

Copyright © 2002, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

A PROGRAMMING MODEL

FOR NETWORK PROCESSORS

by

Niraj Shah, William Plishker and Kurt Keutzer

Memorandum No. UCB/ERL M02/35

15 November 2002

A PROGRAMMING MODEL

FOR NETWORK PROCESSORS

by

Niraj Shah, William Plishker and Kurt Keutzer

Memorandum No. UCB/ERL M02/35

15 November 2002

ELECTRONICS RESEARCH LABORATORY

College ofEngineering
UniversityofCalifornia, Berkeley

94720

A Programming Model for Network Processors

Niraj Shah, William Plishker, Kurt Keutzer
University ofCalifornia, Berkeley

{niraj,plishker,keutzer}@eecs.berkeley.edu

Abstract

The architectural diversity and complexity of
network processor architectures motivate the
needfor a more natural abstraction ofthe under
lying hardware. In this paper, we describe a pro
gramming model that makes it possible to write
ejjicient code and improve application perform
ance without having to understand the finer de
tails of the target architecture. Using this pro
gramming model, we implement the data plane of
an IPv4 router on a particular networkprocessor,
the Intel IXPI200, and compare results with a
hand-coded implementation. Initial results indi
cate the promise ofthis approach.

1. Introduction

The past five years has witnessed over 30 at
tempts at programmable solutions for packet
processing [1]. With these architectures, network
processor designers have employed a large variety
of hardware techniques to accelerate packet proc
essing, including parallel processing, special-
purpose hardware, memory architectures, on-chip
communication mechanisms, and the use of pe
ripherals [2]. However, despite this architectural
innovation, relatively little effort has been made
to make these architectures easily programmable.
In fact, these architectures are very difficult to
program [3].

The current practice of programming network
processors is to use assembly language or a subset
of C. This low level approach to programming
places a large burden on the programmer to un
derstand fine details of the architecture just to im
plement a packet processing application, let alone
optimize it. We believe the programmer should
be presented with an abstraction of the underlying
hardware, or programming model, which exposes

enough architectural detail to write efficient code
for that platform, while hiding less essential archi
tectural complexity.

Further, we believe network processors are just
one example of a broader trend to search for ap
plication-specific solutions with fast time-to-
market. This trend is drawing system designers
away firom the time-consuming and risky process
of designing application-specific integrated cir
cuits (ASICs) and toward programming applica
tion-specific instruction processors (ASIPs). As
system designers increasingly adopt programma
ble platforms, we believe the programming
model will be a key aspect to harnessing the
power of these new architectures and allowing
system designers to make the transition away
firom ASICs.

This paper describes a programming model for
network processors. We illustrate this approach
by implementing an IPv4 packet forwarder on the
Intel IXP1200, a common network processor.

The remainder of the paper is organized as fol
lows: Section 2 describes some background. Sec
tion 3 introduces the notion of a programming
model and motivates it. Section 4 describes our

programming model for the Intel IXP1200. We
report our results in Section 5. Finally, we sum
marize and comment on future research direction

in Sections 6 and 7, respectively.

2. Background

In this section, we describe some relevant
background to our work. We first give an over
view of Click, a domain specific language and
infrastructure for developing networking applica
tions, upon which our programming model is
based. Next, we describe the Intel IXP1200, the
target architecture for our application.

Click is a domain specific language designed
for describing networking applications [4]. It is
basedon a set of simple principles tailored for the
network community. Applications in Click are
built by composing computational tasks, or ele
ments, which correspond to common networking
operations like classification, route table lookup,
and header verification. Elements have input and
output ports that define communication with other
elements. Ports are connected via edges that rep
resent packet flow between elements.

In Click, there are two types of communication
between ports: push and pull. Push communica
tion is initiated by the source element and effec
tively models the arrival packets into the system.
Pull communication is initiated by the sink and
often models space available in hardware re
sources for egress packet flow. Click designs are
often composed of paths of push elements and
paths of pull elements. Push paths andpull paths
connect through special elements that have differ
ent typed input and output ports. The Queue ele
ment, for example, has a push input but a pull
output, while the Unqueue element has a pull in
put, but a push output.

