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Abstract the design of a BGP health inferencing system for analyzing
Today, we lack a clear understanding of the dynamics of th:é) g:i;ﬁ?:ﬁ‘isr ferggr]] Tu(ljt;pt)lee Kigﬁg?npcmésczﬁieloiﬁslcﬁ\'/gg ;h;r_
Border Gateway Protocol (BGP) and this has largely restricted - Pe ' ng !

rowing down the location of potential AS’s and the type of

our ability to address BGP's shortcomings. To gain more inc uting event at each location that might have triggered the up-
sight into BGP’s dynamics, this paper proposes the design 01&% 9 9 99 P

BGP health inferencing systetimat localizes the root causes of ate. Fo_r certain types Qf massive routing eveeig._( session
. o . resets), it may be possible to pinpoint the exact inter-AS link
routing changes. Specifically, the inference system addresses.

two questionsWhat is the cause of a routing change? Wher%ver'cor} ggrs]:it:?ﬁ Snc(ij;tre\,\;er:;\r/]vi\fgrsitc;?gfngl)leﬂr]i\l:m@e ,(num—
does a routing change originaterhe inference system corre- P ' ' 5

lates routing updates across multiple vantage points to narr [ote flaps), it may be fundamentally hard to precisely pinpoint

W : . . .
down thesuspect sevf AS’s that might have triggered rout- Cfhe location of the routing event. While Griffet al. [7] have

ing changes. Our methodology is primarily targeted towardfsshown root cause analysis to be a hard problem, we find that

. . . - or a reasonable fraction of BGP updates we can narrow down
analyzing events affecting relatively stable prefixes (compo

. 0 . . %ﬁe location of the event to within 2 AS’s (a single inter-AS
ing roughly 80% of the routing table), which are known to be djacency) for over 70% of updates.

the most popular destinations of Internet traffic. For 70% of
observed updates to these prefixes, our approach can pinpddespite imperfect precision, we believe that a BGP health in-
the location of origin to a single inter-AS link. We analyticallyferencing system can indeed be useful in improving the diag-
and empirically argue correctness of several key steps of o@sability of BGP dynamics. We envision deploying our infer-

methodology and additionally show that our technique can cognce algorithms in data collection centers like Routeviews [25]
rectly pinpoint the source of several well-known/ documente@nd RIPE [26], which continuously receive streams of route

routing events. updates from multiple vantage points. Potential applications
) which can benefit from partial root cause information include:
1 Introduction (a) Network operators can use this information for debug-

. . ing and troubleshooting purposes; (b) One can set BGP poli-

Internet routing suffers from several problems today, includ=, o L : o

. . - ; .~ “cies based on historical statistics of link/node stability; (c) For

ing chronic instability, convergence problems and misconfigu-= . . - g .
. . . events with a higher precision, BGP can use this information

rations in routers [9, 1, 13]. Many of these problems arise dué

to the complexity of the Border Gateway Protocol (BGP), thonlmeto improve path selection and dgmpmg of instability; (d)
. . . ! ustomers/users can leverage these inferences to choose of up-
de facto inter-domain routing protocol. BGP has evolved into

. . o ream providers. While our system currently uses only passive
complex protocol, with a number of configurable policies an

. . GP update information, we believe that the precision can be
features that make its dynamics hard to comprehend. ST : . : .
_ _ ) enhanced by coupling it with active probing diagnostic tools
Without a clear understanding of these dynamics, efforts ifxe AS-traceroute [16].

address BGP’s shortcomings have become a black art. First

we do not yet completely understand the impact of Simplgaihdatlng our inferences can be a very challenging task espe-

configuration changes on routing dynamics. Hence, we |a‘§ally given that many ISPs do not wish to reveal the type or

clear guidelines for configuring, diagnosing and debuggin equency of events within their network. We adopt a two-step

BGP [13, 4]. Second, while several modifications to BGP hav ethodology towards validation. First, we analytically and em-
' K p]i_rically show the correctness of certain key steps of our infer-

ance approach under a set of assumptions that are known to

research community. For example, the route flap dampenirq‘gmmonly hold. Second, our system is. able to detec'F a variety
mechanism was introduced to improve the stability of BGF vyell—known events such as: (a) multiple BGP session resets
but was later found to introduce routing convergence protSj—urlng Internet worm attacks [23]. (b) publicly documented

lems [15]. Finally, only recently have many problems relatinisming problems experienced by major ISPs [27]. In addition,
to route oscillations, convergence and inter/intra domain pr e analyze the updates ge_nera_ted by BGP Beacons [14] and
tocol interactions been brought to light [8]. show that our system can pinpoint the source of these updates

. ) . i with high accurac¥.
In this paper we take a first step towards improving our un-

derstanding, by developing a systematic methodology for an- *Additionally, we analyze updates on a real-time basis and publish
alyzing routing changes. We apply this methodology towarda!r results online under the hope that network operators can comment

been proposed to alleviate specific problems, these may i
troduce a newer set of problems currently unknown to th




Based on our analysis of route updates collected from Routat 12:30am on April 22 2003, all 23 views observed a route
views and RIPE over a period of 18 months, we make twohange to prefix 200.71.128.0/20. The paths of all prefixes be-
key observations. First, our system can detect major routirfigre the route shared the path (X,D) and after the reroute they
anomalies, many of which were previously unknown. Secondjl shared (Z,D). The observations could be explained by: a
we detected on average nearly 1,400 events of high magnitu@ddure at X, or D advertising a lower MED to Z for traffic en-

(i.e., events that affect many prefixes) per month, and foungineering purposes, etc, but could not be explained by: a failure

certain inter-AS links to be perennially unstable. at Z, or D advertising a higher MED to Z, etc. In general we
can say that either some event took place on the link (X,D) that
1.1 Examples made (X,D) less desirable to some BGP router, or some event
Figure 1 describes four observations to improve intuition abodffK Place on the link (Z,D) that made (Z,D) more desirable.
how we determine root cause. Roadmap:Section 2 describes the root cause inference prob-
lem, why it is challenging, and how our approach overcomes
these challenges. Section 3 describes how we determine which
m@ observations are correlated. Sections 4 and 5 describe the infer-
(a) Large event (b) Flap ence algorithms we use. Section 6 describes the methodology
and validation of our approach. We describe our results in Sec-
Z>® Zm@ tion 7, related work in Section 8, and conclude in Section 9.
(€ Prefixdown () Reroute 2 Root cause inference problem

Figure 1:Example observations. We show a simplified version of thd ©Minology:A routing eventis an activity taking place at
topology without AS numbers, without intermediate AS’s, and withSOme location in the network that generates one or more route

only a small subset of views. updates. A group of updates orrelatedif they were all

caused by the same event. Routing events can have different
(a)Large event:If an event affects several prefixes simultanecausese.g., failures, policy changes, and link repairs. Routing
ously, then it is often easier to narrow down locatidfor ex-  events have two properties: the cause of the event, and the loca-
ample, at 1am on April 26 2003, multiple views observed 2468on of the event. We refer to events affecting many prefixes as
prefixes traversing linKX,Y") to switch to alternate paths, major eventsand those affecting few prefixes amnor events
then return to their original state within a short period. Fronin Section 3, we describe the notion of major and minor events
a single view, we can determine the event most likely occurraglore precisely). Our algorithm uses observations made at vari-
on the common sub-path across all these prefixes which igus routers callediewsor vantage pointsOwners of the views
cludes the link X, Y"). Across views, the linkKX,Y") appears volunteer to make their updates public by sending them to a
as the only common candidate inter-AS link and hence, it imonitor such as Routeviews [25]. Ank is an AS-adjacency,
likely they were all caused by a single large event affecting A@hich may consist of several peering sessions.

