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Abstract

We consider a binary, linear classification problem in which the data points are assumed to
be unknown, but bounded within given hyper-rectangles, i.e., the covariates are bounded within
intervals explicitly given for each data point separately. We address the problem of designing
a robust classifier in this setting by minimizing the worst-case value of a given loss function,
over all possible choices of the data in these multi-dimensional intervals. We examine in detail
the application of this methodology to three specific loss functions, arising in support vector
machines, in logistic regression and in minimax probability machines. We show that in each case,
the resulting problem is amenable to efficient interior-point algorithms for convex optimization.
The methods tend to produce sparse classifiers, i.e., they induce many zero coefficients in the
resulting weight vectors, and we provide some theoretical grounds for this property. After
presenting possible extensions of this framework to handle label errors and other uncertainty
models, we discuss in some detail our implementation, which exploits the potential sparsity or
a more general property referred to as regularity, of the input matrices.

1 Introduction

In several practical classification problems, data points are only provided approximately, i.e., often
their covariates are only specified up to given intervals of confidence. For example, when collecting
genomic micro-array data, experiments are usually noisy and often a number of replicates of the
same experiment are available. This enables us to represent every data point by the smallest
hyper-rectangle that encloses all corresponding replicates. Mathematically these uncertainty regions
can be specified by a nominal data matrix and a second matrix of the same size containing the
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corresponding standard errors, the bounds within which every covariate or feature of every data
point is known to lie. This leads to a so-called interval matrix model for the data.

In this report, we address a binary, linear classification problem based on an interval matrix
uncertainty model for the data. We develop a robust methodology, where we minimize the worst-
case value of a loss function, over all possible realizations of the data within given interval bounds.
We will show how this worst-case loss function can be upper-bounded by a weighted l1-norm
regularization of the original loss function, explaining the implicit regularization effect within this
approach of robust classification.

We consider in detail three specific choices of a loss function. The first, the Hinge loss, is used in
the context of soft-margin support vector machines [5, 13]. The second loss function is the negative
log likelihood function used in logistic regression (see, e.g., [8]). The third loss function is used in
the context of minimax probability machines (MPM), which were recently introduced in [9]. For
each case, we will show that the robust methodology leads to problems that are directly amenable
to efficient (polynomial-time) convex optimization interior-point algorithms. These optimization
problems range from linear programming (LP), to second-order cone programming (a generalization
of LP which handles l2-norm bounds) and constrained maximum entropy. For more on interior-
point methods for convex optimization, we refer to [12, 1, 11], and the forthcoming excellent book
[3].

The extensive connections between mathematical programming, in particular linear and quadratic
programming, and classification, have been successfully explored by a number of authors [2, 5, 13,
10, 4, 7]. Our work is in this line, but with an emphasis on exploiting the specific unknown-but-
bounded type of information, that describes data within this interval matrix model. As a result,
we end up using more general types of convex optimization algorithms. Our work can be placed
on the perspective of a growing concern in optimization for robustness with respect to input data
uncertainty (see, e.g., [6], [14, ch. 6]).

2 Setup and Main Results

2.1 Problem setup

The linear learning methods we will describe in the following sections will handle data as uncertain
observations, defined within a specific uncertainty model, rather than assume a countable set of
well-defined data points. In order to deal with this approach, we define the following setup. Let
X denote a n × N matrix of N nominal data points xi ∈ Rn, with corresponding label vector
y ∈ {−1, +1}N . Let Σ be a n × N matrix of positive numbers, with columns σi, i = 1, . . . , N .
Finally, let ρ ≥ 0. Together, X, Σ and ρ describe an interval matrix model for a n×N data matrix
Z, via the hyper-rectangle (in the space of n×N data matrices)

X (ρ) =
{
Z ∈ Rn×N : X − ρΣ ≤ Z ≤ X + ρΣ

}
,

where inequalities are understood componentwise. This hyper-rectangle in the space of data ma-
trices corresponds to considering N hyper-rectangles of dimension n in the input space Rn, each
of them defining an uncertainty region for each of the N uncertain data points zi, i = 1, . . . , N .
The matrix X is referred to as the nominal matrix, while the standard error matrix Σ reflects
the amplitude of the uncertainty (e.g., measurement errors in microarray experiments) for every
covariate. Notice how this uncertainty model considers the uncertainty on the different covariates
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as independent. Although more specialized approaches are possible — e.g., modelling correlations
between uncertainties by assuming a hyper-ellipsoidal rather than a hyper-rectangular uncertainty
region —, this uncertainty model already accounts for significant uncertainty information and will
lead to sparse classifiers as we will see, which is an important advantage. In Subsection 6.3 we will
address how ellipsoidal uncertainty models can be dealt with.

The scalar ρ is a global measure of uncertainty. For clarity, we sometimes drop the dependence
of X on ρ, using by default ρ = 1. In that case, the ”standard error matrix” Σ reflects the absolute
uncertainty for every feature.

