
Using State Modules for Adaptive Query Processing

Vijayshankar Raman
IBM Almaden Research Center
rshankar@almaden.ibm.com

Amol Deshpande Joseph M. Hellerstein
University of California, Berkeley
{amol, jmh}@cs.berkeley.edu

Report No. UCB/CSD-03-1231

February 2003

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Using State Modules for Adaptive Query Processing∗

Vijayshankar Raman
IBM Almaden Research Center
rshankar@almaden.ibm.com

Amol Deshpande Joseph M. Hellerstein
University of California, Berkeley
{amol, jmh}@cs.berkeley.edu

Abstract

We present a query architecture in which join operators are decomposed into their constituent data
structures (State Modules, or SteMs), and data¤ow among these SteMs is managed adaptively by an
Eddy routing operator. Breaking the encapsulation of joins serves two purposes. First, it allows the Eddy
to observe multiple physical operations embedded in a join algorithm, allowing for better calibration
and control of these operations. Second, the SteM on a relation serves as a shared materialization point,
enabling multiple competing access methods to share results, which can be leveraged by multiple com-
peting join algorithms. Our architecture extends prior work signi£cantly, allowing continuously adaptive
decisions for most major aspects of traditional query optimization: choice of access methods and join
algorithms, ordering of operators, and choice of a query spanning tree.

SteMs introduce signi£cant routing ¤exibility to the Eddy, enabling more opportunities for adap-
tation, but also introducing the possibility of incorrect query results. We present constraints on Eddy
routing through SteMs that ensure correctness while preserving a great deal of ¤exibility. We also
demonstrate the bene£ts of our architecture via experiments in the Telegraph data¤ow system. We show
that even a simple routing policy allows signi£cant ¤exibility in adaptation, including novel effects like
the automatic “hybridization” of multiple algorithms for a single join.

1 Introduction

It is often dif£cult to predict values of the parameters that govern database query execution. Cardinality

estimates are highly imprecise [SLMK01, BC02], and competing demands on memory, system load, and

network bandwidth are typically known only at runtime [P+93b, P+93a, ZL97]. In federated and web

database systems, data distributions and rates often cannot be known in advance [ZR02, UF00, VN02].

Even for a single data source, statistical properties vary over time; this is of particular concern in continuous

query systems [M+02, BBD+02]. Interactive query systems introduce another parameter that can vary

during query execution: user preferences [H+99].

Such uncertainties have led to a focus on adaptive execution in many recent query systems, includ-

ing Tukwila, Telegraph, Aurora, Query Scrambling, and STREAM [I+99, Tel, C+02, UFA98, BBD+02].

Perhaps the most adaptive of these approaches is the Eddy operator [AH00] of Telegraph, which executes

queries by routing tuples between query modules such as selections and joins, dynamically reconsidering

the ordering of such modules on a per-tuple basis.

∗This work was supported by the NSF under Grants 0122599 and 0208588, a UC MICRO grant, a Microsoft Fellowship and
gifts from Microsoft, IBM and Intel. Infrastructure for the research was provided by NSF grant EIA-9802069.

1

This paper presents an adaptation mechanism that substantially enhances the power of the Eddy, allow-

ing continuously adaptive decisions for most of the major aspects of traditional query optimization: not only

the ordering of operators, but also the choice of access methods, join algorithms, and the selection of a span-

ning tree in the query graph [IK84, KBZ86]. Our core idea is to re£ne the granularity of query modules, by

breaking up join modules and elevating the data structures typically encapsulated within them into separate

State Modules (SteMs).

The Join is a logical construct in the relational algebra; join algorithms typically involve multiple phys-

ical operations. The motivation behind splitting joins into SteMs is to decouple the physical operations that

are typically encapsulated within join modules. This exposes these physical operations directly to the Eddy,

for performance calibration, £ne-grain routing adaptation, and work sharing.

Informally, a SteM is a half-join. It encapsulates a dictionary data structure over tuples from a table, and

handlesbuild (insert) andprobe(lookup) requests on that dictionary. We show that all select-project-join

queries can be executed by routing tuples carefully between access methods on data sources, SteMs, and

selections. Join algorithms arenot explicitly programmed, but are instead captured in the routing of tuples

between SteMs and the access methods on the data sources.

The breaking of algebraic join encapsulation has two bene£ts. First, the Eddy can now monitor and

control physical operations that are normally hidden within joins. By adapting the tuple routing to SteMs

the Eddy adapts the order of these physical operations, and thereby the join algorithm itself. We will see an

example in Section 4.2 where this allows the Eddy to distinguish between cached and uncached lookups in

a networked index join, resulting in a simple routing policy with better performance than the corresponding

join algorithm from the literature. In fact, by appropriate routing the Eddy can even simulatehybrid join

algorithms that combine elements of different traditional algorithms. For example, we shall see an experi-

ment in Section 4.5 where the Eddy “hybridizes” index and hash join algorithms, gradually converting one

into the other during query execution.

Second, SteMs provide a shared data structure for materializing and probing the data accessed from

a given table, regardless of the number of access methods or join algorithms involving that table. This

sharing is especially useful for access method adaptation. The choice of access methods is dif£cult in

federated systems [Tel, H+97, I+99], because a given table may be provided by multiple data sources, and a

single source may support multiple access methods corresponding to different sets of bind-£elds. An Eddy

can run multiple access methodsconcurrently, and dynamically choose among them based on observed

performance. The use of SteMs helps avoid redundant work during this competition; all access methods on

a table build into the same SteM. Moreover, although an Eddy routing policy can effectively try out multiple

competing join algorithms, all lookups on a table probe the same SteM, taking advantage of the shared

materialization.

The ¤exibility enabled by SteMs comes with a challenge: arbitrary routing from multiple access methods

through SteMs may not correspond to a valid query execution plan. Incorrect routing can lead to duplicate

results, missing results, or in£nite routing loops. Therefore we develop a set of constraints on the routing

that guarantee correct query execution (Section 3), while preserving opportunities for the ¤exible kinds of

adaptation described above.

2

R

SR
Hash Jn

Eddy

SR

S
T

a

T
Indx Jn

(b) Eddy with Join Modules

S
Hash Jn

SR

(a) Static Query Plan

S
T

a

T
Indx Jn

allow dynamic join

and selection ordering

allow competitive
access methods,

join algorithms,

spanning trees

R
T

S

Eddy

T
aSR

(c) Eddy with SteMs

T

Figure 1: A three table join performed in three ways. The Eddy continually routes tuples between modules, which run
as concurrent threads. Indexes are represented by triangles, and shown encapsulated within index join as suggested
in [AH00]. SteMs are shown as sideways triangles (“half-bowties,” to signify that they are half-joins).

1.1 An Example

Consider a join of three tables R, S, and T, with equi-join predicates between R–S and S–T. Suppose there is

a scan access method on each relation, and an index access method on T corresponding to the join attributes

with S. Figure 1 shows three ways of running this query. Figure 1(a) is a traditional, statically chosen query

plan involving a hash join and an index join. Figure 1(b) shows the approach of [AH00] where an Eddy is

used to dynamically adapt the join order by controlling the tuple ¤ow between the joins. Note that both these

approaches make use of only the index access method on T, and a pre-chosen implementation for the RS

and ST joins. Figure 1(c) shows the same query being executed with SteMs. All access methods over data

sources are treated as query modules, and are used simultaneously. Tuples coming into the Eddy from these

access methods are not routed to joins, but instead to SteMs and other access methods. This plan allows the

use of all the access methods, and a variety of routing decisions that correspond to different join algorithms

and join orders. We develop the details of this approach in the body of the paper.

1.2 Background

The setting for this work is Telegraph, an adaptive data¤ow system for querying streams of networked

data [Tel]. An early application of Telegraph was Federated Facts and Figures (FFF), a query system to

combine data from diverse and distributed data sources. These include not only relational databases but

also websites providing services and data backed by databases (the so-called “Deep Web” [RGM01, Lex]).

For example, here is a query over three Web sources – a listing of contributors to election campaigns from

the Federal Election Commission (FEC), a database of demographic information about neighborhoods from

Yahoo (Demographics), and a database of crime ratings by area from APBNews.com (Crime).
SELECT AVG(F.contribution), AVG(D.householdIncome), F.State, C.crimeRating

FROM FEC as F, Demographics as D, Crime as CWHERE F.zip = D.zip and F.zip = C.zip

GROUP BYF.State, C.crimeRating

Among the various factors that we discussed earlier, our interest in adaptive query execution is motivated by

two unpredictable properties in FFF:

Volatility of distributed data sources: Since Web sources are autonomously maintained, their speeds and

availability are hard to estimate at optimization time, and could vary during query execution.

3

Volatility of user interests during online query processing:Since users often specify queries in an itera-

tive, exploratory fashion, FFF uses an online performance metric [H+99, RH02] and gives out partial results

during query execution. As the user sees these partial results, their interests in different parts of the result

may change.

1.3 Outline of the paper

In the rest of the paper, we develop the SteM mechanism, and show how it helps in an environment like FFF.

We begin with a description of the modules in our architecture (Section 2), and then describe how arbitrary

select-project-join queries can be executedcorrectlyusing these modules (Section 3). Next, we present an

experimental study that illustrates the various kinds of adaptations allowed by SteMs, and the performance

bene£ts we get under an online query processing metric (Section 4). We discuss related work in Section 5,

and conclude with a discussion of other implications of SteMs and directions for future work (Section 6).

