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Abstract

We study theproblem ofestimating the motion of independently moving objects observed by a moving
perspective camera. Given a set of image points and their optical flow in multiple frames, we show how
to estimate the number of independent motions, the segmentation of the image points, the motion of
the camera and that ofeach object. We do soby combining the so-called subspace constraints with the
Costeira and Kanade algorithm for orthographic cameras [3]. We evaluate the proposed algorithm on
synthetic and real image sequences.

1 Introduction

In this paper, we study the problem of estimating the motion of independently moving objects observed by a
moving perspective camera in multiple views. We do not assume prior segmentation of the points, nor do we
restrict the motion of the objects tobe linear or constant. Also, we do not assume previous knowledge of the
number ofindependent motions. Our approach is based on the fact that infinitesimal unage measurements
corresponding to independent motions lie on orthogonal six dimensional subspaces of a high dimensional
linear space. Therefore, one can estimate the number independent motions, the segmentation of the image
points, the motion of the camera and that of each object from a set of image points and their optical flows.
Our motion segmentation approach naturally integrates information over time, since the so-called subspace
constraints [8] are applied to image measurements from multiple frames.

The problem of estimating the 3D motion of a moving camera observing a single static object is well
studied in the computer vision community [4, 7] (see, for example, reviews of batch methods [17], recursive
methods [12, 16], orthographic case [18] and projective reconstruction [20]). The problem of estimating the
3D motion ofmultiple moving objects observed by a moving camera is more recent and has received a lot of
attention over the past few years [1, 3, 5, 6, 15, 19, 21].

Costeira and Kanade [3] proposed an algorithm to estimate the motion of multiple moving objects
relative to a static orthographic camera, based on discrete image measurements for each object. They use
a factorization method based on the fact that, under orthographic projection, discrete image measurements
lie on a low-dimensional linear variety. Unfortunately, under full perspective projection such a variety is
nonlinear [19], hence factorization methods cannot be used. However, Irani [8] showed that infinitesimal
image measurements do lie on a low-dimensional linear variety. She used subspace constraints on the motion
field to obtain a multi-frame algorithm for the estimation of the optical flow ofa moving camera observing
a static scene. She did not use those constraints for 3D motion segmentation or estimation.

'Research supported by ONR grant N00014-00-1-0621 and ARO grsuit DAAD19-99-1-0139.



Han andKanade [6] proposed an algorithm for reconstructing a scene containing multiple moving points,
some of them static and the others moving linearly with constant speed. The algorithmassumes a moving
orthographic camera and does not require previous segmentation ofthe points. The case of a perspective
camera was studied by Shashua and Levin [15], again under the assumption that points move linearly with
constant speed.

1.1 Notation and Problem Statement

The motion of the camera and that of the objects is modeled as a rigid body motion in i.e., as an
element of the special Euclidean group

SE{3) = {{R,T) 1R e 50(3),r €

and its Lie algebra
se(3) = {(Mx,v) 1[w]x € so(3),v 6 R },

where S0(3) and so(3) are the space of rotation and skew-symmetric matrices in R®^^, respectively.
The image x = [x,y, 1]^ € R^ of a point q= [91,92,93]^ 6 R^ (with respect to the camera frame), is

assumed to satisfy the perspective projection equation:

X= qfZ, (1)

where Z = 93 > 0 encodes the (unknown positive) depth ofthe point 9 with respect to its image x.
The optical flow u at point 9 isdefined as the velocity ofx in the image plane, i.e.,

[u^,0]^ = X.

Problem Statement: Let xj- be the image of point i = 1,.. .n in frame j = 0,... ,Tn, with j = 0being
the reference frame. Let {uj} be the optical flow of point xj, between frames 0and j = 1,...,m. Given
the images {x^} and the flows {uj}, recover the number of moving objects, the object to which each point
belongs to, the depth of the n points, the motion of the camera and that of the objects.

To be consistent with the notation, we always use the superscript to enumerate the n different points
and/or the object to which the point belongs to. We omit the superscript when we refer to ageneric single
point and/or object. The subscript is always used toenumerate the mdifferent camera frames.

