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Abstract

Optimal solutions to Markov DecisionProblems (MDPs) may be very sensitive with respect
to the state transition probabilities. In many practical problems, the estimation of those
probabilities is far from accurate. Hence, estimation errors are, together with the curse of
dimensionality, a limiting factor in applying MDPs to real-world problems. We propose an
algorithm for solving finite-state and finite-action MDPs, where the solution is guaranteed
to be robust with respect to estimation errors on the state transition probabilities. Our algo
rithm involves a statistically accurate yet numerically efficient representation of uncertainty
via likelihood or entropy functions. The worst-case complexity of the robust algorithm is
the same as the original Bellman recursion. Hence, robustness can be added at practically
no extra computing cost.



1 Introduction

Finite-state and finite-action Markov Decision Processes (MDPs) capture several attractive
features that are important in decision-making under uncertainty: they handle risk in se
quential decision-making via a state transition probability matrix, while taking into account
the possibiUty of information gathering and recourse corresponding to this information dur
ing the multi-stage decisionprocess (Putterman, 1994; Berstsekas and Tsitsiklis, 1996; Mine
and Osaki, 1970; Feinberg and Shwartz, 2002).

This paper addresses the issue of uncertainty at a higher level: we consider a Markov deci
sion problem in which the transition matrix itself is uncertain, and seek a robust decision for
it. Our work is motivated by the fact that in most practical problems, the transition matrix
has to be estimated from data, which is often a difficult task, see for example (Kalyana-
sundaram et al., 2001; Shapiro and Kleywegt, 2002; White and Eldeib, 1994), as well as
(Satia and Lave, 1973; Givan et al., 1997; Bagnell et al., 2001; Feinberg and Shwartz, 2002;
Abbad and Filar, 1992; Abbad et al., 1992). It turns out that estimation errors may have
a huge impact on the solution, which is often quite sensitive to changes in the transition
probabilities. (We will provide an example of this phenomenon.)

A large part of the recent research effort in the MDP area addresses the "curse of dimen
sionality" stemming from the exponential growth of problem complexity with size (number
of states). Recent references on approximate dynamicprogramminginclude (Farias and Roy,
2002) and (Ng and Jordan, 2000). There are however a number of applications for which
"exact" solutions of the problem are feasible (Nilim et al., 2001), and the Bellman recursion
remains practical. Hence, it is of interest to develop robust solutions to MDPs, based on
exact formulations.

A number of authors have addressed the issue of uncertainty in the transition matrix.
A Bayesian approach such as described by (Shapiro and Kleywegt, 2002) requires a perfect
knowledge of the whole prior distribution on the transition matrix, making it difficult to
apply in practice. Other authors have considered the transition matrix to lie in a given set,
most typically a polj^ope: see (Satia and Lave, 1973; White and Eldeib, 1994; Givan et al.,
1997; Bagnell et al., 2001). Although our approach allows to describe the uncertainty on
the transition matrix by a polytope, we will argue against choosing such a model for the
uncertainty. First, a polytope is often not a tractable way to address the robustness problem,
as it incurs a significant additional computational effort to handle uncertainty. As we will
show, an exception is when the uncertainty is described by an interval matrix, intersected
by the constraint that probabilities sum to one, as in (Givan et al., 1997; Bagnell et al.,
2001). Perhaps more importantly, polytopic models, especially interval matrices, are very
poor representations of statistical uncertainty and lead to very conservative robust policies.

We propose here an uncertainty model which results in an algorithm that is bothstatis
tically accurate and numerically tractable. We develop a formulation in which the concern
for robustness can be handled at virtually no additional computational cost. This means
that the method is directly applicable to those problems already amenable to exact dynamic
programming via Bellman recursions.

Our paper is organized as follows. The problem is set up in section 2. In sections 3, we



describe the so-called likelihood model and some variations. Section 4 examines the entropy
models, while section 5 deals with ellipsoidal and "interval matrix" models. Our results are
summarized in section 6. We describe numerical results in the context of aircraft routing in
section 7.

Notation

P > 0 or P > 0 refers to the strict or non-strict componentwise inequality for matrices or
vectors. For a vector p, logp refers to the componentwise operation.

2 Problem Setup

2.1 The robust Bellman recursion

We consider a Markov decision process with finite state X, finite action set A, with \X\ = n
and |.4| = m. We denote by P = (P®)a€>i thecollection oftransition matrices, and by ct(i, a)
the cost corresponding to state i and action a at time f, and denote by ct the cost function
at the terminal time, T.

Our nominal problem is to minimize the expected cost over a finite horizon:

E Ctiit, at) +cr(«r)j
where tt = (ao,..., ar-i) denotes thestrategy and 11 the strategy space. When the transition
matrices aje exactly known, the value function can be computed via the Bellman recursion

KW =min ^c,(i,o) +'̂ P'{i,j)Vt+i{j)'\ . (1)
Each step ofthe Bellman recursion has worst-case complexity 0{nm).