2 Mechanics of Query Execution with SteMs

In this section, we £rst describe the modules in our architecture, including the State Modules (SteMs), and

discuss how they are instantiated for an arbitrary query. We then illustrate a simple but important example

of these modules in use: ann-ary version of thesymmetric hash joinoperator.

2.1 Eddy, State, Access, and Selection Modules

Our architecture uses four kinds of modules: (1) selection modules that correspond to query predicates,

(2) access modules that correspond to access methods over data sources, (3) State Modules (SteMs) that

encapsulate data structures used in traditional join algorithms, and £nally (4) an Eddy module that routes

tuples between the other modules1. Each module runs asynchronously in a separate thread, though this

asynchrony can also be achieved in a single-threaded implementation [S+01].

We now describe the module functionality in detail. Simpli£ed pseudo-code is given in Table 1. We

start with some de£nitions.

De£nition 1 (Base-table Component, Span)Consider a tuplet that belongs to the join ofk base-tables

T1, T2, . . . , Tk. The projections of{t} on the columns from each of these base-tables form relations with a

single row each. Each of these rows are called thebase-table components, tT1 , tT2 , . . . , tTk
, of t. We denote

t by 〈tT1 , tT2 , . . . , tTk
〉, and say thatt spansthe tablesT1, T2, . . . , Tk.

De£nition 2 (Singleton tuple) A singleton tuple is one that contains a single base-table component.

1As in most discussions of query plans, we do not devote explicit modules to projection, but assume it is done on the ¤y by each

module as aggressively as semantically possible. Group By, Aggregation, and complexSELECT-list expressions are implemented

above the Eddy, before results are output to the user.

4

Module Input tuple Output tuple(s) Action

SM t t or nothing Bounce backt iff it matches predicate

AM t t Asynchronously bounce backt

matches fort Asynchronously return all matches fort

EOT Return EOT after all matches have been returned.

SteM buildt — Build buildt into the SteM.

EOT — Build EOT into the SteM.

buildt or nothing Asynchronously bounce backbuildt if needed for correctness (Section 3).

probet — Find matches forprobet among tuples in SteM.

concatenated resultsConcatenate these matches withprobet and return concatenated results.

probet or nothing Asynchronously bounce backprobet if needed for correctness (Section 3).

Table 1: Functionality of the main query processing modules in our architecture.

2.1.1 Eddy Module

The Eddy’s role is to continuously route tuples among the rest of the modules, according to arouting policy.

When a module other than the Eddy processes a tuplet, it can generate other tuples and send them back

to the Eddy, for further routing. It can also optionally return (orbounce back) t to the Eddy ift requires

additional processing. A tuple is removed from the Eddy’s data¤ow and sent to the output if it spans all base

tables and is veri£ed to pass all predicates. The Eddy terminates the query when there are no tuples in the

data¤ow, and each module has £nished processing all the tuples sent to it.

Each tuple also carries some state with it, called itsTupleState, to track the work it has done in furthering

query progress. The exact structure of TupleState depends on the routing policy. However, as a bare mini-

mum, the TupleState must contain (a) the tables spanned by the tuple, and (b) the predicates that the tuple

has passed (our implementation uses a bitmap, like thedonebits of [AH00]). The former denotes the type

of the tuple, and the latter is used by the Eddy to decide when the tuple is ready for output. In fact, this state

alone suf£ces for all but one special class ofcyclicqueries; we will discuss the exception in Section 3.4.

2.1.2 Selection Modules (SMs)

Selection modules (SMs) are simple. When a selection moduleM receives an input tuplet, it returnst

to the Eddy ift passes the selection predicate, and removes it from the data¤ow otherwise. Ift passes the

predicate,M marks this fact int’s TupleState, so that the Eddy can track the progress made byt.

2.1.3 Access Modules (AMs)

An Access Module (AM) encapsulates asingleaccess method over a data source – it can either be a scan, or

an index on some set of columns. Each access method on a given relation is encapsulated in a separate AM.

A tuple t that is routed to an AM is called aprobe tuple, and corresponds to a request for the AM to

output tuples that “match” the probe tuple – the matches from an AM on tableS are alls ∈ S such that the

concatenation oft ands satis£es all query predicates that are de£ned over the union of the columns spanned

by s andt2. Note that the output schema of an AM is the same as that of the data source. In particular, the

2Some of these predicates will be enforced by the index lookup, the AM applies the others after the lookup.

5

AM does not concatenate the probe tuple to its output tuples. Such concatenation will be performed only by

SteMs.

Scans are also treated as AMs, but only accept a special empty probe tuple we call aseed tuple, and in

return, output all tuples in their data source. At query initialization, each scan AM is initialized by passing

it a seed tuple, which informs it to begin returning the contents of the full scan to the Eddy.

In addition to returning matches, AMs asynchronously bounce back each probe tuplet to the Eddy.

Intuitively the bounce back is required because the probe tuple is needed later, for eventual concatenation

with each of its matches. This is discussed in more detail in Section 3.3.

Asynchronous Indexes and EOTs:As demonstrated in [GW00], the throughput of accesses to Web sources

can be improved signi£cantly by sending multiple asynchronous probes; similar arguments can be made

about asynchronous random disk I/Os. In this spirit, we assume that all AM probes and responses are

asynchronous. This asynchrony complicates issues somewhat, because the system needs to track when all

matches have been returned for a given probe. We use the data¤ow itself to pass this information. When an

AM on a table T has returned all matches to a probe, it sends anEnd-Of-Transmission (EOT) tupleencoding

the probing predicate (in the case of a scan AM, the predicate is simply “true”). In the common case of

index lookups using equality predicates, the EOT tuple is a regular tuple with a specialEOT value in all

the non-bound £elds (e.g.,〈 15 John EOT EOT . . .〉 if the probe tuple binds the £rst two £elds to 15 and

John). For non-equality predicates, the EOT tuple contains pointers to the predicates, which are stored in

a data structure created during query parsing. For scans, the EOT predicate contains the predicate “true”.

The advantage of encoding EOTs as tuples rather than as control messages is that the EOTs can be stored in

SteMs itself, alongside standard tuples, as we will see below.

2.1.4 State Modules (SteMs)

A SteM essentially corresponds to half of a traditional join operator. It stores homogeneous tuples (tuples

spanning the same set of tables) formed during query processing, and supports insert (build), search (probe),

and optionally delete (eviction) operations. In this paper, we only consider SteMs over base tables;i.e., all

tuples in a SteM are singleton tuples from the same table. As such, all joins on a given base table can and

do use the same SteM for builds and probes involving that base table. For this purpose, we allow a SteM to

perform searches on arbitrary predicates.

Two kinds of tuples can be routed to a SteM. When abuild tuplet ∈ T is routed toSteMT , t is added

to the set of tuples inSteMT , and the indexes, if any, are updated accordingly. An EOT tuple from an AM

on T is also routed as a build tuple toSteMT . When aprobe tuplep is routed toSteMT , SteMT returns

concatenated matchesfor it to the Eddy. These concatenated matches are all tuples in{p} 1 SteMT that

satisfy all query predicates that can be evaluated on the columns inp andT .

Note that since the SteM is continually being built, it may not have all the tuples inπT ({p} 1 T). This

is tracked by the presence of EOT tuples. If an EOT tuple inSteMT matches a probep, thenSteMT knows

that it de£nitely contains all matches for a probep. If not, the SteM might have to bounce backp so that it

can be routed to other modules (to £nd the missing matches).3 The logic for when such bounce backs are

3This logic is simpli£ed, and assumes that tuples from an AM arrive at the SteM in order. In fact, in our implementation the

Eddy reorders tuples in the data¤ow to match user interests [RH02]. So the EOT tuple for a probe could be built into a SteM before

6

needed is determined by the routing constraints, and will be developed in Section 3.

In our present implementation, we speed up join predicate lookups through indexes. A SteM on a table

T (calledSteMT) has one main-memory index (hash table or binary tree) on each column ofT that is

involved in a join predicate. These are all secondary indexes having pointers to the same tuples in memory.

We do not focus on disk-resident indexes in this paper because the datasets we have encountered in Web

sources are typically small enough to £t in main memory. We defer discussion of multi-table SteMs and

disk data management within SteMs to Section 6.

2.2 Query Planning

The use of Eddy and SteMs obviates the need for query optimization because there are noa priori decisions

to be made. Unlike in [AH00], there is no need even for a “pre-optimizer” that chooses the join implemen-

tations, access methods, and query spanning tree. The query is instantiated as follows :
1. Check that the query is valid,i.e., it can be executed given the bind-£eld constraints on the data

sources (we use the algorithm from Nail [Mor88]).
2. Create an AM on each access method that can possibly be used in the query.
3. Create a SM on each predicate in the query.
4. Create a SteM on each base table in the query.
5. Create any seed tuples needed for scans (Section 2.1.3).

As described in the earlier section, only one SteM is created per data source. This SteM is shared not

only among the join predicates involving that data source, but also among multiple instances of the source

in theFROM clause, if any exist (e.g.,a self-join).

Though this paper focuses on execution of a single query, a SteM can also be used to share work and

storage across concurrent queries. Related work in Telegraph uses SteMs in this way, in the context of

continuous query processing [M+02, CF02].