2 Single-Body Multi-View Geometry

Let us start with the simplest case in which the moving camera observes a single moving object. Let
{Ro{t),To{t)) e SE{S) and {Rc{t),Tc{t)) €SE{3) be the poses of the object and the camera at time t with
respect to a fixed reference frame. Let Qbe a point located on the object with coordinates 9e R relative
to the object frame. Thecoordinates ofQ relative to the reference frame are:

9o(t) = Ro{t)q + To{t)

and the coordinates of Q relative to the camera frame are:

qoc{t) («)(T„(4) - Tc(t)). (2)

2.1 Differential Case

Differentiating (2) yields:

q„ = {R^Ro + R'̂ ilc)<! +R^{To-Tc)-^RT(fo-tc). (3)



Combining (2) and (3) gives:

qoc = {RlRc-^RTRoRlRc)qoc + R'[{fo-tc-RoRl{To-Tc)). (4)
Since Rif € so(3), = R'̂ [u}]xR andR'̂ R = -RTRRTR [13], we may define the angular velocities
WcWo € by:

[iJo]x=RoRo and [0Jc]x=RcRc-
Combining (4) and (5) yields:

Qoc ~ <^c)] ^ Qoc + {'i'o ~'Rc~ X(^O ~ ^c)) —M XQoc +
where u and v are the angular and translational velocities of the object relative to the camera

Under perspective projection, the optical flow u of point Q is then given by:
-xy l + x^ -y 1/Z 0 -x/Z

-(1 + y^) xy X 0 1/Z -yjZ

where Qoc = Z)"^ and (x,y, 1)^ = QocjZ.

Given measurements for the optical flow uj = (Uj-,v^)^ of point i = l...n in frame j = define the
matrix of rotational flows and the matrix of translational flows $ as:

-{xy} {l + x^} -{y}
-{1 + y^} {xy} {x}

where (for example) {xy}^= [x^y^, •••

Also let

= A (^\ = i
" dt\Z) Z

"1 0 —X

0 1 -y.
Qoc —

€ and $ =

,x"y"].

{1/Z} 0 -{x/Z}
0 {1/Z} -{y/Z}

•ui • •vi • vJl
m

u = and V = j •

y^i • n"
m. yi •

1
>

Then, the opticalflow matrix W € satisfies:

U
w = = ^]2nx6

Wi

Vi Vm
= SM'^

6xm

(5)

2nx3
e R

where u)j and Vj are the velocities of the object relative to the camera in the frame. We call S€ R2">«®
the structure matrix and M € R"**® the motion matrix. We conclude that, for general translation and
rotation, the optical flow matrix W has rank 6. This rank constraint, among others, was first derived by
Irani [8] who used it to obtain a multi-frame algorithm for the estimation ofthe optical flow ofa moving
camera observing a static scene.

The rank constraint rank(W) = 6 canbe naturally used to derive a factorization method for estimating
the relative velocities (wj,Vj) and depth Z* from image points x\ and optical flows uj-. We can do so by
factorizing Winto its motion and structure components. For, consider the SVD of W= USV^ and let
S = U and M = V<S. Then we have S = SA and M = for some A € R®'*®. Let Ak be the fc-th
column of A. Then the columns of A must satisfy:

5Ai_3 = ^ and SA^-e =

Since isknown, Ai_3 canbeimmediately computed. Theremaining columns ofAand the vector ofdepths
{1/Z} can be obtained up to scale from:

-I 5u 0 0 •
-I 0 5v 0 • {i/z}'

diag({x}) 0 0 .Su A4

diag({y}) 0 0 5v As

o

CO.

o

o

A®

0 0 5u 0 .

= 0.

where 5u € R"'̂ ® and 5v € R"^® are the upper and lower part of 5, respectively.



2.2 Discrete Case

We consider equation (2) at two time instants, t and to and eliminate q to obtain:

Qocit) =Rc{t)'̂ Ro{t)Ro{to)^Rc{to)qoc{to)+
Rc{tf{To{t)-Tc{t))-

Rc{tf Ro{t)Ro{tof{Toito) - Tc(to))
=R{t,to)qoc{to) + T{t^to)

where (i2(t,fo),r(t,to)) can be interpreted as the change in the relative pose of the object with respect to
the camera between times to and t.

