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DISTRIBUTED LOCALIZATION IN WIRELESS AD HOC NETWORKS

SLOBODAN N. SIMIC AND SHANKAR SASTRY

Abstract. We present a distributed algorithm for localization of nodes in a discrete model
of a random ad hoc wireless network. We compute the expected value of the position estimate
and the probabUity that the estimate is perfect (one cell in size). This leads to bounds of the
average complexity of the algorithm at each node.

1. Introduction

This article addresses the problem of localization of nodes in a wireless ad hoc communi
cation network. It is motivated by the Sensorwebs and Smart Dust [KKP] projects at UC
Berkeley, whose aim is to develop a unified framework for distributed sensor networks.

Recent advances in MEMS, computing, and communication technology have fomented the
emergence of massively distributed, wireless sensor networks consisting of hundreds or thou
sands of nodes. Each node is able to sense the environment, perform simple computations,
and communicate with its peers or to an external observer. The challenges these networks
present are far beyond the reach of the current theory and algorithms.

One way of deploying a sensor network is to scatter the nodes throughout some region of
interest. This makes the network topology random. Since there is no a priori communication
protocol, the network is ad hoc. The first task that has to be solved is to localize the nodes,
i.e., to compute their positions in some fixed coordinate system. Since most applications (such
as tracking an object moving through the network, environmental monitoring, etc.) depend
on a successful localization, it is ofgreat importance to design scalable localization algorithms
and provide error estimates that will enable us to choose optimal network parameters before
deployment.

Due to high long range communication costs and low battery power, it is natural to seek
decentralized, distributed algorithms for sensor networks. This means that instead of relaying
data to a central location which does all the computing, the nodes process information in
a collaborative, distributed way. For instance, they can form computational clusters, based
on their distance from each other. The outcome of these distributed, local computations is
stored in local memory and can then be, when necessary, relayed to a centralized computing
unit. Robustness to node failures is another reason to seek distributed rather than centralized
algorithms.

Previous work. Since many applications of sensor networks depend on the knowledge of
positions of its nodes, much work has been done on the problem of localization. We mention
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only a few references. In [GBEE02], Girod et al. explore the use ofacoustic ranging techniques
and commercial off-the-shelf components in localization. Bulusu et al. [BEGHOl] work with
multiple sensor modalities and study the role ofdensity of nodes in localization. In [NNOl],
Niculescu et al. propose a distributed hop by hop algorithm which works as an extension of
GPS positioning. Priyantha et al. [PCBOO] present a location-support system {Cricket) for
in-building, mobile applications. For a more extensive overview of localization techniques, we
refer the reader to the survey article [ASSC02].

We point out that the main purpose of this paper is to rigorously analyze the accuracy
and complexity of our algorithm from a probabilistic point of view; its purpose is not to deal
with technical details of time synchronization, data fusion, communication protocols, etc. We
believe that this approach fills a void in the literature as none of the references known to the
authors rigorously studies mathematical aspects of localization in sensor networks.

This paper is organized as follows. In Section 2, we establish the setting and introduce the
basic terminology and notation. In Section 3, we discuss the basic localization procedure used
in the algorithm described in Section 4, and provide basic probabilistic error estimates and
simulation results. The proofs are supplied in the Appendix.

The first author would like to thank Sekhar Tatikonda for reading a preliminary version of
the paper and providing useful comments.

2. Preliminaries

In this section we introduce the basic framework, terminology, and notation.
We assume that in a square region Q = [0, s] x [0, s], called the region of operations, we

randomly scatter N nodes, Si,.. .,Sisi, each of which is equipped with an RF transceiver with
communication range r > 0. In other words, a node Si can communicate with every node
which lies in its communication region, which is the disk with radius r centered at 5,. Each
node has a unique ID which is a number between 1 and N. The nodes form an ad hoc network
Af in which there is an edge between Si and Sj if their distance is less than r. We will call
this the continuous model. Even though it is a rather simplified model of how the network is
formed, we adopt it because it leads to an easier analytical treatment. However, instead of a
disk of radius r, the communication range of a node could instead be an annulus (in case a
node is able to decide when a nearby node is at a distance greater than some threshold, based,
e.g., on signal strength), an angular sector (if a node is equipped, say, with laser transmitters
and receivers that can scan through some angle) or an intersection of an annulus and an
angular sector. For more information on these types of constraints, please see [DohOO].