Figure 4 shows a Click diagram of the applica
tion we implemented with our programming
model. The boxes represent elements. The small
triangles and rectangles within elements represent
input and output ports, respectively. Filled ports
are push ports, while empty ports are pull ports.

The arrows between portsrepresent packet flow.
Click is implemented on Linux using C-H-

classes to define elements. Element communica
tion is implemented with virtual function calls to
neighboring elements. To execute a Click de
scription, a task scheduler is synthesized to run all
push (pull) paths by firing their sources (sinks),
called schedulable elements.

A natural extension of this Click implementa
tion is to multiprocessor architectures that may
take advantage of the inherent parallelism in
processing packet flows. A multi-threaded ver
sion of Click targets a Linux implementation and
uses worklists to schedule computation [5]. Two
pertinent conclusions can be drawn from this
work: Firet, significant concurrency may be
gleaned from Click designs in which the applica
tion designer has made no effort to express it.
Since packet streams are generally independent,
ingress packets may be processed by separate
threads with very little interaction. Second, a
Click configuration may be altered to express ad
ditional concurrency without changing the appli
cation's functionality.

2.2, Intel IXP1200

The 1XP1200 [6] family is one of Intel's recent
network processor product lines based on their
Internet Exchange Architecture. It has six RISC
processors, called microengines, plus a Stron-
gARM processor (see Figure 1). The microengi
nes are geared for data plane processing and have

>DRAM bus

StrongArm
Core

(166 MHz)

16KB

Instruction
Cache

8KB

Data Cache

US Mini-

Data Cache

command"bus

Hicroengine

Microengine

Microengine

Hicroengine

Hicroengine

Hicroengine

SRAM bus

Figure 1. Intel IXP1200 Architecture.

hardware support for four threads that share a
program memory. The StrongARM is mostly
used to handle control and management plane op
erations. The memory architecture is divided into
several regions: large off-chip SDRAM, faster
extemal SRAM, intemal scratchpad, and local
register files for each microengine. Each of these
areas is under direct control by the user and there
is no hardware support for caching data from
slower memory into smaller faster memoiy (ex
cept for the small cache accessible only to the
StrongARM). The DC Bus (an Intel proprietary
bus) is the main interface for receiving and trans
mitting data with extemal devices such as MACs
and other IXP1200s. It is 64 bits wide and runs
up to 104MHz allowing for a maximum through
put of 6.6Gbps. The microengines can directly
interact with the IX bus through an IX Bus Unit,
so a thread running on a microenginemay receive
or transmit data on any port without StrongARM
intervention. This interaction is performed via
Transmit and Receive FIFOs which are circular

buffers that allow data transfers directly to/from
SDRAM. For the microengines to interact with
peripherals (e.g. determining their state), they
need to query or write to control status registers
(CSRs). Accessing control status registers re
quires using the command bus which doubles as
the interface to the hash engine, scratchpad mem
ory, and Transmit and Receive FIFOs.

Initially, the programming interface provided
with the IXP1200 was assembler. This was later
augmentedwith a subset of the C language (which
we refer to as IXP-C) [7]. IXP-C supports loops,
conditionals, functions, types, and intrinsics
(function calls using C syntax that call assembler
instmctions). However it has several notable de
ficiencies: it does not support function pointers, it
lacks recursion, it exposes the memory regions,
and it forces the user to control thread swapping.
In addition, for practical implementations, the
programmer must effectively manage the data
layout in memory, arbitrate access to shared re
sources by multiple threads, divide code among
threads, interact with peripherals, and utilize the
concurrency inherent in the application. We be
lieve this places undue burden on the programmer
to generate even a functional implementation of
an application, let alone an efficient one. It is

with this principle that we motivate our own new
layer to sit atop IXP-C.

3. Programming Models

There is currently a large gap between domain
specific languages that provide programmers a
natural interface, like Click, and the complex pro
grammable architectures used for implementation,
like Intel's IXP1200. In this section, we intro
duce and define the concept of a programming
model to assist in bridging this gap.