There are a number of methods to estimate (i?,T) from image measurements (17, 12, 16, 18,.20]. Here
we choose a simple linear method based on rank constraints on the multiple view matrix [11], because it
exploits the fact that the depth vector is known from the factorization method of the previous section.

Assume that we take measurements at discrete time instants t = and let Rj = R{tj,to),
Tj = T{tj,to) and qj = qoc{tj)- Then we have:

Qj —RjQo "b "Rj
Zjxj =Z'RjX^ + Tj

0=Z*[xj]xHj4 + l^jUTj.

Solving for {Rj,Tj) is equivalent to finding vectors Rj and j = 1,... ,7n, suchthat:

*XA

Rj 2^^[xjlx*Xo IX,27-

where Rj = [rii,ri2,ri3,r2i,r22,r23,r3i,r32,r33p
of A and B.

It can be shown that Pj isof rank 11if more than n > 6 pointsin general position are given. In that case,
the kernel of Pj is unique, and so is {Rj,Tj). However, in the presence of noise, Rj may not be an element
of50(3). In order to obtain an element ofSO{3) we proceed as follows: Let Rj € and Tj € R^ be
the (unique) solution of (6). Such a solution is obtained as the eigenvector of Pj associated to the smallest
eigenvalue. Let Rj = UjSjVj be the SVD of Rj. Then the solution of (6) in 50(3) x R^ is:

•]]x
•?]x

x;

Ri
= 0€K^", (6)

: L^ij

^"[x^]x *x5^ [xj]x.

eR^^Tj = Tj € and A* B is the Kronecker product

Rj = sign(det(WjVf)) UjVj € 50(3)
sign(det(WjVj'))

(7)

(8)
{/det(5,)

TjE

3 Multi-Body Multi-View Geometry

So far, wehave assumed that the scenecontains a singlemovingobject. Now, weconsider the case in whicha
singlecamera observes rio objects. The newoptical flow matrix W will contain additional rowscorresponding
to measurements from the different objects. However, we cannot directly apply the factorization method
of the previous section to solve for the relative motion of each object, because we do not know which
measurements in W correspond to which object. We therefore need to consider the segmentation problem
first, i.e., the problem of separating all the measurements into Uq classes:

Z'' = {i 6 {l...n}| Vj 6 xl- € object k}.

Furthermore, we assume that Uo itself is xmknown.



3.1 Estimating the number of independent motions

Assume that thecamera tracks image points for object k and letn = 53 number ofpoints
tracked. Also let Uk and Vk be matrices containing the optical flow ofobject k. If the segmentation ofthese
points were known, then themulti-body optical flow matrix could be written as:

W

• Ui • •5ui 0 •

^1- Un„ 0 • ^UTlo
VJ Svl ' 0

. 0 • Svn„ .

Ai
-1

^1
=S

0 ••• An„ .

=SAA-^M'^ = SM'^.

•^n„

= SM'^

Ml

M'

where Suk and S^k e k = l...no, 5 and 5 € A e

Since we are assuming that the segmentation of the image points is unknown, the rows of Wmay be in
a different order. However, the reordering ofthe rows ofWwill not affect its rank. Assuming that n > 6no
and m > 6no, we conclude that the number of independent motions Hq can be estimated as:

Sn„x6n„ ^^d M, M €

Tio = rank(iy)/6. (9)

In practice, optical flow measurements will be noisy and Wwill be full rank. Even though one could
estimate the number of objects using by thresholding the singular values of it is better to use some
statistics. Kanatani [10] studied the problem for the orthographic projection model using the geometric
information criterion. The same method can be used here for a perspective camera as shown in Figure 1,
which plots the singular values ofW andthe estimated rank as a function ofnoise.

Singulsrvatuei oi (Vtor^eient noisa levels

slgmfO^
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Figure 1: Estimating the rank of Wfor two independent motions. Zero mean Gaussian noise with standard
deviation cr in pixels is added to W. (a) Singular values of Wfor different levels of noise a 6 [0,1.5]. (b)
rank(VF) estimated with a threshold of10"^ and (c) with Kanatani's method.