We assume that a certain positive number K of nodes know their location in Q, i.e., they
are able to compute their position relative to some fixed coordinate system in Q; in practice
this can be achieved by equipping K motes with GPS or a priori (meaning before deploying
the ad hoc network) placing in Q a certain number of beacons which can serve to compute the
position of the nodes which are within certain distance from them. We call nodes that know
their position known nodes and all other ones, unknown nodes. Furthermore, each node has
communication as well as sensing capabilities [KKP].

The problems we address in this paper are:

• Design a distributed algorithm for localization of nodes in Af.
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• Estimate the complexity and error of the above algorithm.
• Find an optimal number of known nodes depending on Q, N, and r, which minimizes

the error of the algorithm.

Centralized algorithms for localization were studied in [DohOO, DPGOl]. The reason we
are interested in a distributed rather than a centralized solution is that we envision a mas
sively distributed network in which communication with a centralized computer is expensive
both because the power supply of each node is very limited and long-range multi-hop data
transmission is costly and often inefficient.

However, one quickly discovers that obtaining analytical estimates even in thissimple setting
can be rather challenging. Furthermore, in the design of a decentralized algorithm relying
on node-based data processing, one must take into account that nodes have very limited
computational power. This motivates the following discrete approach to the above problems.

Let 71 > 0bean integer. Partition Qinto congruent squares called cells ofarea (s/ny and
suppose that for every known node S, we are only interested in finding the cellwhich contains
S. To make this problem tractable, we make a simplifying assumption that the communication
range is p cells in the max metric, defined by distoo((«, j)) (^'>/)) = max(|7 - i'\, \j - j'\). It
is possible for several nodes to lie in the same cell. We call this the discrete model of the
network. For example, we can take

" Ls^/2J
where [x] denotes the integer part of x. This means that each node S can communicate with
every node lying in the square centered at S and containing (2p 4-1)^ cells. Since all our
results are independent of the choice of p as a function of r and n, we can clearly select a
different value for it. The situation where r is fixed and s,n ^ oo corresponds to increasing
the size of the region of operations, while the situation where r/n and s stay constant while
71 —> 00 corresponds to refining the position estimate. We usually think of 7i as large and r as
much smaller than n. In particular, 2p H-1 < 7i.

The last question posed above can now be reformulated in the discrete model as:

• Find an optimal number of known nodes, depending on n and p, which minimizes the
error of the algorithm.

It still remains to define what we mean by "the error" of an algorithm, i.e., to define the
"metric" by which we measure the accuracy ofthe algorithm. We will do this in the following
section.

3. Localization procedure and error estimates

We now describe the underlying procedure for localization of nodes which can be imple
mented in both centralized and distributed setting. A distributed implementation is given in
the following section.

Let 5 be a random node whose position is unknown. Let 5^^,..., 5^^, for some 7n > 0, be
its neighbors in the network Af whose positions are known. Two nodes Si,S2 are neighbors
if distooC'S'i, 52) < p. We assume that each Ski knows in which cell it lies, i.e., it is aware of a
pair of numbers fe,t/j), where Xi,yi e {1,2,... ,n}.

nr
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Figure 1. Discrete model. Filled circles denote unknown nodes. The dashed

line bounds the communication range of the node at its center, with p=Z.

We will now use the following notation. For integers l<a<6<n, l<c<d<n, the
"rectangle" [a,6] x [c, d] will denote the union of all cells with grid coordinates where
a <i <b and c < j < d.

Let

(2) Bi = [xi - p,Xi+p] X [yi - +p].
This is the (discrete) communication region of Sk^- Then 5 G Bj, for all 1 < z < m and
therefore

Bg QnQBi.
t=i

It is easy to see that

Bi n Bj = [max(xi, Xj) - p,min(xi, Xj) + p] x [max{yi, yj) - p,min(yi, yj) + p].

This simple formula is, in fact, the main technical reason we choose to work in this discrete
setting: one needs much less computing power to calculate the intersection of two squares
(with sides parallel to coordinate axes) than to compute the intersection of two discs - only
the operations of addition, subtraction, min and max are needed.

Thus

S G On [x+ -p,x_ +p] X [?/+ -p,2/_ +p],
where x+ = max(xi,... ,Xm) and x_ = min(xi,.. .,Xm), and similarly for i/j's. Finally, since
0 = [l,n] X [1, n], we obtain the estimate of the position of 5:

(3) S G [max(x+ —p, 1),min(x_ + p,n)] x [max(2/+ —p, 1), min(t/_ + p,n)].
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On the highest level of abstraction we now have the following algorithm (implementable in
both centralized and distributed setting) for each unknown node S:

Step A: Gather the information about the positions of the known neighbors of S.
Step B: Compute an estimate of the position of S via (3).

