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Abstract

The Achilles heel of the otherwise extremely successful In-
ternet infrastructure has been its rigidity, which has primar-
ily stemmed from the ossification ofshortest-pathrouting in
the basic architecture. The increasing effect of this rigidity
of the current Internet infrastructure, coupled with the popu-
lar belief that basic IP routing cannot be changed, has led to
many companies and researchers turn to infrastructure-based
overlay networks to meet specific application requirements.
These overlay networks, however, are mostly independent
efforts, sharing nothing but the underlying IP infrastructure.
We first try to argue for the need for reversing this trend, and
in the process propose a panacea – a global shared overlay
infrastructure.

We envision that a single set of overlay infrastructure nodes,
supporting a few simple primitives, would allow end-hosts to
choose routes over the infrastructure, thus enabing the end-
hosts to achieve various services they desire. The foremost
challenge we face here is to design flexible primitives that
the infrastructure should export. The second requirement is
to support a mechanism that allows end-hosts to find paths
based on application-sensitive metrics. We achieve this by
building a NEtwork Weather Service (NEWS) that measures
performance characteristics of the infrastructure. The final
requirement, also of paramount importance, is to make sure
that the infrastructure is DoS resistant1. Thus, end-hosts, by
querying theNEWSnodes build application-specific services
using the routing primitives that the infrastructure exports.
Experiments using an initial deployment ofNEWSover Plan-
etLab have shown that our techniques perform very well.

1 Introduction

The widespread adoption and complete commercialization
of the Internet over the past decade has led to a contradic-
tory state of affairs. On one hand, the continuing advent of
new Internet applications is posing an increasingly varied set
of demands on the infrastructure. On the other hand, the In-
ternet infrastructure is becoming more rigid and narrow; the
infrastructure’s size impedes change, and the few changes
that do occur, such as the increasing use of middle-boxes,
are often driven more by short-term profit than by long-term
architecture and so frequently inhibit rather than enable the
introduction of new applications.

This clash between an increasing set of needs and a di-
minished capacity to meet those needs has caused many

1We do not address this directly, but refer the reader to [2]

researchers and companies to turn to infrastructure-based
overlaynetworks (such as [3, 8, 19]). Overlay networks in-
sert functionality at the application level, thereby circum-
venting the rigidity of the underlying Internet infrastruc-
ture. Infrastructure-based overlays run over a dedicated set
of well-connected nodes in the network; in contrast, host-
based overlay networks, such as those used in peer-to-
peer networks and end-host multicast, only use the end-
hosts engaged in the application itself. Roughly speaking,
infrastructure-based overlays provide superior performance
and reliability (thus most commercial overlays fall into this
category), while host-based overlays are easier to deploy
(“grass-roots” overlay applications, such as Gnutella, are
host-based).

A case for sharing higher level overlay functionality

Infrastructure-based overlay networks have been built or pro-
posed for a wide variety of uses, such as multicast [8, 12, 19,
11, 24, 28, 34, 33], content distribution [3], quality of ser-
vice [32], route quality and reliability [30, 4], and data ma-
nipulations such as transcoding on data path [14, 27]. How-
ever, these various infrastructure-based overlay networks
have been independent application-specific efforts; each ser-
vices a different application (or application requirement) and
each requires a large investment of design effort and/or de-
ployment expense. This lack of synergy between overlays is
a sad and particularly ironic fate for the Internet, which was
based on the sharing of resources (packet level multiplexing)
and the generality of the interface (minimally designed so
that it could support a wide variety of applications).

A case for sharing network weather information

Since most of the overlay networks emerged in a bid to break
away from the shackles of the restricted routing primitive of-
fered by IP, they perform measurements to probe for paths
that offer better end-to-end performance. Sharing the infor-
mation gained thus would be beneficial as it would help
the scalability (one could probe more paths with the same
amount of resources) of the system and accuracy (one could
probe more frequently with the same amount of resources)
of the measured data.

From a design perspective, building path-probing mecha-
nisms in the overlay application would be a huge design
(and perhaps development) effort. Applications would ide-
ally want an API to specify, to some level of granulariy, the
characteristics they require of the paths.

In this paper, we ask whether we can have overlay net-
works be built on top of common overlay functionality.
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Our vision is that a single set of overlay infrastructure ma-
chines, supporting a few simple primitives, would allow end-
hosts to achieve the various services they desire. In this vi-
sion, the desired service, which previously was embedded
in the overlay, is now constructed by the end-hosts using
the primitives supported by the infrastructure nodes. Just as
the Internet replaced telephony’s application-specific smart-
network/dumb-host combination with the current general-
purpose dumb-network/smart-host architecture, our proposal
replaces application-specific overlays with a shared set of
simple, but general-purpose, overlay nodes combined with
sophisticated end-host applications.2 If successful, this ap-
proach would combine the best of both overlay approaches:
the performance of infrastructure-based and the deployabil-
ity of host-based.3

However, the crucial challenge in realizing this vision is to
identify a few key primitives that, when embedded in each
overlay node, are sufficient to support a wide range of over-
lay services. We discuss such a set of primitives, and how
functionality should be divided, in Section 2. We then de-
scribe the implementation of these primitives in Section 2.3.
Section 3 describes the different components of the system
and their roles. In Section 4, we describe how the primitives
allow hosts to measure overlay path characteristics, and in
Section 5 we describe how to scaleNEWS. How several ap-
plications can use this approach is described in Section 6 and,
in Section 8, we report on an experimental evaluation of our
design. We conclude in Section 10 with a discussion.

2 System design

We shall reason out how the functionality should be split
among the different entities of the system, and then present
a set of primitives to achieve the required functionality.

2.1 Extent of sharing

While many overlays have diverse purposes, at a very gen-
eral level, one can divide their functionality into two pieces:

Routing control: this encompasses both the selection of
paths and the replication of packets along the path (such
as in multicast overlays).

Data manipulation: some overlays employ transcoding or
otherwise manipulate data (including storing the data)
as it is conveyed to the destination.

To what extent can these functions be shared is the question
we must address now. However, it should be noted that func-
tions can be sharedwithout embedding them in the overlay
infrastructure; instead, one can share functionality by using

2As we will describe later, these applications can avail them-
selves of third-party services which are not part of the overlay in-
frastructure but yet can be shared across applications.

3This assumes that the shared infrastructure has already been
deployed; while its deployment still faces significant barriers, these
difficulties will be amortized over many subsequent uses.

“third-party” services. By a third-party service, we refer to
a service implemented by hosts, but offered to applications
through the use of an open interface; these third-party ser-
vices are thus application-level but not application-specific.
Therefore, the issue of sharing breaks down into two separate
questions:

� Should these functions be shared across different over-
lays?

� If so, should these functions be embedded in the overlay
infrastructure, or supported by third-party services?