3.2 Segmenting the image points

Segmenting the image points is equivalent to finding the unknown reordering of the rows oi W. We can
model such a reordering as a permutation matrix P € E"'̂ ", i.e., a matrix such that = F, applied toboth



Uand V. Such a permutation will affect the rows of S, hence those of 5, but A, Mand Mare unaffected.
Therefore, from the SVD oiW = USV^ we have

UU^ =

• 0 'SulS^l 0 •

p
pT p

0 ^uno^UTlo. 0 SuTlo^tlo.
0 %iS^i 0

p
pT p P^

0 Syrn„Suno. 0 Svn„Svn„.

We define the segmentation matrix E as the sxim of the diagonal blocks of UU'̂ , i.e.,
•5ui5S+5vi^i 0

E = P P\

^ntia^rto '̂ vn„'53ix„,

Then, Eij > 0 if and only if image points i and j belong to the same object. In the absence of noise,
the matrbc E can be trivially used to determine the class to which each image point belongs to. One can
also use each one of the two diagonal blocks ofUU'̂ . In the presence of noise, E^ will be nonzero even if
points i and j correspond to different objects. Techniques that handle this case can be found in [3, 9] for
the orthographic case. They canalso be applied here to the perspective case.

3.3 Recovering absolute motion from relative motion

Once the segmentation problem has been solved, one can apply the algorithms in Section 2toestimate the
motion of each object separately. Since the camera is moving, this will give the motion of each object relative
to the camera. We now consider the problem of obtaining the motion relative to a fixed reference fr^e.
We show that it is not possible tosolve the problem from image measurements only, unless some additional
assumptions are made.

3.3.1 Camera motion

In practice, some of the image measurements will correspond to static points in 3D space. We define the
background as the set of image points associated to static 3D points. We will assume that the background
is the class with the largest spatial standard deviation in all the frames ^

The optical fiow matrix Wwill be segmented into tIq + 1classes. We denote the background as zero-th
class. Also, let (0/^,1;^) and {R^T^) be the estimates of relative motion for class k in frame j as obtained
by the algorithms in Section 2. Given the assumptions, the zero-th class contains information about the
motion of the camera only. More explicitly, we have:

(10)

(11)

w J — "C3~C3

= R'̂ jRco
= -RlTci

X^T9 = -RI{Tcj-Tco)

where A° is the unknown scale lost under perspective projection. We are now interested in recovering the
absolute motion {RcoM and {u)c3,Vc3), {Rcj^Tcj), j = l-.m. We can see from (10) and (11) that this
cannot be done, because there are 12m + 7 unknowns and 12m equations. Therefore, the absolute motion
ofthe camera can beestimated up to a 7-parameter family, given (for example) by the initial rotation and
translation of the camera and the scale lost under perspective projection. For the case of a single camera,
this ambiguity is not relevant, since it is equivalent tochoosing the reference frame, which can be chosen to
coincide with the initial location of the camera, i.e., {RcOiTco) = (7,0).

^Even though not all scenes satisfy the assumption, in many practical situations static points are distributed uniformly,
while moving points area collection ofconnected components, each one corresponding to one object.



3.3.2 Motion of each object

Given A", {uci,tcj),j = 1-m and {Rci,Tcj),j = 0...m we would like to solve for A', (w*j,T* ),i = l...m
and = 0...m,k = l...n„ from:

A't;,^=B5(f*.-tj-lu.Jj)x(T^-Toj)) (13)
=R%R'̂ jR'SlU (W)

A'r/ =Jl5(T^-Toj-<fiS'(7'5)-Tco)). (15)

Again, we observe that the motion of the objects can be recovered up to a 7no-parameter family given
by the initial pose of each object and the unknown scales lost tmder perspective projection.

