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Abstract
Today, we lack a clear understanding of the dynamics of the
Border Gateway Protocol (BGP) and this has largely restricted
our ability to address BGP’s shortcomings. To gain more in-
sight into BGP’s dynamics, this paper proposes the design of a
BGP health inferencing systemthat localizes the root causes of
routing changes. Specifically, the inference system addresses
two questions:What is the cause of a routing change? Where
does a routing change originate?The inference system corre-
lates routing updates across multiple vantage points to narrow
down thesuspect setof AS’s that might have triggered rout-
ing changes. Our methodology is primarily targeted towards
analyzing events affecting relatively stable prefixes (compos-
ing roughly 80% of the routing table), which are known to be
the most popular destinations of Internet traffic. For 70% of
observed updates to these prefixes, our approach can pinpoint
the location of origin to a single inter-AS link. We analytically
and empirically argue correctness of several key steps of our
methodology and additionally show that our technique can cor-
rectly pinpoint the source of several well-known/ documented
routing events.

1 Introduction
Internet routing suffers from several problems today, includ-
ing chronic instability, convergence problems and misconfigu-
rations in routers [9, 1, 13]. Many of these problems arise due
to the complexity of the Border Gateway Protocol (BGP), the
de facto inter-domain routing protocol. BGP has evolved into a
complex protocol, with a number of configurable policies and
features that make its dynamics hard to comprehend.

Without a clear understanding of these dynamics, efforts to
address BGP’s shortcomings have become a black art. First,
we do not yet completely understand the impact of simple
configuration changes on routing dynamics. Hence, we lack
clear guidelines for configuring, diagnosing and debugging
BGP [13, 4]. Second, while several modifications to BGP have
been proposed to alleviate specific problems, these may in-
troduce a newer set of problems currently unknown to the
research community. For example, the route flap dampening
mechanism was introduced to improve the stability of BGP
but was later found to introduce routing convergence prob-
lems [15]. Finally, only recently have many problems relating
to route oscillations, convergence and inter/intra domain pro-
tocol interactions been brought to light [8].

In this paper we take a first step towards improving our un-
derstanding, by developing a systematic methodology for an-
alyzing routing changes. We apply this methodology towards

the design of a BGP health inferencing system for analyzing
route updates from multiple vantage points and localizing the
root cause for each update. Localizing the cause involves nar-
rowing down the location of potential AS’s and the type of
routing event at each location that might have triggered the up-
date. For certain types of massive routing events (e.g.,, session
resets), it may be possible to pinpoint the exact inter-AS link
which might have underwent the reset due to the large num-
ber of constituent updates. However, for smaller events (e.g.,,
route flaps), it may be fundamentally hard to precisely pinpoint
the location of the routing event. While Griffinet al. [7] have
shown root cause analysis to be a hard problem, we find that
for a reasonable fraction of BGP updates we can narrow down
the location of the event to within 2 AS’s (a single inter-AS
adjacency) for over 70% of updates.

Despite imperfect precision, we believe that a BGP health in-
ferencing system can indeed be useful in improving the diag-
nosability of BGP dynamics. We envision deploying our infer-
ence algorithms in data collection centers like Routeviews [25]
and RIPE [26], which continuously receive streams of route
updates from multiple vantage points. Potential applications
which can benefit from partial root cause information include:
(a) Network operators can use this information for debug-
ging and troubleshooting purposes; (b) One can set BGP poli-
cies based on historical statistics of link/node stability; (c) For
events with a higher precision, BGP can use this information
onlineto improve path selection and damping of instability; (d)
Customers/users can leverage these inferences to choose of up-
stream providers. While our system currently uses only passive
BGP update information, we believe that the precision can be
enhanced by coupling it with active probing diagnostic tools
like AS-traceroute [16].

Validating our inferences can be a very challenging task espe-
cially given that many ISPs do not wish to reveal the type or
frequency of events within their network. We adopt a two-step
methodology towards validation. First, we analytically and em-
pirically show the correctness of certain key steps of our infer-
ence approach under a set of assumptions that are known to
commonly hold. Second, our system is able to detect a variety
of well-known events such as: (a) multiple BGP session resets
during Internet worm attacks [23]. (b) publicly documented
routing problems experienced by major ISPs [27]. In addition,
we analyze the updates generated by BGP Beacons [14] and
show that our system can pinpoint the source of these updates
with high accuracy1.

1Additionally, we analyze updates on a real-time basis and publish
our results online under the hope that network operators can comment



Based on our analysis of route updates collected from Route-
views and RIPE over a period of 18 months, we make two
key observations. First, our system can detect major routing
anomalies, many of which were previously unknown. Second,
we detected on average nearly 1,400 events of high magnitude
(i.e.,, events that affect many prefixes) per month, and found
certain inter-AS links to be perennially unstable.

1.1 Examples

Figure 1 describes four observations to improve intuition about
how we determine root cause.

Figure 1:Example observations. We show a simplified version of the
topology without AS numbers, without intermediate AS’s, and with
only a small subset of views.

(a)Large event: If an event affects several prefixes simultane-
ously, then it is often easier to narrow down location.For ex-
ample, at 1am on April 26 2003, multiple views observed 2463
prefixes traversing link(X;Y ) to switch to alternate paths,
then return to their original state within a short period. From
a single view, we can determine the event most likely occurred
on the common sub-path across all these prefixes which in-
cludes the link(X;Y ). Across views, the link(X;Y ) appears
as the only common candidate inter-AS link and hence, it is
likely they were all caused by a single large event affecting AS
X, AS Y, or the link between them.

(b) Flap: It is more difficult to isolate cause for flaps, since
many AS’s are introduced as suspects.For example, at 5pm
on April 13 2003, all 23 views began to observe a flap of prefix
212.48.160/19 from path (V-Z-D) to path (V-X-D). Unlike the
previous case, we can no longer pinpoint the AS causing the
event, since any AS on either of the paths is suspect. However,
we can eliminate certain AS’s that don’t appear in updates at
other views, allowing us to narrow down the cause to a small
set of AS’s (AS X, Z, or D).

(c) Prefixdown: Observing a withdrawal gives information
about the type of event that occurred.For example, at 6pm on
April 3 2003, all 23 views lost a path to prefix 194.55.164/24
for a long period. Since all views lost paths within a short pe-
riod, it is likely that a single event affected all of the 23 views.
Being in a withdrawn state for a sustained period eliminates
certain types of events from consideration: e.g. MED or Local-
Pref changes, or BGP session resets.

(d) Reroute: Certain state transitions give additional infor-
mation about the location and type of event.For example,

on the validity of our inferences. Our results are available at:http:
//www.cs.berkeley.edu/˜mccaesar/hmon.html

at 12:30am on April 22 2003, all 23 views observed a route
change to prefix 200.71.128.0/20. The paths of all prefixes be-
fore the route shared the path (X,D) and after the reroute they
all shared (Z,D). The observations could be explained by: a
failure at X, or D advertising a lower MED to Z for traffic en-
gineering purposes, etc, but could not be explained by: a failure
at Z, or D advertising a higher MED to Z, etc. In general we
can say that either some event took place on the link (X,D) that
made (X,D) less desirable to some BGP router, or some event
took place on the link (Z,D) that made (Z,D) more desirable.

Roadmap:Section 2 describes the root cause inference prob-
lem, why it is challenging, and how our approach overcomes
these challenges. Section 3 describes how we determine which
observations are correlated. Sections 4 and 5 describe the infer-
ence algorithms we use. Section 6 describes the methodology
and validation of our approach. We describe our results in Sec-
tion 7, related work in Section 8, and conclude in Section 9.

2 Root cause inference problem
Terminology:A routing eventis an activity taking place at
some location in the network that generates one or more route
updates. A group of updates iscorrelated if they were all
caused by the same event. Routing events can have different
causes, e.g., failures, policy changes, and link repairs. Routing
events have two properties: the cause of the event, and the loca-
tion of the event. We refer to events affecting many prefixes as
major events, and those affecting few prefixes asminor events
(in Section 3, we describe the notion of major and minor events
more precisely). Our algorithm uses observations made at vari-
ous routers calledviewsor vantage points. Owners of the views
volunteer to make their updates public by sending them to a
monitor such as Routeviews [25]. Alink is an AS-adjacency,
which may consist of several peering sessions.

The root cause inference problem can be stated as follows:
Given route updates observed at multiple vantage points,
determine the suspect set=f(C1; L1); (C2; L2) : : : g where
(Ci; Li) represent a potential cause and location that could
have triggered a route update.Corresponding to each causeCi,
Li represents the list of potential locations that might have trig-
gered a given update. Given that BGP route updates are only at
the granularity of AS’s, our location inferences are restricted
to the level of AS’s as opposed to router-level inferences.

