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Abstract

Spectral clustering refers to a class of techniques which rely on the eigenstructure
of a similarity matrix to partition points into disjoint clusters, with points in the same
cluster having high similarity and points in different clusters having low similarity. In
this paper, we derive a new cost function for spectral clustering based on a measure of
error between a given partition and a solution of the spectral relaxation of a minimum
normalized cut problem. Minimizing this cost function with respect to the partition
leads to a new spectral clustering algorithm. Minimizing with respect to the similarity
matrix leads to an algorithm for learning the similarity matrix. We develop a tractable
approximation of our cost function that is based on the power method of computing
eigenvectors.

1 Introduction

Spectral clustering has many applications in machine learning, exploratory data analysis,
computer vision and speech processing. Most techniques explicitly or implicitly assume
a metric or a similarity structure over the space of configurations, which is then used by
clustering algorithms. The success of such algorithms depends heavily on the choice of the
metric, but this choice is generally not treated as part of the learning problem. Thus, time-
consuming manual feature selection is often a necessary precursor to the use of spectral
methods.

Several recent papers have considered ways to alleviate this burden by incorporating
prior knowledge into the metric, either in the setting of K-means clustering [16, 17] or
spectral clustering [18, 10]. In this paper, we consider a complementary approach, pro-
viding a general framework for learning the similarity matrix for spectral clustering from
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examples. We assume that we are given sample data with known partitions and are asked
to build similarity matrices that will lead to these partitions when spectral clustering is
performed. This problem is motivated by the availability of such datasets for at least two
domains of application: in vision and image segmentation, a hand-segmented dataset is
now available [11], while for the blind separation of speech signals via partitioning of the
time-frequency plane [2], training examples can be created by mixing previously captured
signals.

Another important motivation for our work is the need to develop spectral clustering
methods that are robust to irrelevant features. Indeed, as we show in Section 4.2, the
performance of current spectral methods can degrade dramatically in the presence of such
irrelevant features. By using our learning algorithm to learn a diagonally-scaled Gaussian
kernel for generating the affinity matrix, we obtain an algorithm that is significantly more
robust.

Our work is based on a new cost function J(W, e) that characterizes how close the
eigenstructure of a similarity matrix W is to a partition e. We derive this cost function in
Section 2. As we show in Section 2.3, minimizing J with respect to e leads to a new clustering
algorithm that takes the form of a weighted K-means algorithm. Minimizing J with respect
to W yields an algorithm for learning the similarity matrix, as we show in Section 4.
Section 3 provides foundational material on the approximation of the eigensubspace of a
symmetric matrix that is needed for Section 4.

2 Spectral clustering and normalized cuts

Given a dataset I of P points in a space X and a P × P “similarity matrix” (or “affinity
matrix”) W that measures the similarity between the P points (Wpp′ is large when points
indexed by p and p′ are likely to be in the same cluster), the goal of clustering is to
organize the dataset into disjoint subsets with high intra-cluster similarity and low inter-
cluster similarity. Throughout this paper we always assume that the elements of W are
non-negative (W > 0) and that W is symmetric (W =W>). We let D denote the diagonal
matrix whose i-th diagonal element is the sum of the elements in the i-th row of W , i.e.,
D=diag(W1), where 1 is defined as the vector in R

P composed of ones.
There are different variants of spectral clustering. In this paper we focus on the task of

minimizing “normalized cuts.” The classical relaxation of this NP-hard problem [15, 19, 3]
leads to an eigenvalue problem. In this section we show that the problem of finding a
solution to the original problem that is closest to the relaxed solution can be solved by a
weighted K-means algorithm.

2.1 Normalized cut and graph partitioning

The clustering problem is usually defined in terms of a complete graph with vertices V =
{1, ..., P} and an affinity matrix with weights Wpp′ , for p, p′ ∈ V . We wish to find R disjoint
clusters A = (Ar)r∈{1,...,R}, where

⋃
rAr = V , that optimize a certain cost function. An

example of such a function is the R-way normalized cut defined as follows [15, 8]:

C(A, W )=
∑R

r=1

(∑
i∈Ar,j∈V \Ar

Wij

)
/

(∑
i∈Ar,j∈V Wij

)
.
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Let er be the indicator vector in R
P for the r-th cluster, i.e., er ∈ {0, 1}R is such that er

has a nonzero component exactly at points in the r-th cluster. Knowledge of e = (er) is
equivalent to knowledge of A=(Ar) and, when referring to partitions, we will use the two
formulations interchangeably. The normalized cut is then equal to

C(e, W )=
R∑

r=1

e>r (D −W )er/ (e>r Der).