Now consider the case when the collection of transition matrices, P = (P°)ag^, is only
known to lie in some given convex subset P of T"", where T is the set of n x n transition
matrices (componentwise non-negative matrices with rows summing to one). Note that for
now, we may include in our imcertainty model dependencies between errors in P° and P°'
for different actions a and a'. For a given action a, and state i, we denote by pf the next
state distribution drawn from P" corresponding to state r, thus p° is the 2-th row of matrix
P". We denote by Pf the projection of the set P onto the set of p®-variables.

We address a robust dynamic programming problem in which the uncertainty on the
transition matrices acts as an opponent:



The corresponding game can be solved via the "robust counterpart" to the above Bellman
recursion:

Vt(i) =mgc mn ^{i,a) +̂ ffjV,+i{j)j . (2)
It turns out we can exchange the "min" and "max" operators in the above, as expressed by
the following theorem, which is proved in Appendix A.

Theorem 1 The robust Bellman recursion (2) is equivalent to the following recursion

Vt(i) = min max (Ct(i,a) + |
a€A P^€Vf ^

= min ct(i, a) + <t>vf[Vt+\)^

where (f>pa denotes the support function of the (convex) set Vf.

One step of the robust Bellman recursion thus involves the solution of a convex optimization
problem. Obviously, the complexity of the robust Bellman recursion depends solely on the
complexity of the projections Vf for each i and a. Obviously, the set V should be an accurate
(non-conservative) description of statistical uncertainty on the whole collection of transition
matrices.

Note that the effect of uncertainty on a givenstrategy tt = (ao,. •., clt-i) can be evaluated
by the following recursion

+ , (4)

which provides the worst-case value function for a given strategy.

2.2 Main result

In this paper, we address the problem of efficiently computing the value function via the
above recursion. Once the uncertainty model is chosen, the challenge is to solve the "inner
problem" in (3), which reduces to computing values of the support function of a given convex
set U:

</)w(v) = m^u^p, (5)
peu

where the variable p corresponds to a particular row of a specific transition matrix, U is the
set that describes the uncertainty on this row, and u is an appropriately defined vector with
non-negative components, containing the elements of the value function. We refer to the
above problem as the inner problem.

We will consider various representations of uncertainty. All our models involve indepen
dent descriptions of the imcertainty on each transition matrix; in other words, we postulate



that P is a direct product 7^°, where describes uncertainty on the transition ma
trix P°. This assumption is not formally needed, but simplifies the task of forming the
projections Pf required in the robust Bellman recursion (3).

Our main imcertainty model is based on a log-hkelihood constraint on each transition ma
trix. This representation enables one to solve for one step the robust dynamic programming
recursion in wort-case time of 0(n log(l/e)) via a simple bisection algorithm, where n is the
size of the state space, and e a convergence parameter. This brings the total complexity of
one step of the Bellman recursion to 0(n7nlog(l/e)), where m is the cardinality of the action
set. At the same time, our model allows an accurate descriptionof statistical uncertainty on
the transition matrix. Hence, non-conservative robustness is obtained at a moderate increase
(log(l/e)) with respect to the classical Bellman recursion. We also describe models based on
relative entropy bounds, and obtain similar results.

Wewillalsoconsider perhaps moreclassical ways to describe uncertainty, amongwhich an
interval models based on componentwise intervals of confidence, and ellipsoidal models that
are based on quadratic approximations to the log-likelihood. We will observe that some of
these descriptions give rise to similar low complexity results. However, these "approximate"
models, it may be argued, are less statistically accurate.

3 Likelihood Models

Our first model is based on a likelihood constraint to describe uncertaintyon each transition
matrix. We denote by the matrix of empirical frequencies of transition with control a
observed over a given time interval; denote by /f its row. We have F° > 0 and F®1 = 1,
where 1 denotes the vector of ones. For simplicity, we assume that > 0 for every a.

To simplify the notation, we will drop the superscript a in this section, and refer to a
generic transition matrix as P and to its row as pi. The same convention applies to the
empirical frequency matrix F° and its rows /?, as well as to sets V and Ff. When the
meaning is clear from context, we will further drop the subscript i.

3.1 Model description

The "plug-in" estimate F = F is the solution to the maximum likelihood problem

max L(F) :=^F(2,j) log F(z,j) : F > 0, Fl = 1
ij

The optimal log-likelihood is Pj^bx = Eij
A classicaldescription ofuncertainty in a maximum-likelihood setting is via the likelihood

region (Lehmann and Casella, 1998; Poor, 1988)

PgR""" :P>0, Pl =l, ^P(i,j)logP(i,j)>/3|.
J

(6)



where /3 < /^max is given number. In practice, (5 can be estimated using resampling methods,
or a large-sample Gaussian approximation, so as to ensure that the set above achieves a given
level of confidence (see Appendix D).The above description is classical in the sense that it
is the starting point for the estimation of statistical ellipsoids of confidence; see section 5.2
for further details.