We face the following set of challenges towards addressing the
root cause inference problem: (1)Correlated vs simultaneous
observations:Events may simultaneously occur [7] and deter-
mining the set of updates that are triggered by the same event
is hard. (2)BGP policies:Policies used to express preferences
between routes are not standardized and not disclosed. Also,
humans are involved in setting policies introducing the possi-
bility of mistakes. (3)Multiple peering links:Even if two AS
paths intersect in the AS-topology, they may not intersect in the
network-level topology. This implies that if two views share a
sub-path in the AS-topology, it is possible that an event in the
intersection region of the AS paths is noticed by one view and
not by the other. (4)I-BGP/E-BGP interactions:By only ob-
serving E-BGP advertisements, we do not get clear visibility



into intra-AS route dynamics or I-BGP/E-BGP interactions [8].
Hence it is hard to determine whether a problem exists within
an AS or on links between peered AS’s.

2.1 Assumptions

Our inference rules are based on two assumptions:

(1) An AS that triggers any route change should be embedded
in one or more route updates in the burst (either in the previous
path, one of the intermediate paths, or final path). We note
this assumption might not hold in certain cases2 where an AS
prefers a provider or peer route to a customer route for a certain
prefix, but such cases are known to be rare [22]. We further
improve the likelihood that we observe this AS by correlating
updates across prefixes and views when possible. However if
such a case occurs, if an AS is wrongly specified, or if the AS
path is truncated due to implementation bugs, our inference
mechanism will not work.

(2) Artificial damping (due to rate limiting and flap damping)
of updates has little effect on updates during minor events.
To infer a minor event precisely, the majority of updates it
causes must be observed. There are three reasons why these
updates might not be observed. (i) The state of the route might
change through several intermediate states while the route is
held-down due to flap damping3. (ii) Withdrawals may also
go unobserved if they are delayed due to WRATE4. (iii) The
event may not affect any of the views due to its location. In
addition, minor events may be unobservable in the presence of
major events, since the few updates caused by a minor event
get subsumed as noise when a major event triggers many route
updates at the same time. However, if a minor event affects a
prefix that is not continuously flapping, then updates to it are
typically visible. To improve precision, we use multiple van-
tage points. In practice, we found that using at least one among
3�4 vantage points typically observes a few updates triggered
by a minor event.

2.2 Inference methodology

Figure 2 presents an overview of the flow of our inference al-
gorithm. Our inference methodology uses three basic ideas to
solve the root-cause inference problem:

Separating stable from continuously flapping prefixes:We sep-
arate prefixes which are relatively stable from those that get
continuously updated. We observe that for stable prefixes, two

2 Consider a network with AS’s A, B, and C, where (A,B) and
(B,C) are private peering links, and suppose A, B, and C have cus-
tomer routes to reach some destination D. Suppose initially B prefers
C to reach D. Suppose C’s route fails, causing B to start routing
through its customer, which it will advertise to A. If A prefers this
path over its customer, then the view in AS A will observe a change
from A’s customer to B, but no updates will contain AS C. We are
unaware of any example that does not require such a preference.

3Flap damping is a mechanism in routers that withdraws persis-
tently unstable routes, thereby reducing routing instability. A prefix
will be re-advertised if it remains stable for a long period of time [15].

4Withdrawal rate-limiting (WRATE) is a technique to rate-limit
withdrawals of a prefix.

Figure 2: Algorithm flow.

properties commonly hold: (a) the routing events are typically
visible and not affected by artificial damping; (b) two different
events affecting the same prefix are separable in time. These
properties make root-cause analysis for these prefixes feasible.
Root-cause analysis is inherently hard for continuously flap-
ping prefixes especially if many of the updates are dampened.
While we have made some initial progress analyzing these pre-
fixes (Section 7.2), determining the root-cause for these pre-
fixes is largely an open research problem.

Equivalence classes:While the list of causes of routing events
is innumerable, many of these causes can be classified into
equivalence classes, where each class contains different causes
that might trigger the same pattern of updates. Although events
in different equivalence classes can often be distinguished
merely based on the pattern of observations at a vantage point,
causes within a single equivalence class may be indistinguish-
able. Hence we determine the root-cause only to the granular-
ity of the equivalence class. While we have defined a specific
set of equivalence classes in this paper (Section 4.1), there is
room for defining a much richer set categorization of causes to
obtain a finer distinction between different types of causes.

Correlation of routing updates:One of the key problems we
address is how we correlate updates that are caused by the same
event without incorrectly correlating observations from differ-
ent events. We correlate updates across three dimensions:time,
prefixesandviews(as shown in Figure 2). From a single view,
we cluster updates to each prefix based on how close they oc-
cur together in time so as to separate routing updates triggered
by different routing events. We then cluster across prefixes by
noting that the number of prefixes simultaneously updated sig-
nifies whether multiple prefixes are affected by the same event
(example 1 of Section 1.1). We provide an algorithm for classi-
fying time intervals intoQuiescentandTurbulentperiods based
on the number of prefixes simultaneously updated, and show
that many observations in a Turbulent period are triggered by
the same routing event (Section 3). Finally, assuming that the
clocks of the different views are loosely synchronized (we re-
quire times to be synchronized only on the O(minutes)), we
correlate bursts of update activity for different prefixes to nar-
row down the suspect location of routing events.

3 Correlating route updates
An observationrefers to a collection of one or more routing
updates at a single vantage point. Given a set of observations
at different vantage points, the first step towards addressing the



root cause inference problem is to determine the set of obser-
vations that are triggered by the same routing event. We define
each such group as a set ofcorrelatedobservations. The prob-
lem we focus on in this section is how to partition observations
into groups such that the groups are disjoint, and each group of
observations is caused by the same event.

3.1 Event visibility and separability

The ability to correlate observations triggered by a single event
is dependent on two factors: (a)event visibility; (b) event sep-
arability. Event visibility refers to whether a routing event is
visible to a vantage point,i.e., whether the vantage point ob-
serves any updates triggered by the event. From the set of ob-
servations at a single vantage point, two events are said to be
separableif the vantage point can distinguish updates caused
by each event.

We characterize an eventE(X; t; PS ; d) using four parameters:
X is the location of the event (at the granularity of an AS),t
is the time of occurrence,PS is the set of prefixes affected by
the event andd is the time-duration of the event. We define the
magnitudeof an event to be the number of prefixes affected by
E which is equal tojPS j.

3.1.1 Event visibility

Whether an eventE(X; t; PS ; d) is visible at a vantage pointA
depends on whether: (a)PS contains at least one prefix whose
route fromA traversesX ; (b) intermediary routers dampen the
updates triggered byE. Theobservable prefix setof an event
at a viewA refers to the subset of prefixes inPS which satisfies
the first criterion. Though an event may affect several prefixes,
it may still not be visible at a vantage point if the observable
prefix set is empty. Of this observable set, a vantage point may
receive updates for only a fraction of the prefixes since others
may potentially be dampened. We refer to this as theobserved
magnitudeof an event at the vantage point.

Two forms of dampening can affect visibility of an event: flap
dampening and rate-limiting. Based on data collected from
Routeviews and RIPE, we notice two distinct route update pat-
terns for different prefixes at different vantage points.Stable
prefixes have an update process characterized by long silence
periods interspersed with small bursts of updates.Continuously
flappingprefixes are continuously updated over long periods.
Although stable prefixes can potentially be affected by flap
damping [15], in the absence of rate-limiting at least one up-
date from the event will always reach the view (which might be
a withdrawal triggered by hold-down). One update is sufficient
for our algorithm to detect the event, though more updates can
improve precision. In this paper, we focus primarily on sta-
ble prefixes and briefly discuss continuously flapping prefixes
later in Section 7.2. Rate limiting can occur if the rate at which
an event generates updates exceeds the rate the router forwards
updates. For example, a session reset may cause many routes to
change and then revert back to their previous states before the
router’s advertisement timer expires. Although stable prefixes
can be affected by rate limiting, events that cause long-term

changes (changes longer than the advertisement timer) can al-
ways be seen at vantage points.

Table 1: Effect of distance on observed magnitude.

Number of AS Hops from view Number of prefixes affected
4 967
3 1311
2 920
1 1238

Despite dampening, we found that in practice an event with a
high magnitude is visible at vantage points provided the van-
tage point has a large observable prefix set, as shown in Table 1
(we generated these results after narrowing down the location
of the event from multiple vantage points using our algorithms
described later). We notice that the observed magnitude of an
event is fairly constant regardless of distance (AS hop count)
from the view. In general, vantage points which have an ob-
servable prefix set of at least1000 prefixes notice a significant
number of them being simultaneously updated by the event.
Also, an event can be suppressed if it simultaneously occurs
with another event that affects the same prefix set. We found
that such simultaneous events are rare. We describe how we
can detect them in Appendix B.