We first address these two questions for routing. Routing
control is comprised of three pieces. First, there are the low-
level mechanisms that control the forwarding and replica-
tion of packets. Forwarding and replication are quite gen-
eral functions that require high performance, so it seems
likely that they should be incorporated into the infrastruc-
ture nodes. Second, there are the policies that express where
to forward (and replicate) packets; such policies would, for
instance, dictate the relative importance of latency and band-
width when choosing a path. These policies vary widely be-
tween applications; thus, they should probably not be shared
and should definitely not be embedded in the infrastructure.
For e.g., , the topologies constructed for streaming media
would be very different from that for a voice conference.

Third, there is the information on which these routing de-
cisions will be based; for example, measurements of path
bandwidth, latency, loss, and stability will be relevant to
making routing decisions. It seems likely that such infor-
mation could be usefully shared between applications. How-
ever, the set of measurements and the granularity of mea-
surement data that one might need in order to make routing
decisions is not so narrowly specified that one could reli-
ably embed this into the infrastructure. Instead, we envision
third-parties offering a shared, but application-level,network
weather servicethat provides the relevant information. By a
third-party service, we mean that it operates from hosts, but
the information is shared across applications. While not as
efficient as embedding measurements in the infrastructure,
implementing the measurements in the end-hosts allows the
data-collection algorithms to evolve over time in response to
changing needs. However, the infrastructure should be de-
signed to make it possible for third-parties to gather the nec-
essary measurement data.

The second broad class of functionality is data manipula-
tion. Data manipulation tends to be very application specific
(e.g.,transcoding between two specific encodings) and will
likely evolve over time. Thus, data manipulation, at least at
this point, shouldn’t be shared (though as particular transcod-
ings become popular one could imagine third-parties offer-
ing such services). However, the infrastructure should make
it easy to insert special-purpose computation on the data
path; more precisely, it should make it easy to adjust the path
to reach these computational nodes.
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2.2 Infrastructure Primitives

Our discussion of sharing points towards a design where
there are two main shared capabilities, routing information
and routing mechanism, which are shared at different lev-
els. Routing-relevant information should be shared through
application-level third-party services, and low-level routing
mechanisms should be embedded in the shared infrastruc-
ture. Our discussion further indicates that these low-level
routing mechanisms should enable end-hosts to:

1. Control forwarding and replication
2. Allow special-purpose data manipulation nodes to be

included on data paths
3. Measure performance characteristics of paths in the in-

frastructure

We claim that two routing primitives are sufficient to meet
these three requirements. The two primitives are:

Path selection: An end-host specifies a path
(a1; a2; : : : ; an) to be followed by a packetp, where
a1; a2; : : : ; an�1 identify nodes in the infrastructure,
and an identifies the destination end-host. Between
two consecutive nodes along the path,ai andai+1, the
packet is forwarded by IP routing.

Packet replication: An end-host can request an arbitrary
nodea to replicate a packetp (that traverses nodea)
and forward the replica along a path(b1; b2; : : : ; bn).
A packetp can be identified by a subset of fields in its
header such as the source and destination IP addresses,
and eventually the source and destination port numbers.

It is fairly clear that these primitives satisfy the first require-
ment (control of forwarding and replication). The satisfac-
tion of the second requirement follows from satisfying the
first (once hosts can control routing, they can direct routes
toward the computational nodes). The fact that these two
primitives satisfy the third requirement (enabling hosts to
measure path characteristics) is less clear. We discuss this
issue at length in Section 4, where we demonstrate that hosts
can use these primitives to measure the characteristics (such
as delay, loss rate) of the path between any two infrastructure
nodes (we call these paths the “virtual links” in the overlay).

2.3 Implementation Alternatives

The most obvious possibility is to implement these prim-
itives at the IP layer. In fact, IP already implements path
selection in the form ofloose source routing[26]. With
loose source routing, the packet’s IP header carries the path
(a1; a2; : : : ; an). Upon arriving at nodeai, the packet is for-
warded to next node along the path,ai+1, via IP. To im-
plement packet replication, we can add a simple primitive
that causes a nodea to replicate a given packetp, and
then replace the path in the header of replicap with a new
path(b1; b2; : : : ; bn) provided by the end-host. In this case
packetp is identified by its IP source and/or destination ad-
dress.

Another alternative is to implement the path selection and
packet replication primitives using loose source routing at
the transport layer instead of the IP layer. In this case the
hops along the path represent processes (identified by an IP
address and a port number) instead of nodes. This scheme
makes it easier to support data manipulation functionalities,
as an infrastructure node can run multiple services, each
identified by a port number, and end-hosts can use the path
selection primitive to route the packets through these ser-
vices.

In general, loose source routing implementations assume
that the packet carries the path in its header. Another ap-
proach would be toset-up forwarding state at all hops
along the path. Suppose a host wants to send a packetp
along path(a1; a2; : : : ; an). Then instead of inserting the
path in the packet’s header, the host inserts forwarding state
(packet id(p); ai+1) at each nodeai, 1 � i < n, where
packet id(p) denotes the identifier of packetp. Upon, re-
ceiving a packetp, nodeai forwards the packet to next hop
ai+1. While this solution does not require packets to carry
the path in their headers, it requires end-hosts to set-up the
path before sending the packets. Thus, this solution is more
appropriate when sending a large number of packets along
the same path.

A variation of the previous solution is to use a protocol
like label switching [6]. With this solution, each packet
has a local identifier (or label) at each hop along the path,
instead of a unique identifier across the entire network.
Let packet id(p; ai) denote the identifier4 of packetp at
node ai. Then an end-host inserts the forwarding entry
(packet id(p; ai); packet id(p; ai+1); ai+1) at every hopai
alongp’s path. The source sends packets with identifiera1.
Upon receiving packetp, nodeai checks whether it has an
entry for that packet, and if it does, it replacesp’s identifier
(i.e., packet id(p; ai)) with the packet identifier at the next
hop,packet id(p; ai+1), and then forwardsp to ai+1 via IP.

While each of the above implementations approaches are vi-
able, we have chosen to implement these primitives using
i3; our reasons are threefold. First,i3 can support the two
primitives without any changes. Second,i3 is robust in the
presence of node failures because, if a node fails, the traf-
fic is transparently routed around the failed node. Third,i3
is robust against denial of service attacks on both the infras-
tructure and end-hosts [2].

Implementation using i3:

We choosei3 as an instantiation of the two primitives.i3 in-
deed supports these primitives naturally, but our choice was
influenced by the following reasons.

1. Identification of infrastructure nodes:End-hosts need a
mechanism of identifying the nodes of the infrastruc-
ture as they need to explicitly choose the paths. One

4Here we assume that the packet has a special identifier field
such as the flow label field in IPv6 that stores packet’s identifier.
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obvious possibility is to use the IP address of infras-
tructure nodes. However, this solution suffers from the
following problems: (i) lack of anonymity of infrastruc-
ture nodes, and (ii) explicit failover mechanisms have to
be embedded in end-hosts in the event of an infrastruc-
ture node failing.i3, on the other hand, provides a nat-
ural mapping of nodes to logical identifiers and robust
failover mechanisms.