2.3 Example: AnN -way Symmetric Hash Join

We now give an example of how these modules can be used to implement ann-way version of the symmetric

hash join (SHJ) [RS86, WA91]. The traditional, binary SHJ is a pipelining join that works by simultaneously

building hash tables on both its inputs. Each input tuple is £rst built into a hash table on that input, and

then immediately probed into a hash table on the other input. Due to its pipelining nature this operator is

well-suited for interactive processing. Though originally designed as a memory-resident algorithm, it has

subsequently been extended by [I+99] and [UF00] to spill to disk in memory-constrained environments.

There are two ways to extend the SHJ to multi-table queries. Consider an equi-joinR 1a S 1b T .

Pipelining Binary Joins: Figure 2(i) shows how multiple binary SHJs can be pipelined to perform an

n-way SHJ. To the best of our knowledge, this is the approach of choice in all current literature (e.g.,

[UF01]).

n-ary SHJ Operator: Figure 2 (ii) shows how all the SHJs can be uni£ed into a single operator that uses

four hash indexes: one onR, one onT , and one on each join column ofS (one of these is a secondary

index). When a newR (T) tuple comes in, it is £rst built into the corresponding hash indexHRa (HTb
),

all the matches for that probe are built. To solve this, we tag the EOT tuple with the number of probe matches, which allows a SteM

to verify if all matches have been built into it.

7

R S
Hash Jn

S T
Hash Jn

T

SR

HRa HSa HSb HTb

N-Ary Hash Jn

SR T

 (i) (ii) (iii)

Eddy

SR T

H
Ra

H
Tb

H
Sa

H
Sb

Figure 2: Three ways of doing a 3-table symmetric hash join (SHJ): (i) with pipelined binary SHJs, (ii) with a 3-ary
SHJ operator, and (iii) with an Eddy and SteMs

and then probed intoHSa (HSb
). The resulting matches, if any, are then used to probe intoHTb

(HRa) and

the result is output. When a newS tuple comes in, it is similarly built intoHSa andHSb
. At this point, we

have a choice, corresponding to different join orders. We can either probe theS tuple intoHRa and probe

HTb
with the resulting matches, or we can probe intoHTb

and then intoHRa .

The initial Eddy paper [AH00] was based on the £rst approach – by connecting a set of pipelining binary

join modules to an external Eddy module, the ordering of the join modules can be decided dynamically. In

contrast, the SteMs mechanism is based on the second approach – it essentially places an Eddywithin the

n-ary SHJ operator, so that the ordering of the hashtable lookups can be decided dynamically. This is the

core effect of SteMs – to give the Eddy access to the data structures typically stored inside join algorithms.

However, the SteM approach is not implemented as part of the SHJ, and therefore becomes more generally

applicable.

Figure 2 (iii) illustrates the translation from the uni£edn-ary SHJ operator to a routing through SteMs.

We use a SteM on each source to encapsulate the hash indexes on that source, and an Eddy to route tuples

between the SteMs. Each tuple is £rst built into a SteM on its source, and then immediately routed to the

other SteMs. The Eddy can dynamically adapt the join ordering by changing the way it routes S tuples after

it is built into SteMS .

In addition to different routing opportunities, then-ary hash join materializes different state than the

traditional binary-SHJ scheme. Note that then-way SHJ description above stores only singleton tuples in

hash tables, whereas the traditional pipeline of binary SHJs materializes intermediate result tuples from joins

below the root (e.g.,tuples inR 1a S). SteMs can in principle support either scheme, or both, via a SteM

to materialize each base-table or intermediate relation desired. This represents a tradeoff of performance

for memory space – less memory is likely to be used if intermediate result tuples are not stored, but more

probes may need to be made since the same intermediate results may need to be recomputed multiple times.

In this paper (as in [M+02, CF02]), we choose not to store intermediate tuples in SteMs. In addition to the

space/time tradeoffs, a secondary advantage of not materializing intermediate results is that tuple eviction

is simpli£ed. Each base-table component is stored in a single SteM, and so it can be easily evicted by the

SteM if needed. Although not the focus of this paper, sliding-window queries and queries over unbounded

data streams require tuple eviction, and [M+02, CF02] both use SteMs with eviction. We are currently

investigating a hybrid approach that partially materializes intermediate results to the extent of available

8

memory (Section 6).

Then-ary SHJ can be used for any select-project-join query where all sources have scan access methods.

In the next section, we generalize this simple operator to use other join algorithms as well as index access

methods, and show how the Eddy can dynamically adapt the join algorithms, access method choices, and

spanning tree choices.

3 Executing Arbitrary Select-Project-Join Queries with SteMs

Super£cially, query execution with SteMs is simple. We only need to instantiate the AMs, SteMs, and SMs,

as in Section 2.2, and let the Eddy route tuples through these operators. The problem is that arbitrary routing

policies need not lead to correct results or terminating queries. Since we want the Eddy to adapt the routing

dynamically, we now developconstraintson the routing policy that will ensure correctness.

Then-ary SHJ operator corresponds to one correct routing policy. We start by identifying the routing

constraints that are implicit in this operator, and gradually generalize these constraints to a larger space of

queries. Our presentation is intended to be intuitive and informal; proofs of correctness are in Appendix A.

3.1 Acyclic SPJ queries with a Single Scan AM on each Table

Then-ary SJH is captured by two rules. The £rst is that the SteMs be implemented with hash indexes. The

second is that the Eddy must obey the following routing constraints:

BuildFirst: A singleton tuple from a table T must £rst be routed to build intoSteMT .

SteM BounceBack: A SteM must always bounce back build tuples (so that they can probe the other SteMs

for matches), and never bounce back probe tuples.

Atomicity: The building of a singleton tuple into a SteM must be atomically coupled to the probing of that

tuple into the other SteMs.

BoundedRepetition: No tuple must be routed to the same module more than once.

The £rst three constraints capture the essence of then-ary SHJ, and BoundedRepetition ensures query

termination. Two relaxations of these constraints allow the Eddy to adapt over a much wider space of join

algorithms.

Constraint Relaxation to allow other Join Algorithms

Our £rst relaxation removes the constraint that the SteMs must be implemented with hash indexes. For

example, the SteM may use a linked list when it holds a small number of tuples, and switch to a hash-based

implementation when the list size increases. This switch can be made independent of the other modules.

Our next relaxation is to remove the Atomicity constraint, anddecouplethe build and probe operations

of each tuple. This allows the Eddy to interleave probes and builds of tuples in arbitrary ways, and thereby

change join algorithms (in Section 3.5, we will relax this further by allowing the build to be completely

avoided). Unfortunately, this build-probe decoupling can cause duplicate query results. For example, Fig-

ure 3 shows four steps in a SHJ. If〈 r1, s1 〉 satis£es the join predicate,〈r1, s1〉 is output at both step 3 and

9

Eddy

2.
 b

ld
 s

1

1.
 b

ld
 r

1
R S

R S

4. probe
r1

3. probe s1

Figure 3: Duplicates arise because of decoupling build
and probe ofr1

SR

Eddy

R

R
 b

ui
ld

S
pr

ob
e

RS m
atches

S
 b

u
i l

d

R
 p

ro
be

R
S

m
at

ch
es

Sy

R S
m

at
ch

es

Sx

R

S
 m

at
ch

e
s

Figure 4: R 1 S query with index AMs on S

step 4 because the builds and probes ofr1 ands1 tuples are interleaved. To avoid such duplicates, we add a

TimeStamp constraint [Ram01], to form the following set of constraints:

BuildFirst: A singleton tuple from a table T must £rst be routed to build into a SteM on T.

SteM BounceBack: SteMs must always bounce back build tuples, and never bounce back probe tuples.

BoundedRepetition: No tuple must be routed to the same module more than once.

TimeStamp:

- Each singleton tuplet is assigned a globalTimestampTS(t) (wall-clock time) when it builds into a

SteM. Before building,TS(t) is de£ned to be∞. For other tuplesTS(〈t1, . . . , tn〉) is de£ned to be

max(TS(t1), . . . , TS(tn)) i.e., the timestamp of its last base-table component.

- When a tupler probes into a SteM and £nds a matchs, the result〈r, s〉 is returned to the Eddy iff

TS(r) > TS(s).
The TimeStamp constraint says that only the last arriving base-table component of a result tuple will

generate that tuple, by probing into other SteMs to join with previously-arrived components.

Simulating and Hybridizing Non-Pipelined Join Algorithms

These relaxed constraints allow the Eddy to simulate several join algorithms besides the SHJ. Consider a

two table join of R and S. The following policy can simulate many non-pipelining join algorithms:

1. Route all R tuples to build intoSteMR

2. Route all S tuples to build intoSteMS

3. Route all S tuples to probe intoSteMR

4. Route all R tuples to probe intoSteMS

The SteM implementation decides exactly which join algorithm will be simulated.E.g., the following

“asynchronous” hash index implementation simulates aGrace Hash Join[FKT86]. While build tuples are

routed toSteMR andSteMS , the SteMs create hash partitions on disk. But instead of bouncing back these

build tuples immediately, they do so asynchronously,clustered by the hash partition. Therefore in Step

3, when the bounced-backS tuples probeSteMR, SteMR gets very good I/O locality. Because of the

TimeStamp constraint, Step 4 does not produce any results. It can be completely avoided by maintaining in

each SteM the minimum timestamp of all tuples the SteM contains – the Eddy need only route to a SteM

10

probe tuples with timestamp greater than this minimum timestamp.