3.1. Implementation Gap

We believe Chck to be a natural environment

for describing packet processing applications.
Ideally, we would like to map applications de
scribed in Click directly to the Intel IXP1200.
However, there is currently a large gap given the
low level programming interface the IXP1200
exposes. The simple yet powerful concept of
push and pull communication between elements
that communicate only via passing packets, cou
pled with the rich library of elements of Click
provides a natural abstraction that aids designers
in creating a functional description of their appli
cation. This is in stark contrast to the main con
cepts required to program the IXP1200. When
implementing an application on this device, the
programmer must carefully determine how to ef
fectively partition his application across the six
microengines, make use of special-purpose hard
ware, effectively arbitrate shared resources, and
communicate with peripherals. We call this mis
match of concerns between the application model
target architecture the implementation gap (see
Figure 2). To facilitate bridgingthis gap, we pro
pose an intermediate layer, called a programming
model, which presents a powerful abstraction of
the underlying architecture.

3.2. What is a Programming Model?

A programming model presents an abstraction
that exposes only the relevant details of the archi
tecture necessary for a programmer to efficiently
in:q>lement an application. It is a programmer's
view of the architecture that balances opacityand
visibility:

1. Opacity: Abstract the underlying architec
ture

This obviates needfor the programmer to
leant intricate details ofarchitecture just
to beginprogramming the device.

2. Visibility: Enable design space exploration
of implementations

This allows the programmer to improve
the efficiency of their implementation by
trading off different design parameters
(e.g. thread boundaries, data locality, and
implementation of elements). Our goal is
that the full computational power of a
target device should always be realizable
through theprogramming model.

In summary, a programming model supplies an
approach to harvesting the powerof the platform.
It is a more productive way of harvesting that
power. A programming model will inevitably
balance between a programmer's two competing
needs: desire for ease of programming and the
requirement for efficient implementation. Fur
ther, we believe the programming model is a nec
essary, but not sufficient, condition of closing the
implementation gap.

3.3. Possible Approaches

There are numerous possible approaches for a
programming model for heterogeneous architec
tures. We classify these approaches as falling on
a continuum of increasing application domain

specificity. Below, we describe the two endpoints
of this continuum: a programming languages ap
proach and a library of application components
approach.

A programming languages approach defines a
programming language that can be compiled to
the target architecture. With this approach, a
compiler needs to be written only once for the
target architecture and all compiler optimizations
can be applied to all applications that are written
for the architecture. The difficulty with this ap
proach is compilation to heterogeneous architec
tures with multiple processors, special purpose
hardware, numerous task-specific memories, and
various buses. In addition, the programming ab
straction required to effectively create a compiler
for such architectures would likely force the pro
gramming language to include many architectural
concepts which would be unnatural for the appli
cation programmer.

At the other end of the spectrum, a library of
application components could be used as a pro
gramming model. The advantage of such an ap
proach is a better mapping to the underlying
hardware, since the components are hand-coded.
In addition, these components implement an ab
straction that is natural for an application writer as
the components are often similar to application
model primitives. The disadvantage of this ap
proach is the need to implement every elementof
the library by hand. If only a limited number of
library elements are needed, this approach may be
successful. However, in practice, we suspect a

Application Model
(e.g. Click) }:

natural design entry environment
modelsapplication concurrency
rich library ofelements

Impleme&tion Gap

Architecture

(e.g. Intel IXP1200)

prai^absttacticmof

parallelprocessing: 6 micro-engines, 4 threadseach
specialpurpose hardware: hashengine
various memories: SDRAM, SRAM, Scratchpad
K Bus to communication with fvlACs,CSRs

Figure 2. Implementation Gap.

large number of elements are needed as applica
tion diversity grows [8],

Based on the trade-offs between the above ap
proaches, we propose a programming model that
is a hybrid of the two extremes. We describe this
approach in the next section.

4. NP-Click: A Programming Model for
the Network Processors

In this section, we describe NP-Click, our pro
gramming model for network processors, as im
plemented on the Intel IXP1200. The two main
components of the programming model are ele
ments and their communication. We also describe
the process of mapping compute elements to
threads and give some hints for arriving at an effi
cient implementation.

4.1. Overview of the Model

Our programming model combines concepts
from Click, to provide a natural abstraction, and
concepts from the IXP1200 architecture, to lever
age the computational power ofthe device.

To describe applications, we borrow Click's
simple yet powerful abstraction of elements
communicating by passing packets via push and
pull semantics. Since our initial studies of the
IXP1200 architecture showed the importance of
multi-threading to hide memory and communica
tion latency, we chose to export thread boundaries
directly to the application programmer.