In summary, we make the following observation:

Observation I: An event that affects one or more stable pre-
fixes is visible at a vantage point provided: (a) one or more
affected prefixes are present in the observable prefix set of the
vantage point; (b) the observations to at least one stable prefix
are not dampened by other simultaneous events.

3.1.2 Event separability

From the perspective of a single vantage point, events are sep-
arable across two dimensions:prefixesand time. Separability
across prefixes involves distinguishing between events that af-
fect disjoint sets of prefixes. To maximize accuracy, we can
treat a single event which triggers updates to different prefixes
as separate events triggering updates to each prefix. While this
may affect precision in determining the source of the event,
this doesnot affect correctness since we attempt to determine
the root cause from updates to each prefix separately. How-
ever, inappropriately assuming two observations are correlated
can cause incorrect inferences which is undesirable. Hence, we
treat updates to each prefix separately and in the simplest case,
analyze each prefix in isolation. This approximation is most
useful when analyzing events which affect very few prefixes.
For example, if an event affects only2 prefixes, it is easier
to analyze them separately rather than attempting to decipher
which two prefixes are affected by the same event. Later in
Section 3.2, we provide a criterion to determine when one can
safely correlate observations across prefixes without sacrific-
ing correctness.

Along thetimedimension, two events affecting the same prefix
are separable at a single vantage point if the updates generated
by these events are separated by long silence periods. Given a



threshold�, we can separate the arrival of route updates into
bursts such that two bursts have a silence period of at least�
between them. Letd refer to the duration of burst andTm, the
mean separation time between bursts. We make the following
observation:the probability that two bursts affecting the same
prefix at a vantage point are caused by two separate events is
dependent on the ratiod=Tm. WhenTm is larger thand, we
can more easily separate events. For very low values ofd=Tm,
a single observed burst of updates is triggered by a single event
with high probability.

Consider the simple scenario where events affecting a single
prefix are independent and identically distributed,i.e., arrival
of events can be modeled by a Poisson process. In Appendix C,
we show that the arrival process for many prefixes can be ap-
proximated as Poisson. The inter-arrival times of the events are
hence drawn from an exponential distribution with a mean sep-
aration time ofTm. If d represents the duration of an event, the
probability that one event occurs within a periodd of another
event is given bye�d=Tm . For very low values ofd=Tm, this
probability is very small.
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Figure 3: CDF of ratio of duration and separation time.

While the Poisson process assumption represents a crude ap-
proximation of the event arrival process, it helps in better an-
alyzing the separability of observations into different events.
In general, the event separability at a vantage point is depen-
dent on the parameterd=Tm. In reality, while we cannot di-
rectly observe the event process, we estimate a upper bound
on this value for stable prefixes as the length of the longest
burst observed in a given time period divided by the smallest
separation time observed between bursts. Figure 3 plots this
distribution as measured for different stable prefixes across3
different views over a period of 1 day. To estimate these bursts,
we set a threshold of� = 1 hour as the minimum length of
a silence period5. For roughly 93% of the stable prefixes, the
separation time is 10 times larger than the event duration. We
classified the remaining prefixes under the continuously flap-
ping category.

3.2 Quiescent vs. Turbulent periods

In this section, we provide a mechanism to distinguish between
Turbulent (periods of high activity) and Quiescent periods (pe-
riods of low activity) and show that during Turbulent periods
we can safely correlate observations across prefixes.

5Route flap dampening is not triggered beyond a time-period of
1 hour due to a single event and hence we chose this as a threshold
value.
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dated prefixes for a view in AS 1239. We use the gap (separa-
tion shown with vertical dashed lines) to distinguish Turbulent
from Quiescent periods. Less than 0.2% of the mass is within
the gap.

We define a probability distribution functionp(x) on a variable
x to have agap propertyif there exist two values�1 and�2
such that:

P (�1 � x � �2) = 0

In other words,x does not take any value in the range[�1; �2].
To generalize, a probability distribution nearly has a gap prop-
erty if P (�1 � x � �2) is negligible in comparison to
P (x < �1) andP (x > �2).

We useN(e) to denote the number of prefixes updated at a
vantage point during a given time-period that traverse an inter-
AS link e6. From our analysis, we noticed that the probabil-
ity distribution of N(e) measured over short time-intervals
(1 � 5 minutes) nearly satisfies the gap property for a large
fraction of the links where the gap typically starts at a value
�1(e) < 50 and ends in a value�2(e) much larger than�1(e).
�2(e) typically varies between100 � 1000 depending on the
link. Figure 4 shows the PDF ofN(e) for one such link with
�1(e) = 140 and�2(e) = 710.

N(e) represents the sum of observed magnitudes of various
events that affect prefixes traversing the edgee. If we mea-
sureN(e) across small time-intervals (the expected number of
events within an interval is small), then the existence of a gap
in the distribution inN(e) signifies that:certain events trigger
an observed magnitude of at most�1(e) and others trigger an
observed magnitude significantly larger than�1(e).

This motivates the distinction betweenminorandmajorevents
where minor events cumulatively can account for an observed
magnitude of at most�1(e). In other words, if a vantage point
observes more than�2(e) prefixes to be updated along the edge
e, then it can determine that at least one event has an observed
magnitude of�2(e) � �1(e) (since simultaneously occurring
minor events can account for at most�1(e) of the observed
updates). This argument relies on the fact that a vantage point
rarely observes simultaneous major events. This holds because
of two properties (a) over small measurement intervals, we ex-
pect very few events to occur, and (b)P (N(e) > �2(e)) is

6In practice, we need to include the complete observed magnitude
of every burst that occurred within a time-period in the computation of
N(e), i.e.,, for every burst, we consider all updates of a burst including
the ones outside the interval.



small (roughly3� 4%).

In summary, a view that observes a gap property in the prob-
ability distribution ofN(e) between�1(e) and�2(e) under-
goes aTurbulent periodif it observes that the value ofN(e)
is greater than�2(e) and aQuiescent periodif N(e) is lesser
than�1(e). Additionally, we make the following observation:

Observation II: Given the gap property between�1(e) and
�2(e) on the probability distribution ofN(e) of an inter-AS
link e, if a view observes more than�2(e) prefixes involving
edgee updated within an interval, then at least�2(e)� �1(e)
of these prefixes are updated by one major event.

3.3 Correlation criteria

To summarize, we use the following principles to correlate ob-
servations across multiple vantage points.

Time dimension: At a given vantage point, a burst of updates
for a single prefix is assumed to be caused by a single event
provided the mean-separation time is at least ten times the
mean-duration time of a burst7.

Prefixes dimension:At a vantage point, if the number of pre-
fixes updated in an interval is above a threshold (�2(e)) for
some edge, then a majority of prefixes (at least�2(e)��1(e))
are updated by a single major event. In Section 5 we use this
principle to correlate observations across prefixes.

Views dimension:Let a view observe the start of a burst of up-
dates for a prefix at timet andd represents the mean-duration
of the burst for that prefix. In such a case, all bursts that be-
gin for the same prefix across different views within the time
[t; t + d] are assumed to be caused by the same routing event
provided none of the views are affected by a major event (i.e.,,
a major event can overshadow the burst of updates to a prefix
caused by a simultaneous minor event).

4 Single view, single prefix
In this section, we present an algorithm for inferring thesus-
pect setbased solely on updates made to a single prefix at a
single view. Our inference algorithm is shown in Figure 6, and
is motivated by Examples 3 and 4 in Section 1.1. We first parti-
tion the possible types of BGP events intoequivalence classes,
where each class contains events that trigger a similar pattern
of observations at a vantage point (Section 4.1). We then define
a set of rules to associate suspect AS’s into these equivalence
classes based on the contents of the updates (Section 4.2). This
serves two purposes. First, we can gain some information about
the event that took place. For example if an equivalence class
contains no AS’s, then that type of event did not occur. Sec-
ond, since observations of an event must be consistent across
views, we can eliminate AS’s that appear in different classes in
different views (Section 4.3). For example, if AS X appears in
equivalence class A in one view, and class B in another view,
the event must not have occurred at AS X.

7For more than90% of the prefixes, the ratio of the times is at least
10. Here, we choose10 as a simple threshold.

Figure 5: Example: Inference from single view.