X, AS Y, or the link between them. The root cause inference problem can be stated as follows:
(b) Flap: It is more difficult to isolate cause for flaps, sinceGiven route updates observed at multiple vantage points,
many AS'’s are introduced as suspecEor example, at 5pm determine the suspect sdt€,L;),(Cs, La)...} where

on April 13 2003, all 23 views began to observe a flap of prefikC;, L;) represent a potential cause and location that could
212.48.160/19 from path (V-Z-D) to path (V-X-D). Unlike the have triggered a route updat€orresponding to each cauSg
previous case, we can no longer pinpoint the AS causing tifg represents the list of potential locations that might have trig-
event, since any AS on either of the paths is suspect. Howevgered a given update. Given that BGP route updates are only at
we can eliminate certain AS’s that don’t appear in updates &@ie granularity of AS’s, our location inferences are restricted
other views, allowing us to narrow down the cause to a smath the level of AS’s as opposed to router-level inferences.

setof AS's (AS X, Z, or D). We face the following set of challenges towards addressing the
(c) Prefixdown: Observing a withdrawal gives information root cause inference problem: (@prrelated vs simultaneous
about the type of event that occurrellor example, at 6pm on observationsEvents may simultaneously occur [7] and deter-
April 3 2003, all 23 views lost a path to prefix 194.55.164/24nining the set of updates that are triggered by the same event
for a long period. Since all views lost paths within a short peis hard. (2)BGP policies:Policies used to express preferences
riod, it is likely that a single event affected all of the 23 viewsbetween routes are not standardized and not disclosed. Also,
Being in a withdrawn state for a sustained period eliminatgsumans are involved in setting policies introducing the possi-
certain types of events from consideration: e.g. MED or Locability of mistakes. (3)Multiple peering links:Even if two AS

Pref changes, or BGP session resets. paths intersectin the AS-topology, they may notintersectin the

(d) Reroute: Certain state transitions give additional infor- Network-level topology. This implies that if two views share a
mation about the location and type of everfior example, Sub-pathin the AS-topology, it is possible that an event in the
intersection region of the AS paths is noticed by one view and
on the validity of our inferences. Our results are availabldyr: not by the other. (4)-BGP/E-BGP interactionsBy only ob-
Ilwww.cs.berkeley.edumccaesar/hmon.html serving E-BGP advertisements, we do not get clear visibility




into intra-AS route dynamics or I-BGP/E-BGP interactions [8]. Inferences, updates Inferences, updates

from other views from other prefixes

Hence it is hard to determine whether a problem exists within i
an AS or on links between peered AS's. o —— —
5 updates flaps occur? analysis of
2.1 Assumptions = Tmlen/ e \_,
. . g N = y Event ;&
Our inference rules are based on two assumptions: P ot e [ ™l vewe [T P clection [Quiscen ’
(1) An AS that triggers any route change should be embedded Single view, prefic Across views | | cross prefixes

in one or more route updates in the burst (either in the previous
path, one of the intermediate paths, or final pattle note
this assumption might not hold in certain cadeghere an AS
prefers a provider or peer route to a customer route for a certain ] ] ]
prefix, but such cases are known to be rare [22]. We furth&Foperties commonly hold: (a) the routing events are typically
improve the likelinood that we observe this AS by correlating/iSible and not affected by artificial damping; (b) two different
updates across prefixes and views when possible. Howevef}ents affecting the same prefix are separable in time. These
such a case occurs, if an AS is wrongly specified, or if the Afroperties make root-cause analysis for these prefixes feasible.

path is truncated due to implementation bugs, our inferen&P0t-cause analysis is inherently hard for continuously flap-
mechanism will not work. ping prefixes especially if many of the updates are dampened.

Whil h initial lyzing th -
(2) Artificial damping (due to rate limiting and flap damping) lle we have made some initial progress analyzing these pre

. ) . fixes (Section 7.2), determining the root-cause for these pre-
of updates has little effect on updates during minor events, <is largely an open research problem

To infer a minor event precisely, the majority of updates it ] ) )

causes must be observed. There are three reasons why tHequivalence classedvhile the list of causes of routing events
updates might not be observed. (i) The state of the route miglf INNumerable, many of these causes can be classified into
change through several intermediate states while the route§guivalence classeahere each class contains different causes
held-down due to flap damping (ii) Withdrawals may also that might trigger the same pattern of updates. Although events
go unobserved if they are delayed due to WRATHii) The in different equivalence classes can often be distinguished
event may not affect any of the views due to its location. Ifn€rely based on the pattern of observations at a vantage point,

addition, minor events may be unobservable in the presenceG@USes within a single equivalence class may be indistinguish-

major events, since the few updates caused by a minor evéwe- Hence we determine the root-cause only to the granular-

get subsumed as noise when a major event triggers many rol¥e°f the equivalence class. While we have defined a specific
updates at the same time. However, if a minor event affectsS§t ©f equivalence classes in this paper (Section 4.1), there is

prefix that is not continuously flapping, then updates to it arg?0m for defining a much richer set categorization of causes to
typically visible. To improve precision, we use multiple van-obtain a finer distinction between different types of causes.

tage points. In practice, we found that using at least one amo@grrelation of routing updatesOne of the key problems we
3 — 4 vantage points typically observes a few updates triggerextidress is how we correlate updates that are caused by the same

Figure 2: Algorithm flow.

by a minor event. event without incorrectly correlating observations from differ-
ent events. We correlate updates across three dimensiogs:
2.2 Inference methodology prefixesandviews(as shown in Figure 2). From a single view,

Figure 2 presents an overview of the flow of our inference alVe Cluster updates to each prefix based on how close they oc-

gorithm. Our inference methodology uses three basic ideasGdr together in time so as to separate routing updates triggered

solve the root-cause inference problem: by different routing events. We then cluster across prefixes by
noting that the number of prefixes simultaneously updated sig-

Separating stable from continuously flapping prefiXéfs:sep-  ifies \vhether multiple prefixes are affected by the same event
arate prefixes which are relatively stable from those that g\]%

X | dated. We ob hat f bl . xample 1 of Section 1.1). We provide an algorithm for classi-
continuously updated. We observe that for stable prefixes, W, time intervals intcQuiescenandTurbulentperiods based

2 Consider a network with AS’s A, B, and C, where (A,B) andOn the number of prefixes simultaneously updated, and show
(B,C) are private peering links, and suppose A, B, and C have cutlat many observations in a Turbulent period are triggered by
tomer routes to reach some destination D. Suppose initially B prefefide same routing event (Section 3). Finally, assuming that the
C to reach D. Suppose C's route fails, causing B to start routinglocks of the different views are loosely synchronized (we re-
through its customer, which it will advertise to A. If A prefers this quire times to be synchronized only on the O(minutes)), we
path over its customer, then the view in AS A will observe a changgorrelate bursts of update activity for different prefixes to nar-
from A's customer to B, but no updates will contain AS C. We ar§qw down the suspect location of routing events.
unaware of any example that does not require such a preference.

3Flap damping is a mechanism in routers that withdraws persisy Correlating route updates
tently unstable routes, thereby reducing routing instability. A prefix
will be re-advertised if it remains stable for a long period of time [15] An observationrefers to a collection of one or more routing

“withdrawal rate-limiting (WRATE) is a technique to rate-limit updates at a single vantage point. Given a set of observations
withdrawals of a prefix. at different vantage points, the first step towards addressing the




root cause inference problem is to determine the set of obsehRanges (changes longer than the advertisement timer) can al-
vations that are triggered by the same routing event. We defim@ys be seen at vantage points.

each such group as a setaafrrelatedobservations. The prob-
lem we focus on in this section is how to partition observations

into groups such that the groups are disjoint, and each group of Table 1: Effect of distance on observed magnitude.

observaiions is caused by the same event. Number of AS Hops from view| Number of prefixes affected
T - 4 967

3.1 Event visibility and separability 3 1311

The ability to correlate observations triggered by a single event 2 920

is dependent on two factors: (ayent visibility (b) event sep- | 1 1238

arability. Event visibility refers to whether a routing event isD ite d . tound that i . ith
visible to a vantage point,e., whether the vantage point ob- espite dampening, we found that in practice an event with a

serves any updates triggered by the event. From the set of 5159h me_1gnr|]tude IIS V'S'bl;e at V%Ttagefpomts prO\QdEd Fh?l'vk?In_l
servations at a single vantage point, two events are said to B9€ Pointhas alarge observable prefix set, as shown in Table

separabléf the vantage point can distinguish updates causdd/€ 9enerated these results after narrowing down the location
by each event. of the event from multiple vantage points using our algorithms

] ] described later). We notice that the observed magnitude of an
We characterize an eveR{( X, ¢, Ps, d) using four parameters: gent js fairly constant regardless of distance (AS hop count)
X is th.e location of the eve.nt (at the granulgrity of an AS), from the view. In general, vantage points which have an ob-
is the time of o_ccurre_ncé?g is t_he set of prefixes a1‘fect_ed by servable prefix set of at leaBd00 prefixes notice a significant
the event and is the time-duration of the event. We define thg, mber of them being simultaneously updated by the event.
magnitudef an event to be the number of prefixes affected byso an event can be suppressed if it simultaneously occurs
E which is equal t4Ps . with another event that affects the same prefix set. We found
3.1.1 Eventvisibility that such simulta_meous evgnts are rare. We describe how we

can detect them in Appendix B.