In order to resolve the translation ambiguity ToOj as before we assume that image points corresponding
to each object are concentrated in a specific region of the image. Therefore, the average of the 3D points
associated to those image points well approximates the position of the object relative to the camera (up to
scale). We then approximate the initial position of each object as:

*0-^0 + (16)
t€X*

Combining (14), (15) and (16), the position ofthe objects in the remaining frames is given by:

«A'JJ., fi?+R^ g j+r„ (IT)
In relation to the rotation ambiguity, we observe that it is not possible to estimate R^. One can only

estimate RojR!^^ which is the orientation of the object relative to its initial configuration. If we assume
that the initial orientation of the objects is known, then (w^j.t^j) can be trivially obtained from (12) and
(13). Therefore, given the assumptions, the motion of each object can be completely solved with {Rgj^iOgj)
obtained uniquely, and obtained up to a scale A*^.

4 Experimental Results

In thissection, we evaluate theproposed algorithm onreal andsynthetic image sequences. Each pixel ofeach
frame is considered as a feature andsegmentation is performed using the segmentation matrixassociated to
the optical flow of those pixels.

Figure 2 shows the street sequence [14], which contains two independent motions: the motion of the
car and the motion of the camera that is panning to the right. Figure 4(a) shows frames 3, 8 12 and 16
of the sequence with the corresponding optical flow superimposed. Optical flow is computed using Black's
algorithm [2]. Figures 4(b)-(c) show the segmentation results. In frame 4 the car is partially occluded,
thus only the frontal part of the car is segmented from the background. The door is incorrectly segmented
because it is in a region with low texture. As time proceeds, motion information is integrated over time by
incorporating optical flow from many frames in the optical flow matrix, thus the door is correctly segmented.
In frame 16 the car is fully visible and correctly segmented from the moving background.

Figure 3 shows the sphere-cube sequence [14], which contains a sphere rotating along a vertical axis
and translating to the right, a cube rotating counter clock-wise and translating to the left, and a static
background. Even though the optical flow ofthesphere appears to benoisy, its motion iscorrectly segmented.
The top left (when visible), top and right sides of the square are also correctly segmented in spite of the
fact that only normal flow is available. The left bottom side of the cube is confused with the background,



because itsoptical flow isapproximately zero, since the translational motion ofthecube cancels its rotational
motion. The center of the cube is never segmentedcorrectly since it corresponds to a region with lowtexture.
Integrating motion information over many frames does not help here since those pixels are in a region with
low texture during the whole sequence.

Figure 4(a) shows the two-robot sequence with the corresponding optical flow superimposed. Figures 4(b)
and 4(c) show the results of the segmentation. Groups 1 and 2 correspond to the each one of the moving
objects, while group 3 corresponds to the background, which is the correct segmentation.

5 Conclusions

Wehaveproposed an algorithmfor estimatingthe motionofmultiple moving objectsas observed by a moving
camera in multiple frames. Our algorithm is based on the fact that image measurements from independent
motions lie on orthogonal subspaces of a high dimensional space, thus it does not require prior segmentation
or previous knowledge of the number of independent motions. Experimental results show how segmentation
is correctly obtained by integrating image measurements from multiple frames.
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(a) Optical flow (b) Group 1 (c) Group 2

Figure 2: Segmentation results for the street sequence. The sequence has 18 frames and 200 x 200 pixels.
The camera is panning to the right while the car is also moving to the right, (a) Frames 3, 8 12 and 16 of
the sequence with the corresponding optical flow superimposed, (b) Group 1: motion of the camera, (c)
Group 2: motion of the car.
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Figure 3: Segmentation results for the sphere-cube sequence. The sequence contains 10 frames and 400 x300
pixels. The sphere is rotating along a vertical axis and translating to the right. The cube is rotating counter
clock-wise and translating to the left. The background is static, (a) Frames 2-8 with corresponding optical
flow superimposed, (b) Group 1: cube motion, (c) Group 2: sphere motion, (d) Group 3: static background.
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Figure 4: Segmentation results for the two-robot sequence. The sequence contains 6 frames and 200 x 150
pixels, (a) Frames 1-5 of the sequence with optical flow superimposed, (b) Group 1: one moving robot, (c)
Group 2: the other moving robot, (d): Group 3: static background.
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