In our problem, we only need to work with the uncertainty on each row that is,
with projections of the set above. Due to the separable nature of the maximum-likelihood
problem, the projection of the above set onto the p, variables of matrix P can be given
exphcitly, as

Vi{^) := :p>0, p^l =l, 5Z/i(j)logpi(j) >a|,
where

k^i j

3.2 The dual problem

We are now ready to attack problem (5) under the premise that the transition matrix is only
known to lie in some likelihood region as defined above. The inner problem is to compute

(f) := max p^v : p > 0, p^l = 1, V f(j) logp(j) >
p

3

where we have dropped the subscript i in the empirical frequencies vector fi and in the
lower bound /Si. In this section /Smax denotes the maximal value of the fikeUhood function
appearing in the above set, which is Pmax = /(i)log/(j)- We assume that (3 < Pmax,
which, together with / > 0, ensures that the set above has non-empty interior.

The Lagrangian C : R" x R" x R x R —♦ R associated with the inner problem can be
written as

£(v,V,p,A) = p^v+ v^p + p(l -p^l) + logp- /3),
where z/, p, and Aare the Lagrange multipliers. The Lagrange dual function d : R" xRxR
R is the maximum value of the Lagrangian over p, i.e., for v e R", p € R, and A e R,

d{y, fi, A) = sup C{v, u, p. A) = sup(p^v + i/^p + p(l - p^l) + A(/^logp - p)). (7)
p p

The optimal p* = argsupp C{v, i/, p. A) is readily be obtained by solving ^ = 0, which results
in

p —v{i) —
Plugging the value of p* in the equation for d(v, p. A) yields, with some simplification, the
following dual problem:

0:= min p-(1-}-/?)A4-Ay'/(j)log : A> 0, i/> 0, i/-!-?;< pi.



Since the above problem is convex, and has a feasible set with non-empty interior, there is
no duahty gap, that is, 0=0. Moreover, by a monotonicity argument, we obtain that the
optimal dual variable u is zero, which reduces the number of variables to two:

0 = min h(A,y)
X,li

where

h{X, y) '.= \ - (1 + Ej /(j) log If ^>0. M>Vmax := maxj v{j),
^ +00 otherwise.

(8)
For further reference, we note that h is twice differentiable on its domain, and that its
gradient is given by

E,/0)log^^-/3
^ fj'-Hj)
1 ^ V- fU)

V/i(A,/z) = (9)

3.3 A bisection algorithm

From the expression of the gradient obtained above, we obtain that the optimal value of A
for a fixed fi, is given analytically by

which further reduces the problem to a one-dimensional problem:

0= min 0(^),

where Umax = niaxju(j), and 0(//) = /i(A(//), ju). We define v = /^u, which is the average of
V under /. Since h is jointly convex in both its arguments, the function <f> is convex on its
domain (umax + oo); hence we may use bisection to minimize 0.

To initialize the bisection algorithm, we need upper and lower bounds fi- and /j,+ on a
minimizer of 0. When ^ —» Umax, 0(/^) —^ ^max and 0'(/x) —♦ —oo (see Appendix B). Thus,
we may set the lower bound to = Umax-

The upper bound fi+ must be chosen such that > 0. We have

The second term is zero by construction, and dX{fi)/dfj. > 0 for fi > Umax- Hence, we only
need a value of fi for which

(u)



By convexity of the negative log function, and using the fact that /^1 = 1, / > 0, we obtain
that

> ;8max-/3 + l0g
fl — V

The above, combined with the bound on A(/i): A(//) > fi —Umaxj yields a sufficient condition
for (11) to hold:

^max -

]_ — g(3~Pmax

By construction, the interval [umax M+] is guaranteed to contain a global minimizer of (j) over
(^max "I" Oo).

The bisection algorithm goes as follows:

1. Set n- = Umax and /x+ = as in (12). Let c > 0 be a small convergence parameter.

2. While fi+- fjL- > e(l + /i_ + /i_), repeat

(a) Set fx= {jj,+ + fi-)/2.

(b) Compute the gradient of (f> at /x.

(c) If <l>'{fi) > 0, set fi+ = /x; otherwise, set fi- = /x.

(d) go to 2a.

Each iteration of the above algorithm has worst-case complexity of 0{n). The number of
iterations grows as log(/x5. —Uinax)/e), which is independent of problem size. Hence, the
worst-case complexity of the algorithm is 0{n). Therefore, the cost of adding robustness
under the likelihood uncertainty model is 0(1), which means that robustness can be added
at practically no extra cost.

In practice, the function to minimize may be very "flat" near the minimum. This means
that the above bisection algorithm may take a long time to converge to the global minimizer.
Since we are only interested in the value of the minimum (and not of the minimizer), we
may modify the stopping criterion to

e(l + fi-) or (f)\fi+) - (f>'{fi-) < €.

This second criterion retains the same complexity as the original bisection algorithm. The
second condition in the criterion impfies that |^'((/x+-l-/x_)/2)| < e, which is an approximate
condition for global optimality.