Whether an evenft (X, t, Ps, d) is visible at a vantage point
depends on whether: (& contains at least one prefix whose o
route fromA traversesY ; (b) intermediary routers dampen the OPservation I: An event that affects one or more stable pre-
updates triggered bg. Theobservable prefix saif an event fixes is VISIb!e at a vantage pomt provided: (a) one or more
at a viewA refers to the subset of prefixesity which satisfies affected prgflxes are present in the observable prefix set of the
the first criterion. Though an event may affect several prefixe¥antage point; (b) the observations to at least one stable prefix
it may still not be visible at a vantage point if the observabl@'€ N0t dampened by other simultaneous events.
prefix set is empty. Of this observable set, a vantage point may
receive updates for only a fraction of the prefixes since others
may potentially be dampened. We refer to this asaleerved From the perspective of a single vantage point, events are sep-
magnitudeof an event at the vantage point. arable across two dimensiormefixesandtime Separability
Two forms of dampening can affect visibility of an event: ﬂapacross prefixes involves distinguishing between events that af-

dampening and rate-limiting. Based on data collected froJr‘?Ct disjpint sets of prgfixe;. To maximize accuracy, we can
Routeviews and RIPE, we notice two distinct route update pat[r_eat asingle event W_h'Ch angers updates to d|ffer_ent prgflxe_s
terns for different prefixes at different vantage poirgtable as separate events triggering updates to each prefix. While this

prefixes have an update process characterized by long silerfigY affect precision in determlr_nng the source of the eve_nt,
periods interspersed with small bursts of upda@estinuously this doesnot affect correctness since we att.empt to determine
flappingprefixes are continuously updated over long period§he rqot cause.from update_s to each pref|x_ separately. How-
Although stable prefixes can potentially be affected by fIaFEver, inappropriately assuming two observations are correlated

In summary, we make the following observation:

1.2 Event separability

damping [15], in the absence of rate-limiting at least one u >an cause incorrect inferences which is undesirable. Hence, we
' dreat updates to each prefix separately and in the simplest case,

date from the event will always reach the view (which might b e ) . 2R
nalyze each prefix in isolation. This approximation is most

a withdrawal triggered by hold-down). One update is sufficierft

for our algorithm to detect the event, though more updates céﬂﬁ‘efu' when analyzing events which affect very few prefixes.

improve precision. In this paper, we focus primarily on staF o' example, if an event affects onlyprefixes, it is easier

ble prefixes and briefly discuss continuously flapping prefixdS analyze them separately rather than attempting to decipher
later in Section 7.2. Rate limiting can occur if the rate at which/NCh two prefixes are affected by the same event. Later in
an event generates updates exceeds the rate the router forwarggHon 3-2, we provide a criterion to determine when one can
updates. For example, a session reset may cause many rout gly correlate observations across prefixes without sacrific-
change and then revert back to their previous states before {ng correctness.
router’'s advertisement timer expires. Although stable prefixeslong thetimedimension, two events affecting the same prefix
can be affected by rate limiting, events that cause long-terare separable at a single vantage point if the updates generated
by these events are separated by long silence periods. Given a



thresholdA, we can separate the arrival of route updates into

0.05 t
bursts such that two bursts have a silence period of at Ieast ‘

004 L !
between them. Lef refer to the duration of burst arfg,,, the £ 003 L
mean separation time between bursts. We make the following § 002 b !

observationthe probability that two bursts affecting the same 001 k |
prefix at a vantage point are caused by two separate events is o >
dependent on the ratid/T,,,. WhenT,, is larger thard, we 0 300 600 900 1200

Number of prefixes updated

can more easily separate events. For very low valués B, ,
a single observed burst of updates is triggered by a single ev:

t . . . .
with high probability. ?'—?gure 4: Frequency of intervals with various numbers of up-

_ _ _ _ ~ dated prefixes for a view in AS 1239. We use the gap (separa-
Consider the simple scenario where events affecting a singign shown with vertical dashed lines) to distinguish Turbulent

prefix are independent and identically distributee,, arrival  from Quiescent periods. Less than 0.2% of the mass is within
of events can be modeled by a Poisson process. In Appendixtie gap.

we show that the arrival process for many prefixes can be ap-

proximated as Poisson. The inter-arrival times of the events are

hence drawn from an exponential distribution with a mean sepve define a probability distribution functigriz) on a variable
aration time off,,. If d represents the duration of an event, the: to have agap propertyif there exist two values; andas
probability that one event occurs within a peri@df another such that:

event is given by~%/T=_ For very low values ofl/T},, this Pla; <z <a)=0

robability is very small. )
P y y In other wordsg does not take any value in the rarjge, as].

To generalize, a probability distribution nearly has a gap prop-
1 g erty if P(a; < z < a») is negligible in comparison to
Y 0.95 /#&" P(z < ar)andP(z > asz).

g 09 ; We useN (e) to denote the number of prefixes updated at a
E  ogs [VewASTOL = vantage point during a given time-period that traverse an inter-
0g L VIEWAS?293 —e— AS link €8. From our analysis, we noticed that the probabil-

0 01 02 03 04 05 ity distribution of N (e) measured over short time-intervals

Ratio d/T_m (1 — 5 minutes) nearly satisfies the gap property for a large

fraction of the links where the gap typically starts at a value
a1(e) < 50 and ends in a value (¢) much larger thamy (e).

While the Poisson process assumption represents a crude @pte) typically varies between00 — 1000 depending on the
proximation of the event arrival process, it helps in better adlk. Figure 4 shows the PDF a¥ (e) for one such link with
alyzing the separability of observations into different eventsi (¢) = 140 anda(e) = 710.

In general, the event separability at a vantage point is depeN-e) represents the sum of observed magnitudes of various
dent on the parametel/T,,. In reality, while we cannot di- events that affect prefixes traversing the edgéf we mea-
rectly observe the event process, we estimate a upper bousite N (e) across small time-intervals (the expected number of
on this value for stable prefixes as the length of the longest/ents within an interval is small), then the existence of a gap
burst observed in a given time period divided by the smallegt the distribution inN (e) signifies thatcertain events trigger
separation time observed between bursts. Figure 3 plots this observed magnitude of at mast(e) and others trigger an
distribution as measured for different stable prefixes ackossobserved magnitude significantly larger than(e).

different views over a period of 1 day. To estimate these burSt?his motivates the distinction betwesrinorandmajorevents

we'lset a thre%%ollzd ah = ﬁl hggro/as ft?if mltnlgllum Ief.ngth 3: where minor events cumulatively can account for an observed
a siience peri or roughly o ot the stable pretixes, emagnitude of at most; (e). In other words, if a vantage point

separation time is 10 times larger than the event duration. V}é%serves more tham (¢) prefixes to be updated along the edge

classified the remaining prefixes under the continuously fIa%- then it can determine that at least one event has an observed
ping category. '

magnitude ofas(e) — oy (e) (since simultaneously occurring
minor events can account for at mast(e) of the observed
updates). This argument relies on the fact that a vantage point
In this section, we provide a mechanism to distinguish betweearely observes simultaneous major events. This holds because
Turbulent (periods of high activity) and Quiescent periods (peof two properties (a) over small measurement intervals, we ex-
riods of low activity) and show that during Turbulent periodspect very few events to occur, and (BYN(e) > ax(e)) is

we can safely correlate observations across prefixes.

Figure 3: CDF of ratio of duration and separation time.

3.2 Quiescentvs. Turbulent periods

®In practice, we need to include the complete observed magnitude

SRoute flap dampening is not triggered beyond a time-period aff every burst that occurred within a time-period in the computation of
1 hour due to a single event and hence we chose this as a threshplde), i.e., for every burst, we consider all updates of a burst including
value. the ones outside the interval.



small (roughly3 — 4%).
In summary, a view that observes a gap property in the prob-

ability distribution of N (e) betweena; (e) andas(e) under- il
goes dalurbulent periodf it observes that the value d¥ (e)
is greater thamv, (e) and aQuiescent periodf N (e) is lesser Figure 5: Example: Inference from single view.

thana; (e). Additionally, we make the following observation:

Observation Il: Given the gap property between (e) and Our approach formalizes this by developing a set of rules that
as(e) on the probability distribution ofV(e) of an inter-AS place the set of AS’s contained in the burst ieguivalence

link e, if a view observes more tham (e) prefixes involving classesbased on the type of event that could have taken place
edgee updated within an interval, then at least (e) — a;(e)  atthat AS that would have caused the observation. We motivate

of these prefixes are updated by one major event. our approach with the example shown in Figure 5. Suppose
) o view Vs routing table contains an AS paiti, A, B, C, D] to
3.3 Correlation criteria a prefix X, and assume for now that AS’s are singly peered

To summarize, we use the following principles to correlate ofNd community attribute changes do not occur (our approach
servations across multiple vantage points. does not make these assumptions). Suppose after some time

) _ i _ _ the path changes {0, A, B,Y, C, D] and remains stable for
Time dimension: At a given vantage point, a burst of updateSgme time. There are several possible events that could ex-
for a single prefix is assumed to be caused by a single eveljt; this change: perhapsadvertised a lower MED td, or
provided the mean-separation time is at least ten times @ ans the link 3, ) failed. However, certain events could
mean-duration time of a bufst not explain this change: any event happeninglabr a fail-
Prefixes dimension:At a vantage point, if the number of pre- ure of link (B,Y’), or Y advertising a higher MED td. In
fixes updated in an interval is above a threshalg(¢)) for general, there are two possible explanations: either (1) some
some edge, then a majority of prefixes (at lease) — a1 (e)) event happened on the pdtB, C] to make it less desirable
are updated by a single major event. In Section 5 we use this B (worsened), or (2) some event happened on the path
principle to correlate observations across prefixes. [B,Y,C] to make it more desirable tB (improved). Hence,