Let As be the number of cells in the rectangle on the right hand side of (3), i.e.,

(4) As = {min(x_ + p,n) - max(a;+ - p,1) + l}{min(2/_ H- p,n) - max(2/+ - p, 1)+ 1}.

Let K denote the total number of nodes which know their own position. We will assume that
K is given and fixed; later on, we discuss how we can deterministically or randomly generate
a sufficiently large number of known nodes. We assume that the position of each node is
random and uniformly distributed in [l,n] x [l,n]. Then As is a random variable with value
between 1 and n^. In the remainder of this section we address the following questions about
As'.

• What is the expectation E{As) of A5?
• What is the probability that As = I cell, i.e., that the estimate is perfect?

Having answered these questions, we turn to minimizing \E(As) —1| and maximizing P{As =
1) as functions of K to find the optimal value for K.

Denote by Qp the square consisting of cells in Q which are at distance > p from the
boundary. That is, = [p + 1,n —p]^. Then we claim:
Theorem 3.1. Let S be a node randomly pickedfrom Qp. The expectation of As is

2p 2/0+1

E{As) = 1+4EE ^ (2p+l)^ —A;/

E{As) ^1+̂p{^p +1) ^1 —

Lk=l 1=1 *-

Therefore, with n, p fixed,
lim E{As) = 1,

K—*oo

that is, the expectation of the size of the estimate tends to one, the perfect estimate, as the
number of known nodes tends to infinity.

The proof is provided in the Appendix. Observe that Qp occupies most of Q, since we
assume that p is much smaller than n.

Given e > 0 and S G Qp, let = K^{n, p) be the minimum of all numbers Kq such that

(5) |£;(>ls) - 1| < e,

for all K > Kq. Then

Corollary 3.1.1. The minimal density of known nodes necessary to achieve (5) satisfies

|.g. Kt{n,p) ^ log[8p(2p+l))-loge
^ - 2p+l

Proof: Consider the estimate in Theorem 3.1. Its right hand side is largest when k = 2p
and / = 2p+ 1, so

/
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Therefore, E{As) —1 < e if

-log[8p(2p+l)] + loge

log (1 -
Thus is less than or equal to the right hand side of (7). Using the fact that log(l + x) <x
(x > —1), we obtain that

as claimed.

2log[8p(2p+l)]-loge
2p+l

Kc{n,p) < n

We denote the right hand sideof (6) by S^{p) and interpret it as the critical density ofknown
nodes necessary for the expectation of the estimate to be e-close to the perfect estimate.

Denote by Hs the number of known neighbors of 5.

Theorem 3.2, Suppose that S € Qp.
(a) The conditional probability that As —I given that Hs = m is

P{As = l\Hs = m)^ 1-1^
\ n

(b) The probability that ids = 1 25

K—mt{iy<
m=0 ^ '

where p = (2p + l)^/n^ and q —1—p.

Note that P[As = 1) depends on n,p, and K. Its graph for n = 50 is given above (Fig. 2).

PRtaMiylhUAgal MaturaDnvlKMnMnlOindnanSpMMnnl Aftdl$««hn-50

Figure 2. Probability that As = 1 as a function of p and K.
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Corollary 3.2.1. IVe have

PiAs = 1) >

Therefore, P{As = 1) —> 1, as ii' —> oo. Given € (0,1), ^(^4^ = 1) > if

log(l -
los{n/2p) •

There are several ways of generating nodes with known positions. One is to equip a certain
number of nodes with GPS. Another is to a priori place in Q a certain number of beacons whose
positions are known. They can be equipped with some relatively sophisticated device capable
of localizing objects which lie at a distance < R meters away. Then, if a node lands within
R meters from a beacon, its position will be known to that beacon and can be communicated
to the node.

Suppose that in the latter scenario, the beacons are capable ofexactly localizing any node
in a region of area a\Q\, for some 0 < a < 1. Then it is not difficult to see that if N nodes
are randomly scattered in Q (assuming uniform distribution), the expected value of K will be

E{K) = Na.

Furthermore,

Proposition 3.1. Assuming that K is fixed and given and that S is an unknown node, the
expectation of Hs is

E{Hs) =^[n +p{2n-p-l)]\
Proof: Let the coordinates of S be (x,y). The communication region of S is

B(x,y) = [x-p,x + p]x[y-p,y + p]nQ
= [max(a; - p,l), min(a; + p, n)] x [max(2/ - p, 1), min(2/ + p, n)].