Unlike Click's implementation, elements in our
programming model are implemented in IXP-C,
the subset of C the IXP1200 supports. In addi
tion, due to the performance impact of data layout
on the target architecture (between registers.
Scratchpad, SRAM, and SDRAM), our imple
mentation enables the programmer to effectively
use these memories. Since the IXP1200 has sepa
rate program memories for each microengine, we
allow multiple implementations of the same ele
ment of a design to exploit additional application
concurrency. However, since most data memory
is shared among microengines, the programmer
must specify which data is shared among these
instances and which data can be duplicated. We
also provide the programmer with a machine ab
straction API that hides pitfalls of the architecture

and exports a more natural abstraction for unique
memory features and co-processors.

4.2. Elements

Computation in our programming model is de
scribed in a fashion similar to Click, with modular
blocks, called elements, which are sequential
blocks of code that generally encapsulate particu
lar packet processing functions. However, in our
model, elements are defined using IXP-C, key
words for memory layout, and a machine abstrac
tion API that provides key abstractions of low-
level architectu^details oftheIXP1200.

Before describing the details of our program
ming model, it is important to understand the dis
tinction between elementSy typeSy and, instances.
An element is a defined functional block within a
design that has a typCy which defines its function
ality and the semantics of its ports. There may be
multiple elements of the same type in a design.
An instance is an implementation of an element.
Depending on an application's mapping on to the
target architecture, an element may have multiple
instances to exploit parallelism.

Figure 3 shows a small Click network that il
lustrates the difference between a type, element,
and instance. The boxes in the diagram represent
elements. FromDevice(0) aad FromDevice(l) are
multiple elements of &e same type. Look-
upIPRoute is a single element with multiple in
stances (i.e. it is implemented by Thread 0 and
Thread 1).

4.2.1. Data Layout
As a significant portion of implementation

speed is due to memory access latency, we pro
vide some mechanisms when describing an ele
ment to guide memory layout.

Since elements can be implemented in a variety
of ways that may not have been anticipated by
their author, our programming model gives the
power to describe the sharing of data among
types, elements, and instances. We provide four
data descriptors:

• Universal: data that is shared among all
types

• Global: data that is shared among all ele
ments of a specific type

• Regional: data that is shared among all in
stances ofa specific element

iTIireadO

FnmDevice(0) g-ftToDma(0)
iPRoute

FramDemceCi) [-f» > ToDeoiceCl)

Thread 1 I Thread 2

Figure 3. Example Packet Forwarder.

• Local: data that is local to an instance
The universal data descriptor describes data

that needs to be accessibleby all elements. Since
this descriptor breaks the element abstraction, we
aim to minimize the use of this descriptor. To

• date, we have not encountered applications tiiat
require this construct. We suspect it will mostly
be used as an optimization.

Global data descriptors are used for data that
must be shared across all elements of a given
type. It is often used for shared hardware re
sources that all elements of a particular type must
use. For example, one element, ToDevice^ con
tains the functionality of sending packets to an
output port. On the IXP1200, all egress traffic
must go through a central Transmit FIFO
(TFIFO), a specialized memory containing 16
locations for 64-byte data. The Transmit State
Machine steps through the TFIFO like a circular
buffer to determine what data to send to the MAC
ports. The current location of the Transmit State
Machine must be shared across all instantiations
of elements with type ToDevice to guarantee cor
rectness.

Since elements in a Click design may be in
stantiatedmultiple times for performance reasons,
the regional type modifier describes data within
an element diat must be shared across instantia
tions. For example, a LookupIPRoute element,
which looks up the destination port of a packet,
requires a large amount of storage for the routing
table. As a result, to have multiple threads that
execute a LookupIPRoute element, as shown in
Figure 3, it is necessary to know that the lookup
table needs to be sharedamong different instances
of thesame LookupIPRoute element {not type).

The local data descriptor is used for state local
to an element that need not be shared across mul
tiple instantiations of an element. Examples of
this type include temporary variables and loop
counters.