2. Security:Our related work [2] shows thati3 is robust to
DoS attacks on both the infrastructure and the end-hosts
that use it. Allowing end-hosts to perform measure-
ments using the same communication primitives pro-
vides the infrastructure implicit protection. However,
we note that a consequence of usingi3 is that an end-
host that performs measurements must have resources
of the same order of magnitude as that consumed by
performing the measurement. This implies that only
powerful nodes (such asNEWSproviders) would be
able to maintain the map of the entire infrastructure.

There is no doubt that some of the functionality we discuss
can be and has been implemented at the IP layer, e.g. loose
source routing. However, security implications coupled with
the inability to change functionality at the IP layer has been
the reason for the lack of widespread deployment in the In-
ternet. We believe that implementing the primitives at the
overlay would be a first step in understanding how well they
cope up with the demands of applications, and would prob-
ably lead to these primitives being pushed down the Internet
protocol stack in the future.

Target deployment:

We conceive of a large-scale shared overlay infrastructure
of nodes with very high connectivity. However, we are not
sure about the economic model of the infrastructure and the
NEWSsystem, whether there would be a single for-profit
provider (e.g. Akamai), multiple for-profit providers (e.g.
like ISPs today), or a cooperative nonprofit system (e.g. Plan-
etLab). However, since cooperation of ISPs is not required,
third-parties can provide this service easily.

3 System architecture

Figure 1 illustrates the components of our system architec-
ture and their interaction.

A. Overlay infrastructure The overlay infrastructure con-
sists of a set of nodes that implement our two primitives:
path selectionandpacket replication. In addition, some of
the nodes may implement other services such as data manip-
ulations,e.g.,transcoding. However, defining the interfaces
for these more application-specific services is not the subject
of this paper. Here we only assume that path selection allows
end-hosts to insert the data manipulation services in the data
path by controlling the routing of its packets.

B. NEtwork Weather Service (NEWS) The central com-
ponent of our architecture is theNEtwork Weather Service

Weather
Service 1

Weather
Service 2

Client A

Client B
Client D

Network measurements

Query/reply routing info.

Setup routes

Client C

Figure 1:System Architecture. NEtwork Weather Service(NEWS
) provider’s agents measure and summarize performance character-
istics in the overlay. Clients request routing information from these
agents and, based on this information, set up its own routes in the
overlay. Clients may also use to do their own measurements (e.g.,
clientC).

(NEWS). NEWSis a third party service that uses the two
primitives to measure the available bandwidth, loss rate,
and latency between various nodes in the infrastructure. The
NEWSsystem uses this information to maintain a perfor-
mance map of the overlay infrastructure, and to provide
clients with path information that satisfies clients’ require-
ments. While in this paper we assume that there is only one
NEWSprovider, in general there can be several that monitor
the infrastructure. DifferentNEWSproviders can optimize
their measurements for different application classes, such as
file transfer, or video streaming.

C. End-hosts Assume a client wants to send data traffic
between nodesn1 andn2 in the infrastructure. Then, the
client queries one of theNEWSagents (which is a node of
the NEWSsystem) about a route between nodesn1 andn2
by specifying its performance requirements,e.g.,minimize
the delay or maximize the available bandwidth between the
two nodes. In turn, the agent returns a route that meets the
client’s performance requirements. Upon receiving the reply,
the client uses the path selection primitive to send data along
the path thatNEWSreturns. Alternatively, aNEWSagent can
return a set of paths between nodesn1 andn2, and let the
client select the best path among all those paths.

Scaling aNEWSsystem:

Since the overlay infrastructure we are dealing with is ex-
tremely large (possibly 1000s of nodes), monitoring the en-
tire set ofN2 overlay links (N is number of infrastructure
nodes) is not feasible. By maintaining the overlay network
as a hierarchical random graph, theNEWSsystem moni-
tors only a small subset of links at the expense of providing
marginally worse results to the clients. We discuss this later
in the paper.
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4 Performing measurements using infrastruc-
ture primitives

To provide greater flexibility, an infrastructure should al-
low any end-host to measure performance characteristics be-
tween arbitrary infrastructure nodes. In this section, we de-
scribe how end-hosts can do this measurement using only the
two primitives that we have introduced. Before doing so, we
discuss the pros and cons of this approach.

Advantages:

1. Flexibility: Anyone with sufficient resources can start
a NEWSsystem tuned to the applications that they tar-
get. The particular algorithms for measurement can be
changed as and when needed. Infrastructure cannot dis-
tinguish between data and measurement traffic, and so
cannot “stop” any measurement.

2. Long-term efficiency: Measurement done outside the
infrastructure has the advantage that it is performed
only if necessary and only up to the granularity needed.
E.g. if all applications need coarse bandwidth data, an
infrastructure performing measurement at a fine granu-
larity would be wasting bandwidth.

3. Security: We leverage the results from [2] that building
our infrastructure usingi3 guarantees that an end-host
with limited resources cannot arbitrarily DoS the in-
frastructure. Introducing new primitives that performs
certain active measurements (e.g. bandwidth measure-
ment) might not have this property, and hence the in-
frastructure cannot allow anyone to use that primitive.

Disadvantages:Compared to direct measurements at the
infrastructure nodes, our indirect techniques might have
lower accuracy. Moreover, each instantiation of a mea-
surement might consume more resources than direct
techniques.

We do recognize the possibility of infrastructure nodes pro-
viding more support by performing measurements actively
or passively. However, (i) this study is orthogonal to our
work and would work well to improve our system (this
is especially true of passive measurement techniques), and
(ii) we have to protect against end-hosts launching DoS at-
tack which one can envisage if infrastructure performs active
measurements. We defer this study to the future.

4.1 Delay

Consider the problem of estimating the round-trip time
(RTT) between two arbitrary nodesn1, andn2, respectively.5

Figure 2(a) illustrates the technique used by a hostR to per-
form this measurement. The main idea is to send packets
(probes) along paths(R; n1; R) and (R; n1; n2; n1; R), re-

5Measuring the one way delay betweenn1 andn2, while more
desirable, requires the clocks of the two nodes to be synchronized.
Thus, measuring the one way delay is difficult even assuming full
control on the two nodes.

id 1 id 2

id 1 R

id 2 id� 1

m

m 1

id� 1 R

m 1

m 1

m

m

m 1

(a) (b)

R R

n 1

n 2 =node(id 2 )
n 2

n 1 = no d e (id 1 )

m 1

m 1

Figure 2:(a) Communication pattern used to measure the round-
trip time (RTT) between two IDs from a remote hostR.Rmeasures
the RTT between nodesn1 andn2 as the time interval between re-
ceiving back the original probem and its copym1. (b) The imple-
mentation of the communication pattern ini3.

spectively, and then compute the RTT betweenn1 andn2 as
the difference between the RTTs of these packets.