Views dimension:Let a view observe the start of a burst of up-We Would place{B, Y, C'} into animproveclass, and B, C'}

dates for a prefix at timeandd represents the mean-duration"© @Worsenclass. We can then compute tsespect loca-

of the burst for that prefix. In such a case, all bursts that bd4n setas{B,Y,C} U {B,C} = {B,Y,C}, and thesus-

gin for the same prefix across different views within the timé€Ct cause seis all causes corresponding to the Improve and
[t,t + d] are assumed to be caused by the same routing eviprsen equivalence classes. Moreover, since an event must be-
provided none of the views are affected by a major evieaat, long to a single class regardless of view or prefix, we can inter-

a major event can overshadow the burst of updates to a preﬁ?(Ct these equivalence classes across observations made of the
caused by a simultaneous minor event). same event, to further improve precision. We show how to do

this in later sections.
4  Single view, single prefix

In this section, we present an algorithm for inferring tes-
pect setbased solely on updates made to a single prefix at a‘ e
single view. Our inference algorithm is shown in Figure 6, and
is motivated by Examples 3 and 4 in Section 1.1. We first parti- (& =& & & S 8 Suspect ASS |
tion the possible types of BGP events iefuivalence classes Cisfofupdates

where each class contains events that trigger a similar pattern

of observations at a vantage point (Section 4.1). We thendefine ~ Figure 6: Single-view inference methodology.
a set of rules to associate suspect AS’s into these equivalence

classes based on the contents of the updates (Section 4.2). T

i .
serves two purposes. First, we can gain some information abo‘[}tf Equivalence classes

the event that took place. For example if an equivalence clagfe need to satisfy two criteria when defining equivalence
contains no AS’s, then that type of event did not occur. Segiasses. We choose equivalence classes thsj@nt, i.e. each
ond, since observations of an event must be consistent acresgnt appears in at most one class, esmpletei.e. every pos-
views, we can eliminate AS’s that appear in different classes Hjple event is contained at least one class. Disjointness elimi-
different views (Section 4.3). For example, if AS X appears imates overlap among classes, thereby maximizing the precision
equivalence class A in one view, and class B in another vieyain from intersecting across views and prefixes. Complete-

Potential causes

the event must not have occurred at AS X. ness ensures we can model every possible event. We define
7For more tha90% of the prefixes, the ratio of the times is at leasttWO Pairs of equivalence classes:
10. Here, we choost0 as a simple threshold. Improve vs. worsenA route canimprove by becoming more

preferred, or it carworsen by becoming less preferred with



respect to other paths according to the BGP path selection ahproves precision. Hence, we add another equivalence class
gorithm [18]. For example, if we observe a path change frono contain these events, and redefine the existing classes to ex-
P, to P,, we placeP,’s AS’s into the worsen class, arfé’s  clude community attribute change events.

AS's into the improve class. Note that our approach is not sensitive to the specific map-
Hard vs. soft:A route can undergo hard event where some ping of causes to equivalence classes, since it is difficult to
router along the previous state's path issued a withdrawdéetermine such a mapping completely. Instead, our approach
of a route or advertised a previously withdrawn route, or @eports location and the equivalence class associated with that
soft event where a router changes preference between existingation. Each class can then be associated with a list of causes,
routes that are not withdrawn or newly advertised. For exany using the mapping.

ple, observing a convergence process followed by a withdrawal . ,

would imply a hard event occurred. A route change frnto -2 Rulles for singly peered AS's

P, could occur either due to hard events or soft events, singg this section, we describe the set of rules for mapping AS's
although a withdrawal is not received by the view, some inteinto equivalence classes based on the pattern of route updates
mediate router o, could have generated a withdrawal thalghserved at a view. For simplicity, we first describe the rules

triggered the change. assuming there is a single peering link between adjacent AS's,
_ then describe how to eliminate this assumption in the following
Table 2: Equivalence classes of events. section.
Class Description Example causes . . .
Hard+WorsanEvent worsens path fink/router failure, _hold Table 3: Enumeration of prefix state transitions (bursts).
(Hw) properties, involves g down triggered, filtering Name Freq Regular expression
Withdraw rule added .
Soft+Worsen Event worsens path MED increase, LocalPre REROUTE 12'06% Al{fw}*:?
(Sw) properties, doesn't increase, AS prepending in- EEEEKB(P)WN g?oﬁ) K{{A|LIV/V}}*W
H i . 0
involve ngthdraw crease _ FLAPUD 23% | (AW A{A[TTW
Hard+ImproyveEvent improves path link/router repair, hold = _ 4
(H1) properties, involves g down expires, filtering rule| PATHFLAP 50.2% | Ai{AIW}" A {A[W}" A,
Withdraw deleted FLAPDOWN | 28.8% | Ai{A[W} W{A[W}" A,
Soft+lImprove Event improves patl MED decrease, LocalPref
(51) pr?pert'\if_'th‘éoesn't " gecrease' AS prependingoatterns of observations:Table 3 enumerates six all the dif-
Communt \(l:c;\rfn?unilt r:tvribute ci?;?jjr?it “Farae ferent patterns of route updates that can be observed for a sin-
(V) y changed y y 9 gle prefix. A pattern consists of a starting state, zero or more in-

termediate states, and a final state. For example, a REROUTE
starts in an advertised statd,() and terminates in an adver-

By definition, each pair of classes is disjoint. We hence defingsed state with a different AS pathi§), and may experience
four disjoint equivalence classes corresponding to each posghme intermediate announcements and withdrawals. Either the
ble combination of classes, as shown in the first four rows ghjtial and final states differ (first three rows) or they are the
Table 2. Events in an equivalence class are difficult to diStirgame (|ast three rows)_ For each case, there are three possib"_

guish from other events in the same class, but are typically eagi¢s corresponding to whether the prefix transitions to a with-
to distinguish from events in other classes. Moreover, each pgjfawn (W) or advertised (A) state.

of equivalence classes is complete: by definition, an event ¢
only either improve or worsen a route, and it can only be eith
hard or soft. To simplify notation, we defineto be elements
that could have undergone some eventlin+ Sy, W to simi-
larly correspond tddy + Sy .

Observation lll: The resulting classefl;, Hy , Sy, Sw are
both complete and disjoint.

In all equivalence classes discussed so far, the route change  kekoure o (i) PREFIXDOWN
occurs in the same AS that undergoes the event. However, a || Wosen ) FEE tmprove @) [N Hard+ Worsen (Hy) [ Community ()
change of thecommunity® attribute is unique in that it can
cause a route change to be triggered several hops away fr@igure 7:Single view rulesThe event must have occurred in
the AS that undergoes the event. This is a clear signature thaé shaded regions.

can be used to distinguish these events from other events.

Although community attribute changes are contained in thEOr each of the six patterns of observations, we use a set of in-

Hi, Hy, S1, Sw, defining a richer set of equivalence classeference rules to map the AS’s into the five equivalence classes
T Hp,Hw,Sr,Sw, N). Due to space limitations, we describe

8The community attribute is a variable length string, and routeri detail only the two inference rules in Figure 7, the rest are in
can customize reaction to this string according to policy. Appendix A. These rules are constructed under the assumption

%ﬂ)servation IV: The 6 state transitions in Table 3 comprise
%e set of all possible state changes.




that AS’s are singly-peered (we address multiply peered ASA.4 Refinement across views

in the next section). . . L .
) In this section, we combine inferences across several views to

REROUTE: If we observe a route change from path to  narrow down the suspect set. The algorithm consists of two
path %, there are three possible explanations: some propeiyeps: (a) identify groups of related observations across views

of W = P — (P N P») worsened, some property 8f = (p) intersect suspect sets. We explain each of these steps below.

iZS_B((;‘PC)lUT dizgvlemtrr)irovgg—:: dO;rrZur;irt;n;hiﬁ:;h i?]OV;nsct)rri?nTj;ftldentifying related observation8ursts of updates to the same
attribute 99 y ging ;Xrefix received nearly simultaneously at multiple views are

likely to be correlated. We describe how to correlate observa-
PREFIXDOWN: A PREFIXDOWN observation at a view tions across views in Section 3.