For ε = ±1, we denote by Iε the set of indices for class ε, by Nε its cardinality, and set
cε = 1/

√
Nε. Define Xε (respectively Σε) as the matrix whose i-th column is xi (respectively σi),

where i ranges Iε (the order is irrelevant). So X+, Σ+ are matrices of size n×N+, where N+ is the
size of the positive class, and likewise for X−, Σ− which corresponds to the negative class.

Based on the data given within this uncertainty model — the training data —, we seek a
linear classification rule based on the sign of wT x + b, where w ∈ Rn/{0} is the weight vector
characterizing the classification hyperplane, b is a scalar, and x is a new data point to be classified.
To measure the performance of the classifier on the uncertain training set we introduce the robust
loss function L, which depends on the classifier parameters w, b, the uncertain training set X (ρ)
as well as on the label vector y. This function is defined in terms of a classical, non-robust loss
function L, which assumes well-defined data points Z, without uncertainty:

L(w, b,X (ρ), y) = max
Z∈X (ρ)

L(w, b, Z, y). (1)

The robust loss function can be interpreted as a worst-case loss function, across all possible values
of the data points permitted by our interval uncertainty model. We then consider the following
problem, referred to as robust classification with interval data:

min
w,b

max
Z∈X (ρ)

L(w, b, Z, y). (2)

Note that, in order to protect the classifier against overfitting on the training data, a regularization
term is usually added to the loss term. We will see that the robust loss function can be upper-
bounded by a weighted l1-norm regularization of the original loss function, which explains an
implicit, indirect regularization effect for robust classification.

2.2 Three specific loss functions

We consider three specific choices of a loss function. The non-robust loss function used in soft-
margin support vector machines (SVMs) [5], known as the linear Hinge loss, is given by

LSVM(w, b, Z, y) =
N∑

i=1

(1− yi(wT zi + b))+, (3)

where s+ denotes the positive part of a scalar s. Augmented with a regularization term that
accounts for the complexity of the class of linear maximal margin classification functions, the
above loss function provides an upper bound on the number of expected future misclassification
errors.
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The logistic regression loss function [8] is given by

LLR(w, b, Z, y) =
N∑

i=1

log
(
1 + e−yi(w

T zi+b)
)

. (4)

This loss function has a specific interpretation: it is the negative logarithm of the likelihood of the
labels y given the data Z, corresponding to a parametric model for the distribution of the label
vector and the data.

Finally, we consider a perhaps less classical loss function, which was recently introduced in the
context of minimax probability machines (MPMs) [9]:

LMPM(w, Z, y) =

√
wT Γ+w +

√
wT Γ−w

|wT (ẑ+ − ẑ−)| , (5)

where ẑ± and Γ± denote the (empirical) mean and covariance matrix for each class. We will return
to the motivation for this loss function in Section 5.

The first two loss functions above are convex in w, b, while the homogeneous MPM loss is convex
on a hyperplane defined by wT (ẑ+ − ẑ−) = 1, to which we can restrict the search without loss of
generality. We refer to the three methods as robust linear programming SVM (ROBLP), robust
logistic regression (ROBLR) and robust minimax probability machine (ROBMPM).

2.3 Main results

Convexity and complexity. The robust problem inherits the convexity properties of the non-robust
counterpart, in that convexity (with respect to the hyperplane parameters w, b) of the loss function
L implies that of the worst-case loss function L. For general loss functions, the worst-case loss
counterpart may be substantially harder to compute, let alone minimize; however, for all the three
loss functions specified above, the robust counterpart is a convex optimization problem that can be
solved using polynomial-time interior-point methods for a class of convex optimization problems
[12, 3].

Robustness. The method directly handles uncertainty ∆x in the data points x. It can be
extended to be robust against possible implementation errors ∆w in the weight vector w, e.g.,
when realizing the classifier on a machine with finite precision. This proves useful in a feature
selection context: after designing a classifier that is (optimally) robust with respect to component-
wise implementation errors ∆wi, one can intentionally apply effective implementation errors ∆weff

i

to zero out a (potentially large) number of non-zero coefficients in w. The resulting classifier is
specifically trained to be robust against these changes. As this results in a sparse weight vector,
this is equivalent to explicit feature selection in a linear classification framework. The connection
between data uncertainty and implementation errors, and its relationship with sparsity of the
classifier vector, is elaborated upon in the specific case of the SVM loss function. The framework
is also extended to handle errors in the labels.

Link with l1-norm regularization. For all the three loss function considered here, we can approx-
imate from above the worst-case loss function by a weighted l1-norm regularization of the original
loss function. Specifically, we show that

L(w, b,X (ρ), y) = max
Z∈X (ρ)

L(w, b, Z, y) ≤ L(w, b, X, y) + ρσT |w|, (6)
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where |w| denotes the vector with components |wi|, and σ is a vector with non-negative components
that depends on the error matrix Σ. The above bound is useful because it helps understand why
the robust classification method tends to produce sparse classifiers, as l1-norm regularization is
known to have this effect [4]. It also brings a principled way to choose the regularization weights σ
in the context of weighted l1-norm regularization, should one use this more standard approach to
classification. A more general statement:

L(w, b) = max
Z∈X (ρ)

L(w, b, Z, y) ≤ max
Z∈X (κρ)

L(w, b, Z, y) + (1− κ)ρσT |w|, (7)

where κ ∈ [0, 1], allows to choose the amount of effort devoted to regularization, via the weighted
l1-norm term in (7), compared to that devoted to robustness. We obviously recover the ”pure”
robust methodology by setting κ = 1, and the ”pure” weighted l1-norm regularization approach
with κ = 0.