More precisely,R uses (1) the path selection primitive to pe-
riodically send a probem along the path(n1; R), and (2) the
packet replication primitive to askn1 to replicate each probe
m and then send the replica (m1) along path(n2; n1; R).
The following actions take place at each node as a result of
sending a probem:

� n1: upon receivingm, n1 sends the probe back toR,
and at the same time creates a new copy ofm (call it
m1) and sends it ton2.

� n2: upon receiving copym1, noden2 sends the copy
back toR via noden1.

� R: R computes the RTT betweenn1 andn2 as the time
interval between the arrival time of probem, and the
arrival time ofm’s replicam1.

Figure 2(b) shows how this technique can be implemented in
i3. R chooses three IDsid1, id2, andid01 such thatid1 and
id01 identify (i.e.,are mapped on) noden1, andid2 identifies
noden2. ThenR inserts the following four triggers:(id1; R),
(id1; id2), (id2; id01), and(id01; R), and then sends a probe
m = [id1; dummy] periodically.

4.2 Loss Rate

In this section we consider the problem of measuring theuni-
directional loss rate between two nodes,n1 andn2, respec-
tively. To achieve this, we use a similar setting as the one
used to measure the RTT between nodes with the difference
thatR uses the packet replication primitive to ask noden2 to
replicate probem1 and send the new replica,m2, back toR
(see Figure 3).6 Replicam2 is used to differentiate between
a loss on the virtual link(n1 ! n2) and a loss on the virtual
link (n2 ! n1).

6To generate this new copy ini3, R needs only to add a fifth
trigger,(id2; R), to the setting in Figure 2(b).
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m 1

m

R

m 2

n 1 n 2

m 1

m 1

Figure 3:Communication pattern used to estimate the loss rates
along virtual links(n1 ! n2), and(n2 ! n1), respectively.

After sending a probem, R concludes that there was a loss
on the virtual link(n1 ! n2), i.e., replicam1 was lost be-
tween nodesn1 andn2, if R receives probem back, but it
does not receive any of the replicasm1 andm2.

Next, we give an intuition of why this test might work in
practice by showing that probability of false positive is small.
Let P (l; a ! b) denote the probability that packetl is lost
on link (a ! b). Assume that the loss probability on each
virtual link is p, wherep� 1, and that the loss probabilities
are not correlated. The probability of false positives,i.e., the
probability thatR incorrectly decides thatm1 was lost on
link (n1 ! n2), is

P = (1� P (m1; n1 ! n2))� (1)

(1� [1 � P (m1; n2 ! n1)][1� P (m1; n1 ! R)])�

P (m2; n2 ! R)

' 2p2

where the first term on the right hand side,(1�P (m1; n1 !
n2)) represents the probability thatm1 was not dropped on
(n1 ! n2), the second term represent the probability that
m1 was dropped either on(n2 ! n1) or (n1 ! R), and
the last term represents the probability thatm2 was lost on
(n2 ! R). Thus, the probability of false positive,2p2, is
considerably smaller than the measured loss ratep. In Sec-
tion 8.1.2 we use extensive wide area measurements to vali-
date this technique.

While R can estimate the loss rate on the reverse link,
(n2 ! n1), by inverting the communication pattern shown
in Figure 3, next we give a solution that allowsR to esti-
mate this loss rate without any additional measurements. In
particular, while measuring the loss rate on the direct link,
(n1 ! n2), R also records the following two events:

1. the receiving ofm2 but not ofm1

2. the receiving ofm1 orm2 but not ofm

Let f1 be the frequency of occurrence of event 1, andf2 be
the frequency of occurrence of event 2. Thenf1 estimates
the loss rate along virtual path(n2 ! n1 ! R), while f2
estimates the loss rate on virtual link(n1 ! R). Finally,R
estimates the loss rate on(n2 ! n1) asf1 � f2. Note that
this estimation procedure assumes that the losses on links

R

m 1

m k

m

n 1

R

m

n 2 n 1 n 2

(a) (b)

Figure 4:Communication pattern used to estimate the available
bandwidth on virtual link(n1 ! n2) when (a) the bottleneck is at
(n1 ! n2), and (b) when the bottleneck is either at(R ! n1) or
at (n2 ! R).

(n2 ! n1) and(n1 ! R) are not correlated. Finally, it can
be shown that if the loss probability on each virtual link is
O(p), the probabilities of false positives for bothf1 andf2
areO(p2).

4.3 Available Bandwidth

To measure the available bandwidth (avail-bw), we use a
TCP-Vegas like algorithm [5]. Such an algorithm reacts to
congestion when the RTT increases rather than waiting for a
packet loss. This helps to minimize the impact of the mea-
surement algorithm on the background traffic. Note that the
technique we present here can be easily extended to say, TCP
Reno, and so what we try to emphasize here is the flexibility
of the indirect measurement technique, and not the fact that
we use delay based technique.

To estimate the avail-bw on virtual link(n1 ! n2), a host
R sends traffic on path(R ! n1 ! n2 ! R) as shown
in Figure 3(a).R uses a slow start algorithm which expo-
nentially increases the congestion window size, and conse-
quently the sending rate, until the RTT exceeds the mini-
mum RTT observed so far by a predefined threshold. When
this happensR concludes that there is congestion on path
(R ! n1 ! n2 ! R). In order to determine whether
(n1 ! n2) is the congested virtual link,R:

1. uses packet replication to askn1 to replicate each
packetR sends and to forward the replica ton2

2. reduces the sending rate by half.

The net result of these operations is that while the rate of the
traffic on both(R ! n1) and(n2 ! R) is halved, the rate
on link (n1 ! n2) remains unchanged, as each packet is
now sent twice on this link.

If RTT does not decrease as a result,R concludes that
(n1 ! n2) is congested and that theavail-bw on the link
is twiceR’s current sending rate. If not,R repeats the pro-
cess. The process ends when a decrease of the sending rate
and a corresponding increase of the replication factork on
link (n1 ! n2) does not cause the RTT to decrease. Letb
be the sending rate ofR when the process terminates. Then
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the available bandwidth on link(n1 ! n2) is estimated as
b � k. Furthermore, when replicating packets on(n1 ! n2),
R scales the TCP parameters appropriately such that it emu-
lates a normal TCP flow.

subsectionBottleneck Bandwidth

To measure the bottleneck bandwidth between two nodesn1
andn2 we use a packet-pair like technique [20]. Consider a
similar communication pattern as the one shown in Figure 4.
R sends pairs of packets on the path(R ! n1 ! n2 !
R). The inter-departure time between any two pair of packets
is maintained fixed. Then,R monitors the inter-arrival time
between each pair of packets, while increasing the number
of replicas on the virtual link(n1 ! n2). When the inter-
arrival time starts to increase,R stops. Letd be the inter-
arrival time, andk be the number of replicas at the end of
the experiment. Then the bottleneck bandwidth of the virtual
link (n1 ! n2) is computed as(kl)=d, wherel represents
the packet length.

In our estimation we assume that the IP routers use a FIFO
scheduling discipline. This is a reasonable assumption in to-
day’s Internet. In fact, all algorithms to estimate bottleneck
bandwidth that we are aware of (such [10, 21]) use this as-
sumption.

