Towards a Scalable, Adaptive and Network-aware Content Distribution
Network

by

Yan Chen

B.E. (Zhejiang University) 1995
M.S. (State University of New York at Stony Brook) 1998

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor of Philosophy
in
Computer Science

in the

GRADUATE DIVISION
of the
UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Randy H. Katz, Chair
Professor Ion Stoica
Professor John Chuang

Fall 2003

The dissertation of Yan Chen is approved:

Chair Date

Date

Date

University of California at Berkeley

Fall 2003

Towards a Scalable, Adaptive and Network-aware Content Distribution
Network

Copyright Fall 2003
by
Yan Chen

Abstract

Towards a Scalable, Adaptive and Network-aware Content Distribution Network
by

Yan Chen
Doctor of Philosophy in Computer Science

University of California at Berkeley
Professor Randy H. Katz, Chair

The Internet has evolved to become a critical commercial infrastructure for service
delivery. However, The Internet being an enormous, highly-dynamic, heterogeneous, and
untrusted environment raises several challenges for building Internet-scale services (such as
content delivery) with good scalability, efficiency, agility and security. In this thesis, we
explore these issues by developing a scalable, adaptive and network-aware infrastructure for
efficient content delivery, namely Scalable Content Access Network (SCAN).

SCAN has four components: object location, replica placement and update mul-
ticast tree construction, replica management, and overlay network monitoring services.

First, we propose a novel simulation-based network Denial of Service (DoS) re-
silience benchmark, and apply it to evaluate and compare the centralized, replicated, and
emerging distributed object location services. We find that distributed hash table (DHT)
based object location service has the best resilience in practice. Thus we leverage it for
replica location.

Second, we propose the first algorithm that dynamically places close to optimal
number of replicas while meeting client QoS and server resource constraint, with overlay
network topology only. These replicas further self-organize them into an application-level
multicast tree on top of a DHT, Tapestry, which enables distributed “join” so that each
node (including the root) in the tree only needs to maintain states for its parent and direct
children.

Third, we apply cooperative clustering-based replication to SCAN, which achieves
comparable users’ perceived performance to the conventional CDNs, while having only 4 -
5% of replication and update traffic, and 1 - 2% of the computation and replica management
cost. Furthermore, we propose a unique online Web object popularity prediction algorithm
based only on hyperlink structures, and applied it for online incremental clustering and
replication to adapt to changes in users’ access patterns. This scheme adds new content to
the appropriate existing cluster replicas even before accessed, to improve their availability
during flash crowds.

Fourth, to provide a general foundation for applications to take advantage of net-
work awareness, we develop a scalable overlay network measurement and monitoring system
with two components: Internet Iso-bar for latency estimation, and TOM (Tomography-
based Overlay network Monitoring) for loss rate estimation. Internet Iso-bar clusters hosts

based on the similarity of their perceived network distance to a small number of landmark
sites, and chooses the centroid of each cluster as a monitor site. KEvaluation using real
Internet measurements shows that our scheme offers much better latency accuracy and sta-
bility than the traditional network/geographical proximity-based clustering. Furthermore,
it detects 78% of congestion/failures with 32% false positive.

For mission-critical applications that require more accurate loss rate estimation,
we developed TOM with a bit more measurements than Internet Iso-bar (O(n logn) instead
of O(k? 4+ n), but still much less than the current work O(n?), where n is the number of
end hosts and k is the number of clusters). TOM selectively monitors and measures the
loss rates of a minimal basis set of O(nlogn) linearly independent paths, and then applies
them to estimate the loss rates of all other paths. Both extensive simulation and Internet
experiments show that TOM achieves high path loss rate estimation accuracy, has good
load balancing, tolerates topology measurement errors and is adaptive to topology changes.

Finally, to demonstrate the effectiveness of the monitoring services, we develop
a adaptive overlay streaming media system which leverages our monitoring services for
real-time path congestion/failure information, and an overlay network for adaptive packet
relaying and buffering within the delivery infrastructure. Traditional streaming media sys-
tems treat the underlying network as a best-effort black box, and adaptations are performed
at the transmission end-points. However, our Internet experiments show that overlay rout-
ing can often improve the loss rate and/or TCP throughput for lossy paths, and our system
typically adapts to network congestions within five seconds, achieving skip-free streaming
media playback.