. 0 ^max c 1/ /in\fl> fl+l- • (^2)



3.4 Maximum A Posteriori models

We now consider a variation on the likelihood model, the Maximum A Posteriori (MAP)
model. The MAP estimation framework provides a way of incorporating prior information
in the estimation process. This is particularly useful for dealing with sparse training data,
for which the maximum likelihood approach may provide inaccurate estimates. The MAP
estimator, denoted by maximizes the "MAP function" (Siouris, 1995)

LmAp{p) = L{p) + logpprior(p)

where L{p) is the log-likelihood function, and pprior refers to the a priori density function of
the parameter vector p.

In our case, p is a row of the transition matrix, so a prior distribution has support included
in the n-dimensional simplex {p : p > 0, p^l = l}. It is customary to choose theprior to
be a Dirichlet distribution (Ferguson, 1974; Wilks, 1962), the density of which is of the form

ffprior(p) = K•Hp^'S
t

where the vector a > 1 is given, and A is a normalizing constant. Choosing a = 1 we
recover the "non-informative prior", which is the uniform distribution on the n-dimensional
simplex.

The resulting MAP estimation problem takes the form

max (/-I-a - l)^logp : p^l = l,p > 0.
p

To this problem we can associate a "MAP" region which describes the uncertainty on the
estimate, via a lower bound (5 on the function 7/map(p)- The inner problem now takes the
form

<f) := max p^v : p> 0, p^l = 1, JZ(/W) +"0) " 1)logPO') ^ 7,
3

where 7 depends on the normalizing constant K appearing in the prior density function
and on the chosen lower bound on the MAP function, (3. We observe that this problem
has exactly the same form as in the case of hkelihood function, provided we replace / by
/ + a —1. Therefore, the same results apply to the MAP case.

4 Entropy Models

4.1 Model description

Here, we describe the uncertainty on each row of the transition matrix via an entropy con
straint. Specifically we consider problem (5), with the uncertainty on the i-th row of the



transition matrix P° described via a lower bound on the entropy function relative to a given
distribution q (Kullback-Leibler divergence)

^/(/3) =|peR" :p^l =l, </?|-
Here, 9 > 0 is a given distribution, and P > 0 is fixed. Together with q > 0, the condition
P > 0 ensures that U has non-empty interior. (As before, we have dropped the control and
row indices a and i).

We now address the inner problem (5), with U = U{P) given above. We note that
the above set actually equals the whole probability simplex if P is too large, specifically if
P > maxi(— log^i), since the latter quantity is the maximum of the relative entropy function
over the simplex. Thus, ii P > maxt(—log^j), the worst-case value of for p ^U(P) is
equal to Umax-

4.2 Dual problem

By standard duality arguments (set U being strictly feasible), the inner problem is equivalent
to its dual:

min p+ +A53 ?0) exp (^MpL _ij.
j ^ ^

Setting the derivative with respect to p to zero, we obtain the optimality condition

539O) exp ~ ^
j ^

from which we derive

/X =Alog qiS) exp^ j-A.
The optimal distribution is

q{j)exp^
p =

where (f) is the convex function:

E(9Wexp^
As before, we reduce the problem to a one-dimensional problem:

min 6(X)
A>0 ^ '

0(A) =Alog qU) exp^ j-h PX. (13)
Perhaps not surprisingly, the above function is closely linked to the moment generating
function of a random variable v having the discrete distribution with mass qi at Vi.



4.3 A bisection algorithm

As proved in Appendix C, the convex function cj) in (13) has the following properties:

VA>0, q'̂ v-\-f3X<(f){X)<VmBx + PK (14)

and

(f>{X) = Vmax + (/? + logQ{v))X + o(A), (15)

where

QW •= = Prob{v = -ynjax}.
j : v(J)=Viaax

Hence, ^(0) = Vmax and ( '̂(0) = /?+ logQ(v). In addition, at infinity the expansionof (f) is

(^(A) = g^v + /?A + o(l). (16)

The bisection algorithm can be started with the lower bound A_ = 0. An upper bound
can be computed by finding a solution to the equations <^(0) = q^v + /?A, which yields
A+ = (vmax - q '̂̂ )IP' By convexity, a minimizer exists in the interval [0 A+].

Note that if < '̂(0) > 0, then A = 0 is optimal and the optimal value of 0 is Vmax- This
means that if /? is too high, that is, if /? > —log(5(v), enforcing robustness amounts to
disregard any prior information on the probability distribution p. We have observed in 4.1
a similar phenomenon brought about by too large values of P, which resulted in a set U
equal to the probability simplex. Here, the fimiting value —log(5(^^) depends not only on q
but also on v, since we are dealing with the optimization problem (5) and not only with its
feasible set U.

5 Other Specific Models

5.1 Interval matrix model

The interval matrix model is when

U={p : p<p<p, = l},

wherep± are givencomponentwise non-negative n-vectors (whose elementsdo not necessarily
sum to one), with p+ > p_. This model is motivated by statistical estimates of intervals of
confidence on the components of the transition matrix. Those intervals can be obtained by
resampling methods, or by projecting an ellipsoidal uncertainty model on each component
axis (see section 5.2). In what follows, we assume that U is not empty.