5 How to scaleNEWS

Ideally, a WS would monitor all possible virtual links in the
infrastructure. However, in a large infrastructure this is in-
feasible, as the total number of links isO(N2), whereN is
the number of nodes. In this section, we present three simple
designs which exploit the trade-off between scalability and
the “quality” of the paths returned by the WS.

5.1 Random Graphs

The first approach we explore to reduce the number of links
that need to be monitored in the overlay is to monitor a
random subset of the links. Equivalently, the WS maintains
the overlay network as a random graph. To construct a ran-
dom graph with an average degreed, WS picksd=2 ran-
dom virtual links starting at every node in the infrastruc-
ture and monitor only those links. If one of those links (say
L = (a; b)) fails, the WS will replace it with another random
link. This link is chosen adjacent to the node, chosen from
a andb, which has the lower degree. Ford = O(logN) the
graph is connected with high probability.

This simple approach has several advantages. First, a random
graph is easy to construct and maintain. Second, they are ef-
ficient in terms of number of hops needed for reachability. A
random graph withN nodes and average degreed has an av-
erage path length ofO(logdN). The diameter7 of the graph
is with high probability no larger than2 logdN . For com-
parison, note thatlogdN represents the lower bound on the

7The diameter of a graph is defined as the longestshortest path
in the graph

diameter of any graph of degreed.

A random graph does not optimize for any particular metric.
As a result, a random graph can be suboptimal with respect
to every single metric. We address this problem next.

5.2 Weighted-random Graph

In this section, we give a simple algorithm to construct a
pseudo-random graph optimized for a given metric. For ex-
ample, let us consider the problem of building a graph with
average degreed that provides low latency paths. One way to
achieve this goal is to pick for each node (i)d1=2 virtual links
to random nodes, and (ii)d2 links to its closestd2 neighbors;
these links are calledproximitylinks (Note thatd1+d2 = d).
To find the proximity links of a noden, the WS can start with
d2 random links originating atn, and then constantly probe
other links originating atn. If the WS finds a link originating
atn that is shorter than a proximity link ofn, then it replaces
the largest proximity link ofn with the new link.

The resulting graph is a superposition of a random graph
with average degreed1, and a graph in which each node
knows its closestd2 neighbors. Compared to a random graph
with the same average degree, this graph is slightly less ro-
bust, but provides paths with lower latencies.

A possible disadvantage of weighted-random graphs is that
a WS may need to construct and maintain a different graph
for each metric. Indeed, a graph specifically built to optimize
a metric is not always appropriate for another metric unless
the two metrics are correlated.

5.3 Hierarchical Random Graphs

So far we have implicitly assumed that the WS knows the
entire graph. However such an approach will not scale for
large networks consisting of thousands of nodes or more. In
this section, we discuss a simple solution to alleviate this
problem.

Our solution builds a two-level hierarchy. At the first level,
nodes are randomly partitioned into buckets of roughly equal
sizes. Each node hasd1 links to nodes in the same bucket,
andd2 links to the closest nodes that belong to other buckets.
For reasons that will be clear soon, in this construction, we
make sure that there is at least one link from each bucket to
any other bucket.

The scalability of this solution stems from the fact that each
bucket can be maintained by a different server. LetSi be
the server responsible for the nodes in bucketi. ThenSi will
monitor all links originating at the nodes in bucketi. Assume
a client wants to find a path from noden1 to noden2. Two
cases arise: (i) If both nodes belong to the same bucket then
the client needs to contact only the server responsible for
that bucket. (ii) Suppose now that the two nodes belong to
different buckets,i.e.,noden1 belongs to bucketi and node
n2 belongs to bucketj. In this case the client needs to contact
both serversSi, andSj . Upon receiving the client’s request,
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Figure 5:The CDF of the relative delay penalty (RDP) for three overlay graphs: random, weighted random, and hierarchical. In all cases,
the size of underlying graph is16; 384, the number of overlay nodes is4; 096 and their average degree is around20.

serverSi returns all paths that originate at noden1 and reach
bucketj, while serverSj returns all paths that originate at
noden2 and reach bucketj. The client uses this information
to compute the best path betweenn1 andn2.

We make some observations regarding the complexity of the
algorithm. (i) LetN be the total number of nodes in the in-
frastructure, and letM =

p
N be the number of buckets.

Then, each WS server is responsible for onlyO(M) mea-
surements. (ii) In order to service requests from clients (to
get shortest paths) quickly, a WS may decide to precom-
pute all pairs shortest paths within its bucket. Since there are
M2 pairs, each having an average path length oflogM , total
space required would beO(M2 logM). (iii) Finally, a WS
reply containsd2 paths on average. To put things in perspec-
tive assume an infrastructure with104 nodes, and suppose
d1 = d2 = 10. Then, each server needs to monitor only
aboutM � (d1 + d2) = 2000 virtual links on average, and
store about104 pre-computed paths. We believe these values
are feasible in practice.

5.4 Comparison

In this section, we use simulations to compare the three graph
construction methods: random, weighted random, and hier-
archical. We use a transit-stub topology generated with the
GT-ITM topology generator [15] with16; 384 nodes, where
link latencies are 100 ms for intra-transit domain links, 10 ms
for transit-stub links and 1 ms for intra-stub domain links.
There are4; 096 infrastructure nodes randomly assigned to
stub nodes.

Figure 5 shows the cumulative distribution function (CDF)
of the relative delay penalty (RDP) for two transit stub hi-
erarchies (see [1] for details). RDP is defined as the ratio of
the shortest path in the overlay graph and the shortest path in
the underlying network. The results are aggregated over10
different runs. For each overlay graph we chose parameters
d, d1, andd2 such that the average degree of a node is about
20. In the case of the weighted random graph, each node has
10 random neighbors and10 closest neighbors on average. In

the case of the hierarchical graph each node has around10
closest neighbors to other buckets, around6 random neigh-
bors in the same bucket, and around4 closest neighbors in
the same bucket. As expected, the weighted random graph
performs much better than the random graph, with the hier-
archical random graph in between. More precisely, in Fig-
ure 5(a), the90-th percentile of the RDP is3:74 for the ran-
dom graph,1:16 for the weighted random graph, and2:33
for the hierarchical graph, respectively. Similarly, the90-th
percentiles in Figure 5(b) are3:14, 1:12, and2:25, respec-
tively.

6 Applications

In this section, we give several examples of how our infras-
tructure can be used by applications.

Adaptive Routing Several previous studies [4, 30] have ob-
served that Internet routes are not always optimal and that
routing packets through intermediate nodes (i.e., use some
form of loose source routing) can significantly improve end-
to-end performance. In our system end-hosts can easily op-
timize for various performance metrics. Consider a senders
and a receiverr connected at the overlay nodesns andnr re-
spectively. Then, eithers or r can query the WS for the best
path betweenns andnr given an application specific perfor-
mance metric such as latency, bandwidth, or loss rate. Note
that in our system, the quality of the paths depends only on
how sophisticated the WS is. Because the WS is not a part
of the infrastructure, the quality of the paths can constantly
evolve without any changes to the infrastructure.

