a< Y

p<Y
And Ccnst consists of:

Y^ Double

Y^ Complex

The repeated evaluations are onlydoneon Cvar,Ccnstare usedas checks after the iteration is fin
ished, as we will see later. Before the iteration, all the variables are assigned the value UNKNOWN,
and Cvar looks like:

Int<a{UNKNOWN)

Double < ^{UNKNOWN)
a{UNKNOWN) < ylJJNKNOWN)

^UNKNOWN) < yiUNKNOWN)
Where the current value ofthe variables are inside the parenthesis next to the variable.

At this point, Cvar is further divided into two sets: those inequalities that are not currently satis
fied, and those that are satisfied:

Not-satisfied Satisfied

Int < a{UNKNOWN) a{UNKNOWN) < -^iUNKNOWN)
Double < ^{UNKNOWN) ^{UNKNOWN) < -^UNKNOWN)

Nowcomes theupdate step. Thealgorithm takes outan arbitrary inequality from theNot-satisfied
set, and forces it to be satisfied by assigning the variable on the rightside the least upperboundof the
values of both sidesof the inequality. Assuming the algorithm takesoutInt < a{UNKNOWN), then

a = Int^UNKNOWN=Int (3)

Aftera is updated, all the inequalities in Cvarcontaining it are inspected andareswitched to either
the Satisfied or Not-satisfied set, if they are not already in the appropriate set. In this example, after
this step, Cvar is:

Not-satisfied Satisfied

Double < ^{UNKNOWN) Int < o.{Int)
a{Int) < -^UNKNOWN) ^{UNKNOWN) < -^UNKNOWN)

Theupdate step is repeated until all the inequalities in Cvarare satisfied. In thisexample, P andY
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will be updated and the solution is:
a = Int, ^ = y = Double

Note that there always exists a solutionfor Cvar. An obvious one is to assign all the variables to
the top element, General, although this solution may not satisfy the constraints in Ccnst. The above
iteration will find the least solution, or the set ofmost specific types.

After the iteration,the inequalitiesin Ccnstare checkedbased on the currentvalue of the variables.
If all of them are satisfied, a solution to the set of constraints is found.

This algorithm can be viewed as repeated evaluation of a monotonic function, and the solution is
the fixed point of the function. Equation (3) can be viewed as a monotonic function applied to a type
variable. The repeated update of all the type variables can be viewed as the evaluation of a monotonic
flmction that is the composition of individual functions like (3). The evaluation reaches a fixed point
when a set of type variable assignments satisfying the constraints in Cmr is found.

Rehof and Mogensen [82] proved that the above algorithm is linear time in the number of occur
rences ofsymbols in the constraints, and gave an upper bound on the number ofbasic computations. In
our formulation, the symbols are type constants and type variables, and each constraint contains two
symbols. So the type resolution algorithm is linear in the number of constraints.
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13.1 Overview

Theplotpackage provides classes, applets, andapplications for two-dimensional graphical display
of data. It is available in a stand-alone distribution, or as part of the Ptolemy II system.

There are several ways to use the classes in the plot package:

You can use one of several domain-polymorphic actors in a Ptolemy II model to plot datathat is
provided as an input to the actor.

You can invoke an executable, ptplot, which is a shell script, to plot data in a local file or on the
network (via a URL).

You can invoke an executable, histogram, which is a shell script, to plot histograms ofdata in a
local file or on the network (via a URL)

You can invoke an executable, pxgraph, which is a shell script, to plot data that is stored in an
ascii or binary format compatiblewith the older program pxgraph, which is an extensionof
David Harrison's xgraph.

You can invoke a Java application, suchas PlotMLApplication, by usingthe java program that is
included in your Java distribution.

Youcan use an existing applet class, such as PlotMLApplet, in an HTML file. The appletparame
ter dataurl specifiesthe source of plot data. You do not even have to have Ptplot installedon
your server, since you can always reference the Berkeley installation.

You can create new classes derived from applet, frame, or application classes to customize your

Heterogeneous Concurrent Modeling and Design 13-1



Plot Package

plots. Thisallows you to completely control theplacement of plotson thescreen, and to writeJava
code that defines the data to be plotted.

The plot data can be specified in any of three data formats:

PlotMLis an XML extensionfor plot data. Its syntax is similar to that of HTML. XML (extensible
markup language) is an intemet language that is growing rapidly in popularity.

• An older, simpler textual syntax for plot data is also provided, although in the long term, that syn
tax is unlikely to be maintained (it will not necessarily be expanded to support new features). For
simple data plots, however, it is adequate. Using it for applets has the advantage ofmaking it pos
sible to reference a slightly smaller jar file containing the code, which makes for more responsive
applets. Also, the data files are somewhat smaller.

• A binary file format used by pxgraph, is supported by classes in the compat package. Formatting
information in pxgraph (and in the compat package) is provided by command-line arguments,
rather than being included with the binary plot data, exactly as in the older program. Applets spec
ify these command-line arguments as an applet parameter (pxgraphargs).

13.2 Using Plots

If $PTII represents the home directory of your Ptplot installation (or your Ptolemy II installation),
then, $PTII/bin is a directorythat containsa numberof executables. Three of these invokeplot applica
tions, ptplot, histogram, and pxgraph. We recommend putting this directory into your path so
that theseexecutables can be foundautomatically from the commandline. Invoking the command

ptplot

with noarguments should opena window that looks like thatin figure 13.1. You canalsospecify a file
to plot as a command-line argument. Tofindout aboutcommand-line options, type

ptplot -help

The ptplotcommand is a shell script that invokes the following equivalent command:

java -classpath $PTII ptolemy.plot.plotml.EditablePlotMLApplication

Since it is a shell script, it will work on Unix machines and Windows machines that have Cygwin*
installed. In the samedirectory are threeWindows versions that do not require Cygwin, ptplot .bat,
histogram.bat, and pxgraph.bat, which you can invoke by typing into the DOS command
prompt, for example,

ptplot.bat

1. The 1.1.X version of the Cygwin Toolkit is a freely available package available from
http://sources.redhat.com/cygwin/
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These scripts make three assumptions.
• First, java is in your path. Type "java -version" to verify that the java program is in your

path and is working properly

• Second, the environment variable PTII is set to point to the home directory of the plot (or Ptolemy
II) installation. Type "echo %PTII%" in a Windows DOS shell and "echo $PTII" in Unix or
Windows Cygwin bash shell to check this.

• The directory SPTII/binis in your path. Under Windows without Cygwin, type "echo %path%".
Type "type ptplot" in Windows with Cygwin and "which ptplot" in Unix to check this.

In Windows, environment variables and your path are set in the System control panel. You can now
explore a number of features ofptplot.

13.2.1 Zooming and filling

To zoom in, drag the left mouse button down and to the right to draw a box around an area that you
want to see in detail, as shown in figure 13.2. To zoom out, drag the left mouse button up and to the
right. To just fill the drawing area with the available data, type Control-F, or invoke the fill command
from the Special menu. In applets, since there is no menu, the fill command is (optionally) made avail
able as a button at the upper right of the plot.

13.2.2 Printing and exporting

The File menu includes a Print and Export command. The Print command works as you expect.
The export command produces an encapsulated PostScript file (EPS) suitable for inclusion in word
processors. The image in figure 13.3 is such an EPS file imported into FrameMaker.

At this time, the EPS file does not include preview data. This can make it somewhat awkward to
work with in a word processor, since it will not be displayed by the word processor while editing (it

^Xl

File Edit Special

Sample plot

> 0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

FIGURE 13.1. Result of invokingon the command line with no arguments.
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will, however, print correctly). It is easy to add the preview data using the freely available program
Ghostview^ Just open the file using Ghostview and, under the edit menu, select "Add EPS Preview."

Export facilities are also available from a small set of key bindings, which permits them to be
invoked from applets (which have no menu bar) and from the standalone scripts:

^xj

File Edit ^eclal

Sample plot

> 0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

^Ptolemy plot

FIGURE 13.2. To zoom in, drag the left mouse button down and to the right to draw a box around the region
you wish to see in more detail.

1. Ghostview is available http;//www.cs.wisc.edu/-~ghost
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Control-c: Export the plot to the clipboard.
D: Dump the plot to standard output.
E: Export the plot to standard output in EPS format.
F: Fill the plot.
H or ?: Display a simple help message.

The encapsulated PostScript (EPS) that is produced is timed for black-and-white printers. In the
future, more formats may supported. Also at this time (JDK 1.3.0 under Windows 2000), Java's inter
face the clipboard may not work, so Control-C might not accomplish anything. Note further that with
applets, you may find it best to click near the title rather than clicking inside the graph itself and then
type the command.

Exporting to the clipboard and to standard output, in theory, is allowed for applets, unlike writing
to a file. Thus, these key bindings provide a simple mechanism to obtain a high-resolution image ofthe
plot from an applet, suitable for incorporation in a document. However, in some browsers, exporting to
standard out triggers a security violation. You can use Sun's appletviewer instead.

13.2.3 Editing the data

Youcan modify the data that is plotted by first selecting a data set to modify using the Edit menu,
then dragging the right mouse button. Figure 13.4 shows die result of modifying one of the datasets
(the one in red on a color display). The modification is carried out by freehand drawing, although con
siderable precision is possible by zooming in. Use the Save or SaveAs command in the File menu to
save the modiEed plot (in PlotML format).

v PI/2

e -PI/2

Sample plot

imm

-0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

time xlO

FIGURE13.3. Encapsulated postscriptgenerated by the Exportcommandin the File menuofptplot can be
imported into word processors. This figure was imported into FrameMaker.
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13.2.4 Modifying the format

You can control how data is displayed by invoking the Format command in the Edit menu. This
brings upa dialog like that at bottom in figure 13.5. At theleft is thedialog andtheplotbefore changes
are made, and at the right is after changes are made. In particular, the grid has been removed, the stems
have been removed, the lines connecting the data points have been removed, the data points have been
rendered with points, and the color has been removed. Use the Save or SaveAscommand in the File
menu to save the modified plot (in PlotML format). More sophisticated control over the plot can be
had by editing the PlotML file (which is a text file). The PlotML syntax is described below.

The entries in the format dialog are all straightforward to use except the "X Ticks" and "Y Ticks"
entries. These are used to specify how the axes are labeled. The tick marks for the axes are usually
computed automatically from the ranges of the data. Every attempt is made to choose reasonable posi
tions for the tick marks regardless of the data ranges (powers of ten multiplied by 1, 2, or 5 are used).
To change what tick marks are included and how they are labeled, enter into the "X Ticks" or "Y
Ticks" entry boxes a string of the following form:

label position, label position, ...

A label is a string that must be surrounded by quotation marks if it contains any spaces. A position is a
number giving the location of the tick mark along the axis. For example, a horizontal axis for a fre
quency domain plot might have tick marks as follows:

pe Edit ^eciai

Format

> 0

Sample plot

Choose a data set, then drag the right mouse button; &

OK I Cancel

-1 0.8 0.9 1,0

FIGURE 13.4. You can modify the data being plotted by selecting a data set and then dragging the right
mouse button. Use the Edit menu to select a data set. Use the Save command in the File menu to save the

modified plot (in PlotML format).



XTicks: -PI -3.14159, -PI/2 -1.570795, 0 0, PI/2 1.570795, PI 3.14159

Tick marks could also denote years, months, days of the week, etc.

13.3 Class Structure

The plot package has two subpackages, plotml and compat. The core package, plot, contains tool
kit classes, which are used in Java programs as building blocks. The two subpackages contain classes
that are usable by an end-user (vs. a programmer).

File {Edit I Special

^EditDataset Sample plot

.11! |if,
ilh

W i£l

0.0 0.1 0.2 0.3 0.4 0.5 0

time

FUe Edit SfKtial

Sample pic
—I—. I ••—

• «!*'

Title; |Sample plot
X Label;

YLabel: [^alue ^
XRange: |o,o. 100.0 Stems: <?
YRange: 1-4.0,4.0 Connect (?

none C points C dots r various C pixels Use Color.(?

XTicks; ]
YTicks: j 0.0. Piy2 1.5707963267948966, PI 3.141592653589793

Apply Cancel

Title: [Sample plot
XLabel: [time
YLabel; [value ~ Qfjd: C
XRange: [0.0.100.0 S^g^g.
YRange; [-4.0, 4.0 Connect r
Marks, f-pone boln"^ dots r various C pixels Use Color r

YTIcks; I0.0. PU2 1.5707963267948966, PI 3.141592653589793

Apply I Cancel I

PI • ""'•'.iK
"•-••5s

PV2 •

0 •

-pi;2 - •

•PI -
•

I • . >• X . I
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FIGURE 13.5. You can control how data is displayed using the Format command in the Edit menu, which
brings up the dialog shown at the right. On the top is before changes are made, and on the bottom is after.
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13.3.1 Toolkit classes

The class diagramfor the core of the plot package is shown in figure 13.6.These classesprovidea
toolkit for constructing plotting applications and applets. The base class is PlotBox,which renders the
axes and the title. It extends Panel, a basic container class in Java. Consequently, plots can be incorpo
rated into virtually any Java-based user interface.

The Plot class extends PlotBox with data sets, which are collections of instances ofPlotPoint. The
BditablePlot class extends this further by adding the ability to modify data sets.

Live (animated) data plots are supported by the PlotLive class. This class is abstract; a derived
class must be created to generate the data to plot (or collect it from some other application).

The Histogram class extends PlotBox rather than Plot because many of the facilities of Plot are
irrelevant. This class computes and displays a histogram from a data file. The same data file can be
read by this class and the other plot classes, so you can plot both the histogram and the raw data that is
used to generate it from the same file.

13.3.2 Applets and applications

A number of classes are provided to use the plot toolkit classes in common ways, but you should
keep in mind that these classes are by no means comprehensive. Many interesting uses of the plot
package involve writing Java code to create customized user interfaces that include one or more plots.
The most commonly used built-in classes are those in the plotml package, which can read PlotML
files, as well as the older textual syntax.

Ptplot 5.2, which shipped with Ptolemy II 2.0 requires Swing. The easiest way to get Swing is to
install the Java 1.3 (or later) Plug-in, which is part of the JRE and JDK 1.3 installation. Unfortunately,
using the Java Plug-in makes the applet HTML more complex. There are two choices:

1. Use fairly complex JavaScript to determine which browser is running and then to properly select
one of three different ways to invoke the Java Plug-in. This method works on the most different
types ofplatforms and browsers. The JavaScript is so complex, that rather than reproduce it here,
please see one of the demonstration html files.

2. Use the much simpler <applet> ...</applet> tag to invoke the Java Plug-in. This method works on
many platforms and browsers, but requires a more recent version of the Java Plug-in, and will not
work under Netscape Communicator 4.7x.

For details about the above two choices, see http://java.sun.com/products/plugin/versions.html.
We document the much simpler <applet> ... </applet> tag format below
The following segment ofHTML is an example:

<APPLET

code = "ptolemy.plot.plotml.PlotMLApplet"
codebase =

archive = "ptoleray/plot/plotmlapplet.jar"
width = "600"

height = "400"
>

<PARAM NAME = "background" VALUE = "#faf0e6" >
<PARAM NAME = "dataurl" VALUE = "plotmlSample.txt" >

No Java Plug-in support for applet, see
<a href="http://java.sun.com/products/plugin/"><code>http://java.sun.com/products/plugin/</code></a>

</APPLET>

To use this yourselfyou will probably need to change the codebase and dataurl entries. The first points
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PotBox

various

♦PlotBoxO

'•'a<fdLegend(<lalaset; Int. legend: String)
-^addXncfcOaliel: Stifng, position: daut)le)
'•'8ddYTick(lat)el: String, position : doutile)
+clear(axes: boolean)
'•'CleaitegendsO
'•'deferifNecessary(action: Runnable)
'•'export(out: Outp«jtStream)
'•'exportlmageO: Bufferedtmage
'•'exportlinage(rect8ngle; Rectangle): Bufferedlmage
'•'exportlmage(lmg; Bufferedlmage. r: Rectangle, Itints: RenderingHlnts, transp: boolean): Bufferedlmage
-rexixxttmagellmg; Bufferedlmage): Bufferedlmage
'ffilPlotO
'^getColoiO: boolean
'••getColoi6yName(nam8: String): Color
+get6rid(): boolean
+getl.egend(d8taset: int): String
r^MaxImumSizeO: Dimension
't-getMlnlmumSizeO: Dimension
+getPreferredSlzeO: Dimension
••^etTltieO: String
+getXLabeIO: String
r^etXLogO: boolean
+getXRangeO: douUeQ
+getXTicks(): VectorQ
'•getYLabelO: String
-fgetYLogO: boolean
+getYRangeO: doublefl
♦gotYTicksO: Vectocfl
+p<int(g : Graphics, format: PageFomnat, index: Int)
+read(in: InputStream)
+read(line: Siring)
+resetAxesO
+removeLegend(dataset; Int)

-••setBackgroundCcolor: Color)
raetBoundstx: Int, y: int, vtidth: Int. height: Int)
^setButtons(visible: boolean)
'»'SetForeground(color: Color)
'••setGridigrid: bwlean)
'•aett.8belFont(fontname: String)
>setSize(width: int Iteight: Int)
'••setTitle(titte: String)
+setTitleFont(fontname: String)
+setWrap(wrap; boolean)
r-setXtabelClabel: String)
'••setXLog(log: txxriean)
'•'SetXRange(mln ; doutile, max:double)
'•'SetYLabeKlabel; String)
'•'setYLogOog: boolean)
'»setYR3nge(min: doutile, max: doutile)
'»iMrite{out: OutputStream)
'hvrite{out: OutputStream, dtd: String)
+write(out: Writer, dtd : String)
'»v«riteData(output: PrintWrite^
t^teFormatCout: Writer)
>zoom(lowx: double, lowy: double, highx: double, highy: double)
ff_dra«^lot(g: Graphics, cleaifirst: boolean)
ff_drawPolnt(g: Graphics, set: int, x: long, y: long, dip: boolean)
ff_drawPlot(g: Graphics, dear: boolean, drawRect: Rectangle)
ff-helpO
ff_parselJne(Ilne: String)
ff_setPaddlng(padding: double)
_zoom(x: Int, y: Int)
_zoomBox(x; Int y: int)
_zoomStart(x; int,y: int)

...: various

+addPoint(dataset: Int, value: double)
-i-addPolntjdataset: Int, x: double, y: double, conneded; boolean)
+setBars(wldth: double, offset: double)
'•'setBtnOffset(oflset: double)
+setBlnWldth(wldth: doutile)
ff_checkDatasetlndex(lndex: Int)
ff_drawBar(g: Graphics, dataset: Int, xpos: long, ypos; long, dip: boolean)

various

♦PlotO
'•'addPolnt(dataset: Int x: double, y: double, connected: boolean)
-i-addPolntWithErrorBarsCds: int x: double, y: double, ytow: double, yHIgh; double, end: boolean)
-••dearCdataset: Int)
+efasePolnt(dataset: Int Index : Int)
+getConnectedO: boolean
+getlmpulsesO: boolean
+getMari(sStyleO: String
+getNumDat3SetsO: Int
'•aetBars(on: boolean)
+setBats{width: double, oi^t: double)
+setConneded(on: boolean)
+setConnected(on: boolean, dataset: Int)
+setlmpulses(on: tioolean)
+setlmpulses(on : boolean, dataset: Int)
+setMati(sStyle<style: String)
+setMait(sS^e(style: String, dataset: Int)
'••setPolntsPeislstence{numPoints; Int)
+setReuseDatasets(on: boolean)
+setXPe>8istence(perslstence: doutile)
ff_checkDataseUndex(dataset: int)
ff_drawBar{g; Graphics, dataset; Int x: long, y; long, dip: boolean)
ff_dr8wErrorBar(g: Graphics, dataset; Int x ; long, ytow; long, yhigh : kmg, dip: boolean)
ff_drawlmpulse{g: Graphics, dataset: int, x: long, y; long, dip: boolean)
ff_drawUne(g: Graphics, dataset: Int, starbr: long, starty: lorig, endx; long, endy: long, d^ :boolean)
ff_dr3wPlot(g: Gravies, deaiffrst: boolean)
#_drawPdnt(g: Graphics, dataset: int, x: long, y: kmg, cBp: boolean)
ff_parseLine{line; String): boolean
#_vwite(output: PrintWriter)

/\

.redoStack; Stack

.undoStack: Stack

.edttisteners; Vedor

r-EditablePlotO
r-addEdlttlstenerpistener: EditUstener)
*'getData(dataset: int): doubleQQ
t-redoO
r-removeEdttUstener{llstener: Edittlstener)
4-setEdltable(dataset; Int)
*undo()

Histogram

A

PlotPoint

! Runnabh
I

j "j
j+runO i

5

r-x: double

*y: double
+ytowEB: double
ryHlghEB: double
rconneded: boolean

'ferrorBar: boolean

♦origlnalX:double

♦PlotPointQ

-.plotUveThread: Thread
: varkxis

*a(l(IPolntsO
r-pauseO
+setButtons(visible: boolean)
♦slartO

♦stopQ

*edHDataModiSed(source; EditablePtot dalaset; Inl)

FIGURE 13.6. The core classes ofthe plot package.
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to the root directory of the plot installation (usually, the value of the PTII environment variable). The
second points to a file containing data to be plotted, plus optional formatting information.The file for
mat for the data is described in the next section. The applet is created by instantiating the PlotMLAp-
plet class.

The archive entry contains the name of the jar file that contains all the classes necessary to run a
PlotML applet. The advantage of specifying a jar file is that remote users are likely to experience a
faster download because all the classes come over at once, rather than the browser asking for each
class from the server. A downside ofusing jar files in applets is that if you are modifying the source of
Ptplot itself, then you must also update the jar file, or your changes will not appear. A common
workaround is to remove the archive entry during testing.

Youcan also easily create your own applet classes that include one or more plots. As shown in fig
ure 13.6, the PlotBox class is derived from JPanel, a basic class of the Java Foundation Classes (JFC)
toolkit, also known as swing. It is easy to place a panel in an applet, positioned however you like, and
to combinemultiplepanels into an applet. PlotApplet is a simple class that adds an instanceof Plot.

Creating an application that includes one or more plots is also easy. The PlotApplication class,
shown in figure 13.7,creates a single top-levelwindow (a JFrame), and places within it an instanceof
Plot. This class is derived from the PlotFrame class, which provides a menu that contains a set ofcom
mands, including opening files, saving the plotted data to a file, printing, etc.

The difference between PlotFrame and PlotApplication is that PlotApplication includes a mainQ
method, and is designed to be invoked from the command line. You can invoke it using commands like
the following:

java -classpath $PTII ptolemy.plot.PlotApplication args

However, the classes shown in figure 13.7, which are in the plot package, are not usually the ones that
an end user will use. Instead, use the ones in figure 13.8. These extend the base classes to support the
PlotML language, described below. The only motivation for using the base classes in figure 13.7 is to
have a slightly smaller jar file to load for applets.

The classes that end users are likely to use, shown in figure 13.8, include:

PlotMLApplet: An applet that can read PlotML files off the web and render them.

EditablePlotMLApplet: A version that allows editing of any data set in the plot.
HistogramMLApplet: A version that uses the Histogram class to compute and plot histograms.

PlotMLFrame: A top-level window containing a plot defined by a PlotML file.

PlotMLApplication: An application that can be invoked from the command line and reads PlotML
files.

EditablePlotMLApplication: An extension that allows editing of any data set in the plot.

HistogramMLApplication: A version that uses the Histogram class to compute and plot histo
grams.

EditablePlotMLApplication is the class invoked by the ptplot command-line script. It can open plot
files, edit them, print them, and save them.
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13.3.3 Writing applets

A plot can be easily embedded within an applet, although there are some subtleties. The simplest
mechanism looks like this:

public class MyApplet extends JApplet {
public void init() {

super.init();
Plot myplot = new Plot();

getContentPane().add(myplot);

+p»ot: Plot

+PlotFfame()
+PlotFrame{title: String)
'I'PlotFramejtitle: Siring, plot;PlotBox)
-•-samptePlotO
tf.aboutO
#_close()
#_editFonnat()
#_e)(poitO
#_help()
#_open()
*(_print()
#_read(input: InputStream, base: URL)
#_save()
ff„saveAs()

IS

i

j; j PlotApplIcatlon

\ IT'
1 Histogram | | Plot i

1

••'RotAppticationO
+RotApp[ication(till8: String)
+RotAppIlcat!on(plot: PlotBox. ar^
+maln(args: String)
#_p3iseArgs{): int
#_usageO: String

IS: StringO)

r 1 !
' ! i 1 1

I J t , _..i 1

Applet

:+init()

I

r

PlotLlve

PlotApplet

-_plot: Rot

♦RolApptetO

+newRot{): PlotBox
♦plotO: Plot

1 tLread(lnpiit: InputStream)
1 #_setRotSize(3ppletWicltti; int, apptetHeigt^t: int)

PtotUveApptet

+PlotUveApplet()

FIGURE 13.7. Core classes supportingappletsand applications. Most of the time, you will use the classes in
the plotml package, which extend these with the ability to read PlotML files.
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com.microstar.xml package

XmlParser

-I

HandlerBase |+parse(systemld: String,publicid:String,stream:
J+setHandler(tiandler: XmlHandler)

InputStream, encoding: String):

|-:-attrit>ute(name; String,value: String,specified: boolean) |
!-H:liarData(ct)ars: chaiQ, offset: int, len^h;int) !
j+endDocumentO i
{••'endElementtelementName: String) |
!+error(mess3ge: String, sysid: String, line: int, column : int)i
j+resolveEntity(systemld: String, publicid: String): Object i
j-i^tartDocumentO •
|-i-startElement(elementN3me: String) I
|-i-startExternalEntity(systemld: String) i

PlotBoxMLParser

+PlotML_DTD_1; String
ff.attributes: Hashtable
ff.currentCfiarOata: StringBuffer
#_parser: XmlParser
#_plot: PlotBox

+PlotBoxMLParser()
+PlotBoxMLParser(plot: PlotBox)
•••parse(base: URL, input: InputStream)
•r-parsejbase: URL, reader; Reader)
+parse<base: URL, text: String)
ff_checkForNulI(object: Object, message: String)
#_currentExternalEntity(): String

n
PlotMLParser

ff.connected; boolean
#_currentDataset: int
fLcurrentPointCount: double

tiandler

ttirows

configures

configures

+Pk)tMLParser()
+PlotMLParser(plot: Plot)
#_addPoint(connected: boolean, elementName: String)

/\

XmlExceptton

i+XmlException(message: String, systemid: String,line: int,column: int)i
l+getMessage(): String i
j-i-getSystemld{); String |
l+getLineO: int ;
!+getCotumn() i

plot package
j— ........

1 PlotBox

Plot

PlolApplet

l+_read(input: InputStream)!

PlotAppllcation

i+main(args: StringQ)
^_3bout()
j#_read(base: URL, input: InputStream)
.zzzzzzxzzzzz

EditablePlotMLApplet
PlotMLApplet

HIstgramMLParser

•i-HistogramMLParser(plot: Histogram)

EditablePlotMl.AppIlcatlon

r-EditablePlotMLApplicationO
+Edit3blePlotMl.Appiic3tion(3rgs: StringQ)
r-EditablePlotMLApplication(plot:EditablePlot, args: StringQ)

*EditablePlotMl.Applet()

HistogramMLApplet

•*-HistogramMl.Applet()

+PlotMLApplet()
#_newParser(): PlotMLParser

PlotMLAppllcatfon

-rPlotMLApplicationO
•rPlotMLApplication(args: StringQ)
•rPlotMLApplicationlplot: PlotBox, args:StringQ)
#_newParser(): PlotBoxMLParser

A

HistogramMLApplication

•••HistogramMLApplicationO
+KistogramMLApplication(args: StringQ)
•rHistogiamMLApplicatlofi(plot: Histogram, args: StringQ)

FIGURE 13.8. UML static structure diagram for the plotml package, a subpackage of plot providing classes
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}

inyplot.setTitle( "Title of plot");

}

This places the plot in the center of the applet space, stretching it to fill the space available. To control
the size independently of that of the applet, for some mysterious reason that only Sun can answer, it is
necessary to embed the plot in a panel, as follows:

public class MyApplet extends JApplet {
public void init() {

super.init();
Plot myplot = new Plot();

JPanel panel = new JPanel{);

getContentPane().add(panel);

panel.add(myplot);

myplot.setSize(500, 300);
myplot.setTitle("Title of plot");

}

}

The setSizeO method specifies the width and height in pixels. You will probably want to control the
background color and/or the border, using statements like;

myplot.setBackground(background color);
myplot.setBorder(new BevelBorder(BevelBorder.RAISED));

Altematively, you may want to make the plot transparent, which results in the backgroimd showing
through:

myplot.setOpaque(false);

13.4 PlotML File Format

Plots can be specified as textual data in a language called PlotML, which is an XML extension.
XML, the popular extensible markup language^ provides a standard syntax and a standard way of
defining the content within that syntax. The syntax is a subset of SGML, and is similar to HTML. It is
intended for use on the intemet. Plot classes can save data in this format (in fact, the Save operation
always saves data in this format), and the classes in the plotml subpackage, shown in figure 13.8, can
read data in this format. The key classes supporting this syntax are PlotBoxMLParser, which parses a
subset of PlotML supported by the PlotBox class, PlotMLParser, which parses the subset of PlotML
supported by the Plot class, and HistogramMLParser, which parses the subset that supports histo
grams.
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13.4.1 Data organization

Plot data in PlotML has two parts, one containing the plot data, including format information (how
the plot looks), and the other defining the PlotML language. The latter part is called the document type
definition, or DTD. This dual specification of content and structure is a key XML innovation.

Every PlotML file must either contain or refer to a DTD. The simplest way to do this is with the
following file structure:

<?xml version="l.0" standalone="no"?>

<!DOCTYPE model PUBLIC "-//UC Berkeley//DTD PlotML 1//EN"

"http://ptolemy.eecs.berkeley.edu/xml/dtd/PlotML_l.dtd">

<plot>

format commands...

datasets...

</plot>

Here, "format commands" is a set of XML elements that specify what the plot looks like, and
"datasets" is a set of XML elements giving the data to plot. The syntax for these elements is described
below in subsequent sections. The first line above is a required part of any XML file. It asserts the ver
sion of XML that this file is based on (1.0) and states that the file includes external references (in this
case, to the DTD). The second and third lines declare the document type (plot) and provide references
to the DTD.

The references to the DTD above refer to a "public" DTD. The name ofthe DTD is

-//UC Berkeley//DTD PlotML 1//EN

which follows the standard naming convention of public DTDs. The leading dash indicates that
this is not a DTD approved by any standards body. The first field, surrounded by double slashes, in the
name of the "owner" of the DTD, "uc Berkeley." The next field is the name of the DTD, "DTD
PlotML 1" where the "1" indicates version 1 of the PlotML DTD. The final field, "en" indicates that
the language assumed by the DTD is English.

In addition to the name of the DTD, the doctype element includes a URL pointing to a copy of
the DTD on the web. If a particular PlotML tool does not have access to a local copy of the DTD, then
it finds it at this web site. PtPlot recognizes the public DTD, and uses its own local version ofthe DTD,
so it does not need to visit this website in order to open a PlotML file.

An alternative way to specify the DTD is:

<?xml version="1.0" standalone="no"?>

<!DOCTYPE plot SYSTEM "DTD location">
<plot>

format commands...

datasets...

</plot>

Here, the DTD location is a relative or absolute URL.

A third altemative is to create a standalone PlotML file that includes the DTD. The result is rather

verbose, but has the general structure shown below:
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<?xinl version="l.0" standalone="yes"?>
<!DOCTYPE plot [

DTD information

]>

<plot>

format commands

datasets

</plot>

These latter two methods are useful if you extend the DTD.

The DTD for PlotML is shown in figure 13.9. This defines the PlotML language. However, the
DTD is not particularly easy to read, so we define the language below in a more tutorial fashion.

13.4.2 Configuring the axes

The elements described in this subsection are understood by the base class PlotBoxMLParser.

<title>Your Text Here</title>

The title is bracketed by the start element <title> and end element </title>. In XML, end ele
mentsare alwaysthe same as the start element, exceptfor the slash. The DTD for this is simple:

<!ELEMENT title {#PCDATA)>

This declares that the body consists ofPCDATA, parsed character data.
Labels for the X and Y axes are similar,

<xLabel>Your Text Here</xLabel>

<yLabel>Your Text Here</yLabel>

Unlike HTML, in XML, case is important. So the element is xLabel not XLabel.

The ranges of the X and Y axes can be optionally given by:

<xRange min="min" max="max"/>
<yRange inin=" min" inax=" max" / >

The arguments minand maxare numbers,possibly includinga sign and a decimalpoint. If they are not
specified, then the ranges are computed automatically from the data and padded slightly so that
datapoints are not plotted on the axes. The DTD for these looks like:

<!ELEMENT xRange EMPTY>

<!ATTLIST xRange min CDATA #REQUIRED
max CDATA #REQUIRED>

The EMPTY means that the element does not have a separate start and end part, but rather has a final
slash before the closing character The two ATTLIST elements declare that min and max
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<!ELEMENT plot (barGraph | bin | dataset | default | noColor | noGrid | size | title | wrap j xLabel
xLog I xRange | xTicks | yLabel | yLog | yRange | yTicks)*>

<!ELEMENT barGraph EMPTY>
<!ATTLIST barGraph width CDATA #IMPLIED

offset CDATA #IMPLIED>

<!ELEMENT bin EMPTY>

<!ATTLIST bin width CDATA #IMPLIED

offset CDATA #IMPLIED>

<!ELEMENT dataset (m | move | p | point)*>
<!ATTLIST dataset connected (yes | no) #IMPLIED

marks (none | dots ] points | various j pixels) #IMPLIED
name CDATA #IMPLIED

stems (yes | no) #IMPLIED>
<!ELEMENT default EMPTY>

OATTLIST default connected (yes | no) "yes"
marks (none | dots | points | various | pixels) "none"
stems (yes | no) "no">

<!ELEMENT noColor EMPTY>

<!ELEMENT noGrid EMPTY>

<!ELEMENT reuseDatasets EMPTY>

<!ELEMENT size EMPTY>

<!ATTLIST size height CDATA #REQUIRED
width CDATA #REQUIRED>

<!ELEMENT title (#PCDATA)>
<!ELEMENT wrap EMPTY>
<!ELEMENT xLabel (#PCDATA)>

<!ELEMENT xLog EMPTY>
<!ELEMENT xRange EMPTY>

<!ATTLIST xRange min CDATA #REQUIRED
max CDATA #REQUIRED>

<!ELEMENT xTicks (tick)+>
<!ELEMENT yLabel (#PCDATA)>
<!ELEMENT yLog EMPTY>

<!ELEMENT yRange EMPTY>
OATTLIST yRange min CDATA #REQUIRED

max CDATA #REQUIRED>
<!ELEMENT yTicks (tick)+>

<!ELEMENT tick EMPTY>

<!ATTLIST tick label CDATA #REQUIRED
position CDATA #REQUIRED>

<!ELEMENT m EMPTY>

<!ATTLIST m x CDATA #IMPLIED

y CDATA #REQUIRED
lowErrorBar CDATA #IMPLIED

highErrorBar CDATA #IMPLIED>
<!ELEMENT move EMPTY>

OATTLIST move x CDATA #IMPLIED

y CDATA #REQUIRED
lowErrorBar CDATA #IMPLIED

highErrorBar CDATA #IMPLIED>
<!ELEMENT p EMPTY>

OATTLIST p X CDATA #IMPLIED

y CDATA #REQUIRED
lowErrorBar CDATA #IMPLIED

highErrorBar CDATA #IMPLIED>
<!ELEMENT point EMPTY>

<!ATTLIST point x CDATA #IMPLIED
y CDATA #REQUIRED
lowErrorBar CDATA #IMPLIED

highErrorBar CDATA #IMPLIED>

FIGURE 13.9. The documenttype definition(DTD) for the PlotMLlanguage.
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attributes are required, and that they consist ofcharacter data.

The tick marks for the axes are usually computedautomaticallyfrom the ranges. Every attempt is
made to choose reasonable positions for the tick marks regardless of the data ranges (powers of ten
multiplied by 1,2, or 5 are used). However, they can also be specified explicitly using elements like:

<xTicks>

<tick lahel="label" position="position"/>
<tick label="label" position="position"/>

</xTicks>

A label is a string that replaces the number labels on the axes. A position is a number giving the loca
tion of the tick mark along the axis. For example, a horizontal axis for a frequency domain plot might
have tick marks as follows:

<xTicks>

<tick label="-PI" position="-3.14159"/>
<tick label="-PI/2" position="-1.570795"/>

<tick label="0" positions"0"/>
<tick labels"PI/2" positions"1.570795"/>
<tick labels"PI" positions"3.14159"/>

</xTicks>

Tick marks could also denoteyears, months,days of the week, etc. The relevant DTD information is:

<!ELEMENT xTicks (tick)+>

<!ELEMENT tick EMPTY>

<!ATTLIST tick label CDATA #REQUIRED

position CDATA #REQUIRED>

The notation (tick) + indicates that the xTicks element contains one or more tick elements.