Sparsity-preserving implementation. Our implementation of the methods, discussed in Section
7, exploits the sparsity of the problem. Specifically, if the nominal matrix X is sparse, and the
corresponding matrix Σ has a more general property we refer to as regularity, then it is possible
to exploit this fact in the algorithm. This feature results in dramatic speed-ups for large-scale
problems where the input data is first made sparse or regular by a filtering operation.

2.4 Outline

We describe the three robust classification methods in Sections 3, 4 and 5. In each case, we derive
the related bound (6) based on weighted l1-norm regularization. We examine several variations
on the original theme in Section 6, including the sparsity induced by robustness with respect to
errors that are imposed on the classifier coefficients. Furthermore, errors in labels and ellipsoidal
uncertainty models are addressed. In Section 7, we discuss our implementation of the methods,
which exploits structure such as sparsity, or regularity, of the input data.

3 Robust LP

In this section, we consider the problem of robust linear programming SVM (ROBLP) with interval
data:

min
w,b

max
Z∈X (ρ)

N∑
i=1

(1− yi(wT zi + b))+ (8)

where y is a vector of ±1 labels.

3.1 LP formulation

For the loss function (3), we have the worst-case equivalent

LSVM(w, b) = max
Z∈X (ρ)

N∑
i=1

(1− yi(wT zi + b))+

=
N∑

i=1

(1− yi(wT xi + b) + ρσT
i |w|)+. (9)
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Hence ROBLP can indeed be implemented as a linear program (LP):

min
w,b

eT1 : yi(wT xi + b) ≥ 1− ei + ρσT
i |w|, ei ≥ 0, i = 1, . . . , N. (10)

We can obtain an upper bound on the worst-case loss function, by exploiting the convexity of
the max function. This results in

LSVM(w, b) ≤
N∑

i=1

(1− yi(wT xi + b))+ + ρσT |w|,

where

σ :=
N∑

i=1

σi (11)

is the sum of errors across all data points. The more general bound (7) is expressed as

LSVM(w, b) ≤
N∑

i=1

(1− yi(wT xi + b) + κρσT
i |w|)+ + (1− κ)ρσT |w|.

Minimizing the above upper bound on the worst-case loss function also leads to an LP:

min
w,b

eT1 + ρ(1− κ)σT |w| : yi(wT xi + b) ≥ 1 + ρκσT
i |w| − ei, ei ≥ 0, i = 1, . . . , N. (12)

The above is a generalization of the LP-SVM proposed in [4], namely

min
w,b

CeT1 + ‖w‖1 : yi(wT xi + b) ≥ 1− ei, i = 1, . . . , N, (13)

where the correspondence with the regularization parameter is C = 1/ρ and σ is assumed to be all
ones, while κ = 0.

For later reference, we note that the dual to the LP (12) is

ψ = min
λ

λT1 : |XY λ| ≤ κΣλ + (1− κ)σ, 0 ≤ λ ≤ 1, yT λ = 0, (14)

where Y = diag (y).

3.2 Geometric interpretation

The above problems have an interesting geometric interpretation. For simplicity, we set κ = 1.
For the slack variables e set to zero, the constraints in (10) express that the hyperplane defined by
(w, b) perfectly separates the data points, irrespective of their values in hyper-rectangles (of shape
determined by Σ).

The upper bound can be understood as follows. Assume that we set κ = 0, and the slack
variable e to zero in the problem (12). The resulting problem is

min
w,b

σT |w| : yi(wT xi + b) ≥ 1, i = 1, . . . , N. (15)

The above corresponds to the following setup. We assume that the data points lie in the hyper-
rectangles described by the uncertainty set X (ρ). Now we seek to maximize the level of uncertainty
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ρ, while maintaining a perfect separation, irrespective of the data values in X (ρ). This leads to the
problem

max
w,b

ρ : yi(wT xi + b) ≥ ρσT |w|, i = 1, . . . , N. (16)

By homogeneity, we can always set σT |w| = 1/ρ, and obtain the LP (15). The classical l1-norm
SVM (13) corresponds to the a robust methodology, in the case when the uncertainty around data
points is assumed to be the same across all samples, and has a square shape.

4 Robust LR

In this section, we consider the problem of robust logistic regression with interval data. For reasons
clarified later, we consider here the more general problem of minimizing the loss function given by
(7), where κ ∈ [0, 1] is given. We will show later that it provides an upper bound to the original
worst-case loss function arising in problem (2), which corresponds to the choice κ = 1. Our problem
is

min
w,b

max
Z∈X (κ)

N∑
i=1

log
(
1 + e−yi(w

T zi+b)
)

+ (1− κ)σT |w|, (17)

where, for simplicity, we have set ρ = 1, and σ is defined in (11).

