
Another Way to Find the Nearest Neighbor in

Growth-Restricted Metrics

Kirsten Hildrum John Kubiatowicz Satish Rao

Report No. UCB/CSD-03-1267

August 2003

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Abstract

In this paper, we give sequential and distributed dynamic data
structures for finding nearest neighbors in certain growth restricted
metrics.

In particular, we give a sequential data structure that uses lin-
ear space, and requires O(log n) expected time and O(log n) time for
lookups with high probability. This improved the results of Karger
and Ruhl, whose data structure takes O(n log n) space with compara-
ble expected time bounds. Also, we describe a dynamic, load-balanced
data structure using O(log n) space per node, matching the bound of
Karger and Ruhl.

We note that our algorithm is significantly different in structure
from those of Karger and Ruhl [4], and perhaps substantially sim-
pler. It is based on a technique used for object location developed by
Plaxton, Rajaraman and Richa in [7], which gives it an application to
peer-to-peer networks.

1 Introduction

This nearest-neighbor algorithm is motivated work in peer-to-peer networks,
more precisely, those peer-to-peer networks that are based on the scheme
presented by Plaxton, Rajaraman and Richa [7]. Relevant schemes in-
clude [1, 6, 8, 10]. In these systems, nodes in a network are assigned random
identifiers. For the routing to work properly, each node must know the clos-
est node with certain ID prefixes. Further, when a new node enters the
system, it must be able to find the nearest node with the given prefix, and
may also need to update the information for other nodes. In a special class
of metric spaces, these systems provably perform well.

Essentially, this requires maintaining a nearest-neighbor search data
structure in a metric space. In general metric spaces, this problem is ex-
tremely difficult, but these systems assume a restricted space, and in this
restricted space, the problem becomes tractable.

Karger and Ruhl [4] were the first to look at the nearest neighbor prob-
lem in the restricted class of metric spaces relevant to this application.
They defined a slightly-broader class of metric spaces they called growth-
restricted. This is similar in spirit, but stronger than, requiring that the
growth be polynomially bounded. Their construction is randomized. Re-
cently, Krauthgamer and Lee [5] presented a sequential, deterministic con-
struction that has applications to a broader class of metric spaces.

In the PRR-like networks ([1, 7, 8, 10]), nodes (computers) and objects
(files) in the network are given IDs uniformly at random. Objects have home

1

Scheme Avg Space Max Space Comments
Karger and Ruhl O(log n) O(log n) balanced, dynamic
Krauthgamer and Lee O(1) O(1) dynamic
This paper, basic O(1) O(log n)
This paper, balanced O(log n) O(log n) balanced
This paper, dynamic O(1) O(n) dynamic
This paper, both O(log n) O(log n) balanced,dynamic

Table 1: A comparison of various versions of our scheme to the previous
work. The scheme presented here is better suited applications in PRR-like
networks.

the node with ID that most closely matches their ID.This node is the root.
The root always stores either a copy of the object or a pointer to the object.

Requests for objects are sent toward the root for that object, and once
they reach that point, the request can be satisfied ([1, 7, 10] attempt to
shortcut this process by placing object pointers in the network).

Suppose the node A has ID α. We will imagine that this is an ID is some
radix b, that is, each digit is in the range 0 to b− 1. Then let αi denote the
first i digits of α. Then for each i, and for j ∈ [0, b− 1], A stores the closest
node with prefix αij (that is, αi followed by j). This enables prefix routing.
That is, at each step, one additional digit of the prefix is “fixed.”

If A receives a request for and object with ID β, A forwards the request
to some node with the prefix β1. Then that node is able to find some node
with prefix β2, and so on. For example, a request for an object 1234 starting
at 0000 would first go to a node beginning in 1, then a node beginning in
12, then a node beginning in 123, and finally would reach 1234.