Professor Randy H. Katz
Dissertation Committee Chair

To my parents and my wife,

without whom this dissertation would be impossible.

ii

Contents

List of Figures vi
List of Tables ix
1 Introduction 1
1.1 Motivation e e e 1
1.2 SCAN Architecture 3
1.3 Dissertation Overview and Contributions 4
1.3.1 Network DoS-resilient Object Location with DHT (Chapter 3) 4
1.3.2 Dynamic Replica Placement and Update Tree Construction (Chapter 4) 4
1.3.3 Scalable Replica Management using Content Clustering (Chapter 5) 5
1.3.4 Scalable Overlay Network Monitoring (Chapters 7, 8 and 9) 5
I Replica Placement, Location and Management 7
2 Previous Work 9
2.1 Web Caching e 9
2.2 Un-cooperative Pull-based CDNs 11
2.3 Cooperative Push-based CDNs, 12
2.4 Object Location Systems L 13
2.4.1 Centralized and Replicated Directory Services 14
2.4.2 Distributed Directory Services: the Tapestry Infrastructure 14
2.5 Multicast for Disseminating Updates 15
2.6 Content Clustering e 16
2.7 SUMMATY . . . oL e e e 16

3 Performance Comparison of Object Location Systems: A Case Study of
Network Denial of Service (DoS) Attack Resilience 18
3.1 Motivation L e 18
3.2 Threat Models e 19
3.2.1 Flooding Attacks 19
3.2.2 Corruption Attacks L Lo 20
3.2.3 Measuring Resilience oo oL 20
3.3 Experimental Setup L 21

3.3.1 Client Operation
3.3.2 Directory Server Operation
3.33 The Attacks L
3.4 Results. o
3.4.1 Flooding Attacks
3.4.2 Corruption Attacks L L
3.4.3 Resiliency Ranking Lo oL
Dynamic Replica Placement
4.1 Problem Formulation 0 0 oL
4.2 Replica Placement Algorithms
4.2.1 Goals for Replica Placement
4.2.2 Dynamic Placement
4.2.3 Soft State Tree Management
4.3 Evaluation Methodology 0oL,
4.3.1 Metrics oL e
4.3.2 Network Setup
4.3.3 Workloads
4.4 Evaluation Results o o
4.4.1 Results for the Synthetic Workload
4.4.2 Results for Web Traces Workload
4.4.3 Discussiono e e

Scalable Replica Management using Content Clustering
5.1 Introduction L

5.2 Simulation Methodology Lo oo
5.2.1 Network Topology
5.2.2 Web Workload
5.2.3 Performance Metric oo

5.3 Stability of Hot Data

5.4 Replication Methods: Un-cooperative Pulling vs. Cooperative Pushing . . .
5.5 Problem Formulation 0 0000 0oL

5.6 Replica Placement: Per Web Site vs. Per URL
5.7 Clustering Web Content
5.7.1 General Clustering Framework
5.7.2 Correlation Distance 000
5.8 Performance of Cluster-based Replication
5.8.1 Performance Comparison of Various Clustering Schemes
5.8.2 Effects of Non-Uniform Filesize
5.9 Incremental Clustering
5.9.1 Static Clustering o
5.9.2 Incremental Clustering

5.10 Summary L e e e

iii

21
21
22
23
23
25
25

28
28
29
29
29
33
34
34
34
35
35
36
39
40

11

6

v

Overlay Network Measurement and Monitoring 70
Previous Work 72
6.1 Latency Estimation Systems 0. 72