4.1 Primal problem

Problem (17) is obviously convex, since it involves the minimization in w, b of a convex function —
i.e., the point-wise maximum of convex functions in w, b is convex in w, b. Due to the monotonicity
of the terms arising in the loss function, we can eliminate the inner maximization, and obtain:

min
w,b

N∑
i=1

log
(
1 + e−yi(w

T xi+b)+κσT
i |w|

)
+ (1− κ)σT |w|. (18)

Using monotonicity again, we can formulate the above as the convex problem

min
wp≥0,wn≥0,b

N∑
i=1

log
(
1 + e−yi((wp−wn)T xi+b)+κσT

i (wp+wn)
)

+ (1− κ)σT (wp + wn),

where wp (respectively wn) stands for the positive (respectively negative) part of the vector w. The
above can be interpreted as an ordinary (regularized) logistic regression problem with additional
sign constraints on the classifier.

Note that the corresponding ”worst-case” value of the data vector has components

xwc(j) =
{

x(j)− σ(j)sign(w(j)) if y(j) = −1,
x(j) + σ(j)sign(w(j)) otherwise,

(19)

where w is optimal for the above problem.
The above problem can be addressed with standard interior-point techniques for convex mini-

mization. However we may further reduce the problem to a maximum entropy problem for which
off-the-shelf codes exist [11]. This transformation is valid only when κ < 1, and this is our mo-
tivation for examining the problem above in lieu of the ”pure” robust methodology of problem
(2).
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4.2 Dual problem

As expected, the dual of the above problem has an interesting interpretation in terms of maximum
entropy. Define the vectors

ξ =


 wp

wn

b


 , v = (κ− 1)


 σ

σ
0


 , ai =


 κσi − yixi

κσi + yixi

−yi


 , 1 ≤ i ≤ N,

and the matrices

M =
(

I 0 0
0 I 0

)
, A =

(
a1 · · · aN

)
. (20)

Then the problem writes

max
ξ,f

vT ξ −
N∑

i=1

log(1 + efi) : f = AT ξ, Mξ ≥ 0. (21)

Introduce the Lagrangean

L(ξ, f, λ, µ) = vT ξ −
N∑

i=1

log(1 + efi) + λT (f −AT ξ) + µT Mξ.

The optimality conditions yield

v = Aλ−MT µ, λi =
efi

1 + efi
, i = 1, . . . , N.

We obtain the dual problem

min
λ,µ

λT log λ + (1− λ)T log(1− λ) : 0 ≤ λ ≤ 1, Aλ = MT µ + v, µ ≥ 0. (22)

Partitioning µ in µ = (µ+, µ−), the condition Aλ = MT µ + v expresses as∑
i

(κσi − yixi)λi = −(1− κ)σ + µ+, (23)

∑
i

(κσi + yixi)λi = −(1− κ)σ + µ−, (24)

∑
i

yiλi = 0. (25)

The existence of non-negative vectors µ+, µ− such that the above first two conditions hold is
equivalent to

|XY λ| ≤ κΣλ + (1− κ)σ, (26)

where Y = diag (y). The above can be readily recast as linear inequalities in λ. We obtain the
dual problem

ψ = min
λ

λT log λ + (1− λ)T log(1− λ) : |XY λ| ≤ κΣλ + (1− κ)σ,

0 ≤ λ ≤ 1, yT λ = 0.
(27)
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When κ ∈ [0, 1[, and σ is componentwise positive, the above problem is strictly feasible. Hence the
primal-dual gap is zero in that case.

The above is a maximum entropy problem, directly amenable to efficient interior-point methods
(see, e.g., [11]). We can recover the optimal values of the variables w, b by noting that ξ is the
variable dual to the equality constraint Aλ = MT µ + v, which means that wp is dual to (23), wn

to (24), and b to (25).
Note that when Σ = 0 and κ = 1, the above problem reduces to the maximum entropy problem

with exact ”moment matching” constraints

min
λ

λT log λ + (1− λ)T log(1− λ) : XY λ = 0, 0 ≤ λ ≤ 1, yT λ = 0,

which is of course the dual of the standard logistic regression problem. Here, we observe that the
constraint (26) is equivalent to the fact that there exists an exact moment match for at least one
data matrix within the uncertainty set X , precisely:

∃Z ∈ X , ZY λ = 0, yT λ = 0. (28)

The corresponding data matrix can be interpreted as the ”worst-case” realization of the data, that
is, it yields the worst-case value of the likelihood function evaluated at the optimal w, b. This
worst-case data matrix can be inferred from the expressions (19), yielding

Xwc = X + Σ · (u1T ),

where u(j) = −y(j)sign(w(j)), and · is interpreted as the componentwise product.
When Σ = 0 but k < 1, the moment matching constraints have the form |XY λ| ≤ σ, which

corresponds to the dual to the ordinary LR problem with weighted l1-norm regularization.