refers to the case where the view with an initial state of pat . .
. . . . _Intersection of suspect setsSince an event must belong
P, for a given prefix observes intermediary route updates wit,

paths(Ps, Ps . .. Py) before the route becomes withdrawn forO a single gquwalence class regardle_ss of VIEW, we can In-
. . ) . : tersect equivalence classes across views to improve preci-

a sustained period of time. Given this pattern, we make twg ! .
) : . . . .g1on. We first compute the contents of the equivalence classes
observations. First, the event that triggered this pattern is wi

certainty in the worsen and hard classes. We can learn that Lt Hw, Sr, Sw, IV at each view in isolation, then the in
L ersection of each class across each view that observed the
fore the event occurred, at least one route to the destination was . . )
! . event. For example, if view 1 determines the suspect AS’s
working, while after the event, none of the routes work. Sec:

) ) ) . reH; = A ,BandHy = B,C, and view 2 determines
ond, if all AS’s were singly peered, the location of the even .
; ) ) 1 = A,C andSyw = B, C, then the event must be in the
must have occurred in the intersection of the paths explore ard+Imorove class and must have occurred at A
In other words, all AS’s i, P; would be classified in the P '

Hw equivalence class. 5 Refinement across prefixes
4.3 Refinements for multiply-peered AS’s In the previous section, we showed how to find the suspect
set for a single prefix at a single view. Here, we show how to
AS 1 As (B as3 narrow down the suspect set by correlating observations across
=N P 283 prefixes when Turbulent periods are observed to determine the
AS3 AS4 A2 AS 4 location and type ofnajor eventhat triggered these updates.
(@) Singly-peered (b) Multiply-pecred Our algorithm during Turbulent periods consists of four basic

. . . . ) . steps. First, we analyze each prefix in isolation and classify
_F|gure 8: KnOW|_ng the details of peering relationships can heIRS's into equivalence classes using the algorithm in Section 4.
infer more precisely. Second, to detect that a turbulent period occurred, our algo-

rithm uses the procedure described in Section 3 but, in practice,
AS's can be connected by multiple peering sessions, which ca@Bmputes separate valud4e) anda, (¢) (parameters defined
complicate inference. An example is shown in Figure 8. Supn Section 3) for each equivalence class. Therefore, associated
pose AS 1 observes an update to a prefix contained in AS 5, Rifth each equivalence class, we obtain a grapl?x where
AS 2 does not. Suppose also that AS 2 has a valid advertisggch edge has a weightV (e) which represents the number of
route for the prefix throughout the event, and assume for sifrefixes for which the edge appearedin Third, we run our
plicity that community attribute changes do not occur. If AS 3ryrbulent inference algorithm (as described in Section 5.1) on
and AS 4 are singly peered, then the event causing the updgie graphGy separately for each equivalence clasgo de-
must have occurred in AS 3, AS 1, or the peering link betweegarmine the potential location of each the major event that trig-
them. However, if AS 3 and AS 4 are peered more than oncgered the updates. Finally, for each equivalence classe in-

then we can no longer make the same claim. For exampletesect our inferences across different views that also observed
router failure in AS 4 could affect the route propagated to A@ major event during the same time interval.
1 and not affect the route propagated to AS 2.

Hence, we modified the rules in the previous section to assume

by default that two paths sharing a link are actually traversing

two different peering sessions. For example, in the case of a

REROUTE, we extend the sefsandW all the way upstream

to S, and all the way downstream to D. Knowing how many

times a pair of AS’s are peered could improve precision, as it

is only necessary to extend these sets as far as the first pl&tgure 9: Example: Effects of a MED decrease on a single

where the paths must have traversed the same router. Althougéw.

active measurements can sometimes determine the number of

peering links between AS’s [20], we safely assume no sudBiven the disjoint property of the equivalence classes, we can

information is available when collecting results. perform Turbulent inference within each class separately. We
motivate this using a simple example from [21]. Suppdse




usesB to reachD and E, as shown in Figure 9(a). SupposeThis is done using a similar approach to that in Section 4.4.
many prefixes simultaneously change to start ugindf we  We now provide the details of our algorithm.

assume simultaneous events are rare, there are two possible o

causes: either an event took place(an B) that worsened the .1.1  Marking links

properties of the path, or an eventtook place.dnC) thatim- e construct a grapi with nodes corresponding to AS’s, and
proved the properties of the path. A second example is showRs corresponding to peering relationships between AS’s. We
in Figure 9(b). Suppose many prefixes simultaneously changgfine two weights for each linke G: T'(e) is the total num-

to start using A4, B). Since it is unlikely two simultgqequs Ma- her of prefixes containing in their AS path, andV (e) is the
jorevents occurred on boffd, €, E] and[A, D, F], itis likely  tota| number of prefixes that were recently updated, and con-
that a single major event either (a) took placetB) thatim-  tainede in their AS path before they were updatéd(e) cor-
proved the properties of the path, or (b) took place internally iﬂasponds to the likelihood that a major event occurree, amd

A that worsened the paths of several prefixes ugifig’, E)  7(¢) corresponds to the degree of visibility the algorithm has
and(A, D, F) (sinceA is the only common AS across the sub-inig events occurring on link.

paths). In both these examples, we can separate AS'&RAto . . .
proveandworsencategories and perform Turbulent inferenceWe then use.these we|gh'Fs to marki links I|.kely to have caused
on each class independently. the event. First, we eliminate all I|nl'<s witli'(e) less than
as(e). We do this because for these linkge) would always
5.1 Turbulent inference algorithm be less tham,(e), hence we would not be able to observe

events on these links (we may be able to observe Turbulent

In this section, we provide an inference algorithm assuming,e s on these links from other views). We then mark all links
that a single major event occurred, and later in Appendix Buith N(e) greater than a thresholgs (¢) asM (for “many”),
provide heuristics on how one can potentially differentiate Siénd all other links a§ (for “few”). Similarly, we mark a node

multaneous major events. While simultaneous major events afgy) or £ pased on the number of prefixes terminating at that
known to occur in practice we assume that the probability of node that were updated. Edges marked as M are suspect for

such an occurrence is small. having undergone a Turbulent event. Tosgte), we use the
procedure discussed in Section 3.2.

1000 prefixes

3000 prefixes 5 . 1 . 2 Trave rSaI

2000 prefixes We then apply a set of rules to the resulting graph to determine
the most likely location where the event could have occurred.
) . . . That is, we start at the node representing the view, and use
Figure 10: Example: Effects of a session failure on a singlge ryjes to traverse the graph. Eventually we terminate at the
view. link or AS most likely to have caused the event. We repeat this
procedure for each equivalence class, and output the resulting

The key step of our algorithm is to determine, from a singlget of links. The rules, as shown in Figure 11, are:
view, the potential set of locations that might have triggered a

major event. We motivate this inference step using an exampgle

(Figure 10). Suppose at a view in AS, we observe updates M M M F. M

to 1000 prefixes traversing link4, C'), and suppose very few F ELPNF E wx F
other prefixes are updated. Then, it is likely that the event took

place at(V, A,C) or downstream of?. We have to include | () Link termination  (2) AS termination  (3) Dispersion  (4) Link traversal
the link (V, A) as a suspect because ASmight be multiply

peered with4 where one of the links undergoes a session resEtgure 11: Rules to determine location of a Turbulent event
and the path tdB traverses a different peering link. On theffom observations at a single view.

other hand, suppose we observed updates to 4000 prefixes that

traverse(A4, B), and of these prefixes, 2000 traverde, £)  Link termination: If there are several links marked M coming
and 2000 traversgB, D). Then, the event likely took place on out of this node, either a single event occurred on the incom-
the sub-patiiV, A, B) but not beyond. In other wordémany ing link, or simultaneous events occurred on the outgoing links
updated prefixes share a common path, and then fan out, th@rked M. Since simultaneous events are rare, we halt and re-
event most likely occurred in the common path turn the link between this node and its parent.

Our algorithm computes these common sub-paths for ea&® termination: If we arrive at a node marked M with an in-
view, and for each equivalence class and then intersects thesaing link marked M, and no outgoing links marked as M,
sub-paths across views to narrow down the location furthghe event was not an E-BGP session failure. Rather, it is some

- H " (@ Internet like SOL S event occurring inside an AS affecting many of its prefixes.
wo such cases are: (a) Intermnet worms like SQL Slammer ande oo ‘the algorithm returns this AS as the location.
Code Red [27] cause increased levels of congestion generating simul-

taneous session resets, and (b) one session reset triggers anotherlgigpersion: If we arrive at a node marked F with all outgoing
ond session reset due to shift in traffic. links marked F, then the larg¥(e) we saw on the incoming




link was the aggregation of many individual Quiescent eventglain their cause by events discussed in various mailing lists
and was unlikely to be a single major event. Hence, we assuragd web sites.

that no major event occurred. We found this rule was rarelyqjigation in Quiescent periods: Minor events that trig-

triggered, validating the observations in Section 3.2. ger updates during Quiescent periods are typically not docu-
Link traversal: If there is a single link marked M coming out of mented, making validation difficult. However, for two specific

the node, then the event could have occurred at the link cornypes of BGP updates in Quiescent periods we are aware of the
ing into this node or downstream. In this case, we add bo#S originating the event that triggered these updates. These in-
the incoming and outgoing edges into the suspect set. We thelnde: (a) BGP Beacons, (b) updates received by a viewpoint
traverse to the child, and try to apply these rules from that p@t the originating AS. For these two classes of updates, we val-
sition. idate the correctness of our Quiescent inference algorithm by

Observation V: If only a single major event occurs, then theCNecking whether the AS originating an update is present in

algorithm infers the correct link undergoing the event with higti"® Suspect set generated by our algorithm.
probability. BGP BeaconsBGP beacons are publicly documented prefixes

The above rules may give incorrect inferences during the rafgatare aqvertised and withdrawn at regqlar intervals, and have
times when simultaneous events are taking place. We descriién Previously used to study BGP routing convergence [14].

some heuristics to detect when simultaneous events are ocdifs highly likely that if any view observes an update to a bea-
ring in Appendix B. con prefix with origin AS X, the update originated in AS X.