Multicast Using our infrastructure to implement single
source overlay multicast trees is straightforward. Consider
a multicast sourceS that is connected to overlay nodens.
Suppose a receiverri, connected at overlay nodeni, wants
to join the multicast group. Receiverri asks the WS for an
overlay path fromns to ni. Let (ns; n

i
1; : : : ; n

i
k; ri) be this

path. Thenri asks nodens to send a replica of the multicast
packets tori along the nodes(ni

1; : : : ; a
i
k). We make some

observations:
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1. The multicast tree consists of the union of all unicast
paths fromns to each receiver. Thus, the path from
sender to each receiver in the multicast tree is as effi-
cient as the unicast path.

2. Each receiver can optimize its path in the multicast tree
using any of the available metrics. Building a multicast
tree that minimizes latency is as easy as building a mul-
ticast tree that maximizes the throughput.

3. Each parent in the multicast tree generates a number of
replicas no larger than its degree in the overlay graph.

4. Each node in the multicast tree stores only ani3 trigger
which is shared by all children. This trigger is refreshed
by all children. An efficient algorithm that avoids re-
fresh message implosions is given in [22].

Finding closest replicaMany distributed file sharing sys-
tems, and content distribution systems require to find the best
replica, where “best” generally means the “closest” in terms
of delay. Considerm servers implementing the same service
that are attached at the infrastructure nodesn1; : : : ns. Then
a client attached at nodenc can query the WS for the best
paths betweennc and nodesn1; : : : ns, and then chose the
best path among these paths. Alternatively, to improve the
efficiency, the WS may expose an interface that allows the
client to query for the best path between a given node and a
subset of other nodes.

7 Implementation Details

We have implemented a prototype of our system on top
of i3 and deployed it in the PlanetLab testbed. In our im-
plementation ofi3, the length of IDs is256 bits. Node
IDs are chosen such that their64-bit suffix is zero. This
guarantees that all IDs with the same prefix are mapped
on the same node. When returning a path, the WS iden-
tifies nodes only based on their64-bit prefix. End hosts
use these64-bit IDs to construct the trigger IDs. Assume
that the WS returns a path(a1; : : : ; an), whereai is an
64-bit ID, to a hostR. Host R will then insert triggers
(a1jr1; a2jr2); : : : (an�1jrn�1; anjrn), whereri is an 192-
bit suffix chosen by the application, and “j” denotes the con-
catenation operator. Note that all triggers with IDsaijri are
stored at nodeai.

We have implemented a centralized WS and deployed it on a
well-connected node in the network. Since the size of Plan-
etLab is relatively small (i.e.,about110 nodes), this solution
works well in practice. The WS employs the weighted ran-
dom algorithm to compute the overlay graph. Currently the
WS offers only the capability of finding the best path be-
tween two nodes in the infrastructure given corresponding to
one of the following metrics: delay, loss, and available band-
width. We expect that the API offered by the WS to evolve
substantially as we gain more experience with applications
that use the WS. For instance, WSes could expose a con-
strained routing primitive that allows the end-hosts to ask
for a shortest delay path subject to available bandwidth con-
straints.

We have also instrumentedi3 nodes to log all probe packets
sent by the WS, and record in each probe packet the path fol-
lowed, with the exact times when the packet traversed each
hop. We use this information to compute theactualperfor-
mance characteristics of the virtual links and use them to
evaluate the accuracy of our estimation algorithms.

8 Experiments

In this section, we present the experimental evaluation of our
design. All our experiments are conducted on the PlanetLab
testbed which consists of about110machines located at over
40 locations in US, Europe, Asia and Australia. In some
cases, all pairs of nodes did not have IP connectivity. The
fact that PlanetLab machines are relatively well-connected
is consistent with our design that assumes an overlayinfras-
tructurerather than an end-host based overlay.

Section 8.1 evaluates the accuracy of our algorithms that
estimate the virtual link characteristics (described in Sec-
tion 4), Section 8.2 evaluates our path selection algorithms
(presented Section 4) and the impact of estimation inaccura-
cies on path selection.

8.1 Virtual Link Experiments

In this section we evaluate the estimation algorithms de-
scribed in Section 4. For each performance metric (i.e.,RTT,
loss rate, available bandwidth, and bottleneck bandwidth) we
compare theactualvalues to the values estimated by our al-
gorithms. To compute the actual values we instrument all
machines to perform pairwise measurements between them.
In summary, our experiments show that our estimation algo-
rithms are accurate particularly in the case of round-trip-time
(RTT) and loss rate.

8.1.1 Round Trip Time (RTT)

Figure 6(a) shows the scatter plot of the estimated RTT ver-
sus the measured (actual) RTT between any two nodes in the
infrastructure over an150 sec time interval. Every virtual
link is sampled every10 sec, thus the plot contains around
15 samples per virtual link. Referring to Figure 2, recall that
the estimated RTT is computed as the difference between the
arrival time of copym1 and the arrival time of the original
packetm at nodeR, while the actual RTT is computed as
the time interval between sending and receiving copym1 at
noden1.

Figure 6(b) shows the scatter plot of the median values of
the RTTs for the samples plotted in Figure 6(a). These re-
sults shows that our RTT estimation algorithm is very accu-
rate. Out of a total of90; 000 samples shown in Figure 6(a)
less than8% of samples have an error> 10%. If we take
the median among15 consecutive samples, only1:7% of the
samples have a relative error> 10% (see Figure 6(b)). Most
inaccuracies are due to estimating very low RTTs between
machines on the same LAN. As a side note, the number of
samples with RTTs larger than600 ms is lower than0:4%.
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Figure 6:The scatter plot of the actual and the measured RTT between two arbitrary IDs.

As expected these samples correspond to inter-continental
links.

8.1.2 Loss Rate

Figure 7 shows the scatter plots of the actual versus the mea-
sured loss rates for up to2250 pairs of nodes. To estimate the
loss rate between two nodes we use the scheme described in
Section 4.2. Each data point is the result of sending1000
probes. In most cases the measured loss rates were quite
small; only in8% of cases we measured a loss rate larger
than2%.

Figures 7(a) and (c) show the loss rates for all links in the for-
ward, and reverse directions. The points below the linex = y
are mainly due to false positives,i.e., the WS wrongly de-
cides that there was a loss on the monitored link. The points
abovex = y are due to the fact that the WS ignores the
probes for which it does not receive any response. As ex-
pected the estimation accuracy of the loss rate on the for-
ward direction is better than the estimation accuracy of the
loss rate on the reverse direction.