Our abstraction is built on top of the declspec
construct used in DCP-C to bind data to a particu
larmemory (e.g. SRAM, SDRAM, Scratchpad) at
compile time. Thismay be usedby the program
mer for additional visibility into the memory ar
chitecture to improve performance of the imple
mentation by specifying, for example, that certain
large data structures, likerouting tables, be placed
in a large memory.

4.2.2. Machine Abstraction API
In addition to data descriptors, our program

ming model hides some ofthe nuances of the Intel
IXP1200 architecture. These abstractions are
used in conjunction with IXP-C to describe com
putation within an element.

Control status registers are used to communi
cate with the MACs (e.g. determining which in
gress ports have new data, which egress ports
have space). Our experiments have shownaccess
times to thecontrol status registers ranging from 9
to >200 clock cycles, with multiple simultaneous
accesses sometimes leading to deadlock. The
variability is due to the sharing mechanism of a
common bus used for issuing SDRAM, SRAM,
Scratchpad, IX Bus, and control status register
commands. This bus quickly saturates with mul
tiple threads checking the status of the MAC at
the same time. Thus, this variability is a critical
factor in determining performance. One of the
major difficulties of programming the IXP1200 is
coping with thevariability in control status regis
ter access time.

To eliminate the need for the programmer to
cope with this variability, we implement a per-
microengine restriction on the number of concur
rent control status register accesses. If a thread
attempts to access a control status register while
themaximum threshold of access are outstanding,
a context swap is performed and another thread is
loaded. While this may reduce overall microen-

gine computational efficiency, this significantly
reduces the variability in control status register
access times. This abstraction wraps all reads and
writes to the control status registers and is trans
parent to the programmer. This gives the user
enough visibility to interact with peripherals effi
ciently without having to worry about saturating
the command bus.

The 1XP1200 implements special puipose
hardware for tasks diat are commonly executed in
software. To shield the programmer from the de
tails of interacting with these hardware blocks, we
export an application-level abstraction that encap
sulates common uses of the hardware. For exam

ple, the IXP1200 has 8 LIFO ("last in, first out")
registers that implement the common stack opera
tions {push and pop) in a single atomic operation.
However, these operations do not, for example,
perform boimds checking or thread safety checks.
We implement a lightweight memory manage
ment system that exposes a natural interface,
namely mallocQ and freeQ which makes use of
the LIFO registers to implement a thread-safe
freelist that performs bounds checking. These
abstractions enable the programmer to reap the
performance advantage of special purpose hard
ware without understanding particulars of their
implementation.

4.3. Communication

Our programming model borrows the commu
nication abstraction from Click [4]: namely that
elements conununicate only by passing packets
with push or pull semantics. However, our im
plementation of this abstraction is quite different.

We define a common packet data layout that all
elements use. We use a packet descriptor, allo
cated to SRAM, which stores the destination port
and the size of the packet. The packet itself is
stored in SDRAM. We define methods for read

ing and writing packet header fields and packet
bodies, so these implementation details are hidden
from the user.

As an optimization, we implement the packet
conununication by function calls that pass a
pointer to the packet descriptor and not the packet
itself. We enforce that compute elements not send
the same packet to multiple output ports to ensure
that only one element is processing a particular
packet at any given time. The packet data layout

provides an abstraction that efficiently communi
cates packets among elements, but shields the
programmer from the specifics of the IXP1200's
memoiy architecture.

4.4. Threading

Arriving at the right allocation of elements to
threads is another key element in achieving higher
performance. Thus, we enable the programmer to
easily explore different mappings of elements to
threads on the IXP1200. A^hiile we believe this
task may be automated in the future, given the
great performance impact of properly utilizing
threads, we make thread boundaries visible to the
programmer.

As observed in [S], paths of push (pull) ele
ments can be executed in the same thread by sim
ply calling the source (sink). We implement a
similar mechanism, however, because of the fixed
number of threads on the IXP1200, we also allow
the programmer to map multiple paths to a single
thread. To implement this, we synthesize a
scheduler that fires each path within that thread.
For example, to implement the design in Figure 3,
we would synthesize a round-robin scheduler for
the schedulable elements in Thread 2 {ToDe-
vice(0) and ToDevice(l)). We hide the details of
how to implement multiple schedulable elements
within a thread from the user, but still give them
the power to define thread boimdaries at the ele
ment level.