As described, this requires no nearest neighbor information. But when i
is small, there are many nodes with prefix αij, and if the node A picks the
closest one, the overall route length will be small (in certain metric spaces).
A particular destination defines a tree on this network, made up of all the
links that can be used to route toward this destination. Intuitively, two
nearby nodes will likely share an ancestor in this tree. This is the intuition;
the situation is complicated by the fact that one “parent” isn’t enough, so
the structure no longer is a tree.)

The nearest neighbor scheme presented here is in some sense a “back-
ward” version of this. It uses the same tree, and notices that the nearest
neighbor of a query point q likely shares a parent with q. As such, it uses
the almost the same data structures (the exception is the dynamic version
of the algorithm, which requires additional data), searching for the subtrees

2

that q might belong to with the idea that q’s nearest neighbor also belongs
to those subtrees.

A less efficient version of this algorithm appeared in [3]. That version
fixed a parameter k, and showed that for k = O(log n), the algorithm would
find the nearest node with high probability with running time O(k log n) =
O(log2 n). The version presented here is “Las Vegas”, and implicitly chooses
k to be only as big as it needs to be, and so find the nearest neighbor with
only O(log n) communication steps.

Karger and Ruhl in [4] present an algorithm for finding the nearest neigh-
bor in the same class of metric spaces as used here. Their algorithm uses
O(log n) expected space, and runs in time O(log n) with high probability.
Their overall idea is to halve the distance between the current point and
the query point. After log n successful halving steps, the algorithm finds
the nearest neighbor of the query point. To implement these halving steps,
they use a random permutation of the nodes. The algorithm described here
follows this very general outline, but the resulting algorithms are different.

Recently, Krauthgamer and Lee [5] described a deterministic construc-
tion that is in some ways similar in structure to the one presented here.
Their algorithm has applications in a broader class of metric spaces, though
it is not yet clear whether it can be used as a distributed algorithm.

Most closely related is the algorithm presented by the same authors
in [3], which used O(log n) space and O(log2 n) time. This technical report
improves that result to use O(log n) time. This also gives a sequential algo-
rithm that uses linear space and O(log n) time, but Krauthgamer and Lee
present an better sequential algorithm.

The approach is similar to that of Clarkson in [2], and the sampling
technique used by Thorup and Zwick [9] for approximate distance oracles is
similar to our technique. We also note that the general idea of our algorithm
is very similar to the idea used by Plaxton, Rajaraman and Richa [7] to find
a nearby copy of an object.

2 Preliminaries

In this paper, we will use the term metric and network interchangeably. A
network can be naturally described as a graph, where the computers are
nodes and the edges represent the wires connecting them. In turn, a graph
induces a metric. Given a metric space of points S, we would like to find
the closest point in the metric space to a given point s. This application
that motivated this algorithm requires that both the space and the work be

3

distributed.
For an algorithm to be distributed, the data structures needed can be

divided up among the nodes in such a way that each node keeps about the
same amount of data, and the algorithm only needs to use the data from a
few of the nodes. In our model, we can access the metric space in a very
limited way–we can query an oracle for the distance from s to t (one can
think of this as s pinging t).

We now define growth-restricted. Let the ball around x of radius r be
all nodes of distance less than or equal to r from x. We say this ball has
volume s if there are s nodes in the ball. Then,

Definition 1 A metric is growth-restricted with constant c if, for any x
and r, when the ball around x of radius r has volume s, the ball around x
of radius 2r has volume less than or equal to cs.

For example, points on a d dimensional grid have this property with c = 2d.
A simple data algorithm for finding the nearest neighbor would be to

simply list all the nodes in the network, query the distance to each of them,
and thereby find the nearest. This would, however, be a lot of work. A
simple way to improving on this idea is to clustering the nodes. The query
point then tests each cluster to see if it might contain the nearest neighbor.
Still, then either there are many clusters to search, or searching a cluster is
very expensive, so we decompose the clusters further, creating logb n levels
of clustering.

Now we explain how we use randomness to create these clusters. (Krauthgamer
and Lee take a similar approach and give a simple and elegant deterministic
algorithm to find these clusters.)