In both cases, the inaccuracies occur when the losses be-
tween the WS and the measure link are considerably larger
than the loss rate on the virtual link. To verify this hypothesis
we have identified the nodes that are responsible for the high-
est loss rates, and eliminate them from the measurements.8

The remaining results are plotted in Figures 7(b) and (d),
respectively. As expected, the estimation accuracy improves
considerably especially on the reverse path. The estimation
accuracy is90% in 89% of the cases in the forward direction
and78% of the cases in the reverse direction.

We make two observations. First, as shown in Figures 7(b)
and (d), we are more likely to overestimate than underesti-
mate the loss rates (all points belowx = y represent overes-
timations). We do not expect over-estimations to be a serious
problem in practice. If the WS over-estimates the loss rate

8During the experiments reported here we identified five such
nodes: two atcs.unibo.it , two atcuhk.edu.hk , and one at
nbgisp.com .

on a particular link, the worst it can do is to not to return the
best path to an application. However, in a network with rich
connectivity we expect that the effects of such occasional
sub-optimal paths to be minimal. Second, one can easily ob-
tain better results for the reverse path by simply reversing the
measurement setting for that links. The price to pay is dou-
bling the overhead since now we have to send probes in both
directions of the measured link.

8.1.3 Available Bandwidth
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Figure 8:The scatter plot of the actual and the estimated available
bandwidth.

To evaluate the technique presented in Section 4.3 for deter-
mining the available bandwidth, we chose40 nodes, each at
a different PlanetLab site9. Figure 8 shows the scatter plot
of the estimated versus the actual available bandwidth for all
pairs. The actual available bandwidth between any two nodes
is measured by transferring an100 KB file between the two
nodes.

While the scatter plot in Figure 8 is quite spread out, we note
that in70% of pairs our estimates are within a factor of two
of the actual values. We believe that these results are reason-
able taking into account the fact that the available bandwidth

9Only one node per site was used to economize on the band-
width that we use for our experiments
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Figure 7:Scatter plots of the actual versus the measured loss rates: (a) forward path, (b) forward path after eliminating nodes that cause a
high error rate, (c) reverse path for all links, (d) reverse path after eliminating nodes causing high error rates.

is usually a more dynamic phenomenon. Furthermore, we se-
riously under-estimate only in the cases when the available
bandwidth is very large. This is because the WS limits the
probing traffic to100 KB in order to reduce the measure-
ment overhead, and this is not enough to reach the TCP fair
share.

8.1.4 Bottleneck Capacity

Using the algorithm presented in Section 4.3, we estimate the
bottleneck capacity along a virtual link between two pairs of
nodes. In the interest of space, we only summarize the re-
sults. We compare our results with direct measurements be-
tween any two nodes using the packet pair technique [20].
In most cases, the estimated bottleneck capacity was within
20% of the actual bottleneck capacity estimated by using the
packet pair technique. However, when measuring the bottle-
neck capacity between two machines on the same LAN, our
algorithm can under-estimate it by a factor of up to2:5. In
practice, bottleneck bandwidth estimates can be used only
to distinguish between the capabilities of nodes at a coarse
granularity (e.g.,between aT1 line andT3 line) since this
metric does not give an indication of current congestion lev-
els. Hence, we believe that our estimation techniques is ac-
curate enough for practical purposes.

8.2 Unicast

In this section, we study the quality of the path in the graph
maintained by the WS in terms of RTT and loss rate.
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Figure 9:The cumulative distribution function (CDF) of the rela-
tive delay penalty (RDP) for all pairs of a 111 node network.

RTT Figure 9 plots the CDF of the relative delay penalty
(RDP) between two arbitrary nodes in PlanetLab. The RDP
between two nodesn1 andn2 is computed as the ration of (1)
the lowest RTT path betweenn1 andn2 in the graph main-
tained by WS to (2) the RTT of the direct IP path betweenn1
andn2, respectively. For random generated graphs the RDP
is quite large. When the average degree is4 only28% of pairs
have an RDP value smaller than2, while 7:5% of pairs have
RDPs larger than10. As expected, results improve when the
degree increases. For a degree of8, 68% of pairs have RDPs
lower than 2. However, even in this case there are3:5% pairs
with RDPs larger than10. The main cause for large RDPs is
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due to nodes that are very close to each other but which are
not directly connected in the overlay graph.

The above problem is fixed by using weighted-random
graphs. Indeed, even when the average degree of a weighted-
random graph is8 —i.e.,each node has links to two random
nodes and to its three closest neighbors on average — more
than99:7% pairs have RDPs smaller than2, and no pair has
an RDP larger than4. Furthermore,13% of the pairs have
RDPs smaller than one,i.e., the latency of the path returned
by WS issmallerthan the latency of the direct IP path.
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Figure 10:The cumulative distribution function (CDF) of the rel-
ative loss penalty (RLP) for all pairs of a 30 node network.

Loss RateWe compute the path with the lowest loss rate
as the shortest path in the graph where the weight of each
edge represents the loss rate of the corresponding virtual
link. This assumes that losses experienced by different vir-
tual links are not correlated. Figure 10 shows the CDF of
relative loss penalty (RLP) (i.e. estimated loss rate as a frac-
tion of actual loss rate) for all pairs for 30 nodes. The loss
rates are computed over1000 probes.

With a random degree of5, the loss rate on84% of the pairs
was no worse than that on the underlying IP path between
those pair of nodes, with31% of the pairs getting paths with
lower loss rates. In this case, weighted-random graphs pro-
duce marginal improvement over random graphs. This is be-
cause, in most cases, the loss rates are already very small
and choosing low loss virtual links does not produce much
improvement. However, in both cases, there are about9% of
the pairs that get paths with higher loss rates than in the un-
derlying IP. This was predominantly due to inaccuracies in
estimating the loss rate, which might arise if the loss rate be-
tween the WS and one of the nodes of the pair is much higher
than the loss rate between the pair of nodes.

8.3 Multicast Example

A single source multicast tree built is merely a union of the
unicast paths that the WS would return for each receiver. Us-
ing nodes on37 PlanetLab sites, we built a single source
low-delay multicast trees using the unicast paths that the WS
returned. Figure 11 gives the tree that results with the source
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Figure 11:Delay-based multicast tree, with source at Stanford

at planetlab-2.stanford.edu . Since in most cases, the
machines on the same site were adjacent in the multicast
tree 10, we represent each site by one node in the graph.
We make a few observations: (i) Link stress, i.e. the number
of times a packet is replicated on a link, is small at almost
all nodes (ii) The tree resembles the underlying geography
to a good extent, for e.g., nodes in the vicinity of NY, i.e.
Columbia, NYU, RPI, Cornell and Columbia are close to-
gether in the tree.

8.4 Overhead

In this section we evaluate the communication overhead in-
curred by the WS to maintain the performance map of the
PlanetLab network consisting of110 nodes, assuming the
WS maintains an overlay graph with average degree10.