It is unusual to describe Grace Hash Join in terms of a routing policy. But the advantage is that the Eddy

can now dynamicallyhybridize between SHJ and Grace Hash Join, by changing its routing as follows.

Rather than do all of Steps 1 and 2 before Steps 3 and 4, the Eddy can dynamically decide to interleave

them. Speci£cally, when a tupler is bounced back after building intoSteMR, the Eddy may choose to

immediately prober into SteMS . This choice is based on the level of interactivity desired by the user. For

instance, the Eddy can start with frequent probes to give interactive responses early on, and later degenerate

to occasional probes in order to reduce completion time (when probes are infrequent more probes for the

same partition are clustered together, so I/O cost is lesser). The frequent probe phase simulates an SHJ, and

the occasional probe phase is similar to Grace.

An exactly analogous implementation of SteMs with tournament trees that spill sorted runs to disk will

simulate a Sort-Merge join [Knu73]. The Hybrid-Hash Join [D+84] is simulated if the SteMs maintain a

full in-memory hash table on some of the partitions and bounce back build tuples for these partitions ahead

of others. The Eddy can then route S tuples from these in-memory partitions to probe intoSteMR even

before all S tuples have been built.

Note that one part of the join logic – choosing whether the indexes are hash indexes or tournament trees

– is captured in the SteMs implementation. It is up to the SteM implementation to internally adapt this if

needed. But the remaining part, i.e., the interleaving of builds and probes, is captured in the routing policy,

and can be dynamically adapted by the Eddy.

3.2 Competitive AMs

We now expand our class of queries to include those over tables with more than one AM. Such alternate

AMs are very common for Web sources in Telegraph FFF. Different websites often provide the same data,

and a single website may support multiple AMs corresponding to different sets of £elds that can be chosen

as the lookup key. We address tables with multiple scan AMs in this section, and discuss index AMs in the

next section.

Traditional database systems typically pick one AM per data source at optimization time. We want to be

able to run multiple AMs on a single source in competition with one another, and let the Eddy dynamically

choose one AM, or switch between AMs. For example, if a particular AM stalls because the underlying

source is delayed, the Eddy should be able to use the alternate AMs. In our architecture, this is quite

straightforward to do since all the access methods are exposed to the Eddy. The main problem turns out

to be duplicates; the same tuple can be generated by different AMs. However because of the BuildFirst

constraint, such duplicates can be easily removed when they build into the SteM on the source itself. We

only need a simple enhancement to the SteM BounceBack constraint:

SteM BounceBack: A SteMS must bounce back a build tuples unless it is a duplicate of anothers′ that is

already inSteMS .

Aside on duplicate semantics:Many rules can be applied to deal with duplicates, including set and bag

semantics (e.g.,see [Alb91]). When identical tuples can be identi£ed through their value in a key column

(that may be projected out in the result), the projection can be postponed till result output so that the SteM

11

can preserve the exact number of duplicates in the source [P+92]. This issue is further complicated when

the AMs involve different, possibly inconsistent, Web sources. We currently adopt a set semantics, where a

SteM removes any build tuple that is identical to another tuple already present in the SteM.

3.3 Index AMs

When a data source has an index AM, we encounter another problem. Figure 4 shows the execution of a sim-

ple two-table join query in this class. Recall that our indexes are allowed to return matches asynchronously.

A tuple r from R is £rst built inSteMR, and then probed intoSteMS to see if matches forr have been

already cached there. But unlessall matches are already cached,r must be bounced-back bySteMS , so that

it can probe into one of the AMs on S. The difference from the previous section is that there is no scan AM

on S, sor must probe into an index AM to seed the generation of its matches.

Subsequently, the index AMs on S will return matches forr, says1 ands2. These matches will be £rst

built into SteMS and then probed intoSteMR. It is only during this probe thats1 ands2 will join with r

(and possibly with otherR tuples as well). ThusSteMR’s role is as arendezvous buffer[GW00] to hold

pending probe tuples until matches arrive.

Sinces1 ands2 are built intoSteMS , subsequentR tuples with the same bind column values asr will

£nd index matches inSteMS itself. SoSteMS will not bounce back theseR tuples (SteMS veri£es that it

hasall relevant matches by checking its EOT tuples). ThusSteMS ’s role is that of a cache on index lookups

into S. In fact, when there are multiple AMs on a source, they all cooperate in building the same cache, and

the work of probing alternate AMs is not wasted. We will see experimentally in Section 4.3 that this reduces

the cost of competition.

When a data source has both scan and index AMs, the tuple routing determines whether an index join is

performed or a hash join is performed. We will see an experiment in Section 4.5 where the Eddy dynamically

adapts its routing to switch between the two during query execution.

To summarize, the enhanced SteM BounceBack constraint is as follows:

SteM BounceBack:

• A SteMS must bounce back a build tuples unless it is a duplicate of anothers′ that was previously in

SteMS .

• A SteMS must bounce back a probe tupler unless S has a scan AM, orSteMS already contains all

matches forr.

As mentioned in Section 2.1.4,SteMS uses the presence of EOT tuples from probes into AMs on S to verify

whetherSteMS already contains all matches for a given probe tuple.

3.4 Cyclic Queries

Cyclicity in the query join graph complicates matters still further. Traditionally, the plan chosen by the

query optimizer contains join modules only over a spanning tree of the query join graph. This spanning tree

is determined before query execution, even for prior adaptive query processing schemes like the initial Eddy

paper [AH00]. Static spanning tree choices hurt in two ways:

12

• The spanning tree choice is typically made based on selectivities, which are hard to estimate for queries

over Web sources. So the resulting execution strategy can be arbitrarily sub-optimal.

• A static spanning tree choice can also constrain the generation of partial query results. Consider a three

way join ofR, S, T where there are join predicates between each pair of tables. If we chooseR 1 S 1 T

as the spanning tree and sourceS stalls during query execution, the entire query blocks. If the spanning

tree could be changed dynamically,RT tuples could be generated. These partial results with missing

values forS columns could be very valuable in interactive querying environments [RH02].

The problem with not £xing a spanning tree a priori is that duplicates can arise even after timestamping.

Consider the following sequence of events in the above 3-way join query: (1) a tuplet probes intoSteMS

to £nd a match〈s, t〉, (2) 〈s, t〉 probes intoSteMR to £nd a match〈r, s, t〉, (3) SteMS bounces backt as

per the SteM BounceBack constraint, (4)t probes intoSteMR to produce〈r, t〉 which probes intoSteMS

to produce〈r, s, t〉 again.4

To avoid such duplicates, we must ensure that previously bounced-back tuples (liket) cannot probe other

SteMs.

ProbeCompletion Constraint: A tuple t that has been bounced back after probing into aSteMS must not

probe into any other SteM afterwards. The routing policy must however maintaint in the data¤ow, routing

it to other modules, until it has been probed into an AM on S.

De£nition 3 (Prior Probers, Probe Completion Tables)Tuples liket that have been bounced back after

probing into SteMs are calledprior probers. The corresponding tableS is called theprobe completion table

of t, and the AMs on S are called theprobe completion AMsof t. The identity of the probe completion table

is marked in the TupleState oft.

3.5 Relaxing the BuildFirst Constraint

The constraints developed so far guarantee that all select-project-join queries will be executed correctly.

But one of these constraints, the BuildFirst constraint, is particularly restrictive and could result in highly

inef£cient execution in situations where one of the input tables is much larger than the others. Suppose that

theR table was much larger than bothS andT tables in the example of Figure 2(iii). In that case, it might

be better to build SteMs on theS andT tuples and probe theR tuples directly into these two SteMs, without

building intoSteMR. This is equivalent to building temporary index on only one side of the join.

We can enable such optimizations by allowing the Eddy tonot build a SteM on a tableR as long as

there is only one access method onR and that access method isscan. If there multiple access methods on

R or if there is an index AM onR, theSteM is required to avoid duplicate results.

Now if an R tuple is bounced back from aSteMS , it means that allS matches for thisR tuple could

not be found at that time. So thisR tuple needs to routed back toSteMS to £nd the remaining matches.

So we relax the BoundedRepetition constraint to allow the Eddy to route a given tuple repeatedly to the

same module. To ensure that these repeated probes do not produce duplicates, we assign everyR tu-

ple a LastMatchTimeStamp. This is initially set to 0. Every time theR tuple is routed toSteMS , the

4Note that this only happens if there is no scan AM onS, because otherwiseSteMS does not bounce back thet tuples sent to

it (Section 3.3).

13

Constraints to be enforced by Routing Policy Implementor

BoundedRepetition- No tuple can be routed to a given module more than a £nite number of times.

BuildFirst - A singleton tuple from a table T must £rst be built intoSteMT iff

T has multiple AMsor, T has an index AM

ProbeCompletion - A prior probert must not be routed to any SteM other than that on its probe completion table.

- The Eddy can remove a prior probert from the data¤ow only aftert has been probed into one oft’s

probe completion AMs.

Constraints enforced within SteM and AM implementation

SteM BounceBack- A SteMS must bounce back a build tuples unless it is a duplicate of another tuples′ that is already

in SteMS .

- A SteMS must bounce back a probe tupler unless

SteMS already contains all matches forr, or

S has a scan AM, and all base-tuple components ofr have been cached in other SteMs

TimeStamp - When a tupler probes into a SteM and £nds a matchs, the result〈r, s〉 is returned to the Eddy iff

TS(r) > TS(s) > LastMatchTS(r).