4.3 Upper bounds and approximations

The loss function considered above

N∑
i=1

log
(
1 + e−yi(w

T xi+b)+κσT
i |w|

)
+ (1− κ)σT |w|

is an upper bound on the worst-case loss function (which corresponds to κ = 1) and a lower bound
on the weighted l1-norm regularized LR loss (corresponding to κ = 0).

The latter bound can be derived from the dual formulation, at least when κ < 1. Indeed, the
following constraints of problem (27):

|XY λ| ≤ κΣλ + (1− κ)σ

imply
|XY λ| ≤ σ,

which proves that the weighted l1-norm regularized LR problem yields an upper bound on problem
(17).

Another insight provided by the dual formulation stems from comparing the dual robust LP
(14) and its LR counterpart (27). We observe that the two problems share the same feasible region,
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while the objective in the LP case can be interpreted as a (crude) approximation to that of the LR
case. A much better approximation is obtained with a quadratic, leading to the QP

ψ = min
λ

λT (1− λ) : |XY λ| ≤ κΣλ + (1− κ)σ,

0 ≤ λ ≤ 1, yT λ = 0.
(29)

5 Robust MPM

In this section, we consider the robust MPM problem with interval data:

min
w,b

max
Z∈X

√
wT Γ+w +

√
wT Γ−w

|wT (x̂+ − x̂−)| , (30)

where x̂± and Γ± stand for empirical estimates for the class means and covariance matrices. We
assume that the uncertainty in the points is smoothed out when computing the class averages
x̂+, x̂−, so the latter information is assumed exact.

We first motivate the choice of this loss function by a brief description of the MPM method.
For further details we refer the reader to [9].

5.1 The MPM problem

The minimax probability machine (MPM) introduced in [9] is a binary classification method that
uses class averages to control the misclassification error. Let x+ and x− denote random vectors in
the binary classification problem, respectively modelling data from each of two classes, with means
and covariance matrices given by (x̂+, Γ+) and (x̂−, Γ−), with x+, x̂+, x−, x̂− ∈ Rn, Γ+, Γ− ∈ Rn×n,
and Γ+, Γ− both positive semidefinite.

The MPM method determines a hyperplane H(w, b) = {z | wT z = b}, where w ∈ Rn\{0}
and b ∈ R, which separates the two classes of points with maximal probability with respect to all
distributions having these means and covariance matrices. This reduces to:

max
α,w,b

α s.t. inf
x+∼(x̂+,Γ+)

Pr{wT x+ ≥ b} ≥ α (31)

inf
x−∼(x̂−,Γ−)

Pr{wT x− ≤ b} ≥ α,

where the notation x+ ∼ (x̂+, Γ+) refers to the class of distributions that have prescribed mean x̂+

and covariance Γ+, but are otherwise arbitrary; likewise for x−. For the problem to have a solution
we assume that x̂+ 6= x̂−.

Future points z for which aT z ≥ b are then classified as belonging to the class associated with
x+, otherwise they are classified as belonging to the class associated with x−. In formulation (31)
the term 1 − α is an upper bound on the worst-case (maximum) misclassification error, and our
classifier minimizes this maximum error.

In [9], it is shown that a pair (w, b) is feasible for the problem if and only if

wT x̂− + κ(α)
√

wT Γ−w ≤ b ≤ wT x̂+ − κ(α)
√

wT Γ+w, (32)

where κ(α) =
√

α/(1− α).
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By eliminating the variable b, we obtain that the MPM problem corresponds to minimizing over
w the loss function

LMPM(w, X, y) =

√
wT Γ+w +

√
wT Γ−w

|wT (x̂+ − x̂−)| .

By homogeneity, we can reduce the MPM problem to computing

φ := min
w

‖Γ+
1/2w‖2 + ‖Γ−1/2w‖2 : wT (x̂+ − x̂−) = 1.

The above is a second-order cone program (SOCP) [3], and can be efficiently solved using interior-
point methods for conic programming. If w∗ is optimal for the above problem, the optimal lower
bound on the misclassification error is then

1− α∗ =
φ2

1 + φ2
.

while an optimal intercept b is recovered as

b∗ = wT
∗ x̂+ − (1/φ)

√
wT∗ Γ+w∗ = wT

∗ x̂− + (1/φ)
√

wT∗ Γ−w∗.

In practice, the MPM method uses empirical estimates for the means and covariance matrices for
each class. The effect of estimation errors are discussed in some detail in [9].

To solve the problem, the original implementation as proposed in [9] requires to form estimates
for class covariance matrices and means. Empirical estimates are used (with appropriate shrinkage
factors to handle estimation errors), which costs O(Nn2), where N is the total number of points.
Then the factors Σ1/2

± are formed, and the SOCP problem is solved, at additional cost O(n3). The
cost of the whole implementation is thus O(n3 + Nn2).

The paper [9] also develops a kernel version of the MPM. If we use a linear kernel we can solve
the problem by first forming the Gram matrix of data points (at cost O(nN2)), then solving an
MPM problem with N variables, which leads to a total complexity of O(N3 + nN2).