Since the inner problem

(f> := max v'̂ p : p>0, = 1, p<p <p
p —

10



is a lineax, feasible program, it is equivalent to its Lagrange dual, which has the form

(f) = min (p- - v)"*" + v^p + p(l - p^l),

where z'^ stands for the positive part of vector -z. The function to be minimized is a convex
piecewise linear function with break points vq = 0, ui,..., v„. Since the original problem
is feasible, we have < 1, which implies that the function above goes to infinity when
p oo. Thus, the minimum of the function is attained at one of the break points Vi
(i = 0,..., n). The complexity of this enumerative approach is O(n^), since each evaluation
costs 0(n).

In fact one does not need to enumerate the function at all values a bisection scheme

over the discrete set {uq,...,u„} suffices. This scheme will bring the complexity down to
0{n logn).

5.2 Ellipsoidal models

Ellipsoidal models arise when second-order approximations are made to the log-likelihood
function arising in the likelihood model. Specifically, we work with the following set in lieu
of (6):

V{0) = {P€ R""" : P>0, Pl = l, Q{P) > 0} , (17)
where Q{P) is the second-order approximation to the log-likelihood function L, around the
maximum-likelihood estimate F:

Q(P)-=3 ly{P{iJ)-P{i:J)r

The above set is an ellipsoid intersected by the polytope of transition matrices. Again, the
projection on the space of row variables assumes a similar shape, that of an ellipsoid
intersected with the probability simplex, specifically

W) =|p :P>0, p''l =l, E '
where := 2(/?niax —j^)- We refer to the above model as the constrained ellipsoidal model

In the constrained likelihood case, the inner problem assumes the form

maxv^p : p > 0, p^l = 1,
p '•I'- ' f f.fj)

According to (Nesterov and Nemirovski, 1994), the above problem has worst-case complex
ity of This brings the complexity of one step of the robust Bellman recursion to
0(n^®m).

11



In statistics, it is a standard practice to further simplify the description above, by re
laxing the inequality constraints P > 0 in the definition of P(/3). We thus obtain the
(unconstrained) ellipsoidal model, which leads to

<t> := max v^p : =1, MJ)) ^2
P ^ fiU)

Taking the dual of the above problem, we obtain the closed-form expression

<i> = frv+fiUMj) - fjv)\

which has 0{n) complexity. The robust recursion based on the unconstrained ellipsoidal
model is thus 0(nm), the same as that of the classical Bellman recursion.

This economical computation comes at an expense, which is the possible conservatismof
the worst-case value function stemmingfrom our neglect of the non-negativity constraints on
the transition matrix. Another potential problem is the fact that the ellipsoid model is sym
metric around the maximum-likelihood point, whichmight not be realistic . In the maximum-
likelihood model, the non-negativity constraints are implicit in the likelihood bound, and the
model yields potentially non-symmetric (hence more reahstic) estimates.

Uncertainty on the reference distribution q in entropy models. Wemay generalize
the relativeentropy models to the casewhenthere is uncertainty on the reference distribution
q-

If Q is a set of reference distributions q, we can consider the inner problem (5), where
the uncertainty set U replaced by one of the form

W= :p>0, p^l =1, ^p{j) log </3 for some 9eq| .
Using the same steps as before, the inner problem reduces to

mm Alog q{j) exp +13\.

The above problem is very easy if Q is a box (hyperrectangle) or an ellipsoid parallel to the
coordinate axes. For example, assume that Q assumes the form we encountered in the case
of ellipsoidal models, specifically Q = 'P, where V is given by (17). Then we obtain

mm Alog (^/(j)exp^ +« X! /0')(®xp exp y)^ 1+/3A.

A bisection algorithm similar to the ones described earlier can be applied to this modified
problem.

12



6 Robust Algorithm Summary

The robust Dynamic Programming Algorithm is as follows.

1. Initialize the value function to its terminal value V^.

2. Repeat until t = 0:

(a) For all states i and controls a, compute the solution to the inner problem

<f>{i, a) = Ct{ij a) + max p^vt

(b) Update the value function by

vt+ii'i) = niin Ct(i, a) + a)
aeA

(c) Replace t hy t —1 and go to 2.

7 Example: Robust Aircraft Routing

We consider the problem of routing an aircraft whose path is obstructed by stochastic ob
stacles, representing storms. In practice, the stochastic model must be estimated from past
weather data. This makes this particular application a good illustration of our method.

7.1 The nominal problem

In (Nilim et al., 2001), we have introduced an MDP representation of the problem, in which
the evolution of the storms is modelled as a perfectly known stationary Markov chain. The
term nominal here refers to the fact that the transition matrix of the weather Markov chain

is not subject to uncertainty. The goal is to minimize the expected delay (flight time). The
weather process is a fully observable Markov chain: at each decision stage (every 15 minutes
in our example), we learn the actual state of the weather.

The airspace is represented as a rectangular grid. The state vector comprises the current
position of the aircraft on the grid, as well as the current states of each storm. The action in
the MDP corresponds to the choice of nodes to fly towards, from any given node. There are
k obstacles, represented by a Markov chain with a 2*^ x 2*^ transition matrix. The transition
matrix for the routing problem is thus of order where N is the number of nodes in the
grid.