Our approach formalizes this by developing a set of rules that
place the set of AS’s contained in the burst intoequivalence
classes, based on the type of event that could have taken place
at that AS that would have caused the observation. We motivate
our approach with the example shown in Figure 5. Suppose
view V ’s routing table contains an AS path[V;A;B;C;D] to
a prefixX , and assume for now that AS’s are singly peered
and community attribute changes do not occur (our approach
does not make these assumptions). Suppose after some time
the path changes to[V;A;B; Y; C;D] and remains stable for
some time. There are several possible events that could ex-
plain this change: perhapsY advertised a lower MED toB, or
perhaps the link(B;C) failed. However, certain events could
not explain this change: any event happening atA, or a fail-
ure of link (B; Y ), or Y advertising a higher MED toB. In
general, there are two possible explanations: either (1) some
event happened on the path[B;C] to make it less desirable
to B (worsened), or (2) some event happened on the path
[B; Y; C] to make it more desirable toB (improved). Hence,
we would placefB; Y; Cg into anImproveclass, andfB;Cg
into a Worsenclass. We can then compute thesuspect loca-
tion setas fB; Y; Cg [ fB;Cg = fB; Y; Cg, and thesus-
pect cause setas all causes corresponding to the Improve and
Worsen equivalence classes. Moreover, since an event must be-
long to a single class regardless of view or prefix, we can inter-
sect these equivalence classes across observations made of the
same event, to further improve precision. We show how to do
this in later sections.

Figure 6: Single-view inference methodology.

4.1 Equivalence classes

We need to satisfy two criteria when defining equivalence
classes. We choose equivalence classes to bedisjoint, i.e. each
event appears in at most one class, andcomplete, i.e. every pos-
sible event is contained at least one class. Disjointness elimi-
nates overlap among classes, thereby maximizing the precision
gain from intersecting across views and prefixes. Complete-
ness ensures we can model every possible event. We define
two pairs of equivalence classes:

Improve vs. worsen:A route canimprove by becoming more
preferred, or it canworsen by becoming less preferred with



respect to other paths according to the BGP path selection al-
gorithm [18]. For example, if we observe a path change from
P1 to P2, we placeP1’s AS’s into the worsen class, andP2’s
AS’s into the improve class.

Hard vs. soft:A route can undergo ahard event where some
router along the previous state’s path issued a withdrawal
of a route or advertised a previously withdrawn route, or a
soft event where a router changes preference between existing
routes that are not withdrawn or newly advertised. For exam-
ple, observing a convergence process followed by a withdrawal
would imply a hard event occurred. A route change fromP1 to
P2 could occur either due to hard events or soft events, since
although a withdrawal is not received by the view, some inter-
mediate router onP1 could have generated a withdrawal that
triggered the change.

Table 2: Equivalence classes of events.

Class Description Example causes
Hard+Worsen
(HW )

Event worsens path
properties, involves a
Withdraw

link/router failure, hold
down triggered, filtering
rule added

Soft+Worsen
(SW )

Event worsens path
properties, doesn’t
involve a Withdraw

MED increase, LocalPref
increase, AS prepending in-
crease

Hard+Improve
(HI)

Event improves path
properties, involves a
Withdraw

link/router repair, hold
down expires, filtering rule
deleted

Soft+Improve
(SI )

Event improves path
properties, doesn’t in-
volve a Withdraw

MED decrease, LocalPref
decrease, AS prepending
decrease

Community
(N )

Community attribute
changed

Community change

By definition, each pair of classes is disjoint. We hence define
four disjoint equivalence classes corresponding to each possi-
ble combination of classes, as shown in the first four rows of
Table 2. Events in an equivalence class are difficult to distin-
guish from other events in the same class, but are typically easy
to distinguish from events in other classes. Moreover, each pair
of equivalence classes is complete: by definition, an event can
only either improve or worsen a route, and it can only be either
hard or soft. To simplify notation, we defineI to be elements
that could have undergone some event inHI +SI ,W to simi-
larly correspond toHW + SW .

Observation III: The resulting classesHI ; HW ; SI ; SW are
both complete and disjoint.

In all equivalence classes discussed so far, the route change
occurs in the same AS that undergoes the event. However, a
change of thecommunity8 attribute is unique in that it can
cause a route change to be triggered several hops away from
the AS that undergoes the event. This is a clear signature that
can be used to distinguish these events from other events.
Although community attribute changes are contained in the
HI ; HW ; SI ; SW , defining a richer set of equivalence classes

8The community attribute is a variable length string, and routers
can customize reaction to this string according to policy.

improves precision. Hence, we add another equivalence class
to contain these events, and redefine the existing classes to ex-
clude community attribute change events.

Note that our approach is not sensitive to the specific map-
ping of causes to equivalence classes, since it is difficult to
determine such a mapping completely. Instead, our approach
reports location and the equivalence class associated with that
location. Each class can then be associated with a list of causes,
by using the mapping.

4.2 Rules for singly peered AS’s

In this section, we describe the set of rules for mapping AS’s
into equivalence classes based on the pattern of route updates
observed at a view. For simplicity, we first describe the rules
assuming there is a single peering link between adjacent AS’s,
then describe how to eliminate this assumption in the following
section.

Table 3: Enumeration of prefix state transitions (bursts).

Name Freq. Regular expression
REROUTE 12.6% A1fAjWg�A2

PREFIXUP 2.3% WfAjWg�A

PREFIXDOWN 3.7% AfAjWg�W

FLAPUP 2.3% WfAjWg�AfAjWg�W

PATHFLAP 50.2% A1fAjWg�A2fAjWg�A1

FLAPDOWN 28.8% A1fAjWg�WfAjWg�A1

Patterns of observations:Table 3 enumerates six all the dif-
ferent patterns of route updates that can be observed for a sin-
gle prefix. A pattern consists of a starting state, zero or more in-
termediate states, and a final state. For example, a REROUTE
starts in an advertised state (A1) and terminates in an adver-
tised state with a different AS path (A2), and may experience
some intermediate announcements and withdrawals. Either the
initial and final states differ (first three rows) or they are the
same (last three rows). For each case, there are three possibil-
ities corresponding to whether the prefix transitions to a with-
drawn (W) or advertised (A) state.

Observation IV: The 6 state transitions in Table 3 comprise
the set of all possible state changes.

Figure 7:Single view rules: The event must have occurred in
the shaded regions.

For each of the six patterns of observations, we use a set of in-
ference rules to map the AS’s into the five equivalence classes
(HI ; HW ; SI ; SW ; N ). Due to space limitations, we describe
in detail only the two inference rules in Figure 7, the rest are in
Appendix A. These rules are constructed under the assumption



that AS’s are singly-peered (we address multiply peered AS’s
in the next section).

REROUTE: If we observe a route change from pathP1 to
pathP2, there are three possible explanations: some property
of W = P1 � (P1 \ P2) worsened, some property ofI =
P2 � (P1 \ P2) improved, or router in the path downstream of
AS B could have triggered a reroute by changing a community
attribute.

PREFIXDOWN: A PREFIXDOWN observation at a view
refers to the case where the view with an initial state of path
P1 for a given prefix observes intermediary route updates with
paths(P2; P3 : : : PN ) before the route becomes withdrawn for
a sustained period of time. Given this pattern, we make two
observations. First, the event that triggered this pattern is with
certainty in the worsen and hard classes. We can learn that be-
fore the event occurred, at least one route to the destination was
working, while after the event, none of the routes work. Sec-
ond, if all AS’s were singly peered, the location of the event
must have occurred in the intersection of the paths explored.
In other words, all AS’s in

Tn
i=1 Pi would be classified in the

HW equivalence class.

4.3 Refinements for multiply-peered AS’s

Figure 8: Knowing the details of peering relationships can help
infer more precisely.

AS’s can be connected by multiple peering sessions, which can
complicate inference. An example is shown in Figure 8. Sup-
pose AS 1 observes an update to a prefix contained in AS 5, but
AS 2 does not. Suppose also that AS 2 has a valid advertised
route for the prefix throughout the event, and assume for sim-
plicity that community attribute changes do not occur. If AS 3
and AS 4 are singly peered, then the event causing the update
must have occurred in AS 3, AS 1, or the peering link between
them. However, if AS 3 and AS 4 are peered more than once,
then we can no longer make the same claim. For example, a
router failure in AS 4 could affect the route propagated to AS
1 and not affect the route propagated to AS 2.

Hence, we modified the rules in the previous section to assume
by default that two paths sharing a link are actually traversing
two different peering sessions. For example, in the case of a
REROUTE, we extend the setsI andW all the way upstream
to S, and all the way downstream to D. Knowing how many
times a pair of AS’s are peered could improve precision, as it
is only necessary to extend these sets as far as the first place
where the paths must have traversed the same router. Although
active measurements can sometimes determine the number of
peering links between AS’s [20], we safely assume no such
information is available when collecting results.

