
 

 

 

 

 

 

 

 

 

Copyright © 2002, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



JOYSTICK CONTROL FOR TINYOS ROBOT

by

Marga Chiri, Sarah Bergbreiter and Kris Pister

Memorandum No. UCB/ERL M02/24

8 August 2002



JOYSTICK CONTROL FOR TINYOS ROBOT

by

MargaChiri, Sarah Bergbreiter andKrisPister

Memorandum No. UCB/ERL M02/24

31 December 1998

ELECTRONICS RESEARCH LABORATORY

College ofEngineering
University ofCalifomia, Berkeley

94720



Joystick Control for TinyOS Robot
MargaChiri, SarahBergbreiter, Kris Pister

Summer Undergraduate Program In Engineering
Research at Berkeley (SUPERB 2002)

Department of Electrical Engineering and Computer Science
Berkeley Sensor and Actuator Center

University ofCalifornia, Berkeley



Joystick Control for TinyOS Robot

MargaChiri

Faculty Mentor: Kristofer Pister

Graduate Mentor: Sarah Bergbreiter

August 8,2002

Abstract

The goal ofthis project was to write a programthat controlsa TinyOS robot with an off-

the-shelf joystick. To accomplish this goal, we created a MATLAB program that reads

position informationfrom a joystick, builds a TinyOS packet, and sends that information

to the serial port. We connected a mica mote, running a standard TinyOS generic base

station program to the serial port, which relays the TinyOS packet to a mobile robot via

the RF stack. The mobile robot, running a TinyOS application program, then processes

this packet and drives according to the Joystick. Thus, we were able to drive our TinyOS

robot remotely.

1. Introduction

There are many robot applications for which Joystick control is useful. For instance,

the NEST (Networked Embedded Systems Technology) team at UC Berkeley is currently

working on developing aerial vehicles and ground vehicles to act as pursuer robots,

which try to capture evader robots within a given bounded area. The pursuers are

designedto operate autonomously while a human controls the evader from a distance [3].

This pursuit-evasion project will use a MATLAB interface to send a packet from a

joystick or a keyboard to drive the evader. Joystick control is also useful for a fire fighter



to remotely control robot vehicles to fight a fire, and for a health care giver to drive a

robot around the user's room.

1.1 The Robot

The robot is a modified Kyosho Mini-ZRC toy car with attached mica mote (see

Figure 1). Thehardware of the Mini-Z RC car has the capabilities of setting speed,

turn and direction. A Motor/Servo printed circuitboard has been designed to connect

throughMica's data bus. The board uses two MOSFET H-bridges to convert the

control signal from the Mica mote to signals for the motors. Thisboard can controlup

to two motors, servos, solenoids or a combination of these [5]. The H-bridge circuit

and mica mote are described below (see section 1.1.1 & 1.1.2).

1^1

Quarter for scale

Figure 1: The Robot



1.1.1 H-bridge Circuit

The robot uses two H-bridge circuits, each ofwhich have four transistors

on its legs and a motor on the crossbar (see Figure 2). An H-Bridge circuit uses

pulse-width modulation, or turning switches in the H-bridges on and offfor

various lengths oftime, to control the speed ofthe motor. The motor will have a

voltage equal to the supplyvoltage when SI and S4 are closed and 0 V when they

are open. Directiondepends on the current flow across the motor. Current flows

from left to right iftransistors SI and S4 closed together at the same time. If

transistors S2 and S3 are closed, current flows through the motor from right to left

[2].

Supply
voltage

Q

T

SI

S2

H-bridge

\ ) S3

V

G) S4

Figure2: H-Bridge MotorDriver Circuit (Diagram from [2])

1.1.2 Mica Mote

Theproject usedtwo mica motes(seeFigure 3) along witha mica

programming board to handle information flows. The mica mote hasa



microcontroller with internal flash program memory, data SRAM and data

EEPROM. It also includes an 8 channel, 10-bit Analog to Digital converter

(ADC). These are connected to a low-power radio transceiver, and a serial port

[1]. The mica mote is programmed using TinyOS (section 1.3).

The transmission ofall messages is done through the RF radio of the mote.

The radio consists of an RF Monolithics 916.50 MHz transceiver (TRIOOO), and

antenna. The radio has a short communication radius ofapproximately 10 meters

and operatesat communication rates up to 115Kbps [5].