6.1.1 Infrastructure-based Latency Estimation Systems 72
6.1.2 Peer-to-peer Latency Estimation Systems 74
6.2 Other Metrics Estimation Systems 75
6.2.1 RON . . . e 76
6.2.2 Topology-based Efficient Measurement 76
Internet Iso-bar: A Scalable Overlay Network Latency Estimation Sys-
tem 77
7.1 Introduction L 7
7.2 Architecture and Algorithms L oL 78
7.2.1 Distance Metrics oL 78
7.2.2 Generic Clustering Methods 79
7.2.3 Distance Estimation L 0oL 80
7.2.4 Measurement Traffic o L. 81
7.3 Evaluation Methodology oo 81
7.3.1 Internet Measurement Data 81
7.3.2 Estimation Accuracy Metric 82
7.3.3 Analysis of Estimation Accuracy 82
7.4 Evaluation Results L o 83
7.4.1 Internet Distance Estimation Techniques Evaluated 83
7.4.2 TIso-bar Sensitivity to Different Number of Landmarks 84
7.4.3 Results of Estimation Accuracy and Stability 84
7.5 Summaryo e e e e 88
TOM: A Tomography-based Overlay Monitoring System 89
8.1 Introduction 89
8.2 The Algebraic Model and Scalability Analysis 90
8.2.1 Theory and Notations 91
8.2.2 Scalability Analysis oo 93
8.2.3 Intuition through Virtual Links 96
8.3 Basic Algorithms 97
8.3.1 Selecting Measurement Paths 97
8.3.2 Path Loss Calculations, 98
8.4 Dynamic Algorithms for Topology Changes 98
8.4.1 Path Additions and Deletions 98
8.4.2 End hosts Join/Leave the Overlay 100
8.4.3 Routing Changes 100
8.5 Other Practical Issues 100
8.5.1 Measurement Load Balancing 101
8.5.2 Handling Topology Measurement Errors 101

8.5.3 Robustness and Real-time Response 101

8.6 Evaluation. 104
8.6.1 Metrics e 104
8.6.2 Simulation Methodology 104
8.6.3 Results for Different Topologies 105
8.6.4 Results for Different Link Loss Rate Distribution and Running Time 107
8.6.5 Results for Measurement Load Balancing 107
8.6.6 Results for Topology Changes 108

8.7 Internet Experiments Lo oo 110
8.7.1 Methodology 110
8.72 Results 111

8.8 Discussion e e 114

8.9 Summary e 115

9 Case Study: Streaming Media over A Monitoring-based Adaptive Overlay

Network 116

9.1 Streaming Media Technologies 116
9.1.1 Source-coding 117
9.1.2 End-point Adaptationo Lo 117
9.1.3 Imnfrastructure Support Lo oL 117

9.2 Path Improvement with Overlay Routing 118
9.2.1 Loss Rate Improvement, 118
9.2.2 TCP Throughput Improvement 118

9.3 Monitoring-based Adaptive Overlay Streaming Media 119
9.3.1 Architecture 119
9.3.2 Skip-free (Lossless) Streaming Media Recovery 120

9.4 Evaluation. L 123
9.4.1 Methodology 123
9.4.2 Experiment Results o 0o L. 123

10 Conclusions 125

10.1 Thesis SUmMmAaryot i it e e e e e 125

10.2 Future Work L 127

Bibliography 129

vi

List of Figures

1.1
1.2

2.1
2.2
2.3

24

3.1
3.2
3.3
3.4
3.5

3.6
3.7
3.8
3.9

4.1

4.2
4.3
4.4

A sample SCAN system. 3
Layered architecture of the SCAN system. 4
Un-cooperative pull-based CDN architecture. 11
Cooperative push-based CDN architecture 12

A Centralized Directory Service (CDS): Clients contact a single directory
to discover the location of a close replica. Clients subsequently contact the
replica directly. A Replicated Directory Service (RDS) provides multiple
directories. 14
A Distributed Directory (Tapestry): Nodes connected via links (solid arrows).
Nodes route to nodes one digit at a time: e.g. 1010 — 2218 — 9098 —
7598 — 4598. Objects are associated with one particular “root” node (e.g.
4598). Servers publish replicas by sending messages toward root, leaving
back-pointers (dotted arrows). Clients route directly to replicas by sending
messages toward root until encountering pointer (e.g. 0325 — B4F8 — 4432). 14

Structure of a distributed DDoS attacks 20
Average response latency of CDS vs. Tapestry under DoS flooding attacks . 23
Throughput of CDS vs. Tapestry under DoS flooding attacks 23
Normalized throughput of CDS vs. Tapestry under DoS flooding attacks . . 24
Dynamics of average response latency of CDS vs. Tapestry under DoS flood-

ing attacks L 24
Dynamics of throughput of CDS vs. Tapestry under DoS flooding attacks . 24
Average response latency of RDS vs. Tapestry on DDos flooding attacks . . 25
Throughput of RDS vs. Tapestry on DDos flooding attacks 25