For i ∈ [0, logb n− 1], we produce a random sample of the network, such
that level (i + 1) is a subset of level i. A node is in the ith sample with
probability 1/bi. For level logb n, we pick exactly one node to be the root.

Next, we connect these nodes together as follows. Each level i node now
chooses as its parent the closest level i + 1 node. In addition, each level i
node has a pointer to all its children. Notice that each level i node points to
exactly one level i + 1 node. Second, notice that there are b times as many
level i + 1 nodes as level i nodes, so in expectation, each level i node has b
children.

4

3 Finding the Nearest Neighbor

At the high level, the algorithm is simple. Start with the root node in the
current list. Then ask each node in the current list for their children. Choose
the children close enough to have descendants that are “close” to be the in
the next level current list. Then query those, and so on. The problem is
determining which nodes could have nearby descendants. In this section,
we will make the assumption that we have extra knowledge. In particular,
we will assume we know that distance to the closest level-i node for each i.
This is not a reasonable assumption in general, but we will later show how
to dispense with it.

For an index i, let di(x) be the distance from x to the closest level i
node. We will drop the x when clear from context.

Let q0(x) = d0(x), and for i > 0, qi(x) = max(3di(x), 3qi−1(x)). Lemma 1
shows that all level-(i − 1) nodes within qi−1(x) have parents within qi(x)
of the query node.

Given the qis and the single logb n level root node, we can find the nearest
neighbor of a node x, as follows. First, x queries the root for its children,
and keep all the children within qi for the i corresponding to that level. For
all those nodes, query their children, and keep the children within qi−1 and
so on. Pseudocode for this case is shown in Figure 2. In Section 4, we will
show how the qi’s can be found.

Lemma 1 If we query all the level i nodes within qi of x, then we can find
all the level i− 1 nodes within qi−1 of x.

Proof:
We will ask all the level i nodes within qi for their children (the level

i−1 nodes that point to them). We want to prove that no level-(i−1) node
within distance qi−1 is missed.

Suppose A is a level i− 1 node within distance qi−1 of x. If the parent
of A is within qi of x, then we will query A’s parent and so find A. We show
that d(A,parent(A)) < qi.

Figure 1 shows this situation. Notice that A’s parent must be closer to
A than the closest level i node to the query point (call this node ui), since A
chooses the closest among the level i nodes. Mathematically, we know that
d(A,parent(A)) ≤ di + qi−1.

We know that the distance between A and the query point is bounded
by qi−1, so the distance between the query point and A’s parent is bounded
by 2qi−1 + di, but qi was chosen to be greater than 2qi−1 + di, so we are
done. 2

5

B

3r

level-(i+ 1) node

rQ

Figure 1: The parent of A must lie within the big circle.

method FindNearestNeighbor (rootNode, q)
1 currList ← [rootNode]
2 nextList ← ∅
3 for i = maxLevel to 1
4 for n ∈ currList
5 nextList ← nextList ∪ GetChildren(n)
6 currList ← KeepWithDist(nextList, qi)
7 nextList ← ∅
8 return (currList)

end FindNearestNeighbor

Figure 2: If the qi’s are giving, finding the nearest neighbor is
straightforward.

3.1 Bounding the number of nodes

In this section, we bound the number of nodes contacted during this process.
To facilitate this, we define the notion of a certificate. A certificate for x has
for each i, a list of all the level-i nodes within distance qi(x). We view the
certificate as being divided up in pieces, called subcertificates. Two adjacent
levels i and i − 1 are in the same subcertificate if qi = 3qi−1. The lowest
level in a subcertificate is called a base level. By definition, level 0 is always
a base level.

The certificate described above has O(log n) nodes in expectation if the
metric space is growth restricted. To show this, we start with the following

6

Lemma.

Lemma 2 Suppose i is a base level (i.e., the lowest level in some subcer-
tificate), and the base ball has volume s. Then the expected size of that
subcertificate is bounded by O(s/bi), provided that c2 < b.