Table 2: Routing constraints that ensure correct query execution

LastMatchT imeStamp is updated to the maximum of the timestamps of all tuples inSteMS .

The constraints we have developed so far are summarized in Table 2. Notice that the SteM BounceBack

and Timestamp rules are implemented internally to the AMs and SteMs, and the routing policy implementor

need not be aware of them at all. The following correctness theorems are proved in Appendix A.

Theorem 1 (Duplicate Avoidance) If the Eddy follows a routing policy that satis£es the constraints of

Table 2, there will not arise duplicate versions of any tuple in the data¤ow, other than singleton tuples that

have not yet been built into SteMs.

Theorem 2 (Correctness)If the Eddy follows a routing policy that satis£es the constraints of Table 2, it

will not output any tuple that is not in the query result, and will output all query result tuples in a £nite

number of routing steps.

4 Experimental Results

We now illustrate the kinds of adaptation that SteMs enable, through an experimental study. Our focus

is on the online metric of maximizing the rate at which result tuples are generated, though some of the

experiments also demonstrate the effectiveness of our system for the traditional metric of completion time.

All our experiments are based on an implementation of SteMs in Telegraph [Tel], and were run on a lightly

loaded machine with dual 666MHz Pentium-III processors and 768MB RAM, running Redhat Linux 6.0.

The salient points of our experimental study are as follows :

• Even a simple join algorithm like the index join encapsulates multiple physical operations, and this causes

ahead-of-line blockingproblem. This problem can be avoided by breaking the join module into SteMs.

14

• SteMs allow the Eddy to ef£ciently learn between competitive access methods, while doing almost no

redundant work.

• SteMs allow the Eddy to dynamically choose the join spanning tree for cyclic queries.

• SteMs allow the Eddy to dynamically switch between an index join algorithm and a symmetric hash join

algorithm during query execution.

• With SteMs, the Eddy can adaptively choose the way it reorders tuples in interactive environments.

We use synthetic data sources for our experiments so that the source properties can be easily controlled.

The data sources that we use are as shown in Table 3.

4.1 Eddy routing policy

Our implementation uses a routing policy designed to maximize the value of the partial results output to

the user [RH02]. The details of this policy are not needed to understand the advantages of SteMs in our

experiments. We brie¤y summarize it here for completeness.

When a tuplet with a TupleStateT is routed to a moduleM , the bene£tB(t, M) is the value of the

partial result that will be output byM . This bene£t depends on the expected number of matches thatM will

return and the user’s preferences for the matches.5 M also takes an expected timeC(t, M) to processt. To

maximize the value to the user over time, the Eddy continually routes so as to maximizeB(t, M)/C(t, M).
Clearly it is not feasible to do this optimization across all tuples. As discussed in [RH02], though, this ratio

depends largely onM and the tuplestateT of t. So we only optimize at this granularity.

To this policy we add the constraints of Section 3, specialized as follows:

BuildFirst: Singleton tuples are always £rst built into their corresponding SteMs, regardless of whether

they come from sources with multiple AMs. This simpli£es our implementation, and is inexpensive be-

cause Web sources typically have data sizes much smaller than memory sizes.

SteM BounceBack: In addition to the bounce back circumstances of Table 2, we set SteMs on tables with

index AMs to also bounce back any probe tuple that satis£es a predicate prioritized by the user. Notice

that in the case where aSteMS has both an index AM and a scan AM, this bounce back is redundant. But,

if the prioritized probes are bounced back, they can subsequently probe intoAMS . This speeds up the

entry of matches for these tuples into the data¤ow and thereby the output of prioritized results to the user.

4.2 Index join improvement through SteMs

We start with an experiment that shows the effect of decoupling physical operations within a join. We

consider an Index join.

Consider the £rst query Q1 of Figure 5 that joins tablesR andS. The join is an equi-join between S.x, a

key column ofS, and R.a. TableR has a total of 1000 tuples, with 250 distinct values of R.a. In a traditional

query processor, this query will be executed using an index join module as shown in the Figure 6. In contrast,

5Unless the tuple returned by the module contains the key columns of the result, it cannot be output as a partial result at all.

However, such tuples are still given a value because they can subsequently generate partial results by joining with other tuples. For

details please see [RH02].

15

SourceSchema Description
R {key: integer, a: integer} R is a table with 1000 tuples, and has a scan access method.keyis its primary

key, anda is a £eld with 250 distinct values, randomly assigned.
S {x: integer, y:integer} S has two keys,x andy, and has asynchronous index access methods on both of

them. All S tuples have identical values ofx andy.
T {x: integer, y:integer} T hasx as its primary key, and has an asynchronous index access method onx.

All T tuples have identical values ofx andy.
U {x: integer, y:integer} U hasx as its primary key, and has an asynchronous index access method onx.

The set of tuples inU is the same as the set of tuples in T.
W {key:integer} W has an asynchronous index access method on its primary keykey, and a scan

access method.

Table 3: Data sources used in our experiments. Index lookups are implemented as sleeps of identical duration.

Q1 SELECT* FROM R, S
WHERER.a =S.x

Q2 SELECT* FROM R, S
WHERER.a =S.x andR.a =S.y

Q3 SELECT* FROM R, T , U
WHERER.a =T .x andR.a =U .x

andT .y = U .x
Q4 SELECT* FROM R, W

WHERER.key =W .key
Q5 SELECTAVG(R.a) FROM R, W

WHERER.key =W .key
GROUP BYW .key%20

Figure 5: Queries used in our experiments
(% is the modulus sign)

Eddy

SR

Index Jn

S
cache

R

Figure 6: Executing query Q1
of Figure 5 with join modules

Eddy

R S

R
 b

u
il

d

S p
ro

be

RS m
atches

S
 b

u
i l

d

R p
ro

be

RS
 m

at
ch

es

R

S
 m

at
ch

es

SR

Figure 7: Executing query Q1
of Figure 5 with SteMs

our system will use a SteM onR andS, a scan AM onR, and an index AM onS (Figure 7).SteMR holds

the pendingR probe tuples whileAMS processes the probes, andSteMS caches probe results.

Figure 8(i) plots the number of RS results output over time in the two schemes. The curve for the plan

using the index join is parabolic, as expected. The cost of probing into the index join decreases continually

over time as the cache size, and hence the probability of cache hits increases. In contrast, the plan using the

SteMs takes about the same time overall, but is almost linear in shape. It rises comparatively faster in the

initial stages of the processing and as such, does better on our online processing metric.

To understand this behavior, we plot the number of probes into the remote source,S, for the two ap-

proaches (Figure 8(ii)). Notice that this curve is almost identical with and without SteMs. Thus the lookup

caches onS build up at the same rate in both cases. The difference is that with SteMs, the probes into the

caches happen much more quickly.

In the £rst approach (without SteMs), every tuple coming out of the scan onR does not immediately

probe into the index join onS. Since all queues between the Eddy and the modules are £nite in size, these

probes can only happen at the speed of the index join, which in turn is bottlenecked by the speed at which the

S index can handleR probes. This is unfortunate, because many of theR tuples may not need to probe into

theS index at all – they may £nd matches in theS cache itself. With SteMs, this“head-of-line blocking”

does not happen, because probes into the cache and the index have separate queues.

16

0 100 200 300 400

Time (seconds)

0

50

100

150

200

250

N
um

be
r

of
 in

de
x

pr
ob

es
 m

ad
e

(i)

Index Join
SteM

0 100 200 300 400

Time (seconds)

0

200

400

600

800

1000

N
um

be
r

of
 r

es
ul

t t
up

le
s

(ii)

Index Join
SteM

0 100 200 300

Time (seconds)

0

200

400

600

800

1000

N
um

be
r

of
 r

es
ul

ts
 o

ut
pu

t

(iii)

Stem
index join
index join, shared cache

Figure 8: Number of (i) tuples output over time, (ii) probes into theS index, by the SteMs and Index Join approaches
for query Q1; (iii) Performance of query Q2 with SteMs, with index joins, and with modi£ed index joins that share
caches between joins on the same source

Eddy

R

SR
Indx Jn Sy

SR
Indx Jn Sx

Figure 9: Executing query Q2 with traditional join modules

Eddy

R

R
 b

u
il

d

S
pr

ob
e

RS m
atches

S
 b

u
i l

d

R p
ro

be

RS
m

at
ch

es

Sy

R

S m
atc

he
s

Sx

R

S
 m

at
ch

es

R S

Figure 10: Executing query Q2 with SteMs

This experiment illustrates our point that even simple join operators encapsulate multiple physical oper-

ations. In this example, the index join comprises two operations, cache lookup and index lookup, that have

different performance characteristics. These performance characteristics could also vary with time;e.g.,

cache lookups may become expensive if the cache runs out of memory and starts paging to disk. Therefore

it is important to avoid encapsulating such operations within the join modules.

4.3 Learning Between Competitive Access Methods – Avoiding Cache Fragmentation

Our second experiment looks at sources with alternate access methods. Our aim with this experiment is to

demonstrate how SteMs can effectively reuse the work that was done while learning between the competing

access methods. The query that we use for this experiment, Q2, is obtained by adding an equality predicate

between R.a and S.y to Q1. This does not alter the query result in any way, since S.x and S.y values are

identical for allS tuples. But as a result of adding this predicate, Q2 can now use either of the two index

access methods onS, on S.x or on S.y.