Nodes accessing each replica of an attacked object. Neighbor table corruption
at the black square node renders all nodes enclosed by round-corner rectangles
unable to locate the object. Simulation of 100 nodes and 60 objects (15% hot). 26

Number of replicas deployed (left) and load distribution on selected servers

(right) (500 SCAN servers)ot 36
Cumulative distribution of RDP (500 SCAN servers) 37
Bandwidth consumption of 1IMB update multicast (500 SCAN servers) . . . 37

Number of application-level messages (left) and total bandwidth consumed
(right) for d-tree construction (500 SCAN servers) 37

4.5

4.6

4.7

4.8

5.1

5.2

5.3

5.4

9.5

5.6

0.7

0.8

5.9

7.1
7.2

7.3

7.4

7.5

7.6

vii

Maximal load measured with and without load balancing constraints (LB)
for various numbers of clients (left: 500 random servers, right: 500 backbone
SETVELS) o v v v v e e e e e e e e e e e 38
Number of replicas deployed with and without load balancing constraints
(LB) for various numbers of clients (left: 500 random servers, right: 500

backbone servers) Lo 39
Number of replicas deployed (left) and maximal load (right) on 2500 random
SCAN servers with and without the load balancing constraint (LB) 39

Simulation with NASA and MSNBC traces on 100 backbone SCAN servers.
(a) Percentage of requests covered by different number of top URLSs (left); (b)
the CDF of replica number deployed with od_naive and od_smart normalized
by the number of replicas using IP_s (right) 40

The CDF of the number of requests generated by the Web client groups
defined by BGP prefixes for the MSNBC traces, and by domains for the
NASA traces. o o e e e e e e 44
The number of URLs accessed in NASA, WorldCup, and MSNBC daily traces. 45
Hot Web page stability of popularity ranking (left column), and stability of

access request coverage (right column) with daily intervals. 46
Number of URLs and hot Web page statistics for NASA (left column) and
WorldCup (right column) with monthly intervals. 47

Performance of the per Web site-based replication vs. the per URL-based
replication for August 2, 1999 MSNBC traces on a transit-stub topology (left)
and July 1, 1995 NASA traces on a pure random topology (right). 52
Performance of various clustering approaches for MSNBC August 2, 1999
traces with averagely 5 replicas/URL (left) and for NASA July 1, 1995 traces

with averagely 3 replicas/URL (right) on various topologies. 59
Performance of cluster-based replication for MSNBC August 2, 1999 traces
(in 20 clusters) with up to 50 replica/URL on a transit-stub topology . .. 60
Stability analysis of the per cluster replication for MSNBC 1999 traces with
8/2/99 as training traces (averagely 5 replicas/URL).. 62
Popularity correlation analysis for semantics-based clustering. The error bar
shows the average, 10 and 90 percentile of af _span.. 67
Internet Iso-bar architecture for a peer-to-peer system 78
CDF of 06/25/01 daily minimum RTT on between each pair of NLANR AMP
hosts L 81
Evaluation of generic clustering methods with static analysis (top) and sta-
bility analysis (bottom). Lo 83
Sensitivity of Internet Iso-bar to various number of landmarks: static (top)
and stability analysis (bottom). oo 85
Cumulative Distribution Function (CDF) of relative prediction errors for
both static analysis and stability analysis (6-monthly interval) 86

80 percentile (left) and 90 percentile (right) of the relative errors for various
estimation schemes under six different time intervals 87