Proof: For a given j, we must find all the level i+j nodes within a factor
3j+1 times the original radius. If the original ball had volume s, then each
factor of 3 increase in radius increases the volume of the ball by no more
than a factor of c2. So the ball of radius 3j+1di has volume bounded by
si(c2)j+1, where di and si are the base radius and base volume, respectively.
For a given j, we only need to store the level (i + j) nodes. The probability
that a node is an i + j node is b−(i+j). Combining these two facts with a
little algebra, we expect to have no more than s/bi−1(c2/b)j+1 level (j + i)
nodes in the certificate. Summing over all possible j, this gives an upper
bound of O(s/bi−1) nodes in the certificate for base level i, and since b is
a constant, O(s/bi−1) = O(s/bi). (This final step makes a later proof a bit
tidier.) 2

Now, we can prove the main size lemma.

Lemma 3 The total expected size of the certificate is O(log n) if b is larger
than c2, where c is the expansion constant of the network.

Proof:
We bound the total size of a subcertificate at level i by considering the

expected size of the subcertificate when there is no base level larger than
i. This is an overcount since some levels may be charged to more than one
base level.

Let si be the size of the base ball at level i. If si = s, that means the
first s nodes were not part of the ith sample. Using this fact, we get

Pr[si > cbi] ≤ (1− 1/bi)cb
i ≤ e−c.

Now, we know that

E[baseleveli] =
∞∑

k=1

E[baseleveli
∣∣∣(k − 1)bi ≤ si < kbi]Pr[(k−1)∗bi ≤ si < k·bi] ≤

∑
e−kkbi/bi−1.

For fixed b, this is a constant.
Finally, since there are at most log n subcertificates, the total certificate

size is O(log n)

7

3.2 High Probability Bound

Lemma 4 Suppose we are given the base ball sizes s1 . . . sk. Then with high
probability, the size of the certificate is less than O(

∑
i si/b

i)

Proof: We want to argue that we can view each base level independently.
If that is the case, then we can apply a Chernoff bound, as before, as we are
done. The problem is that the levels are not independent.

But consider the following related variable X, where X =
∑

i,j X
(i)
j and

X
(i)
j is one if node j is in a subcertificate for level i with base ball si. Then X

is the sum of independent random variables, and we can apply the Chernoff
bound. Since E[X] =

∑
si/bi = O(log n), we will be able to get a high

probability bound.
Now, consider the random variable Y =

∑
Yi, where Yi is one if node i

is in the certificate. Notice that Pr[Y ≥ k] ≤ Pr[X ≥ k], and we bound X
by the use of a Chernoff bound. 2

Next, we bound the probability that
∑

i si/b
i−1 is large.

Lemma 5 For the si defined as before,
∑

i si/b
i−1 is O(log n).

Proof Let S =
∑

i si/b
i. The probability of a given configuration s1, s2, . . . sk

is

(1− 1/b)s1
∏
i

(1− 1/bi)si−si−1 ≤ exp

(
−s1/b1 +−

k∑
i=2

(si − si−1)/bi

)

= exp(−S + 1/b(S − sk))
≤ exp(−S + S/b)
≤ exp(−S(1− 1/b))

≤ exp(−1
2
S)

The number of ways to get a given sum S from k terms is S choose k,
so the probability that of a sum is S is less than (Se/k)k exp(−1

2S).
Now, let S0 be such that S0/k > 4 log(S0e/k). Then

(S0e/k)k exp(−1
2
S0)

= exp(−1
2
S0 + k log(S0e/k))

≤ exp(−1
2
S0 + k

1
4
S0/k)

8

method GetClosest (x,rootNode, maxLevel)
1 for i = 0 to maxLevel - 1
2 InitializeHeap(heap[i])
3 closest[i] ← ∞
4 Insert(heap[maxLevel], rootNode, d(x,rootNode))
5 return GetNext(x, 0, ∞)

end GetCertificate

method GetNext (x, level, maxDist)
1 if AllHigherLevelsEmpty(heap[i]) then return null
2 do
3 if peek(heap[level]) < maxDist then
4 nextDist ← 3·Max(closest[level + 1], Peek(heap[level]))
5 else
6 nextDist ← 3·Max(closest[level + 1], maxDist)
7 next ← getNext(x,level + 1, nextDist)
8 if notNull(next) then
9 if closest[(level + 1)] = ∞ then closest[(level + 1)] ← d(x, next)
10 AddNodeToCertAndChildrenToHeap(next,level)
11 while (notNull(next))