As before, we consider two ways of executing this query, one using two index join modules (Fig-

ure 9) and one using SteMs(Figure 10). The index join approach is akin to the approach taken in Oracle

RDB [AZ96].

In both the approaches, we let the Eddy use £rst 200R tuples to learn which of the two index methods

17

is better. This is done by routing these tuples randomly to the two index joins with equal probability. After

this learning phase, the Eddy chooses one of the index joins and executes the rest of the query using it. Since

we are mainly concerned in this experiment with the state-management overhead of learning, and not how

the Eddy learns which of the two index joins is better, we set the probe costs for both the indexes to be equal

and constant throughout the execution of the query.

Figure 8(iii) shows the number of RS tuples generated over time. Consider the two curves corresponding

to the SteMs approach and the index join approach. Both curves have two phases. The curve for the plan

using index joins rises rapidly until about 90 seconds, after which it rises more slowly. This is the point

where the Eddy stops routing to the index join on S.x. The same effect is seen on the SteMs curve also,

except that the SteM has output many more tuples at the time of the phase shift.

The SteMs curve is better than the index join curve for two reasons. First, as in the previous experiment,

the SteMs approach bene£ts from having separate queues into the cache and the remote indexes. But note

that unlike in the last experiment the SteMs curve even completes faster than the index join curve. This

happens because the SteMs approach uni£es the two caches in the two alternative index joins (on S.x and

S.y) that are fragmented in the alternative approach. Essentially, after the Eddy stops sending probes to the

S.x index join, all the tuples cached in that index join are unusable. In contrast when SteMs are used all

probes intoS indexes are stored in a single, uni£ed cache, resulting in a higher proportion of cache hits.

To isolate the effect of this cache fragmentation we arti£cially set the two index joins onS to share their

caches, and rerun the query. The third curve in Figure 8(iii) (“index joins, shared cache”) shows that this

approach has the same overall completion time as the SteMs approach, though the effect of “head-of-line”

blocking can still be seen.

4.4 Spanning tree selection

We next consider a cyclic query Q3. It involves 3 tablesR, T , U with equality predicates between all

three pairs of them. The traditional way to execute this query is to select a spanning tree of its join graph

and create join modules along its edges, and enforce the predicate for the remaining edge with a selection

module. When SteMs are used, there is no need to choose a spanning tree up front.

To see the advantage of this ¤exibility, we consider a situation where sourceT experiences a 100 second

delay after the query has been run for 100 seconds. We compare two approaches: one where the Eddy

creates join modules on the RT and TU join predicates, and one where the Eddy creates SteMs onR, S,

and T. Figure 11 shows the number of partial and full result tuples generated over time with these two

approaches. The generation of full result tuples is affected during the delay in both cases. But without

SteMs, even partial result generation is severely affected since the RU join was de-selected during query

optimization. Whereas with SteMs, the Eddy is able to generate RU join results during the delay.

In this experiment, the advantage provided by SteMs is directly re¤ected in the generation of partial

result tuples (RU tuples). The other experiments of this section mainly demonstrate advantages for full

result tuple generation. But these advantages apply equally well to partial result tuple generation as well.

For instance, the index join improvement we saw in query Q1 (Section 4.2) arises in the current experiment

18

0 100 200 300 400 500

Time (seconds)

0

200

400

600

800

1000

N
u
m
b
e
r

o
f

r
e
s
u
l
t
s

o
u
t
p
u
t

(i)

RTU
RU
RT

0 100 200 300 400 500

Time (seconds)

0

200

400

600

800

1000

N
u
m
b
e
r

o
f

r
e
s
u
l
t
s

o
u
t
p
u
t

(ii)

RTU

Figure 11: Number of full and par-
tial result tuples output over time for
query Q3: (i) with SteMs, and (ii)
with traditional join operators

0 50 100 150 200

Time (seconds)

0

200

400

600

800

1000

N
u
m
b
e
r

o
f

r
e
s
u
l
t
s

o
u
t
p
u
t

(ii)

hybrid
index join
hash join

0 10 20 30

Time (seconds)

0

50

100

150

200

N
u
m
b
e
r

o
f

r
e
s
u
l
t
s

o
u
t
p
u
t

(i)

hybrid
index join
hash join

Figure 12: Number of tuples output
for Q4 using index join, hash join, and
the hybrid approach during: (i) £rst 30
seconds, and (ii) £rst 200 seconds

0 20 40 60 80 100

Time (seconds)

0

200

400

600

800

N
u
m
.

r
e
s
u
l
t
s

i
n

u
n
p
r
i
o
r
i
t
i
z
e
d

g
r
o
u
p
s

(ii)

via scan of W
via index on W

0 20 40 60 80 100

Time (seconds)

0

20

40

60

N
u
m
.

r
e
s
u
l
t
s

i
n

p
r
i
o
r
i
t
i
z
e
d

g
r
o
u
p

(i)

via scan of W
via index on W

Figure 13: Number of (i) prioritized
and (ii) unprioritized results gener-
ated by the Eddy for Q5, in the two
ways

as well, for the partial RT result tuples – notice the sublinearity of the RTU curve of Figure 11(ii) compared

to that of Figure 11(i).

4.5 Index/Hash join hybridization based on costs

Our next experiments studies the ability of our system to choose and hybridize among alternative join algo-

rithms based on their costs.

We use query Q4, which joinsR with a tableW that has both an index and scan access method. To

ensure that our results are not affected by cache effects, we use an equijoin between the key columns ofR

andW . This means that there are two natural ways of joiningR andW : using the scans onR andW in a

symmetric hash join, and using the scan onR and the index onW in an index join. A third way is for the

Eddy to use both access methods onW , with SteMs onR andW , and choose a hybrid join algorithm.

Figure 12 (i) plots the number of result tuples generated over time in all these three approaches, during

the £rst few seconds of the query execution. We see that the index join initially outperforms the hash join.

This happens because theW index outputs the exact matchingW tuple for eachR probe tuple, whereas

theW scan outputs allW tuples in an arbitrary order – only some of theR probes will £nd matches in the

tuples scanned fromW . The symmetric hash join however catches up with the index join quickly, as the

R andW hash tables are £lled. Figure 12 (ii) plots the same graph over the entire query execution period.

19

In this overall analysis, the hash join beats the index join handily because the scan onW is a faster access

method than the index onW 6.

As we can see, the approach using SteMs performs well in both these plots. In the early stages, it

performs much like the index join. Most of theR tuples are routed to theW index because the fanout of

probes intoSteMW is very low. But as theW tuples scan intoSteMW , most of theR tuples £nd matches in

SteMW itself. The overall completion time of the hybrid approach is slightly more than that of the hash join,

because the Eddy keeps sending a small fraction of theR tuples to probe into theW index throughout the

processing (this is an artifact of the Eddy routing policy that we use which continues to explore alternative

approaches for executing the query).

4.6 Index/Hash join hybridization based on user preferences

In our £nal experiment, we investigate join algorithm hybridization when the user has given preferences for

different kinds of tuples. We will demonstrate the advantages of SteMs in interactive processing environ-

ments where the user gives preferences for various rows in the result, while the query is running (as in the

Control project [H+99, RRH00]).

We modify query Q4 to form Q5 by adding aGROUP BYclause onW .key%20 (% is the sign for modulus

in Telegraph). We model a scenario where the user has prioritized tuples in the group withW .key%20=0

alone.

Figure 13 (i) plots the number of results generated over time in the prioritized group using the hybrid

approach from the previous section. Notice that very few of these prioritized results are generated byW

tuples coming out of scans, because the prioritized tuples occur infrequently (5% of the tuples from the base

tables are prioritized). Most of these results are generated by prioritizedR tuples probing into the index on

W . On the other hand, the scan onW contributes most of theunprioritizedoutput tuples as can be seen

in Figure 13 (ii). The number of unprioritized results generated in either way is low until all the prioritized

results have been generated, because the Eddy prioritizes the routing of prioritized tuples.

This differential behavior arises for the following reason. The Eddy can only occasionally send tuples to

probe into theW index because the throughput of these probes is low. Whenever it can send a probe to the

W index, the Eddy always prefers to send prioritized tuples because the resulting matches will have higher

bene£t to the user7. In contrast, probes into theW SteM have high throughput and so the Eddy can send

probe tuples to this SteM frequently. Prioritized tuples are much rarer than unprioritized ones, so most of

the tuples probing into the SteMs are unprioritized tuples.

Thus the Eddy has combined the hash join and index join algorithms according to user interests. Using

the index to getW tuples withW .key divisible by 20 is like using the Index Stride reordering algorithm

of [HHW97] to prioritize them. Whereas, using the scan onW to get the otherW tuples is like using the

Juggle reordering algorithm [RRH00]. In effect, the Eddy decides which reordering algorithm is appropriate

based on the user preferences. Neither the Juggle nor the Index Stride algorithm alone is effective for this

6Both the hash join curve and the hybrid curve are quadratic until about 59 seconds because theR andW tuples are both being

scanned in. At this point the scan fromR stops, so the curves becomes linear, with a reduced slope.
7Note: BothR tuples andW tuples withR.key (orW .key) divisible by 20 are prioritized even though the group by is only on

R.key, because the Eddy automatically uses transitivity among the query’s equality predicates to infer tuple priorities.

20

query. When Index Stride is used, the overall performance is poor, and when Juggle is used theW tuples

with W .key divisible by 20 are not prioritized well. A hybridization of Juggle and Index Stride is the best

approach, and arises naturally when SteMs are used.