8.1
8.2
8.3

8.4
8.5

8.6

8.7
8.8

8.9

8.10

9.1
9.2

Architecture of a tomography-based overlay network monitoring system

Sample overlay network. Lo oo
Regression of k in various functions of n under different router-level topolo-
gies. Top: Barabasi-Albert model of 20K nodes (left), and Waxman model
of 10K nodes (right). Bottom: hierarchical model of 20K nodes (left) and a
real topology of 284K routers (right).
Sample parts of IP network and overlay paths.
Cumulative distribution of absolute errors (left) and error factors (right)
under Gilbert loss model for various topologies.
Histogram of the measurement load distribution (as sender) for an overlay of
300 end hosts on a 5000-node Barabasi-Albert topology.
Sensitivity test of sending frequency 0oL
Cumulative percentage of the coverage and the false positive rates for lossy
path inference in the 100 experiments.
Cumulative percentage of the absolute errors and error factors for the exper-
iment with the worst accuracy in coverage.
Cumulative percentage of the 95 percentile of absolute errors and error factors
for the 100 experiments.o

viii

91

95
96

106

108
111

112

113

113

Event-driven diagram of monitoring-based adaptive overlay media streaming 120

Architecture of monitoring-based adaptive overlay media streaming

121

X

List of Tables

2.1

3.1

4.1

5.1
5.2
9.3

5.4

5.5
0.6

0.7

6.1

8.1
8.2

8.3

8.4

Comparison of various Internet content delivery systems 10

Attempting to rank the five different directory services. “N/A” means that

the attack is not applicable to the service, and we give it a score of 1.0. . . 26
Statistics of Web site access logs used for simulation 35
Access logsused. L e 43
Table of notations L 54
Management overhead comparison for replication at different granularities,

where K < M. e e e 54
Average retrieval cost with non-uniform filesize 61
Static and optimal clustering schemes L. 61

Statistics and cost evaluation for offline incremental clustering. Using MSNBC
traces with 8/2/99 as training traces, 20 clusters, and averagely 5 repli-
cas/URL. Results for clustering based on SC (row 3 - 7) and AFC (row
) 64
Statistics and clustering of crawled MSNBC traces 65

Comparison of various Internet latency estimation systems, assuming there
are N end hosts, AP address prefixes, L landmarks and K clusters, m(h;) is
the monitor of the cluster to which host h; belongs. 73

Table of notations L 92
Simulation results for three types of BRITE router topologies: Barabasi-
Albert (top), Waxman (middle) and hierarchical model (bottom). OL gives
the number of end hosts on the overlay network. AP shows the number of
links after pruning, where pruning removes the nodes and links that are not
on the overlay paths. MPR is the monitored path ratio between our scheme

and the pair-wise scheme. FP is the false positive rate. 102
Simulation results for a real router topology. MPR and FP are defined the
same as in Table 8.2. oL 103

Measurement load (as sender or receiver) distribution for various BRITE
topologies. OL Size is the number of end hosts on overlay. “LB” means with
load balancing, and “NLB” means without load balancing. 103

8.5

8.6
8.7
8.8

8.9
8.10

Simulation results with model LLRD;. Use the same Barabasi-Albert topolo-
gies as in Table 8.2. Refer to Table 8.2 for statistics like rank. FP is the false
positive rate. L Lo
Simulation results for adding end hosts on a real router topology. FP is the
false positive rate. Denoted as “+added_value (total_value)”.
Simulation results for deleting end hosts on a real router topology. FP is the
false positive rate. Denoted as “-reduced_value (total_value)”.
Simulation results for removing a link from a real router topology.
Distribution of PlanetLab hosts for experiments.
Loss rate distribution: lossy vs. non-lossy and the sub-percentage of lossy
paths.

107
108
109

109
110

9.1 Distribution of SHOUTcast servers on PlanetLab and corresponding latencies.124

xi

Acknowledgements

I am extremely grateful to Prof. Randy H. Katz, my thesis advisor, for giving me
the chance to work with him in the SAHARA project about three years ago. The trust he
had in me gave me the courage, confidence and strength to overcome the challenges I faced
and the frustration I experienced as a beginner in this field. His unprecedented support led
me through my Ph.D. study, and has always upheld me when such support was most needed.
He taught me how to find important problem to investigate, not just for academic research,
but also for potential impact on the industry - how will my research eventually influence the
society and people’s life. He also kept reminding me that the quality /impact of research is
much more important than the number of publications. Randy not only taught me how to
become a better researcher and a better scholar, but also taught me how to become a better
teacher and a better mentor. His engaging arguments and strong feedback have contributed
greatly to this dissertation. I hope and look forward to continued collaboration with him
in the future.