12 if peek(heap[level]) < maxDist
13 return getMin(heap[level])
14 else
15 return null

end GetNext

Figure 3: Anything that leaves a heap is part of the certificate.

≤ exp(−1
4
S0)

Finally, note that the Pr[S ≥ SO] ≤∑S≥S0
exp(−1

4S) ≤ exp(−1
4S0)

∑
i(e

1
4)i ≤

5 exp(−1
4S0). This means that when S = O(log n), the certificate size is

greater than S with probability one over polynomial in n.

4 Generating the Certificate

This section explains how to find the nearest neighbor without knowing
the qi’s in advance. This section shows an algorithm that needs to contact

9

only nodes that are children of those in the certificate. Since each node has
an expected constant number of children, if the certificate size is O(log n),
in expectation, we do not contact more than O(b log n) in the certificate
generation process.

The high-probability argument is a little bit more difficult. Note, how-
ever, that if A is a level-i node within distance qi, only its children within
distance 2qi could matter, since any child at distance 2qi from A is at least
qi from x. What this means is that no children further than 2qifrom a level-i
in the certificate need to be queried. To get a high probability bound on the
number of nodes contacted, we need to bound the number of level-i nodes
within 2qi+1 of x. This can be done using the same technique as Lemma 4,
where the constant in the big-O would be different.

To motivate the algorithm, notice that if we could access the nodes on
a given level in order of their distance from the query point, the problem
would be solved. Starting with i = 0, we find the closet node at level i,
which we can use to compute qi.

Figure 3 shows pseudocode. The algorithm maintains, for each level, a
list of candidates for the certificate. Nodes removed from these candidate
lists are placed in the certificate, and their children become candidates (see
line 10). To ensure that this does not place any extra nodes in the certificate,
we require than when a level-i is added to the certificate, there are no closer
level-i nodes not yet in the certificate. This may require a check for nearby
level-i + 1 nodes.

In Figure 3, the candidate lists are implemented as heaps, since we nat-
urally only want to pull out the minimum. To guarantee that we have the
closest possible, use Lemma 1 as follows. Before moving a level-i node from
the candidate list to the certificate, we ensure that there are no unexplored
(or candidate) level-(i+1) nodes that could have a child closer to the query
point than the node at the top of the level-i heap.

Before arguing this is correct, we point out two facts.

Fact 1 If a node A is in the the certificate for a query point x, then it must
be that the parent of A is also in the certificate.

If we restate this, it says that if a level-i node A is within qi, the parent of
A is within qi+1, which is true by construction and Lemma 1.

Fact 2 If a level-i node A is in the certificate, then any level-i node B closer
to x than A is also in the certificate.

10

To see this, recall that the certificate is defined by the qi’s, so if A is in the
certificate, d(A,x) ≤ qi, but since d(B,x) ≤ d(A,x), then d(B,x) ≤ qi, so
B is also in the certificate.

The algorithm in Figure 3 will work by pulling out level-i nodes in order
of their distance from x. The function is GetClosest does some initial-
ization of global variables, and then calls the recursive GetNext. For each
level, we keep the distance to the closest found at a given level. Also, for
each level, there’s a list of nodes whose parents are in the certificate, but
who are not themselves in the certificate yet. We will call these candidate
nodes.

The function GetNext takes the query point, x, a level l, and a distance
dmax. Then, if there is a level-l node within the given distance, it will return
the closest such node not already in the certificate, and otherwise returns
null.