Figure 2; The Mica mote

1.2 Tiny OS

Tiny OS is a small event-driven operating system thatwas created by David

Culler's group in the EECS department at UCBerkeley [1]. The implementation

language for the system is similarto C. The complete system configuration consists

of a scheduler anda graph of components. Thecomponents are composed of

command handlers, a set of event handlers, variables, and simple tasks. Commands

post a task to a lower level component. Event handlers generally deal with hardware.

Tasks are provided to do the main computation of each component.



The TinyOS communication model has a command forinitiating a message

transmission, and signals anevent onthe completion oftransmission orthe arrival of

a message. Messages inTiny OS follow theActive Message (AM) model so that each

message or packet contains a destination address, a handler number, a data payload,

and a CRC checksum.

1.3MATLAB

The NEST group atUCBerkeley hasalso written a MATLAB interface, which

provides an easy wayto prototype a TinyOS application andto analyze data.

MATLAB has an interactive, interpretedenvironmentand powerfuldata analysis

tools, and is therefore used in many TinyOS applications. This project used the

MATLAB environment to retrievedata from the joystick and to route a data packet to

the robot.

2. Problem Statement

The primaryobjectiveofthis project was to drive a robot usingan off-the-shelf

joystick. Our first goalwas to write a MATLAB program, whichcould read data from

the joystick throughthe USB port, convertthat information to a TinyOS packet structure

and send that information to a base mote attached to a PC via the serial port. A generic

base TinyOS program forwards a packet fromthe serial port to the radioon the mica

mote. Finally, we wrote a TinyOS program to receive the packetand drivea robot (see

Figure 4).



gure 4; Experimental setup
3. Implementation

3.1 The MATLAB Code

\

MATLAB

Robo^Packet
yer S^rlalPort

Robot

k'^lobdt Packi
Over Radio

Generic base mote

To use the MATLAB environment, we need to first define a TinyOS environment

byrunning "defineTOSenvironment.m" script on"nest/tools/matlab" directory. This

defines things likevariables global to ourpacket structure and TinyOS packet

structure. Wethen change our directory to matlab/contrib/robotControl and run

yourWorld.m script to define a communication stack for the local serial port [4].



A MATLAB application was developed to read from the joystickand sendthat

informationto a base mote. To accomplishthis goal, a robot packet structurewith a

destination address of65535 (the standard broadcast address), an AM handler of 8, a

grouplD of 125,a data payloadofspeed, turn and direction, and a CRC checksum

was first defined. The sendRobotPacketMATLAB application, which takes the

packet frequency and maximum speedas arguments, reads from a joystick, changes

the informationto a robot packet structure and sends that packet to the local serial

port.

The sendRobotPacket programinterfaces to the joystick using the MATLABData

Acquisition Toolbox [7]. This program used analoginput (*joy*, 1) function to create

a connectionto the joystick and addchannel(ai,[l 2]) function to add two hardware

channels, one for x and one for y coordinates. This applicationthen computes speed,

turn and direction using the value ofx and y channel. The value ofspeed is the y

channel,while turning depends on the x channel. The directionbecomes forward

when y channel become positive and backward otherwise. Once the speed, turn and

direction have been calculated, the application uses the messaging layer

routePackets(2,robotPacket) to route the packet to the serial port.

3.2 The TinyOS Code

3.2.1 GENERIC BASE: forwarding a message

When the MATLAB application sends a message to the serial port, the GENERIC

BASE Tiny OS application forwards all incoming UART messages to the radio. This

application is included in the standard TinyOS release.



3.2.2 ROBOTCOMMAND: receiving a message

The ROBOTCOMMAND application uses the GENERIC_COMMstack, which

receives the message when a packet at arrives the radio ofthe mica mote from the

generic base station. AfrerROBOTCOMMAND receives the packet, it uses the

lower level component MZ to set the speed, turn and direction (see Figure 5 for a

graphical view).

3.2.3 MZ

Once the MZ Tiny OS component gets the speed, turn and direction, it uses the

Motorl component to set the speed and direction, and the MZ_SERVO component to

set the turning angle ofthe Mini-Z RC robot car. These components are described

below.