2.2 Spectral relaxation and rounding

The following proposition, which extends a result of Shi and Malik [15] for two clusters
to an arbitrary number of clusters, gives an alternative description of the clustering task,
which will lead to a spectral relaxation:

Proposition 1 The R-way normalized cut is equal to R − trY >D−1/2WD−1/2Y for any
matrix Y ∈ R

R×P such that (a) the columns of D−1/2Y are piecewise constant with respect
to the clusters and (b) Y has orthonormal columns (Y >Y =I).

Proof The constraint (a) is equivalent to the existence of a matrix Λ ∈ R
R×R such

that D−1/2Y = (e1, . . . , eR)Λ = EΛ. The constraint (b) is thus written as I = Y >Y =
Λ>E>DEΛ. The matrix E>DE is diagonal, with diagonal elements e>r Der and is thus
positive and invertible. This immediately implies that ΛΛ>=(E>DE)−1 (because for the
square matrix M = (E>DE)1/2Λ, M>M = I implies MM> = I). This in turn implies
that trY >D−1/2WD−1/2Y =tr Λ>E>WEΛ=trE>WEΛΛ>=trE>WE(E>DE)−1, which
is exactly the normalized cut (up to an additive constant).

By removing the constraint (a), we obtain a relaxed optimization problem, whose solutions
involve the eigenstructure of D−1/2WD−1/2 and which leads to the classical lower bound
on the optimal normalized cut [19, 3]. The following proposition gives the solution obtained
from the relaxation:

Proposition 2 The maximum of trY >D−1/2WD−1/2Y over matrices Y ∈ R
P×R such that

Y >Y =I is the sum of the R largest eigenvalues of D−1/2WD−1/2. It is attained at all Y of
the form Y =UB1 where U ∈ R

P×R is any orthonormal basis of the R-th principal subspace
of D−1/2WD−1/2 and B1 is an arbitrary rotation matrix in R

R×R.

Proof Let M = D−1/2WD−1/2. The proposition is equivalent to the classical variational
characterization of the sum of the R largest eigenvalues λ1(M), . . . , λR(M) of M (a result
known as Ky Fan’s theorem, see e.g. [14]):

λ1(M) + · · ·+ λR(M) = max{trY >MY, Y ∈ R
P×R, Y >Y = I},

where the maximum is attained for all matrices Y of the form Y =UB1, where U ∈ R
P×R is

any orthonormal basis of the R-th principal subspace of M and B1 is an arbitrary rotation
matrix in R

R×R. Note that the R-th principal subspace is uniquely defined if λR 6= λR+1

(i.e. there is no eigengap).

The solutions found by this relaxation will not in general be piecewise constant. In order
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to obtain a piecewise constant solution, we wish to find a piecewise constant matrix that
is as close as possible to one of the possible Y obtained from the eigendecomposition.
Since such matrices are defined up to a rotation matrix, it makes sense to compare the
subspaces spanned by their columns. A common way to compare subspaces is to compare
the orthogonal projection operators on those subspaces [7], that is, to compute the Frobenius
norm between UU> and Π0 = Π0(W, e) ,

∑
r D1/2ere

>
r D1/2/ (e>r Der). We thus define the

following cost function:
J(W, e) = 1

2 ||UU> −Π0||2F . (1)

Using the fact that both UU> and Π0 are orthogonal projection operators on linear sub-
spaces of dimension R, a short calculation reveals that the cost function J(W, e) is equal to
R− trUU>Π0 =R−∑

r e>r D1/2UU>D1/2er/ (e>r Der).
The cost function J(W, e) provides a spectral characterization of the ability of the matrix

W to produce the partition e. For fixed W , minimizing J with respect to e leads to a new
spectral clustering algorithm that we now present. Minimizing J with respect to the matrix
W , for a given partition e, leads to an algorithm for learning the similarity matrix, as we
show in Section 4.