If ticksare not specified, then the X and Y axes can use a logarithmic scalewith the following ele
ments:

<xLog/>

<yLog/>

The tick labels,which are computedautomatically, representpowers of 10. The log axis facility has a
number of limitations, which are documented in "Limitations" on page 13-24.

By default, tick marks are connected by a light greybackground grid. Thisgrid can be turnedoff
with the following element:

<noGrid/>

Also, by default, the first ten data sets are shown each in a unique color. The use ofcolor can be turned
offwith the element:
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<noColor/>

Finally, the rather specialized element

<wrap/>

enableswrapping of the X (horizontal) axis, which means that if a point is added with X out of range,
its X value will be modified modulo the range so that it lies in range. This command only has an effect
if the X range has been set explicitly. It is designed specifically to support oscilloscope-like behavior,
where the X value ofpoints is increasing, but the display wraps it around to left. A point that lands on
the right edge of the X range is repeated on the left edge to give a better sense of continuity. The fea
ture works best when points do land precisely on the edge, and are plotted from left to right, increasing
in X.

You can also specify the size of the plot, in pixels, as in the following example:

<size width="400" height="300">

All of the above commands can also be invoked directly by calling the corresponding public meth
ods from Java code.

13.4.3 Configuring data

Each data set has the form of the following example

<dataset name="grades" marks="dots" connected="no" stems="no">
data

</dataset>

All of the arguments to the dataset elementare optional. The name, if given,will appear in a legend
at the upper right of the plot. The marks option can take one of the following values:
• none: (the default) No mark is drawn for each data point.

• points: A small point identifies each data point.

• dots: A larger circle identifies each data point.

• various: Each dataset is drawnwith a unique identifying mark. There are 10such marks,so they
will be recycled after the first 10 data sets.

• pixels: A single pixel identified each data point.

The connected argument can take on the values "yes" and "no." It determines whether successive
datapointsare connectedby a line.The default is that they are. Finally, the stems argument,which can
also take on the values "yes" and "no," specifies whether stems should be drawn. Stems are lines
drawn from a plottedpoint down to the x axis. Plots with stems are often called "stem plots."

The DTD is:

<!ELEMENT dataset (m | move | p | point)*>
<!ATTLIST dataset connected (yes | no) #IMPLIED

marks (none | dots | points I various I pixels) #IMPLIED
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name CDATA #IMPLIED

stems (yes | no) #IMPLIED>

The default values of these arguments can be changed by preceding the dataset elements with a
default element, as in the following example:

<default connected="no" marks="dots" stems="yes"/>

The DTD for this element is:

<!ELEMENT default EMPTY>

<!ATTLIST default connected (yes | no) "yes"
marks (none | dots | points | various | pixels) "none"
stems (yes | no) "no">

If the following element occurs:

<reuseDatasets/>

then datasets with the same name will be merged. This makes it easier to combine multiple data files
that contain the same datasets into one file. By default, this capability is tumed off, so datasets with the
same name are not merged.

13.4.4 Specifying data

A dataset has the form

<dataset options>
data

</dataset>

The data itself are given by a sequence of elements with one of the following forms:

<point Y="yValue">
<point x="xVaIue" y="yValue">
<point Y="yValue" lowErrorBar="lov" highErrorBar="high">
<point x="xVaIue" y="yVaIue" lowErrorBar="Ioii^" highErrorBar="high">

To reduce file size somewhat, they can also be given as

<p y="yVaIue">

<p x="xValue" y="yVaIue">
<p y="yVaIue" lowErrorBar="Ioii^" highErrorBar="high">

<p x="xVaIue" y="yVaIue" lowErrorBar="lov" highErrorBar="high">

The first form specifies only a Y value. The X value is implied (it is the count ofpoints seen before in
this data set). The second form gives both the X and Y values. The third and fourth forms give low and
high error bar positions (error bars are use to indicate a range of values with one data point). Points
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given using the syntax above will be connected by lines if the connected option has been given value
"yes" (or ifnothing has been said about it).

Data points may also be specified using one ofthe following forms:

<move y="yValue">

<move x="xValue" y="yVaIue">

<move Y="yValue" lowErrorBar="ioiv" highErrorBar="high">
<move x="xValue" y="yValue" lowErrorBar= highErrorBar="hisrh">

<m y="yValue">

<m x="xValue" y="yValue">

<m y="yValue" lowErrorBar="Iov" highErrorBar="high">
<m x="xValue" y="yValue" lowErrorBar="Iov" highErrorBar="high">

This causes a break in connected points, if lines are being drawn between points. I.e., it overrides the
connected option for the particular data point being specified, and prevents that point from being
connected to the previous point.

13.4.5 Bar graphs

To create a bar graph, use:

<barGraph width= "JbarPi/idth" offset="barOffset"/>

You will also probably want the connected option to have value "no." The barwidth is a real num
ber specifying the width of the bars in the units of the X axis. The barOffset is a real number speci
fying how much the bar of the i-th data set is offset from the previous one. This allows bars to "peek
out" from behind the ones in front. Note that the front-most data set will be the first one.

13.4.6 Histograms

To configure a histogram on a set of data, use

<bin width="binIVidth" offset="binOffset"/>

The binWidth option gives the width of a histogram bin. I.e., all data values within one binwidth
are counted together. The binOffset value is exactly like the barOffset option in bar graphs. It
specifies by how much successive histograms "peek out."

Histograms work only on Y data; X data is ignored.

13.5 Old Textual File Format

Instances of the PlotBox and Plot classes can read a simple file format that specifies the data to be
plotted. This file format predates the PlotML format, and is preserved primarily for backward compat
ibility. In addition, it is significantly more concise than the PlotML syntax, which can be advanta
geous, particularly in networked applications.

In this older syntax, each file contains a set of commands, one per line, that essentially duplicate
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the methods of these classes. There are two sets of commands currently, those understood by the base
class PlotBox, and those understood by the derived class Plot. Both classes ignore commands that they
do not understand. In addition, both classes ignore lines that begin with "#", the comment character.
The commands are not case sensitive.

13.5.1 Commands Configuring the Axes

The following commands are understood by the base class PlotBox. These commands can be
placed in a file and then read via the readQ method of PlotBox, or via a URL using the PlotApplet
class. The recognized commands include:
• TitleText: string

• XLabel: string

• YLabel: string

These commands provide a title and labels for the X (horizontal) and Y (vertical) axes. A string is
simply a sequence of characters, possibly including spaces. There is no need here to surround them
with quotationmarks, and in fact, if you do, the quotationmarks will be included in the labels.

The ranges of the X and Y axes can be optionally given by commands like:
• XRange: min, max

• YRange: min, max

The arguments min and maxare numbers,possiblyincluding a sign and a decimal point. If they are not
specified, then the ranges are computed automatically from the data and padded slightly so that
datapoints are not plotted on the axes.

The tick marks for the axes are usually computedautomatically from the ranges. Every attempt is
made to choose reasonable positions for the tick marks regardless of the data ranges (powers of ten
multiplied by 1,2, or 5 are used). However, theycan alsobe specified explicitly usingcommands like:
• XTicks: label position, label position, ...

• YTicks: label position, label position, ...

A label is a string thatmustbe surrounded by quotation marks if it contains anyspaces. A position is
a number giving the location of the tickmark along the axis. For example, a horizontal axis for a fre
quency domain plot might have tick marks as follows:

XTicks: -PI -3.14159, -PI/2 -1.570795, 0 0, PI/2 1.570795, PI 3.14159

Tick marks could also denote years, months, days of the week, etc.

The X and Y axes can use a logarithmicscale with the following commands:
• XLog: on

• YLog: on

The tick labels, if computedautomatically, represent powersof 10.The log axis facility has a number
of limitations, which are documented in "Limitations" on page 13-24.

By default, tick marks are connected by a light greybackground grid. Thisgrid can be turnedoff
with the following command:
• Grid: off

It can be tumed back on with

• Grid: on
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Also,by default, the first ten data sets are shown each in a unique color. The use of color can be
turned off with the command:

• Color: off

It can be turned back on with

• Color: on

Finally, the rather specialized command
• Wrap: on

enables wrapping of the X (horizontal) axis, which means that if a point is added with X out of range,
its X value will be modified modulo the range so that it lies in range. This command only has an effect
if the X range has been set explicitly. It is designed specifically to support oscilloscope-like behavior,
where the X value ofpoints is increasing, but the display wraps it around to left. A point that lands on
the right edge of the X range is repeated on the left edge to give a better sense of continuity. The fea
ture works best when points do land precisely on the edge, and are plotted from left to right, increasing
inX.

All of the above commands can also be invoked directly by calling the corresponding public meth
ods from some Java code.

13.5.2 Commands for Plotting Data

The set of commands understood by the Plot class support specification of data to be plotted and
control over how the data is shown.

The style ofmarks used to denote a data point is defined by one of the following commands:
Marks: none

Marks: points

Marks: dots

Marks: various

Marks: pixels

Here, points are small dots, while dots are larger. If various is specified, then unique marks are
used for the first ten data sets, and then recycled. If pixels is specified, then a single pixel is drawn.
Using no marks is usefulwhen lines connect the points in a plot, which is done by default. If the above
directive appears before any DataSet directive, then it specifies the default for all data sets. If it
appears after a DataSet directive, then it applies only to that data set.

To disable connecting lines, use:
• Lines: off

To re-enable them, use

• Lines: on

You can also specify "impulses", which are lines drawn from a plotted point down to the x axis.
Plots with impulses are often called "stem plots." These are off by default, but can be turned on with
the command:

• Impulses: on

or back off with the command

• Impulses: off

If that command appears before any DataSet directive, then the command applies to all data sets. Oth
erwise, it applies only to the current data set.
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To create a bar graph, turn off lines and use any ofthe following commands:
• Bars: on

• Bars: width

• Bars: width, offset

The width is a real number specifying the width of the bars in the units of the x axis. The offset is a
real number specifying how much the bar of the i-th data set is offset from the previous one. This
allows bars to "peek out" from behind the ones in front. Note that the front-most data set will be the
first one. To tum off bars, use

• Bars: off

To specify data to be plotted, start a data set with the following command:
• DataSet: string

Here, string is a label that will appear in the legend. It is not necessaryto enclose the string in quota
tion marks.

To start a new dataset without giving it a name, use:
• DataSet:

In this case, no item will appear in the legend.

If the following directive occurs:
• ReuseDataSets: on

then datasets with the same name will be merged. This makes it easier to combine multiple data files
that contain the same datasets into one file. By default, this capabilityis tumed off, so datasetswith the
same name are not merged.

The data itself is given by a sequenceof commandswith one of the followingforms:
X, y

draw: x, y

move: x, y

X, y, yhowErrorBar, yHighErrorBar

draw: x, y, yhowErrorBar, yHighErrorBar

move: x, y, yhowErrorBar, yHighErrorBar

The draw conunand is optional, so the first two forms are equivalent. The move command causes a
break in connected points, if lines are being drawn between points. Thenumbers x andy arearbitrary
numbers as supported by the Double parserin Java (e.g." 1.2", "6.39e-15", etc.). If therearefournum
bers, then the last two numbers are assumed to be the lower and upper values for error bars. The num
bers can be separated by commas, spaces or tabs.

13.6 Compatibility

Figure 13.10 shows a small set of classes in the compat package that support an older ascii and
binaryfile formats used by the popularpxgraph program (an extension of xgraph to support binary
formats). The PxgraphApplication class can be invokedby the pxgraph executable in $FTII/bin. See
the PxgraphParser class documentation for information about the file format.
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13.7 Limitations

The plot package is a starting point, with a number of significant limitations.
• A binary file format that includes plot format information is needed. This should be an extension

of PlotML, where an external entity is referenced.

If you zoom in far enough, the plot becomes unreliable. In particular, if the total extent of the plot
ismore than 2^^ times extent ofthe visible area, quantization errors can result indisplaying points
or lines. Note that ip- is over 4 billion.

• The log axis facility has a number of limitations. Note that if a logarithmic scale is used, then the
values must be positive. Non-positive values will be silentiy dropped. Further log axis limita
tions are listed in the documentation of the _gridlnit() method in the PlotBox class.

• Graphs cannot be currently copied via the clipboard.

There is no mechanism for customizing the colors used in a plot.

plot package

Plot

configures

PxgraphParser

#_plot: Ptot

+PxgraphPars0r{plot: Plot)
+parseArgs(args: StringQ)
-••parseArgs(args: StringQ,base : URL)
-r-parsePxgraptiargstaigs: StringQ, base: URL)
•••read(input: InputStream)

PlotApplet

[+_read(input: InputStream)

PxgraphApplet

PlotApplicatlon

|-*'main(ar9s; StringQ)
i#_aboutO
j#_parseArgs(args: StringQ)
[#_re3^base; I^L,Input: InputStneam)

PxgraphAppIicatlon

+PxgraphApplication{)
+PxgraphApplication(args: StringQ)
•»-PxgraphApplication(plot: Ptot, args: StringQ)

FIGURE 13.10. The compat packageprovidescompatibilitywith the older pxgraphprogram.
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14.1 Introduction

When the first computers were built, it was possibleto programthem, but only through an arduous
manualprocess. One of the first pieces of software that was written was a bootloaderthat simplified
the process of reprogramming those computers. For example, the bootloader may load a program into
memory from a floppy drive. The bootloader was the first, simplest form of operating system. It pro
vided infrastructure for abstracting the process of initializing the code of computers. The simplest
operating system merely provides a mechanism for invoking other programs.

Later operating system layered services on top of the bootloader that provided more facilities to
easeprogramming and abstract hardware. Services likefile systems, devicedrivers, andprocess sched
uling provide mechanisms through which user applications use hardware resources. These services
provide a simpleabstraction layer throughwhich manypieces of computerhardwarecan be accessed.
These operating systems traditionallyprovided some sort of command shell, such as DOS or bash. In
some cases, the invocation mechanism takes the form of a graphical user interface, where icons repre
sent files and applications.

Some operatingsystems also provide more complexapplicationsupport, such as user preferences,
applicationcomponentmanagement,and file to applicationbinding.These services attemptto make it
easier to develop applications, however they are not strictlynecessaryfor developingapplications. For
example, it is fully possible to write a Windows application without using the registry, or COM
objects. However, because these services are integrated into the Operating System at a very low level,
using them can be rather tricky. Overwriting the wrong registry entry may prevent the operating sys-
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tern from working properly. Updating a COM object can prevent other applications from working
properly. Netscape and Internet Explorer constantly fightover the rightto openHTML files. Thediffi
culty arises because these services are built into the operating system and also impose requirements on
how applications are managed. These types of services are important when building usable applica
tions, but they are not appropriate for inclusion in a low-level operating system.

Vergil is a set of infrastructure tools that provides these application support services as another
operatingsystem layer. This layer is built on top of the hardwareabstraction layer while making mini
mal use of the operating system's application support infrastructure. Java is the perfect platform on
which to build these services, since it provides good hardware abstraction on a wide variety of plat
forms, but few services for building applications. We have used the infrastructure to build a design
application for Ptolemy II, but the infrastructure itself is general. Below we will describe the infra-
structural goals, the architecture, and how we have applied the infrastructure to the Ptolemy design
application. For information about using the Vergil Application to build a Ptolemy II model, see the
Using Vergil chapter.

14.2 Infrastructure

The goals of building design application infrastructure are somewhat different from the goals of
building a design application. Where an application is often described by the features that it imple
ments or the manipulation that it allows, infrastructure must provide solutions to common problems
within a certain area. Below we describe the various pieces ofVergil, and how each one makes it easier
to develop consistent, usable design applications.

14.2.1 Design Artifacts

The goal of a design application is the creation of a particular type ofdesign artifact. A design arti
fact is any electronic entity that is created to serve a specific purpose such as a text file, a circuit
design, or a piece of computer software. Design artifacts almost always have a variety of aspects, and
it is usually difficult to display all of these aspects at once. Good examples of this are Microsoft Pow
erPoint presentations. A presentation contains many slides, and each slide can be individually dis
played and manipulated. Each slide can contain many different kinds of objects (which are often
themselves distinct embedded design artifacts). The presentation itself can also contain timing, narra
tion and navigation information. The PowerPointapplication can change the informationdisplayed to
emphasize a particular aspect of the presentation, such as a particular slide or a slide overview or a
text-only view.

14.2.2 Storage policies

The most basic operation that almost any application must perform is the storage and retrieval of
designs. Most applications store design artifacts as files visible through the operating system, however
we would like to be somewhat more general and allow design artifacts to be stored in databases or
accessed through the World Wide Web. We believe that URLs are general enough to describe any such
location. The infrastructure that we would like build for handling files revolves around a storage pol
icy. The storage policy gives a basic set of consistent rules for how design objects are persistently
stored. In plain English, these rules can be simple, or fairly complex. One example of a simple storage
policy rule might be that to open a design artifact, the location is specified using a file browser dialog.
A more complex rule could state that a design artifact cannot be closed imexpectedly without giving
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the user an opportunity to save. Implementing a storage policy in basic infrastructure is good for sev
eral reasons. First of all, it prevents application writers from being concemed with relatively boring
parts of an application. Secondly, it is very important for application usability that the storage policy be
consistent.

14.2.3 Views

A particular design artifact may have different ways that it can be viewed and manipulated. For
example, an HTML document may be viewed as rendered HTML, or as plain text with HTML
markup. The infrastructure that we have built assumes that each different view of a design artifact is
associated with a top level frame. The creation of a view is in some respects independent from loading
a file. However, when a design artifact is first opened, a default view must be created for it. Further
more, when the last view ofthe artifact is destroyed, the artifact should be closed. In this way, the view
(or views) of a design artifact are exactly analogous to the file in which the design artifact is stored.
When all of the frames are gone, the file is conceptually 'closed' and not accessible.

This correspondence has some important ramifications in the design of our infrastructure. Since,
from the point of view ofthe user the frames are the file, they must all display consistent data. Further
more, opening a design artifact a second time should only create a new frame if the artifact is not
already open. If the design artifact is already open, then its views should simplybe made visible.

14.3 Architecture

The key to the Vergil infrastructure is a set of classes that represent the differentparts of common
design applications. The common application operationsare then expressed in terms of these classes.
This makes it easy to create new application tools that are integrated with others built with the infra
structure by simply extending a few classes.

14.3.1 Effigies and Tableaux

Eachdesignartifact is represented by an instance of the Effigy class. Eacheffigyis associated with
a URL, corresponding to the location of the persistent storage of the effigy. Each effigy also has an
identifier, which is the unique string that identifies the effigy. This identifiershould be a string repre
sentation of the effigy'sURL. Eachviewof the design artifact is represented by an instance of the Tab
leau class containedby the design artifact's effigy. Each tableau is associatedwith a single frame that
presents information from theeffigy. In somecases, in orderto reuse codefor tableaux, it is sometimes
usefiil to have an effigy containother effigies. The static structure diagram for this is shown in figure
14.1.

14.3.2 Effigy Factories

Notice that the Effigy base class does not specify how it represents a particular design artifact.
This is intentional, since we are building infrastructure and do not wish to restrict ourselves to any par
ticular representation. However, at some point the infrastructure will need to create new effigies that
are useful for a particularapplication. In this situation, the Factorydesign pattern is appropriate,which
is shown in figure 14.2. An example of how the Effigy and EffigyFactory base classes are used is
shown in figure 14.3. The example shows an effigy and factory appropriate for handling text docu
ments.

Heterogeneous Concurrent Modeling and Design 14-3



Vergil

The EffigyFactory class contains two factory methods for creating new effigies. The first factory
method takes a source URL and is used when opening a file. The second method does not take a source
URL and is used when creating a new blank effigy. These two methods roughly correspond to the
familiar File->Open and File->New operations.

The EffigyFactory base class is also useful for implementing a deference mechanism. The base
class can contain other effigy factories and will defer to the first contained factory that successfully
creates a effigy for a given file. This deference mechanism allows the factories to be ordered so that a

Effigy

+identlfier: StringAttribute
+url: URLAttribute

•••Effigy(worksp3ce: Workspace)
•••Effigy(container: CompositeEntity, name: String)
-i-closeTableauxO: boolean
•••getTableauFactoryO: TableauFactory
+getWritableFile(); File
•••IsModlfiableO; tioolean
•••IsModlfiedO: boolean
•••numberOfOpenTableauxO: int
-••setModifiabIe(flag: boolean)
•••setModified(flag; boolean)
+setTableauFactory(factory: TableauFactory)
+showTableaux()
+topEffigy(): Effigy
+wTiteFile(file: File)

CompositeEntity

1..n

1..n

Figure 14.1 Static structure diagram for effigies and tableaux.

+size: SizeAttribute

-Jrame: _JFrame
-.master: boolean

Tableau

+Tableau(container: CompositeEntity, name: String)
-•-Tableau(w: Wori<sp3ce)
-i-closeO: boolean
+getFrame{): JFrame
+getTitle(): String
-*-lsEdltable(); boolean
-<-isMaster(): boolean
-•-setEditable(flag: boolean)
+setFrame{frame: JFrame)
-i-setMastertflag: boolean)
+setTltle(title: String)
*sttow()

AbstractClass creator AbstractFactory

createe

•••createO: AbstractClass

14-4

ConcreteCiass creator ConcretePactory

createe

Figure 14.2 Static structure diagram for the Factory pattern.
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more specific effigy(such as one that represents HTMLstructure) can be checkedbefore a more gen
eral one (such as an effigy that simply contains a text string).

14.3.3 Tableau Factories

Once an effigy has been created, a frame on the screen doesn't actually exist to represent it yet.
The frame is created by a tableau, and the tableau is created by another factory. The TableauFactory
class implements the same deference mechanism as the EffigyFactoryclass. The static structure for the
tableau factory class, along with the related classes from the text example above is shown in figure
14.4.

The TableauFactory class extends Attribute, so a tableau factory can be attached to any Ptolemy II
object. When that object is opened (either by opening the file that defines it or by looking inside the
object), then the tableau factory that is attached to it determines what tableau is opened for the model.

14.3.4 Model Directory

All effigies in the application are contained (directly, or indirectly in another effigy) in an instance
of the ModelDirectory class. The model directory allows entities to be found by identifier. Whenever a
design artifact is loaded from a URL, the model directory is searched first to prevent the artifact from
being loaded again.

CompositeEntlty

Effigy

EffigyFactory

+EffigyFactory(workspace: Workspace)
+EffigyFactory{container: CompositeEntity, name: String)
+canCreateBlankEfngy(): boolean
•••createEfngy(container: CompositeEntity): Effigy
•t-createEffigy(container: CompositeEntity, base: URL, in : URL): Effigy
•KietExtensignfurhJJRLt: String

TextEffigy.Factory

+Factory(container: CompositeEntity, name: String)

createe

TextEffigy

-_doc: Document

+TextEffigy(workspace: Workspace)
+TextEfflgy(container: CompositeEntity, name: String)
+getDocument(): Document
+newTextEffigy(container: CompositeEntity, text: String): TextEffigy
+newTextEffigy(container: CompositeEntity, base : URL, in: URL): TextEffigy
+setDocument(doc: Document)

creator

Figure 14.3 Static structure ofclasses that are useful for handling text documents.
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14.3.5 Configurations

An instanceof the Configuration class represents the configuration of an application. That config
uration includes not only the directory of currently open effigies but also the effigy factories and tab
leau factories. The static structure for the Configuration and ModelDirectory classes is show in figure
14.5.

TableauFactoiy

•H»'eateTabIeau(effigy: Effigy); Tableau
*TableauFactor^container: NamedObJ, name: String)

CompositeEntlty

Tableau

T
TextEditorTableau.Factory creator TextEdltorTableau

aeatee

•4-Factory(container: CompositeEntity, name: String) -••TextEdltorTableau(container: Effigy, name: String)

TableauFrame | TextEdltor creates

+text: JTextArea

+TextEditor()
+TextEditor(title: Siring)
•>-TextEditor(title : String, document: Document)
+scroHToEnd()

Figure 14.4 Static structure of how the TableauFactory class, and an example of how tableau factories are

r* i
j CompositeEntlty;
i

Configuration

+_DIFtECTORY_NAI^E; String

+Configuration(wort<space; Workspace)
+createPrimaryTableau(efligy: Effigy): Tableau
•rgetDirectoryO: ModeilSirectory
•••getEffigyCmodel: NamedObj): PtolemyEffigy
+openModeI(base: URL. in: URL, identifier; String); Tableau
•ropenModeltbase: URL. in; URL, identifier: String, EfflgyFactory: factory): Tableau
+openModel(entity: NamedObj): Tableau
+stiowAIIO

14-6

J<}-

1..1

1..n

Efngy

ModelDirectory

1..1

directory

tableau

0..1

+ModeID!rectofy(container: CompositeEntlty, name : String)
•«-getEffigy(identtfier: String): Effigy

0..1 TableauFactory

i..rt

1..n Tableau
<-- Olh1

Factory

delegates aeation of tableau

1..1

EfflgyFactory

001.n

delegates creation of effigy

Figure 14.5 Static structure diagram for the Configuration and ModelDirectory classes.
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14.3.6 TableauFrame

The TableauFrame class uses the above classes to implement a number of common operations.
The intention of this class is that the type-specific subclasses of the Tableau class would create
instances of TableauFrame specialized for displaying particular information. Generally, the Top base
class implements the menus for these operations and provides some abstract methods that are used for
reading and writing files. The TableauFrame class implements these abstract methods. For the rest of
this dociunent, the line between the Top and TableauFrame classes is not terribly important, and will be
purposefully blurred for sake of clarity. The static structure for the TableauFrame class (and its super
classes) is show in figure 14.6.

14,4 Common operations

The goal of the infrastructure classes above is to implement common operations, such as storing
and creating new design artifacts, in a consistent fashion. These operations are (for the most part) actu
ally implemented in the TableauFrame base class. Below are descriptions of each of these operations,
and how they are implemented using the architecture from the previous section.

ptolemy.gui.Top

#_directory: File
#_fileFilter: FileFilter
#_fileM8nu: JMenu
#_fileMenultems; JMenultemQ
#_helpMenu: JMenu
#_helpMenultems: JMenultemQ
#_menubar: JMenuBar
#_statusBar: StatusBar

file: File

modified: boolean

+Top()
+centerOnScreen()
+qetLastOverallURLft: String

•i-isModifiedO: boolean
+report(ex: Exception)
+report(message: String)
+report(message: String, ex: Exception)
+setModified(b: boolean)
+setLastC)verallURLft

#_about()
#_addMenus()
#_clear(): boolean
#_close(): boolean
#_exit()
#_getName(): String
#_h8lp()
#_openO
#_openURL()
#_print()
#_read(uH: URL)
#_save(): boolean
#_saveAs(): boolean
#_writeFile(^le: File)

1

J Frame 1

1 1
i !

f

ptolemy.gul.StatusBar

-progress; JProgressBar
-_message: JTextField

+StatusBar()
+progressBar(): JProgressBar
+setMessage{message; String)

TableauFrame

#_initialSaveAsFileName: String
#_viewMenu: JMenu
-tableau: Tableau

JPanel

+TableauFrame()
+TableauFrame(tableau: Tableau)
+getConfiguration(): Configuration
+getDirectory{): ModelDirectory
+getEffigy(): Effigy
+getEffigy{model: NamedObj): PtolemyEffigy
+getTableau(): Tableau
+setTableau(tableau: Tableau)
#_getDefaultlconlmage(): Image

Figure 14,6 Static structure diagram for the TableauFrame class.
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14.4.1 Opening an Existing Design Artifact

The File->Open menu item first opens a file browser to allow the user to select a URL, and then
uses the Configuration to open the URL. The configuration firsts checks the model directory to see if
there is already an effigy associated that URL. If there is no such effigy, then the configuration uses its
effigy factory to create a new effigy, and then uses its tableau factory to create a tableau for the effigy.
Lastly, the tableau is made visible, which results in it creating a frame on the user's screen. The
sequence diagram is shown in figure 14.7. In addition, this first tableau is set to be a master, and it is
set to be editable if the URL represents a writable location.

Alternatively, there may already an effigy present in the directory that is associated with the URL
chosen by the user. In this case, the tableaux (if any) contained by the effigy are simply made visible.
Remember that a single application is capable of opening a wide variety of design artifacts by virtues
of the effigy factory deference mechanism explained in section 14.3.2.

t:TableauFrame ciConfiguration

14-8

bJFileChooser

she wOpenDiakigO
•

u:URL

openMojel(u,...)

c.d:ModelDirectory

c.d.e:TextEffigy

c.d.e.t:TextTableau

getEffigy(u)
•]

null

createEffisy(c.d, u, u)

c.ef:

TextEffigy$Factory
c.tf;

TexlTableau$Factory

new TextE figy(c.d, e)

c.d.e

crea teTableau(c d.e)

new TextT<ibleau(c.d.e

c.d.e.t

Figure 14.7 Sequence diagram for opening an existing design artifact.
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14.4.2 Creating a New Design Artifact

Creatinga new design artifact using the File->Newmenu item is somewhat similar to opening an
existingdesign artifact. However, only effigy factories that declare that they can create a blank effigy
that is not associated with a previous URL may be used. Fiuthermore, since an application can con
ceivably create different types of blank effigies, it is not possible to use the effigy factory deference
mechanism to determine which effigy factory is used. The user must have another way of specifying
which effigy factory will create the blank effigy. When a TableauFrame is created, the File->New
menu is populated with a menu item for each possible effigy factory. The name ofthe menu item is the
same as the name of the effigy factory. The sequence diagram for creating a new design artifact is
shown in figure 14.8.

14.4.3 Saving Changes to a Design Artifact

The TableauFrame class implements menu items for both File->Save and File->Save As. The Save
operation rather simple. If the effigy is already associated with a URL that is writable, then the effigy is
simply written out to that location. Otherwise, the Save As operation is invoked instead. This may
occur if the design artifact was created from scratch as a blank effigy, or if the artifact was loaded by
HTTR The Save As operation is a bit more complicated. The user specifies a destination URL using a
file chooser, just as when opening a new design. However, before writing the file it is necessary to
check that the URL does not already exist and that the URL is not already open. In these cases, the user
is prompted to be sure that important data is not inadvertently lost by being overwritten.

t:TableauFrame c:Confguration

c.diModflDirectory

c.d.eiTextEffigy

c.d.e.tiTextTableau

creg teEffigy{c.d

c.ef:

TextEffigy$Factory
c.tf:

TextT ableau$Factory

new TextE Tigy(c.d, e)

c.d.e

crea teTableau(c d.e)

new TextTiibleau(c.d.e

c.d.e.t

Figure 14.8 Sequence diagram for creating a new design artifact
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14.4.4 Closing designs and Exiting the Application

The only complexities in implementing these operations are again involved with ensuring that
importantdata is not lost. In this case, we simply ensure that all designs are closed before exiting the
application, and that a design is not closed without attempting to save it first. Both of these cases are
prevented by setting a flag in each effigy whenever it is modified. If the flag indicates that the effigy
has been modified, then the Save operation is invoked before discarding the effigy.

Activating the close operation of a frame only results in the tableau associated with that frame
being removed. The tableau's effigy and the other tableaux associatedwith that effigy are not generally
affected. There is a subtlety that arises because the application itself exists separately from any visual
representation of it. In other words, a tableau (and therefore a frame) exists for each effigy, but there is
no tableau that simply represents the application asa whole^ The subtlety is that closing all the effi
gies should result in the application exiting. A similar issue occurs for a similar reason with effigies,
and closing all of a tableaux associated with any effigy should result in that effigy being closed.

14.5 Ptolemy Model Visualization

We have used the Vergil infrastructure to construct several visualizations that are capable of view
ing and manipulating a Ptolemy model. For the most part, these editors are intended to work with any
Ptolemy Kernel model and are not limited to models based on the Actor package or a specific domain.
This is an extremely powerful use of the Ptolemy abstract syntax, since it allows manipulation not only
of executable models (see Chapter 7), but also actor libraries (see Figure 14.12) and the Vergil config
uration itself (see Figure 14.5), since they are also based on the Ptolemy Kemel (see Chapter 6). This
section serves a dual purpose: it describes not only a usable set of application tools, but also a well
developed example of using the Vergil infrastructure to present multiple views of a design artifact.

In order to represent a Ptolemy model in Vergil, there must be an effigy that has a reference to it.
The PtolemyEffigy class maintains this reference, and is also responsible for reporting any change
requests (see Section 6.7) in the model that fail. It also contains an inner class that is an effigy factory
and writes out a model using MoML (see Chapter 5). The static structure diagram for these classes is
shown in Figure 14.9 There is also an accompanying frame class, PtolemyFrame, that is intended to be
used as shown in Figure 14.10. The tableaux that are capable of creating a frame for a Ptolemy effigy
are described in the following sections.

14.5.1 Graph Tableau

The Ptolemy graph editor graphically represents the contained entities, ports, and relations of any
Ptolemy composite entity. It allows syntax-directed editing of the model and browsing of important
design information, such as Actor source code and HTML documentation. A screen shot is shown in
Figure 14.11. The left hand side provides a palette of available entities and a high-level navigation
window. Entities can be dragged and dropped from the palette. Extemal ports are created by using the
toolbar button, and relations can be created from the toolbar button, or by control clicking on the sche
matic. Links to relations can be created be made by control clicking on a port or a relation. The visual
ization also allows connections directly from one port to another. These links correspond to a relation

Although it is probably good design practice to create an initial effigy and tableau that represent the
application and allows the user to open an initial file.
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«interface» |
ChangeLlstener | Effigy

RolemyEffigy

EffigyFactory

PtoIemyEffigy$Factory

- parser: MoMLParser-_model: NamedObj
+PtolemyEffigy(workspace: Workspace)
+PtolemyEffigy(container: CompositeEntity, name: String)
+getModel(): NamedObj
•»-setModel(model: NamedObj)

+Factory(contalner: ComposlteEntity, name : String)

model

NamedObj

0..1

y

blank

ComponentEntity |

a component named
"blank" is cloned to

create a blank effigy.

Figure 14.9 Static Structure for Ptolemy effigies.

Effigy ! 1..n I TableauFrame

I 1..1
Tableau i i

0..1

I1..1

PtolemyEffigy

1..1

1..n

1..n

creator ActorGraphTableau

1..1

PtolemyFrame

-.model: CompositeActor

+Pto!emyFrame(model: CompositeActor)
•••PtolemyFrameimodel: CompositeActor, tableau: Tableau)
•••getModelO: CompositeEntity
••^etModel(mode!: CompositeEntity)

A

BasicGraphFrame

1..1 ActorGraphFrame

createe -.controller: EditoiGraphController

MctorGraphFrametentity: CompositeEntity. tableau: ActorGraphTableau)

Figure 14.10 Static structure of the Ptolemy graph editor.
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that is linked to both ports, but the relation is not explicitly represented itself.

Note that although the editor allows any Ptolemy model to be edited, it does display some informa
tion that is specific to the actor package. For example, ports are rendered differently depending on
whether they are input or output ports, and the multiports of the Multiply actor are rendered hollow.
The director (in this case, an SDF director) is also displayed as a green box.

The classes used to implement this tableau are shown in Figure 14.12. An instance ofActorGraph-
Frame is created by the tableau. The ActorOraphFrame class overrides the _createGraphPane() factory
method to create the graph editor itself, while most of the user interface components (like menus and
the palette window) are created by the BasicGraphFrame base class. This allows the code in
BasicGraphFrame to be reused with a different visual representation, such as the FSM editor described
in Section 14.5.2.

14.5.2 FSM Tableau

The Ptolemy FSM editor graphically represents the the states and transitions of a Ptolemy FSM
domain model. It allows syntax-directed editing of the model, along with links to important design
information, such as actor source code and HTML documentation. A screen shot is shown in Figure
14.13. States can be added by control-clicking on the schematic, or by dragging and dropping from the
palette on the left. Transitions are created by control dragging from an existing state.