4.5. Hints for Efficient Implementation

Modularity is widely accepted as a way of pro
ductively and logically producing code, while
promoting reuse and problem partitioning. How
ever, we recognize this modularity comes at the
cost of lower performance. In this section, we
describe some hints for writing elements to
achieve efficient implementations.

First an element may exist in a thread which
has multiple push paths or pull paths to service.
To ensure the thread is making progress, elements
should yield control when waiting on a long la
tency activity to complete or an intermittent event
to occur. This is a coarser version of swapping
threads on a multithreaded processor to hide
memory access latency. For example, ToDevice
often polls the MAC to determine whether to send

FmnDiOiaffI)

FtomDfviaft)

FmmOtvlatT)

FiamDariaQ)

FmaDtBtaaS)

IPVmfy

Discard

Discard

IPVerify

IPVerify

Discard

Lookup
IPRoute

Discard

Dtscard

DedPTTL

DecIPTTL

DedPTTL

DedPTTL

Discard

DedPpL |(->^ •

Cr—-SfUJ]^ Discard 'MM

ToDmceW)

[—• > ToDeoiceCI)

[—• > ToDeoia(2)

[—• > ToDeoice(3>

[—*>ToDeoiceClS)

Figure 4. Click representation of IPv4 data plane.

more data. In this case, it is better for ToDevice
to check the MAC once, then (if false) move to
another schedulable element. Whereas a multi
threaded processor may implement thread swap
ping with multiple program counters and a parti
tioned memory space, swapping at the element
level may be performedwith static variables in an
element instance.

In addition, we provide hooks to further im
prove performance. These may include configu
ration specific enhancements thatmight be encap
sulated in a singleelement or optimizations across
elements (like a specific scheduler for a set of
schedulable elements).

5. Results

We explore the effectiveness of our program
ming model by using it to describe the data plane
of an IPv4 router and implementing this applica
tion on an Intel IXP1200. This section describes
the application we implemented, the experimental
setup used to gather data, and our initial results
for maximum data rates for numerous packet
mixes.

5.1. Application Description

To test our programming model, we used it to
implement the data plane of a 16 port Fast
Ethemet IP Version4 router [9]. This application

is based on the network processor benchmark
specified in [10]. The major requirements of our
application are listed below:
• A packet arriving on port P is to be examined

and forwarded on a different port P'. The
next-hop location that implies P' is deter
mined ^ough a longest prefix match (LPM)
on the IPv4 destination ^dress field. If P =
P\ the packet is flagged and forwarded to the
control plane.

•' The packer header and payload are checked
for validity and packet header fields check
sum and TTL are updated.

• Packet queue sizes and buffers can be opti
mally configured for the network processor
architecture unless large buffer sizes interfere
with the ability to measuresustainedperform
ance.

• The network processor must maintain all non-
fixed tables (i.e. tables for route lookup) in
memory that can be updated with minimal in
trusion to the application.

• Routing tables should be able to address any
valid IPv4 destination address and should
support up next-hop information for up to
64,000 destinations simultaneously.

Figure 4 shows a graphical representationof
the Click description of the router. We allocate
16 threads (4 microengines) for receivingpackets

and 8 threads (2 microengines) for transmitting
packets.

5.2. Testing Procedure

To test our implementation, we used a software
architecture simulator of the DCP1200 assuming a
microengine clock rate of 200MHz and an IX Bus
clock rate of lOOMHz. Our simulation environ
ment also modeled two 8 port Fast Ethemet
MACs (Intel IXF440s) connected to the IX Bus.
For each port, the IXF440 has 256-byte intemal
buffers for both ingress and egress traffic.

For measuring performance, we strive to create
a realistic testing environment. We test the router
with a 1000 entry routing table whose entries are
chosen at random. The destinations of the input
packet streams are randomly distributed evenly
across output ports. We test performance with
packet streams composed of a single packet size
(64, 128, 256, 512, 1024, 1280, and 1518 bytes)
and the IETF Benchmarking Methodology Work
group mix [11]. We consider the router to be
functional at a certain data rate if it has a steady-
state transmit rate that is within 1% of the receive

rate without dropping any packets. We define
steady state to be a long interval of time at which
data is being constantly received on all ports and
data is always ready to be sent on all ports (i.e. no
output port is starved).