5.2 A robust model

In this section, we consider a variation of the MPM problem, where the input data matrix is
unknown-but-bounded in the interval matrix X . This corresponds to problem (31), where the
constraints should hold irrespective of our choice of the data matrix in X . For simplicity, we
assume that the uncertainty is smoothed out in the class averages x̂±, so that they are known
exactly.

We first show that this robust MPM problem can be formulated as (30). We start with the
basic constraint (32), and seek to guarantee that it holds for every data matrix Z ∈ X . We note
that, if Γ+, Γ− are empirical estimates of the covariance matrices of the classes, then

‖Γ1/2
± w‖2 = c±

√∑
i∈I±

[wT (zi − x̂±)]2,

where c± = 1/
√

N±. This leads to

wT x̂− + c−κ(α)c−σ−(w) ≤ b ≤ wT x̂+ − κ(α)c+σ+(w), (33)
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where
σ±(w) := max

Z∈X

√∑
i∈I±

[wT (zi − x̂±)]2 =
√∑

i∈I±

[wT (xi − x̂±) + σT
i |w|]2,

where we have used our assumption that x̂± are known exactly. Maximizing α subject to (33) thus
reduces to

φ := min
w

c+σ+(w) + c−σ−(w) : wT (x̂+ − x̂−) = 1, (34)

which, by homogeneity, corresponds to minimizing the worst-case loss function, as in (30).
If w∗ is optimal for the above problem, the optimal lower bound on the worst-case misclassifi-

cation error is φ2/(1 + φ2), while an optimal intercept b is recovered as

b∗ = wT
∗ x̂+ − (1/φ)c−σ−(w) = wT

∗ x̂− + (1/φ)c+σ+(w).

5.3 Upper bound

We can introduce an upper bound on the robust problem as follows:

min
w

c+

√∑
i∈I+

[wT (xi − x̂+)]2 + c−
√∑

i∈I−

[wT (xi − x̂−)]2 + σT |w| : wT (x̂+ − x̂−) = 1, (35)

where σ = σ̃+ + σ̃−, with

σ̃± :=
1√
N±

∑
i∈I±

σi (36)

are related to the class averages of the errors.
In the above approximation, we see that the robustness imposes an l1-norm regularization term.

This term tends to produce sparse classifiers. The cost of solving the regularized problem is roughly
the same as that of the original MPM problem.

As before we may generalize the bound above using a parameter κ ∈ [0, 1], based on the
inequalities

σ±(w) = max
Z∈X

√∑
i∈I±

[wT (zi − x̂±)]2 ≤
√∑

i∈I±

[wT (xi − x̂±) + κσT
i |w|]2 + (1− κ)σ̃T

±|w|.

6 Extensions and Variations

6.1 Implementation errors and sparsity of classifier

The robust approach can be interpreted as a way to alleviate errors stemming not from the data
but from the classifier itself. We illustrate this point with the SVM loss function; the other two
cases can be treated similarly.

Specifically, consider the problem

min
w,b

max
‖∆w‖∞≤δ

LSVM(w + ∆w, b, X, y).

In the above problem, the data matrix is fixed to its ”nominal” value X. The errors on w may
originate when zeroing out small components, and δ is an absolute measure of these errors. In this
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sense, a larger δ ensures that more components of w can be safely zeroed out, resulting in a sparser
vector.

The worst-case loss function is then

LSVM(w, b) =
N∑

i=1

(1− yi(wT xi + b) + δ‖xi‖1)+,

which can be minimized via LP. We note that we can view δ as a variable, and minimize a combi-
nation of the above loss function and a function that decreases with δ. This results in a trade-off
between the number of (worst-case) misclassification errors and the sparsity of the classifier.

Alternatively, we can assume that the process of zeroing out coefficients is based on relative
rather than absolute size, corresponding to a absolute threshold δ that depends on w. Consider
for example the case when δ = κ‖w‖1, where κ ≥ 0 is fixed. The corresponding worst-case loss
function can then be interpreted as one of the type (9), where ρ = κ and the error matrix has
columns set to σi = ‖xi‖1.

Finally, we note that it is possible to control both implementation and data errors. The corre-
sponding robust problem

min
w,b

max
‖∆w‖∞≤δ, Z∈X (ρ)

LSVM(w + ∆w, b, Z, y),

can be represented as an LP, but at the expense of introducing a large number (Nn to be exact)
of new variables. An upper bound on the worst-case loss function is obtained by maximizing over
∆w independently in the linear and the norm term in (9), resulting in

LSVM(w, b) =
N∑

i=1

(1− yi(wT xi + b) + ρσT
i (|w|+ δ1) + δ‖xi‖1)+.

6.2 Label errors

We may to some extent handle noise in the labels in a worst-case fashion, as follows. We assume
that the data matrix X is fixed, while the label vector (composed of say, ±1’s) is uncertain. Our
uncertainty model is that only a few labels are subject to errors; we assume that a fixed number
k of labels, where 0 ≤ k ≤ N is given, are subject to a change in sign. Here, k is a bound on the
number of label errors. In this section, we consider the SVM loss function only, and examine the
problem

min
w,b

max
z∈Y(y,k)

LSVM(w, b, X, z). (37)

where
Y(y, k) =

{
z : zi = (1− 2δi)yi, i = 1, . . . , N, δ ∈ [0 1]N , 1T δ ≤ k

}
describes the sign uncertainty in the label vector.