The classes used to implement this tableau are shown in Figure 14.14. An instance of FSMGraph-
Frame is created by the tableau. The FSMGraphFrame class overrides the _crealeGraphPane factory
method to create the graph editor itself, while most of the user interface components (like menus and
the palette window) are created by the GraphFrame base class. Note the similarity to the ActorGraph-
Frame class described in section 14.5.1

Fie View Edt Graph Det«q Heto

\z z m - ^

This corrposlte actor produces a magnllude-onty
frequency-domain representation of the Input.
Specifically, the output Is the magnitude of the
FFT of the input m decit>els. The number of inputs
required to produce any output is 2\)rder, and the
nun^r of outputs produced willtie 2'^rder. The
output represents frequencies from -pi to pi
radians per second, centered at sro frequency.
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pava.awt.datatransfer.ClipboardOwner

ptolemy.actor.gui.PtolemyFrame |

—-i
•_model: CompositeActor

+getModel(): CompositeEntity i
+setModel(model: CompositeEntify^

5
BasicGraphFrame

#Jgraph; diva.graph.JGraph
#_topLjbrary: CompositeEntity

+BasicGraphFrame(entity: CompositeEntity, tableau : Tableau)
+copy()
+cut()
+delete()
+getCenter(): Point2D
+getJGraph(): diva.graph.JGraph
+getVisibleCanvasRectangle(): Rectangle2D
+getVisibleRectangle(): Rectangle2D
+layoutGraph()
+paste()
+setCenter(center: Point2D)
+zoom()
+zoomFit()
+zoomReset()
#_createGraphPan0O: diva.graph.GraphPane
#_getDiractoryO: File
#_setDirectory(directory: File)

ActorGraphFrame

-.controller: EditorGraphController

ptolemy.kemel.utll.ChangeLlstener|

•"T
!java.awt.printPrintable|

Tableau

creator ActorGraphTableau

1..1

1..1

createe

+ActorGraphFrame(entity: CompositeEntity, tableau: ActorGraphTableau)

iTl
r '

lActorEdltorGraphController

Figure 14.12 Static structure of the Ptolemy graph editor.
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14.5.3 Tree Tableau

Disregarding the relations between ports, a Ptolemy model is exactly the same as a hierarchical
tree of entities, ports, and attributes. The Tree Editor graphically renders a Ptolemy model in just this
way. It is most usetul when the attributes of each object, or the hierarchy of objects needs to be empha
sized. The current implementationof the Tree Tableauonly allows browsing of the model, and is fairly

File View Edit Graph Debug Help

Z| Z|^| Z
-A- annotation

-P- parameters
-V- requireVersion=2.1-devel

O state ^

louche

P2 Force

P1 Stickiness

Figure 14.13 Vergil Screenshot.
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Separate pi = PI; Separate.p2 ° PI; Separate.v1 • VI; Separate.v2 • VI

touchsd.isPresenl
Togeiber.p • Pi; Togsthsr.va(V1*V2V2.0; Togeiher.stlcMnesa • 10.0

Tableau

FSMGraphPrame

-.controller: FSMGraphControiler
+FSMGraphFrame{entity : CompositeEntity, tableau : Tableau)

1..1 creator FSMGraphTableau

createe 1..1

FSMGraphControiler

Figure 14.14 Staticstructure of the PtolemyFSM graph editor.
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incomplete. It is built using the swingJTree component, and the samebase classes are used to display
the palettein the GraphEditordescribed in section 14.5.1. The onlydifference is that the Tree Tableau
uses a FullTreeModel, which includes both entities and attributes, while the palette uses an EntityTree-
Model,which only includesentities.The static structureofthe ptolemy.vergil.tree package is shown in
Figure 14.15.

14.6 Customizing User Interactions

Various mechanisms are available in Vergil supporting customized renditions. Most of these have
the form of attributes that can be inserted in objects that have visual renditions on the screen.

14.6.1 Customizing Icons

An icon for an actor consists of a background figure decorated with ports and a name. The back
ground figure is easy to customize by creating a property called "_iconDescription" and configuring it
with SVG code. SVG (scalable vector graphics) is an XML notation for vector graphics. Currently,
only a subset of SVG is supported. An example of a suitable attribute is given below:

<property name="_iconDescription"
class="ptolemy.kernel.util.SingletonConfigurableAttribute">

<configure>

I I
I Tableau |

A

I
PtolemyFrame |

I

TreeTableau

TreeCellRenderer creator i 1..1

1..1 createe

T reeTableau$TreeFrame

+_createGraphPane(): GraphPane

RolemyTreeCellRenderer PTree

Figure 14.15 Static structure of the ptolemy.vergil.treepackage.
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<svg>

<text x="20"

style="font-size:14; font-family:SansSerif; fillrblue"
y="20">Text here.</text>

</svg>

</configure>
</property>

This creates an icon that consists of text only, reading "Text here."
It is also possible to create an alternative icon that is used when a small rendition is needed, as for

example in an icon library. Such an icon description is identical to the one above, except that it is
called "_smallIconDescription" instead of"_iconDescription."

14.6.2 Customizing Icon Rendering

By default, an icon is rendered with the name of the instance above it. Including an attribute called
called "_hideName" results in the name not being shown. Normally, this is an instance of SingletonAt-
tribute.

By default, the name is rendered above the icon. Including an attribute called "_centerName"
causes the name to be rendered in the center of the icon.

14.6.3 Customizing the Context Menu

If an icon contains a NodeControllerFactory (which is an attribute), then the factory given by that
attribute is used to create a node controller. This can be used to customize the context menu that pops
up with a right click over an icon. Such an attribute is created as follows:

<property name="_controllerFactory"

class="ptolemy.vergil.ptolemy.kernel.NodeControllerFactory"/>

Normally, you will want to create a Java class that is a subclass ofNodeControllerFactory.

14.6.4 Customizing Editing Parameters

By default, the Configure command in the context menu brings up an editor to edit the parameters
of an object. If the object contains an instance of EditorFactory (an attribute), then that factory is used
to bring up an editor. For example:

<property name="_editorFactory"
class="ptolemy.vergil.toolbox.AnnotationEditorFactory"/>

brings up the editor that is used to edit annotations.

The BditorPaneFactory class (also an attribute) also allows customization, but uses the default edit
parameters frame, with buttons at the bottom). See the class documentation for details.

14.6.5 Customizing the Editor for a Model

The configuration defines the default tableaux that are used to display a model or a component
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within a model (when you look inside). A model or component canoverride the tableau that is usedby
containing an attribute that is an instance of TableauFactory. If the following example is stored in a
file, thenwhen that file is opened, a tree viewis usedratherthan the default schematic editor:

<?xml version="l.0" standalone="no"?>

<!DOCTYPE entity PUBLIC "-//UC Berkeley//DTD MoML 1//EN"
"http://ptolemy.eecs.berkeley.edu/xml/dtd/MoML_l.dtd">

<entity naine="top" class="ptolemy.actor.TypedCompositeActor">
<property name="_tableauFactory"

class="ptolemy.vergil.tree.TreeTableau$Factory"/>
<entity name="xxx" class="ptolemy.actor.TypedCompositeActor">
</entity>

</entity>

In the following example, the default schematic editor is used when the file is opened, but when you
look inside the composite actor, a tree editor will be used:

<?xml version="1.0" standalone="no"?>

<!DOCTYPE entity PUBLIC "-//UC Berkeley//DTD MoML 1//EN"

"http://ptolemy.eecs.berkeley.edu/xml/dtd/MoML_l.dtd">
<entity name="top" class="ptolemy.actor.TypedCompositeActor">

<entity name="xxx" class="ptolemy.actor.TypedCompositeActor">
<property name="_tableauFactory"

class="ptolemy.vergil.tree.TreeTableau$Factory"/>
</entity>

</entity>
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PARTS:

DOMAINS

The chapters in this part describe existing Ptolemy domains. The domains implementmodels of com
putation, which are summarized in chapter 1. Most of these models of computation can be viewed as a
framework for component-based design, where the framework defines the interaction mechanism
between the components. Some ofthe domains (CSP, DDE, and PN) are thread-oriented, meaning that
the components implement Java threads. These can be viewed, therefore, as abstractions upon which to
build threaded Java programs. These abstractions are much easier to use (much higher level) than the
raw threads and monitors of Java. Others (CT, DB, SDF) of the domains implement their own schedul
ing between actors, rather than relying on threads. This usual results in much more efficient execution.
The Giotto domain, which addresses real-time computation, is not threaded, but has concurrency fea
tures similar to threaded domains. The FSM domain is in a category by itself, since in it, the compo
nents are not producers and consumers of data, but rather are states. The non-threaded domains are
described first, followed by FSM and Giotto, followed by the threaded domains. Within this grouping,
the domains are ordered alphabetically (which is an arbitrary choice).





D£ Domain

Authors: Lukito Muliadi

Winthrop Williams
Edward A. Lee

15.1 Introduction

The discrete-event (DE) domain supports time-oriented models of systems such as queueing sys
tems, communication networks, and digital hardware. In this domain, actors communicate by sending
events^ where an event is a data value (a token) and a time stamp. A DE scheduler ensures that events
are processed chronologically according to this time stamp by firing those actors whose available input
events are the oldest (having the earliest time stamp of all pending events).

A key strength in our implementation is that simultaneous events (those with identical time
stamps) are handled systematically and deterministically. Another second key strength is that the glo
bal event queue uses an efficient structure that minimizes the overhead associated with maintaining a
sorted list with a large number of events.

15.1.1 Model Time

In the DE model of computation, time is global, in the sense that all actors share the same global
time. The current time of the model is often called the model time or simulation time to avoid confu

sion with current real time.

As in most Ptolemy II domains, actors communicate by sending tokens through ports. Ports can be
inputports, outputports, or both. Tokens are sent by an outputport and receivedby all inputports con
nected to the output port throughrelations. When a token is sent from an output port, it is packaged as
an event and stored in a global event queue. By default, the time stamp of an output is the model time,
althoughspecializedDE actors can produce events with future time stamps.

Actors may also request that they be fired now,or at some time in the future, by calling the fireAt-
CurrentTimeO, fireAtQ, or fireAtRelativeTimeQ, methods of the director. Eachof theseplaces a pure
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event (onewitha timestamp, butno data) on theeventqueue. A pureeventcanbe thought of as setting
an alarm clock to be awakened in the future. Sources (actors with no inputs) are thus able to be fired
despitehaving no inputs to trigger a firing. Moreover, actors that introduce delay (outputs have larger
time stamps than the inputs) can use this mechanism to schedule a firing in the future to produce an
output. The fireAtCurrentTimeQ method provides a mechanism for achieving a zero delay by atomi-
cally gettingthe currentmodel time and queuingan event with that time stamp. This permits I/O actors
to have themselvesfired in real-timewheneverdata arrives at a physical I/O port.

In the global event queue, events are sorted based on their time stamps. An event is removed from
the global event queue when the model time reaches its time stamp, and if it has a data token, then that
token is put into the destination input port.

At any point in the execution of a model, the events stored in the global event queue have time
stamps greater than or equal to the model time. The DE director is responsible for advancing (i.e.
incrementing) the model time when all events with time stamps equal to the current model time have
been processed (i.e. the global event queue only contains events with time stamps strictly greater than
the current time). The current time is advanced to the smallest time stamp of all events in the global
event queue.

15.1.2 Simultaneous events

An important aspect of a DE domain is the prioritizing of simultaneous events. This gives the
domain a dataflow-like behavior for events with identical time stamps. It is done by assigning a depth
to each actor and a microstep to each phase of execution within a given time stamp. Each depth is a
non-negative integer, uniquely assigned; i.e. no two actors are assigned the same depth.

The depth of an actor determines the priority of events destined to that actor, relative to other
events with the same time stamp and the same microstep. The highest priority events are those destined
to actors with the lowest depth.

Consider the simple topology shown in figure 15.1. Assume that actor Yis not a delay actor, mean
ing that its output events have the same time stamp and microstep as its input events (this is suggested
by the dotted arrow). Suppose that actor X produces an event with time stamp x. That event is avail
able at ports B and D, so the scheduler could choose to fire actors Yor Z. Which should it fire? Intu
ition tells us it should fire the upstream one first, Y, because that firing may produce another event with
time stamp x at port D (which is presumably a multiport). It seems logical that ifactor Z is going to get
one event on each input channel with the same time stamp, then it should see those events in the same
firing. Thus, if there are simultaneous events at B and D, then the one at B will have higher priority.

The depths are determined by a topological sort of a directed acyclic graph (DAG) of the actors.
The DAG of actors follows the topology of the graph, except when there are declared delays. Once the
DAG is constructed, it is sorted topologically. This simply means that an ordering of actors is assigned

FIGURE 15.1. If there are simultaneous events at B and D, then the one at B will have higher priority
because it may trigger another simultaneous event at D.

15-2 Ptolemy II



DE Domain

such thatan upstream actorin theDAG is earlier in theordering than a downstream actor. Thedepth of
an actor is defined to be its position in this topological sort, starting with zero. For example, in figiure
\5.\,Xwill have depth 0, Ywill have depth 1, and Z will have depth 2.

In general, a DAGhas several correct topological sorts. The topological sort is not unique, mean
ingthat the depths assigned to actors are somewhat arbitrary. Butan upstream actorwill always havea
lower depth than a downstream actor, unless there is an intervening delay actor. Thus, given simulta
neous input events with the same microstep, an upstream actor will always fire before a downstream
actor. Such a strategy ensures that the execution is deterministic, assuming the actors onlycommuni
cate via events. In other words, even though there are several possible choices that a scheduler could
makefor an orderingof firings, all choices that respectthe prioritiesyield the same results.

There are situations where constructing a DAG following the topology is not possible. Consider
the topology shownin figure 15.2. It is evident fromthe figure that the topology is not acyclic. Indeed,
figure 15.2 depicts a zero-delay loopwheretopological sort cannotbe done. The directorwill refuseto
run the model, and will terminate with an error message.

The TimedDelay actor in DE is a domain-specific actor that asserts a delay relationship between
its input and output. Thus, if we insert a TimedDelay actor in the loop, as shown in figiue 15.3, then
constructingthe DAG becomesonce again possible. The TimedDelayactor breaks the precedences.

Note in particular that the TimedDelay actor breaks the precedences even ifits delay parameter is
set to zero. Thus, the DE domain is perfectly capableof modelingfeedback loopswith zero time delay,
but the model builder has to specify the order in which events should be processed by placing a Timed-
Delay actor with a zero value for its parameter. When modeling multiple zero-delay feedback paths,
simultaneity of the fed back signals is modeled by having the same number of TimedDelay actors in
each feedback path.

15.1.3 Iteration

At each iteration, after advancing the current time, the director chooses all events in the global
event queue that have the smallest time stamps, microstep, and depth (tested in that order). The chosen
events are then removed from the global event queue and their data tokens are inserted into the appro-

3—Qj
FIGURE 15.2. An example ofa directed zero-delay loop.

T Delay T

FIGURE 15.3. A Delay actor can be used to break a zero-delay loop.

Heterogeneous Concurrent Modeling and Design 15-3



DE Domain

priate input ports ofthe destination actor. Then, the director iterates the destination actor; i.e. it invokes
prefireO, fireQ, and postfireQ. All of these events are destined to the same actor, since the depth is
unique for each actor.

A firing may produce additional events at the current model time (the actor reacts instantaneously,
or has zero delay). There also may be other events with time stamp equal to the current model time still
pending on the event queue. The DE director repeats the above procedure until there are no more
events with time stamp equal to the current time. This concludes one iteration of the model. An itera
tion, therefore, processesall events on the event queue with the smallest time stamp.

15.1.4 Getting a Model Started

Before one of the iterations described above can be run, there have to be initial events in the global
event queue. Actors may produce initial pure events or regular output events in their initializeQ
method. Thus, to get a model started, at least one actor must produce events. All the domain-polymor
phic timed sources described in the Actor Libraries chapter produce pure events, so these can be used
in DE. We can define the start time to be the smallest time stamp of these initial events.

15.1.5 Pure Events at the Current Time

An actor calls fireAtQ to schedule a pure event. The pure event is a request to the scheduler to fire
the actor sometime in the future. However, the actor may choose to call fireAtQ with the time argu
ment equal to the current time. In fact, the preferred method for domain-polymorphic source actors to
get started is to have code like the following in their initializeQ method:

Director director = getOirector();
director.fireAt(this, director.getCurrentTime());

This will schedule a pure event on the event queue with microstep zero and depth equal to that of the
calling actor.

An actor may also call fireAtQ with the current time in its fireQ method. This is a request to be
refired later in the current iteration. This is managed by queueing a pure event with microstep one
greater than the current microstep. In fact, this is only situation in which the microstep is incremented
beyond zero.

A pure event at the current time can also be scheduled by code like the following:

Director director = getDirector();
director.fireAtCurrentTime(this);

This code is equivalent to the previous example when used within standard actor methods like ini
tializeQ and fireQ. This is because the director never advances model time while an actor is being ini
tialized or fired. However, when methods such as I/O callbacks queue events at the current time, they
need to use the latter code. This is because the director runs in a separate thread from the callback and,
in the former code, will occasionally advance the model time between the call to getCurrentTimcQand
the call to fireAtQ.

15.1.6 Stopping Execution

Execution stops when one of these conditions become true:
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• Thecurrent timereaches thestop limey setby calling the setStopTimeQ method of the DE director.
• Theglobal eventqueue becomes empty andthestopWhenQueuelsEmpty parameter of the director

is true.

Events at the stoptimeareprocessed before stopping the model execution. Theexecution endsby call
ing the wrapupO methodof all actors. WrapupO is calledevenwhenexecution has been stoppeddue to
an exception. Therefore, throwing an exception in the wrapupQ method of an actor is not recom
mended as this exceptionwill mask the original exception,making the source ofthe originalexception
difficult to locate.

It is also possible to explicitly invoke the iterateQ method of the manager for some fixed number
of iterations. Recall that an iterationprocesses all events with a given time stamp, so this will run the
model through a specified number of discrete time steps.

Note that an actor can prevent execution from stopping properly if it blocks in its fireQ method. An
actor which blocks in fireQ should have a stopFireQ method which, when called, notifies the fireQ
method to cease blocking and return.

15.2 Overview of The Software Architecture

The UML static structure diagram for the DE kernel package is shown in figure 15.4. For model
builders, the important classes are DEDirector, DEActor and DEIOPort. At the heart of DEDirector is
a global event queue that sorts events according to their time stamps and priorities.

The DEDirector uses an efficient implementation of the global event queue, a calendar queue data
structure [12]. The time complexity for this particular implementation is 0(1) in both enqueue and
dequeue operations, in theory. This means that the time complexity for enqueue and dequeue opera
tions is independent of the number of pending events in the global event queue. However, to realize
this performance, it is necessary for the distribution of events to match certain assumptions. Our calen
dar queue implementation observes events as they are dequeued and adapts the structure of the queue
according to their statistical properties. Nonetheless, the calendar queue structure will not prove opti
mal for all models. For extensibility, alternative implementations of the global event queue can be real
ized by implementing the DEEventQueue interface and specifying the event queue using the
appropriate constructor for DEDirector.

The DEEvent class carries tokens through the event queue. It contains their time stamp, their
microstep, and the depth of the destination actor, as well as a reference to the destination actor. It
implements the java.lang.Comparable interface, meaning that any two instances of DEEvent can be
compared. The private inner class DECQEventQueue.DECQComparator, which is provided to the cal
endar queue at the time of its construction, performs the requisite comparisons ofevents.

The DEActor class provides convenient methods to access time, since time is an essential part ofa
timed domain like DE. Nonetheless, actors in a DE model are not required to be derived from the
DEActor class. Simply deriving from TypedAtomicActor gives you the same capability, but without
the convenience. In the latter case, time is accessible through the director.

The DEIOPort class is be used by actors that are specialized to the DE domain. It supports annota
tions that inform the schedulerabout delays throughthe actor. It also provides two additionalmethods,
overloaded versions of broadcastQ and sendQ. The overloaded versions have a second argument for
the time delay, allowing actors to send output data with a time delay (relative to current time).

Domain polymorphic actors, such as those described in the Actor Libraries chapter, have as ports
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FIGURE 15.4. UML static structure diagram for the DE kernel package.
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instancesof TypedlOPort, not DEIOPort,and thereforecannot produce events in the future directly by
sending it through output ports. Note that tokens sent through TypedlOPortare treated as if they were
sent through DEIOPort with the time delay argiunent equal to zero. Domain polymorphic actors can
produce events in the future indirectly by using the fireAtQ and fireAtRelativeTimeQ methods of the
director. By calling fireAtQ or fireAtRelativeTimeQ, the actor requests a refiring in the future. The
actor can then produce a delayed event during the refiring.

15.3 The DE Actor Library

The DE domain has a small library of actors in the ptolemy.domains.de.lib package, shown in fig
ure 15.5. These actors are particularly characterized by implementing both the TimedActor and
SequenceActor interfaces. These actors use the current model time, and in addition, assume they are
dealing with sequences of discrete events. Some of them use domain-specific infrastructure, such as
the convenience class DEActor and the base class DETransformer. The DETransformer class provides
an input and output port that are instances of DEIOPort. The Delay and Server actors use facilities of
these ports to influence the firing priorities. The Merge actor merges events sequences in chronological
order.

15.4 Mutations

The DE director tolerates changes to the model during execution. The change should be queued
using requestChangeQ. While invoking those changes, the method invalidateScheduleQ is expected to
be called, notifying the director that the topology it used to calculate the priorities of the actors is no
longer valid. This will result in the priorities being recalculated the next time prefireQ is invoked.

An example of a mutation is shown in figures 15.6 and 15.7. Figure 15.7 defines a class that con
structs a simple model in its constructor. The model consists of a clock connected to a recorder. The
method insertClockQ creates an anonymous inner class that extends ChangeRequest. Its executeQ
method disconnects the two existing actors, creates a new clock and a merge actor, and reconnects the
actors as shown in figure 15.6.

When the insertClockQ method is called, a change request is queue with the top-level composite
actor, which delegates the request to the manager. The manager executes the request after the current
iteration completes. Thus, the change will always be executed between non-equal time stamps, since
an iteration consists ofprocessing all events at the current time stamp.

Actors that are added in the change request are automatically initialized. Note, however, one sub-

clock recorder

before

clock

clock2

merge recorder
P

after

FIGURE 15.6. Topologybefore and after mutationfor the example in figure 15.7.
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FIGURE 15.5. The library ofDE-specific actors.
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tlety. The next to last line of the insertClockO method is:

_rec.input.createReceivers();

package ptolemy.domains.de.1ib.test;

import ptolemy.kemel.util.*;
import ptolemy.kernel.*;
import ptolemy.actor.
import ptolemy.actor.lib.*;
import ptolemy.domains.de.kernel.*;
import ptolemy.domains.de.lib.*;

public class Mutate (

public Manager manager;

private Recorder _rec;
private Clock _clock;
private TypedCompositeActor _top;
private DEDirector _director;

public Mutate 0 throws IllegalActionException,
NameDuplicationException {

_top = new TypedCompositeActor0 ;
_top.setName(•top *) ;

manager = new Manager();
_director = new DEDirector{) ;
_top.setDirector(_director) ;
_top. setMcinager (manager) ;

_clock = new Clock(_top, "clock*);
_clock.values.setExpression("[1.0]");
_clock.offsets.setExpression("[O.O]");
_clock .period.setExpression("1.0");
_rec = new Recorder(_top, "recorder");
_top.connect(_clock.output, _rec.input);

}

public void insertClockO {
// Create an anonymous inner class
ChangeRequest change = new ChangeRequest(_top, "test2") (

public void _execute() throws IllegalActionException,
NcimeDuplicationException {

_clock.output.unlinkAllO ;
_rec.input.unlinkAll();
Clock clock2 = new Clock(_top, "clock2");
clock2.values.setExpression{"[2.0]");
clock2.offsets.setExpression("[0.5]");
clock2.period.setExpression("2.0");
Merge merge = new Merge(_top, "merge");
_top.connect(_clock.output, merge.input);
_top.connect(clock2.output, merge.input);
_top.connect(merge.output, _rec.input);
// Any pre-existing input port whose connections
// are modified needs to have this method called.

_rec.input.createReceivers();
.director.invalidateSchedule();

}

};
_top.reques tChange(change) ;

FIGURE 15.7. An example ofa class that constructs a model and then mutates it.
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This methodcall is necessarybecausethe connections of the recorderactor have changed,but since the
actor is not new, it will not be reinitialized. Recall that the preinitializeQ and initializeO methods are
guaranteedto be calledonly once, and one of the responsibilities ofthe preinitializeQ method is to cre
ate the receivers in all the input ports of an actor. Thus, whenever connections to an input port change
during a mutation, the mutation code itself must call createReceiversQ to reconstruct the receivers.
Note that this will result in the loss of any tokens that might already be queued in the preexisting
receivers of the ports. It is because ofthis possible loss of data that the creation ofreceivers is not done
automatically. The designer of the mutation should be aware of the possible loss of data.

There are two additional subtleties about mutations. One involves events left on the queue and the
other involves locked resources.

If an actor produces events in the future via DEIOPort, then the destination actor will be fired even
if it has been removed from the topology by the time the execution reaches that future time. This may
not always be the expected behavior. The Delay actor in the DE library behaves this way, so if its des
tination is removed before processing delayed events, then it may be invoked at a time when it has no
container. Most actors will tolerate this and will not cause problems. But some might have unexpected
behavior. To prevent this behavior, the mutation that removes the actor should also call the disableAc-
torQ method of the director.

If an actor locks a resource, such as an I/O port or DatagramSocket, it typically releases this
resource in its wrapupQ method. However, when the actor is removed while the model is executing,
wrapupQ never gets called. This case can be handled by overriding the setContainerQ method with the
following code:

public void setContainer(CompositeEntity container)
throws IllegalActionException, NameDuplicationException {

if (container != getContainer()) {
wrapup();

}

super.setContainer(container);

}

When overriding setContainerQ in this way, it is best to make wrapupQ idem potent because future
implementations of the director might automatically unlock resources of removed actors.

15.5 Writing DE Actors

It is very common in DE modeling to include custom-built actors. No pre-defined actor library
seems to prove sufficient for all applications. For the most part, writing actors for the DE domain is no
different than writing actors for any other domain. Some actors, however, need to exercise particular
control over time stamps and actor priorities. Such actors use instances of DEIOPort rather than Type-
dlOPort. The first section below gives general guidelines for writing DE actors and domain-polymor
phic actors that work in DE. The second section explains in detail the priorities, and in particular, how
to write actors that declare delays. The final section discusses actors that operate as a Java thread.
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15.5.1 General Guidelines

The points to keep in mind are:
• Whenan actorfires, not all portshavetokens, andsomeportsmay havemorethanone token. The

time stamps of the eventsthat containedthese tokens are no longerexplicitly available. The cur
rent model time is assumed to be the time stamp of the events.

• If the actor leaves unconsumed tokens on its input ports, then it will be iterated again before model
time is advanced. This ensures that the current model time is in fact the time stamp ofthe input
events. However, occasionally, an actor will want to leave unconsumed tokens on its input ports,
and not be fired again until there is some other new event to be processed.To get this behavior, it
should retumfalse from prefireO- This indicates to the DE director that it does not wish to be iter
ated.

• If the actor retumsfalse from postfireQ, then the director will not fire that actor again. Events that
are destined for that actor are discarded.

• When an actor produces an output token, the time stamp for the output event is taken to be the cur
rent model time. If the actor wishes to produce an event at a future model time, one way to accom
plish this is to call the director's fireAtQ method to schedule a future firing, and then to produce
the token at that time. A second way to accomplish this is to use instances ofDEIOPort and use the
overloaded sendQ or broadcastQ methods that take a time delay argument.

• If an actor contains a callback method or a private thread (as opposed to the public runQ method of
the Thread Actor discussed in section 14.5.3), and this callback or thread wishes to produce an
event now or at a future model time, then a reliable way to achieve this is to call either the fireAt-
CurrentTimeQ method or the fireAtRelativeTimeQ method. These methods may safely be called
asynchronously, yielding real-time liveness. By contrast, fireAtQ must be called from within a
standard actor method.

• The DEIOPort class (see figure 15.4) can produce events in the future, but there is an important
subtlety with using these methods. Once an event has been produced, it cannot be retracted. In par
ticular, even if the actor which produced the event (or the destination actor of the event) is deleted
before model time reaches that of the future event, the event will be delivered to the destination. If
you use fireAtQ, fireAtCurrentTimeQ, or fireAtRelativeTimeQ instead to generate delayed events,
then if the actor is deleted (or retumsfalse from postfireQ) before the future event, then the future
event will not be produced.

• By convention in Ptolemy II, actors update their state only in the postfireQ method. In DE, the
fireQ method is only invoked once per iteration, so there is no particular reason to stick to this con
vention. Nonetheless, we recommend that you do in case your actor becomes useful in other
domains. The simplest way to ensure this is follow the following pattern. For each state variable,
such as a private variable named _count,

private int _count;

create a shadow variable

private int _countShadow;

Then write the methods as follows:
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public void fire() {

_countShadow = _count;

. . . perform some computation that may modify _countShadow . . .
}

public boolean postfireO {
_count = _countShadow;

return super.postfire();

}

This ensures that the state is updated only in postfireO-

In a similar fashion, delayed outputs (produced by either mechanism) should be produced only in
the postfireO method, since a delayed outputs are persistent state. Thus, fireAtO should be called
in postfireO only, as should the overloaded sendO and broadcastO of DEIOPort.

15.5.2 Examples

SimplifiedDelay Actor. An example of a domain-specific actor for DE is shown in figure 15.8. This
actor delays input events by some amount specified by a parameter. The domain-specific features of
the actor are shown in bold. They are:

• It uses DEIOPort rather than TypedlOPort.

• It has the statement:

input.delayTo(output);

This statement declares to the director that this actor implements a delay from input to output. The
actor uses this to break the precedences when constructing the DAG to find priorities.

• It uses an overloaded sendQ method, which takes a delay argument, to produce the output. Notice
that the output is produced in the postfireQ method, since by convention in Ptolemy II, persistent
state is not updated in the fireQ method, but rather is updated in the postfireQ method.

Server Actor. The Server actor in the DE library (see figure 15.5) uses a rich set of behavioral proper
ties of the DE domain. A server is a process that takes some amount of time to serve "customers."
While it is serving a customer, other arriving customers have to wait. This actor can have a fixed ser
vice time (set via the parameter servicelime, or a variable service time, provided via the input port
newServiceJime). A typical use would be to supply random numbers to the newServiceTime port to
generate random service times. These times can be provided at the same time as arriving customers to
get an effect where each customer experiences a different, randomly selected service time.

The (compacted) code is shown in figure 15.9. This actor extends DETransformer, which has two
public members, input and output^ both instances of DEIOPort. The constructor makes use of the
delayToQ method of these ports to indicate that the actor introduces delay between its inputs and its
output.

The actor keeps track of the time at which it will next be free in the private variable
_nextTimeFree. This is initialized to minus infinity to indicate that whenever the model begins execut
ing, the server is free. The prefireQ method determines whether the server is free by comparing this
private variable against the currentmodeltime. If it is free, then this method retumstrue, indicating to
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thescheduler thatit canproceed withfiring the actor. If theserver is notfree, thentheprefireQ method
checks to see whether there is a pending input, and if there is, requests a firing when the actor will
become free. It then retums false, indicating to the scheduler that it does not wish to be fired at this
time. Note that the prefireQ method uses the methods getCurrentXimeQ and fireAtQ of DEActor,
which are simply convenient interfaces to methods of the same name in the director.

The fireQ method is invoked only if the server is free. It first checks to see whether the newSer-
viceTimeport is connected to anything, and if it is, whether it has a token. If it does, the token is read
and used to update the serviceTime parameter. No more than one token is read, even if there are more
in the input port, in case one token is being provided per pending customer.

The fireQ method then continues by reading an input token, if there is one, and updating
_nextTimeFree. The input token that is read is stored temporarily in the private variable _currentlnput.
The postfireQ method then produces this token on the output port, with an appropriate delay. This is
done in the postfireQ method rather than the fireQ method in keeping with the policy in Ptolemy II that
persistent state is not updated in the fireQ method. Since the output is produced with a future time
stamp, then it is persistent state.

Note that when the actor will not get input tokens that are available in the fireQ method, it is essen-

package ptolemy.doraains.de.lib.test;

import ptolemy.actor.TypedAtoraicActor;
import ptoleity.domains.de.kernel.DEIOPort;
import ptolen^.data.DoubleToken;
import ptolemy.data.Token;
import ptolemy.data.expr.Parameter;
import ptolemy.actor.TypedCompositeActor;
import ptoleny.kernel.util.IllegalActionException;
import ptolemy.kernel.util.NameDuplicationException;
import ptolemy.kernel.util.Workspace;

public class Sin^jleDelay extends TypedAtoraicActor {

public SimpleDelay(TypedCompositeActor container, String name)
throws NameDuplicationException, IllegalActionException

super(container, name);
input = new DEIOPort(this, "input", true, false);
output = new DBlOPort(this, "output", false, true);
delay = new Parameter(this, "delay", new DoubleToken(l.O));
delay.setTypeEquals(DoubleToken.class);
input.delayTo(output);

}

public Parameter delay;
public DEIOPort input;
public DEIOPort output;
private Token _currentlnput;

public void fireO throws IllegalActionException {
_currentlnput = input.get(0);

}

public boolean postfireO throws IllegalActionException {
output.send(0, _currentlnput,

((DoubleTo]cen)delay.getToken()).doubleValue());
return super.postfireO ;

}
)

FIGURE 15.8. A domain-specific actor in DE.
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package ptoieray.domains.de.lib; ~~ ~~~~
import statements ...
public class Server extends DETransformer {

public DEIOPort newServiceTime;
public Parameter serviceTime;

private Token _currentlnput;
private double _nextTimeFree = Double.NBGATIVE_INFINITY;

public Server(TypedCompositeActor container. String name)
throws NameDuplicationException, IllegalActionException {

super(container, name);
serviceTime = new Parameter(this, "serviceTime", new DoubleToken(l.O));
serviceTime.setTypeEquals(BaseType.DOUBLE);
newServiceTime = new DEIOPort(this, "newServiceTime", true, false);
newServiceTime.setTypeEquals(BaseType.Double);
output.setTypeAtLeast(input);
input.delayTo(output);
newServiceTime.delayTo(output);

)

... attributeChangedO, cloneO methods ...

public void initialize() throws IllegalActionException {
super.initialize0;
_nextTimeFree = Double.NEGATIVE_INFINITY;

}

public boolean prefireO throws IllegalActionException {
DEDirector director = (DEDirector)getDirector () .-DEDirector dir = (DEDirector)getDirector(),

if (director.getCurrentTimeO >= _nextTimeFree) {
return true;

} else {

// Schedule a firing if there is a pending token so it can be served,
if (input.hasToken(0)) {

director.fireAt(this,_nextTimeFree);

}
return false;

)

)

public void fireO throws IllegalActionException {
if (newServiceTime.getWidthO > 0 && newServiceTime.hasToken(0)) {

DoubleToken time = (DoubleToken)(newServiceTime.get(0));
serviceTime.setToken(time);

}
if (input.getWidth() > 0 && input.hasToken(0)) {

_currentlnput = input.get(O);
double delay = ((DoubleToken)serviceTime.getToken()).doubleValue();
_nextTimeFree = ((DEDirector)getDirector()).getCurrentTimeO + delay;

} else {
_currentInput = null;

}

)

public boolean postfireO throws IllegalActionException {
if (_currentlnput != null) {

double delay = ((DoubleToken)serviceTime.getToken()).doubleValueO;
output.send(0, _currentlnput, delay);

)
return super.postfireO ;

)

FIGURE 15.9. Code for the Server actor. For more details, see the source code.
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tialthat prefireQ return false. Otherwise, the DEscheduler will keep firing theactor until the inputs are
all consumed,which will never happen if the actor is not consuminginputs!

Like the SimpleDelay actor in figure 15.8, this one produces outputs with future time stamps,
using theoverloaded sendQ method of DBIOPort thattakes a delay argument. There is a subtlety asso
ciated withthisdesign. If the model mutates during execution, andthe Serveractoris deleted, it cannot
retract events that it has alreadysent to the output. Those events will be seen by the destination actor,
even if by that time neitherthe servernor the destination are in the topology! This could lead to some
unexpected results, but hopefully, if the destination actor is no longer connected to anything, then it
will not do much with the token.

15.5.3 Thread Actors

In some cases, it is useful to describe an actor as a thread that waits for input tokens on its input
ports. The thread suspends while waiting for input tokens and is resumedwhen some or all of its input
ports have input tokens. While this description is functionally equivalent to the standard description
explainedabove, it leverageson the Java multi-threading infrastructure to save the state information.

Considerthe code for the ABRecognizeractor shownin figure 15.10. The two code listings imple
ment two actors with equivalent behavior. The left one implements it as a threaded actor, while the
right one implements it as a standard actor. We will from now on refer to the left one as the threaded
description and the right one as the standard description. In both descriptions, the actor has two input
ports, inportA and inportB, and one output port, outport. The behavior is as follows.

Produce an output event at outport as soon as events at inportA and inportB occurs
in thatparticular order, and repeat this behavior.

Note that the standard description needs a state variable state, unlike the case in the threaded
description. In general the threaded description encodes the state information in the position of the
code, while the standard description encodes it explicitly using state variables. While it is true that the

public class ABRecognizer extends DEThreadActor {
StringToken msg = new StringToken("Seen AB");

// the run method is invoked when the thread

//is started,

public void runO {
while (true) {

waitForNewInputs();
if (inportA.hasToken(0)) {

IOPort[] nextlnport = (inportB);
waitForNewInputs(nextlnport);
outport.broadcast(msg);

}

}

public class ABRecognizer extends DEActor {
StringToken msg = new StringToken("Seen AB");

//We need an explicit state variable in
// this case,

int state = 0;

public void fireO {
switch (state) {

case 0:

if (inportA.hasToken(0)) {
state = 1;

break;

)
case 1:

if (inportB.hasToken(0)) (
state = 0;

outport.broadcast(msg);

)

}

}

FIGURE 15.10. Code listings for two style of writing the ABRecognizer actor.
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context switching overhead associated with multi-threading applicationreduces the performance, we
argue that the simplicity and clarity of writing actors in the treaded fashion is well worth the cost in
some applications.