2.3 Minimizing with respect to the partition

In this section, we consider the problem of minimizing J(W, e) with respect to e. The
following theorem, inspired by the spectral relaxation of K-means presented in [19], shows
that the cost function can be interpreted as a weighted distortion measure, when e is varied
for fixed W .1

Theorem 1 Let W be an affinity matrix and let U = (u1, . . . , uP ), where up ∈ R
R, be an

orthonormal basis of its R-th principal subspace. For any partition e ≡ A, we have

J(W, e)= min
(µ1,...,µR)∈RR×R

∑
r

∑
p∈Ar

dp||upd
−1/2
p − µr||2.

Proof Let D(µ, A)=
∑

r

∑
p∈Ar

dp||upd
−1/2
p −µr||2. Minimizing D(µ, A) with respect to µ

is an unconstrained least-squares problems and we get:

minµ D(µ, A) =
∑

r

∑
p∈Ar

u>p up −
∑

r ||
∑

p∈Ar
d

1/2
p up||2/ (

∑
p∈Ar

dp)

=
∑

p u>p up −
∑

r

∑
p,p′∈Ar

d
1/2
p d

1/2
p′ u>p up′/ (e>r Der)

= R−∑
r e>r D1/2UU>D1/2er/ (e>r Der)=J(W, e)

This theorem has an immediate algorithmic implication—to minimize the cost function
J(W, e) with respect to the partition e, we can use a weighted K-means algorithm. The

1Note that a similar equivalence holds between normalized cuts and weighted K-means for positive
semidefinite similarity matrices, which can be factorized as W =GG>; this leads to an approximation algo-
rithm for minimizing normalized cuts; i.e., we have: C(W, e)=min(µ1,...,µR)∈RR×R

∑
r

∑
p∈Ar

dp||gpd
−1/2
p −

µr||2.
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Input: Similarity matrix W ∈ R
P×P .

Algorithm:
1. Compute first R eigenvectors U of D−1/2WD−1/2 where D=diag(W1).
2. Let U =(u1, . . . , uP ) ∈ R

R×P and dp =Dpp.
3. Weighted K-means: while partition A is not stationary,

a. For all r, µr =
∑

p∈Ar
d

1/2
p up/

∑
p∈Ar

dp

b. For all p, assign p to Ar where r=arg minr′ ||upd
−1/2
p − µr′ ||

Output: partition A, distortion measure
∑

r

∑
p∈Ar

dp||upd
−1/2
p − µr||2

Figure 1: Spectral clustering algorithm.

resulting algorithm is presented in Figure 1. While K-means is often used heuristically
as a post-processor for spectral clustering [e.g., 13], our approach provides a mathematical
foundation for the use of K-means, and yields a specific weighted form of K-means that is
appropriate for the problem.

2.4 Minimizing with respect to the similarity matrix

When the partition e is given, we can consider minimization with respect to W . As we
have suggested, intuitively this has the effect of yielding a matrix W such that the result of
performing spectral clustering with that W is as close as possible to e. We now make this
notion precise.

The difference between two partitions e = (er) and f = (fs), with R and S clusters
respectively, is taken to be [9]:

d(e, f)=
1
2

∥∥∥∥∥
∑

r

ere
>
r

e>r er
−

∑
s

fsf
>
s

f>s fs

∥∥∥∥∥
2

F

=
R + S

2
−

∑
r,s

(e>r fs)2

(e>r er)(f>s fs)
(2)

This measure is always between zero and R+S
2 −1, and is equal to zero if and only if e ≡ f .

The following theorem shows that if we can perform weighted K-means exactly, we obtain
a bound on the performance of our spectral clustering algorithm:

Theorem 2 Let η = maxp Dpp/ minp Dpp > 1. If e(W ) = arg mine J(W, e), then for all
partitions e, we have d(e, e(W )) 6 4ηJ(W, e).