Suppose, then we call GetNext with the query point x, the level is l,
and the distance set to dmax. Before returning the closest node among the
candidate level-l nodes, it must guarantee that there are no closer level-l
nodes. By Lemma 1, we get a bound on the distance between x and any the
parent of any closer level-l node. Then, we call GetNext with the query
point x, level (l + 1) and this distance bound. If nothing is found, then we
know that the candidate is the correct one, and return it. If something is
found, we add it to the certificate, add its children to the list of candidates,
and check again whether the closest candidate is the closest overall.

To find the nearest neighbor, GetClosest calls GetNext with query
point x, level 0, and the distance∞ in line 3. This will cause many recursive
calls to GetNext, and we could like to argue that each such call returns a
node in the certificate. By Fact 2, we can simplify the problem and argue
that the last node returned by GetNext on level l is in the certificate, since
by construction, GetNext returns level l nodes in order of their distance
from the query source.

The proof will be by induction on l. The base case is the nearest level-
0 node, which is also the last level-0 node returned, and is clearly in the
certificate. Now assume the last level-(l−1) returned is in the certificate. We
will show that the last level-l node returned must also be in the certificate.

Let A be the last level l node returned by a call to GetNext. There
are two cases: The last level-(l − 1) is a child of A, or it is not. If it is a
child of A, then clearly, A must be in the certificate by fact 1. So suppose it
is not. Then we will argue that dmax is no more than ql, so if A is returned,
its distance to x is less than dmax and so less than ql.

Consider the call stack, and particularly the dmax at level-(l − 1). Since

11

we know that the last level-(l − 1) node is not a child of A, it must already
be in the heap. If it will be returned, by the induction hypothesis, it is at
distance less than ql−1, and so that implies that dmax is less than ql. But
suppose it has already been returned. Then we can bound the dmax on the
recursive call in a similar way, and repeat the argument backward.

A simpler, but not as provably good, approach appears in the appendix.
While this describes how to find the nearest neighbor, the algorithm can

be extended to find the closest k nodes for any k merely by repeating calls
to GetNext. Further, it can be used to find all nodes within distance r.
The cost of these changes depends on the most distant node returned.

This is important because we need this functionality for the original
purpose described in [3].

5 A Dynamic Algorithm

The algorithm can be easily extended to allow nodes to be inserted at the
lowest level. In the process of finding its nearest neighbor, a node finds its
nearest level 1 node, and that node becomes it parent. However, a truly
dynamic algorithm must allow the insertion at any level, and a level i node
needs to find its level i − 1 children, and the data structure we presented
does not make this easy, because children can be arbitrarily far away from
their parents. In expectation, the distance is small, but is not bounded.
Krauthgamer and Lee get around this problem because their construction
ensures that parents are close to children.

To solve this problem, we require that each node write a pointer to itself
on every node in its certificate. That is, if A is in the certificate of B, then
A has a pointer to B. Further, when A gets a new child, it notifies B.1

Suppose a node C enters that should be a part of B’s certificate. Then
C’s parent must also be in B’s certificate. But then the parent of C has a
pointer to B, and so B will be notified about C’s entrance, and C will have
a pointer to B.

The problem with this scheme is that the root has to store pointers to
all the nodes, since it is in every node’s certificate. One way of dealing
with this is to use load balancing similar to that in PRR. More precisely,
assign each node a ID in base b. Each node then defines a tree, where the
nodes matching in the first i digits are the level-i nodes. Each node is in

1An alternate solution was presented in [3]. That paper noted that with high proba-
bility, only the closest O(log n) level-(i− 1) nodes are ever children. These nodes can be
found as described above.

12

the static tree for every other node, storing only its parent and children. As
described in [3, 7], these trees can all be maintained with O(b logb n) storage
per node. Each node is also in one dynamic tree (that of a node with the
longest possible matching prefix), and the information for the dynamic tree
is used to maintain the static trees.

6 Conclusion

We have presented an algorithm for finding the nearest neighbor in a growth-
restricted metric space. Our algorithm takes only constant space per node,
and runs in time polynomial in the network. Preliminary simulations suggest
that its practical performance will be similar to theoretical bounds.