We used both the RIPE beacons [26] and PSG beacons [14] to
6 Methodology and Validation validate. The PSG beacons include 4 prefixes, and the RIPE

beacons include 9 prefixes. Each prefix is cyclically adver-
In this section we develop a methodology for validating cortised and withdrawn with a fixed period of two hours between
rectness. We use publicly available traces of BGP updatggents. These beacons are widely distributed geographically,
from Routeviews [25] and RIPE [26]. The contents include (a3nd are originated from a variety of levels in the Internet hi-
whether the update was an announcement or withdrawal, (8archy. Since the origin AS of each of the beacon prefixes is
the IP address of the view forwarding the update, (c) the preyplicly documented, and the schedule of announcements and

fix being updated, and (d) the set of AS hops used to reagfjthdrawals is also public, we can use these events to validate.
the destination (AS path) (e) a time-stamp when the updat

was logged. We discard the other fields [18] of the updates th &e-vgpo-?Lgﬁzzosrfélz\:eeusszﬂe ;Tgfac’brsei'r v%tlonne?ta;\t IIhe
are received by the monitor, since they are not used in our gview! v v Prefix ow y

gorithm. One particular problem with Routeviews and Rlplfame AS, then the event must have occurred in that AS. Based

data is that session resets may occur between the monitor aCHhBGP routing tables we can determine the set of prefixes
owned by each AB. Our validation method works as follows:

the view [23]. These events could cause our approach to ‘?—Ii_rst, for each viewpoint V in AS X, we only consider the up-

roneously infer that a Turbulent event occurred. However, a )
observed in previous works [19, 2], we can filter out the effates for prefixes owned by AS X. Next, we hold out updates

fects of these resets by discarding redundant updates thatgo?sjnﬁgn?t.\é aann gﬂ;ﬂggﬁfggﬁ alggréthhekauSEgt#grd:tSes
not change the contents of the routing table. y VIEWS | - rinaty, w w

X is indeed present in the suspect set corresponding to these
The assumptions we can make during Turbulent and Quiesce[Hdates. We measure the false negative rate as the number of
periods are fundamentally different, and hence we need diffejmes that AS X was not included in the suspect set.

ent approaches to validate during each of these periods. Now,

we describe our methodology for validating our inferences du6.1  Validation during Turbulent periods

ing these periods. Figure 12a shows the effect of the SQL slammer worm [27] on

Validation in Turbulent periods: First, as a sanity check, we peering sessions. We observe several reset-like events (events
show that our algorithm detects increased numbers of maj@{at caused many prefixes to flap) during the SQL Slammer
events when Internet worms are propagating. This is expect@@rm period. On the other hand, we observe very few occa-
because it is well documented that worms cause large amousfgns with multiple reset-like events during a normal obser-
of congestion, leading to session resets. This congestion Ggdtion period. This validates our approach, since many ses-
cause keep-alive messages exchanged between routers pegigtlresets were known to occur during the spread of the SQL
across links to be lost [23]. Next, we are able to cross-validatiammer worm [23]. Figures 12b and 12c illustrate a similar
inferences made at each view in isolation, by showing that W@sult for two other popular worm events: the NIMDA worm
can sometimes detect the same event from multiple viewpointsn 9/18/01, and the Code Red worm on 7/19/01. We repeated

This provides additional confidence that our algorithm can cogyr analysis for Code Red Il and the Goner [27] worms and

rectly pinpoint the location of major events. Finally, we showghserved similar results.

that we can detect some known major events triggering sessiofi; - - _ L .

resets documented in the NANOG mailing list [29] and other 1 "€"€ might be inconsistencies in this data set due to origin AS
. . . conflicts [24] caused by misconfigurations. We discard all inconsistent

sources. We also applied post-mortem analysis, by taking ma-

. . refixes from this analysis.
jor events that we found and showing that we could often e>P— y
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Figure 12: (a) Effect of the SQL slammer worm on peering sessions. Chart shows the PDF of the number of 15 minute intervals containing

multiple major events. We filter out updates due to local resets. (b) Effect of NIMDA worm. (c) Effect of Code Red worm.
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() (b) this to avoid providing additional information to the Quiescent
inference algorithm when we use the other views alone. If we
Figure 13: PDF of observed events occurring in 15 minute interNad included these views in our analysis, the Quiescent infer-

vals during (a) UUNET's routing problems on 10/3/2002. (b) AT&T’s€nce algorithm would always be able to correctly pinpoint the
routing problems on 8/28/2002. origin AS as the only suspect.

Next, we cross-validate our Turbulent inferences at one vieiBGP BeaconsWe found our approach could classify beacon

point by attempting to detect the same events from other viewPdates with very high precision. Since the events induced on
points. In almost all cases that couldn’t be verified from multibeacon prefixes are origin advertisements and withdrawals, this

p|e vantage pointS’ the event occurred in a region of the topdﬁsult validates the PREFIXUP and PREFIXDOWN rules from

ogy that was only visible from a single vantage point. In adSection 4.1, as well as the rules used to refine across views

dition, we were sometimes able to observe a reset-like evef@m Section 4.4. We used a data set comprising over 1 year
affecting paths traversing both directions on a link. of beacon updates, taken from July 1 2002 through August 31

2003. During this time we found 48,624 bursts corresponding
to events on beacon prefixes. The origin of the BGP Beacon
was present in the suspect set & 48,624 bursts. In addi-

Oct20:00 Oct40:00

Table 4: Several known events used for validation.

Event Date Where documented tion, we were able to narrow down suspect set to 1 in 61% of
AT&T routing problems 8/28/02 | NANOG archives [29]| events, to 2 in 91% of events as shown in Table 5. While the
UUNET routing problems | 10/3/02 | NANOG archives [29]| average suspect set size during Quiescent periods is typically
Peering link instability 7/21/03 | Sprint web site [30] more than 3, we are able to achieve a very high precision in the
WorldCom peering problems 11/11/02 | web site [27] case of BGP Beacons. This happens because these events tend

. . . ) . to be visible from a number of vantage points, allowing us to
Finally, we validated our technique by running our algorithm, 5y down the suspect set by intersecting inferences made
on traces collected during periods where we knew the exagf jiterent vantage points. These observations suggest that the

!ocation Of_ Some major event takipg p!ace [27], ar_ld MeaSUfsterence rules have a very low false negative rate for origin
ing the ability of our scheme to pinpoint the location of thgq|5ted events.

event. We considered 8 major events, 4 of which are listed in
Table 4. In each case, we were able to exactly pinpoint the AS
that caused the event and correctly distinguish between link
and AS failures. For example, Figures 13a and 13b show the
number of update bursts attributed to various AS’s by the al-
gorithm. Results from other AS’s had trends similar to those

shown here. We notice large spikes during these periods which i .
pinpoint the AS undergoing the event. Viewpoint at the origin:Unlike the case of BGP Beacons, a

variety of events may trigger the set of updates that we notice
at the viewpoint in the origin AS. For example, the event could

) o i be triggered by a local policy change within the AS, changes
For each type of Quiescent validation, we ignore updates froy heering link preference, origin advertisements/withdrawals,
views that are in the same AS as the destination prefix. We q)q intra-domain link weight changes. Hence this approach val-

Table 6: Viewpoint at the origin analysis results

Suspect set size 1 2 3 4
Avg. suspect set size 7% | 20% | 36% | 54%
Incorrect inferences| 0% | 0% | 0% | 0%

6.2 Validation during Quiescent periods



idates the rules described in Sections 4.1 and 4.4. We used Turbulent (45%)< 7 Resets (9:9%)

traces from 23 views collected over 10 days to validate. For | b AS instability (35:1%)

each view, we held out data for that view, ran our algorithm Continuously ﬂapping<:0_rigin-caused (6.8%)
on data from the other views, then checked to see if there was @ Viewscaused (13.2%)

a conflict between the held out data and the inference. Table 6 Short-term leaking (15%)
summarizes the size of the suspect set and the number of incor- uiescent (34%)<0“9" vithdrawals (2.5%)
rect inferences for all these events. We make two observations. Flaps (13.2%)

First, as in the BGP Beacon analysis, the origin AS was present Reroutes G3%)

in the suspect set generated for all these events. Second, unlike
the BGP Beacon case, the precision to which we can narrow
down the suspect set is much smaller. This is because many of
these events are observed in only a few views, or were flagge
which tend to introduce many AS’s as suspects. We descri

precision further in the next section.