Proof Let S = (e1, . . . , eR) ∈ R
P×R and T = (f1, . . . , fR) ∈ R

P×R where f = e(W ).
The error measure d(e, f) is the (squared) Frobenius distance g(S, T ) between the orthog-
onal projection operators on the column spaces of S and T and can thus be rewritten as
d(e, f) = g(S, T ) = 1

2 ||S(S>S)−1S>− T (T>T )−1T>||2F . Let us define a rescaled error mea-
sure dD(e, f) as the Frobenius distance between the orthogonal projection operators on the
column spaces of D1/2U and D1/2V :

dD(e, f) = g(D1/2S, D1/2T ) =
1
2
||D1/2S(S>DS)−1S>D1/2 −D1/2T (T>T )−1T>D1/2||2F .
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We have, by the triangle inequality for the Frobenius norm:

dD(e, e(W ))1/2 6 1√
2
||D1/2S(S>DS)−1S>D1/2 − UU>||F

+
1√
2
||D1/2T (T>DT )−1T>D1/2 − UU>||F

= [J(W, e)]1/2 + [J(W, e(W ))]1/2

6 2[J(W, e)]1/2 because e(W ) is optimal.

This in turn implies that dD(e, e(W )) 6 4J(W, e). The result follows from Lemma 1.

Lemma 1 Let S and T be two matrices in R
P×R, with rank R. Let D be a symmetric

positive definite matrix in R
P×P . Let g(S, T ) denote 1

2 ||S(S>S)−1S> − T (T>T )−1T>||2F
and η = λ1(D)

λP (D) > 1 denote the ratio of the largest and smallest eigenvalue of D. We then
have:

1
η
g(D1/2S, D1/2T ) 6 g(S, T ) 6 ηg(D1/2S, D1/2T ) (3)

Proof We can expand the Frobenius and rewrite g(S, T ) as

g(S, T ) =
1
2

tr
{

S(S>S)−1S>S(S>S)−1S>

−2S(S>S)−1S>T (T>T )−1T> + T (T>T )−1T>T (T>T )−1T>
}

= tr
{

I − S(S>S)−1S>T (T>T )−1T>
}

= tr
{

I − (S>S)−1/2S>T (T>T )−1T>S(S>S)−1/2
}

= tr
{

(S>S)−1/2(S>S − S>T (T>T )−1T>S)(S>S)−1/2
}

The matrix S>S−S>T (T>T )−1T>S is exactly the Schur complement of the top left block

in the matrix M = (S T )>(S T ) =
(

S>S S>T
T>S T>T

)
. Let MD = (S T )>D(S T ). We

have the following inequalities between matrices: MD � λ1(D)M and MD � λP (D)M ,
which implies the same inequality for the top left blocks (S>S and S>DS) and their Schur
complements (N = S>S−S>T (T>T )−1T>S and ND = S>DS−S>DT (T>DT )−1T>DS).
We then have:

(S>S)−1/2N(S>S)−1/2 � η(S>DS)−1/2ND(S>DS)−1/2

(S>S)−1/2N(S>S)−1/2 � 1
η
(S>DS)−1/2ND(S>DS)−1/2,

which implies Eq. (3) by taking the trace.
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3 Approximation of the cost function

In order to minimize the cost function J(W, e) with respect to W , which is the topic of
Section 4, we need to optimize a function of the R-th principal subspace of the matrix
D−1/2WD−1/2. In this section, we show how we can compute a differentiable approximation
of the projection operator on this subspace.

3.1 Approximation of eigensubspace

Let X ∈ R
P×P be a real symmetric matrix. We assume that its eigenvalues are ordered

by magnitude: |λ1| > |λ2| > · · · > |λP |. We assume that |λR| > |λR+1| so that the R-th
principal subspace ER is well defined, with orthogonal projection operator ΠR.