The infrastructure for this feature is shown in figure 15.4. Towrite an actor in the threaded fashion,
one simply derives from the DEThreadActor class and implements the runQ method. In many cases,
the content of the runQ method is enclosed in the infinite 'while(true)' loop since many useful
threaded actors do not terminate.

The waitForNewInputsQ method is overloaded and has two flavors, one that takes no arguments
and another that takes an lOPort array as argument. The first suspends the thread until there is at least
one input token in at least one of the input ports, while the second suspends until there is at least one
input token in any one of the specified input ports, ignoring all other tokens.

In the current implementation, both versionsof waitForNewInputsQ clear all inputports before the
thread suspends. This guarantees that when the thread resumes, all tokens available are new, in the
sense that they were not available before the waitForNewInputQ method call.

The implementation also guarantees that between calls to the waitForNewInputsQ method, the rest
of the DB model is suspended. This is equivalent to saying that the section ofcode between calls to the
waitForNewInputQ method is a critical section. One immediate implication is that the result of the
method calls that check the configuration of the model (e.g. hasTokenQ to check the receiver) will not
be invalidated during execution in the critical section. It also means that this should not be viewed as a
way to get parallel execution in DE. For that, consider the DDE domain.

It is important to note that the implementation serializes the execution of threads, meaning that at
any given time there is only one thread running. When a threaded actor is running (i.e. executing inside
its runQ method), all other threaded actors and the director are suspended. It will keep running until a
waitForNewInputsQ statement is reached, where the flow of execution will be transferred back to the
director. Note that the director thread executes all non-threaded actors. This serialization is needed

because the DE domain has a notion of global time, which makes parallelism much more difficult to
achieve.

The serialization is accomplished by the use ofmonitor in the DEThreadActor class. Basically, the
fireQ method of the DEThreadActor class suspends the calling thread (i.e. the director thread) until the
threaded actor suspends itself (by calling waitForNewInputsQ). One key point of this implementation
is that the threaded actors appear just like an ordinary DE actor to the DE director. The DEThreadActor
base class encapsulates the threaded execution and provides the regular interfaces to the DE director.
Therefore the threaded description can be used whenever an ordinary actor can, which is everywhere.

The code shown in figure 15.11 implements the run method of a slightly more elaborate actor with
the following behavior:

Emit an output O as soon as two inputs A and B have occurred. Reset this behavior
each time the input R occurs.

Recent work has extended the DE Director to support parallel execution in the form of actors contain
ing private threads and callbacks. Future work in this area may involve extending the infrastructure to
support additional concurrency constructs, such as preemption, other forms of parallel execution, etc.
It might also be interesting to explore new concurrency semantics similar to the threaded DE, but with
out the 'forced' serialization.
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15.6 Composing DE with Other Domains

One of the major concepts in Ptolemy II is modeling heterogeneous systems through the use of
hierarchical heterogeneity. Actors on the same levelof hierarchy obeythe sameset of semantics rules.
Inside some of these actors may be another domainwith a differentmodel of computation. This mech
anism is supported through the use of opaque compositeactors. An example is shown in figure 15.12.
The outermost domain is DE and it contains seven actors, two of them are opaque and composite. The
opaque composite actors contain subsystems, which in this case are in the DE and CT domains.

15.6.1 DE inside Another Domain

The DE subsystem completes one iteration whenever the opaque composite actor is fired by the

public void runO {
try {

while (true) {

// In initial state..

waitForNewInputs();
if (R.hasTo]cen(0)) (

// Resetting..
continue;

}
if (A.hasToken(O)) (

// Seen A..

IOPort[] ports = {B,R);
waitForNewInputs(ports);
if (!R.hasTo]cen(0)) (

// Seen A then B..

0.broadcast (new DoubleTo)cen (1.0));

lOPort[1 ports2 = (R);
waitForNewInputs(ports2);

} else {

// Resetting
continue;

)
} else if (B.hasToken(O)) {

// Seen B..

lOPortd ports = {A,R};
waitForNewInputs(ports);
if (!R.hasToken(0)) {
// Seen B then A..

0.broadcast(new DoubleToken(1.0));
IOPort[] ports2 = (R);
waitForNewInputs(ports2);

} else {
// Resetting
continue;

)
} // while (true)

} catch (IllegalActionException e) {
getManagerO.notifyListenersOfException(e);

)
)

FIGURE 15.11. The runQ method ofthe ABRO actor.
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outer domain. One of the complications in mixing domains is in the synchronization of time. Denote
the current time of the DE subsystem by and the current time of the outer domain by ^
iteration of the DEsubsystem is similar to an iteration of a top-level DEmodel, except thatpriorto the
iteration tokens are transferred from the portsofthe opaque composite actors into theports of the con
tained DE subsystem, and after the end of the iteration, the director requests a retire at the smallest
time stamp in the event queue of the DE subsystem. This presiunes that the DE subsystem knows at
what time stamp the it, or one of its contained actors, will wish to be retired. Future work may remove
this limitation, allowing real-time events (such as from I/O) to propagate out of a DE subsystem. Cur
rently the DE domain can handle such asynchronous events only if it is not inside another domain.

The transfer of tokens from the ports of the opaque composite actor into the ports of the contained
DE subsystem actors is done in the transferlnputsQ method of the DE director. This method is
extended from its default implementation in the Director class. The implementation in the DEDirector
class advances the current time of the DE subsystem to the current time of the outer domain, then calls
supertransferlnputsQ. It is done in order to correctly associate tokens seen at the input ports of the
opaque composite actor, ifany, with events at the current time of the outer domain, touten
events into the global event queue. This mechanism is, in fact, how the DE subsystem synchronize its
current time, with the current time of the outer domain, director
advances time by looking at the smallest time stamp in the event queue of the DE subsystem). Specifi
cally,before the advancement of the current time of the DE subsystemti„„gr is less than or equal to the
touten fh® advancement tinner's equal to the tenter

Requesting a retiring is done in the postfireQ method of the (inner) DE director by calling the
fireAtQ method of the executive (outer) director. Its purpose is to ensure that events in the DE sub-
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FIGURE 15.12. An example of heterogeneous and hierarchical composition. The CT subsystem and DE
subsystem are inside an outermost DE system. This example is developed by Jie Liu [59].
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systemare processed on time with respect to the current time of the outer domain,
Note that if the DE subsystem is fired due to the outer domain processing a retire request, then

there may not be any tokens in the input port of the opaquecompositeactor at the beginning of the DE
subsystem iteration. In that case, no new events with time stamps equal to tguter
global event queue. Interestingly, in this case, the time synchronization will still work because
will be advanced to the smallest time stamp in the global event queue which, in turn, has to equal
because we always request a retire according to that time stamp.

15.6.2 Another Domain inside DE

Due to its nature, any opaque composite actor inside DE is opaque and therefore, as far as the DE
Director is concerned, behaves exactly like a domain polymorphic actor. Recall that domain polymor
phic actors are treated as functions with zero delay in computation time. To produce events in the
future, domain polymorphic actors request a retire from the DE director and then produce the events
when it is retired.
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16
CT Domain

Author: Jie Liu

16.1 Introduction

The continuous-time (CT) domain in Ptolemy II aims to help the design and simulation of systems
that can be modeled using ordinary differential equations (ODEs). ODEs are often used to model ana
log circuits, plant dynamics in control systems, lumped-parameter mechanical systems, lumped-
parameter heat flows and many other physical systems.

Let's start with an example. Consider a second order differential system,

m^t) + bz{t) + kz{t) = u(t) . (I)
>>(/) = c • z{t)
z(0) = 10,z(0) = 0.

The equations could be a model for an analog circuit as shown in figure 16.1(a), where z is the voltage

(D R1 (?) R2 (T^ R3aYvWV-Y ^AAA/ o

(a) A circuit implementation.

ptDof-mass

(b) A mechanical implementation.

FIGURE 16.1. Possible implementations of the system equations.
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m = R\R2C\'C2

k = R\C\+R2C2

b = 1

c =
RA

R2+RA'

CT Domain

(2)

Or it could be a lumped-parameter spring-mass mechanical model for the system shown in figure
16.1(b), where z is the position of the mass, m is the mass, k is the spring constant, b is the damping
parameter, and c = 1.

In general, an ODE-based continuous-time system has the following form:

X = f{x, u, t) (3)

y = g{x, u, t) (4)

a:(/o)=^0' (5)
where, / g SR , / > /q >a real number, is continuous time. At any time t,xe 91", an n-tuple ofreal num
bers, is the state of the system; u e SR*" is the m-dimensional input of the system; y g 5R is the /-
dimensional output of the system; i g is the derivative of x with respect to time t, i.e.

dx
X = —.

dt
(6)

Equations (3), (4), and (5) are called the system dynamics., the output map, and the initial condition of
the system, respectively.

For example, for the mechanical system above, if we define a vector

x{t) =

then system (1) can be written in form of (3)-(5), like

z(0

i(0
(7)

x{t) = - 0 1 x(t) + 0 u{t) (8)
m -k -b 1/m

yit) = [c o]^(0

x{0) =

The solution, x(t), of the set of ODE (3)-(5), is a continuous function of time, also called a wave
form, which satisfies the equation (3) and initial condition (5). The output of the system is then defined
as a function of x(t) and u(t), which satisfies (4). The precise solution of a set of DDEs is usually
impossible to be found using digital computers. Numerical solutions are approximations of the precise
solution. A numerical solution of ODEs are usually done by integrating the right-hand side of (3) on a
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discrete setof timepoints. Using digital computers to simulate continuous-time systems hasbeenstud
ied for more than three decades. One of the most well-known tools is Spice [72]. The CT domain dif
fers from Spice-like continuous-time simulators in twoways — the systemspecification is somewhat
different, and it is designed to interact with other models of computation.

16.1.1 System Specification

There are usually two ways to specify a continuous-time system, the conservation-law model and
the signal-flow model [42]. The conservation-law models, like the nodal analysis in circuit simulation
[39] and bond graphs [85] in mechanical models, define systems by their physical components, which
specify relations ofcross and through variables, and conservation laws are used to compile the compo
nent relations into global system equations. For example, in circuit simulation, the cross variables are
voltages, the through variables are currents, and the conservation laws are KirchhofTs laws. This
model directly reflects the physical components of a system, thus is easy to construct from a potential
implementation. The actual mathematical representation of the system is hidden. In signal-flow mod
els, entities in a system are maps that define the mathematical relation between their input and output
signals. Entities communicate by passing signals. This kind of models directly reflects the mathemati
cal relations among signals, and is more convenient for specifying systems that do not have an explicit
physical implementation yet.

In the CT domain of Ptolemy II, the signal-flow model is chosen as the interaction semantics. The
conservation-law semantics may be used within an entity to define its I/O relation. There are four
major reasons for this decision:

1. The signal-flow model is more abstract. Ptolemy II focuses on system-level design and behavior
simulation. It is usually the case that, at this stage of a design, users are working with abstract
mathematical models ofa system, and the implementation details are unknown or not cared about.

2. The signalflow model is moreflexible and extensible^ in the sense that it is easy to embed compo
nents that are designed using other models. For example, a discrete controller can be modeled as a
component that internally follows a discrete event model of computation but exposes a continu
ous-time interface.

3. The signalflow model is consistent with other models ofcomputation in Ptolemy 11. Most models
of computation in Ptolemy use message-passing as the interaction semantics. Choosing the signal-
flow model for CT makes it consistent with other domains, so the interaction ofheterogeneous
systems is easy to study and implement. This also allows domain polymorphic actors to be used in
the CT domain.

4. The signalflow model is compatible with the conservation law model. For physical systems that
are based on conservation laws, it is usually possible to wrap them into an entity in the signal flow
model. The inputs of the entity are the excitations, like the current on ideal current sources, and the
outputs are the variables that the rest of the system may be interested in.
The signal flow block diagram of the system (3) - (5) is shown in figure 16.2. The system dynam

ics (3) is built using integrators with feedback. In this figure, u, x, x, and y, are continuous signals
flowing from one block to the next. Notice that this diagram is only conceptual, most models may
involve multiple integrators'. Time is shared by all components, so it isnot considered as an input. At
any fixed time t, if the "snapshot" values ji:(/) and u{t) are given, then x{t) andy(/) can be found by

1. Ptolemy II does not support vectorization in the CT domain yet.
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evaluating/and^, which can be achieved by firing the respective blocks. The"snapshot" of all the sig
nals at t is called the behavior of the system at time t.

The signal-flow model for the example system (1) is shown in figure 16.3. For comparisonpur
pose, the conservation-law model (modified nodal analysis) of the system shown in figure 16.1(a) is
shown in (9).

R\ 'r\

_J_ J_ +J_ +ci —
R\ R\ R2 dt

0

_1_
'R2

'R2

0

0

— + — + C2— —
R2 R3 dt R3

'R3

0

R3 R4

0

-1

0

0

0

0

^1 0

^2 0

^3
—

0

y
0

/i u_

(9)

By doing some math, we can see that (9) and (8) are in fact equivalent. Equation (9) can be easily
assembled from the circuit, but it is more complicated than (8). Notice that in (9) didt is the derivative
operator, which is replaced by an integration algorithm at each time step, and the system equations
reduce to a set of algebraic equations. Spice software is known to have a very good simulation engine
for models in form of (9).
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FIGURE 16.3. The block diagram for the example system.
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16.1.2 Time

One distinct characterization of the CT model is the continuity of time. This implies that a contin
uous-time systemhave a behaviorat any time instance. The simulation engineof the CT model should
be able to compute the behavior of the system at any time point, although it may march discretely in
time. In order to achieve an accurate simulation, time should be carefully discretized. The discretiza
tion oftime, which appears as integration step sizes, may be determined by time points of interest (e.g.
discontinuities), by the numerical error of integration, and by the convergence in solving algebraic
equations.

Time is also global, which means that all components in the system share the same notion oftime.

16.2 Solving ODEs numerically

We outline some basic terminologies on numerical ODE solving techniques that are used in this
chapter. This is not a summary of numerical ODE solving theory. For a detailed treatment for ODEs
and their numerical solutions, please refer to books on numerical solutions for ODEs, e.g. [29].

Not all ODEs have a solution, and some ODEs have more than one solution. In such situations, we
say that the solution is not well defined. This is usually a result of errors in the system modeling. We
restrict our discussion to systems that have unique solutions. Theorem 1 in Appendix F states the con
ditions for the existence and uniqueness ofsolutions of ODEs. Roughly speaking, we denote by D a set
in SR which contains at most a finite number ofpoints per unit interval, and let u be piecewise-contin-
uous on SR - D. Then, for any fixed «(/), if/is also piecewise-continuous on 91 - D, and/satisfies the
Lipschitz condition (see e.g. [29]), then the ODE (3) with the initial condition (5) has a imique solu
tion. The solution is called the state trajectory of the system. The key of simulating a continuous-time
system numerically is to find an accurate numerical approximation of the state trajectory.

16.2.1 Basic Notations

Usually, only the solution on a finite time interval is needed. A simulation of the system is
performed on discrete time points in this interval. We denote by

To = {tQ,t^J2^...t„,...tj),Tc(z{tQjj\, (10)

where

the set of the discrete time points of interest. To explicitly illustrate the discretization of time and the
difference between the precise solution and the numerical solution, we use the following notation in
the rest of the chapter:

• : the «-th time point, to explicitly show the discretization of time. However, we write /, if the
index n is not important.

• tj\theprecise (continuous) state trajectory from time to tj;
• -^(ffl) •' theprecise solution of (3) at time t^;

• : the numericalsolutionof (3) at time t„;

• ~ numerical integration. We also write h if the index n in the sequence
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is not important. For accuracy reason, h may not be uniform.

• ||-*^(^„) - Jc,j|: the 2-normed difference between the precise solution and the numerical solution at
step n is called the (global) error at step «; the difference, when we assume x, ...x, are precise,

'0 'n-l

is called the local error at step n. Local errors are usually easy to estimate and the estimation can
be used for controlling the accuracy ofnumerical solutions.

A general way of numerically simulating a continuous-time system is to compute the state and the
output of the system in an increasing order of . Such algorithms are called the time-marching algo
rithms, and, in this chapter, we only consider these algorithms. There are variety of time marching
algorithms that differ on how jc, is computed given . The choice of algorithms is applica
tion dependent, and usually reflects the speed, accuracy, and numerical stability trade-offs.

16.2.2 Fixed-Point Behavior

Numerical ODE solving algorithms approximate the derivative operator in (3) using the history
and the current knowledge on the state trajectory. That is, at time , the derivative of x is approxi
mated by a fimction of x,,..., x, , x, , i.e.

'0 'n-l 'n

V- ('2)
Plugging (3) in this, we get

p(x,o...x,^^,x,^) = /(x,^, u(t„), t„) (13)

Depending on whether x, explicitly appears in (13), the algorithms are called explicit integration
algorithms or implicit integration algorithms. That is, we end up solving a set ofalgebraic equations in
one of the two forms:

" " n-l

or

F;(x,, ...,x ) = 0, (15)
U Iff

where and Ff are derived from the time , the input m(/„) , the fimction / and the history of x
and X. Solving(14) or (15) at a particulartime t„ is called an iteration of the CT simulationat t„.

Equation (14) can be solved simply by a fimction evaluationand an assignment. But the solution
of (15) is thefixed point of F/, which may not exist, may not be unique,or may not be able to be found.
The contraction mapping theorem [13] shows the existence and uniqueness of the fixed-point solution,
and provides one way to find it. Given the map Fj that is a local contraction map (generally true for
small enough step sizes) and let an initial guess rtg be in the contraction radius, then a unique fixed
point exists and can be found by iteratively computing:

^2 = CF3 = - (16)

Solving both (14) and (15) should be thought of as finding the fixed-point behavior of the system
at a particular time. This means both functions F^ and Fj shouldbe smooth w.r.t. time, during one
iteration of the simulation. This further implies that the topology of the system, all the parameters, and
all the intemal states that the firing functions depend on should be kept unchanged. We require that
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domain polymorphic actors to update internal states only in thepostfire () method exactly for this
reason.

16.2.3 ODE Solvers Implemented

The following solvers has been implemented in the CT domain.

1. Forward Euler solver:

X, = X, + + , •X, (17)
'n +l 'n 'n ^

2. Backward Euler solver:

~ ''n+l +

3. 2(3)-order Explicit Runge-Kutta solver

•^1 ^ + ^n + ^„+l/2)

^2 ~ ^n+1 +
2 1 4

r, = X, +'n+I 'fl 9 " 3 ' 9 ^

with error control:

^3 = '«+l) (20)

LTE =-^^K,^^^Ky-K,-\K,
if \LTE\ < ErrorTolerance ,x, = x, , otherwise, fail. If this step is successful, the next

. . -V'
mtegration step size is predicted by:

^n +2 ~ ^/i +I ' ff^^x(0.5, 0.8 •\l(ErrorTolerance)/\LTE\) (21)

4. Trapezoidal Rule solver:

Among these solvers, 1) and 3) are explicit; 2) and 4) are implicit. Also, 1) and 2) do not perform
step size control, so are called fixed-step-size solvers; 3) and 4) change step sizes according to error
estimation, so are called variable-step-size solvers. Variable-step-size solvers adapt the step sizes
according to changes of the system flow, thus are "smarter" than fixed-step-size solvers.
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16.2.4 Discontinuity

The existence and uniqueness of the solution of an ODE (Theorem 1 in Appendix F) allows the
right-hand side of (3) to be discontinuous at a countablenumber of discretepointsD, which are called
the breakpoints (also called the discontinuous points in some literature). These breakpoints may be
caused by the discontinuity of input signal u, or by the intrinsic flow off. In theory, the solutions at
these points are not well defined. But the left and right limits are. So, instead of solving the ODE at
those points, we would actually try to find the lefl and right limits.

One impact of breakpoints on ODE solvers is that history solutions are useless when approximat
ing the derivative ofx after the breakpoints. The solver should resolve the new initial conditions and
start the solving process as if it is at a starting point. So, the discretization of time should step exactly
on breakpoints for the left limit, and start at the breakpoint again after finding the right limit.

A breakpoint may be known beforehand, in which case it is called a predictable breakpoint. For
example, a square wave source actor knows its next flip time. This information can be used to control
the discretization oftime. A breakpoint can also be unpredictable, which means it is unknown until the
time it occurs. For example, an actor that varies its functionality when the input signal crosses a thresh
old can only report a "missed" breakpoint after an integration step is finished. How to handle break
points correctly is a big challenge for integrating continuous-time models with discrete models like DE
and FSM.

16.2.5 Breakpoint ODE Solvers

Breakpoints in the CT domain are handled by adjusting integration steps. We use a table to handle
predictable breakpoints, and use the step size control mechanism to handle unpredictable breakpoints.
The breakpoint handling are transparent to users, and the implementation details (provided in section
16.8.4) are only needed when developing new directors, solvers, or event generators.

Since the history information is useless at breakpoints, special ODE solvers are designed to restart
the numerical integration process. In particular, we have implemented the following breakpoint ODE
solvers.

1. DerivativeResolver:

dx
It calculates the derivative of the current state, i.e. —. This is simply done by evaluation the right-

hand side of (3). At breakpoints, this solver is used for the first step to generate history information for
explicit methods or one step methods.

2. ImpulseBESolver:

X. = +1 • (23)
'n+l 'n 'n + l ^ '

X^ = X. -/l+i X+
t„ 'n+l " l„

The two time points and have the same time value. This solver is used for breakpoints at which a
Dirac impulse signal appears.

Notice that none of these solvers advance time. They can only be used at breakpoints.
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16.3 Signal lypes

The CT domain ofPtolemy II supports continuous time mixed-signal modeling. As a consequence,
therecouldbe twotypesof signals in a CT model: continuous signals and discrete events. Notethat for
both types of signals, time is continuous. These two types of signals directly alfect the behavior of a
receiver that contains them. A continuous CTReceiver contains a sample of a continuous signal at the
current time. Reading a token from that receiver will not consume the token. A discrete CTReceiver
may or may not contain a discrete event. Reading from a discrete CTReceiver with an event will con
sume the event, so that events are processed exactly once'. Reading from an empty discrete CTRe
ceiver is not allowed.

Note that some actors can be used to compute on both continuous and discrete signals. For exam
ple, an adder can add two continuous signals, as well as two sets of discrete events. Whether a particu
lar link among actors is continuous or discrete is resolved by a signal type system. The signal type
system imderstands signal types on specific actors (indicated by the interfaces they implement or the
parameters specified on their ports), and try to resolve signal types on the ports ofdomain polymorphic
actors.

The signal type system in the CT domain works on a simple lattice of signal types, shown in Fig
ure 16.4. A type lower in the lattice is more specific than a type higher in the lattice. A CT model is
well-defined and executable, if and only if all ports are resolved to either CONTINUOUS or DIS
CRETE. Some actors have their signal types fixed. For example, an integrator has a CONTINU
OUS input and a CONTINUOUS output; a PeriodicSampler has a CONTINUOUS input and a
DISCRETE output; a TriggeredSampler has one CONTINUOUS input (the input), one DIS
CRETE input (the trigger), and a DISCRETE output; and a ZeroOrderHold has a DISCRETE input
and a CONTINUOUS output. For domain polymorphic actors that implement the SequenceActor
interface, i.e. they operate solely on sequences of tokens, their inputs and outputs are treated as DIS
CRETE. For other domain polymorphic actors that can operate on both continuous and discrete sig
nals, the signal type on their ports are initially UNRESOLVED. The signal type system will resolve
and check signal types ofports according to the following two rules:

• If a port p is connected to another port q with a more specific type, then the type ofp is resolved to
that of the port q. Ifp is CONTINUOUS but q is DISCRETE, Aen both of them are resolved to

UNRESOLVED

CONTIN CRETE

NOT-A-TYPE

FIGURE 16.4. A signal type lattice.

I. This distinction ofreceivers is also called state and event semantics in some literatures [46].
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NOT-A-TYPE.

• Unless otherwise specified, the types of the input ports and output ports of an actor are the same.
At the end of the signal-type resolution, if any port is of type UNRESOLVED or NOT-A-TYPE,

then the topology of the system is illegal, and the execution is denied.
The signal type of a port can also be forced by adding an parameter "signalType" to the port. The

signal type system will recognize this parameter and resolve other types accordingly. To add this
parameter, right click on the port, select Configure, then add a parameter with the name signalType and
the value of a string of either "CONTINUOUS" or "DISCRETE", noting the quotation marks.

Signal types may be more trickier at the boundaries of composite actors than within a CT model.
Because of the information hiding, it may not be obvious which port of another level of hierarchy is
continuous and which port is discrete. In the CT domain, we follow these rules to resolve signal types
for composite ports:

• A TypedCompositeActor within a CT model is always treated as entirely discrete. Within a CT
model, for any opaque composite actor that may contain continuous dynamics at a deeper level,
use the CTCompositeActor (listed in the actor library as "continuous time composite actor" in
domain specific actors) or the modal model composite actor.
For a CTCompositeActor or a modal model within a CT model, all its ports are treated as contin
uous by default. To allow a discrete event going through the composite actor boundary, manually
set the signal type of that port by adding the signalType parameter.

• For a TypedCompositeActor containing a CT model, all the ports of the TypedCompositeAc
tor are treated as discrete, and the CT director to use is the CTMixedSignalDirector (listed as
CTDirector in the vergil director library).

• For a CTCompositeActor or a modal model containing a CT model, all the signal types of the
ports ofthe container are treated as continuous, and can be set by adding the signalType parameter.
The CTDirector to use in this situation is the CTEmbeddedDirector.

16.4 CT Actors

A CT system can be built up using actors in the ptolemy.domains.ct.lib package and domain poly
morphic actors that have continuousbehaviors (i.e. all actors that do not implement the SequenceActor
interface). The key actor in CT is the integrator. It serves the unique role of wiring up ODEs. Other
actors in a CT system are usuallystateless. A general understanding is that, in a pure continuous-time
model, all the information — the state of the system— is stored in the integrators.

16.4.1 CT Actor Interfaces

In order to schedule the execution of actors in a CT model and to support the interaction between
CT and other domains (which are usually discrete), we provide the following interfaces.

CTDynamicActor. Dynamic actorsare actorsthat contains continuous dynamics in their I/Opath.
An integratoris a dynamic actor, and so are all actors that have integration relations from their
inputs to their outputs.

• CTEventGenerator. Eventgenerators are actors that convert continuous time input signals to dis
crete output signals.

CTStatefulActor. Stateful actors are actors that have internal states. The reason to classify this
kind of actor is to support rollback,whichmay happenwhen a CT model is embeddedin a discrete

16-10 Ptolemy II



CT Domain

event model.

• CTStepSizeControlActor. Step sizecontrol actors influence the integration stepsizebytelling
the directorwhetherthe current step is accurate. The accuracy is in the senseof both tolerable
numerical errorsand absence of unpredictable breakpoints. It may also provide information about
refininga step size for an inaccurate step and suggesting the next step size for an accurate step.

• CTWaveformGenerator. Waveform generators are actors that convert discrete input signals to
continuous-time output signals.

Strictly speaking, event generators and waveform generators do not belong to any domain, but the
CT domain is design to handle them intrinsically. Whenbuilding systems,CT parts can alwaysprovide
discrete interface to other domains.

Neither a loop of dynamic actors nor a loop of non-dynamic actors are allowed in a CT model.
They introduce problems about the order that actors be executed. A loop of dynamic actors can be eas
ily broken by a Scale actor with scale 1. A loop of non-dynamic actors builds an algebraic equation.
The CT domain does not support modeling algebraic equations, yet.

16.4.2 Actor Library

1. CTPeriodicalSampIer. This event generator periodically samples the input signal and generates
events with the value of the input signal at these time points. The sampling rate is given by the
samplePeriod parameter, which has default value 0.1. The sampling time points, which are known
beforehand, are examples ofpredictable breakpoints.

2. CTTriggeredSampler. This actor samples the continuous input signal when there is a discrete
event present at the "trigger" input.

3. ContinuDusTransferFunction. A transfer function in the continuous time domain. This actor

implements a transfer function where the single input (w) and single output (y) can be expressed in
(Laplace) transfer function form as the following equation:

Y(s) ^ b^s""^ +b2s""'̂ +...+b„

where m and n are the number ofnumerator and denominator coefficients, respectively. This actors
has two parameters - numerator and denominator - containing the coefficients of the numerator and
denominator in descending powers ofs. The parameters are double arrays. The order of the denomina
tor («) must be greater than or equal to the order of the numerator (/«).

4. DifferentialSystem. The differential system model implements a system whose behavior is
defined by:

X = f{x, u, t) (25)
y = g{x, u, t)
x{h) = Xq

where x is the state vector, u is the input vector, andy is the output vector, t is the time. Users must
give the name of the variables by filling in the parameter and add ports with proper names. The actor,
upon creation, has no inputs and no outputs. After creating proper ports, their names can be used in the
expressions of state equations and output equations. The name of the state variables are manually
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added by filling in the stateVahableNames parameter.
The state equationsand output maps must be manuallycreated by users as parameters. If there are

n state variables then users need to create n additionalparameters,one for each state equation.
And the parameters must be named as xj_dot, ..., x„_doty respectively. Similarly, if the output ports
have names yi-.-y^y then users must create additionalr parameters for output maps. These parameters
should be namedyy, ...yy^ respectively.

5. Integrator: The integrator for continuous-time simulation. An integrator has one input port and
one output port. Conceptually, the input is the derivative of the output, and an ordinary differential
equation is modeled as an integrator with feedback.

An integrator is a dynamic, step-size-control, and stateful actor. To help resolve new states from
previous states, a set ofvariables are used:

• state and its derivative: These are the new state and its derivative at a time point, which have been
confirmed by all the step size control actors.

• tentative state and tentative derivative: These are the state and derivative which have not been con

firmed. It is a starting point for other actors to estimate the accuracy of this integration step.
• history: The previous states and derivatives. An integrator remembers the history states and their

derivatives for the past several steps. The history is used by multistep methods.

An integrator has one parameter: initialState. At the initialization stage of the simulation, the state
of the integrator is set to the initial state. Changes of initialState will be ignored after the simula
tion starts, unless the initialize () method ofthe integrator is called again. The default value of
this parameter is 0.0. An integrator can possibly have several auxiliary variables. These auxiliary
variables are used by ODE solvers to store intermediate states for individual integrators.

6. LinearStateSpace. The State-Space model implements a system whose behavior is defined by:

X = Ax+ Bu (26)
y = Cx + Du
xOq) = Xq

where jc is the state vector, u is the input vector, andy is the output vector. The matrix coefficients
must have the following characteristics:

• A must be an n-hy-n matrix, where n is the number of states.
• B must be an n-by-m matrix, where m is the number of inputs.
• C must be an r-by-n matrix, where r is the number of outputs.

• D must be an r-by-m matrix.

The actor accepts m inputs and generates r outputs through a multiple input port and a multiple
output port. The widths of the ports must match the number of rows and columns in corresponding
matrices, otherwise, an exception will be thrown.

7. ZeroCrossingDetector. This is an event generator that monitors the signal coming in from an
input port - trigger. If the trigger is zero, then output the token from the input port. Otherwise,
there is no output. This actor controls the integration step size to accurately resolve the time that
the zero crossinghappens. It has a parameter,errorTolerance,which controls how accurately the
zero crossing is determined.
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8. ZeroOrderHold. This is a waveform generator that converts discrete events intocontinuous sig
nals. This actor acts as a zero-order hold. It consumes the token when the consumeCur-

rentEvent () is called. This value will be held and emitted every time it is fired, until the next
time consumeCurrentEvent () is called. This actor has one single input port ,one single output
port, and no parameters.

9. ThresholdMonitor. This actor controls the integration steps so that the given threshold (on the
input) is not crossed in one step. This actor has one input port and one output port. It has two
parameters thresholdWidth and thresholdCenter^ which have default value le-2 and 0, respectively.
If the input is within the range defined by the threshold center and threshold width, then a true
token is emitted from the output.

16.4.3 Domain Polymorphic Actors

Not all domain polymorphic actors can be used in the CT domain. Whether an actor can be used
depends on how the intemal states of the actor evolve when executing.
• Stateless actors; All stateless actors can be used in CT. In fact, most CT systems are built by inte

grators and stateless actors.

• Timed actors: Timed actors change their states according to the notion of time in the model. All
actors that implement the TimedActor interface can be used in CT, as long as they do not also
implement SequenceActor. Timed actors that can be used in CT include plotters that are designed
to plot timed signals.

• Sequence actors: Sequence actors change their states according to the number of input tokens
received by the actor and the number of times that the actor is postfired. Since CT is a time driven
model, rather than a data driven model, the number ofreceived tokens and the number ofpostfires
do not have a significant semantic meaning. So, none of the sequence actors can be used in the CT
domain. For example, the Ramp actor in Ptolemy II changes its state — the next token to emit —
corresponding to the number of times that the actor is postfired. In CT, the number of times that the
actor is postfired depends on the discretization of time, which further depend on the choice of
ODE solvers and setting ofparameters. As a result, the slope of the ramp may not be a constant,
and this may lead to very counterintuitive models. The same functionality is replaced by a Current-
Time actor and a Scale actor. If sequence behaviors are indeed required, event generators and
waveform generators may be helpful to convert continuous and discrete signals.

16.5 CT Directors

There are three CT directors — CTMultiSolverDirector, CTMixedSignalDirector, and CTEmbed-
dedDirector. The first one can only serve as a top-level director, a CTMixedSignalDirector can be used
both at the top-level or inside a composite actor, and a CTEmbeddedDirector can only be contained in
a CTCompositeActor. In terms of mixing models of computation, all the directors can execute com
posite actors that implement other models ofcomputation, as long as the composite actors are properly
connected (see section 16.6). Only CTMixedSignalDirector and CTEmbeddedDirector can be con
tained by other domains. The outside domain of a composite actor with CTMixedSignalDirector can
be any discrete domain, such as DE, DT, etc. The outside domain ofa composite actor with CTEmbed
dedDirector must also be CT or FSM, if the outside domain of the FSM model is CT. (See also the
HSDirector in the FSM domain.)
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16.5.1 ODE Solvers

There are six ODE solvers implementedin the ptolemy.domains.ct.kemel.solver package. Some of
them are specific for handling breakpoints. These solvers are ForwardEulerSolver, BackwardEuler-
Solver, ExplicitRK23Solver, TrapezoidalRuleSolver, DerivativeResolver, and ImpulseBESolver. They
implement the ODE solving algorithms in section 16.2.3 and section 16.2.5, respectively.

16.5.2 CT Director Parameters

The CTDirector base class maintains a set of parameters which controls the execution. These
parameters, shared by all CT directors, are listed in Table 23 on page 14. Individual directors may have
their own (additional) parameters, which will be discussed in the appropriate sections.

Table 23: CTDirector Parameters

Name Description Type
Default

Value

cirorTolerance The upper bound of local errors. Actors that perform integrationerror control (usually
integrators in variable step size ODE solving methods) will compare the estimated local
error to this value. If the local error estimation is greater than this value, then the integra
tion step is considered inaccurate, and should be restarted with a smaller step sizes.

double le-4

initStepSize This is the step size that users specify as the desired step size. For fixed step size solvers,
this step size will be used in all non-breakpoint steps. Forvariablestep sizesolvers, this is
only a suggestion.

double 0.1

maxlterations This is used to avoid the infinite loops in (implicit) fixed-point iterations. If the number of
fixed-point iterations exceeds this value, but the fixed point is still not found, then the
fixed-point procedure is considered failed. The step size will be reduced by half and the
integration step will be restarted.

int 20

maxStepSize The maximumstep size used in a simulation.This is the upper bound for adjusting step
sizes in variable step-size methods. This value can be used to avoid sparse time points
when the system dynamic is simple.

double 1.0

minStepSize The minimumstep size used in a simulation. This is the lower bound foradjustingstep
sizes. If this step size is used and the errors are still not tolerable, the simulation aborts.
This step size is also used for the first step after breakpoints.

double le-5

startTime The start time of the simulation. This is only applicable when CT is the top level domain.
Otherwise, the CT director follows the time of its executive director.

double 0.0

stopTime The stop time of the simulation.This is only applicablewhen CT is the top leveldomain.
Otherwise, the CT director follows the time of its executive director.

double Double.