5 Related Work

There has long been interest in adapting query optimization decisions on the ¤y. Due to space constraints,

we only discuss the most relevant work here – for detailed surveys, see [H+00] or [Ram01].

There has been much work on adapting join and selection ordering. In early work, the Ingres query

processor [SWK76] did not use a query optimizer at all, but instead used a heuristic approach where each

tuple could be routed through a collection of index (or nested-loops) joins in a different order. Graefe and

Cole [GC94, I+92] study ways of optimizing queries in a parametrized fashion, so that the actual execution

plan can be chosen just before execution. Other recent work allows the operator ordering to be changed

even after a query has commenced execution. Kabra and DeWitt [K+98] reoptimize a running query at

every block in the query plan. Tukwila [I+99] uses a similar approach, and has a rule-based language for

specifying when reoptimization should occur. Query Scrambling [UFA98] reoptimizes queries running over

a WAN whenever there is a delay in accessing a source.

There have also been attempts to develop join algorithms that can internally adapt to some changing

properties. The Ripple Join [HH99] adapts to changing statistical properties of the data, to optimize for user

feedback in online aggregation. The XJoin [UF00] is a variant of the symmetric hash join that dynamically

changes its execution strategy to work with previously scanned tuples whenever there is a delay in one of

its inputs. There has also been some work on making hash join and sort operators adaptive to memory

¤uctuations [P+93b, P+93a, ZL97]. The DEC (now Oracle) RDB system introduced a strategy of running

multiple alternative access methods simultaneously for a short while and then stopping all but the best access

method [AZ96].

We depart from this prior work in two important aspects. First, we adapt query execution at a very £ne,

per-tuple granularity. Second, while prior work focuses primarily on adapting join orders, our architecture

allows much greater ¤exibility in adaptation, including the choice of access paths to data sources, join

algorithms, join spanning trees, and join orders.

SteMs were developed as a part of the Telegraph project at Berkeley, and build on the Eddy tuple routing

operator of [AH00]. The £rst (and complete) presentation of SteMs occurs in [Ram01]; this paper is meant

to be a concise description. Since then, SteMs have been used in other Telegraph work on continuous query

processing, with a focus on sharing SteMs across queries [M+02, CF02].

6 Conclusions and Future Work

Join operators constitute an important part of traditional query processors. These operators typically encap-

sulate complex algorithms that maintain much state about the tables involved in the join. The routing of

a tuple to a join often results in a chain of steps within the join operator, that constitute multiple physical

operations. In this paper, we have developed a way of executing queries by routing tuples not through join

21

operators but instead through State Modules that encapsulate data structures for holding intermediate query

processing state. With this mechanism, most of the decisions involved in query optimization, including the

ordering of joins and selections, the choice of access methods on the tables, the choice of reordering mech-

anism, the choice of join algorithms, and the choice of join spanning tree are determined by the routing of

tuples, and are thus made dynamically by the Eddy. We have designed a set of restrictions on the Eddy’s

routing policy that ensure correct query execution. Our experiments demonstrate that the SteMs mechanism

allows powerful adaptation by the Eddy in various situations.

We plan to extend this work in several directions. An important restriction of this paper is that it does

not consider SteMs that span multiple tables. Though this reduces memory overheads, it can be inef£cient

in more traditional query execution scenarios as it leads to repeated probes that can be avoided by storing

intermediate results. We are currently investigating extensions of our architecture that allow intermediate

results, while retaining the adaptivity that SteMs provide.

Since SteMs encapsulate the data structure, and communicate directly with the Eddy, they enable the

Eddy to observe and control memory resource utilization acrossall modules in the query. The Eddy can

make memory allocation decisions in a globally optimal manner, possibly based on overall memory avail-

ability as well as relative frequency of probes into each SteM. This can be extended to let the Eddy control

spilling of tuples to the disk as well. It will be interesting to see if such adaptive control of spilling can help

the Eddy simulate join algorithms such as the XJoin [UF00] algorithm that dynamically adapt disk spilling.

In presence of multi-table SteMs, this opens up a new set of optimization opportunities, where the Eddy can

dynamically decide whether to materialize intermediate results or not based on memory availability.

Another important research direction is to formally study the space of join processing strategies opened

up by the decoupling of state management and routing logic. We believe this will lead to better adaptive

routing policies for learning many kinds of hybrid join strategies, which may be appropriate in particular

circumstances but are not common enough to justify programming new join operators.

References

[AH00] R. Avnur and J. M. Hellerstein. Eddies: Continuously adaptive query processing. InSIGMOD,

2000.

[Alb91] J. Albert. Algebraic properties of bag data types. InVLDB, 1991.

[AZ96] G. Antoshnekov and M. Ziauddin. Query processing and optimization in Oracle Rdb.VLDB

Journal, 5(4), 1996.

[BBD+02] B. Babock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in data stream

systems. InPODS, 2002.

[BC02] N. Bruno and S. Chaudhuri. Exploiting statistics on query expressions for optimization. In

SIGMOD, 2002.

[C+02] D. Carney et al. Monitoring streams: A new class of data management applications. InVLDB,

2002.

22

[CF02] S. Chandrasekaran and M. J. Franklin. Streaming queries over streaming data. InVLDB, 2002.

to appear.

[D+84] D. J. DeWitt et al. Implementation techniques for main memory database systems. InSIGMOD,

1984.

[FKT86] S. Fushimi, M. Kitsuregawa, and H. Tanaka. An overview of the system software of a parallel

relational database machine GRACE. InVLDB, 1986.

[GC94] G. Graefe and R. Cole. Optimization of dynamic query evaluation plans. InSIGMOD, 1994.

[GW00] R. Goldman and J. Widom. WSQ/DSQ: a practical approach for combined querying of

databases and the web. InSIGMOD, 2000.

[H+97] L. M. Haas et al. Optimizing queries across diverse data sources. InVLDB, 1997.

[H+99] J. M. Hellerstein et al. Interactive data analysis: The Control project.IEEE Computer, 32(8),

1999.

[H+00] J. M. Hellerstein et al. Adaptive query processing: technology in evolution.IEEE Data Engg.

Bull., 23(2), 2000.

[HH99] P. J. Haas and J. M. Hellerstein. Ripple joins for Online Aggregation. InSIGMOD, 1999.

[HHW97] J. M. Hellerstein, P. J. Haas, and Helen J. Wang. Online aggregation. InSIGMOD, 1997.

[I+92] Y. E. Ioannidis et al. Parametric query optimization. InVLDB, 1992.

[I+99] Z. G. Ives et al. An adaptive query execution system for data integration. InSIGMOD, 1999.

[IK84] T. Ibaraki and T. Kameda. Optimal nesting for computing N-relational joins.TODS, 9(3), 1984.

[K+98] N. Kabra et al. Ef£cient mid-query reoptimization of sub-optimal query execution plans. In

SIGMOD, 1998.

[KBZ86] R. Krishnamurthy, H. Boral, and C. Zaniolo. Optimization of nonrecursive queries. InVLDB,

1986.

[Knu73] D. E. Knuth.Sorting and Searching, volume 3 ofThe Art of Computer Programming. Addison-

Wesley, 1973.

[Lex] BrightPlanet LexiBot. www.brightplanet.com.

[M+02] S. Madden et al. Continuosly adaptive continuous queries over streams. InSIGMOD, 2002.

[Mor88] K. A. Morris. An algorithm for ordering subgoals in NAIL! InPODS, 1988.

[P+92] H. Pirahesh et al. Extensible/rule-based query rewrite optimization in Starburst. InSIGMOD,

1992.

[P+93a] H. Pang et al. Memory-adaptive external sorting. InVLDB, 1993.

[P+93b] H. Pang et al. Partially preemptive hash joins. InSIGMOD, 1993.

[Ram01] V. Raman.Interactive Query Processing. PhD thesis, U.C.Berkeley, 2001.

[RGM01] S. Raghavan and H. Garcia-Molina. Crawling the hidden web. InVLDB, 2001.

[RH02] V. Raman and J.M. Hellerstein. Partial results for online query processing. InSIGMOD, 2002.

[RRH00] V. Raman, B. Raman, and J. M. Hellerstein. Online dynamic reordering.VLDB Journal, 9(3),

2000.

[RS86] L. Rashid and S. Su. A parallel processing strategy for evaluating recursive queries. InVLDB,

23

1986.

[S+01] M. A. Shah et al. Java support for data-intensive systems.SIGMOD Record, 4(30), 2001.

[SLMK01] M. Stillger, G. M. Lohman, V. Markl, and M. Kandil. LEO – DB2’s LEarning Optimizer. In

VLDB, 2001.

[SWK76] M.R. Stonebraker, E. Wong, and P. Kreps. The design and implementation of INGRES.TODS,

1(3):189–222, September 1976.

[Tel] The Telegraph project. http://db.cs.berkeley.edu/telegraph.

[UF00] T. Urhan and M. J. Franklin. XJoin: A Reactively-Scheduled Pipelined Join Operator.IEEE

Data Engineering Bulletin, 23(2), 2000.

[UF01] T. Urhan and M. J. Franklin. Dynamic pipeline scheduling for improving interactive query

performance. InVLDB, 2001.

[UFA98] T. Urhan, M. J. Franklin, and L. Amsaleg. Cost-based query scrambling for initial delays. In

SIGMOD, 1998.

[VN02] S. Viglas and J. Naughton. Rate-based query optimization for streaming information sources.