Finally, we believe these techniques, in combination with the techniques
of Abraham, Malkhi, and Dobzinski [1] could be used to present a linear
space, load balanced, dynamical nearest neighbor data structure.

References

[1] Ittai Abraham, Dahlia Malkhi, and Oren Dobzinski. Land: Locality
aware networks for distributed hash tables. Technical Report Leibnitz
Center TR 2003-75, The Hebrew University, June 2003.

[2] K. L. Clarkson. Nearest neighbor queries in metric spaces. In Proc.
of the 29th Annual ACM Symp. on Theory of Comp., pages 609–617,
1997.

[3] Kirsten Hildrum, John D. Kubiatowicz, Satish Rao, and Ben Y. Zhao.
Distributed object location in a dynamic network. In Proceedings of the
Fourteenth ACM Symposium on Parallel Algorithms and Architectures,
pages 41–52, 2002.

[4] David Karger and Matthias Ruhl. Finding nearest neighbors in growth-
restricted metrics. In Proc. of the 34th Annual ACM Symp. on Theory
of Comp., pages 741–750, May 2002.

[5] Robert Krauthgamer and James Lee. Navigating nets: Simple algo-
rithms for proximity search. manuscript, 2003.

[6] Xiaozhou Li and C. Greg Plaxton. On name resolution in peer-to-peer
networks. In Proceedings of the second ACM international workshop on
Principles of mobile computing, pages 82–89, October 2002.

13

[7] C. Greg Plaxton, Rajmohan Rajaraman, and Andrea W. Richa. Ac-
cessing nearby copies of replicated objects in a distributed environment.
In Proc. of the 9th Annual Symp. on Parallel Algorithms and Architec-
tures, pages 311–320, 1997.

[8] Antony Rowstron and Peter Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer systems. In
Proceedings of IFIP/ACM Middleware, pages 329–350, 2001.

[9] Mikkel Thorup and Uri Zwick. Approximate distance oracles. In Proc.
of the 33th Annual ACM Symp. on Theory of Comp., pages 183–192,
2001.

[10] Ben Y. Zhao, John D. Kubiatowicz, and Anthony D. Joseph. Tapestry:
An infrastructure for fault-tolerant wide-area location and routing.
Technical Report UCB/CSD-01-1141, UC Berkeley, Computer Science
Division, 2001.

A Alternate Certificate Generation

A potentially simpler approach is to upper bound the di’s, and so get upper
bounds on the qi’s, and using these too-big qi’s, do the search as before. If
this is done, we will find all the nodes in the certificate, including the nearest
node. Unfortunately, nodes outside the certificate may also be contacted, so
the bounds on certificate size are not directly applicable.

However, because it does not use a heap, it may be simpler to implement,
and would probably perform equally well in practice. A simple way to upper
bound the di’s would be to query only the closest k nodes at every level (for
k some small value like one or three), and use the results to get di’s.

14

method GetCertificate (x,rootNode)
1 certificate[maxLevel] ← {rootNode}
2 queryDist[maxLevel] ← ∞
3 level ← maxlevel - 1
4 while level > 0
5 (certificate[level], queryDist[level]) =

GetNextList(x, certificate[level + 1], level,
queryDist[level + 1])

6 while 3* queryDist[level] > queryDist[level + 1]
7 queryDist[level + 1] = 3*queryDist[level]
8 level ← level + 1
9 level ← level - 1

end GetCertificate

method GetNextList (x,neighborlist, level, queryDist)
1 nextList ← ∅
2 minDist ← queryDist
3 for n ∈ neighborlist
4 if (d(n,x) ≤ queryDist
5 temp ← GetChildren(n, level)
6 for m ∈ temp
7 if d(m,x) ≤ minDist
8 minDist ← d(m,x)
9 return (nextList, minDist)

end GetNextList

Figure 4: A different method of certificate generation. This method
does not have provable bounds, but it may be simpler and easier to
implement in practice.

15