MAX_

VALUE

synchronizeTo-
RealTime

Indicate whether the execution of the model is synchronized to real time at best effort. boolean false

timeResolution This controls the comparisonof time. Since time in the CT domain is a double precision
real number, it is sometimes impossible to reach or step at a specific time point. If two
time pointsare within this resolution,then they are consideredidentical.

double le-IO

valueResoIution This is used in (implicit)fixed-point iterations. If in two successive iterationsthe differ
ence of the states is within this resolution, then the integration step is called converged,
and the fixed point is considered reached.

double le-6
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16.5.3 CTMultiSolverDirector

A CTMultiSolverDirector has two ODE solvers — one for ordinary use and one specifically for
breakpoints. Thus, besides the parameters in the CTDirector base class, this class adds two more
parameters as shown in Table 24 on page 15.

Table 24: Additional Parameter for CTMultiSolverDirector

Name Description Type Default Value

ODESolver The fully qualined class name for the
ODE solver class.

string "ptolemy.domains.ct.kemel.solver.ForwardEulerSolver"

breakpointODESolver The fully qualified class name for the
breakpoint ODE solver class.

string "ptolemy.domains.ct.kemel.solver.DerivativeResolver"

A CTMultiSolverDirector can direct a model that has composite actors implementing other models
of computation. One simulation iteration is done in two phases: the continuous phase and the discrete
phase. Let the current iteration be n. In the continuous phase, the differential equations are integrated
from time _ i to . After that, in the discrete phase, all (discrete) events which happen at are pro
cessed. The step size control mechanism will assure that no events will happen between t„_, and .

16.5.4 CTMixedSignalDirector

This director is designed to be the director when a CT subsystem is contained in an event-based
system, like DE or DT. As proved in [59], when a CT subsystem is contained in the DE domain, the
CT subsystem should run ahead ofthe global time, and be ready for rollback. This director implements
this optimistic execution.

Since the outside domain is event-based, each time the embedded CT subsystem is fired, the input
data are events. In order to convert the events to continuous signals, breakpoints have to be introduced.
So this director extends CTMultiSolverDirector, which always has two ODE solvers. There is one
more parameter used by this director — the runAheadLength, as shown in Table 25 on page 15.

Table 25: Additional Parameter for CTMixedSignalDirector

Name Description Type
Default

Value

runAheadLength The maximum length oftime for the CT subsystem to run ahead of the global time. double 1.0

When the CT subsystem is fired, the CTMixedSignalDirector will get the current time x and the
next iteration time x' from the outer domain, and take the min(x - x', /) as the fire end time, where /
is the value of the parameter maxRunAheadLength. The execution lasts as long as the fire end time is
not reached or an output event is not detected.

This director supports rollback; that is when the state ofthe continuous subsystem is confirmed (by
knowing that no events with a time earlier than the CT current time will be present), the state of the
system is marked. If an optimistic execution is known to be wrong, the state of the CT subsystem will
roll back to the latest marked state.
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16.5.5 CTEmbeddedDirector

This director is used when a CT subsystemis embeddedin anothercontinuous time system, either
directly or through a hierarchy of finite state machines, like in the hybrid system scenario [61]. This
director can pass step size control information up to its executive director. To achieve this, the director
must be contained in a CTCompositeActor, which implements the CTStepSizeControlActor interface
and can pass the step size control information from the inner domain to the outer domain.

This director extends CTMultiSolverDirector, with no additional parameters. A major difference
between this director and the CTMixedSignalDirector is that this director does not support rollback. In
fact, when a CT subsystem is embedded in a continuous-time environment, rollback is not necessary.

16.6 Interacting with Other Domains

The CT domain can interact with other domains in Ptolemy II. In particular, we consider interac
tion among the CT domain, the discrete event (DE) domain and the finite state machine (FSM)
domain. Following circuit design communities, we call a composition of CT and DE a mixed-signal
model; following control and computation communities, we call a composition of CT and FSM a
hybrid system model.

There are two ways to put CT and DE models together, depending on the containment relation. In
either case, event generators and waveform generators are used to convert the two types of signals.
Figure 16.5 shows a DE component wrapped by an event generator and a waveform generator. From
the input/output point of view, it is a continuous time component. Figure 16.6 shows a CT subsystem
wrapped by a waveform generator and an event generator. From the input/output point of view, it is a
discrete event component. Notice that event generators and waveform generators always stay in the CT
domain.

A hierarchical composition of FSM and CT is shown in figure 16.7. A CT component, by adopting
the event generation technique, can have both continuous and discrete signals as its output. The FSM
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can usepredicates on these signals, as well as its own input signals, to build trigger conditions. The
actions associated with transitions are usually settingparameters in the destination state, including the
initial conditions of integrators.

16.7 CT Domain Demos

Here are some demos in the CT domain showing how this domain works and the interaction with
other domains.

16.7.1 Lorenz System

The Lorenz System (see, for example, pp. 213-214 in [24]) is a famous nonlinear dynamic system
that shows chaotic attractors. The system is given by:

i, = a(A:2-Ji:,)
X2 = (X.-X3)Xi -X2
^3 = 'X2-b'X^

(27)

The system is built by integrators and stateless domain poljmiorphic actors, as shown in figure 16.8.
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FIGURE 16.7. Hybrid system modeling.

€
u-

X H ± X )
i '-A^^

i ,• •.
X —T—

CTMuItisolverDirector

• C

"K + >-

+ n

b

FIGURE 16.8. Block diagram for the Lorenz system.

Heterogeneous Concurrent Modeling and Design 16-17



CT Domain

Theresult of thestatetrajectory projecting ontothe (;cj, Xj) planeis shown in figure 16.9. Theini
tial conditions of the state variables are all 1.0. The default value of the parameters are:
a = 1, A, = 25,6 = 2.0.

16.7.2 Microaccelerometer with Digital Feedback.

Microaccelerometers are MEMS devices that use beams, gaps, and electrostatics to measure accel
eration. Beams and anchors, separated by gaps, form parallel plate capacitors. When the device is
accelerated in the sensing direction, the displacement of the beams causes a change of the gap size,
which further causes a change of the capacitance. By measuring the change of capacitance (using a
capacitor bridge), the acceleration can be obtained accurately. Feedback can be applied to the beams
by charging the capacitors. This feedback can reduce the sensitivity to process variations, eliminate
mechanical resonances, and increase sensor bandwidth, selectivity, and dynamic range.

Sigma-delta modulation [16], also called pulse density modulation or a bang-bang control, is a dig
ital feedback technique, which also provides the AID conversion functionality. Figure 16.10 shows the
conceptual diagram ofsystem. The central part of the digital feedback is a one-bit quantizer.

We implemented the system as Mark Alan Lemkin designed [57]. As shown in the figure 16.11,
the second order CT subsystem is used to model the beam. The voltage on the beam-gap capacitor is
sampled every T seconds (much faster than the required output of the digital signal), then filtered by a
lead compensator (FIR filter), and fed to an one-bit quantizer. The outputs of the quantizer are con
verted to force and fed back to the beams. The outputs are also counted and averaged every NT seconds
to produce the digital output. In our example, the external acceleration is a sine wave.
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The execution result of the microaccelerometer systemis shownin figure 16.12. The upperplot in
the figure plots the continuous signals, where the low frequency (blue) sine wave is the acceleration
input, the highfrequency waveform (red) is the capacitance measurement, andthe squarewave (green)
is the zero-order hold of the feedback from the digital part. In the lower plot, the dense events (blue)
are the quantizedsamplesof the capacitance measurements, which has value +1 or -1, and the sparse
events (red) are the accumulation and averageof the previous 64 quantizedsamples.The sparseevents
are the digital output, and as expected, they have a sinsoidal shape.

16.7.3 Sticky Point Masses System

This sticky point mass demo shows a simple hybrid system. As shown in figure 16.13, there are
two point masses on a fnctionless table with two springs attaching them to fixed walls. Given initial
positions other than the equilibrium points, the point masses oscillate. The distance between the two
walls are close enough that the two point masses may collide. The point masses are sticky, in the way
so that when they collide, they will sticky together and become one point mass with two springs
attached to it. We also assume that the stickiness decays exponentially after the collision, such that
eventually the pulling force between the two springs is big enough to pull the point masses apart. This
separation gives the two point masses a new set of initial positions, and they oscillate freely until they
collide again.

The system model, as shown in figure 16.14, has three levels of hierarchy — CT, FSM, and CT.
The top level is a continuous time model with two actors, a CTCompositeActor that outputs the posi-

FIGURE 16.10. Micro-accelerator with digital feedback
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tion of the two point masses, and a plotter that simply plots the trajectories. The composite actor is a
finite state machine with two modes, separated and together.

In the separated state, there are two differential equations modeling two independently oscillating
point masses. There is also an event detection mechanism, implemented by subtracting one position
from another and comparing the result to zero. If the positions are equal, within a certain accuracy,
then the two point masses collide, and a collision event is generated. This event will trigger a transition
from the separated state to the together state. And the actions on the transition set the velocity of the
stuck point mass based on Law of Conservation of Momentum.

In the together state, there is one differential equation modeling the stuck point masses, and
another first order differential equation modeling the exponentially decaying stickiness. There is
another expression computing the pulling force between the two springs. The guard condition from the
together state to the separated state compares the pulling force to the stickiness. If the pulling force is
bigger than the stickiness, then the transition is taken. The velocities of the two separated point masses
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FIGURE 16.12. Execution result of tliemicroaccelerometer system.
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equal to theirvelocities before the separation. Thesimulation result is shown infigure 16.15, where the
position of the two point masses are plotted.

16.8 Implementation

The CT domain consists of the following packages, ct.kemel, ct.kemel.util, ct.kemel.solver, and
ct.lib, as shown in figure 16.16.

16.8.1 ct.kernel.util package

The ct.kemel.util package provides a basic data structure — TotallyOrderedSet, which is used
to store breakpoints. The UML for this package is shown in figure 16.17. A totally ordered set is a set
(i.e. no duplicated elements) in which the elements are totally comparable. This data structure is used
to store breakpoints since breakpoints are processed in their chronological order.

16.8.2 ct.kernel package

The ct.kemel package is the key package of the CT domain. It provides interfaces to classify
actors, scheduler, director, and a base class for ODE solvers. The interfaces are used by the scheduler
to generate schedules. The classes, including the CTBaselntegrator class and the ODESolver
class, are shown in figure 16.18. Here, we use the delegation and the strategy design patterns [33][28]
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in the CTBaseIntegrator and the ODESolver classes to support seamlesslychanging ODE solvers
without reconstructing integrators. The execution methods of the CTBaselntegrator class are dele
gated to the ODESolver class, and subclasses ofODESolver provide the concrete implementationsof
these methods, depending on the ODE solving algorithms.

CT directors implement the semantics of the continuous time execution. As shown in figure 16.19,
directors that are used in different scenarios derive from the CTDirector base class. The CTSched-

uler class provides schedules for the directors.

The ct.kemel.solver package provides a set of ODE solvers. The classes are shown in figure 16.20.
In order for the directors to choose among ODE solvers freely during the execution, the strategy design
pattem is used again. A director class talks to the abstract ODESolver base class and individual ODE
solver classes extend the ODESolver to provide concrete strategies.

16.8.3 Scheduling

This section and the following three sections provide technical details and design decisions made
in the implementation of the CT domain. These details are only necessary if the readers want to imple-
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CTReceiver
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CTStatefulActor
CTStepSizeControlActor
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NumericalNonconvergeException
ODESolver

FIGURE 16.16. The packages in the CT domain.
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FIGURE 16.17. UML for ct.kemel.util package.

ct.kemel.util

FuzzyDoubleComparator
TotallyOrderedSet

ct.kemel.solver

BackwardEuIerSolver

DerivativeResolver

ExpIicitRK23Solver
RxedStepSolver
FofwardEuIerSolver

ImpulseBESolver
TrapezoidalRulSolver

•*compare(first: Object, second : Object): boolean

FuzzyDoubleComparator

•_threstfoid: double

•••FuzzyOoubleConiparatorO
+Fu32yDoubleComparator(tl>; double)
-•-getThresttoldO: double
•'•setThresholdCttireshold: double)

Ptolemy II



CT Domain

jptolemy.actor.TypedAtomicActor

"A"

•interface*

CTStatefulActor

•Interface* |
ptolemy.actor.Actor

I
•Interface*

CTEvantGenerator

ptolemy.actor.Mai[box

"A"

CTReceiver

♦CONTINUOUS:CTReceiver.SicmalTvoe

-i-goToMarkedStateO
+markStatesO

+hasCurrentEvent(): boolean ♦DISCRETE:CTReceiver.SlcnarrvDe

♦UNKNOWN:CTRecelver.SlcnalTvDe

♦CTReceiverO
♦CTReceiver(container:lOPort)

•Interface*
CTDynamicActor

•Interface*
CTStepSizeControlActor

•Interface*

CTWavefomiGenerafor
I
|ptolemy.actor.TypedCompos[teActor.
I

••«mitTentativeOutput() •HsTfrlsStepAccurateO: boolean
+predictedStepSizeO: double
•rrefinedStepSizeO: double

CTBaselntegrator

♦initiafState:Parameter
♦input:TypedlOPort
♦output: TypedlOPort
#_history: CTBaselntegrator.Hlstory
-.auxVariables: doubleQ

initState: double

-.state; double
-.tentativeDerivative: dout>le

tentativeState: double

♦CTBaselntegrator(ca:TypedCompositeActor, name: String)
♦clearHlstoryO

♦getAuxVaiiablesO: doubleO
♦getOerivativeO: double
♦getHistory(index;int): dout>le[]
♦getHlstoryCapacityO: int
♦getStateO: double
♦getTentativeStateO:double
♦getVaGdKistoryCountO:int
♦setAuxVariables(index: int, value; double)
♦setHistoryCapacityCcap: int)
♦setTentativeDerivative(value: double)
♦setTentativeState(value: double)

delegate

I
(InvalidStateException

•throws*

NumericalNonconvergeException

♦NumericalNonconvergeException(detaP:Siring)
♦NumericalNonconvergeExceptionjobj: NamedObj, detail: String)
♦NumericalNonconvergeException{obj1: NamedObj,obi2: NamedObj,detail: String)

CTCompositeActcr

♦CTCompositeActor()

♦CTCompositeActor(ws:Workspace)
♦CTCompositeActor(ca:TypedCompositeActor. nm: String)

NamodObj

-.container: Director
-.round: int

CTDirector

ODESolver

♦ODESolverO
♦ODESolver(w:Workspace)
♦ODESolver(w:Workspace, name: String)
♦getRoundO

•tgetHistoryCapadtyRequirementO • Int
*getlntegratorAuxVariaUeCountO: int
♦incrementRoundO

*integratorflre(integ: CTBaselntegrator)
+integratorlsAccumte(integ: CTBaselntegrator): boolean
+integratorPredictedStepSize(integ: CTBaselntegrator): double
♦resetRoundO
+resolveStates(); boolean

FIGURE 16,18. UML for ct.kemel package, actor related classes.
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FIGURE 16,19. UML for ct.kemel package, director related classes.
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ment new directors or ODE solvers.

In general, simulating a continuous-time system (3)-(5) by a time-marching ODEsolverinvolves
the following execution steps:

1. Given the state ofthe system x, .. .Xj at time points /q ... , if thecurrent integration step size
is h, i.e. _I+^, compute the new state jc, using the numerical integration algorithms.
During the application of an integration algorithm, eachevaluation of they(o, 6, /) function is
achieved by the following sequence:

• Integrators emit tokens corresponding to a;

• Source actors emit tokens corresponding to b;

• The current time is set to t;

• The tokens are passed through the topology (in a data-driven way) until they reach the integrators
again. The retumed tokens are ^^ = Jla, b, t).

2. Afterthe newstate x, is computed, testwhetherthisstep is successful. Localtruncation errorand
unpredictable breakpoints are the issues to be concerned with, since those could lead to an unsuc
cessful step.

3. If the step is successful, predict the next step size. Otherwise, reduce the step size and try again.

Due to the signal-flow representation of the system, the numerical ODE solving algorithms are imple-
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FIGURE 16.20. UML for ct.kernel.solver package.
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merited as actor firings and tokenpassingsunderproper scheduling.
The scheduler partitions a CT systeminto two clusters: the state transitioncluster and the output

cluster. In a particular system, these clusters may overlap.
The state transition cluster includes all the actors that are in the signalflow path for evaluating the

/ function in (3). It starts from the source actors and the outputs of the integrators, and ends at the
inputs of the integrators. In other words, integrators, and in general dynamic actors, are used to break
causality loops in the model. A topological sort of the cluster provides an enumeration of actors in the
order of their firings. This enumeration is called the state transition schedule. After the integrators pro
duce tokens representing x,, one iterationof the state transitionschedulegives the tokens representing
X, = j{Xj, u{t), t) back to the integrators.

The output cluster consists of actors that are involved in the evaluation of the output map g in (4).
It is also similarly sorted in topological order. The output schedule starts from the source actors and the
integrators, and ends at the sink actors.

For example, for the system shown in figure 16.3, the state transition schedule is
U-G1-G2-G3-A

where the order ofGl, G2, and G3 are interchangeable. The output schedule is
G4-Y

The event generating schedule is empty.

A special situation that must be taken care of is the firing order of a chain of integrators, as shown
in figure 16.21. For the implicit integration algorithms, the order of firings determines two distinct
kinds of fixed point iterations. If the integrators are fired in the topological order, namely in
our example, the iteration is called the Gauss-Seidel iteration. That is, X2 always uses the new guess
from Xj in this iterationfor its new guess. On the other hand, if they are fired in the reverse topological
order, die iteration is called the Gauss-Jacobi iteration, where Xj uses the tentative output from Xj in
the last iteration for its new estimation. The two iterations both have their pros and cons, which are
thoroughly discussed in [74]. Gauss-Seidel iteration is considered faster in the speed of convergence
than Gauss-Jacobi. For explicit integration algorithms, where the new states x, are calculated solely
from the history inputsup to x, , the integrators must be fired in their reverse topological order. For
simplicity, the scheduler ofthe"cV domain, at this time, always returns the reversed topological order
of a chain of integrators. This order is considered safe for all integration algorithms.

16.8.4 Controlling Step Sizes

Choosing the right time points to approximate a continuous time system behavior is one of the
major tasks of simulation. There are three factors that may impact the choice of the step size.
• Error control. For all integrationalgorithms,the local error at time t„ is defined as a vector norm

(say, the 2-norm) of the difference betweenthe actualsolution x{t„) and the approximation x^
calculated by the integration method, given that the last step is accurate. That is, assuming

=x{t„_^)then

-^1 Ai -V2 X2
\dt [dt
J J W

FIGURE 16.21. A chain of integrators.
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£,, = (28)

It can be shownthat by carefully choosing the parameters in the integration algorithms, the local
error is approximately of the /7-th order of the step size, wherep, an integer closely related to the
numberof/function evaluations in one integration step, is called the order ofthe integration algo
rithm, i.e. Ej - -.Therefore, in orderto achieve an accurate solution, the stepsize
should be chosen to be small. But on the other hand, small step sizes means long simulation time.
In general, the choice of step size reflects the trade-off between speed and accuracy of a simula
tion.

• Convergence. The local contraction mapping theorem (Theorem 2 in Appendix F) shows that for
implicitODE solvers, in order to find the fixed point at , the map Ff{ ) in (15) must be a (local)
contraction map, and the initial guess must be within an £ ball (the contraction radius) of the solu
tion. It can be shown that Ff( ) can be made contractiveif the step size is small enough. (The
choice of the step size is closely related to the Lipschitz constant). So the general approach for
resolving the fixed point is that if the iterating function Fj{ ) does not convergeat one step size,
then reduce the step size by half and try again.

• Discontinuity. At discontinuous points, the derivatives of the signals are not continuous, so the
integration formula is not applicable. That means the discontinuous points can not be crossed by
one integration step. In particular, suppose the current time is t and the intended next time point is
t+h. If there is a discontinuous point at ?+ 5, where 8 < /i, then the next step size should be
reduced to / + 6. For a predictable breakpoint, the director can adjust the step size accordingly
before starting an integration step. However for an unpredictable breakpoint, which is reported
"missed" after an integration step, the director should be able to discard its last step and restart
with a smaller step size to locate the actual discontinuous point.

Notice that convergence and accuracy concerns only apply to some ODE solvers. For example,
explicit algorithms do not have the convergence problem, and fixed step size algorithms do not have
the error control capability. On the other hand, discontinuity control is a generic feature that is inde
pendent on the choice of ODE solvers.

16.8.5 Mixed-Signal Execution

DE inside CT.

Since time advances monotonically in CT and events are generated chronologically, the DE com
ponent receives input events monotonically in time. In addition, a composition of causal DE compo
nents is causal [51], so the time stamps of the output events from a DE component are always greater
than or equal to the global time. From the view point of the CT system, the events produced by a DE
component are predictable breakpoints.

Note that in the CT model, finding the numerical solution of the ODE at a particular time is seman-
tically an instantaneous behavior. During this process, the behavior of all components, including those
implemented in a DE model, should keep unchanged. This implies that the DE components should not
be executed during one integration step of CT, but only between two successive CT integration steps.

CT inside DE.

Wl

like all

inside DE.

When a CT component is contained in a DE system, the CT component is required to be causal,
all other components in the DE system. Let the CT component have local time t, when it receives
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an input event with time stamp x. Since time is continuous in the CT model, it will execute from its
local time t, and may generate events at any time greater or equal to t. Thus we need

t>x (29)

to ensure causality. This means that the local time of the CT component should always be greater than
or equal to the global time whenever it is executed.

This ahead-of-time execution implies that the CT component should be able to remember its past
states and be ready to rollback if the input event time is smaller than its current local time. The state it
needs to remember is the state of the component after it has processed an input event. Consequently,
the CT component should not emit detected events to the outside DE system before the global time
reaches the event time. Instead, it should send a pure event to the DE system at the event time, and wait
until it is safe to emit it.

16.8.6 Hybrid System Execution

Although FSM is an untimed model, its composition with a timed model requires it to transfer the
notion of time from its extemal model to its internal model. During continuous evolution, the system is
simulated as a CT system where the FSM is replaced by the continuous component refining the current
FSM state. After each time point of CT simulation, the triggers on the transitions starting from the cur
rent FSM state are evaluated. If a trigger is enabled, the FSM makes the corresponding transition. The
continuous dynamics of the destination state is initialized by the actions on the transition. The simula
tion continues with the transition time treated as a breakpoint.

16-28 Ptolemy II



CT Domain

Appendix F: Brief Mathematical Background

Theorem 1. (Existence and uniqueness of the solution of an ODE] Consider the initial
value ODE problem

X = f{x,t) . (30)
x(/o) = ^0

Iffsatisfies the conditions:

1. [Continuity Condition] Let D be the set ofpossible discontinuity points; it may be empty. For each

fixed x e SR" and u e SR*", the function /:9t\ D ^ SR" in (30) is continuous. And Vx g D, the

left-hand and right-hand limit f{x, u, x ) and f{x, u, x^) are finite.

2. [Lipschitz Condition] There is a piecewise continuous bounded function ^ —> 5R , where
isthesetofnon-negative real numbers, such that V/g V^, ^ g ^R", Vm g SR"'

ii/(t".o-y(C.".oii^^(oii^-cii. (31)

Then, for each initial condition there exists a unique continuous function

\|/: such that,

Wo) = ^0 (32)

and

W) = AW), «(0,0 vr G SR\D. (33)

This function \|/(0 is called the solution through (fp, Jt^o) (30)-

♦

Theorem 2. [Contraction Mapping Theorem.) If FrSR" SR" is a local contraction map at
Xwith contraction radius e, then there exists a unique fixed point ofF within the £ ball centered at x.

I.e. there exists aunique a g SR" , ||a- x|| <E, such that a = F(a). And VGq e SR", ||ao - xH <£, the
sequence

a, = F(ao), a2 = F(ai), Gj = F^o^), ••• (34)

converges to a.
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17.1 Purpose of the Domain

The synchronous dataflow (SDF) domain is useful for modeling simple dataflow systems without
complicated flow ofcontrol, such as signal processing systems. Under the SDF domain, the execution
order of actors is statically determined prior to execution. This results in execution with minimal over
head, as well as bounded memory usage and a guarantee that deadlock will never occur.This domain is
specialized, and may not always be suitable. Applications that require dynamic scheduling could use
the process networks (PN) domain instead, for example.

17.2 Using SDF

There are four main issues that must be addressed when using the SDF domain:

• Deadlock

• Consistency ofdata rates

• The value of the iterations parameter

• The granularity of execution

This section will present a short description of these issues. For a more complete description, see
section 17.3.

17.2.1 Deadlock

Consider the SDF model shown in figure 17.1. This actor has a feedback loop from the output of
the AddSubtract actor back to its own input. Attempting to run the model results in the exception
shown at the right in the figure. The director is unable to schedule the model because the input of the
AddSubtract actor depends on data from its own output. In general, feedback loops can result in such
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The fix for such deadlock conditions is to use the SampleDelay actor, shownhighlighted in figure
17.2. This actor injects into the feedback loop an initial token, the value of which is given by the initia-
lOutputs parameter of the actor. In the figure, this parameter has the value {0}. This is an array with a
single token, an integerwith value 0. A doubledelay with initial values 0 and 1 can be specified using
a two element array, such as {0, 1}.

It is important to note that it is occasionally necessary to add a delay that is not in a feedback loop
to match the delay of an in input with the delay around a feedback loop. It can sometimes be tricky to
see exactly where such delays should be placed without fiilly considering the flow of the initial tokens
described above.

Display

AddSubtract

FIGURE 17.1. An SDF model that deadlocks

Actors remain that cannot be scheduled:

.deadlock-AddSubtract

.deadlock.Display

Dismiss Display Stacklrace

AddSubtract SampleDela

Edit parameters For SampleDelay

initiaiOutputs: kO}

Commit I Add Remove Edit Styles Ca

FIGURE 17.2. The model of figure 17.1 corrected with an instance of SampleDelay in the feedback loop.
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17.2.2 Consistency of data rates

Consider the SDF model shown in figure 17.3. The model is attempting to plot a sinewave and its
downsampled counterpart. However, there is an error because the number of tokens on each channel of
the input port of the plotter can never be made the same. The DownSample actor declares that it con
sumes 2 tokens using the tokenConsumptionRate parameter of its input port. Its output port similarly
declares that it produces only one token, so there will only be half as many tokens being plotted from
the DownSample actor as from the Sinewave.

The fixed model is shown in figure 17.4, which uses two separate plotters. When the model is exe
cuted, the plotter on the bottom will fire twice as often as the plotter on the top, since must consume
twice as many tokens. Notice that the problem appears because one of the actors (in this case, the
DownSample actor) produces or consumes more than one token on one of its ports. One easy way to
ensure rate consistency is to use actors that only produce and consume one token at a time. This special
case is known as homogeneous SDF. Note that actors like the Sequence plotter which do not specify
rate parameters are assumed to be homogeneous. For more specific information about the rate parame-

DownSample

Sinewave SequencePlotter

No solution exists forthe balance equations.

Graph Is not consistent underthe SDF domain

Dismiss Display StackTrace

FIGURE 17.3. An SDF model with inconsistent rates.

DownSample SequencePlotter

Sinewave SequencePlotter3

FIGURE 17.4. Figure 17.3 modified to have consistent rates.
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ters and how they are used for scheduling, see section 17.3.1.

17.2.3 How many iterations?

Another issue when using the SDF domain concerns the value of the iterations parameter of the
SDF director. In homogeneous models one token is usually produced for every iteration. However,
when token rates other than one are used, more than one interesting output value may be created for
each iteration. For example, consider figure 17.5 which contains a model that plots the Fast Fourier
Transform of the input signal. The important thing to realize about this model is that the FFT actor
declares that it consumes 256 tokens from its input port and produces 256 tokens from its output port,
corresponding to an order 8 FFT. This means that only one iteration is necessary to produce all 256
values of the FFT.

Contrast this with the model in figure 17.6. This model plots the individual values of the signal.
Here 256 iterations are necessary to see the entire input signal, since only one output value is plotted in
each iteration.

17.2.4 Granularity

The granularity ofexecution of an SDF model is determined by the schedule as produced. As men
tioned in the previous section, this schedule may involve a small or large number of firings of each
actor, depending on the data rates of the actors. Generally, the smallest possible valid schedule, corre
sponding to the smallest granularity of execution, is the most interesting. However, there some
instances when this is not the case. In such cases the vectorizationFactor parameter of the SDF Direc-

17-4

SDF

Pulse FFT SequencePlotter3

FIGURE 17.5. A model that plots the Fast Fourier Transform ofa signal. Only one iteration must be exe
cuted to plot all 256 values of the FFT, since the FFT actor produces and consumes 256 tokens each firing.

SDF

Pulse SequencePlotter3

FIGURE 17.6. A model that plots the values of a signal. 256 iterations must be executed to plot the entire
signal.
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tory can be used to scale up the granularity of the schedule. A vectorizationFactor of 2 implies that
each actor is fired twice as many times as normal in the schedule.

Oneexample whenthismight be useful is whenmodeling blockdataprocessing. For instance, we
might want to builda model of a signal processing system that filters blocks of 40 samples at a time
using an FIR filter. Such an actor couldbe written in Java, or it couldbe built as a hierarchical SDF
model,using a singlesampleFIR filter, as shownin Figure 17.7. The vector/zahonFac/orparameterof
the Director is set to 40. Here, each firing of the SDF model corresponds to 40 firings of the single
sample FIR filter.

Another useful time to increase the level of granularity is to allow vectorized execution of actors.
Some actors override the iterateQmethod to allow optimized execution of several consecutive firings.
Increasing the granularity of an SDF model can provide more opportvmities for the SDF Director to
perform this optimization, especially in models that do not have fine-grained feedback.

17.3 Properties of the SDF domain

SDF is an untimed model of computation. All actors under SDF consume input tokens, perform
their computation and produce outputs in one atomic operation. If an SDF model is embedded within a
timed model, then the SDF model will behave as a zero-delay actor.

In addition, SDF is a statically scheduled domain. The firing ofa composite actor corresponds to a
single iteration of the contained( 17.3.1) model. An SDF iteration consists of one execution of the pre-
calculated SDF schedule. The schedule is calculated so that the number of tokens on each relation is

the same at the end of an iteration as at the beginning. Thus, an infinite number of iterations can be
executed, without deadlock or infinite accumulation of tokens on each relation.

Execution in SDF is extremely efficient because of the scheduled execution. However, in order to
execute so efficiently, some extra information must be given to the scheduler. Most importantly, the
data rates on each port must be declared prior to execution. The data rate represents the number of
tokens produced orconsumed on a port during every firing^ In addition, explicit data delays must be
added to feedback loops to prevent deadlock. At the beginning of execution, and any time these data
rates change, the schedule must be recomputed. Ifthis happens often, then the advantages ofscheduled
execution can quickly be lost.

SDF Director

Input
FIR

output

4 N

FIGURE 17.7. A model that implements a block FIR filter. The vectorizationFactor parameter ofthe director
is set to the size of the block.

1. This is known as multirate SDF,where arbitrary rates are allowed. Not to be confused with homogeneous SDF,
where the data rates are fixed to be one.
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17.3.1 Scheduling

Thefirst step in constructing the schedule is to solve the balance equations [54]. These equations
determine the number of timeseachactorwill fireduring an iteration. Forexample, consider themodel
in figure 17.8. Thismodel implies the following systemof equations, where ProductionRate and Con-
sumptionRate are declaredproperties of each port, and Firings is a property of each actor that will be
solved for:

Firings{A) X ProductionRate(A\) = Firings{B) X ConsumptionRate(Bl)

Firings(A) X ProductionRate{A2) = Firings(C) X ConsumptionRate(C\)

Firings(C) X ProductionRate(C2) = Firings(B) X ConsumptionRate(B2)

These equations express constraints that the number of tokens created on a relation during an iteration
is equal to the number of tokens consumed. These equations usually have an infinite number of lin
early dependent solutions, and the least positive integer solution for Firings is chosen as thefiring vec
tor, or the repetitions vector.

The second step in constructing an SDF schedule is dataflow analysis. Dataflow analysis orders
the firing of actors, based on the relations between them. Since each relation represents the flow of
data, the actor producing data must fire before the consuming actor. Converting these data dependen
cies to a sequential list of properly scheduled actors is equivalent to topologically sorting the SDF
graph, if the graph is acyclic^ Dataflow graphs with cycles cause somewhat ofa problem, since such
graphs cannot be topologically sorted. In order to determine which actor of the loop to fire first, a data
delay must be explicitly inserted somewhere in the cycle. This delay is represented by an initial token
created by one of the output ports in the cycle during initialization of the model. The presence of the
delay allows the scheduler to break the dependency cycle and determine which actor in the cycle to fire
first. In Ptolemy II, the initial token (or tokens) can be sent from any port, as long as the port declares
an initProduction property. However, because this is such a common operation in SDF, the Delay actor
(see section 17.5) is provided that can be inserted in a feedback look to break the cycle. Cyclic graphs
not properly annotated with delays cannot be executed under SDF. An example of a cyclic graph prop
erly annotated with a delay is shown in figure 17.9.

In some cases, a non-zero solution to the balance equations does not exist. Such models are said to

A1

A2

02

FIGURE 17.8. An example SDF model.

1. Note that the topological sort does not correspond to a unique total ordering over the actors. Furthermore, espe
cially in multirate models it may be possible to interleave the firings of actors that fire more than once. This can
result in many possible schedules that represent different performance trade-offs. We anticipate that future
schedulers will be implemented to take advantage of these trade-offs. For more information about these trade
offs, see [47].
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be inconsistent^ and cannot be executed under SDF. Inconsistent graphs inevitably result in either
deadlockor unboundedmemoryusage for any schedule. As such, inconsistent graphs are usuallybugs
in the design of a model. However, inconsistent graphs can still be executed using the PN domain, if
the behavior is truly necessary. Examples of consistent and inconsistent graphs are shown in figure
17.10.

17.3.2 Hierarchical Scheduling

So far, we have assumed that the SDF graph is not hierarchical. The simplest way to schedule a
hierarchical SDF model is flatten the model to remove the hierarchy, and then schedule the model as

Dl: SDF <Jirecicr

FIGURE 17.9. A consistent cyclic graph, properly annotated with delays. A one token delay is represented
by a black circle. Actor C is responsible for setting the tokenlnitProduction parameter on its output port, and
creating the two tokens during initialization. This graph can be executed using the schedule A, A, B, C, C.

A1

A2 B2

02

E2

A1

A2 B2

C2

FIGURE 17.10. Two models, with each port annotated with the appropriate rate properties. The model on
the top is consistent, and can be executed using the schedule A, A, C, B, B. The model on the bottom is
inconsistent becausetokenswill accumulate betweenportsC2 and B2.
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usual. This technique allows the most efficient schedule to be constructed for a model, and avoids cer
taincomposability problems when creating hierarchical models. In Ptolemy II, a model created using a
transparent composite actor to define the hierarchy is scheduled in exactly this way.

Ptolemy II also supports a stronger version ofhierarchy, in the form ofopaque composite actors. In
this case, the hierarchical actor appears to be no different from the outside than an atomic actor with no
hierarchy. The SDF domain does not have any information about the contained model, other than the
rate parameters that may be specified on the ports of the composite actor. The SDF domain is designed
so that it automatically sets the rates of external ports when the schedule is computed. Most other
domains are designed (conveniently enough) so that their models are compatible with default rate
properties assumed by the SDF domain. For a complete description of these defaults, see the descrip
tion of the SDFScheduler class in section 17.4.2.

17.3.3 Hierarchically Heterogeneous Models

An SDF model can generally be embedded in any other domain. However, SDF models are unlike
most other hierarchical models in that they often require multiple inputs to be present. When building
one SDF model inside another SDF model, this is ensured by the containing SDF model because of the
way the data rate parameters are set as described in the previous section. For most other domains, the
SDF director will check how many tokens are available on its input ports and will refuse firing (by
returning false in prefireQ) until enough data is present for an entire iteration to complete.

17.4 Software Architecture

The SDF kemel package implements the SDF model of computation. The stmcture of the classes
in this package is shown in figure 17.11.

17.4.1 SDF Director

The SDFDirector class extends the StaticSchedulingDirector class. When an SDF director is cre
ated, it is automatically associated with an instance of the default scheduler class, SDFScheduler. This
scheduler is intended to be relatively fast, but not designed to optimize for any particular performance
goal. The SDF director does not currently restrict the schedulers that may be used with it. For more
information about SDF schedulers, see section 17.4.2.

The director has a parameter, iterations^ which determines a limit on the number of times the
director wishes tobefired^ After the director has been fired the given number oftimes, it will always
return false in its postfireQ method, indicating that it does not wish to be fired again. The iterations
parameter must contain a non-negative integer value. The default value is an IntToken with value 0,
indicating that there is no preset limit for the number of times the director will fire. Users will likely
specifya non-zerovalue in the directorof the toplevel compositeactor as the numberof toplevel itera
tions of the model.