Denote by p{x, y) the probability thata node lands in the communication region oiS = (x, y).
It is easy to see that p{x,y) = \B{x,y)\/\Q\, where \B{x,y)\ denotes the number of cells
in B{x,y). Set q{x,y) = 1 —p{x,y). The probability that Hs = m given S = {x,y) is

By a standard calculation in elementary probability it then follows
that E{Hs\S = {x,y)) = Kp{x,y). Therefore, by Lemma 6.1(a),

E{Hs) = E{E{Hs\S={x,y)))

= Y. E(Hs\S = {x,y))P{S={x,y))
(ar,y)6Q

n"
x=l y=l

^ max(a; - p, 1) + 1]n" .
X=1
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Since

n-p-l n

] n
2=1 x=l x=n—p

_ {n- p - l)(n H- p) + 2n(p+ 1)
2

and

n p+1 n

2=1 x=l x=p+2

^ ^ I (n-p-l)(n-p)
2

we obtain that X)"=,i[niin(a: +p,n) - max(x - p,1)] = (2n - p - l)p. This completes the
proof. •

^ A Jl

min(x +p, n) = (^+p)+ T,

4. Distributed algorithm for localization

In this section we present a simple distributed algorithm for localization, based on the ideas
in the previous section.

Let S be an arbitrary unknown node in The localization algorithm LOCs at S then
goes as follows.

Step 1: INITIALIZE the estimate: Ls = Q-
Step 2: SEND "Hello, can you hear me?"

Each known neighbor sends back (l,a, 6), where (a, 6) is its grid position, while each
unknown neighbor sends (0,0,0).

Step 3: For each response (l,a, 6), UPDATE the estimate by

Ls := Ls r\[a - p,a p\ X [b - p,b + p].

Step 4: STOP when all responses have been received. The position estimate is Ls-

Proposition 4.1. The average complexity of LOCs is 0{E(Hs))- In particular, if p andn
are fixed and K is chosen so that

(a) \E{As) - 1| < e, or
(b)P{As = l)>l-e,
then the average complexity is 0(log j), os e —> 0.
Proof: Both the number of communication steps and the number of operations in LOCs

are multiples of the number of known neighbors of S. li K = K^(n,p), then K < n^Si(p),
so by Proposition 3.1, E{Hs) < Clog(l/e), proving (a).

To prove (b), set p» = 1 —e, use the last estimate in Corollary 3.2.1, and observe that
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4.1. Simulation results. For p = 10 and 50 < n < 100, we chose as in (6) with e = 1:

,log[8/7(2yo + l)]
K = n^

2/0 + 1

and randomly created 30networks oiN = K-\-100 nodes with these parameters. The average
size of the position estimate is shown in Figure 3.

A«w*g» MlRiaM tin omr L- 30 iMtwoifcs wMi f> to

Figure 3. Average size of the position estimate.

Observe that the average error of the algorithm steadily decreases as n increases. Since p
is fixed, this corresponds to increasing the size of the region of operations.

5. Conclusion and future work

The main contributions of this paper are a distributed algorithm for localization of nodes
in a wireless ad hoc communication network and estimates of its error. There are many
possible improvements of the algorithm. For example, an unknown node could only query
some of its neighbors and use correlation coding developed in [KDROl]. This would reduce
communication costs but increase computation. The algorithm can also be iterated to exploit
the newly obtained position estimates of unknown nodes. We plan to address these issues in
future work.

6. Appendix

6.1. Proof of Theorem 3.1. We will need the following two results from basic probability.
The reader is referred to the literature for a proof.
Lemma 6.1 ([GS97]). (a) Let X and Y be two random variables defined on the same proba
bility space. The conditional expectation = E{y\X = x) satisfies

E{tiX)) = E{Y).

(b) If a random variable X has mass function f and p": R —> R, then

Eig(x)) = ^s(x)/(i),
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whenever this sum is absolutely convergent.

Define a function (j)m - >IR by

<l)m[xi, . . . ,Xm, 2/1, . . . , 2/m) = (2yO + 1 + X_ - X+)(2y0 + 1+ 2/_ - 1/+),

where x+ = max(xi,..., Xm)^ x_ = min(xi,..., Xm)^ and similarly for i/'s.
Now let 5 be a randomly chosen node with position {x,y) € Qp. Assume Hs = m, i.e., S

has m known neighbors, and let their coordinates berepresented by random variables (Xj, yj),
for 1 <i < m. Since p + 1 < x, 2/ < n —p, it follows from (4) that

As = {min(x_ + p, n) - max(x+ - p, 1) + l}{min(2/_ + p, n) - max(2/+ - p, 1) + 1}
= {x_ + p - (x+ - p) + 1)}{2/- + P - (2/+ - p) + 1)}