4.4 Refinement across views

In this section, we combine inferences across several views to
narrow down the suspect set. The algorithm consists of two
steps: (a) identify groups of related observations across views
(b) intersect suspect sets. We explain each of these steps below.

Identifying related observations:Bursts of updates to the same
prefix received nearly simultaneously at multiple views are
likely to be correlated. We describe how to correlate observa-
tions across views in Section 3.

Intersection of suspect sets:Since an event must belong
to a single equivalence class regardless of view, we can in-
tersect equivalence classes across views to improve preci-
sion. We first compute the contents of the equivalence classes
HI ; HW ; SI ; SW ; N at each view in isolation, then the in-
tersection of each class across each view that observed the
event. For example, if view 1 determines the suspect AS’s
areHI = A;B andHW = B;C, and view 2 determines
HI = A;C andSW = B;C, then the event must be in the
Hard+Improve class and must have occurred at A.

5 Refinement across prefixes
In the previous section, we showed how to find the suspect
set for a single prefix at a single view. Here, we show how to
narrow down the suspect set by correlating observations across
prefixes when Turbulent periods are observed to determine the
location and type ofmajor eventthat triggered these updates.

Our algorithm during Turbulent periods consists of four basic
steps. First, we analyze each prefix in isolation and classify
AS’s into equivalence classes using the algorithm in Section 4.
Second, to detect that a turbulent period occurred, our algo-
rithm uses the procedure described in Section 3 but, in practice,
computes separate valuesN(e) and�2(e) (parameters defined
in Section 3) for each equivalence class. Therefore, associated
with each equivalence classX , we obtain a graphGX where
each edgee has a weightN(e) which represents the number of
prefixes for which the edge appeared inX . Third, we run our
Turbulent inference algorithm (as described in Section 5.1) on
the graphGX separately for each equivalence classX to de-
termine the potential location of each the major event that trig-
gered the updates. Finally, for each equivalence classX , we in-
tersect our inferences across different views that also observed
a major event during the same time interval.

Figure 9: Example: Effects of a MED decrease on a single
view.

Given the disjoint property of the equivalence classes, we can
perform Turbulent inference within each class separately. We
motivate this using a simple example from [21]. SupposeA



usesB to reachD andE, as shown in Figure 9(a). Suppose
many prefixes simultaneously change to start usingC. If we
assume simultaneous events are rare, there are two possible
causes: either an event took place on(A;B) that worsened the
properties of the path, or an event took place on(A;C) that im-
proved the properties of the path. A second example is shown
in Figure 9(b). Suppose many prefixes simultaneously change
to start using(A;B). Since it is unlikely two simultaneous ma-
jor events occurred on both[A;C;E] and[A;D; F ], it is likely
that a single major event either (a) took place at(A;B) that im-
proved the properties of the path, or (b) took place internally in
A that worsened the paths of several prefixes using(A;C;E)
and(A;D; F ) (sinceA is the only common AS across the sub-
paths). In both these examples, we can separate AS’s intoim-
proveandworsencategories and perform Turbulent inference
on each class independently.

5.1 Turbulent inference algorithm

In this section, we provide an inference algorithm assuming
that a single major event occurred, and later in Appendix B,
provide heuristics on how one can potentially differentiate si-
multaneous major events. While simultaneous major events are
known to occur in practice9, we assume that the probability of
such an occurrence is small.

Figure 10: Example: Effects of a session failure on a single
view.

The key step of our algorithm is to determine, from a single
view, the potential set of locations that might have triggered a
major event. We motivate this inference step using an example
(Figure 10). Suppose at a view in ASV , we observe updates
to 1000 prefixes traversing link(A;C), and suppose very few
other prefixes are updated. Then, it is likely that the event took
place at(V;A;C) or downstream ofC. We have to include
the link (V;A) as a suspect because ASV might be multiply
peered withA where one of the links undergoes a session reset
and the path toB traverses a different peering link. On the
other hand, suppose we observed updates to 4000 prefixes that
traverse(A;B), and of these prefixes, 2000 traverse(B;E)
and 2000 traverse(B;D). Then, the event likely took place on
the sub-path(V;A;B) but not beyond. In other words,if many
updated prefixes share a common path, and then fan out, the
event most likely occurred in the common path.

Our algorithm computes these common sub-paths for each
view, and for each equivalence class and then intersects these
sub-paths across views to narrow down the location further.

9Two such cases are: (a) Internet worms like SQL Slammer and
Code Red [27] cause increased levels of congestion generating simul-
taneous session resets, and (b) one session reset triggers another sec-
ond session reset due to shift in traffic.

This is done using a similar approach to that in Section 4.4.
We now provide the details of our algorithm.

5.1.1 Marking links

We construct a graphG with nodes corresponding to AS’s, and
links corresponding to peering relationships between AS’s. We
define two weights for each linke 2 G: T (e) is the total num-
ber of prefixes containinge in their AS path, andN(e) is the
total number of prefixes that were recently updated, and con-
tainede in their AS path before they were updated.N(e) cor-
responds to the likelihood that a major event occurred one, and
T (e) corresponds to the degree of visibility the algorithm has
into events occurring on linke.

We then use these weights to mark links likely to have caused
the event. First, we eliminate all links withT (e) less than
�2(e). We do this because for these linksN(e) would always
be less than�2(e), hence we would not be able to observe
events on these links (we may be able to observe Turbulent
events on these links from other views). We then mark all links
with N(e) greater than a threshold�2(e) asM (for “many”),
and all other links asF (for “few”). Similarly, we mark a node
asM or F based on the number of prefixes terminating at that
node that were updated. Edges marked as M are suspect for
having undergone a Turbulent event. To set�2(e), we use the
procedure discussed in Section 3.2.

5.1.2 Traversal

We then apply a set of rules to the resulting graph to determine
the most likely location where the event could have occurred.
That is, we start at the node representing the view, and use
the rules to traverse the graph. Eventually we terminate at the
link or AS most likely to have caused the event. We repeat this
procedure for each equivalence class, and output the resulting
set of links. The rules, as shown in Figure 11, are:

Figure 11: Rules to determine location of a Turbulent event
from observations at a single view.

Link termination: If there are several links marked M coming
out of this node, either a single event occurred on the incom-
ing link, or simultaneous events occurred on the outgoing links
marked M. Since simultaneous events are rare, we halt and re-
turn the link between this node and its parent.

AS termination: If we arrive at a node marked M with an in-
coming link marked M, and no outgoing links marked as M,
the event was not an E-BGP session failure. Rather, it is some
event occurring inside an AS affecting many of its prefixes.
Hence, the algorithm returns this AS as the location.

Dispersion: If we arrive at a node marked F with all outgoing
links marked F, then the largeN(e) we saw on the incoming



link was the aggregation of many individual Quiescent events,
and was unlikely to be a single major event. Hence, we assume
that no major event occurred. We found this rule was rarely
triggered, validating the observations in Section 3.2.

Link traversal: If there is a single link marked M coming out of
the node, then the event could have occurred at the link com-
ing into this node or downstream. In this case, we add both
the incoming and outgoing edges into the suspect set. We then
traverse to the child, and try to apply these rules from that po-
sition.

Observation V: If only a single major event occurs, then the
algorithm infers the correct link undergoing the event with high
probability.

The above rules may give incorrect inferences during the rare
times when simultaneous events are taking place. We describe
some heuristics to detect when simultaneous events are occur-
ring in Appendix B.

6 Methodology and Validation
In this section we develop a methodology for validating cor-
rectness. We use publicly available traces of BGP updates
from Routeviews [25] and RIPE [26]. The contents include (a)
whether the update was an announcement or withdrawal, (b)
the IP address of the view forwarding the update, (c) the pre-
fix being updated, and (d) the set of AS hops used to reach
the destination (AS path) (e) a time-stamp when the update
was logged. We discard the other fields [18] of the updates that
are received by the monitor, since they are not used in our al-
gorithm. One particular problem with Routeviews and RIPE
data is that session resets may occur between the monitor and
the view [23]. These events could cause our approach to er-
roneously infer that a Turbulent event occurred. However, as
observed in previous works [19, 2], we can filter out the ef-
fects of these resets by discarding redundant updates that do
not change the contents of the routing table.

The assumptions we can make during Turbulent and Quiescent
periods are fundamentally different, and hence we need differ-
ent approaches to validate during each of these periods. Now,
we describe our methodology for validating our inferences dur-
ing these periods.