The SDF director also has a vectorizationFactor parameter that can be used to request vectorized
execution of a model. This parameter increases the granularity of the executed schedule so that the
director fires each actor vectorizationFactor times more than would be normal. The vectorizationFac

tor parameter must contain a positive integer value. The default value is an IntToken with value one,
indicating that no vectorization should be done. Changing this parameter change the meaning of an

1. This parameter acts similarly to the Time-to-Stop parameter in Ptolemy Classic.
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embedded SDF model and may cause deadlock in a model that uses it. On the other hand, increasing
the vectorizationFactor may increase the efficiency of a model, bothby reducing the numberof times
the SDF model needs to be executed, and by allowing the SDF model to combine multiple firings of
contained actors using the iterateQ method.

The newReceiverO method in SDF directors is overloaded to return instances of the SDFReceiver
class. This receiver contains optimized method for reading and writing blocks of tokens. For more
information about SDF receivers, see section 17.4.3.

17.4.2 SDF Scheduler

The basic SDFScheduler derives directly from the Scheduler class. This scheduler provides
unlooped, sequential schedules suitable for use on a single processor. No attempt is made to optimize
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FIGURE 17.11. The static structure of the SDF kernel classes.
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the schedule by minimizing data buffer sizes, minimizing the size of the schedule, or detecting paral
lelismto allow executionon multipleprocessors. We anticipatethat more elaborateschedulerscapable
of these optimizations will be added in the future.

The scheduling algorithm is based on the simple multirate algorithm in [54]. Currently, only single
processor schedules are supported. The multirate scheduling algorithm relies on the actors in the sys
tem to declare the data rates of each port. The data rates of ports are specified using three parameters
on each port named tokenConsumptionRate, tokenProductionRate, and tokenlnitProduction. The pro
duction parameters are valid only for output ports, while the consumption parameter is valid only for
input ports. If a parameter exists that is not valid for a given port, then the value of the parameter must
be zero, or the scheduler will throw an exception. If a valid parameter is not specified when the sched
uler runs, then default values of the parameters will be assumed, however the parameters are not then
created'.

After scheduling, the SDF scheduler will set the rate parameters on any external ports of the com
posite actor. This allows a containing actor, which may represent an SDF model, to properly schedule
the contained model, as long as the contained model is scheduled first. To ensure this, the SDF director
forces the creation of the schedule after initializing all the actors in the model. The SDF scheduler also
sets attributes on each relation that give the maximum buffer size of the relation. This can be useful
feedback for analyzing deadlocks, or for visualization.This mechanism is illustrated in the sequence
diagram in figure 17.12.

SDF graphs should generally be connected. If an SDF graph is not connected, then there is some
concurrency between the disconnected parts that is not captured by the SDF rate parameters. In such
cases, another model of computation (such as process networks) should be used to explicitly specify
the concurrency. As such, the currentSDF schedulerdisallowsdisconnected graphs, and will throw an
exception if you attempt to schedule such a graph. However, sometimes it is useful to avoid introduc
ing another model of computation, so it is possible that a future scheduler will allow disconnected
graphs with a default notion of concurrency.

Multiports. Notice that it is impossible to set a rate parameter on individual channels of a port. This is
intentional, and all the channels of an actor are assumed to have the same rate. For example, when the
AddSubtract actor fires under SDF, it will consume exactly one token from each channel of its input
plus port, consume one token from each channel of its minus port, and produce one token the single
channel of its output port. Notice that although the domain-polymorphic adder is written to be more
general than this (it will consume up to one token on each channel of the input port), the SDF sched
uler will ensure that there is always at least one token on each input port before the actor fires.

Danglingports. All channels of a port are required to be connected to a remote port under the SDF
domain. A regular port that is not connected will always result in an exception being thrown by the
scheduler. However, the SDF scheduler detects multiports that are not connected to anything (and thus
have zero width). Such ports are interpreted to have no channels, and will be ignored by the SDF
scheduler.

1. The assumed valuescorrespondto a homogeneous actor with no data delay. Inputports are assumed to have a
consumption rateof one, outputportsare assumedto havea production rate of one, and no tokensare produced
during initialization.
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17.4.3 SDF ports and receivers

Unlike most domains, multirate SDF systems tend to produce and consume large blocks of tokens
during eachfiring. Sincetherecanbe significant overhead in datatransport for these largeblocks, SDF
receivers are optimized for sending and receiving a block of tokens en masse.

The SDFReceiverclass implements the Receiver interface. Instead of using the FIFOQueue class
to store data, which is based on a linked list structure, SDF receivers use the ArrayFIFOQueue class,
which is based on a circular buffer. This choice is much more appropriate for SDF, since the size of the
buffer isbounded, and can be determined statically^

The SDFIOPort class extends the TypedlOPort class. It exists mainly for convenience when creat
ing actors in the SDF domain. It provides convenience methods for setting and accessing the rate
parameters used by the SDF scheduler.

a:CompositeActor

a.d:SDFDirector a.p:IOPort

s1:SDFScheduler

initiatizeO

etSchedule
H

$c2:

Schedule

inltializeO

setRates

a.b:CompositeActor

a.b.d:SDFDirector a.b.p:IOPort

s2:SDFScheduler

InltializeO

ge (Rates

etSchedule
H

set;

Schedule

setRates

FIGURE 17.12. The sequence ofmethod calls during scheduling ofa hierarchical model.

1. Although the buffer sizes can be statically determined, the current mechanism for creating receivers does not
easily support it. The SDF domain currently relies on the buffer expanding algorithm that the ArrayFIFOQueue
uses to implement circular buffers of unbounded size. Although there is some overhead during the first iteration,
the overhead is minimal during subsequentiterations (since the buffer is guaranteednever to grow larger).
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17.4.4 ArrayFIFOQueue

The ArrayFIFOQueue class implements a first in, first out (FIFO) queue by means of a circular
array buffer^ Functionally it is very similar to the FIFOQueue class, although with different enqueue
and dequeue performance. It provides a token history and an adjustable, possibly unspecified, bound
on the number token it contains.

If the bound on the size is specified, then the array is exactly the size of the bound. In other words,
the queue is full when the array becomes full. However, if the bound is unspecified, then the circular
buffer is given a small starting size and allowed to grow. Whenever the circular buffer fills up, it is
copied into a new buffer that is twice the original size.

17.5 Actors

Most domain-polymorphic actors can be used under the SDF domain. However, actors that depend
on a notion oftime may not work as expected. For example, in the case ofa TimedPlotter actor, all data
will be plotted at time zero when used in SDF. In general, domain-polymorphic actors (such as
AddSubtract) are written to consume at most one token tfom each input port and produce exactly one
token on each output port during each firing. Under SDF, such an actor will be assumed to have a rate
of one on each port, and the actorwill consumeexactlyone token from each inputport duringeach fir
ing. There is one actor that is normally only used in SDF: the SampleDelay actor. This actor is pro
vided to make it simple to build models with feedback, by automatically handling the
tokenlnitProduction parameter and providing a way to specify the tokens that are created.

SampleDelay
Ports: input (Token), output (Token).
Parameters: initialOutputs (ArrayToken).

During initialization, create a token on the output for each token in the initialOutputs array. During
each firing, consume one token on the input and produce the same token on the output.

Addingan array of objects to an ArrayFIFOQueue is implementedusing theJava.lang.system.arraycopy
method. This method is capable of safely removing certain checks required by the Java language. On most Java
implementations, thisis significantly faster thana handcodedloopfor large arrays. Hovkfever, depending on the
Java implementation it couldactually be slowerfor smallarrays. Thecost is usually negligible, but can be
avoided when the size of the array is small and known when the actor is written.
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Author: Xiaojun Liu

18.1 Introduction

Finite state machines (FSMs) have been used extensively in designing sequential control logic.
There are two major reasons behind their use. First, FSMs are a very intuitive way to capture control
logic and make it easier to communicate a design. Second, FSMs have been the subject of a long his
tory ofresearch work. Many formal analysis and verification methods have been developed for them.

In their simple flat form, FSM models have a key weakness: the number ofstates in an FSM model
can get quite large even for a moderately complex system. Such models quickly become chaotic and
incomprehensible when one tries to model a system having many concurrent activities. The problem
can be solved by introducing hierarchical organization into FSM models and using them in combina
tion with concurrency models. David Harel first used this approach when he introduced the Statecharts
formalism [34].

The Statecharts formalism extends the conventional FSM model in three aspects: hierarchical
decomposition of states, concurrent composition of FSMs in a synchronous-reactive fashion, and a
broadcast communication mechanism between concurrent components. While how these extensions fit
together was not completely specified in [34], Harel's work stimulated a lot of interest in the approach.
Consequently, there is a proliferation ofvariants of the Statecharts formalism [7], each proposing a dif
ferent way to make the extensions fit into a monolithic model. Unfortunately, in all these variants FSM
is combined with a particular concurrency model. The applicability of the resulting models is often
limited.

Based on the Ptolemy philosophy ofhierarchical composition ofheterogeneous models ofcompu
tation, the *charts^ formalism [31] allows embedding hierarchical FSMs within a variety ofconcur
rency models. If tight synchronization is possible and desirable, then FSMs can be composed by the

1. Pronounced "starcharts." The star represents a wildcard that can be interpreted as matching multiple concur
rency models.
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synchronous-reactive model. If the system has a global notion of time and components communicate
by time-stamped events, then FSMs can be composed by the discrete-event model. The rest of this
chapter focuses on how the FSM domain in Ptolemy II supports the *charts formalism.

18.2 Building FSMs in Vergil

An FSM model is contained by an instance of FSMActor. The FSM model reacts to inputs to the
FSM actor by making state transitions. Actions such as sending tokens to the output ports of the FSM
actor can be associated with state transitions. In this section, we show how to construct and run a
model with an FSM actor in Vergil.

18.2.1 Alternate Mark Inversion Coder

Alternate Mark Inversion (AMI) is a simple digital transmission technique that encodes a bit
stream on a signal line as shown below:

1010010111010

+V

0

-V

The 0 bits are transmitted with voltage zero. The 1 bits are transmitted alternately with positive and
negative voltages. On average, the resulting waveform will have no DC component.

We can model an AMI coder with a two-state FSM shown in figure 18.2. To construct a Ptolemy II
model containing this coder, follow these steps:

1. Start Vergil, open a graph editor by selecting File -> New -> Graph Editor.

2. From utilities in the palette on the left, drag an FSM actor to the graph. Rename the FSM actor
AMICoder.

3. Right click on AMICoder, select Configure Ports. Add an input port with name in and an output
port with name out to AMICoder.

4. Right click on AMICoder, select Look Inside. This will open an FSM editor for AMICoder. Note
that the ports ofAMICoder are placed at the upper left comer of the graph panel.

5. From the palette on the left, drag a state to the graph, rename it Positive. Drag another state to the
graph, rename it Negative.

6. Control-drag from the Positive state to the Negative state to create a transition.

7. Double click on the transition. This will bring up the dialog box shown in figure 18.1 for editing
the parameters of the transition.

8. Set guardExpression to in == 1, and outputActions to out = 1.

9. Create a transition from the Positive state back to itselfwith guard expression in == 0 and output
action out = 0.

10. Create a transition from the Negative state back to itself with guard expression in == 0 and out
put action out = 0.
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guardExpression: |in== 1
outpuyxlions: |out= 1
seWctlons; I

preemptive;

Remove Edit Styles

FIGURE 18.1. The dialog box for editing parameters of a transition.

11. Create a transition from the Negative State to the Positive State with guard expression in == 1
and output action out = -1.

12. Right click on the background of the graph panel. Select Edit Parameters from the context menu.
This will bring up the dialog box for editing parameters of AMlCoder. Set initialStateName to
Positive.

13. The construction ofAMlCoder is complete. It will look like what is shown in figure 18.2.

14. Return to the graph editor opened in step 1.

15. Drag a Pulse actor (from actor library, sources), a SequencePlotter (from actor library, sinks), and
an SDF director (from director library) to the graph.

16. Connect the actors as shown in figure 18.3.

17. Edit parameters of the Pulse actor: set indexes to {0, 1, 2, 3, 4, 5}; set values to
{0, 1, 1, 1, 0, 1).

File View Edit Graph Help

In == 0

out = 0

FIGURE 18.2. Vergil FSM editor showing the AMlCoder.
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SDF
AMICoder

Pulse SequencePlotter

FIGURE 18.3. An SDF model with the AMICoder.

18. The model construction is complete.

19. Select View -> Run Window from the menu. Set director iterations to 6 and execute the model. For

a better display of the result, open the set plot format dialog box, unselect connect and use various
marks.

18.3 The Implementation of FSMActor

The FSMActor-related classes in the FSM kernel package are shown in figure 18.4.

The FSMActor class extends the CompositeEntity class and implements the TypedActor interface.
An FSM actor contains states and transitions. The State class is a subclass of ComponentEntity. A
State has two ports: incomingPort, which links to incoming transitions to the state, and outgoingPort,
which links to transitions going out from the state. The Transition class is a subclass of ComponentRe-
lation. A transition links to exactly two ports: the outgoing port of its source state, and the incoming
port of its destination state.

18.3.1 Guard Expressions

The guard of a transition is specified by itsguardExpression string attribute. Guard expressions are
parsed and evaluated using the Ptolemy II expression language (see the Expressions chapter and the
Data chapter for details). Guard expressions should evaluate to a boolean value. A transition is enabled
if its guard expression evaluates to true. Parameters of the FSM actor and input variables (defined
below) can be used in guard expressions.

Input variables represent the status and input value for each input port of the FSM actor. If the
input port is a single port, two variablesare used: a status variablenamedportName_isT?resent, and
a value variable namedportName. If the input port is a multiport of width n, 2n variables are used, two
for each channel: a status variable namedportName_channelIndex_isPresenty and a value variable
namedportName_channellndex. The status variableswill have booleanvalue true if there is a token at
the corresponding input, or false otherwise. The value variableshave the same type as the correspond
ing input, and contain the token received from the input, or null if there is no token. All input variables
are contained by the FSM actor.

In the following examples (and the examples in the next section), we assume that the FSM actor
has two inputports: a singleport inl and a multiport in2 of width2; an outputport out that is a multi-
port ofwidth 2; and a parameterparam.

Guard expression: in2_0 + in2_l > 10. If the inputs from the two channelsof port/«2 have a
totalgreaterthan 10,the transition is enabled. Note that if one or bothchannels of port in2do not
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have a token when this expression is evaluated, an exception will be thrown.
• Guardexpression: inl_isPresent && inl > param. If there is inputfrom portand the

value of the input is greater than param, the transition is enabled.

18.3.2 Actions

A transition can have a set of actions that produce output tokens or set parameters of the FSM
actor. To make FSM actors domain polymorphic (see section 4.5), especially for them to be operational
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'•'Transition(cont3iner: FSMActor, name: String)
+choiceActionLlstO: Ust
+commilActionlJstO: List
.destinationStateO: Slate
'•tietGuardExpressionO: String
r^etl.atrelO: String
+getTriggerExpression(); String
+isEnabled(): boolean
'HsPreemptiveO: boolean
rfsTriggeredO: txxriean
+setGuardExpression(expresslon: String)
taetTriggerExpresslonCexpresslon: String)
rsourceStateQ: State

StringAttribute

refinement 0..1

r .Int^We*
1 TypodActor

♦corttfollerName: StringAttribute

.FSMOirectorO
+FSMDirector(wor1(space: Workspace)
r-FSMOirectortcontalner:CompositeEntity.name : String)
r-getControllerO; FSMActor
l>_cutrenttxcalReceivefs(port: lOPort): Receivet{in

1..t

CompositeActor • g ,|
"

.Interface*

ChokeActton

OutputAcUonsAttribute

*OutputActionsAttribute(transitlon : Transition, rtame: String)

r-ActlonCtransition: Transition, name: String)
*oxecuteO

AbslractAettonsAttributo

.Interface*
CommltAclion

'•'AbsttactActionsAttribute(transitlon ; Transition, name: String)
♦executeO
#_golDestinalion(namo: String); NamedObl

CommitActionsAttribute

■♦■CommitActionsAtliibute(transltion;Transition, name: String)

FIGURE 18.4. The UML static structure diagram of FSMActor-relatedclasses.
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in domains having fixed-point semantics, two kinds of actions are defined: choice actions and commit
actions. Choice actions do not modify the extended state' of the FSM actor. They are executed when
the FSM actor is fired and the containing transition is enabled. Commit actions may modify the
extended state of the FSM actor. They are executed in postfireO if the containing transition was
enabled in the last firing of the FSM actor. Twomarker interfaces are defined in the FSM kemel pack
age: ChoiceAction, which is implemented by all choice action classes, and CommitAction, imple
mented by all commit action classes.

A transition has an outputActions attribute which is an instance of OutputActionsAttribute. The
OutputActionsAttribute class allows the user to specify a list of semicolon separated ou^ut actions of
the form destination = expression. The expression can use parameters of the FSM actor and
input variables. The destination is either a port name, in which case the result token from evaluating
the expression is broadcast to all channels of the port, or of the form portName (channel index), in
which case the result token is sent to the specified channel. Output actions are choice actions.

• outputActions: out = inl_isPresent ? inl ; 0. Broadcast the input from port mi, or 0 if
there is no input from inl, to the two channels of out,

• outputActions: out (0) = param; out (1) = param + 1. Send the value ofparam to the first
channel of out, and the value ofparam plus 1 to the second channel.
A transition has a setActions attribute which is an instance of CommitActionsAttribute. The Com-

mitActionsAttribute class allows the user to specify a list of semicolon separated commit actions of the
form destination = expression. The expression can use parameters of the FSM actor and input
variables. The destination is a parameter name.

• setActions: param = param + (inl_isPresent ? inl : 0). The input values from port m7
are accumulated in param.

It is worth noting that parameter values are persistent. If not properly initialized, the parameter t in the
above example will retain its accumulated value from previous model executions. A useful approach is
to build the FSM model such that the initial state has an outgoing transition with guard expression
true, and use the set actions of this transition for parameter initialization.

18.3.3 Execution

The methods that define the execution of an FSM actor are implemented as follows:

• preinitialize (): create receivers and input variables for each input port; set current state to
the initial state as specified by the initialStateName attribute.

initialize (): perform domain-specific initialization by calling the initialize(Actor) method of
the director. Note that in the example given in section 18.2.1,the director will be the SDF director.

• prefire (): always return true. An FSM actor is always ready to fire.
• fire 0 : set the values of input variables; choose the enabled transition among the outgoing tran

sitions of the current state; execute the choice actions of the chosen transition.

• postfire (): execute the commit actions of the last chosen transition; change state to the destina
tion state of that transition.

Non-deterministic FSMs are not allowed^. The fireQ method checks whether there is more than one

1. The extended state of an FSM actor is the current state of the state machine it contains plus the set ofcurrent val
ues of its parameters.

2. This may change in future developments.
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FIGURE 18.5. A modal model example.

enabled transition from the current state. An exception is thrown if there is. In the case when there is
no enabled transition, the FSM will stay in its current state.

18.4 Modal Models

The FSM domain supports the *charts formalism with modal models. The concept ofmodal model
is illustrated in figure 18.5. A/is a modal model with two operation modes. The modes are represented
by states of an FSM that controls mode switching. Each mode has a refinement that specifies the
behavior of the mode. In Ptolemy II, a modal modeP is constructed in a typed composite actor having
the FSM director as local director. The composite actor contains a mode controller (an FSM actor) and
a set of actors that model the refinements. The FSM director mediates the interaction with the outside

domain, and coordinates the execution of the refinements with the mode controller.

18.4.1 A Schmidt Trigger Example

In this section, we will illustrate how to build a modal model in Ptolemy II with a simple Schmidt
trigger example. The output from the Schmidt trigger will move from -1.0 to 1.0 when its input
becomes greater than 0.3, and will move back to -1.0 once its input becomes less than -0.3.

1. Open a Vergil graph editor. From utilities, drag a typed composite actor to the graph, rename it
SchmidtTrigger. Add an input port named in and an output port named out to it.

2. Look inside SchmidtTrigger. This will open a graph editor for it. In this graph editor, drag an FSM
actor to the graph, rename it Controller. Drag a typed composite actor to the graph, rename it
RefinementP. Drag another typed composite actor to the graph, rename it RefinementN.

3. Add an input port named in to Controller. Add an output port named out for both RefinementP and
RefinementN.

4. Look inside Controller. This will open an FSM editor for it. In this FSM editor, construct a two-
state FSM as shown in figure 18.6. Set the reset parameter of both transitions to true. Set refine
ment name of state P to RefinementP. Set refinement name of state N to RefinementN. Set ini

tial state name of Controller to N.

1. The current software architecture that supports modal models is experimental. A new approach based on higher
order functions is in progress.
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in > 0.3

In < -0.3

FIGURE 18.6. The mode controller for SchmidtTrigger.

5. Back to the graph editor for SchmidtTrigger. Look inside RefinementP. Build a model for it as
shown in figure 18.7. Set the value of Const to 1.0. Edit parameters of Pulse: set indexes to
{0, 1, 2, 3, 4}, and values to {-2.0, -1.6, -1.2, -0.8, -0.4}.

6. Back to the graph editor for SchmidtTrigger. Look inside RefinementN. Build a model for it as
shown in figure 18.7. Set the value of Const to -1.0. Edit parameters of Pulse: set indexes to
{0, 1, 2, 3, 4), and values to {2.0, 1.6, 1.2, 0.8, 0.4).

7. Back to the graph editor for SchmidtTrigger. Drag an FSM director to the graph. Set its controller-
Name to Controller. Connect the actors as shown in figure 18.8.

8. Back to the graph editor opened in step 1. Build the model as shown in figure 18.9. The model
generatesan input signal (a sinusoidplus Gaussiannoise) for the SchmidtTrigger and plots its out
put. Edit parametersof Ramp: set init to -Pl/2, and step to pi/20. Edit parametersof Gaussian:
set standardDeviation to 0.2.

9. Run the model for 200 iterations. A sample result is shown in figure 18.10.

SDF Const

Pulse

out

AddSubtractLT^
FIGURE 18.7. Model for the refinements in SchmidtTrigger.

Controller FSM

RefinementP

out

RefinementN

FIGURE 18.8. The SchmidtTrigger modal model.
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FIGURE 18.9. The top-level model with the SchmidtTrigger.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

XIO

FIGURE 18.10. Sample result of the model shown in figure 18.9.

18.4.2 Implementation

The classes in the FSM kernel package that support modal models are shown in figure 18.11. The
execution of a modal model is summarized below.

Director FSMActor

controller

0..1

FSMDIrector

•^controllerName: StringAttritHJte

+FSMDIrectorO
+FSMDirector(workspace: Workspace)
+FSMDirector(container: CompositeEntity, name: String)
+getContro!!er(): FSMActor
#_currentLocalReceivers(port: lOPcrt): ReceiverOn

0..1

FIGURE 18.11. FSM kernel classes that support modal models.
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When a modal model is fired:

1. The FSM director transfers the input tokens from the outside domain to the mode controller and to
the refinement of its current state.

2. The preemptive transitions from the current state of the mode controller are examined. If there is
an enabled transition, execute the choice actions of the transition, go to step 5.

3. Fire the refinement of the current state.

4. The non-preemptivetransitions from the current state of the mode controller are examined. If there
is an enabled transition, execute the choice actions of the transition.

5. Any output token producedby the mode controller or the refinementis transferredto the outside
domain.

To make a transition preemptive, set its preemptive parameter to true. The mode controller does not
changestate during successive firings in one iteration in order to support outsidedomains that iterate
to a fixedpoint. In postfireQ, if there is an enabled transition in the latest firing:

1. Execute the commit actions of the transition.

2. Set the current state of the mode controller to the destination state of the transition.

3. If the value of the reset parameterof the transition is true, the refinement of the destinationstate is
initialized.

18.4.3 Applications

HybridSystem Modeling. An HSDirector class that extends the FSMDirector class is created for mod
eling hybrid systemswith FSMsand continuous-time (CT) models.An example is presented in section
16.7.3. Execution control is discussed in section 16.8.6.

Communication Protocol Modeling. Hierarchical FSMs are used to model protocol control logic. The
timing characteristics of the communication channel are capturedby discrete-event (DE) models. We
have appliedthis approachto the alternatingbit protocol.The detailedmodelscan be found in the FSM
domain demo directory ($PTII/ptolemy/domains/fsm/demo/ABP).
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Authors: Haiyang Zheng
Edward Lee

Christoph Kirsch

19.1 Introduction

The Giotto model is a semantic model that describes the communication between periodic time
triggered components. It was developed by Thomas Henzinger and his group. It was designed for
deterministic and safety critical applications.

The main points about the Giotto model are:

1. A Giotto model is composed of one or more modes and each mode is composed of several
actors.

2. For every actor, the design specifies a worst case execution time (WCET) which constrains the
execution time of that actor in the model.

3. Actors are concurrent and preemptable.

4. Each actor may consume some tokens and produce some tokens for other actors or itself, the
produced tokens are not available until the end of the actor's execution.

5. Mode switching includes invoking or terminating some actors.

6. There are constraints on mode switching, e.g., the consistent states ofactors.
More details of the Giotto model may be found at http://www-cad.eecs.berkeley.edu/~fresco/

giotto.

19.2 Using Giotto

The execution time of an actor in the Giotto model is defined as the period (a parameter of the
Giotto Director) divided by thefrequency (a parameter associated with the actor). To configure the
Giotto model period, modify the value of the period parameter. The default value of period is 0.1 sec.
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FIGURE 19.1. A Simple Giotto model with only one mode.

To configure the frequency of a task, add a parameter called frequency (the value has to be an integer).
Without the explicit frequency parameter, the director assigns a default frequency 1 to the actor.

There is also an iterations parameter associated with the director, which is used to control the
number of iterations of the model, or the total execution time of the model. The default value is 0,
which means no end time.

There is one constraint when constructing models: each channel of an input port must have exactly
one source. This ensures the determinacy of the model.

Figure 19.1 is a simple Giotto model. The simulation result of this model is shown in Figure 19.2.
The blue box in Figure 19.1 is GiottoCodeGenerator. It is used to generate Giotto code for the E-Com-
piler for schedulability analysis. To use the GiottoCodeGenerator, drag the CodeGenerator into the
graph editor from the tools on the left side under the directory more libraries/experimental domains/
Giotto. Double clicking this icon will pop up a text window with the generated code. The generated
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code for Figure 19.1 is shown in Figure 19.3.
pto
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FIGURE 19.2. Simulation results for the model in Figure 19.1

sensor

COMPOSITE_SENSOR composite_sensor uses
composite_sensor_devioe_driver;
accuacor

output

RAMP_OOTPUT Ramp_output := init_Ramp_ouCput;
task Ramp_task (RAMP_INPOT input)

output (Ramp_output)
state (RAMP_PARAM param := init_Ramp_param)

schedule Ramp_task(input, Ranip_output, param)

task plotter_l_task (PL0TTER_1_INP0T input)
output (plotter_l_output)
state (PL0TTER_1_PARAM param := init_plotter_l_param)

schedule plotter_l_task(input, plotter_l_output, param)

task plotter_2_task (PL0TTER_2_INPUT input)
output (plotter_2_output)
state (PL0TTER_2_PARAM param := init_plotter_2_param)

schedule plotter_2_task(input, plotter_2_output. param)

driver Ramp_driver (composite_sensor)
output (RAMP_INP0T input)

if c_true() then Ramp_input_driver( composite_sensor, input)

driver plotter_l_driver (Ramp_output, composite_sensor)
output (PL0TTER_1_INP0T input)

if c_true() then plotter_l_input_driver( Ramp_output,
composite_sensor, input)

driver plotter_2_driver (Ramp_output, composite_sensor)
output (PL0TTER_2_INPUT input)

if c_true() then plotter_2_input_driver( Ramp_cutput,
composite_sensor, input)

start simpleTest {
mode simpleTest () period 100 {

taskfreq 1 do Ramp_task(Ramp_driver);
taskfreq 1 do plotter_l_task(plotter_l_driver);
taskfreq 2 do plotter_2_task(plotter_2_driver);

)

>

FIGURE 19.3. Generated Giotto code for the model in Figure 19.1
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19.3 Interacting with Other Domains

During the designof real applications, big models are often decomposed into smaller models,each
having their own model of computation. So, it is important to study the interactions between Giotto
models and other models.A few discussions and examplesare given in the following paragraphs.

19.3.1 Giotto Embedded in DE and CT

The interface between DE model and Giotto model is well defined. Embedded inside DE model,
the Giotto model could easily be invoked to meet design requirements. The composite model gives a
paradigm of asynchronous Giotto model triggered by discrete events compared with the normal Giotto
model triggered by periodic time.

Figure 19.4 shows a Giotto model composed inside a DE model. The details of the DE domain are
in Chapter 14. The Giotto model runs with period 0.2 sec. and iterates twice each time it is invoked.
There are two triggering events: one happens at time 0.0 sec. and the other at time 1.0 sec. The result is
shown in Figure 19.5. The results in the State plot have a delay of0.2 sec. with respect to the triggering
events in the Events plot.

DE Director

First Event

Time 0.0s Value 1.0

Second Event

Time 1 .Os Value 5.0

Giotto Director

Merge

Ramp

period 0.2s
iterations 2

out

>

frequency 1

giotto State

Events

FIGURE 19.4. Giotto model embedded in DE model.

There are a few important issues:

i. The results in states plot has 0.2 sec. delay according to the Giotto semantics.

ii. For each input to the Giotto model, two outputs are generated since the value of the iterations
parameter is 2.

When a Giotto model is composed inside a CT model, the Giotto model is always invoked. So, the
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FIGURE 19.5. Simulation results of model of Figure 19.4

19.3.2 FSM and SDF embedded inside Giotto

A Giotto model may be composed of several modes. To realize mode switching, we employed the
modal model. A modal model is basically a FSM with the states which may be refined into other mod
els of computations. The details of the modal model is in Chapter 16. In our example, the states are
refined into the SDF models. The details of the SDF domain is in Chapter 15.

The model shown in Figure 19.6 is a simple implementation of mode switching where each mode
has only one task, (implemented as a SDF model). The modal model has three states, init, model and
mode2. The default state is init and it is never reached once the execution starts. The states model and

mode2 are refined into the tasks doing addition and subtraction respectively.
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FIGURE 19.6. Modal model embedded in Giotto model.

The simulation result is shown in Figure 19.7. The outputs plotter resides in the Giotto model.
Model plotter and model plotter reside in states ofmodel and mode2.

The outputs plot shows the results have 0.1 sec. delay according to the Giotto semantics. At time
0.4 sec., the model plot shows a mode switching (from model to mode2) happens. However, the mode
switching does not show on the outputs plot until 0.5 sec.

Note that in the model plot, the last result at 0.7 sec. does not show up in the outputs plot. The rea
son is that although the result of mode2 is available at 0.7 sec., it is not transferred to the outputs actor
until 0.8 sec. Thus, the outputs plotter could not show the result until 0.8 sec., which is beyond the iter
ations limit.

19.4 Software structure of the Giotto Domain and imple
mentation

The Giotto kernel package implements the Giotto model of computation. It's composed of three
classes: GiottoScheduler^ GiottoDirector and GiottoReceiver. Also, a code generation tool specially
for the E-complier developedby Christoph and others is provided as GiottoCodeGenerator. The struc
ture ofclasses is shown the Figure 19.8.

19-6 Ptolemy II



|('^nie:/0:/nieetina/hlArch 12 demo/Mu&lnxMfejanl
mm

OjiIIMlMl
Pause 1 Resume { Slop 1 outputs

Model parameters:

MulUmode has no parameters.

Director parameters.

period:

Iterations:

synchronlzeToReamme;

BKOC-ution finished.

0.0 0.1 0 2 0.3 0.4 O.S 0.6 0.7 0.6

BjSiHJMi

00 0.1 0.3 0.3 0.4 O.S 0.6 0.7 0.8

0.0 01 0.2 0.3 0.4 O.S 06 0.7 0.6

FIGURE 19.7. Simulation results for model in Figure 19.6.

19.4.1 GiottoDirector

GiottoDirector extends StaticSchedulingDirector class. It implements a model of computation
according to the Giotto semantics with the help of the GiottoScheduler and the GiottoReceiver. Giot-
toScheduler provides a list of schedules and GiottoReceiver provides the buffered states.

There are three parameters associated with the GiottoDirector: period, iterations and synchronize-
ToRealTime. The execution phases of GiottoDirector include initialize, prefire,fire and postfire.

1. In the initialize phase, the director resets all the receivers and properly initializes the output
ports of actors. The director also gets the list of schedules. A schedule is a list of actors to be fired at
the same time. It records the real time if the parameter synchronizeToRealTime is true.

2. In the prefire phase, the director updates the current time from upper level director if necessary.
It also checks whether the current time is less than the expected execution time to decide to fire or not.

3. In the fire phase, the director iterates the list of schedules via index indicator unitlndex. Each
time, the unitlndex is incremented by 1 referring to the next schedule. When it exceeds the schedule
list size, it rounds back to 0. The director does two things in sequence: invoking all the actors listed in
the schedule and transferring outputs of the actors after their executions. The director needs to be syn
chronized to real time if the parameter synchronizeToRealTime is true.

4. In the postfire phase, if the Giotto model is embedded, the director does not advance time by
itself. Its next firing is scheduled by the executive director (in the example in Figure 19.4, the DE
director). Note that the last transfer of outputs happens after the execution of all the actors and no
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actors are fired. A booiean variable transferOutputsOnly is introduced to indicate the transfer. When
the iterations requirement is first met, the director sets transferOutputsOnly to trueandprepares for the
next iteration.The postfireQ method returns true. In the immediately following postfire phase, transf
erOutputsOnly is set back to false. The postfireQ method retums false to terminate the model execu
tion.

StaticSchedulingDirector

♦ 1..1 Scheduler

1.. 1

GiottoOirector

+iterations: Int

-•-period:double
-•"SynchronizeToRearTime: boolean
#_DEFAULT_GI0TT0_PERI0D: double

creates

GiottoScheduler

-•-GiottoDirectorO
-•-GiottoDirectott container: CompositeEntity, name: String)
-•-GiottoDirector(woi1<space: Workspace)
-•-getlntPeriodO
-•^tPeriodO

#DEFAULT_GIOTTO_FREQUENCY: int

-M3iottoScheduler()
-KsiottoSctveduleitworkspace:Workspace)
-t^etFrequency(actor; Actor)
'fgetMinTimeStep(period: double)

creates

GiottoReceiver

-HSiottoReceiverO
-RSiottoReceiverlcontalner; lOPort)
-•-removeO
-•resetO
-HjpdateO

GiottoCodeGenerator

-i^neratedCode: String

AbstractReceiver

-•-G<ottoCodeGenerator(_container: NamedOtq,name: String)
-•generateCodeO

Attribute

TypedAtomicActor

FIGURE 19.8. The static structure of the Giotto package kernel classes.

When the Giotto model is embedded inside other models, for example, the model in Figure 19.4.
The Giotto director asks GiottoReceiver to call removeQ instead of getQ, otherwise, the states plotter
will always be fired because the _token is not cleared.

19.4.2 GiottoScheduler

GiottoScheduler extends the Scheduler class. It is used to construct a list of schedules for the Giot

toOirector. A schedule is a list of actors that will be fired by the GiottoOirector at the same time. Giot-
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toScheduler provides two things for GiottoDirector: the minimum umt time increment for
GiottoDirector to advance time and the list of schedules. To get schedule, use getScheduleQ method
from GiottoDirector.

GiottoScheduler first makes topology analysisto construct a list of the actors including the opaque
composite actors and atomic actors. It also constructs an arrayfrequencyArray, the elements are the
frequency values associatedwith the actor list. With the frequencyArray, the greatest common divider
(gcd) and the least common multiple (Icm) of all the frequency values are calculated. The minimum
unit time increment is defined as period / Icm. With frequencyArray and 1cm, another array: interval-
Array is constructed to indicate when the actor to be added into schedule.

In order to compute the schedule, a simple timer: giottoSchedulerTime is introduced, which iter
ates from 0 to Icm with tick increment oigcd.

When constructing the list of schedules, there are two loops. The outer loop iterates the giot
toSchedulerTime. The inner loop iterates the intervalArray. The inner loop constructs thefireAtSame-
TimeSchedule. The outer loop constructs a schedule^ the list of the fireAtSameTimeSchedules. The
Java code of schedule computation is shown in Figure 19.9.

Schedule schedule = new Schedule!);

for ( _giottoSchedulerTime = 0; _giottoSchedulerTime < _lcm; ) {

Schedule fireAtSameTimeSchedule = new Schedule!);

actorListlterator = actorList.listlterator!);

for !i = 0; i < actorCount; i++ ) {

Actor actor = !Actor) actorListlterator.next!);

if !!_giottoSchedulerTime % intervalArray[i]) == 0)
!

Firing firing = new Firing!);
firing.setActor!actor);

fireAtSameTimeSchedule.add!firing);

)

)

_giottoSchedulerTime += _gcd;

schedule.add!fireAtSameTimeSchedule);

FIGURE 19.9. Schedule computation ofGiottoScheduler.