The WS can use a single communication pattern,i.e., the
one presented in Figure 3, to measure both the RTT and the
loss rate in both directions of a virtual link. To implement
this communication primitive, the WS needs to maintain five
triggers for each virtual link. For each probe, the WS can
receive up to three replies back. LetTl be the time period
used to send a probep, and letTtrigger be the time period
to refresh ani3 trigger. To maintain a graph withe edges,
the WS has to sende(1=Tl + 5=Ttriggers) refreshes/probes
per second, and be able to receive3e=Tl probe replies per
second, whereTtrigger = 30 sec. Since there are around
550 = 110 � 10=2 edges in the overlay graph, and assuming
that the WS probes every link each second (Tl = 1 sec),
the WS needs to send642 packets and receive1650 packets
per second. Since the length of ani3 refresh packet is137
bytes and the length of a probe is90 bytes (this includes the
i3 header), the WS generates< 0:6 Mbps on the outgoing
connection, and< 1:2 Mbps on the incoming connection.

The available bandwidth evaluation algorithm is more heavy
weighted, as the WS needs to maintaink+2 triggers, where
k is the replication factor along the measured link. In our

10In fact, the WS can take this fact into account and return paths
in which two machines on the same subnet have parent-child rela-
tionship.
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implementation we boundk = 10, and bound the number
of packets of one measurement to100. Let Ta = 3 min be
the time period of evaluating the bandwidth on each link.
Since the probe packet in this case is1 KB, the outgoing
and incoming bandwidth required to estimate the available
bandwidth of all virtual links is about2:6 Mbps.

Finally, assuming that we monitor the bottleneck bandwidth
on each link every5 min, the measurement overhead on both
incoming and outgoing connection is about0:25 Mbps.

In summary, the overhead of maintaining the performance
map of the current PlanetLab testbed (assuming an aver-
age degree of10) is 3:6 Mbps for the outgoing bandwidth,
and4 Mbps for the incoming bandwidth. These figures are
reasonable for a well connected machine. Alternatively, the
measurements can be easily partitioned among different ma-
chines, thus reducing bandwidth requirements per machine.

9 Related Work

Jannotti has recently proposed two primitives, namelypath
painting andpath reflection, that can significantly improve
the efficiency of overlay networks [18]. Path painting allows
two or more receivers to discover their common path from
a given sender. Path reflection allows an end-host to ask a
router to replicate the packets on its behalf. This is similar
to our packet replication primitive except for the fact that a
replica is not source routed. These two primitives are pro-
posed in the context of IP and use the existing routing infras-
tructure. Thus, the goal of this work is different from ours;
the primitives proposed by Jannotti enable overlays to use
the existing IP routing infrastructure more efficiently, while
our primitives are designed to allow hosts to directly control
the routing of the packets.

ESP [7], a light-weight router-based building block, allows
packets to create temporary state at routers via short, pre-
defined computations. Though some applications have been
shown to benefit from this, it cannot be directly used for
the kind of services which require route selection based on
application-sensitive metrics.

The Internet Indirection Infrastructure (i3) has been recently
proposed to provide support for a rich set of communication
primitives including mobility, anycast, multicast, and service
composition [31].i3 and the work we present in this pa-
per are largely complementary. Whilei3 focuses on support-
ing basic communication primitives, we focus on supporting
generic overlay applications. In fact, due to some desirable
properties ofi3 that we mention in Section 3, we choosei3
as an instantiation of our primitives.

The loose source routing option in IPv4 allows end-hosts to
control the route of its packets by specifying a set of interme-
diate IP routers along the packet’s route [26]. As we allude to
in Section 3, loose source routing can implement the packet
selection primitive. However, IP does not provide any prim-
itive equivalent to packet replication.

Recently, efforts have been made to increase sharing among
various overlays, the most notable example being PlanetLab
[25]. PlanetLab’s intent is to provide a common hardware in-
frastructure that can be shared among overlays during their
initial testing and deployment. While PlanetLab is a perfect
vehicle for research as it gives users complete control on
overlay nodes, it raises significant security and efficiency
challenges that make it inappropriate for commercial use.
Furthermore, because each overlay runs in an independent
sliceof a PlanetLab machine, the sharing between overlays is
mainly at the hardware level; there is little sharing of higher
level design or functionality and thus each application has to
re-implement the functionality it needs from scratch.

Dabeket alhave proposed a common API for structured P2P
overlay networks [9]. However, the proposed API assumes a
design in which end-hosts need to run their own code on the
infrastructure nodes to control routing.

Several measurement and monitoring systems have been re-
cently proposed [23, 13, 16]. While these systems are more
general in that they aim to estimate performance characteris-
tics between any two hosts in the Internet (instead of between
overlay nodes) they usually have one or more of the follow-
ing limitations: (i) limited to estimating the path latency only,
(ii) require to deploy their own infrastructure [13].

There is a large body of literature on algorithms and tech-
niques to estimate the characteristics of IP paths such as
latency, available bandwidth and bottleneck bandwidth [10,
21, 17]. While some of the estimation algorithms presented
in this paper are similar in spirit (e.g.,bottleneck bandwidth
estimation), we also leverage the packet replication primitive
which is not available in IP.

10 Conclusions and Future Work

In this paper, we advocate a shared overlay infrastructure that
exports two primitives. We also show how a network weather
service (NEWS) that maintains a map of the entire infrastruc-
ture can be built using the primitives. The primitives, along
with the weather service primitives enables a large variety of
overlay applications, including adaptive routing, multicast,
and coarse grained data manipulations such as transcoding.
At the heart of our design lie three crucial decisions:

Delegate routing decisions to applications:This design deci-
sion can be viewed as an application of the end-to-end argu-
ments [29] to routing. Applications know their performance
and robustness requirements best, and thus they are in the
best position to select the routes for their traffic.

Delegate performance measurements to (third-party) appli-
cations: This decision can be again viewed as a applica-
tion of the end-to-end arguments to monitoring. Since the
measurements are not embedded in the infrastructure, it al-
lows applications to evolve the measurement algorithms to
best suit their needs, or to support new applications, without
changing the infrastructure.
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Minimalist infrastructure functionality:One of our research
goals in this paper was to identify a minimal set of primi-
tives that can support many of today’s overlay applications.
After gaining a better understanding, a next step would be to
consider other primitives such as QoS.

We do not claim to have a complete solution that when
plugged into the Internet would solve all the problems; we
are exploring what seems to be an interesting space of prob-
lems. We believe that this iterative process of experimenta-
tion and deployment would help us understand the needs and
challenges better. We hope that the ideas in the paper, a first
step towards a grand vision, would evolve enough for us to
indeed realize our vision.

Current status and Future work

We have implementedNEWS over i3 and deployed it on
PlanetLab. A preliminary evaluation of our techniques has
yielded promising results. We are working on developing an
API for people to develop applications usingi3 andNEWS.
We are also implementing a tool for visualizing the data that
theNEWSprovider captures. Using this, we are developing a
multicast application which builds the topology based on the
metrics specified. We are also studying how the measure-
ment results can be improved by measuring from multiple
vantage points. Another problem we are looking at is to de-
termine the placement of theNEWSagents in the wide-area.
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