We solved the MDP via the Bellman recursion (Nilim et al., 2001). Our framework
avoids the potential "curse of dimensionality" inherent in generic Bellman recursions, by
considerable pruning of the state-space and action sets. This makes the method effective
for up to a few storms, which corresponds to realistic situations. For more details on the
nominal problem and its implementation, we refer the reader to (Nilim et al., 2001).

13



In the example below, the problem is two-dimensional in the sense that the aircraft
evolves at a fixed altitude. In a coordinate system where each unit is equal to 1 Nautical
Mile, the aircraft is initially positioned at (0,0) and the destination point is at (360,0). The
velocity of the aircraft is fixed at 480 n.mi/hour. The airspace is described by a rectangular
grid with N = 210 nodes, with edge length of 24 n.mi. There is a possibility that a storm
might obstruct the flight path. The storm zone is a rectangular space with the corner points
at (160,192), (160,-192), (168,192) and (168,-192) (Figure 1).

Since there is only one potential storm in the area, storm dynamics is described by a
2x2 transition matrix Pweather- Together with AT = 210 nodes, this results in a state-space
of total dimension 420. By limiting the angular changes in the heading of the aircraft, we
can prune out the action space and reduce its cardinality at each step to m = 4. This implies
that the transition matrices are very sparse; in fact, they are sparse, affine functions of the
transition matrix Pweather- Sparsity implies that the nominal Bellman recursion only involves
8 states at each step.

7.2 The robust version

In practice, the transition matrix Pweather is estimated from past weather data, and thus it
is subject to estimation errors.

We assumed a likelihood model of uncertainty on this transition matrix. This results in
a likehhood model of uncertainty on the state transition matrix, which is as sparse as the
nominal transition matrix. Thus, the effective state pruning that takes place in the nominal
model can also take placein the robust counterpart. In our example, wechose the numerical
value

p ^/0.9 0.1
•f^veather q^ q g

for the maximum-likelihood estimate of Pweather-
The likelihood model involves a lower bound on the likelihood function /3, which is a

measure of the uncertainty level. Its maximum value /^max corresponds to the case with no
uncertainty, and decreasing values of P correspond to higher uncertainty level. To p, we
may associate a measure of uncertainty that is perhaps more readable: the uncertainty level,
denoted Ul, is defined as a percentage and its complement I —Ul can be interpreted as a
probabilistic confidence level in the contextof large samples. The one-to-one correspondence
oIUl and p is precisely described in Appendix D.

In figure 2, we plot Ul against decreasing values of the lower bound on the log-likelihood
function (p). We seethat Ul = 0, which refers to a complete certainty ofthe data, is attained
at /3 = Pmaxy the maximum value of the likelihood function. The value of Ul decreases with
p and reaches the maximum value, which is 100%, at /? = —oo (not drawn in this plot).
Point to be noted: the rate of increase of Pl is maximum at /?= pmax and increases with p.
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7.3 Comparing robust and nominal strategies

In figure 3, we compare various strategies: we plot the relative delay, which is the relative
increase in flight time with respect to the flight time corresponding to the most direct route
(straight line), against the negative of the lower bound on the likefihood function (3.

We compare three strategies. The conservative strategy is to avoid the storm zone alto
gether. If we take (3 = pmax, the uncertainty set becomes a singleton {Ul = 0) and hence
we obtain the solution computed via the classical Bellman recursion; this is referred to as
the nominal strategy. The robust strategy corresponds to solving our robust MDP with the
corresponding value of /?.

The plot in figure (3) shows how the various strategies fare, as we decrease the bound on
the likelihood function (3. For the nominal and the robust strategies, and a given bound /?,
we can compute the worst-case delay using the recursion (4), which provides the worst-case
value function.

The conservative strategy incurs a 51.5% delay with respect to the flight time correspond
ing to the most direct route. This strategy is independent on the transition matrix, so it
appears as a straight line in the plot. If we know the value of the transition matrix exactly,
then the nominal strategy is extremely efficient and results in a delay of 8.02% only. As (3
deviates from the uncertainty set gets bigger. In the nominal strategy, the optimal
value is very sensitive in the range of values of /? close to (3max'- the delay jumps from 8% to
25% when (3 changes by 7.71% with respect to Pmax (the imcertainty level Ul changes from
0% to 5%). In comparison, the relative delay jumps by only 14% with the robust strategy.
In both of strategies, the slope of the optimal value with respect to the uncertainty is almost
infinite oX ^ = Pmax^ which shows the high sensitivity of the value function with respect to
the imcertainty.

We observe that the robust solution performs better than the nominal solution as the
estimation error increases. The plot shows an average of 19% decrease in delay with respect
to the nominal strategy when uncertainty is present. Further, the nominal strategy very
quickly reaches delay values comparable to those obtained with the conservative strategy,
as the uncertainty level increases. In fact, the conservative strategy even outperforms the
nominal strategy at ^ = —1.84, which corresponds to Ul = 69.59%. In this sense, even for
moderate uncertainty levels, the nominal strategy defeats its purpose. In contrast, the robust
strategy outperforms the conservative strategy by 15% even if the data is very uncertain
[Ul = 85%).