I thank my dissertation committee members, Profs. Ton Stoica and John Chuang,
for their comments and suggestions during the course of developing my research agenda and
completing this dissertation. I also thank Prof. John D. Kubiatowicz, for guiding me in the
beginning of my system research and chairing my qualifying exam committee.

My thesis work was significantly benefited from collaborating with both industry
and academic researchers: Prof. John D. Kubiatowicz (U.C. Berkeley), Drs. Chris Overton
(Crazy Tulip Inc., used to be affiliated with Keynote Inc.), Lili Qiu (Microsoft Research),
and Wai-tian Tan (HP Labs). Being treated as a peer and a friend, I thoroughly enjoyed
working with them, and look forward to continuing the collaborations in the future.

I am grateful for valuable feedback received from Dr. Peter Danzig (consultant),
Prof. Anthony Joseph (U.C. Berkeley), Prof. Eugene Ng (Rice) and Dr. Vern Paxon
(ICIR/LBL). I have learnt a lot through interacting with them. I also thank Prof. Tony
McGregor and Dr. Jing Zhi for providing NLANR and Keynote measurement data.

During my thesis study, I was fortunate to work with many excellent undergradu-
ate and graduate students in Berkeley and other institutes: Alvin AuYoung (now graduate
student at U. C. San Diego), Adam Bargteil, David Bindel, Weiyu Chen, Brian Chavez
(U. C. Santa Cruz), Chris Karlof, Johnny Lam, Yaping Li, Khian Hao Lim (now graduate
student at Stanford), Luan Nguyen (now graduate student at U. C. Los Angeles), Jacob
Scott, Hanhee Song, Albert Wang, and Yingying Wei. The collaboration (sometimes men-
toring) experience with them was indeed pleasant, which motivated me to join academia
after graduation.

I interned at AT&T Shannon Labs - Research in the summer of 2002. 1 thank my
mentors Drs. Balachander Krishnamurthy, Shubho Sen and Yin Zhang for their guidance as
I learned high-speed network measurement and monitoring, and statistical traffic analysis.

My wonderful memories of graduate school were most enriched by my day-to-day
interactions with fellow graduate students. I thank the members of Soda 465, Soda 473, and
other EECS comrades - Sharad Agarwal, Matthew Caesar, Hao Chen, Chen-Nee Chuah,
Weidong Cui, Matt Denny, Yunfei Deng, Yitao Duan, Patrick Eaton, Alyosha Efros, Ling
Huang, Hoon Kang, Karthik Lakshminarayanan, Tal Lavian, Yong Liu, Z. Morley Mao,
Sridhar Machiraju, George Porter, Bhaskaran Raman, Sylvia Ratnasamy, Xiaofeng Ren,

xii

Mukund Seshadri, Chen Shen, Jimmy Shih, Wilson So, Zhendong Su, Lakshminarayanan
Subramanian, Helen Wang, Hakim Weatherspoon, Victor Wen, Bo Wu, Eric Po Xing, Li
Yin, Fang Yu, Yizhou Yu, Lei Yuan, Hao Zhang, Ben Zhao, Shelley Zhuang, and Yan
Zhuang.

I thank Damon Hinson, Bob Miller, Veronique Richard and Gretchen Sanderson
who managed our research group matters. They were very friendly to work with and
always responded promptly to my requests and questions regarding administrative issues. I
sincerely acknowledge Keith Sklower for maintaining our network and computers, and being
very responsive whenever I ran into problems and called for help.

I would like to express my earnest gratitude to my parents and my brother for
their love and support, and for raising me and educating me. My deepest gratitude goes to
my dear wife Fei for her love and understanding through these years. She was always behind
me and gave her unconditional support even when that meant to sacrifice the time we spent
together. 1 especially appreciate my parents’ and my wife’s patience for this boundless
journey. They have always given me the freedom to make my own choices and have always
wanted my happiness above their own. I also thank my parents-in-law, my sister-in-law,
Peng Znou, and her husband, Xiaolan Peng. Both my academic career and family life have
been greatly benefited from their constant care and support.

I give thanks to the members of the Chinese for Christ Berkeley Church, especially
the Young Adult Fellowship, for their prayers, support and care. Special thanks to Amy
Jie and Aray Ge who helped me grow in Christ. Last but the most, I want to give thanks
to the One and Only God for His unconditional love, and for being my shepherd, my shield
and my refuge, all the times.