For each input packet stream, we measure the

A 1000
z
w

B 800
re

JS 600
re
O

400

maximum sustainable data rate. We tested two

different implementations of the router, one that
includes a hand-coded optimization and one that
does not. The optimization coordinates access to
the Transmit FIFO shared between ToDevice ele

ments implemented on different microengines
without using shared memory. Our results are
shown in Figure 5.

5.3. Interpretation of Results

As Figure 5 shows, our packet forwarding im
plementation without optimizations achieves the
same performance regardless of packet size. For
this implementation, packet processing is not the
bottleneck. Instead, there is a global variable for
interfacing with the Transmit FIFO shared among
all ToDevice elements that requires a locking
mechanism to access and update. As a result, the
transmit threads spend the majority of their time
attempting to acquire this lock. To alleviate this
contention, we specialized the ToDevice element
with an a priori partitioning of the Transmit FIFO
which obviated Ae need for the global variable to
be shared across all ToDevice elements. This

hand-coded optimization results in a much higher
maximum data rate across all packet sizes. We
believe this illustrates a typical usage of the pro
gramming model. NP-Click will be used to
quickly gain functional correcmess. Performance
bottlenecks in the NP-Click implementation are

•NP-Click w/o

optimizations

• hJP-CIickw/

optimizations

El entirely hand-
coded in IXP-C

64byte I28byte 256bylc 512byte 1024 1280 1518 bnwg
byte byte byte mix

Input packet streams

Figure 5. IPv4 Packet Forwarding Results.

identified, and where needed, hand-coded optimi
zations will be resorted to. In our experience,
these optimizations are easy to implement and
localizedto an elementor a t^ead.

Comparison of our implementation to pub
lished results is difficult because relatively few
are available for the Intel IXP1200. Of those re
sults, little information is given about their ex
perimental setup (e.g. IXP1200 and IX Bus clock
speed, peripher^s used, size ofrouting table, data
rate measurement methodology). These details
can havean enormous impact on the reported per
formance. Hence, for comparison to another im
plementation, we hand-coded the entire applica
tion in IXP-C based on the reference design sup
plied by Intel [12]. Theresults of this implemen
tation are also given in Figure 5. The perform
ance of the NP-Click implementation (with op
timizations) ranges finm 56% to 89% of the hand-
coded IXP-C implementation. NP-Click is able to
perform closer to the IXP-C version for smaller
packet sizes and for the IETF Benchmarking
Methodology Workgroup packet mix, a represen
tative packet mix. We note that the IXP-C im
plementation is only able to achieve line rate
(1600 Mbps) for packet sizes of 1024 bytes and
larger.

We believe our programming model is effec
tive for implementing an application on the
IXP1200 and tryingdifferent functional partitions
across microengines. The modularity and archi
tectural abstraction, however, is responsible for
some performance overhead. Time limitations
prevented us from further analyzing the cause of
our implementation's performance versus the
fully hand-coded IXP-C implementation. We
conjecture the performance shortfall is due to the
hand-coded design's improved arbitration of cer
tain shared resources. For example, a centralized
scheduler may be used to arbitrate access to the
globally shared Transmit FIFO, thus allowing for
more efficient resource sharing between threads.
Given the initial results, we are confident we will
be able to further close the performance gap by
focusing on NP-Click'sprocessing of largerpack
ets.

6. Summary and Conclusions

As application complexity increases, the cur
rent practice of programming network processors
in assembly language or a subset of C will not
scale. Ideally, we would like to program network
processors with a network application model, like
Click. However, the implementation gap between
Click and network processor architectures pre
vents this. In this paper, we define a program
mingmodelthat bridges this gap by coupling the
natural abstraction of Click with an abstraction of
the target architecture that enables efficient im
plementation.

Initial experiments show our programming
model greatly reduces the development time to.
implement a networking application on the Intel
IXP1200 versus current practices. Additional per
formance tuning is also made significantly easier
due to the modularity of the design and the visi
bility into relevant architectural details.