Figure 15: Breakdown of updates by cause.

pinpointed to a single AS, as shown in Section 7.2. Overall,
could pinpoint the location to a single inter-AS link (pair of
AS’s) for 70% of updates.

6.2.1 Precision 7.1 Previously unnoticed events

In Quiescent periods, we perform inference over fewer u In this section, we provide some examples of previously unno-
P ' P : ._._iced events that had significant effects on end-to-end routes.
dates than during Turbulent periods. Hence, the precision

: . o 0 our knowledge, many such events, though major, are not

which we can localize the cause is inherently reduced. How- | . : .
. . ) public knowledge and have previously gone unnoticed.

ever, we found that it is still possible to achieve good preci- - o
sion, as shown in Figure 14. We computed the suspect setf§ering link instability: On July 21 2003, the peering link
three different ways: First, we considenaiveapproach, con- Petween AS 1239 and AS 701 underwent a large number
sidering each burst in isolation and computing the suspect <tSession-reset like events, affecting the reachability of over
by taking the union of all AS’s that appear. Then, we applied0,000 prefixes. During this period of time, the AS paths
our scheme to data collected at a single view (Figure 14b) aH@versed by these prefixes repeatedly cycled through sev-
across23 views (Figure 14c. We make several observation§ral paths, occasionally interspersed with withdrawals. Sprint's
from our analysis. First, compared to the naive approach, weeb site [30] notes qutages during this pgrlod of time but does
can reduce the suspect set drastically, size, by a factor-of not reveal the magnitude, cause, or location of the event.
on average. Next, origin events (PREFIXUP, PREFIXDOWNJPeering link instability 1I: On 12:08am, May 10 2002, an
cause small suspect sets, as we observed earlier with BGP Bewent on the peering link between AS 3561 and AS 1239
cons. The suspect set was larger for FLAP and REROUTE&aused over 9000 prefixes to be rerouted to alternate paths.
bursts, since they are often associated with a delayed convEhis event triggered a period of instability lasting for 3 days,
gence process that introduces many AS’s as suspects. In addiere these prefixes repeatedly flapped between using the link
tion, using multiple views can significantly reduce the suspe¢8561,1239) and using alternate paths, generating over 135,000
set size, by a factor df.5 — 2 over inference at a single view in updates. The problem was fixed 12 PM, May 13 2002. This
isolation. Overall, our approach can reduce the suspect set seent affected 5 of the 50 most popular web sites [28].

to 4 on average. We consider this value to be small, since gk oute: On January 23 2003, at 9:52 am, some event on the
though we can reduce this size to 1 in certain cases, in geneﬁglermg link between AS 2914 and AS 3561 abruptly caused
a suspect set of size 2 is optimal, since it hard to distinguiglyer 6000 prefixes to change to alternate paths. These prefixes
between a failure of an inter-AS link and a failure of a routegpptly returned to their original paths at 10:57 am. Prefixes
inside an AS [3]. Also, for certain classes of events such agyned by several major providers were affected by the event.

origin withdrawals, we can reduce the suspect set even furthﬁ/ﬁisconfiguration' On June 26 2003 at 7:14pm, AS 2500 be

7 Analysis and Observations gan to advertise paths for over 500 prefixes it did not own. This
event affected prefixes owned by several major providers. The

In this section, we demonstrate the abilities of our health innstability was short-lived, lasting about 15 minutes.

ferencing syzterr:] tt,o det%ctbanomalots routing ever_lts.l Suc erall, we found session reset-like events are a common oc-

system can both be used by network operators to isolate aiGtrence. We measured on average 1,400 session reset-like

repair faults, and also to provide better insight into Internet, o nis per month. We found a small number of inter-AS links

routing dynamics. are perennially unstable. For example, during January 2002, a
Although we were unable to pinpoint the cause for any updatknk to a Chinese ISP underwent on average 2 session reset-like
we were able to narrow down the cause into a several catevents per day for a period of two weeks. These events affected
gories. Figure 15 gives the number of updates for each type @fachability to over 1000 prefixes in China.

event. We found that we could pinpoint the location of virtually . )

all major events we detected, and could narrow down the loc4-2 Continuously flapping events

tion of Quiescent events to within 2 AS's for 20% of updatesin this section we discuss some initial analysis of continuously
We found the majority of continuously flapping prefixes couldiapping prefixes. A detailed analysis is ongoing work. In our
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Figure 14:Precision:We plot the CDF of the suspect location set size for three cases: (a) naive approach (b) our approach, using observations
only at a single view (c) our approach using observations from all views collected over 10 days. For example, the FLAPUP curve passes through

the point (4,0.45) in case (b). This means that in 45% of FLAPUP observations, we can reduce the suspect set to within 4 AS’s.
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We classify related work into three categories:

", Passive root cause analysastempts to determine the location

10 20 80 40 S0 60 and type of a routing event based on BGP updates alone. Our
— work falls into this category and extends previous works by

Figure 16: Percent of updates caused by flapping prefixes.Di Fa Changet al. [2] and Ladet al. [11] along three dimen-

sions. First, we make a distinction between stable and con-

tinuously flapping prefixes and establish a criterion of when

analysis we require a prefix to be stable for a period longéne can safely correlate updates across different stable pre-
thanT,, = 1 hour before performing inference on its updatesfixes without sacrificing correctness of root-cause inference.
A surprisingly large portion of prefixes (25%) too unstable t§ur approach leverages some of the clustering strategies for
perform inference. Although most traffic tends to visit stabl€etermining groups of correlated updates [2, 11], but limits
prefixes [19], unstable prefixes are important to study as thjis clustering only to the cases where the safety criterion is
place additional load on routers. met. For example, recent work by Teixegaal. [21], shows

We define a continuously flapping prefix as a orefix that is es_pecific examples where correlation across prefixes can poten-
yrapping p b P [ially lead to incorrect inferences and we believe that our work

sistently updated for a period longer than without experi- is resilient to the concerns raised in this paper. In cases where

encing asilent periodlonger thart,. Figure 16 shows the rel- o
. . . we do not meet the safety criterion, we do not correlate across
ative percentage of updates due to continuously flapping pre-~ . S . iy .
: . refixes and analyze each in isolation thereby sacrificing preci-
fixes from traces collected over a 3 month period. We can se€e . . .
sion for correctness. This said, our basic approach for analyz-

i — o= 1 0,
If £, = 05 = 1 hour thatthese prefixes cause 20% of Update|Sn'g the graph structure from a view and assigning weights to

We found that, counter-intuitively, continuously flapping pre- R L ) K
fixes cause fewer updates than stable prefixes. Although staB%geS has similarities to Link-rank [11] and the clustering ap

. . ; . oaches in [2]. The second differentiating aspect of our work
prefixes have longer silence periods, they receive update bur. . AN
) .~ 1Sthe concept okquivalence classe® distinguish between
that tend to contain many updates grouped together. Final

. . __different types of causes of an event. While there is definite
there are a small set of prefixes that flap for a very long time. g . .
scope for improvement, the concept of equivalence classes is

For example, prefix 63.162.136.0/23 was updated on average .
damentally necessary since many types of causes may be

gcgreggzglyzo seconds at view 208.51.113.254 for a period i%distinguishable merely based on observations. Finally, our

inference methodology incorporates two additional constraints
We restrict ourselves to performing a simple characterizatiofbt addressed in previous works which make the root-cause
of these events. Through our analysis, we observed two majgfialysis problem harder: (a) AS’s have multiple peering links
classes of flapping prefixebtear-origin flaps where the pre- where this number is unknown; (b) BGP community attribute
fix alternates between being in a withdrawn state and beirganges can cause upstream providers to change routes. While
in an advertised state. We found that this type could often Rese constraints tend to increase the suspect set, our method-
observed by more than one view, and was caused close to §)ggy relies on using multiple views to improve precision.

origin. Near-viewflaps during which the AS path alternates ctive root cause analvsigan be combined with pas-
between a certain set of paths without being withdrawn. V\/é Y P

Sive techniques to improve precision. Recently Feldmeinn

f(_)und that this type could rarely be observe_d in more tha_n on;ﬁ. [12] [6] 1 proposed a scheme to model BGP and locate in-
view, but could often be observed by two views if both views " [~ . . . .
stabilities using active and passive measurements. Traceroutes

were_located W'thm. the same AS. Hence it 'S Ilkely that .th'%ave been used to discover ISP topologies [20] to a reasonable
type is caused by instability in the AS containing the view.