In SIGMOD, 2002.

[WA91] A. N. Wilschut and P. M. G. Apers. Data¤ow query execution in a parallel main-memory

environment. InPDIS, 1991.

[ZL97] W. Zhang and P. Larson. Dynamic memory adjustment for external mergesort. InVLDB, 1997.

[ZR02] V. Zadorozhny and L. Raschid. Query optimization to meet performance targets for wide area

applications. InICDCS, 2002.

A Proof of Correctness of Routing Constraints

We £rst show that the Eddy will not output duplicate query results, or even duplicate partial query results.

We need some de£nitions :

De£nition 4 (SubTuple and SuperTuple)We de£ne a tuples to be asubtupleof a tuplet if its base-table

components form a subset of the base-table components oft, i.e., s = 〈s1, s2, . . . sk〉 is a subtuple of

t = 〈t1, t2, . . . tm〉 if there exist distinct base-tablesc1, c2, . . . ck, 1 ≤ c1 < c2 < · · · < ck ≤ m such that

si = tci ∀1 ≤ i ≤ k. Conversely, we callt a supertupleof s.

De£nition 5 (T -Arity of a tuple) Thet-arity of a tuple is the number of base-table components it has.

De£nition 6 (Generator) A tuple in the query data¤ow is called ageneratorif it is a subtuple of a query

result tuple.

Theorem 3 If an Eddy follows a routing policy that satis£es the constraints of Table 2, there will not arise

duplicate versions of any tuple in the data¤ow, other than singleton tuples not yet been built into SteMs.

Proof: We proceed by contradiction. Consider a query overn sourcess1, s2, . . . sn, with a query result QR.

Let t be the tuple of minimumt-arity for which duplicate versions occur in the data¤ow during query exe-

cution. Call two of these versionsta andtb. Suppose, without loss of generality, thatt = 〈ts1 , ts2 , . . . , tsk
〉.

If t is a singleton tuple.ta andtb cannot have been built intoSteMs1 , because then only one of the two

would have been bounced back after building. So we only consider the situation wherek > 1.

24

As discussed before, any tuple is created during query execution by a singleton tuple probing into various

SteMs and accumulating components from other base-tables. Arrange the base-table components ofta and

tb in the order in which they were accumulated;ta = 〈tsa1
, tsa2

, . . . , tsak
〉 andtb = 〈tsb1

, tsb2
, . . . , tsbk

〉,
wherea1, a2, . . . , ak andb1, b2, . . . , bk are both permutations of1, 2, . . . k.

By the TimeStamp constraint,〈tsa1
〉 and〈tsb1

〉 must both have the highest timestamp among the base-

table components oft, and soa1 = b1 (i.e., ta andtb were generated by〈tsa1
〉 probing into other SteMs).

Let tsa1
. . . tsal

, l > 0, be the longest common pre£x of〈tsa1
, tsa2

, . . . , tsak
〉 and〈tsb1

, tsb2
, . . . , tsbk

〉. Two

cases arise:

Case 1 l = k: We knowk = l > 1. Henceta andtb are both generated by〈tsa1
. . . tsal−1

〉 probing

into SteMsal
. SteMsal

cannot have duplicate versions oftsal
. Even if〈tsa1

. . . tsal−1
〉 probes intoSteMsal

multiple times, the TimeStamp constraint ensures that it can match withtsal
only once. So there must have

been duplicate versions of〈tsa1
. . . tsal−1

〉 itself. This contradicts our hypothesis thatt is a duplicate of

minimumt-arity.

Case 2 l < k: The generation ofta involves 〈tsa1
. . . tsal

〉 probing intoSteMsal+1
and the genera-

tion of tb involves 〈tsa1
. . . tsal

〉 probing intoSteMsbl+1
. The ProbeCompletion constraint ensures that

〈tsa1
. . . tsal

〉 can only probe into a single SteM. We know thatal+1 6= bl+1, because we have chosen the

longest common pre£x. Therefore there must have been duplicate versions of〈tsa1
. . . tsal

〉. This again

contradicts our hypothesis thatt is a duplicate of minimumt-arity. 2

Theorem 4 If the Eddy follows a routing policy that satis£es the constraints of Table 2, only a £nite number

of tuples will arise in the query data¤ow over the course of query execution.

Proof: Observe that since we are dealing with £nite relations, and because of Theorem 3, only a £nite

number of tuples can arise in the query data¤ow, other than singleton tuples that have not yet been built into

SteMs. If the latter set were in£nite, the set of tuples coming out of some AM must be in£nite. Clearly this

must be an index AM, sayAMR (all tables are £nite, so scans can only generate a £nite number of tuples).

For an in£nite number of tuples to come out ofAMR, an in£nite number of tuples must probe intoAMR.

Again, because of Theorem 3, these probe tuples must all be singleton tuples. Therefore there must exist

some query relationS 6= R, such that there are an in£nite number ofS tuples probing intoR. But the scan

AMs onS can only generate a £nite number of tuples. Also, tuples coming out of the index AMs onS can

only probe intoAMR after they have built intoSteMS . ButSteMS will only bounce back distinctS tuples

to probe intoR, so there can only be a £nite number of probe tuples generated this way. 2

Theorem 5 If the Eddy follows a routing policy that satis£es the constraints of Table 2, it will not output

any tuple that is not in the query result, and will output all query result tuples in a £nite number of routing

steps.

Proof: Consider a query overn sourcess1, s2, . . . sn, with a query result QR.

Notice £rst that the Eddy will not output any tuple not in QR as a query result tuple, because it will £rst

route the tuple to all selection modules. (Section 2.1.1).

Consider the set of all tuples that arise in the data¤ow during query execution, and order them in increas-

ing order of thelatesttime when then were routed by the Eddy (the same tuple might be routed by the Eddy

25

multiple times if it gets bounced back from modules). From Theorem 4, this sequence has no duplicates

except for singleton tuples. For each singleton tuple that occurs in this sequence, remove all occurrences

except the £rst (the rest will be absorbed by the corresponding SteM). Let the resulting sequence of tuples

beG = {g1, g2, . . . , gm}.

Consider a query result tuplep = 〈ps1ps2 . . . psn〉 ∈ QR. Clearly, at least one of the sources, says1,

must be scannable, for the query to be executable. Therefore there must exist a generator forp in G – when

the scan AM ons1 emits〈ps1〉.
Among all the generators ofp in G, choose the ones with highest Timestamp, and among these the ones

with maximumt-arity. Letg be one of these generators. We will now show thatg = p.

We proceed by contradiction. Suppose thatg is not equal top. Clearly,g /∈ QR. Notice thatg must

eventually be routed by the Eddy, because there are only a £nite number of tuples ever in the data¤ow

(Theorem 4), and query execution will not terminate unless all these tuples are removed. Consider the ways

in whichg can be routed by the Eddy.

Case 1: g is routed to a SM. Sinceg is a subtuple ofp, it will satisfy the selection predicate and be

bounced back to the Eddy, and we would have selected this later occurrence ofg when constructingG.

Hence we have a contradiction.

Case 2: g is routed to build into a SteM. Ifg is bounced back, the same argument as Case 1 holds. Ifg is

absorbed, then a duplicateg′ of g has built into the SteM earlier, and we would have selectedg′ overg when

constructing the sequenceG. Hence we have a contradiction.

Case 3: g is routed to probe into a SteM, saySteMsw . Four sub-cases arise:

Case 3a: psw ∈ SteMsw andTS(psw) < TS(g). Then the concatenation ofg andpsw will arise in

the data¤ow: ifLastMatchTS(g) < TS(psw), SteMsw will output the concatenation on this probe byg;

otherwise the SteM has already output the concatenation on a previous probe byg. This concatenation is

a generator with highert-arity than and the same timestamp asg, contradicting our scheme for choosing

generators.

Case 3b: psw ∈ SteMsw andTS(psw) > TS(g). Then〈psw〉 would have entered the data¤ow after

building intoSteMsw . It is a generator forp with higher timestamp thang, contradicting our scheme for

choosing generators.

Case 3c: psw /∈ SteMsw and there exists a scan AM onSteMsw . Then〈psw〉 will enter the data¤ow

and get built intoSteMsw at some later time. This〈psw〉 will be a generator with higher timestamp thang,

contradicting our scheme for choosing generators.

Case 3d: psw /∈ SteMsw and there does not exist a scan AM onSteMsw . g will be bounced back, and

we would have selected this later occurrence ofg when constructingG. Hence we have a contradiction.

Case 4: g is routed to an AM, sayAMsw . Two subcases arise:

Case 4a: g is not a prior prober, org is a prior prober with a different probe completion AM thanAMsw .

g will be bounced back, and we would have selected this later occurrence ofg for G. Hence we have a

contradiction.

Case 4b: g is a prior prober andAMsw is its probe completion AM.g must have probed intoSteMsw

at some time, to have been transformed into a prior prober. We know thatpsw was not inSteMsw at that

time, because then the returned match will have a highert-arity thang (as in Case 3a). Wheneverpsw enters

26

the data¤ow (it must enter at some time, at the latest as a asynchronous match from theSteMsw) and builds

into SteMsw , it will be bounced back with a higher timestamp thang. This again contradicts our scheme

for choosing generators.

Thus,g = p, and will be generated and output by the Eddy. Sincep was chosen as some arbitrary result

tuple, all result tuples will be generated by the Eddy. 2

27