Consider first the following sub-problem. Let α, y ∈ RN and k ≤ N be given. Define

φ = max
z∈Y(y,k)

N∑
i=1

(1− αizi)+.
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(Later, our task will be to minimize φ subject to the constraint α = XT w + b.) We have

φ = max
0≤t≤1

max
z∈Y

N∑
i=1

ti(1− αizi)

= max
0≤t≤1

max
δ∈∆

N∑
i=1

(ti(1− αiyi) + 2δitiyiαi)

= max
0≤t≤1

(
1T (t− α(y, t)) + max

δ∈∆
δT α(y, t)

)
,

where ∆ =
{
δ ∈ [0 1]N : 1T δ ≤ k

}
, and (α(y, t))i = tiyiαi, i = 1, . . . , N .

Using LP duality, we have for fixed t

max
δ∈∆

δT α(y, t) = min
λ≥0

λk + 1T (α(y, t)− λ)+.

Hence, we can express the sub-problem as

φ = max
0≤t≤1

min
λ≥0

N∑
i=1

(ti(1− αiyi) + λk + (αiyiti − λ)+) .

Exploiting weak duality, we obtain

φ ≤ min
λ≥0

max
0≤t≤1

N∑
i=1

(ti(1− αiyi) + λk + (αiyiti − λ)+)

= min
λ≥0

N∑
i=1

max
0≤u≤1

(u(1− αiyi) + λk + (αiyiu− λ)+)

= min
λ≥0

N∑
i=1

max
u=0,1

(u(1− αiyi) + λk + (αiyiu− λ)+)

= min
λ≥0

λkN +
N∑

i=1

((1− αiyi) + (αiyi − λ)+)+ .

Finally, problem (37) admits the following upper bound:

min
λ≥0,w,b

λkN +
N∑

i=1

(
(1− yi(wT xi + b)) + (yi(wT xi + b)− λ)+

)
+

,

which is amenable to an LP format. Note that if k = 0, that is, there are no errors in the labels,
we recover the original problem.

It is possible to develop bounds for a robust classification problem where data, labels, and
classifier coefficients are all subject to uncertainty.
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6.3 Ellipsoidal uncertainty models

We may address other types of uncertainty models than the interval matrix. Consider the case
when the interval uncertainty set X is replaced with a product of ellipsoids. Specifically, set

X =
{
Z = [z1, . . . , zN ] ∈ Rn×N : (zi − xi)T Γ−1

i (zi − xi) ≤ 1, i = 1, . . . , N
}

where the matrix X = [x1, . . . , xN ] and the positive-definite matrices Γi, i = 1, . . . , N , are given.
For the above uncertainty models, we have the following worst-case representations. The SVM

worst-case loss function has the form

LSVM(w, b) =
N∑

i=1

(1− yi(wT xi + b) + ‖Γ1/2
i w‖2)+,

and an upper bound takes the form

LSVM(w, b) =
N∑

i=1

(
(1− yi(wT xi + b))+ + ‖Γ1/2

i w‖2

)
.

Both corresponding classification problems can be handled using second-order cone programming
algorithms [3], which have polynomial-time complexity. The upper bound is again a regularization
of the original loss function, with weights that depend directly on the parameters of the uncertainty
model X . The model involves a perhaps non-classical sum of l2-norms. The algorithm is greatly
simplified by assuming the error matrices Γi are all equal. Both the robust and the upper bound
problem have geometric interpretations in terms of classification of ellipsoids. When all matrices
are set to multiples of the identity, the problem reduces to a variant to the classical SVM, with an
l2-norm term instead of a squared l2-norm in the objective.

The logistic regression loss function leads to the worst-case loss

LLR(w, b) =
N∑

i=1

(
log(1 + ewT xi+b+(1−2yi)‖Γ1/2

i w‖2 − yi(wT xi + b− ‖Γ1/2
i w‖2)

)
,

which is a convex function of w, b, amenable to the separable convex optimization solver in [11].
Finally, the worst-case MPM (in the case the averages x̂± are exact, and when wT (x̂+−x̂−) = 1)

leads to

LMPM(w, b) = c+

√∑
i∈I+

[wT (xi − x̂+) + ‖Γ1/2
i w‖2]2 + c−

√∑
i∈I−

[wT (xi − x̂−) + ‖Γ1/2
i w‖2]2,

which is amenable to second-order cone minimization. The upper bound involves a sum of l2-norms,
similar to the one in the SVM model.

7 Implementation

In this section we discuss our implementation of the robust classification models. We have at-
tempted at exploiting as much as possible the potential sparsity of the input, since the optimization
algorithms in the MOSEK toolbox [11] do exploit the potential sparsity of the matrix that defines
equality or linear inequality constraints.
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7.1 A basic implementation

We first discuss an implementation based on MOSEK’s matlab toolbox [11] that exploits the po-
tential sparsity of both input data matrices X, Σ.