In summary, when there is no error in the estimation, both nominal and robust algorithms
provide a strategy that produces 43.3% less delay than the conservative strategy,. However,
with the presence of even a moderate estimation error, the robust strategy performs much
better than the conservative strategy, whereas the nominal MDP strategy cannot produce a
much better result.

Nominal and robust strategies have similar computational requirements. In our example,
with a simple matlab implementation on a standard PC, the running time for the nominal
algorithm was about 4 seconds, and the robust version took 4 more seconds to solve.
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7.4 Inaccuracy of uncertainty level

The previous comparison assumes that, in the robust case, we are able to estimate exactly
the precise value of the uncertainty level Ul (or the bound on the likelihood function /3). In
practice, this parameter also has to be estimated. Hence the question: how sensitive is the
robust approach with respect to inaccuracies in the imcertainty level C/x,?

To answer this question in our particular example, we have assumed that a guess C/£
on the uncertainty level is available, and examined how the corresponding robust solution
would behave if it was subject to uncertainty with level above or below the guess.

In figure 4, we compare various strategies. In each strategy, we guess a desired level of
accuracy (17°) on the data and calculate a corresponding fikelihood bound /3°. We choose
the optimal action using our robust MDP algorithm appfied with this bound. Keeping the
resulting policy fixed, we then compute the relative delay with the various values of /3. In
the figure 4, we plot the relative delays against -/? for the strategies where the uncertainty
levels were guessed as 15% and 55%.

Not surprisingly, the relative delay ofa strategy attains its minimum value when (3 (Ui)
is accurately predicted. For values ofP above or below its guessed value, the delay increases.
We note that it is only for very small uncertainty levels (within .995% of /?niax) that the
nominal strategy performs better than the robust strategy with imperfect prediction of P
m-

We define Ruj^ as the range oftheactual Ui 'm. percentage terms where the robust strategy
(with imperfect prediction of Ui) performs worse than nominal strategy. In figure (5), we
show Ruj^ against the guessed value, Ul. The plot clearly shows that Ruj^ remains less than
1% with varying predicted 17°.

Our example shows that if we predict the uncertainty level inaccurately in order to
obtain a robust strategy, the nominal strategy will outperform the robust strategy only if
the actual uncertainty level Ui '\s less than 1%. For any higher value of the uncertainty
level, the robust strategies outperform the nominal strategy, by an average of 13%. Thus,
even if the uncertainty level is not accurately predicted, the robust solution outperforms the
nominal solution significantly.

8 Concluding remarks

We have considered uncertainty models on the transition matrix that aie statistically accu
rate and give rise very moderate increase in computational cost. All the models, (except
the interval matrix model), considered here give rise to inner problems with worst-case com
plexity less than 0(n). With these models, the total cost of one step of the robust Bellman
recursion is thus 0{mn) {m is the number of actions). This has the same same complexity
as the classical recursion, which has complexity of0{mn). In the interval matrix model, the
the worst-case complexity is 0(mn logn) .

From the point of view of statistical accuracy, the likelihood or entropy models are
certainly preferable to the ellipsoid or interval models: these models take.into account sign
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constraints, possibly asymmetric uncertainty around the maximum-likelihood or minimum
relative entropy point, in contrast of the ellipsoidal and box uncertainty models that are
possibly crude approximations to the above models.

We have shown in a practical path planning example the benefits of using a robust
strategy instead of the classical optimal strategy; even if the uncertainty level is only crudely
guessed, the robust strategy yields a much better expected flight delay.
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A Proof of Theorem 1

In this section, we show the equivalence between the two recursions (2) and (3). For a given
state i, and value function vector v, we consider the problem of computing

lb —max min c(i, a) -h v^Pi.
Per aeA ^ ^ *

Denote by 5 the probability simplex in R"^. We have

lb = max min X(a) (c(i,a) -H v^pf)
a

= min max \(a) (c(i, a) -1- )
xes P€P ^ \ ^ ^ /

a

\m •^(°)= mm
X€S

= min Y^ X(a) | c(i,a) -1- max
a

= min V A(a) (c(i, a) + (d))
a

= min {c{i, a)+ <f>r9{v)),

where the second line follows from standard linear programming duality argmnents, with V
and S compact. This achieves the proof.
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B Properties of function (j) of section 3.3

Here, we prove two properties of the function (f) involved in the bisection algorithm of section
3.3. For simplicity of notation, we assume that there is an unique index i* achieving the
maximum in Umax, that is, v{i*) = Umax-

We first show that 0(/i) —» Umax as >^^max- We have

Hf^) =̂ yr +̂o{fi - v{i*)).
We then express 4>{fj,) as

(/•(/z) =/Z - \{fi) I1+/? - Pmax +log A(/z) - ^ fj log(/LZ - Uj) |
V J

- - v{i*)).