19.4.3 GiottoReceiver

GiottoReceiver extends the AbstractReceiver class. The key point is that the GiottoReceiver has
double buffers: _nextToken and jtoken. When the getQ method is called, a copy of _token is con
sumed. When the putQ method is called, only the _nextToken is updated. When the updateQ method is
called, the _token is updated by _nextToken. When the removeQ method is called, a copy of the
_token is returned and the _token is cleared. It is the GiottoDirector that delays update calls to realize
the Giotto semantics.
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FIGURE 19.10. Working mechanism of GiottoReceiver.

Giotto Domain

The GiottoReceiver also has a reset() method. Reset is used to clear all the tokens including
_nextToken and _token but retums nothing. Remove is used to retum the _token and clear it but keeps
_nextToken. Reset is used for initialization and remove is used for transfer of outputs to outside envi
ronment when the Giotto model is embedded inside other models.

19.4.4 GiottoCodeGenerator

GiottoCodeGenerator extends Attribute class. It is used to generate Giotto code for E-Compiler for
schedulability analysis.

The current GiottoCodeGenerator works for one mode only. It iterates all the entities and treats
them as tasks. From the input ports of the entities, source ports and their containers are traced. The
model inputs are treated as sensors and the model outputs are treated as actuators.

The generated Giotto code usually has six parts: sensorCode, actuatorCode, outputCode,
taskCode, driverCode and modeCode. The sensorCode and actuatorCode are the interfaces to the out
side environment. The outputCode and driverCode describe the data dependencies. Note that for out
putCode, it is illegal for an input port to have more than one source. TaskCode is the description of the
computation of tasks (actors). ModeCode defines which tasks are in each mode, along with their
parameters.

The example code is in Figure 19.3.
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20.1 Introduction

The communicating sequential processes (CSP) domain in Ptolemy II models a system as a net
work ofsequential processes that communicate by passing messages synchronously through channels.
If a process is ready to send a message, it blocks until the receiving process is ready to accept the mes
sage. Similarly if a process is ready to accept a message, it blocks until the sending process is ready to
send the message. This model of computation is non-deterministic as a process can be blocked waiting
to send or receive on any number of channels. It is also highly concurrent.

The CSP domain is based on the model ofcomputation (MoC) first proposed by Hoare [40][41] in
1978. In this MoC, a system is modeled as a network ofprocesses communicate solely by passing mes
sages through unidirectional channels. The transfer of messages between processes is via rendezvous,
which means both the sending and receiving ofmessages from a channel are blocking: i.e. the sending
or receiving process stalls until the message is transferred. Some of the notation used here is borrowed
from Gregory Andrews' book on concurrent programming [4], which refers to rendezvous-based mes
sage passing as synchronous message passing.

Applications for the CSP domain include resource management and high level system modeling
early in the design cycle. Resource management is often required when modeling embedded systems,
and to further support this, a notion of time has been added to the model of computation used in the
domain. This differentiates our CSP model from those more commonly encoimtered, which do not typ
ically have any notion of time, although several versions of timed CSP have been proposed [38]. It
might thus be more accurate to refer to the domain using our model of computation as the "Timed
CSP" domain, but since it can be used with and without time, it is simply referred to as the CSP
domain.
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20.2 Using CSP

There are two basic issues that must be addressed when using the CSP domain:
• Unconditional vs. conditional rendezvous

• Time

20.2.1 Unconditional vs. Conditional Rendezvous

The basic communication statements sendQ and getQ correspond to rendezvous communication in
the CSP domain. Because of the domain framework, fact that a rendezvous is occurring on every com
munication is transparent to the actor code. However, this rendezvous is unconditional; an actor can
only attempt to communicate on one port at a time. To realize the full power of the CSP domain, which
allows non-deterministic rendezvous, it is necessary to write custom actors that use the conditional
communication constructs in the CSPActor base class. There are three steps involved:

1) Create a ConditionalReceive or ConditionalSend branch for each guarded communication state
ment, depending on the communication. Pass each branch a unique integer identifier, starting from
zero, when creating it.

2) Pass the branches to the chooseBranchQ method in CSPActor. This method evaluates the
guards, and decides which branch gets to rendezvous, performs the rendezvous and returns the identi
fication number of the branch that succeeded. If all of the guards were false, -1 is returned.

3) Execute the statements for the guarded communication that succeeded.

A sample template for executing a conditional communication is shown in figure 20.1. This tem
plate corresponds to the CDO construct in CSP, described in section 20.3.2. In creating the Condition
alSend and ConditionalReceive branches, the first argument represents the guard. The second and third

boolean continueCDO = true;
while (continueCDO) (

// step 1:
ConditionalBranch[] branches = new ConditionalBranch[#branchesRequired];
// Create a ConditionalReceive or a ConditionalSend for each branch
// e.g. branches(0] = new ConditionalReceive((guard), input, 0, 0);

// step 2:

int result = chooseBranch(branches);

// step 3:
if (result == 0) {

II execute statements associated with first branch
} else if (result == 1) {

// execute statements associated with second breinch.

} else if ... // continue for each branch ID

) else if (result == -1) {
// all guards were false so exit CDO.
continueCDO = false;

) else {

// error

}

FIGURE 20.1. Template for executing a CDO construct.
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arguments represent theportand channel to send or receive themessage on. The fourth argument is the
identifier assigned to thebranch. The choice of placing the guard in theconstructor was made to keep
the syntaxof usingguarded communication statements to the minimum, and to have the branchclasses
resemble the guarded communication statements they represent as closely as possible. This can give
rise to the case where the Token specifiedin a ConditionalSend branch may not yet exist, but this has
no effectbecause once the guard is false, the token in a ConditionalSend is never referenced.

The code for using a GIF is similar to that in figure 20.1 except that the surroimdingwhile loop is
omitted and the case when the identifier returned is -1 does nothing. At some stage the steps involved
in using a GIF or a GDO may be automated using a pre-parser, but for now the user must follow the
approach described above.

Figme 20.2 shows some actual code based on the template above that implements a buffer process.
This process repeatedly rendezvous on its input port and its output port, buffering the data if the read
ing process is not yet ready for the writing process. It is worth pointing out that if most channels in a
model are buffered in this way, it may be more reasonable to create the model in the PN domain which
implicitly has an unbounded buffer on every channel.

20.2.2 Time

The GSP domain does not currently use the fireAtQ mechanism to model time. If an actor wishes
be delayed a certain amount of time during execution ofthe model, it must derive from GSPActor. each
process in the GSP domain is able to delay itself, either for some period from the current model time or
until the next occasion time deadlock is reached at the current model time. The two methods to call are

delayO and waitForDeadlockQ. If a process delays itself for zero time from the current time, the pro-

boolean guard = false;
boolean continueCDO = true;
ConditionalBranch[) branches = new ConditionalBranch[2];
while (continueCDO) {

// step 1
guard = (_size < depth);
branchestO] = new ConditionalReceive(guard, input, 0, 0);
guard = (_size > 0);
branches(l) = new ConditionalSend(guard, output, 0, 1, _buffer(_readFromJ)

// step 2
int successfulBranch = chooseBranch(branches);

// step 3
if (successfulBranch == 0) {

_size++;
_buffer [_writeTo] = branches[0] .getTolcenO ;
_writeTo = ++_writeTo % depth;

) else if (successfulBranch == 1) {
_size—;
_readFrom = ++_readFrom % depth;

} else if (successfulBranch == -1) (
// all guards false so exit CDO
II Note this cannot happen in this case
continueCDO = false;

} else {

throw new TerminateProcessException(getName() + ": • +
"branch id returned during execution of CDO.");

)

FIGURE 20.2. Code used to implement the buffer process described in figure 20.1.
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cesswill continue immediately. Thus delay(O.O) is not equivalent to waitForDeadlockQ
As far as eachprocess is concemed, time can only increase while it is blocked waitingto rendez

vous or when it is delayed. A process can be aware of the current model time, but it should only ever
affect the model time by delaying its execution, thus forcing time to advance. The method setCurrent-
TimeQ shouldneverbe calledfroma process. However, if no processes are delayed, it is possibleto set
the model time by calling the setCurrentTimeQ method of the director. However, this method is
present only for composing CSP with other domains.

By default every model in the CSP domain is timed. To use CSP without a notion of time, simply
do not use the delayQ method. The infrastructure supporting time does not affect the model execution
if this method is not used. For more information about the semantics ofTimed CSP models, see section
20.3.4

20.3 Properties of the CSP Domain

At the core of CSP communication semantics are two fundamental ideas. First is the notion of

atomic communication and second is the notion of nondeterministic choice. It is worth mentioning a
related model of computation known as the calculus of communicating systems (CCS) that was inde
pendently developed by Robin Milner in 1980 [68]. The communication semantics of CSP are identi
cal to those of CCS.

20.3.1 Atomic Communication: Rendezvous

Atomic communication is carried out via rendezvous and implies that the sending and receiving of
a message occur simultaneously. During rendezvous both the sending and receiving processes block
until the other side is ready to communicate; the act ofsending and receiving is indistinguishable activ
ities since one can not happen without the other. A real world analogy to rendezvous can be found in
telephone communications (without answering machines). Both the caller and callee must be simulta
neously present for a phone conversation to occur. Figure 20.3 shows the case where one process is
ready to send before the other process is ready to receive. The communication of information in this
way can be viewed as a distributed assignment statement.

Process A Process B

progress send(B, msg)

blocked

transfer of data

t

FIGURE 20.3. Illustrating how processes block waiting to rendezvous

receive(A, var)

\
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The sending process places some data in the message that it wants to send. The receiving process
assigns the data in the message to a local variable. Of course, the receiving process may decide to
ignore the contents of the message and onlyconcemitselfwith the fact that a message arrived.

20.3.2 Choice: Nondeterministic Rendezvous

Nondeterministic choice provides processes with the ability to randomly select between a set of
possible atomic commimications. We refer to this ability as nondeterministic rendezvous and herein
lies much of the expressiveness of the CSP model of computation. The CSP domain implements non-
deterministic rendezvous via guarded communicationstatements. A guarded communication statement
has the form

guard; communication => statements;

The guard is only allowed to reference local variables, and its evaluation cannot change the state of the
process. For example it is not allowed to assign to variables, only reference them. The communication
must be a simple send or receive, i.e. another conditional communication statement cannot be placed
here. Statements can contain any arbitrary sequence ofstatements, including more conditional commu
nications.

If the guard is false, then the communication is not attempted and the statements are not executed.
If the guard is true, then the communication is attempted, and if it succeeds, the following statements
are executed. The guard may be omitted, in which case it is assumed to be true.

There are two conditional communication constructs built upon the guarded communication state
ments: CIF and CDO. These are analogous to the ifand while statements in most programming lan
guages. They should be read as "conditional if and "conditional do". Note that each guarded
communication statement represents one branch of the CIF or CDO. The communication statement in
each branch can be either a send or a receive, and they can be mixed freely.

CIF: The form of a CIF is

CIF {

G1;C1 => SI;

[]

G2;C2 => S2;

[]

}

For each branch in the CIF, the guard (G7, G2,...) is evaluated. If it is true (or absent, which
implies true), then the associated communication statement is enabled. If one or more branch is
enabled, then the entire construct blocks until one of the communications succeeds. If more than one
branch is enabled, the choice ofwhich enabled branch succeeds with its communication is made non-
deterministically. Once the successful communication is carried out, the associated statements are exe
cuted and the process continues. If all of the guards are false, then the process continues executing
statements after the end of the CIF.

It is important to note that, although this construct is analogous to the common ifprogramming
construct, its behavior is very different. In particular, all guards of the branches are evaluated concur-
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rently, andthe choice of whichonesucceeds doesnot depend on itsposition in the construct. Thenota
tion"[]" is usedto hintat theparallelism in the evaluation of theguards. In a common if,thebranches
are evaluated sequentially and the first branch that is evaluated to true is executed. The CIF construct
alsodepends on the semantics of the communication between processes, and canthusstall theprogress
of the thread if none of the enabled branches is able to rendezvous.

CDO: The form of the CDO is

CDO {

G1;C1 => SI;

[]

G2;C2 => S2;

[]

}

The behavior of the CDO is similar to the CIF in that for each branch the guard is evaluated and
the choice of which enabled communication to make is taken non-deterministically. However, the
CDO repeats the process of evaluating and executing the branches until all the guards return false.
When this happens the process continues executing statements after the CDO construct.

An example use of a CDO is in a buffer process which can both accept and send messages, but has
to be ready to do both at any stage. The code for this would look similar to that in figure 20.4. Note that
in this case both guards can never be simultaneously false so this process will execute the CDO for
ever.

20.3.3 Deadlock

A deadlock situation is one in which none of the processes can make progress: they are all either
blocked trying to rendezvous or they are delayed (see the next section). Thus, two types of deadlock
can be distinguished:

real deadlock - all active processes are blocked trying to communicate

time deadlock - all active processes are either blocked trying to communicate or are delayed, and at
least one processes is delayed.

20.3.4 Time

In the CSP domain, time is centralized. That is, all processes in a model share the same time,
referred to as the current model time. Each process can only choose to delay itself for some period rel
ative to the current model time, or a process can wait for time deadlock to occur at the current model
time. In both cases, a process is said to be delayed.

When a process delays itself for some length of time from the current model time, it is suspended

CDO {

(room in buffer?); receive(input, beginningOfBuffer) => update pointer to beginning of buffer;

(messages in buffer?); send(output, endOfBuffer) => update pointer to end of buffer;

FIGURE 20.4. Example of how a CDO might be used in a buffer
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until time has sufficiently advanced, at which stage it wakes up and continues. If the process delays
itself for zero time, this will have no effect and the process will continue executing.

Aprocess canalso choose to delay itsexecution until thenextoccasion a time deadlock is reached.
Theprocess resumes at the same model time at which it delayed, andthisis useful as a model canhave
several sequences of actions at the samemodel time. The next occasion time deadlock is reached, any
processes delayed in this mannerwill continue, and time will not be advanced. An example of using
time in this manner can be found in section 20.5.2.

Time may be advanced when all the processes are delayed or are blocked trying to rendezvous,
and at least one process is delayed. If one or more processes are delaying until a time deadlock occurs,
theseprocesses are woken up and time is not advanced. Otherwise, the currentmodel time is advanced
just enough to wake up at least one process. Note that there is a semantic difference between a process
delaying for zero time, which will have no effect, and a process delaying until the next occasion a time
deadlock is reached.

Note also that time, as perceived by a single process, cannot change during its normal execution;
only at rendezvous points or when the process delays can time change. A process can be aware of the
centralized time, but it cannot influence the current model time except by delaying itself. The choice
for modeling time was in part influenced by Pamela [30], a run time library that is used to model paral
lel programs.

20.3.5 Differences from Original CSP Model as Proposed by Hoare

The model of computation used by the CSP domain differs from the original CSP [40] model in
two ways. First, a notion oftime has been added. The original proposal had no notion of time, although
there have been several proposals for timed CSP [38]. Second, as mentioned in section 20.3.2, it is pos
sible to use both send and receive in guarded communication statements. The original model only
allowed receives to appear in these statements, though Hoare subsequently extended their scope to
allow both communication primitives [41].

One final thing to note is that in much of the CSP literature, send is denoted using a "!", pro
nounced "bang", and receive is denoted using a "?", pronounced "query". This syntax was what was
used in the original CSP paper by Hoare. For example, the languages Occam [15] and Lotos [23] both
follow this syntax. In the CSP domain in Ptolemy II we use send and get, the choice ofwhich is influ
enced by the desire to maintain uniformity of syntax across domains in Ptolemy II that use message
passing. This supports the heterogeneity principle in Ptolemy II which enables the construction and
inter-operability of executable models that are built under a variety of models of computation. Simi
larly, the notation used in the CSP domain for conditional communication constructs differs from that
commonly found in the CSP literature.

20.4 The CSP Software Architecture

20.4.1 Class Structure

In a CSP model, the director is an instance of CSPDirector. Since the model is controlled by a
CSPDirector, all the receivers in the ports are CSPReceivers. The combination of the CSPDirector and
CSPReceivers in the ports gives a model CSP semantics. The CSP domain associates each channel
with exactly one receiver, located at the receiving end of the channel. Thus any process that sends or
receives to any channel will rendezvous at a CSPReceiver. Figure 20.5 shows the static structure dia-
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gram of the five main classes in the CSP kemel, and a few of their associations. These are the classes
that provide all the infrastructure needed for a CSP model.

CSPDirector: This gives a model CSP semantics. It takes care of starting all the processes and con
trols/responds to both real and time deadlocks. It also maintains and advances the model time when
necessary.

CSPReceiver: This ensures that communication ofmessages between processes is via rendezvous.

CSPActor: This adds the notion of time and the ability to perform conditional communication.

ConditionalReceive, ConditionalSend: This is used to construct the guarded communication state
ments necessary for the conditional communication constructs.

20.4.2 Starting the model

The director creates a thread for each actor under its control in its initializeQ method. It also
invokes the initializeQ method on each actor at this time. The director starts the threads in its prefireQ
method, and detects and responds to deadlocks in its fireQ method. The thread for each actor is an
instance of ProcessThread, which invokes the prefireQ, fireQ and postfireQ methods for the actor until
it finishes or is terminated. It then invokes the wrapupQ method and the thread dies.

Figure 20.7 shows the code executed by the ProcessThread class. Note that it makes no assumption
about the actor it is executing, so it can execute any domain-polymorphic actor as well as CSP domain-
specific actors. In fact, any other domain actor that does not rely on the specifics of its parent domain
can be executed in the CSP domain by the ProcessThread.

20.4.3 Detecting deadlocks:

For deadlock detection, the director maintains three counts:

• the number of active processes which are threads that have started but have not yet finished

• the number ofblocked processes which is the number ofprocesses that are blocked waiting to ren
dezvous, and

director.initialize 0 =>

create a thread for each actor

update count of active processes with the director
call initialize 0 on each actor

director.prefire() => start the process threads =>
calls actor.prefireO
calls actor.fire0

calls actor.postfirel)
repeat.

director.fire{) => handle deadlocks until a real deadlock occurs.

director.postfireO =>
return a boolean indicating if the execution of the model should continue for another iteration

director.wrapupO => terminate all the processes =>
calls actor.wrapup()

decrease the count of active processes with the director

FIGURE 20.6. Sequence ofsteps involved in setting up and controlling the model.
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FIGURE 20.5. Static structure diagram for classes in the CSP kernel.
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• the number of delayedprocesses,which is the number of processeswaiting for time to advance
plus the number of processes waiting for time deadlock to occur at the current model time.
When the number ofblocked processes equals the number of active processes, then real deadlock

has occurred and the fire methodof the directorreturns. When the numberof blockedplus the number
of delayed processes equals the number of active processes, and at least one process is delayed, then
time deadlock has occurred. If at least one process is delayed waiting for time deadlock to occur at the
cmrent model time, then the director wakes up all such processes and does not advance time. Other
wise the director looks at its list ofprocesses waiting for time to advance, chooses the earliest one and
advances time sufficiently to wake it up. It also wakes up any other processes due to be awakened at
the new time. The director checks for deadlock each occasion a process blocks, delays or dies.

For the director to work correctly, these three counts need to be accurate at all stages of the model
execution, so when they are updated becomes important. Keeping the active count accurate is rela
tively simple; the director increases it when it starts the thread, and decreases it when the thread dies.
Likewise the count of delayed processes is straightforward; when a process delays, it increases the
count of delayed processes, and the director keeps track of when to wake it up. The count is decreased
when a delayed process resumes.

However, due to the conditional commimication constructs, keeping the blocked count accurate
requires a little more effort. For a basic send or receive, a process is registered as being blocked when
it arrives at the rendezvous point before the matching communication. The blocked count is then
decreased by one when the corresponding communication arrives. However what happens when an
actor is carrying out a conditional communication construct? In this case the process keeps track of all
of the branches for which the guards were true, and when all of those are blocked trying to rendezvous,
it registers the process as being blocked. When one of the branches succeeds with a rendezvous, the
process is registered as being unblocked.

public void runO (
try {

boolean iterate = true;
while (iterate) {

// container is checked for null to detect the termination

//of the actor,

iterate = false;
if ((Entity)_actor) .getContainerO != null SiEi _actor.prefire())

_actor.fire();
iterate = _actor.postfire();

)

}
} catch (TerminateProcessException t) {

// Process was terminated early
} catch (IllegalActionException e) {

_manager.fireExecutionError(e);
} finally (

try {
_actor.wrapup();

} catch (IllegalActionExeption e) {
_manager.fireExecutionError(e);

}
_director.decreaseActiveCount();

}

)

FIGURE 20.7. Code executed by ProcessThread.runO-
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20.4.4 Terminating the model

A processcan finish in one of twoways: eitherby returning falsein its prefireQ or postfireQ meth
ods, in which case it is said to have finished normally^ or by being terminated early by a TerminatePro-
cessException. For example, if a sourceprocess is intended to sendten tokens and then finish, it would
exit its fireQmethodafter sending the tenth token, and return false in its postfireQmethod.This causes
the ProcessThread, see figure 20.7, representing the process, to exit the while loop and execute the
finallyclause. The finally clausecalls wrapupQ on the actor it represents,decreases the count of active
processes in the director, and the thread representing the process dies.

A TerminateProcessBxception is thrown whenever a process tries to communicate via a channel
whose receiver has itsfinished flag set to true. When a TerminateProcessBxception is caught in Pro
cessThread, the finally clause is also executed and the thread representing the process dies.

To terminate the model, the director sets thefinished flag in each receiver. The next occasion a pro
cess tries to send to or receive from the channel associated with that receiver, a TerminateProcessBx
ception is thrown. This mechanism can also be used in a selective fashion to terminate early any
processes that communicate via a particular channel. When the director controlling the execution of
the model detects real deadlock, it returns from its fireQ method. In the absence of hierarchy, this
causes the wrapupQ method ofthe director to be invoked. It is the wrapupQ method ofthe director that
sets the finished flag in each receiver. Note that the TerminateProcessBxception is a runtime exception
so it does not need to be declared as being thrown.

There is also the option of abruptly terminating all the processes in the model by calling termi-
nateQ on the director. This method differs from the approach described in the previous paragraph in
that it stops all the threads immediately and does not give them a chance to update the model state.
After calling this method, the state of the model is unknown and so the model should be recreated after
calling this method. This method is only intended for situations when the execution of the model has
obviously gone wrong, and for it to finish normally would either take too long or could not happen. It
should rarely be called.

20.4.5 Pausing/Resuming the Model

Pausing and resuming a model does not affect the outcome of a particular execution of the model,
only the rate ofprogress. The execution of a model can be paused at any stage by calling the pauseQ
method on the director. This method is blocking, and will only retum when the model execution has
been successfully paused. To pause the execution of a model, the director sets a paused flag in every
receiver, and the next occasion a process tries to send to or receive from the chaimel associated with
that receiver, it is paused. The whole model is paused when all the active processes are delayed, paused
or blocked. To resume the model, the resumeQ method can similarly be called on the director This
method resets the paused flag in every receiver and wakes up every process waiting on a receiver lock.
If a process was paused, it sees that it is no longer paused and continues. The ability to pause and
resume the execution of a model is intended primarily for user interface control.

20.5 Example CSP Applications

Several example applications have been developed which serve to illustrate the modeling capabili
ties of the CSP model of computation in Ptolemy II. Bach demonstration incorporates several features
of CSP and the general Ptolemy II framework. The applications are described here, but not the code.
See the directory $PTII/ptolemy/domains/csp/demo for the code.
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The first demonstration, diningphilosophers^ serves as a natural example ofcore CSP communica
tion semantics. This demonstration models nondeterministic resource contention, e.g., five philoso
phers randomly accessing chopstick resources. Nondeterministic rendezvous serves as a natural
modeling tool for this example. The second example, hardware bus contention, models deterministic
resource contention in the context of time. As will be shown, the determinacy of this demonstration
constrains the natural nondeterminacy of the CSP semantics and results in difficulties. Fortunately
these difficulties can be smoothly circumvented by the timing model that has been integrated into the
CSP domain.

20.5.1 Dining Philosophers

Nondeterministic Resource Contention. This implementation of the dining philosophers problem illus
trates both time and conditional communication in the CSP domain. Five philosophers are seated at a
table with a large bowl of food in the middle. Between each pair of philosophers is one chopstick, and
to eat, a philosopher needs both the chopsticks beside him. Each philosopher spends his life in the fol
lowing cycle: thinks for a while, gets hungry, picks up one of the chopsticks beside him, then the other,
eats for a while and puts the chopsticks down on the table again. If a philosopher tries to grab a chop-
stick but it is already being used by another philosopher, then the philosopher waits until that chopstick
becomes available. This implies that no neighboring philosophers can eat at the same time and at most
two philosophers can eat at a time.

The Dining Philosophers problem was first proposed by Edsger W. Dijkstra in 1965. It is a classic
concurrent programming problem that illustrates the two basic properties of concurrent programming:

Liveness. How can we design the program to avoid deadlock, where none of the philosophers can
make progress because each is waiting for someone else to do something?

Fairness. How can we design the program to avoid starvation, where one of the philosophers
could make progress but does not because others always go first?

This implementation uses an algorithm that lets each philosopher randomly chose which chopstick to
pick up first (via a CDO), and all philosophers eat and think at the same rates. Each philosopher and
each chopstick is represented by a separate process. Each chopstick has to be ready to be used by either
philosopher beside it at any time, hence the use of a CDO. After it is grabbed, it blocks waiting for a
message from the philosopher that is using it. After a philosopher grabs both the chopsticks next to
him, he eats for a random time. This is represented by calling delay() with the random interval to eat
for. The same approach is used when a philosopher is thinking. Note that because messages are passed
by rendezvous, the blocking of a philosopher when it cannot obtain a chopstick is obtained for free.

o o
o

FIGURE 20.8. Illustration of the dining philosophers problem.

o

= chopstick

= philosopher

20-12 Ptolemy II



CSP Domain

This algorithm is fair, as any time a chopstick is not being used,and both philosophers try to use it,
they both have an equal chance of succeeding. However this algorithm does not guarantee the absence
of deadlock, and if it is let run long enough this will eventually occur. The probability that deadlock
occurs sooner increases as the thinking times are decreased relative to the eating times.

20.5.2 Hardware Bus Contention

Deterministic Resource Contention. This demonstration consists of a controller, N processors and a
memory block, as shown in Figure 20.9. At randomly selected points in time, each processor requests
permission from the controller to access the memory block. The processors each have priorities associ
ated with them and in cases where there is a simultaneous memory access request, the controller grants
permission to the processor with the highest priority. Due to the atomic nature of rendezvous, it is
impossible for the controller to check priorities of incoming requests at the same time that requests are
occurring. To overcome this difficulty, an alarm is employed. The alarm is started by the controller
immediately following the first request for memory access at a given instant in time. It is awakened
when a delay block occurs to indicate to the controller that no more memory requests will occur at the
given point in time. Hence, the alarm uses CSP's notion of delay blocking to make deterministic an
inherently non-deterministic activity.

20.6 Technical Details

20.6.1 Rendezvous Algorithm

In CSP, the locking point for all communication between processes is the receiver. Any occasion a
process wishes to send or receive, it must first acquire the lock for the receiver associated with the
channel it is communicating over. Two key facts to keep in mind when reading the following algo
rithms are that each channel has exactly one receiver associated with it and that at most one process
can be trying to send to (or receive from) a channel at any stage. The constraint that each channel can
have at most one process trying to send to (or receive from) a channel at any stage is not currently
enforced, but an exception will be thrown if such a model is not constructed.

The rendezvous algorithm is entirely symmetric for the putQ and the getQ, except for the direction
the token is transferred. This helps reduce the deadlock situations that could arise and also makes the
interaction between processes more understandable and easier to explain. The algorithm controlling
how a getO proceeds is shown in figure 20.10. The algorithm for a putQ is exactly the same except that

Memory Controller Alarm

Processor Processor Processor

FIGURE 20.9. Illustration of the Hardware Bus Contention example.
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put and get are swapped everywhere. Thus it suffices to explain what happens when a getQarrives at a
receiver, i.e. when a process tries to receive from the channel associated with the receiver.

When a getQ arrives at a receiver, a putQ is either already waiting to rendezvous or it is not. Both
the getQ and putQ methods are entirely synchronized on the receiver so they cannot happen simulta
neously (only one thread can possess a lock at any given time). Without loss of generality assume a
getQ arrives before a putQ. The rendezvous mechanism is basically three steps: a getQ arrives, a putQ
arrives, the rendezvous completes.

20-14
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FIGURE 20.10. Rendezvous algorithm.
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(1) When the getQ arrives, it sees that it is first and sets a flag saying a get is waiting. It then waits
on the receiver lock while the flag is still true,

(2) When a putQ arrives, it sets the get Waiting flag to false, wakes up any threads waiting on the
receiver (including the get), sets the rendezvousComplete flag to false and then waits on the
receiver while the rendezvousComplete flag is false,

(3) The thread executing the getQ wakes up, sees that a putQ has arrived, sets the rendezvousCom
plete flag to true, wakes up any threads waiting on the receiver, and returns thus releasing the lock.
The thread executing the putQ then wakes up, acquires the receiver lock, sees that the rendezvous
is complete and returns.

Following the rendezvous, the state of the receiver is exactly the same as before the rendezvous
arrived, and it is ready to mediate another rendezvous. It is worth noting that the final step, of making
sure the second communication to arrive does not retum until the rendezvous is complete, is necessary
to ensure that the correct token gets transferred. Consider the case again when a getQ arrives first,
except now the putQ returns immediately ifa getQ is already waiting. A putQ arrives, places a token in
the receiver, sets the get waiting flag to false and returns. Now suppose another putQ arrives before the
getO wakes up, which will happen if the thread the put() is in wins the race to obtain the lock on the
receiver. Then the second putO places a new token in the receiver and sets the put waiting flag to true.
Then the getQ wakes up, and retums with the wrong token! This is known as a race condition^ which
will lead to unintended behavior in the model. This situation is avoided by our design.

20.6.2 Conditional Communication Algorithm

There are two steps involved in executing a GIF or a CDO: first deciding which enabled branch
succeeds, then carrying out the rendezvous.

Built on top ofrendezvous:
When a conditional construct has more than one enabled branch (guard is true or absent), a new thread
is spawned for each enabled branch. The job of the chooseBranchQ method is to control these threads
and to determine which branch should be allowed to successfully rendezvous. These threads and the
mechanism controlling them are entirely separate from the rendezvous mechanism described in section
20.6.1, with the exception of one special case, which is described in section 20.6.3. Thus the condi
tional mechanism can be viewed as being built on top ofbasic rendezvous: conditional communication
knows about and needs basic rendezvous, but the opposite is not true. Again this is a design decision
which leads to making the interactionbetween threads easier to understand and is less prone to dead
lock as there are fewer interaction possibilities to consider.

which branch should succeed?

t i
rendezvous

FIGURE20.11. Conceptual viewof how conditional communication is built on top of rendezvous.
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Choosing which branch succeeds.
The manner in which the choice of which branch can rendezvous is worth explaining. The choose-
BranchO method in CSPActor takes an array ofbranches as an argument. If all of the guards are false,
it returns -1, which indicates that all the branches failed. Ifexactly one of the guards is true, it performs
the rendezvous directly and retums the identification number of the successful branch. The interesting
case is when more than one guard is true. In this case, it creates and starts a new thread for each branch
whose guard is true. It then waits, on an internal lock, for one branch to succeed. At that point it gets
woken up, sets a finished flag in the remaining branches and waits for them to fail. When all the
threads representing the branches are finished, it retums the identification number of the successful
branch. This approach is designed to ensure that exactly one of the branches created successfully per
forms a rendezvous.

Algorithm used by each branch:
Similar to the approach followed for rendezvous, the algorithm by which a thread representing a
branch determines whether or not it can proceed is entirely symmetrical for a ConditionalSend and a
ConditionalReceive. The algorithm followed by a ConditionalReceive is shown figure 20.12. Again
the locking point is the receiver, and all code concemed with the communication is synchronized on
the receiver. The receiver is also where all necessary flags are stored.

Consider three cases.

(1) a ConditionalReceive arrives and a put is waiting.

In this case, the branch checks if it is the first branch to be ready to rendezvous, and if so, it is goes
ahead and executes a get. If it is not the first, it waits on the receiver. When it wakes up, it checks
if it is still alive. If it is not, it registers that it has failed and dies. If it is still alive, it starts again by
trying to be the first branch to rendezvous. Note that a put cannot disappear.

(2) a ConditionalReceive arrives and a conditionalSend is waiting

When both sides are conditional branches, it is up to the branch that arrives second to check
whether the rendezvous can proceed. If both branches are the first to try to rendezvous, the Condi
tionalReceive executes a getO, notifies its parent that it succeeded, issues a notifyAllQ on the
receiver and dies. If not, it checks whether it has been terminated by chooseBranchQ. If it has, it
registers with chooseBranchQthat it has failed and dies. If it has not, it retums to the start of the
algorithm and tries again. This is because a ConditionalSend could disappear. Note that the parent
of the first branch to arrive at the receiver needs to be stored for the purpose of checking if both
branches are the first to arrive.

This part of the algorithm is somewhatsubtle. When the second conditional branch arrives at the
rendezvous point it checks that both sides are the first to try to rendezvous for their respective pro
cesses. If so, then the ConditionalReceive executes a getQ, so that the conditionalSend is never
aware that a ConditionalReceive arrived: it only sees the getQ.

(3) a ConditionalReceive arrives first.

It sets a flag in the receiver that it is waiting, then waits on the receiver. When it wakes up, it
checks whether it has been killed by chooseBranch. If it has, it registers with chooseBranch that it
has failed and dies. Otherwise it checks ifa put is waiting. It only needs to check if a put is waiting
because if a conditionalSend arrived, it would have behaved as in case (2) above. If a put is wait
ing, the branch checks if it is the first branch to be ready to rendezvous, and if so it is goes ahead
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and executesa get. If it is not the first, it waits on the receiver and tries again.

20.6.3 Modification of Rendezvous Algorithm

Consider the case when a conditional send arrives before a get. If all the branches in the condi
tional communication that the conditional send is a part of are blocked, then the process will register
itself as blocked with the director. Then the get comes along, and even though a conditional send is
waiting, it too would register itself as blocked. This leads to one too many processes being registered
as blocked, which could lead to premature deadlock detection.

To avoid this, it is necessary to modify the algorithm used for rendezvous slightly. The change to
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FIGURE 20.12. Algorithm used to determine ifa conditional rendezvous branch succeeds or fails
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the algorithm is shownin the dashedellipse in figure 20.13. It does not affect the algorithm except in
the case when a conditional send is waiting when a get arrives at the receiver. In this case the process
that calls the get should wait on the receiver until the conditional send waiting flag is false. If the con
ditional send succeeded, and hence executed a put, then the get waiting flag and the conditional send
waiting flag should both be false and the actor proceeds through to the third step of the rendezvous. If
the conditional send failed, it will have reset the conditional send waiting flag and issued a notifyAllQ
on the receiver, thus waking up the get and allowing it to properly wait for a put.

The same reasoning also applies to the case when a conditional receive arrives at a receiver before
a put.

20-18
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FIGURE 20.13. Modification of rendezvous algorithm, section 20.6.3, shown in ellipse.
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Author: John S. Davis II

21.1 Introduction

The distributed discrete-event (DDE) model of computation incorporates a distributed notion of
time into a dataflow style of computation. Time progresses in a DDE model when the actors in the
model execute and communicate. Actors in a DDE model communicate by sending messages through
bounded, FIFO channels. Time in a DDE model is distributed and localized, and the actors of a DDE
model each maintain their own local notion of the current time. Local time information is shared

between two connected actors whenever a communication between said actors occurs. Conversely,
communication between two connected actors can occur only when constraints on the relative local
time information of the actors are adhered to.

The DDE domain is based on distributed discrete-event processing and leverages a wealth of
research devoted to this topic. Some tutorial publications on this topic are [19][27][43][70]. The DDE
domain implements a specific variant of distributed discrete event systems (DDES) as expoimded by
Chandy and Misra [19]. The domain serves as a framework for studying DDES with two special
emphases. First we consider DDES irom a dataflow perspective; we view DDE as an implementation
of the Kahn dataflow model [45] with distributed time added on top. Second we study DDES not with
the goal of improving execution speed (as has been the case traditionally). Instead we study DDES to
leam its usefulness in modeling and designing systems that are timed and distributed.

21.2 Using DDE

The DDE domain is typed so that actors used in a model must be derived from TypedAtomicActor.
The DDE domain is designed to use both DDE specific actors as well as domain-polymorphic actors.
DDE specific actors take advantage of DDEActor and DDEIOPort which are designed to provide con
venient support for specifying time when producing and consuming tokens. The DDE domain also has
special restrictions on how feedback is specified in models.
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21.2.1 DDEActor

The DDE model of computation makes one very strong assumption about the execution of an
actor: all input ports ofan actor operating in a DDE model must be regularly polled to determine
which inputchannelhas the oldestpending event. Any actor that adheres to this assumption can oper
ate in a DDE model. Thus, many polymorphic actors found in ptolemy/actor/[lib, gui] are suitable for
operation in DDE models. For convenience, DDEActor was developed to simplify the construction of
actors that have DDE semantics. DDEActor has two key methods as follows:

getNextTokenQ. This method polls each input port of an actor and returns the (non-Null) token that
represents the oldest event. This method blocks accordingly as outlined in section 21.3.1 (Communi
cating Time).

getLastPortQ. This method returns the input lOPort from which the last (non-Null) token was con
sumed. This method presumes that getNextTokenQ is being used for token consumption.