Chapter 1

Introduction

1.1 Motivation

The Internet has evolved to become a critical commercial infrastructure for service
delivery. However, due to the IP addressing scheme, routing paradigm, and other historical
reasons, the current Internet is not well suited for the purpose of emerging new service
delivery contemplated by today’s applications. In response to these challenges, various
forms of overlay networks, introducing new functionality within the network near the edges,
have been proposed and some deployed in the Internet. For instance, commercial Content
Distribution Networks (CDN) use overlay technology to bring content closer to the end
users. The Internet being an enormous, highly-dynamic, heterogeneous, and untrusted
environment raises several challenges for building Internet-scale services (such as content
delivery) with good scalability, efficiency, agility and security.

To build an Internet-scale services, we need to address the following challenges:

e Scalability It is estimated to be 581 million Internet users in May 2002, and the
number will reach one billion by 2005 [86]. The Internet carries 2,000TB traffic a
day [89]. Despite such huge scale and fast growth, most existing Internet services rely
on centralized architecture, e.g., a cluster of local machines connected with high speed
Ethernet. Such design is fundamentally unscalable to the number of clients/requests,
will cause hot spots and single point of failure.

e Efficiency Given the rapid spread of portable computing devices, and wireless and
sensor networks, end users have increasingly heterogeneous connectivity and devices
(CPU, memory, etc.), desiring different quality of service (QoS). Current Internet
applications treat all the clients equally with the best-effort services. To support dif-
ferent QoS of massive heterogenous clients requires distributed, efficient and balanced
resource consumption of the underlying infrastructure.

We have been enjoying Moore’s law for many years, i.e., the computational power,
DRAM capacity, and the disk storage capacity have been doubling every 18 - 24
months. However, according to the recent “International Technology Roadmap for
Semiconductors 2002 Update” report, the present chip-size model will slow the Moore’s

Law rate of on-chip transistors to 2x every three years. Another important met-
ric, DRAM chip size reduction rate, is also estimated to stretch to 2x /2.5 to three
years [117]. Meanwhile, the speed of information explosion outpaced that of the tech-
nology improvement - the annual digital information growth is about 50% [73]. Thus
it is crucial to have Internet service providers to be efficient for bandwidth, storage,
and management cost.

e Agility All the entities in the system, from clients, servers to network, change their
status continuously. For instance, clients may change their interests for different
contents and change their access patterns, servers may have various loads or even
crash, network may have congestion or failures. Meanwhile, it is crucial for mission-
critical applications to provide 24x7x365 availability. Obviously, Internet services
need to monitor these changes and adapt to them.

However, most existing Internet services ignore these dynamics and only provide best-
effort services. Recent CDNs like Akamai provide user-level agility in an inefficient
manner (see Chapter 5.4), and provide limited system/network-level agility with in-
accurate and unscalable monitoring (use clients’ DNS server as clients representative,
see Chapter 6.1.1).

e Security Various forms of denial-of-service (DoS) attacks and viruses/worms are
plaguing the Internet. For instance, Yankee Group, an Internet research firm, esti-
mated that DoS attacks cost $1.2 billion in lost revenues in 2000 [101]. However, even
well-known Internet service/application providers, such as Yahoo, Amazon, eBay and
Microsoft’s DNS, suffered attacks.

In this thesis, I address these issues (especially the first three) by developing a
suite of techniques to build a CDN, namely Scalable Content Access Network (SCAN), on
top of a peer-to-peer location system. Content delivery is important because it has been
dominating the Internet traffic. There are more than 3.3 billion Web pages [55] and a
growth of 7 million pages every day [95]. The convergence in the digital world of voice, data
and video is expected to lead to a compound growth rate of Web traffic.

Essentially, CDN improves content delivery performance by replicating content to
multiple locations in the Internet, and by having users obtain data from the “best” data
repository. Here, “best” is defined by the desired quality of service of clients, e.g., latency,
bandwidth, and/or load. However, it remains an open issue how to provision, manage, and
monitor such a replication infrastructure efficiently. In particular, we seek to address the
following questions.