Validation in Turbulent periods: First, as a sanity check, we
show that our algorithm detects increased numbers of major
events when Internet worms are propagating. This is expected
because it is well documented that worms cause large amounts
of congestion, leading to session resets. This congestion can
cause keep-alive messages exchanged between routers peered
across links to be lost [23]. Next, we are able to cross-validate
inferences made at each view in isolation, by showing that we
can sometimes detect the same event from multiple viewpoints.
This provides additional confidence that our algorithm can cor-
rectly pinpoint the location of major events. Finally, we show
that we can detect some known major events triggering session
resets documented in the NANOG mailing list [29] and other
sources. We also applied post-mortem analysis, by taking ma-
jor events that we found and showing that we could often ex-

plain their cause by events discussed in various mailing lists
and web sites.

Validation in Quiescent periods: Minor events that trig-
ger updates during Quiescent periods are typically not docu-
mented, making validation difficult. However, for two specific
types of BGP updates in Quiescent periods we are aware of the
AS originating the event that triggered these updates. These in-
clude: (a) BGP Beacons, (b) updates received by a viewpoint
at the originating AS. For these two classes of updates, we val-
idate the correctness of our Quiescent inference algorithm by
checking whether the AS originating an update is present in
the suspect set generated by our algorithm.

BGP Beacons:BGP beacons are publicly documented prefixes
that are advertised and withdrawn at regular intervals, and have
been previously used to study BGP routing convergence [14].
It is highly likely that if any view observes an update to a bea-
con prefix with origin AS X, the update originated in AS X.
We used both the RIPE beacons [26] and PSG beacons [14] to
validate. The PSG beacons include 4 prefixes, and the RIPE
beacons include 9 prefixes. Each prefix is cyclically adver-
tised and withdrawn with a fixed period of two hours between
events. These beacons are widely distributed geographically,
and are originated from a variety of levels in the Internet hi-
erarchy. Since the origin AS of each of the beacon prefixes is
publicly documented, and the schedule of announcements and
withdrawals is also public, we can use these events to validate.

Viewpoint at the origin:We use the simple observation that if
a view in some AS observes an event on a prefix owned by the
same AS, then the event must have occurred in that AS. Based
on BGP routing tables we can determine the set of prefixes
owned by each AS10. Our validation method works as follows:
First, for each viewpoint V in AS X, we only consider the up-
dates for prefixes owned by AS X. Next, we hold out updates
observed at V and run our inference algorithm using updates
solely from views in other AS’s. Finally, we check whether AS
X is indeed present in the suspect set corresponding to these
updates. We measure the false negative rate as the number of
times that AS X was not included in the suspect set.

6.1 Validation during Turbulent periods

Figure 12a shows the effect of the SQL slammer worm [27] on
peering sessions. We observe several reset-like events (events
that caused many prefixes to flap) during the SQL Slammer
worm period. On the other hand, we observe very few occa-
sions with multiple reset-like events during a normal obser-
vation period. This validates our approach, since many ses-
sion resets were known to occur during the spread of the SQL
Slammer worm [23]. Figures 12b and 12c illustrate a similar
result for two other popular worm events: the NIMDA worm
on 9/18/01, and the Code Red worm on 7/19/01. We repeated
our analysis for Code Red II and the Goner [27] worms and
observed similar results.

10There might be inconsistencies in this data set due to origin AS
conflicts [24] caused by misconfigurations. We discard all inconsistent
prefixes from this analysis.
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Figure 12: (a) Effect of the SQL slammer worm on peering sessions. Chart shows the PDF of the number of 15 minute intervals containing
multiple major events. We filter out updates due to local resets. (b) Effect of NIMDA worm. (c) Effect of Code Red worm.
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Figure 13: PDF of observed events occurring in 15 minute inter-
vals during (a) UUNET’s routing problems on 10/3/2002. (b) AT&T’s
routing problems on 8/28/2002.

Next, we cross-validate our Turbulent inferences at one view-
point by attempting to detect the same events from other view-
points. In almost all cases that couldn’t be verified from multi-
ple vantage points, the event occurred in a region of the topol-
ogy that was only visible from a single vantage point. In ad-
dition, we were sometimes able to observe a reset-like event
affecting paths traversing both directions on a link.

Table 4: Several known events used for validation.

Event Date Where documented
AT&T routing problems 8/28/02 NANOG archives [29]
UUNET routing problems 10/3/02 NANOG archives [29]
Peering link instability 7/21/03 Sprint web site [30]
WorldCom peering problems 11/11/02 web site [27]

Finally, we validated our technique by running our algorithm
on traces collected during periods where we knew the exact
location of some major event taking place [27], and measur-
ing the ability of our scheme to pinpoint the location of the
event. We considered 8 major events, 4 of which are listed in
Table 4. In each case, we were able to exactly pinpoint the AS
that caused the event and correctly distinguish between link
and AS failures. For example, Figures 13a and 13b show the
number of update bursts attributed to various AS’s by the al-
gorithm. Results from other AS’s had trends similar to those
shown here. We notice large spikes during these periods which
pinpoint the AS undergoing the event.

6.2 Validation during Quiescent periods

For each type of Quiescent validation, we ignore updates from
views that are in the same AS as the destination prefix. We do

Table 5: Beacon analysis results

Suspect set size 1 2 3 4 all
Percent of bursts 61% 92% 93% 97% 100%
Inferences containing 100% 100% 100% 100% 100%
beacon AS

this to avoid providing additional information to the Quiescent
inference algorithm when we use the other views alone. If we
had included these views in our analysis, the Quiescent infer-
ence algorithm would always be able to correctly pinpoint the
origin AS as the only suspect.

BGP Beacons:We found our approach could classify beacon
updates with very high precision. Since the events induced on
beacon prefixes are origin advertisements and withdrawals, this
result validates the PREFIXUP and PREFIXDOWN rules from
Section 4.1, as well as the rules used to refine across views
from Section 4.4. We used a data set comprising over 1 year
of beacon updates, taken from July 1 2002 through August 31
2003. During this time we found 48,624 bursts corresponding
to events on beacon prefixes. The origin of the BGP Beacon
was present in the suspect set forall 48,624 bursts. In addi-
tion, we were able to narrow down suspect set to 1 in 61% of
events, to 2 in 91% of events as shown in Table 5. While the
average suspect set size during Quiescent periods is typically
more than 3, we are able to achieve a very high precision in the
case of BGP Beacons. This happens because these events tend
to be visible from a number of vantage points, allowing us to
narrow down the suspect set by intersecting inferences made
at different vantage points. These observations suggest that the
inference rules have a very low false negative rate for origin
related events.

Table 6: Viewpoint at the origin analysis results

Suspect set size 1 2 3 4
Avg. suspect set size 7% 20% 36% 54%
Incorrect inferences 0% 0% 0% 0%

Viewpoint at the origin:Unlike the case of BGP Beacons, a
variety of events may trigger the set of updates that we notice
at the viewpoint in the origin AS. For example, the event could
be triggered by a local policy change within the AS, changes
in peering link preference, origin advertisements/withdrawals,
or intra-domain link weight changes. Hence this approach val-



idates the rules described in Sections 4.1 and 4.4. We used
traces from 23 views collected over 10 days to validate. For
each view, we held out data for that view, ran our algorithm
on data from the other views, then checked to see if there was
a conflict between the held out data and the inference. Table 6
summarizes the size of the suspect set and the number of incor-
rect inferences for all these events. We make two observations.
First, as in the BGP Beacon analysis, the origin AS was present
in the suspect set generated for all these events. Second, unlike
the BGP Beacon case, the precision to which we can narrow
down the suspect set is much smaller. This is because many of
these events are observed in only a few views, or were flaps
which tend to introduce many AS’s as suspects. We describe
precision further in the next section.

6.2.1 Precision

In Quiescent periods, we perform inference over fewer up-
dates than during Turbulent periods. Hence, the precision to
which we can localize the cause is inherently reduced. How-
ever, we found that it is still possible to achieve good preci-
sion, as shown in Figure 14. We computed the suspect set in
three different ways: First, we consider anaiveapproach, con-
sidering each burst in isolation and computing the suspect set
by taking the union of all AS’s that appear. Then, we applied
our scheme to data collected at a single view (Figure 14b) and
across23 views (Figure 14c. We make several observations
from our analysis. First, compared to the naive approach, we
can reduce the suspect set drastically, size, by a factor of3� 4
on average. Next, origin events (PREFIXUP, PREFIXDOWN)
cause small suspect sets, as we observed earlier with BGP Bea-
cons. The suspect set was larger for FLAP and REROUTE
bursts, since they are often associated with a delayed conver-
gence process that introduces many AS’s as suspects. In addi-
tion, using multiple views can significantly reduce the suspect
set size, by a factor of1:5�2 over inference at a single view in
isolation. Overall, our approach can reduce the suspect set size
to 4 on average. We consider this value to be small, since al-
though we can reduce this size to 1 in certain cases, in general
a suspect set of size 2 is optimal, since it hard to distinguish
between a failure of an inter-AS link and a failure of a router
inside an AS [3]. Also, for certain classes of events such as
origin withdrawals, we can reduce the suspect set even further.