21.2.2 DDEIOPort

DDEIOPort extends TypedlOPort with parameters for specifying time stamp values of tokens that
are being sent to neighboring actors. Since DDEIOPort extends TypedlOPort, use of DDEIOPorts will
not violate the type resolution protocol. DDEIOPort is not necessary to facilitate communication
between actors executing in a DDE model; standard TypedlOPorts are sufficient in most communica
tion. DDEIOPorts become useful when the time stamp to be associated with an outgoing token is
greater than the current time of the sending actor. Hence, DDEIOPorts are only useful in conjunction
with delay actors (see "Enabling Communication: Advancing Time" on page 21-3, for a definition of
delay actor). Most polymorphic actors available for Ptolemy II are not delay actors.

21.2.3 Feedback Topologies

In order to execute models with feedback cycles that will not deadlock, FeedBackDelay actors
must be used. FeedBackDelay is found in the DDE kemel package. FeedBackDelay actors do not per
form computation, but instead increment the time stamps of tokens that flow through them by a speci
fied delay. The delay value of a FeedBackDelay actor must be chosen to be less than the delta time of
the feedback cycle in which the FeedBackDelay actor is contained. Elaborate delay values can be spec
ified by overriding the getDelayQ method in subclasses of FeedBackDelay. An example can be found
in ptolemy/domains/dde/demo/LocalZeno/ZenoDelay.java.

A difficulty found in feedback cycles occurs during the initialization of a model's execution. In
figure 21.1 we see that even if Actor B is a FeedBackDelay actor, the system will deadlock if the first
event is created by A since C will block on an event from B. To alleviate this problem a special time
stamp value has been reserved: PrioritizedTimedQueue.IGNORE. When an actor encounters an event
with a time stamp of IGNORE (an ignore event\ the actor will ignore the event and the input channel

Actor B

Actor D

Actor A Actor C

FIGURE 21.1. Initializing feedback topologies.
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it is associated with. The actor then considers the other input channels in determining the next avail
able event. After a non-ignore event is encountered and consumed by the actor, all ignoreeventswill
be cleared from the receivers. If all of an actor's input channels contain ignore events, then the actor
will clear all ignore events and then proceed with normal operation.

The initialize method of FeedBackDelay produces an ignore event. Thus, in figure 21.1, if5 is a
FeedBackDelay actor, the ignore event it produces will be sent to C's upper input channel allowing C
to consumethe first event ffom^^. The productionof null tokens and feedbackdelays will then be suf
ficient to continueexecutionfrom that point on. Note that the productionof an ignore eventby a Feed
BackDelay actor serves as a major distinction between it and all other actors. If a delay is desired
simply to represent the computational delay ofa given model, a FeedBackDelay actor should not be
used.

The intricate operation of ignore events requires special consideration when determining the posi
tion of a FeedBackDelay actor in a feedback cycle. A FeedBackDelay actor should be placed so that
the ignore event it produces will be ignored in deference to the first real event that enters a feedback
cycle. Thus, choosing actor D as a FeedBackDelay actor in figure 21.1 would not be useful given that
the first real event entering the cycle is created by A.

21.3 Properties of the DDE domain

Operationally, the semantics of the DDE domain can be separated into two functionalities. The
first functionality relates to how time advances during the communication of data and how communi
cation proceeds via blocking reads and writes. The second functionality considers how a DDE model
prevents deadlock due to local time dependencies. The technique for preventing deadlock involves the
communication of null messages that consist solely of local time information.

21.3.1 Enabling Communication: Advancing Time

Communicating Tokens. A DDE model consists of a network of sequential actors that are connected
via unidirectional, bounded, FIFO queues. Tokens are sent from a sending actor to a receiving actor by
placing a token in the appropriate queue where the token is stored until the receiving actor consumes it.
As in the process networks domain, the execution of each actor is controlled by a process. If a process
attempts to read a token from a queue that is empty, then the process will block until a token becomes
available on the channel. If a process attempts to write a token to a queue that is full, then the process
will block until space becomes available for more tokens in that queue. Note that this blocking read/
write paradigm is equivalent to the operational semantics found in non-timed process networks (PN) as
implemented in Ptolemy II (see the PN Domain chapter).

If all processes in a DDE model simultaneously block, then the model deadlocks. If a deadlock is
due to processes that are either waiting to read from an empty queue, read blocks^ or waiting to write to
a full queue, write blocks^ then we say that the model has experienced non-timed deadlock. Non-timed
deadlock is equivalent to the notion of deadlock found in bounded process networks scheduling prob
lems as outlined by Parks [78]. If a non-timed deadlock is due to a model that consists solely of pro
cesses that are read blocked, then we say that a real deadlock has occurred and the model is terminated.
If a non-timed deadlock is due to a model that consists of at least one process that is write blocked,
then the capacity of the full queues are increased until deadlock no longer exists. Such deadlocks are
called artificial deadlock, and the policy of increasing the capacity of full queues as shown by Parks
can guarantee the execution ofa model in bounded memory whenever possible.
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Communicating Time. Eachactor in a DDEmodel maintains a localnotion of time. Any non-negative
real number may serve as a valid value of time. As tokens are communicated between actors, time
stamps are associated with each token. Whenever an actor consumes a token, the actor's current time is
set to be equal to that of the consumed token's time stamp. The time stamp value applied to outgoing
tokens of an actor is equivalent to that actor's output time. For actors that model a process in which
there is delay between incoming time stamps and corresponding outgoing time stamps,then the output
time is always greater than the current time; otherwise, the output time is equal to the current time. We
refer to actors of the former case as delay actors.

For a given queue containing time stamped tokens, the time stamp of the first token currently con
tained by the queue is referred to as the receiver time ofthe queue. Ifa queue is empty, its receiver time
is the value of the time stamp associated with the last token to flow through the queue, or 0.0 if no
tokens have traveled through the queue. An actor may consume a token from an input queue given that
the queue has a token available and the receiver time of the queue is less than the receiver times of all
other input queues of the actor. If the queue with the smallest receiver time is empty, then the actor
blocks until this queue receives a token, at which time the actor considers the updated receiver time in
selecting a queue to read from. The last time of a queue is the time stamp of the last token to be placed
in the queue. Ifno tokens have been placed in the queue, then the last time is 0.0

Figure 21.2 shows three actors, each with three input queues. Actor has two tokens available on
the top queue, no tokens available on the middle queue and one token available on the bottom queue.
The receiver times of the top, middle and bottom queue are respectively, 17.0, 12.0 and 15.0. Since the
queue with the minimum receiver time (the middle queue) is empty, A blocks on this queue before it
proceeds. In the case of actor 5, the minimum receiver time belongs to the bottom queue. Thus, B pro
ceeds by consuming the token found on the bottom queue. After consuming this token, B compares all
of its receiver times to determine which token it can consiune next. Actor C is an example of an actor
that contains multiple input queues with identical receiver times. To accommodate this situation, each
actor assigns a unique priority to each input queue. An actor can consume a token from a queue if no
other queue has a lower receiver time and if all queues that have an identical receiver time also have a
lower priority.

Each receiver has a completion time that is set during the initialization of a model. The completion
time of the receiver specifies the time after which the receiver will no longer operate. If the time stamp
of the oldest token in a receiver exceeds the completion time, then that receiver will become inactive.

21.3.2 Maintaining Communication: Null Tokens

Deadlocks can occur in a DDE model in a form that differs from the deadlocks described in the

previous section. This alternative form of deadlock occurs when an actor read blocks on an input port
even though it contains other ports with tokens. The topology of a DDE model can lead to deadlock as
read blocked actors wait on each other for time stamped tokens that will never appear. Figure 21.3

22.0
J7.0

12.0
Actor A

15.0

22.0
17.0

22.0
Actor B

15.0

FIGURE 21.2. DDE actors and local time.
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illustrates this problem. In this topology, consider a situation in which actorA onlycreates tokens on
its lower output queue. This will leadto tokens being created on actorCs output queue butno tokens
willbe created on5's output queue (since B has no tokens to consume). Thissituation results inD read
blocking indefinitely on its upper input queue even though it is clear that no tokens will ever flow
through thisqueue. Theresult: timed deadlock! Thesituation shown in figure 21.3 is only oneexample
of timed deadlock. In fact thereare two types of timed deadlock:feedforward andfeedback.

Figure 21.3 is an example of feedforward deadlock. Feedforward deadlock occurs whena set of
connected actors are deadlocked such that all actors in the set are read blocked and at least one of the
actors in the set is read blocked on an input queue that has a receiver time that is less than the local
clockof the inputqueue's source actor. In the example shownabove, the upperinput queueof 5 has a
receiver time of0.0 even though the local clock ofA has advanced to 8.0.

Feedback deadlock occurs when a set of cyclically connected actors are deadlocked such that all
actors in the set are read blocked and at least one actor in the set, say actor is read blocked on an
input queue that can read tokens which are directly or indirectly a result of output from that same actor
(actorA). Figure 21.4 is an example offeedback timed deadlock. Note that B can not produce an output
based on the consumption of the token timestamped at 5.0 because it must wait for a token on the
upper input that depends on the output ofB\

Preventing Feedforward Timed Deadlock. To address feedforward timed deadlock, null tokens are
employed. A null token provides an actor with a means of communicating time advancement even
though data {real tokens) are not being transmitted. Whenever an actor consumes a token, it places a
null token on each of its output queues such that the time stamp ofthe null token is equal to the current
time of the actor. Thus, if actor ^4 of figure 21.3, produced a token on its lower output queue at time
5.0, it would also produce a null token on its upper output queue at time 5.0.

If an actor encounters a null token on one of its input queues, then the actor does the following.
First it consumes the tokens ofall other input queues it contains given that the other input queues have
receiver times that are less than or equal to the time stamp of the null token. Next the actor removes the
null token from the input queue and sets its current time to equal the time stamp of the null token. The
actor then places null tokens time stamped to the current time on all output queues that have a last time
that is less then the actor's current time. As an example, ifB in figure 21.3 consumes a null token on its
input with a time stamp of 5.0 then it would also produce a null token on its output with a time stamp
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FIGURE 21.3. Timed deadlock (feedforward).
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FIGURE 21.4. Timed deadlock (feedback).
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of 5.0.

The result of using null tokens is that time information is evenly propagated through a model's
topology. The beauty of null tokens is that they inform actors of inactivity in other components of a
model without requiring centralized dissemination of this information. Given the use of null tokens,
feedforward timed deadlock is prevented in the execution of DDE models. It is importantto recognize
that null tokensare used solely for the purpose of avoidingdeadlocks. Null tokensdo not representany
actual components of the physical system being modeled. Furthermore, the production of a null token
that is the direct result of the consumption of a null token is not considered computation from the
standpoint of the system being modeled. The idea of null tokens was first espoused by Chandy and
Misra [19].

Preventing Feedback TimedDeadlock. We address feedback timed deadlock as follows. All feedback
loops are required to have a cumulative time stamp increment that is greater than zero. In other words,
feedback loops are required to contain delay actors. Peacock, Wong and Manning [79] have shown that
a necessary condition for feedback timed deadlock is that a feedback loop must contain no delay
actors. The delay value (delay = output time - current time) of a delay actor must be chosen wisely; it
must be less then the smallest delta time of all other actors contained in the same feedback loop. Delta
time is the difference between the time stamps of a token that is consumed by an actor and the corre
sponding token that is produced in direct response. If a system being modeled has characteristics that
prevent a fixed, positive lower bound on delta time from being specified, then our approach can not
solve feedback timed deadlock. Such a situation is referred to as a Zeno condition. An application
involving an approximated Zeno condition is discussed in section 21.5 below.

The DDE software architecture provides one delay actor for use in preventing feedback timed
deadlock: FeedBackDelay. See "Feedback Topologies" on page 21-2 for further details about this
actor.

21.3.3 Alternative Distributed Discrete Event Methods

The field of distributed discrete event simulation, also referred to as parallel discrete event simula
tion (PDES), has been an active area of research since the late 1970's [I9][27][43][70][79]. Recently
there has been a resurgence of activity [5][6][11]. This is due in part to the wide availability of distrib
uted frameworks for hosting simulations and the application of parallel simulation techniques to non-
research oriented domains. For example, several WWW search engines are based on network ofwork
station technology.

The field of distributed discrete event simulation can be cast into two camps that are distinguished
by the blocking read approach taken by the actors. One camp was introduced by Chandy and Misra
[19][27][70][79] and is known as conservative blocking. The second camp was introduced by David
Jefferson through the Jet Propulsion Laboratory Time Warp system and is referred to as the optimistic
approach [43][27]. In certain problems, the optimistic approach executes faster than the conservative
approach, nevertheless, the gains in speed result in significant increases in program memory. The con
servative approach does not perform faster than the optimistic approach but it executes efficiently for
all classes of discrete event systems. Given the modeling semantics emphasis of Ptolemy II, perfor
mance (speed) is not considered a premium. Furthermore, Ptolemy II's embedded systems emphasis
suggests that memory constraints are likely to be strict. For these reasons, the implementation found in
the DDE domain follows the conservative approach.
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21.4 The DDE Software Architecture

For a model to have DDE semantics, it must have a DDEDirector controlling it. This ensures that
the receivers in the ports are DDEReceivers. Each actor in a DDE model is under the control of a
DDEThread. DDEThreads contain a TimeKeeper that manages the local notion of time that is associ
ated with the DDEThread's actor.

21.4.1 Local Time Management

The UML diagram of the local time management system of the DDE domain is shown in figure
21.5 and consists of PrioritizedTimedQueue, DDEReceiver, DDEThread and TimeKeeper. Since time
is localized, the DDEDirector does not have a direct role in this process. Note that DDEReceiver is
derived from PrioritizedTimedQueue. The primary purpose of PrioritizedTimedQueue is to keep track
of a receiver's local time information. DDEReceiver adds blocking read/write functionality to Priori
tizedTimedQueue.

PrioritizedTimedQueue
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FIGURE 21.5. Key classes for managing time locally.
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When a DDEDirector is initialized, it instantiates a DDEThread for each actor that the director
manages. DDEThread is derived from ProcessThread. The ProcessThread class providesfunctionality
that is common to all of the process domains (e.g., CSP, DDE and PN). The directors of all process
domains (including DDE) assign a single actor to each ProcessThread. ProcessThreads take responsi
bility of their assigned actor's execution by invoking the iteration methods of the actor. The iteration
methods are prefireQ, fireQ and postfireQ; ProcessThreads also invoke wrapupQ on the actors they
control.

DDEThread extends the functionality of ProcessThread. Upon instantiation, a DDEThread creates
a TimeKeeper object and assigns this object to the actor that it controls. The TimeKeeper gets access to
each of the DDEReceivers that the actor contains. Each of the receivers can access the TimeKeeper
and through the TimeKeeper the receivers can then determine their relative receiver times. With this
information, the receivers are fully equipped to apply the appropriate blocking rules as they get and put
time stamped tokens.

DDEReceivers use a dynamic approach to accessing the DDEThread and TimeKeeper. To ensure
domain polymorphism, actors (DDE or otherwise) do not have static references to the TimeKeeper and
DDEThread that they are controlled by. To ensure simplified mutability support, DDEReceivers do not
have a static reference to TimeKeepers. Access to the local time management facilities is accom
plished via the Java Thread.currentThreadO method. Using this method, a DDEReceiver dynamically
accesses the thread responsible for invoking it. Presumably the calling thread is a DDEThread and
appropriate steps are taken if it is not. Once the DDEThread is accessed, the corresponding Time-
Keeper can be accessed as well. The DDE domain uses this approach extensively in DDERe-
ceiver.put(Token) and DDEReceiver.getQ.

21.4.2 Detecting Deadlock

The other kemel classes of the DDE domain are shown in figure 21.6. The purpose of the DDEDi
rector is to detect and (if possible) resolve timed and/or non-timed deadlock of the model it controls.
Whenever a receiver blocks, it informs the director. The director keeps track of the number of active
processes, and the number of processes that are either blocked on a read or write. Artificial deadlocks
are resolved by increasing the queue capacity ofwrite-blocked receivers.

Note the distinction between internal and external read blocks in DDEDirector's package fhendly
methods. The current release of DDE assumes that actors that execute according to a DDE model of
computation are atomic rather than composite. In a future Ptolemy II release, composite actors will be
facilitated in the DDE domain. At that time, it will be important to distinguish intemal and external
read blocks. Until then, only intemal read blocks are in use.

21.4.3 Ending Execution

Execution of a model ends if either an unresolvable deadlock occurs, the director's completion
time is exceeded by all of the actors it manages, or early termination is requested (e.g., by a user inter
face button). The director's completion time is set via the public stopTime parameter of DDEDirector.
The completion time is passed on to each DDEReceiver. Ifa receiver's receiver time exceeds the com
pletion time, then the receiver becomes inactive. If all receivers of an actor become inactive and the
actor is not a source actor, then the actor will end execution and its wrapupQ method will be called. In
such a scenario, the actor is said to have terminated normally.

Early terminations and unresolvable deadlocks share a common mechanism for ending execution.
Each DDEReceiver has a boolean _tenninate flag. If the flag is set to true, then the receiver will
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throw a TerminateProcessException the next time any of its methods are invoked. TerminatePro-
cessExceptions are part of the ptolemy/actor/process packageand ProcessThreads know to end
an actor's execution if this exception is caught. In the case ofunresolvable deadlock, the _tenninate
flag of all blocked receivers is set to true. The receivers are then awakened from blocking and they
each throw the exception.

21.5 Example DDE Applications

To illustrate distributed discrete event execution, we have developed an applet that features a feed
back topology and incorporates polymorphic as well as DDE specific actors. The model, shown in fig
ure 21.7, consists of a single source actor (ptolemy/actor/lib/Clock) and an upper and lower branch of
four actors each. The upper and lower branches have identical topologies and are fed an identical
stream of tokens from the Clock source with the exception that in the lower branch ZenoDelay
replaces FeedBackDelay.

As with all feedback topologies in DDE (and DE) models, a positive time delay is necessary in
feedback loops to prevent deadlock. If the time delay ofa given loop is lower bounded by zero but can
not be guaranteed to be greater than a fixed positive value, then a Zeno condition can occur in which
time will not advance beyond a certain point even though the actors of the feedback loop continue to
execute without deadlocking. ZenoDelay extends FeedBackDelay and is designed so that a Zeno con
dition will be encountered. When execution of the model begins, both FeedBackDelay and ZenoDelay
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I >
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I
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FIGURE 21.6. Additional classes in the DDE kernel.
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FIGURE 21.7. Localized Zeno condition topology.

are used to feed back null tokens into Wire so that the model does not deadlock. After local time

exceeds a preset value, ZenoDelay reduces its delay so that the lower branch approximates a Zeno con
dition.

In centralized discrete event systems, Zeno conditions prevent progress in the entire model. This is
true because the feedback cycle experiencing the Zeno condition prevents time from advancing in the
entire model. In contrast, distributed discrete event systems localize Zeno conditions as much as is
possible based on the topology of the system. Thus, a Zeno condition can exist in the lower branch and
the upper branch will continue its execution unimpeded. Localizing Zeno conditions can be useful in
large scale modeling in which a Zeno condition may not be discovered until a great deal of time has
been invested in execution of the model. In such situations, partial data collection may proceed prior to
correction of the delay error that resulted in the Zeno condition.

21-10 Ptolemy II



PN Domain

Author: Mudit Gael

Contributor: Steve Neuendorffer

22.1 Introduction

The process networks (PN) domain in Ptolemy II models a system as a network of processes that
communicate with each other by passing messages through unidirectional first-in-first-out (FIFO)
channels. A process blocks when trying to read from an empty channel until a message becomes avail
able on it. This model of computation is deterministic in the sense that the sequence ofvalues commu
nicated on the channels is completely determined by the model. Consequently, a process network can
be evaluated using a complete parallel or sequential schedule and every schedule in between, always
yielding the same output results for a given input sequence.

PN is a natural model for describing signal processing systems where infinite streams of data sam
ples are incrementally transformed by a collection of processes executing in parallel. Embedded signal
processing systems are good examples of such systems. They are typically designed to operate indefi
nitely with limited resources. This behavior is naturally described as a process network that runs for
ever but with bounded buffering on the communication channels whenever possible.'

PN can also be used to model concurrency in the various hardware components of an embedded
system. The original process networks model of computation can model the functional behavior of
these systems and test them for their functional correctness, but it cannot directly model their real-time
behavior. To address the involvement of time, we have extended the PN model such that it can include
the notion of time.

Some systems might display adaptive behavior like migrating code, agents, and arrivals and depar
tures ofprocesses. To support this adaptive behavior, we provide a mutation mechanism that supports
addition, deletion, and changing ofprocesses and channels. With imtimed PN, this might display non-

1. In general, bounded buffers cannot be ensured for an arbitrary process network. An important part of the design
of a process network concerns showing that the buffers are, in fact, bounded. Synchronous dataflow models are
an important type of process network which always have bounded buffers.
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determinism, while with timed-PN, it becomes deterministic.

The PN model of computation is a superset of the synchronous dataflow model of computation
(see the SDF Domain chapter). Consequently, any SDF actor can be used within the PN domain. Simi
larly any domain-polymorphic actor can be used in the PN domain. However, the execution of the
model is very different from SDF,since a separate process is created for each of actor.These processes
are implemented as Java threads [75].

22.2 Using PN

There are two issues to be dealt with in the PN domain:

• Deadlock in feedback loops

• Designing actors

22.2.1 Deadlock in Feedback Loops

Feedback loops must be handled in much the same way as in the SDF actor. One of the actors in
the feedback loop must create a number of tokens in its feedback loop in order to break the data depen
dency. Just like in the SDF domain, the SampleDelay actor can be used for this purpose. Remember,
however that the PN domain does not (and cannot) statically analyze the model to determine the size of
the delay necessary in the feedback loop. It is up to the designer of the model to specify the correct
amount of delay.

22.2.2 Designing Actors

Because of the way the PN domain is implemented, it is not possible for an actor to check ifdata is
present on an input port. The hasTokenQ method always returns true indicating that a token is present,
and if a token is not actually present, then the getQ method will block until one becomes available.
This allows models to execute deterministically. However, actors that take inputs from more than one
input can often be difficult to write. The common way of creating such an actor is similar to the way
the Select actor works. Another input is read first, and the data from that port determines which input
port to read from.

22.3 Properties of the PN domain

Two important properties of the PN domain implemented in Ptolemy II are that processes commu
nicate asynchronously (by ordered queues) and that the memory used in the communication is
bounded. The PN domain in Ptolemy II can be used with or without a notion of time.

22.3.1 Asynchronous Communication

Kahn and MacQueen [44][45] describe a model of computation where processes are connected by
communication channels to form a network. Processes produce data elements or tokens and send them
along a unidirectional communication channel where they are stored in a FIFO queue until the destina
tion process consumes them. This is a form ofasynchronous communication between processes. Com
munication channels are the only method processes may use to exchange information. A set of
processes that communicate through a network of FIFO queues defines a program.
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Kahnand MacQueen requirethat execution of a processbe suspended when it attempts to get data
froman empty inputchannel{blocking reads). Hence,a process maynot poll a channelfor presenceor
absence of data. At any given point, a process is either doing some computation (enabled) or it is
blocked waiting for data {read blocked) on exactly one of its input channels; it cannot wait for data
from more than one channel simultaneously. Systems that obey this model are determinate; the history
of tokensproducedon the communication channels does not dependon the executionorder. Therefore,
the results produced by executing a program are not affected by the scheduling of the various pro
cesses.

In case all the processes in a model are blocked while trying to read from some channel, then we
have a real deadlock, none of the processes can proceed. Real deadlock is a program state that happens
irrespective of the schedule chosen to schedule the processes in a model. This characteristic is guaran
teed by the determinacy property ofprocess networks.

22.3.2 Bounded Memory Execution

The high level of concurrency in process networks makes it an ideal match for embedded system
software and for modeling hardware implementations. A characteristic of these embedded applications
and hardware processes, is that they are intended to run indefinitely with a limited amount of memory.
One problem with directly implementing the Kahn-MacQueen semantics is that bounded memory exe
cution ofa process network is not guaranteed, even if it is possible. Hence, bounded memory execution
ofprocess networks becomes crucial for its usefulness for hardware and embedded software.

Parks [78] addresses this aspect of process networks and provides an algorithm to make a process
network application execute in bounded memory whenever possible. He provides an implementation
of the Kahn-MacQueen semantics using blocking writes that assigns a fixed capacity to each FIFO
channel and forces processes to block temporarily if a channel is full. Thus a process has now three
states: running {executing), read blocked, or write blocked and a process may not poll a channel for
either data or room.

In addition to the real deadlock described above, the introduction ofa blocking write operation can
cause an artificial deadlock of the process network. In this situation, all the processes in a model are
blocked and at least one process is blocked on a write. However unlike after real deadlock, a program
can continue after artificial deadlock by increasing the capacity of the channels on which processes are
write blocked. In particular. Parks chooses to increase only the capacity of the channel with the small
est capacity among the channels on which processes are write blocked. This algorithm minimizes over
all required memory in the channels and is used in the PN domain to handled artificial deadlock.

22.3.3 Time

In real-time systems and embedded applications, the real time behavior of a system is as important
as the functional correctness. Process networks can be used to describe the functional properties of a
system, but cannot describe temporal properties since the basic model lacks the notion of time. One
solution is to use some other timed model of computation, such as DE, for describing temporal proper
ties. Another solution is to extend the process networks model of computation with a notion time, as
we have done in Ptolemy II. This extension is based on the Pamela model [30], which was originally
developed for modeling the performance of parallel systems using Dykstra's semaphores.

In the timed PN domain, time is global. All processes in a model share the same time, which is
referred to as the current time or model time. A process can explicitly wait for time to advance, by
delaying itself for some fixed amount of time. After being suspended for the specified amount of time.
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the process wakes up and continues to execute. If the process delays itself for zero timethenthe pro
cess simply continues to execute.

In the timed PN domain, time changes only at specific moments and never during the execution of
a process. The time observed by a process can only advance when it is in one of the following two
states:

1. The process is delayed and is explicitly waiting for time to advance {delay block).

2. The process is waiting for data to arrive on one of its input channels {read block).
When all the processes in a program are in one of these two states, then the program is in a state of

timed deadlock. The fact that at least one process is delayed, distinguishes timed deadlock from other
deadlocks. When timed deadlock is detected, the current time is advanced until at least one process can
awaken from a delay block and the model continues executing.

22.3.4 Mutations

The PN domain tolerates mutations, which are run-time changes in the model structure. Normally,
mutations are realized as change requests queued with the model. In PN there is no determinatepoint
where mutations can occur other than a real deadlock. However, being able to perform mutations at
this point is unlikely as a real deadlock might never occur. For example, a model with even one non-
terminating source never experiences a real deadlock. Therefore mutations cannot be performed at
determinate points since the processes in the network are not synchronized. Executing mutations at
arbitrary times introduces non-determinism in PN, since the state of the processes is unknown.

In timed PN, however, the presence of timed deadlock provides a regular point at which the state
of execution can be determined. This means that mutations in timed PN can be made deterministically.
Implementation details are presented later in section 22.4.

22.4 The PN Software Architecture

The PN domain kernel is realized in package ptolemy.domains.pn.kemel. The structure diagram of
the package is shown in figure 22.1.

22.4.1 BasePNDirector

This class extends the CompositeProcessDirector base class to add Kahn process networks (PN)
semantics. This director does not support mutations or a notion of time. It provides only a mechanism
to perform blocking reads and writes using bounded memory execution whenever possible.

This director is capable of handling both real and artificial deadlocks. Artificial deadlock is
resolved as soon as it arises using Parks' algorithm as explained in section 22.3.2. Real deadlock, how
ever, cannot be handled locally and must rely on the external environment to provide more data for
execution to continue.

22.4.2 PNDirector

PNDirector extends the BasePNDirector to handle mutations locally. This is only an optimization,
since it allows a mutation to execute faster than it would otherwise, and does not add any interesting
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expressive capability to the model. Most importantly, the mutation is non-deterministic and can hap
pen at any point during the execution of the model.

22.4.3 TimedPNDirector

TimedPNDirector extends the BasePNDirector to introduces a notion of global time to the model.
It also provides for deterministic execution of mutations. Mutations are performed at the earliest
timed-deadlock that occursafter they are queued. Sinceoccurrence of timed-deadlock is deterministic,
performing mutations at this point makes mutations deterministic.

22.4.4 PNQueueReceiver

The PNQueueReceiver implements the ProcessReceiver interface and contains a FIFO queue to
represents a processnetworkcommunications channel. These receivers are also responsible for imple
menting the blockingreads and blockingwrites through the getQand putQ methods.

When the getQ method is called, the receiver first checks if a FIFO queue has any tokens. If not,
then it reports to the director that the reading thread is blocked waiting for data. It also sets an intemal
flag to indicate that a thread is read blocked. Then the reading thread is suspended until some other
thread puts a token into the FIFO queue. At this point, the flag of the receiver is reset to false, the
director is notified that a process has unblocked, the reading process retrieves the first token from the
FIFO queue and execution continues.

The putQ methodof the receiverworks similarly by first checking whether the FIFO queue is full

jCompositeProcessDirectorl

BasePNDirector

+BasePNDirBctor()
-••BasePNDIrector(woricspace: Workspace)
••-BasePNDirector(container: CompositeActor, name : String)
+addProcessUstener(llstener: PNProcessLlstener)
-••removeProcessListener(listener: PNProcessListener)

PNDirector

!

TimedPNDirector

FIGURE 22.1. Static structure of the PN kernel.
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to capacity. If so, it reports to the director that the writing thread is blocked waiting for space in the
queue. It also sets an internal flag to indicate that a thread is write blocked. The writing thread blocks
until some other thread gets a token from the FIFO queue, or the size of the queue is increasedby the
director because the network reached an artificial deadlock. In either case, the director is notified that a
writing process unblocks and the internal flag is reset. The writing thread is reawakened and its token
is placed into the receiver.

22.4.5 Handling Deadlock

Every time an actor in PN blocks, the count of blocked actors is increased. If the total number of
actors blocked or paused equals the total number of actors active in the simulation, a deadlock is
detected. On detection of a deadlock, ifone or more actors are blocked on a write, then this is an artifi
cial deadlock. The channel with the smallest capacity among all the channels with actors blocked on a
write is chosen and its capacity is incremented by 1. This implements the bounded memory execution
as suggested by [78]. Ifa real deadlock is detected, then the fireQ method ofthe director returns, allow
ing a containing model to present more data to the inputs of the process network.

22.4.6 Finite Iterations

An important aspect of Ptolemy II is that the firing of an actor, or an entire model is guaranteed to
complete. In the process domains the end of a firing occurs when deadlock is reached. The deadlock
can be real or timed deadlock. However, in a process network real deadlock may never actually hap
pen. In this case, in order to manually stop execution or to execute mutations there needs to be a way to
halt all the executing threads in the network. This is handled by the stopFireQ method of the executable
interface. The process director implements this method to set a flag in each process which causes the
process to pause. Note that as with most domains, it is not possible to simply call the wrapupQ method
of the process director, since the fire method has not yet returned.
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Glossary

abstract syntax A conceptual data organization, cf. concrete syntax.

action methods The methods initializeO, prefireO, fireQ, postfireQ, and wrapupQ in
the Executable interface.

actor An executable entity. This was called a block in Ptolemy Classic.
anytype The Ptolemy Classic name for undeclared type.

applet A Java program that is downloaded from a web server by a browser
and executed in the client's computer (usually within a plug-in for the
browser). An applet has restricted access to local resources for secu
rity reasons.

application A Java program that is executed as an ordinary program on a host
computer. Unlike an applet, an application can have full access to
local resources such as the file system.

atomic actor A primitive actor. That is, one that is not a composite actor. This was
called a star in Ptolemy Classic.

attribute A named property associated with a named object in Ptolemy II. Also,
in XML, a modifier to an element,

block The Ptolemy Classic name for an actor.

browser A program that renders HTML and accesses the worldwide web using
the HTTP protocol.

channel A path from an output port to an input port (via relations) that can
transport a single stream of tokens.

clustered graph A graph with hierarchy. Ptolemy II topologies are clustered graphs.
code generation Translation of a model into efficient, standalone software for execu

tion autonomously from the design environment. Code generation was
a major emphasis of Ptolemy Classic. We are developing a code gen
eration facility for Ptolemy II, but it is not included in the current
release. For more information, see [91].

composite actor An actor that is internally composed ofother actors and relations. This
was called a galaxy in Ptolemy Classic.

concrete syntax A persistent representation ofa data organization, cf. abstract syntax.

connection A path from one port to another via relations and possibly transparent
ports. A connection consists of one or more relations and two or more
links.

container An object that logically owns another. A Ptolemy II object can have at
most one container.

dangling relation A relation with only input ports or only output ports linked to it.

data polymorphism Ability to operate with more than one token type.
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deep traversals Traversals of a clustered graph that see through transparent cluster
boundaries (transparent composite entities and ports),

disconnected port A port with no relation linked to it.

director An object that controls the execution of a model or an opaque com
posite entity according to some model ofcomputation.

domain An implementation of a model of computation in Ptolemy II and
Ptolemy Classic.

domain polymorphism Ability to operate under more than one model of computation.

element In XML, a portion of a document consisting of a begin tag, a body,
and an end tag.

entity A node in a Ptolemy II clustered graph. Also, in XML, a named text
segment.

event In the DE domain, an event is a token with a time stamp.

execution One invocation of initializeO, followed by any number of iterations,
followed by one invocation ofwrapupO-

executive director From the perspective ofan actor inside an opaque composite actor, the
director of the container of the opaque composite actor.

galaxy The Ptolemy Classic name for a composite actor.
immutable property A property of an object that is set up when the object is constructed

and that cannot be changed during the lifetime of the object.

iteration One invocation ofprefireQ, followed by any number ofinvocations of
fireO, followed by one invocation ofpostfireQ.

link An association between a port and a relation.

manager The top-level controller for the execution of a model.

model A complete Ptolemy II application. This was called a universe in
Ptolemy Classic.

model of computation The rules that govern the interaction, communication, and control
flow of a set of components.

MoML Modeling markup language, an XML dialect for specifying compo
nent-based designs such those in Ptolemy II.

multiport A port that can send or receive tokens over more than one channel.
opaque For a composite entity or a port, an attribute that indicates that the

inside should not be visible from the outside. That is, deep traversals
of the topology do not see through an opaque boundary,

opaque composite actor... A composite actor with a local director. Such an actor appears to the
outside domain to be atomic, but internally is composed of an inter
connection of other actors. This was called a wormhole in Ptolemy
Classic.

package A collection of classes that forms a logical unit and occupies one
directory in the source code tree.

parameter An attribute with a value. This was called a state in Ptolemy Classic.
particle The Ptolemy Classic name for a token.
port A named interface of an entity to which connections be made.
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Ptolemy Classic A C++ softwaresystem for construction of concurrentmodels and
implementation through code generation.

Ptolemy II A Java software system for construction and execution of concurrent
models.

Ptolemy Project A researchproject at Berkeleythat investigates modeling, simulation,
and design of concurrent, networked, embedded systems.

relation An object representingan interconnection between entities.
resolved type A type for a port that is consistentwith the type constraintsof the

actor and any port it is connected to. It is the result of type resolution.
servlet A Java program that is executed on a web server and that produces

results viewed remotely on a web browser.
star The Ptolemy Classic name for an atomic actor.

state The Ptolemy Classic name for a parameter.

subpackage A package that is logically related to a parent package and occupies a
subdirectory within the parent package in the source code tree.

tag In XML, a portion ofmarkup having the syntax <tagname>.
token A unit ofdata that is communicated by actors. This was called aparti

cle in Ptolemy Classic.

topology The structure of interconnections between entities (via relations) in a
Ptolemy II model. See clustered graph.

transparent For an entity or port, not opaque. That is, deep traversals of the topol
ogy pass right through its boundaries,

transparent composite actor
A composite actor with no local director.

transparent port The port of a transparent composite entity. Deep traversals of the
topology see right through such a port.

type constraints The declared constraints on the token types that an actor can work
with.

type resolution The process of reconciling type constraints prior to running a model.
undeclared type Capable ofworking with any type oftoken. This was called anytype in

Ptolemy Classic.

universe The Ptolemy Classic name for a model.

width of a port The sum of the widths of the relations linked to it, or zero if there are
none.

width of a relation The number of channels supported by the relation.

wormhole The Ptolemy Classic name for an opaque composite actor.
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