The second term (first line) vanishes as /z —> Umax, since A(/z) 0 then. In view of the
expression of A(/z) above, the last term (second line) behaves as (/z —u(i*))log(/z —u(2*)),
which also vanishes.

Next we prove that <f>'{fi) —^ -co as /z —> Umax- We obtain easily

d\{fi) J (/z - u(j))2 1
—Ta tttt when a —» vn ).

fU) \ /('•)
'' II- v{j}

We then have

M-'y(j)

= log(l + o(l))+ (n- 1) log A(/z) + V log - P

—> —oo as /z —> u(z*).

Also, by definition of A(^), we have 5/i/5/z(A(^),^) = 0. The proof is achieved with
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C Properties of function (j) of section 4.3

In this section, we prove that the function (f) defined in (13) obeys properties (14), (15) and
(16).

First, weprove (15). If v(j) = for every j, the result holds, with Q(v) = Q(vi„axl) =
1. Assume now that there exist j such that v{j) < v^ax- We have

= "maoi+ZJA +Alog I ^ ?(i)+ ^
\i:v(i)=Wmax i:vO)<Vniax

~ ^max + /3A + Alog((3 + 0(e-'/*))
~ ^max + (/3 + logg)A + 0(Ae-^/^),

where t = v^ax —Vg>0, where Vs is the largest v{j) < Vmax- This proves (15).
From the expression of <f) given in the second line above, we immediately obtain the upper

bound in (14).
The expansion of 0 at infinity provides

^(A) =^A +Alog^Ej^OKl +̂ +oCA)))
= q^v+ f3X + o{l),

which proves (16). The lower bound in (14) is a direct consequence of the concavity of the
log function.

D Calculation of /? for a Desired Confidence Level

In this section, we describe the one-to-one correspondence between a lower bound on the
likelihood function, as used in section 3, with a desired level of confidence (1 —Ul) on the
transition matrix estimates. This correspondence is valid for asymptotically large samples
only but can serve as a guideline to choose (3.

First, we define a vectors qi = [P{i, 1),..., P{i,n—1)]^, Vi = 1,..., n and6 = [91,..., €
Rn(n-l), p is the transition matrix that we want to estimate. Hence, P{i,j) = Oij =
9{{n —1)H + j) V 1 < 2 < n, 1 < j < (n —1). Provided some regularity conditions hold
(Lehmann, 1986), it is possible to make Laplace approximation of the Likelihoodfunction and
we can make the following asymptotic statement about the distribution of 6: precisely, that
9 is normally distributed with the mean given by 9ij := F{i,j), l<i<n,l<j<{n —1)
and covariance matrix I{9) (Fisher Information matrix) given by

I{9)pq = E0 Vp,g= l,...,n(n-l). (19)
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where /(.) = log(L(.)) is the log-likelihood function.
We can approximate I(6) with the observed information matrix, which is meaningful in

the neighborhood of 0. The equation of the observed information matrix is given by

ffl

lo{0)pq = Vp,g = 1,...,n(n - 1), (20)

where a/L l{0) can be shown to bedOpdOg

dOpdOg

— ^ correspond to the elements in a same row in P and p = q,
l{6) = if P) q correspond to the elements in a same row in P and p 7^ g,

0, if p and q correspond to the elements in different rows in P.
(21)

This is true for large number of sample (Lehmann and Casella, 1998). We further define,
:= Io{B). Then the parameter (3 is chosen to be the smallest such that, under the

probability distribution N(9, (H)~^), the set,

^^ = {9:1(9) > /?}, (22)

where 1(9) is the quadratic approximation to 1(9) around 9 = 9^ that is,

m = /3„„x - - efH(B - §), (23)

has the probability larger than a threshold (1 - Ul), where (say) Ul = 15% in order to
obtain the 85% confidence level.

It turns out that, we can solve for such a (3 explicitly,

(1 - £/i) = (2(/3„„ -/?)), (24)

where Fy2 (.) is the cumulative distribution with the degrees of freedom n(n —1),

which can be approximated by the following equation (Pitman, 1993)

~ ^ ~Zy/n(n — ~ ^
where, z = , 'p{z) = and ^z) = is the standard

normal cumulative density function.
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Figure 1; Aircraft Path Planning Scenario.
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Figure 2: —/3 (negative lowerbound on the log-likelihood function) vsUl (Uncertainty Level
(in %) of the Transition Matrices).
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Figure 3: Optimal value vs. uncertainty level (negative lower bound on the log-likelihood
function), for both the classical Bellman recursion and its robust counterpart.
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Figure 4: Optimal value vs. uncertainty level (negative lower bound on the log-likelihood
function), for the classical Bellman recursion and its robust counterpart (with exact and
inexact predictions of the uncertainty level Ul).
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Figure 5: Predicted uncertainty level vs. Ru^, whichis the range of the actual uncertainty
level Ui over which the nominal strategy performs better than a robust strategy computed
with the imperfect prediction t/°.
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