Most continuous flaps we observed were near-view. "This paper was recently accepted for publication and not yet pub-
licly available.
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A Appendix: Quiescent algorithm details

In this section, we first describe in more detail the steps used to

perform inference during Quiescent periods. We then describe
the complete set of rules used to determine the suspect set from

each received burst of updates.

A.1 Algorithm

This section describes the procedure used to perform Quies-
centinference. The output of our algorithm is a set-tuple of the

form
{(e1,S¢,), (e2,5¢,) .- (cn, Se,)} Where each equivalence
classc; € C, represents a list of potential causes ghdrep-

resents the corresponding location set of AS’s that might have

triggered the event. In other words, if we knew that the cause

of an event triggering a set of updates igjrthen the AS trig-
gering in the event is present in the $&f. In practice we do

not know the cause, but expressing the output in this form al-

lows us to determine where various types of events could have

occurred. We can then compute the suspect list by unioning the®
locations and causes contained in the list. The pseudocode for

the algorithm is shown in Algorithm 1.

Algorithm 1 Quiescentinfer{ime = t, Prefix = P)

1: Rp(v,t) = correlated group of updates for a prefixobserved
from view v in a neighborhood around tinte

2: C; = Set of equivalence classes of causes §
Hw,Sw,H;,Si, N,M,U }

3: V =Set of all views

4: L={}

5: for eache € C,

6: for eachvieww € V

7: Swus(c,v)= Suspect-location-set inferred usify (v, t).

8 Se =y Sus(c,v).

9: if Scisnotemptythen L = LU {(c, S¢)}.

10: returnL

(ii) FLAPUP
(iv) PREFIXUP

Worsen (W)

N Community (N)

_ Multiple events (M)

Improve (I)

Figure 17: Additional single view rules.

A.2 Additional inference rules

following rules to compute the suspect set.

B

PREFIXUP: This rule is defined similarly to PREFIX-
DOWN, but in this case, we know that some element
must have been worsened. So, if we observe an adver-
tised path become withdrawn, with intermediate paths
{P:...P,} before finally converging a withdrawn state,
then =, P, M =0, W = 0.

DUPCHANGE: Suppose we observe a burst that con-
tains paths?, and P, such thatP, occurs later thar;,

and the number of duplicated hops in the AS path changed
for some ASi. Assuming AS’s are connected by single
peering links, then the event occurred at either /A&

at the AS;j immediately upstream fromh Hence we set

I = {i,j}, W = 0, M = 0 if the number of copies
decreases] = 0, W = {i,j}, M = ( otherwise. If
there could be more than one peering link betweand

j, this rule doesn'’t help and hence we attempt to apply
some other matching rule to the burst.

PATHFLAP: A PATHFLAP indicates one of two
things: either the previous path temporarily worsened,
or an intermediate path temporarily improved. Similar to
REROUTE, it is possible that eithér= P, — (P, N P»)
improved oW = P, — (P, N P>) worsened. What is dif-
ferentis that due to delayed convergence, some element as
far downstream as the origin could have caused the event
to occur. For example, the origin AS could have temporar-
ily withdrawn and readvertised the prefix. Hence, we ex-
tend the sets calculated in REROUTE downstream so as
to include the path between AS B and AS D as shown in
Figure 7-iii.

FLAPUP: This burst consists of a PREFIXUP followed
by a PREFIXDOWN. Hence if we observe a with-
drawn route become advertised with intermediate paths
{P,..P,}thenwesetM =N_, P, [ =0,W =0.

Appendix: Heuristics for simultaneous

events

B.1 Quiescent periods

Table 7: Observations caused by simultaneous events.

View 1 obsv. View 2 obsv.| Freq. Secondary effect or|
Independent events?

PREFIXDOWN | FLAP 0.03% | Secondary or Indep.

PREFIXDOWN | PREFIXUP | 0% Indep.

PREFIXUP FLAP 0.002% | Indep.

REROUTE FLAP 1.33% | Secondary or Indep.

The algorithm given above assumes that only a single event af-
fecting a particular prefix occurs at a time. This is not always
the case. First, an event can triggesecondary effectsuch

as flap damping, non-determinism in path selection (for exam-
ple, age-based tie-breaking [4]), or a congestion-related ses-

In addition to the rules discussed in Section 4.2, we use PN reset arising from traffic shifted by the original route ad-
vertisement. Or, twindependent event&n occur at the same



time. However, in certain cases we can detect these simultane- Table 8: Cross correlation between events.

ous events. In particular, certain combinations of observatiofg st sepa-| View AS 2914 View AS 3356
across views can only be caused by simultaneously occurringation (N)

events, as shown in Table 7. We cannot apply the rules dis1 0.000332 0.000740
cussed in the previous sections to bursts caused by simultahe- 0.000635 0.000661
ous events, as these rules assume there is a signature of orjlypa -0.000056 0.001742
single event present in the burst. Hence, we ignore the bursts3 -0.000049 0.000154
contained in Table 7 from consideration when acquiring our re-17 0.000110 0.000226

sults. We found that only 1.4% of bursts are of this form, hence

doing so did not significantly affect our results. 0
. o 0.01 \‘-\.
B.2 Turbulent periods g
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\M‘® Figure 19: Example plot of burst inter-arrival times.

Figure 18: Detecting simultaneously occurring events. C AppendiX' Event modeling

The rule described in Figure 11a does not work if there arg, ihis section, we show that the arrival process for events af-

simultaneously ogcurring events, since observing several I?”l\‘écting a stable prefix can be approximately modeled as a Pois-
marked M emerging from a node could be caused by multiplg,n hrocess. While this approximation may not hold for certain
distinct events. However, we can use two techniques t0 SOM&sacific prefixes like BGP beacons where the destination AS
times dete_ct whe_n S|mu_ltaneous_events are occgrrmg. First, W%gers updates at specified intervals, we notice this approxi-
can associate a timer with each link, corresponding to when thesiion 10 hold for a large fraction of prefixes, we sampled and
first signs of the Turbulent event were detected on that link. 5y 7ed. The intuition behind this modeling is that we expect
the times corresponding to two links marked M differ by a fewne arrival time of an event affecting a stable prefix to be in-
minutes, then the two links underwent two overlapping disjoiniependent of previous events occurring later especially since

events. For example in Figure 18, if we observe a burst of Ugre mean-separation time between bursts of updates is at least
dates to prefixes traversing lirf3, C') followed by a burst of ; ,5ur (in many cases more than- 6 hours).

updates traversingB, E) that starts a few minutes later, then

itis highly likely that two separate events occurred, one on linkC Show this hypothesis, we consider the arrival times of burst
(B, C) and another on linkB, E). of updates to a prefix and consider each such burst to be trig-

gered by a single event. We empirically show two properties

We can also detect simultaneous events by using the state Mgsa t these inter-arrival times. First, we show iher-arrival

sages BGP peers use to establish and maintain the peerjfiges hetween bursts can be modeled using an exponential dis-
session. If we can observe these state messages, then weGfition. In Figure 19, we illustrate a sample probability dis-
tell with certainty when the link undergoes a session reset. Afsip\tion of the inter-arrival times of one such prefix. Second,
though state messages do not traverse more than one hop, e show thatevent arrival times are uncorrelated with each
can observe state messages between the views and the MQRar For a given burst separatiolV, we measure the cross-
itor that logs _the _routing updates (e.g. R_IPE or R_OUteVieWS%orrelation between two events that are separated/by 1

For example in Figure 18, suppose nadles a monitor, and 1 ;rsts and determine this value to be very close to zero for var-
B is a view. If we do not observe a reset on the link B), o5 values ofV. Specifically, we show that faN = 1, the

but (B,C) and (B, E) are marked M, then it is highly likely ¢4 rejation is close to zero implying that the arrival times of
that two separate events occurred on liiks C) and (B, E)  ggjacent bursts are uncorrelated. A sample set of cross corre-
or downstream of these links. This lets us detect simultaneopsi, tactors is shown in Table 8 for two separate views for
events near the view. different values ofV. These two properties show that the un-
We observed that simultaneous events are rare, but tend to derlying arrival process can be modeled as a Poisson process
cur simultaneously at many locations. Almost all simultanesince we have established that the inter-arrival times are inde-
ous events were observed during periods when Internet woripsendent and exponentially distributed.

were propagating. Although we cannot distinguish simultane-

ous events using observations from a single view, sometimes

we can use multiple views to distinguish the two events. If

views are properly placed, some views will only observe one

of the two events, and we can hold out these observations from

views that observed both to distinguish the other event.