Our approximations are based on the power method to compute eigenvectors. It is
well known that for almost all vectors v, the ratio Xqv/||Xqv|| converges to an eigenvector
corresponding to the largest eigenvalue [7]. The same method can be generalized to the
computation of dominant eigensubspaces: If V is a matrix in R

P×R, the subspace generated
by the R columns of XqV will tend to the principal eigensubspace of X. Note that since we
are interested only in subspaces, and in particular the orthogonal projection operators on
those subspaces, we can choose any method for finding an orthonormal basis of range(XqV ).
The QR decomposition is fast and stable and is usually the method used to compute such a
basis (the algorithm is usually referred to as “orthogonal iteration” [7]). However this does
not lead to a differentiable function. We develop a different approach which does yield a
differentiable function, as made precise in the following proposition:

Proposition 3 Let V ∈ R
P×R such that η = max

u∈ER(X)⊥, v∈range(V )
cos(u, v) < 1. Then the

function Y 7→ Π̃R(Y )=M(M>M)−1M>, where M =Y qV , is C∞ in a neighborhood of X,
and we have: ||Π̃R(X)−ΠR||2 6 η

(1−η2)1/2 (|λR+1|/|λR|)q.

Proof It is shown in [7] that M = XqV has always rank R, so that M>M is invertible.
Thus in a neighborhood of X, Π̃R(Y ) is C∞ since matrix inversion and multiplication are
C∞. The bound is proved in [7] for the QR orthogonal iterations, and since the subspaces
computed by the two methods are the same, the bound also holds here. The derivative can
easily be computed using the chain rule.

This proposition shows that as q tends to infinity, the range of XqV will tend to the
principal eigensubspace. The rate of convergence is determined by the (multiplicative)
eigengap |λR+1|/|λR| < 1: it is usually hard to compute principal subspace of matrices
with eigengap close to one. Note that taking powers of matrices without care can lead to
disastrous results [7]. By using successive QR iterations, the computations can be made
stable and the same technique can be used for the computation of the derivatives.

3.2 Potentially hard eigenvalue problems

In most of the literature on spectral clustering, it is taken for granted that the eigenvalue
problem is easy to solve. It turns out that in many situations, the (multiplicative) eigengap
is very close to one, making the eigenvector computation difficult (examples are given in
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the next section). We acknowledge this potential problem by averaging over several ini-
tializations of the original subspace V . More precisely, let (Vm)m=1,...,M be M subspaces
of dimension R. Let Bm = Π(range((D−1/2WD−1/2)qVm)) be the approximations of the
projections on the R-th principal subspace2 of D−1/2WD−1/2. The cost function that we
use is the average error

F (W, Π0(e))=
1

2M

M∑
m=1

||Bm −Π0||2F . (4)

This cost function can be rewritten as the distance between the average of the Bm and Π0

plus the variance of the approximations, thus explicitly penalizing the non-convergence of
the power iterations. We choose Vi to be equal to D1/2 times a set of R indicator vectors
corresponding to subsets of each cluster. In simulations, we used q = 128, M = R2, and
subsets containing 2/(log2 q + 1) times the number of original points in the clusters.

3.3 Empirical comparisons

In this section, we study the ability of various cost functions to track the gold standard
error measure in Eq. (2) as we vary the parameter α in the similarity matrix Wpp′ =
exp(−α||xp − xp′ ||2). We study the cost function J(W, e), its approximation based on
the power method presented in Section 3, and two existing approaches, one based on a
Markov chain interpretation of spectral clustering [12] and one based on the alignment [4]
of D−1/2WD−1/2 and Π0. We carry out this experiment for the simple clustering example
shown in Figure 2(a). This apparently simple toy example captures much of the core
difficulty of spectral clustering—nonlinear separability and thinness/sparsity of clusters (any
point has very few near neighbors belonging to the same cluster, so that the weighted graph
is sparse). In particular, in Figure 2(b) we plot the eigengap of the similarity matrix as
a function of α, noting that at the optimum, this gap is very close to one, and thus the
eigenvalue problem is hard to solve.

In Figure 2(c) and (d), we plot the four cost functions against the gold standard. The
gold standard curve shows that the optimal α lies near 2.5 on a log scale, and as seen in
Figure 2(c), the minima of the new cost function and its approximation lie near to this
value. As seen in Figure 2(d), on the other hand, the other two cost functions show a poor
match to the gold standard, and yield minima far from the optimum.