SPEED

SPEED

Main

INIT START

ROBOTCOMMAND I

1 TURNDIR

I
MZ

IR TURN

MOTORl MZ SERVO

SPEE IR

TIMERS MOTOR2 ADC

TIMERS

Figure5: A graphical description of ROBOTCOMMAND TinyOS application



ON

OFF

3.2.4 MOTORl

The MOTORl component gets speed, and direction from MZ and calculates a

control signal to control the speed and the direction ofmotorl. This component takes

a speed from 0to 10 and either forward orreverse direction. MOTORl uses pulse

width modulation (PWM) orduty cycle modulation to determine the fractional

amount offull power delivered tothe motor ofour robot, which controls the speed.

ThePWM controls the H-Bridges mentioned in Section 1.1.1.

To create thePWM signal, theMOTORl component uses Timers component,

which fires anevent every 1/1000 sec. MOTORl then uses an interval counter to set

the speed from 0-10. This counter resets every 10 timer events, which gives PWM

signal with frequency oflOOHz. To turn on the motor ofour robot with halfoffull

power in the forward direction, the MOTORl component takes a speed 5and sets the

robot motor PWM pin (closes a pair ofdiagonally opposite switches onthe H-bridge)

for 5ticks (as seen inFigure 6)and then clears the motor PWM pin (open a pair of

diagonally opposite switches on the H-bridge) for the remaining 5ticks. This is

shown graphically in Figure 6.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Time (1/1000 sec)

Figure 6: A 50%duty cycle forMOTORl component

10



3.3.5 MZ__SERVO

TheMZ_SERVO component uses the Analog to Digital Converter on the mica

mote to get position information from the potentiometer on the Mini-Z servomotor and

M0T0R2 to changeturning angles. A Proportional IntegralDerivative(FID) control

loop moves the motorto the correctposition. For example, suppose the MZ__SERVO

component receiveda command to turn 45 degrees left. Ifthe robot turned 30 degrees

left, the difrerence betweenthe command inputandthe feedback inputwouldgeneratean

error signal. TheFID control loop in the MZ_SERVO manipulates the error by

proportional constant to produce a new command to turn the robot to the correct position.

3.3.6 M0T0R2

The M0T0R2 component is the same as MOTOR!, but uses different pins on the

microcontroller.

4. Conclusion

In conclusion, we have written an interface from an off-the-shelfjoystick to a

TinyOS robot. This interfrce consisted ofthree separate parts: Matlab, Generic-Base and

RobotCommand. The MATLAB reads from the joystick, changesthe information to a

TinyOS packetand sendsthe packetto a serial port. The Generic-Base sendsthe packet

fromthe serialport to a mobile robotvia the RF stack. Finally, the RobotConunand

receives the TinyOS packet, processes this packet and drives the robot. We are able to

demonstrate control ofTinyOS robot usinga Joystick. However, there is a time delay

betweenthe information read froma Joystick and the message arriveto the mica moteof

11



ourrobot because of theMATLAB interface is notreal time. This will improve asthe

Matlab to TinyOS interface improves.

5. Acknowledgements

I would liketo thank Professor Kristofer Pisterfor giving methe chance to work

with him and his group inhis laboratory. I would also like togive a huge thank you to

my mentor, Sarah Bergbreiter, for her help and her knowledge. Without her help, Iwould

not be able to achieve my summer goal. I would also like tothank the entire stuffofthe

SUPERB program for organizing the program.

6. References

[1] Jason ffill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, Kristofer Pister.

System Architecture Directions for Networked Sensors. In Architectural Support for

Programming Languages andOperating Systems,2000

[2] Joseph Jones, Anita Flynn. Mobile Robots: inspiration toimplementation Artificial

Intelligence Laboratory, MIT, Wellesley, MA

[3] H. Tin Kim, Rene Vidal, David H. Shim, Omid Shankemia, Shankar Sastry. A

Hierarchical i'̂ proach toProbabilistic Pursuit-Evasion Games with Unmanned Ground

and Aerial Vehicles, Department ofEECS, UCBerkeley.

[4] http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/tinyos/

[5] http://www-bsac.eecs.berkelev.edu/~sbergbre/CotsBots/specs.pdf

[6] http://todav.cs.berkelev.edu/tos/design/mica/MICA DESIGN PAPER.doc

[7] http://www.mathworks.com/company/digest/juneO1/joystick.shtml

12


	Copyright notice 2002
	ERL-02-24