(^1,•••, XjTi, 2/1, . . . , 2/m) •

In other words, given Hs and (Ari,yi)'s, as a random variable, As can be represented as

As = <^m(Ari,. . ., Xm^ Vi, . . . , Yrn)-

Therefore, by Lemma 6.1 (a),

E{As\S=(x,y),Hs = m) = E{(l>m(Xi,... ,Xm,yi,... ,ym)\S = (x,y),Hs = m)

^ V •••,X^n, 2/1, . •. ,2/m) ^
m

X P(Ai = Xi,..., = 2/m|5 = (x,2/), Hs = m)

Ipi"* ^ ^ 0m(^l) •••} 2/1? •••)2/m)>
(®1 iyi)»>"i(3Ctn)ym)€-R

where B = [x —p,x -\- p] x [2/ —p,2/ 4- p] is the communication region of S.
The probability that S has m known neighbors, where 0 < m < A", is

where p = |jB|/|Q| = {2p + and g= 1—p. It now follows from Lemma 6.1 (b) that

£:(4s|5 = (i,2/)) = £;(£;(.4s|5=(a:,j/),i?s))

= P(As|5 = (x, y),Hs = m)
m=0 ^ /

~ IDim (777 ^m(2^1> •••5X,„, 2/1,. .., 2/m)^=0 1^1 (x:.yO.....(x,n.y„r)€R

~ XI \m/ XI 4>Tn{^\^ " •̂ ym)-
(®l.yi).-,(Xm.ym)€B

Note that for all 1 < i < m, x —p < Xj < x + p and y —p<yi<y +p.
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Lemma 6.2.

2p -2

^ ^ 0m(^1) •••j ?2/l 5*••52/m) —

Proof: It suffices to prove

2p

(8) {2p+l +X. - x+) = {2p+ !)"• +2Yk'"-
X-p<Xi,...,Xm<X+p k=l

Consider For x —p < k < x + x- = k if and only if for some z, Xi = k, and all
other Xj axe in {k,k 1,... ,x + p}. If the number of such z's is /, then there are a total
of (7)(^ + P ~ k)"^~^ possibilities. Therefore, the total number of choices for xi,... in
[x —p^x + p] such that x- = k is

m ✓ \

'Y\jj{x+p-kr-' ={i+x+p-k)"'-(x+p-k)"'.
A simple telescopic calculation shows that

x+p

x_ = k[{l +X + p - k)"^ —{x+ p-k)^]
X—p<Xl,...,Xm<X+P k=X—p

2p

(9) = (i-p)(2p+ir+^fe'".
A:=l

Similarly one can show that

2p

Y x^ ={x+p)(2p+ir-Y^'°"-
X—p<X\,...,Xm<X-\-p fc=l

Combining the above two results with an easy observation that

Y {2p+i) = {2p+ir*\
X-p<Xi,...,Xjn<X+p

we obtain (8). •

Observe that the sum in Lemma 6.2 does not depend on (x, ?/).
After a tedious but elemenary calculation (consisting mostly of rearranging the terms) which

we omit, we obtain the result of Theorem 3.1. •

6.2. Proof of Theorem 3.2. (a) Assume that S e Qp and Hs = m. Let
^1>••• j be random variables representing the x- and y- coordinates of the known neighbors
of 5. Define

X^ min(Aj,..., Xj^^, max(A'i,..., ,
and similarly for Y- and Y+. Recall that As = 0m(Ai,..., Xm,Yi,...,Ym). Therefore, A5 = 1
if and only if A+ —A_ = y+ —y_ = 2p.

m

k=l

(2p + l)'" +2^fc
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Let US computeP{X^—X- = 2p\Hs = m). Since x-p < Xi< x+p, for alH, X+-X_ =2p
is possible if only if X- = x —p and X^ = x + p. The event that X- = x —p, given Hs = m,
is complementary to the event that all Xi^s are greater than x —p (and less than x + p, of
course). Therefore,

P{X- = X—p\Hs = m) = 1 —P{x —p + 1 < all Xj < X+ p\Hs = rn)

- '-(¥)"•
The same equality holds for P(X+ = x + p\Hs = m), and analogously for y's. Then

P{As = 11^5 = m) = P{X. = X—p\Hs = m)P(Xj^ = x + p\Hs = m)
X P(y_ = 2/ - p|P5 = m)P(y+ = 2/ + H

proves (a).

(b) Follows from (a) and the fact that the probability that a node S € Qp has m known
neighbors is , where p^q were defined above. •
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