The problem with the alignment and Markov-chain-based cost functions is that these
functions essentially measure the distance between the similarity matrix W (or a normalized
version of W ) and a matrix T which (after permutation) is block-diagonal with constant
blocks. Unfortunately, in examples like the one in Figure 2, the optimal similarity matrix
is very far from being block diagonal with constant blocks. Rather, given that data points
that lie in the same ring are in general far apart, the blocks are very sparse—not constant
and full. Methods that try to find constant blocks cannot find the optimal matrices in these
cases. In the language of spectral graph partitioning, where we have a weighted graph with
weights W , each cluster is a connected but very sparse graph. The power W q corresponds

2The matrix D−1/2WD−1/2 has always the same largest eigenvalue 1 with eigenvector D1/21 and we
could consider instead the (R − 1)-st principal subspace of D−1/2WD−1/2 − D1/211>D1/2/ (1>D1).
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Figure 2: Empirical comparison of cost functions. (a) Data. (b) Eigengap of the similarity
matrix as a function of α. (c) Gold standard clustering error (solid), spectral cost function
J (dotted) and its approximation based on the power method (dashed). (d) Gold standard
clustering error (solid), the alignment (dashed), and a Markov-chain-based cost, divided by
16 (dotted).

to the q-th power of the graph; i.e., the graph in which two vertices are linked by an edge
if and only if they are linked by a path of length no more than q in the original graph.
Thus taking powers can be interpreted as “thickening” the graph to make the clusters more
apparent, while not changing the eigenstructure of the matrix (taking powers of symmetric
matrices only changes the eigenvalues, not the eigenvectors).

4 Learning the similarity matrix

We now turn to the problem of learning the similarity matrix from data. We assume that
we are given one or more sets of data for which the desired clustering is known. The goal is
to design a “similarity map,” that is, a mapping from datasets of elements in X to the space
of symmetric matrices with nonnegative elements. To turn this into a parametric learning
problem, we focus on similarity matrices that are obtained as Gram matrices of a kernel
function k(x, y) defined on X×X . In particular, for concreteness and simplicity, we restrict
ourselves in this paper to the case of Euclidean data (X = R

F ) and a diagonally-scaled
Gaussian kernel kα(x, y)=exp(−(x−y)> diag(α)(x−y)), where α ∈ R

F —while noting that
our methods apply more generally.

In order to apply our algorithms to domains where the number of data points may be
large, efficient implementations are necessary. In Appendix A, we show how the structure
of the similarity matrices—sparsity or low-rank approximation—can be used to deal with
those potentially large matrices.

4.1 Learning algorithm

We assume that we are given N datasets Dn of points in R
F . Each dataset Dn is composed

of Pn points xnp, p ∈ {1, . . . , Pn}. Each dataset is segmented, that is, for each n we
know the partition en, so that the “target” matrix Π0(en, α) can be computed for each
dataset. For each n, we have a similarity matrix Wn(α). The cost function that we use is
H(α)= 1

N

∑
n F (Wn(α), Π0(en, α))+C||α||1, where F (Wn(α), Π0(en, α)) is the cost for each
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dataset, defined in Eq. (4). The `1 penalty serves as a feature selection term, tending to
make the solution sparse. The learning algorithm is the minimization of H(α) with respect
to α ∈ R

F
+, using the method of conjugate gradient with line search.

Since the complexity of the cost function increases with q, we start the minimization
with small q and gradually increase q up to its maximum value. We have observed that for
small q, the function to optimize is smoother and thus easier to optimize—in particular,
the long plateaus of constant values are less pronounced.

Testing The output of the learning algorithm is a vector α ∈ R
F . In order to cluster

previously unseen datasets, we compute the similarity matrix W and use the algorithm of
Figure 1. In order to further enhance performance, we can also adopt an idea due to [13]—
we hold the direction of α fixed but perform a line search on its norm. This yields the
real number λ such that the weighted distortion obtained after application of the spectral
clustering algorithm of Figure 1, with the similarity matrices defined by λα, is minimum.