7 Analysis and Observations
In this section, we demonstrate the abilities of our health in-
ferencing system to detect anomalous routing events. Such a
system can both be used by network operators to isolate and
repair faults, and also to provide better insight into Internet
routing dynamics.

Although we were unable to pinpoint the cause for any update,
we were able to narrow down the cause into a several cate-
gories. Figure 15 gives the number of updates for each type of
event. We found that we could pinpoint the location of virtually
all major events we detected, and could narrow down the loca-
tion of Quiescent events to within 2 AS’s for 20% of updates.
We found the majority of continuously flapping prefixes could

Figure 15: Breakdown of updates by cause.

be pinpointed to a single AS, as shown in Section 7.2. Overall,
we could pinpoint the location to a single inter-AS link (pair of
AS’s) for 70% of updates.

7.1 Previously unnoticed events

In this section, we provide some examples of previously unno-
ticed events that had significant effects on end-to-end routes.
To our knowledge, many such events, though major, are not
public knowledge and have previously gone unnoticed.

Peering link instability: On July 21 2003, the peering link
between AS 1239 and AS 701 underwent a large number
of session-reset like events, affecting the reachability of over
20,000 prefixes. During this period of time, the AS paths
traversed by these prefixes repeatedly cycled through sev-
eral paths, occasionally interspersed with withdrawals. Sprint’s
web site [30] notes outages during this period of time but does
not reveal the magnitude, cause, or location of the event.

Peering link instability II: On 12:08am, May 10 2002, an
event on the peering link between AS 3561 and AS 1239
caused over 9000 prefixes to be rerouted to alternate paths.
This event triggered a period of instability lasting for 3 days,
where these prefixes repeatedly flapped between using the link
(3561,1239)and using alternate paths, generating over 135,000
updates. The problem was fixed 12 PM, May 13 2002. This
event affected 5 of the 50 most popular web sites [28].

Reroute: On January 23 2003, at 9:52 am, some event on the
peering link between AS 2914 and AS 3561 abruptly caused
over 6000 prefixes to change to alternate paths. These prefixes
abruptly returned to their original paths at 10:57 am. Prefixes
owned by several major providers were affected by the event.

Misconfiguration: On June 26 2003 at 7:14pm, AS 2500 be-
gan to advertise paths for over 500 prefixes it did not own. This
event affected prefixes owned by several major providers. The
instability was short-lived, lasting about 15 minutes.

Overall, we found session reset-like events are a common oc-
currence. We measured on average 1,400 session reset-like
events per month. We found a small number of inter-AS links
are perennially unstable. For example, during January 2002, a
link to a Chinese ISP underwent on average 2 session reset-like
events per day for a period of two weeks. These events affected
reachability to over 1000 prefixes in China.

7.2 Continuously flapping events

In this section we discuss some initial analysis of continuously
flapping prefixes. A detailed analysis is ongoing work. In our
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Figure 14:Precision:We plot the CDF of the suspect location set size for three cases: (a) naive approach (b) our approach, using observations
only at a single view (c) our approach using observations from all views collected over 10 days. For example, the FLAPUP curve passes through
the point (4,0.45) in case (b). This means that in 45% of FLAPUP observations, we can reduce the suspect set to within 4 AS’s.
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Figure 16: Percent of updates caused by flapping prefixes.

analysis we require a prefix to be stable for a period longer
thanTm = 1 hour before performing inference on its updates.
A surprisingly large portion of prefixes (25%) too unstable to
perform inference. Although most traffic tends to visit stable
prefixes [19], unstable prefixes are important to study as they
place additional load on routers.

We define a continuously flapping prefix as a prefix that is per-
sistently updated for a period longer thantr, without experi-
encing asilent periodlonger thants. Figure 16 shows the rel-
ative percentage of updates due to continuously flapping pre-
fixes from traces collected over a 3 month period. We can see
if ts = Æsil = 1 hour that these prefixes cause 20% of updates.
We found that, counter-intuitively, continuously flapping pre-
fixes cause fewer updates than stable prefixes. Although stable
prefixes have longer silence periods, they receive update bursts
that tend to contain many updates grouped together. Finally,
there are a small set of prefixes that flap for a very long time.
For example, prefix 63.162.136.0/23 was updated on average
once every 30 seconds at view 208.51.113.254 for a period of
over 80 days.

We restrict ourselves to performing a simple characterization
of these events. Through our analysis, we observed two major
classes of flapping prefixes:Near-origin flaps where the pre-
fix alternates between being in a withdrawn state and being
in an advertised state. We found that this type could often be
observed by more than one view, and was caused close to the
origin. Near-viewflaps during which the AS path alternates
between a certain set of paths without being withdrawn. We
found that this type could rarely be observed in more than one
view, but could often be observed by two views if both views
were located within the same AS. Hence it is likely that this
type is caused by instability in the AS containing the view.
Most continuous flaps we observed were near-view.

8 Related work
We classify related work into three categories:

Passive root cause analysisattempts to determine the location
and type of a routing event based on BGP updates alone. Our
work falls into this category and extends previous works by
Di Fa Changet al. [2] and Ladet al. [11] along three dimen-
sions. First, we make a distinction between stable and con-
tinuously flapping prefixes and establish a criterion of when
one can safely correlate updates across different stable pre-
fixes without sacrificing correctness of root-cause inference.
Our approach leverages some of the clustering strategies for
determining groups of correlated updates [2, 11], but limits
this clustering only to the cases where the safety criterion is
met. For example, recent work by Teixeiraet al. [21], shows
specific examples where correlation across prefixes can poten-
tially lead to incorrect inferences and we believe that our work
is resilient to the concerns raised in this paper. In cases where
we do not meet the safety criterion, we do not correlate across
prefixes and analyze each in isolation thereby sacrificing preci-
sion for correctness. This said, our basic approach for analyz-
ing the graph structure from a view and assigning weights to
edges has similarities to Link-rank [11] and the clustering ap-
proaches in [2]. The second differentiating aspect of our work
is the concept ofequivalence classesto distinguish between
different types of causes of an event. While there is definite
scope for improvement, the concept of equivalence classes is
fundamentally necessary since many types of causes may be
indistinguishable merely based on observations. Finally, our
inference methodology incorporates two additional constraints
not addressed in previous works which make the root-cause
analysis problem harder: (a) AS’s have multiple peering links
where this number is unknown; (b) BGP community attribute
changes can cause upstream providers to change routes. While
these constraints tend to increase the suspect set, our method-
ology relies on using multiple views to improve precision.

Active root cause analysiscan be combined with pas-
sive techniques to improve precision. Recently Feldmannet
al. [12] [6] 11 proposed a scheme to model BGP and locate in-
stabilities using active and passive measurements. Traceroutes
have been used to discover ISP topologies [20] to a reasonable

11This paper was recently accepted for publication and not yet pub-
licly available.



degree of accuracy, and can be used in conjunction with BGP
updates to produce more accurate IP to AS mappings [16].
BGP updates can be used in conjunction with UDP probes and
traceroutes to find the location of failures within an ISP [3], or
to produce more accurate IP to AS mappings. We believe that
active techniques could improve precision of our approach.

Modeling BGP dynamicscan help in inferring root cause, but is
difficult to do completely. Many types of events can cause the
same stream of updates, and many possible streams of updates
can come from the same event [10, 7], making inference diffi-
cult. Many factors can influence the times when updates are re-
ceived [14] However, the update traffic observed at a router can
be characterized as bursts of activity interspersed with silent
periods [12], and this observation can be used to localize the
event location [2]. Another complicating factor is that it is diffi-
cult to predict the final result of a routing change [4]. However,
the effect of external learned via BGP on the flow of traffic
through an AS can be computed [5].

9 Conclusions and future work
In this work we take some first steps towards developing a gen-
eral solution for inferring the cause and location of origin of
events triggering route changes in BGP. We validated our tech-
nique by considering well-known major events, including rout-
ing anomalies in the backbones of major ISPs, and well-known
minor events, such as BGP Beacons. We found our approach
could pinpoint the location where an update was triggered to
a single inter-AS link in over 70% of observed updates. This
allowed us to make several observations about inter-domain
routing events in general: e.g., a small number of links cause
the majority of updates. In addition, we were able to discover
several major events that were not public knowledge.