The algorithm ROBLP implements a variant of the linear programming problem (10), in the
form

min
wn,wp,b,e

eT1 + (1− κ)σT (wp + wn) : yi((wp − wn)T xi + b) ≥ 1− ei + ρκσT
i (wp + wn),

ei ≥ 0, i = 1, . . . , N,
wp ≥ 0, wn ≥ 0,

(38)

where w = wp − wn and σ = Σ1. The above has 2n + N + 1 variables and N constraints, without
counting the sign constraints on the variables themselves, which MOSEK handles separately. The
algorithm SPLP corresponds to the ”pure” weighted l1-regularization, obtained by setting κ = 0.

The algorithm ROBLR implements the maximum entropy problem (27), via

ψ = min
λ,µ

λT log λ + µT log µ : λ + µ = 1, λ ≥ 0, λT1 = N+,

−(ρκΣλ + (1− κ)ρσ) ≤ XY λ ≤ ρκΣλ + (1− κ)ρσ,

where σ = Σ1, as for ROBLP. The above has 2N variables and 2n + N + 1 linear inequality
constraints. The code SPLR corresponds to the case κ = 0.

Finally, ROBMPM implements the second-order cone program (34), via

min
wp,wn,t±,u±,s±

c+t+ + c−t− : t± ≥ ‖u±‖2,

u± = (X± + ρΣ±)T wp − (X± − ρΣ±)T wn − s±1,
s± = x̂T±(wp − wn), s+ − s− = 1,
wp ≥ 0, wn ≥ 0,

which has 2n + 2N + 4 variables and N + 3 equality constraints. The code SPMPM implements
(35), via

min
wp,wn,t±,u±,s±

c+t+ + c−t− + σT (wp + wn) : t± ≥ ‖u±‖2,

u± = XT±wp −XT±wn − s±1,
s± = x̂T±(wp − wn), s+ − s− = 1
wp ≥ 0, wn ≥ 0,

where σ is a weighted sum of class averages of the σi’s (see (36)). Note that our implementa-
tion avoids forming the covariance matrices and exploits potential sparsity of the input matrices,
contrarily to the original implementation of MPM.

7.2 Exploiting structure

In many applications, X often contains a lot of very small elements. It is natural to set those small
elements to zero, according to some filtering rule. One possible rule is to set X(i, j) to zero if

|X(i, j)| ≤ εΣ(i, j),
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where ε is a pre-defined relative threshold level. More sophisticated rules are of course possible, but
the above is attractive in the light of our interval uncertainty model. Precisely, if the nominal matrix
is filtered with a given threshold level ε, then the filtered matrix is guaranteed to be contained in
the interval matrix model X (ρ), provided ε ≤ ρ.

Sparsity of the nominal matrix can be directly exploited by the l1-norm regularization formu-
lations (algorithms SPLP, SPLR and SPMPM). In contrast, the matrix Σ is almost never sparse,
and the robust classification algorithms ROBLP, ROBLR and ROBMPM cannot directly exploit
the sparsity of the nominal matrix X when Σ is dense.

To address this issue, we consider the property of regularity. We say that a matrix is regular
if many of its elements are equal, or, more generally, if it is a rank-one modification of a sparse
matrix. In our context, we assume that the standard error matrix Σ has the form

Σ = σavg1T + δΣ,

where σavg ≥ 0 can be interpreted as an average of standard errors across experiments, and δΣ is
a sparse matrix. Of course, sparsity is a special case of regularity, with σavg = 0.

When X is sparse and Σ regular, we can modify the basic implementations of ROBLP, ROBLR
and ROBMPM so as to exploit both properties. For example, consider the ROBLP formulation
(38). Introducing a new variable u and associated constraint u ≥ σT

avg|w|, we obtain

min
wn,wp,b,e,u

zT v : yi((wp − wn)T xi + b) ≥ 1− ei + ρu + ρ(δσi)T (wp + wn),

ei ≥ 0, i = 1, . . . , N,
wp ≥ 0, wn ≥ 0, u ≥ σT

avg(wp + wn).

The above formulation amounts to adding one column and one row to the original constraint matrix,
and preserves its sparsity.

Similar results hold for the other two loss functions. Also, the idea can be extended to the case
when X is not sparse but regular.

8 Concluding Remarks

We considered a robust, binary, linear classification problem in which the input data is unknown but
bounded within hyper-rectangles, i.e., multi-dimensional intervals. By duality, the interval bounds
naturally lead to the presence of weighted l1-norms in the constraints imposed on the classifier
coefficients; these terms induce sparsity of the classifier vector. Thus, robustness and sparsity go
together. The convexity, monotonicity and separability properties of the loss function all play an
important role of making the robust problem amenable to efficient algorithms for finite-dimensional
convex optimization. Our implementation exploits potential sparsity, or more generally, regularity,
of the input matrices. A next step is to analyze the different methods presented here through
experiments on real-world data, as well as investigate how well they perform compared to each
other and to previously published methods. This is the subject of research that is currently going
on.
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