4.2 Simulations

We performed simulations on synthetic datasets in two dimensions, where we consider
datasets similar to the one in Figure 2, with two rings whose relative distance is constant
across samples (but whose relative orientation has a random direction). We add D irrelevant
dimensions of the same magnitude as the two relevant variables. The goal is thus to learn
the diagonal scale α ∈ R

D+2 of a Gaussian kernel that leads to the best clustering on unseen
data. We learn α from N sample datasets (N =1 or 10), and compute the clustering error
of our algorithm with and without adaptive tuning of the norm of α during testing (as
described in Section 4.1) on ten previously unseen datasets. We compare to an approach
that does not use the training data: α is taken to be the vector of all ones and we again search
over the best possible norm during testing (we refer to this method as “no learning”). We
report results in Table 1. Without feature selection, the performance of spectral clustering
degrades very rapidly when the number of irrelevant features increases, while our learning
approach is very robust, even with only one training dataset.

5 Conclusion

We have presented two algorithms—one for spectral clustering and one for learning the
similarity matrix. These algorithms can be derived as the minimization of a single cost
function with respect to its two arguments. This cost function depends directly on the
eigenstructure of the similarity matrix. We have shown that it can be approximated effi-
ciently using the power method, yielding a method for learning similarity matrices that can
cluster effectively in cases in which non-adaptive approaches fail. Note in particular that
our new approach yields a spectral clustering method that is significantly more robust to
irrelevant features than current methods.

We are currently applying our algorithm to problems in speech separation and image
segmentation, in particular with the objective of selecting features from among the numerous
features that are available in these domains [2, 15].
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Table 1: Performance on synthetic datasets: clustering errors (multiplied by 100) for method
without learning (but with tuning) and for our learning method with and without tuning,
with N =1 or 10 training datasets; D is the number of irrelevant features.

D no learning w/o tuning learning with tuning
learning N=1 N=10 N=1 N=10

0 0 15.5 10.5 0 0
1 60.8 37.7 9.5 0 0
2 79.8 36.9 9.5 0 0
4 99.8 37.8 9.7 0.4 0
8 99.8 37 10.7 0 0
16 99.7 38.8 10.9 14 0
32 99.9 38.9 15.1 14.6 6.1

A Efficient implementation

In applications, such as vision or speech separation, the number of data points can be very
large (think of an image with 256 rows and 256 columns of pixels, or a spectrogram with
512 frequency components and 1000 time frames). In order to deal with such matrices,
we make use of two possible sources of structure, sparsity or low-rank. Note that the only
operations that are required are the products of matrices with vectors. If the matrix is
naturally sparse, as is the case with a Gaussian kernel with large α, then matrix products
can be done efficiently. If the matrix is not sparse, we then approximate it with a matrix
with low-rank, by using only some of its columns to generate the entire matrix. Different
techniques can be used to select the columns that span the entire matrix. In this paper,
we use the technique of [6], which is based on random selection of columns and Schur
complements3.

Selection of approximation In order to decide which approximation to use (sparse or
low-rank), we denote yi = diag(α)1/2xi, and we fit a Gamma distribution (using the first
two moments) to the set of samples {||yi − yj ||2, j 6= i} and use the cumulative distribution
of the Gamma to predict the degree of sparsity. Note that the first two moments can be
computed as: µ = 2α>Σ, σ2 = 2α>Kα− 2(α> diag Σ)2 + 4α>(Σ⊗Σ)α, where µ, Σ are the
first two moments of (xi), K is a fourth order moment Krs = 1

P

∑
i(xri − µr)2(xsi − µs)2,

and ⊗ denotes the element-wise product of matrices.

Derivatives and line searches The cost function computations can be made linear in
the number of points P with the use of low-rank decomposition or sparsity. Assuming that
we have the derivative of W with respect to parameters, we immediately get derivatives of
all other quantities by using the chain rule. If we are using sparsity, then the derivative

3Note that since our aim is to find a low-rank approximation of D−1/2WD−1/2 (and not of W ), a greedy
approach for selecting the columns, such as incomplete Cholesky decomposition [7, 5], would not necessarily
select the right columns.

11



is also sparse, while if low-rank approximations are used, we can use the decomposition
as a difference of two low-rank matrices, as used in [1], to get an efficient implementation
using low-rank approximations. For line searches, where several evaluations have to be per-
formed in a small neighborhood, we can locally freeze the sparsity pattern or the generating
columns, in order to speed up computations.
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