For future work, we plan to investigate continuously flapping
prefixes in more detail. We are also currently investigating
whether applying statistical inference techniques to this prob-
lem will improve accuracy [17]. The location where views are
placed can have a large effect on the degree of visibility of
events, and which events can be observed, so we would like
to develop an approach for determining which locations in the
network are most critical for deploying vantage points. Finally,
we plan to complete the design of the health monitor, by devel-
oping guidelines for determining which observations constitute
unhealthy behavior. The system can then trigger alarms when
these observations occur.
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A Appendix: Quiescent algorithm details
In this section, we first describe in more detail the steps used to
perform inference during Quiescent periods. We then describe
the complete set of rules used to determine the suspect set from
each received burst of updates.

A.1 Algorithm

This section describes the procedure used to perform Quies-
cent inference. The output of our algorithm is a set-tuple of the
form
f(c1; Sc1); (c2; Sc2) : : : (cn; Scn)g where each equivalence
classci 2 Cq represents a list of potential causes andSci rep-
resents the corresponding location set of AS’s that might have
triggered the event. In other words, if we knew that the cause
of an event triggering a set of updates is inci then the AS trig-
gering in the event is present in the setSci . In practice we do
not know the cause, but expressing the output in this form al-
lows us to determine where various types of events could have
occurred. We can then compute the suspect list by unioning the
locations and causes contained in the list. The pseudocode for
the algorithm is shown in Algorithm 1.

Algorithm 1 QuiescentInfer (T ime = t, Prefix = P )
1: RP (v; t) = correlated group of updates for a prefixP observed

from viewv in a neighborhood around timet
2: Cq = Set of equivalence classes of causes =f

HW ; SW ; HI ; SI ; N;M;U g
3: V = Set of all views
4: L = fg
5: for eachc 2 Cq
6: for each viewv 2 V

7: Sus(c; v)= Suspect-location-set inferred usingRP (v; t).
8: Sc =

T
v2V

Sus(c; v).
9: if Sc is not emptythenL = L [ f(c; Sc)g.

10: returnL

Figure 17: Additional single view rules.

A.2 Additional inference rules

In addition to the rules discussed in Section 4.2, we use the
following rules to compute the suspect set.

� PREFIXUP: This rule is defined similarly to PREFIX-
DOWN, but in this case, we know that some element
must have been worsened. So, if we observe an adver-
tised path become withdrawn, with intermediate paths
fP1:::Png before finally converging a withdrawn state,
thenI =

Tn
i=1 Pi, M = ;,W = ;.

� DUPCHANGE: Suppose we observe a burst that con-
tains pathsP1 andP2 such thatP2 occurs later thanP1,
and the number of duplicated hops in the AS path changed
for some ASi. Assuming AS’s are connected by single
peering links, then the event occurred at either ASi or
at the ASj immediately upstream fromi. Hence we set
I = fi; jg, W = ;, M = ; if the number of copies
decreases,I = ;, W = fi; jg, M = ; otherwise. If
there could be more than one peering link betweeni and
j, this rule doesn’t help and hence we attempt to apply
some other matching rule to the burst.

� PATHFLAP: A PATHFLAP indicates one of two
things: either the previous path temporarily worsened,
or an intermediate path temporarily improved. Similar to
REROUTE, it is possible that eitherI = P2 � (P1 \ P2)
improved orW = P1� (P1 \P2) worsened. What is dif-
ferent is that due to delayed convergence, some element as
far downstream as the origin could have caused the event
to occur. For example, the origin AS could have temporar-
ily withdrawn and readvertised the prefix. Hence, we ex-
tend the sets calculated in REROUTE downstream so as
to include the path between AS B and AS D as shown in
Figure 7-iii.

� FLAPUP: This burst consists of a PREFIXUP followed
by a PREFIXDOWN. Hence if we observe a with-
drawn route become advertised with intermediate paths
fP1:::Png then we setM =

Tn
i=1 Pi, I = ;, W = ;.

B Appendix: Heuristics for simultaneous
events

B.1 Quiescent periods

Table 7: Observations caused by simultaneous events.

View 1 obsv. View 2 obsv. Freq. Secondary effect or
Independent events?

PREFIXDOWN FLAP 0.03% Secondary or Indep.
PREFIXDOWN PREFIXUP 0% Indep.
PREFIXUP FLAP 0.002% Indep.
REROUTE FLAP 1.33% Secondary or Indep.

The algorithm given above assumes that only a single event af-
fecting a particular prefix occurs at a time. This is not always
the case. First, an event can trigger asecondary effect, such
as flap damping, non-determinism in path selection (for exam-
ple, age-based tie-breaking [4]), or a congestion-related ses-
sion reset arising from traffic shifted by the original route ad-
vertisement. Or, twoindependent eventscan occur at the same



time. However, in certain cases we can detect these simultane-
ous events. In particular, certain combinations of observations
across views can only be caused by simultaneously occurring
events, as shown in Table 7. We cannot apply the rules dis-
cussed in the previous sections to bursts caused by simultane-
ous events, as these rules assume there is a signature of only a
single event present in the burst. Hence, we ignore the bursts
contained in Table 7 from consideration when acquiring our re-
sults. We found that only 1.4% of bursts are of this form, hence
doing so did not significantly affect our results.

B.2 Turbulent periods

Figure 18: Detecting simultaneously occurring events.

The rule described in Figure 11a does not work if there are
simultaneously occurring events, since observing several links
marked M emerging from a node could be caused by multiple
distinct events. However, we can use two techniques to some-
times detect when simultaneous events are occurring. First, we
can associate a timer with each link, corresponding to when the
first signs of the Turbulent event were detected on that link. If
the times corresponding to two links marked M differ by a few
minutes, then the two links underwent two overlapping disjoint
events. For example in Figure 18, if we observe a burst of up-
dates to prefixes traversing link(B;C) followed by a burst of
updates traversing(B;E) that starts a few minutes later, then
it is highly likely that two separate events occurred, one on link
(B;C) and another on link(B;E).

We can also detect simultaneous events by using the state mes-
sages BGP peers use to establish and maintain the peering
session. If we can observe these state messages, then we can
tell with certainty when the link undergoes a session reset. Al-
though state messages do not traverse more than one hop, we
can observe state messages between the views and the mon-
itor that logs the routing updates (e.g. RIPE or Routeviews).
For example in Figure 18, suppose nodeA is a monitor, and
B is a view. If we do not observe a reset on the link(A;B),
but (B;C) and(B;E) are marked M, then it is highly likely
that two separate events occurred on links(B;C) and(B;E)
or downstream of these links. This lets us detect simultaneous
events near the view.

We observed that simultaneous events are rare, but tend to oc-
cur simultaneously at many locations. Almost all simultane-
ous events were observed during periods when Internet worms
were propagating. Although we cannot distinguish simultane-
ous events using observations from a single view, sometimes
we can use multiple views to distinguish the two events. If
views are properly placed, some views will only observe one
of the two events, and we can hold out these observations from
views that observed both to distinguish the other event.

Table 8: Cross correlation between events.

Burst sepa-
ration (N)

View AS 2914 View AS 3356

1 0.000332 0.000740
5 0.000635 0.000661
9 -0.000056 0.001742
13 -0.000049 0.000154
17 0.000110 0.000226
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Figure 19: Example plot of burst inter-arrival times.

C Appendix: Event modeling
In this section, we show that the arrival process for events af-
fecting a stable prefix can be approximately modeled as a Pois-
son process. While this approximation may not hold for certain
specific prefixes like BGP beacons where the destination AS
triggers updates at specified intervals, we notice this approxi-
mation to hold for a large fraction of prefixes, we sampled and
analyzed. The intuition behind this modeling is that we expect
the arrival time of an event affecting a stable prefix to be in-
dependent of previous events occurring later especially since
the mean-separation time between bursts of updates is at least
1 hour (in many cases more than5� 6 hours).

To show this hypothesis, we consider the arrival times of burst
of updates to a prefix and consider each such burst to be trig-
gered by a single event. We empirically show two properties
about these inter-arrival times. First, we show thatinter-arrival
times between bursts can be modeled using an exponential dis-
tribution. In Figure 19, we illustrate a sample probability dis-
tribution of the inter-arrival times of one such prefix. Second,
we show thatevent arrival times are uncorrelated with each
other. For a given burst separation,N , we measure the cross-
correlation between two events that are separated byN � 1
bursts and determine this value to be very close to zero for var-
ious values ofN . Specifically, we show that forN = 1, the
correlation is close to zero implying that the arrival times of
adjacent bursts are uncorrelated. A sample set of cross corre-
lation factors is shown in Table 8 for two separate views for
different values ofN . These two properties show that the un-
derlying arrival process can be modeled as a Poisson process
since we have established that the inter-arrival times are inde-
pendent and exponentially distributed.