We use this programming model to implement
the data plane of an IPv4 router. Initial results
indicate this approach is quite promising, achiev
ing 89% of the performance of a hand-coded 16
port packet forwarder with the IETF Benchmark
ingMethodology Workgroup packet mix, a realis
tic set of Intemet traffic. Though our approach
currently incurs some performance overhead
when compared to a hand-coded implementation,
we believe we can close this gap in the near fu
ture.

As a result, we believe ourprogramming model
combines application developer productivity with
efficient implementation, which results in a pow
erful paradigm for programming network proces
sors.

7. Future Work

We aim to generalize and improve this work in
a number of ways. The first is to quantify the
trade-offs in productivity and qualityof results for
different programming models. We plan to com
pare our work to other approaches to program
ming network processors, including assembler,
Teja Technologies' Teja NP, and Consystant's
StrataNP. This will give us a relative measure of
effectiveness for a variety of programming para-

digms. A challenge with this project will be
properly quantifying productivity.

The second direction is to implement additional
networking applications with our programming
model. We are currently considering network
address translation (NAT), label edge router/label
switch router for multi-protocol label switching
(MPLS), and a quality of service (QoS) applica
tion.

We also plan to further ease the pain of pro
gramming network processors through automa
tion. We aim to provide the programmer with
additional automation in the programming flow.
Tools could be written to determine thread

boundaries, layout data, synthesize scheduling
schemes, and perform optimizations based on
network topology, similar to optimizations pre
sented in [13].

Lastly, we seek to broaden this work by apply
ing NP-Click to other network processors like the
latest Intel IXP architectures (2400, 28xx) and
Motorola*s DC? C-5. We expect this to be rela
tively easy for the new IXP architectures, as many
of the architectural abstractions can be ported.
However, generalizing to other network processor
families will be more challenging as appropriate
abstractions for the hardware need to be deter

mined.

8. References

[1] N. Shah. Understanding Network Processors.
Master's Thesis^ Dept. of Electrical Engineering
and Computer Science, Univ. of California,
Berkeley. 2001.

[2] N. Shah and K. Keutzer, "Network Proces
sors: Origin of Species," Proceedings of ISCIS
XVII, The Seventeenth International Symposium
on Computer and Information Sciences, 2002.

[3] C. Matsumoto, **Net processors face pro
gramming trade-offs," EE Times, November 5,
2002, available at
http://www.eetimes.eom/story/OEG20020830S00
61.

[4] E. Kohler et al. The Click Modular Router.
ACM Transactions on Computer Systems. 18(3),
pg. 263-297, August 2000.

[5] B. Chen and R. Morris, "Flexible Control of
Parallelism in a Multiprocessor PC Router," Pro
ceedings of the 2001 USENIXAnnual Technical
Conference (USENIX '01), Boston, Massachu
setts, June 2001, pg. 333—^346.

[6] Intel Corp., "Intel IXP1200 Network Proces
sor," Product Datasheet, December 2001.

[7] Intel Corp., "Intel IXP1200 Network Proces
sor Family: Microcode Programmer's Reference
Manual," March 2002.

[8] J. L. Pino, S. Ha, E. A. Lee and J. T. Buck,
"Software Synthesis for DSP Using Ptolemy,"
Journal on VLSISignal Processing, vol. 9, no. 1,
pp. 7-21, January 1995.

[9] F. Baker, "Requirements for IP Version 4
Routers," Requestfor Comments - 1812, Network
Working Group, June 1995.

[10] M. Tsai, C. Kulkami, C. Sauer, N. Shah,
K. Keutzer, "A Benchmarking Methodology for
Network Processors", 1st Network Processor
Workshop, 8th Int. Symposium on High Perform
ance Architectures, 2002.

[11] S. Bradner, J. McQuaid, "A Benchmark
ing Methodology for Network Interconnect De
vices," Request for Comments - 2544, Intemet
Engineering Task Force (IETF), March 1999.

[12] Intel Corp., "IXP1200 Network Processor
Microengine C RFC1812 Layer 3 Forwarding
Example Design," Application Note, September
2001.

[13] E. Kohler, R. Morris, and B. Chen, "Pro
gramming language optimizations for modular
router configurations," Proceedings of the 10th
International Conference on Architectural Sup
portfor Programming Languages and Operating
Systems (ASPLOS-X), San Jose, California, Octo
ber 2002, pages 251-263.

	Copyright notice 2002
	ERL-02-35