1. How to dynamically deploy optimal number number of replicas to meet clients’ QoS
(e.g., latency) constraints without overloading servers?

2. How to maintain the coherence of the replicas when the original contents are changed?
3. Given any client’s request, how to find its nearby replica with good scalability?

4. How to reduce the replica management overhead (e.g., the amount of replica index
states to maintain) without sacrificing the performance for end users (e.g., latency)?

. data
gource
i replica

cache

— always update
adaptive

coherence s W S
root h i ' g
E gerver ; ﬁ(éﬂ

sefwer 5B network plane
> client

(AL Tapestry mesh

Figure 1.1: A sample SCAN system.

5. How to estimate the network end-to-end distance, such as latency and loss rate, in a
scalable and accurate manner to provide proximity and adaptation to network con-
gestions and failures?

6. How to leverage network monitoring services to build adaptive applications?

Next, we will discuss the SCAN architecture and our contributions for solving the
questions above.

1.2 SCAN Architecture

SCAN is a self-organizing soft-state replication system, as illustrated in Figure 1.1.
There are two classes of physical nodes shown in the network-plane of this diagram: SCAN
servers (squares) and clients (circles). We assume that SCAN servers are placed in Internet
Data Centers (IDC) of major ISPs with good connectivity to the backbone. Each SCAN
server may contain replicas for a variety of data items. One novel aspect of the SCAN system
is that it assumes SCAN servers participate in a distributed routing and location (DOLR)
system (a. k. a. distributed hash table (DHT)), Tapestry [137]. Tapestry permits clients to
locate nearby replicas without global communication. Note that Tapestry is shared across
objects, while each object has a application-level multicast tree for disseminating updates.

There are three types of data illustrated in Figure 1.1: Data sources and replicas
are the primary topic of this thesis. They reside on SCAN servers and are always kept
up-to-date. Caches are the images of data that reside on clients and are beyond our scope’.

!Caches may be kept coherent in a variety of ways (for instance [111]).

1.3 Dissertation Overview and Contributions

Provision: Dynamic Replication Replica Management:
+ Update Multicast Tree Building|| (Incremental) Content Clustering
(Chapter 4) (Chapter 5)
Part | —
Network DoS Resilient
Replica Location: Tapestry
(Chapter 3)
Part Il Network End-to-End Distance Monitoring
Internet 1so-bar: latency (Chapter 7) TOM: loss rate (Chapter 8)

Figure 1.2: Layered architecture of the SCAN system.
As shown in Figure 1.2, SCAN leverages a peer-to-peer distributed hash table
(DHT) system for scalable object location, applies dynamic replica placement for provision-
ing, achieves scalable replica management through (incremental) clustering of objects, and
is monitored with scalable overlay network monitoring.
We summarize our contributions in the four components as follows:

1.3.1 Network DoS-resilient Object Location with DHT (Chapter 3)

Networked applications are extending their reach to a variety of devices, and locat-
ing objects is an important problem. Existing approaches can be roughly categorized into
three groups: Centralized Directory Services (CDS), Replicated Directory Services (RDS),
and the recently emerged Distributed Directory Services (DDS). Given the proliferation of
network DoS attacks, we wish to select SCAN a directory service which is resilient to DoS
attacks.

However, although the field of “security metrics” has at least a 20-year history
involving the production of evaluation criteria, Information Assurance (IA) quantification,
risk assessment/analysis methodology development, etc., it has provided neither generally
acceptable nor reliable measures for rating I'T security or requisite security assurance. For
example, there lacks a general methodology to measure the resilience of a system or service to
network DoS attacks. As the first step towards this ambitious goal, we propose a simulation-
based network DoS resilience benchmark, and apply it to compare the three object location
services. We find that DHT-based DDS has the best resilience in practice. Thus we leverage
it as the location services for SCAN.

1.3.2 Dynamic Replica Placement and Update Tree Construction (Chap-
ter 4)

Basically, the challenge of replication is to provide good Quality-of-Service (QoS,
such as certain latency bound) to clients while retaining efficient and balanced resource
consumption of the underlying infrastructure. We proposes a novel algorithm which com-
bines dynamic replica placement with a self-organizing application-level multicast tree to

meet client QoS and server resource constraints. Each node (including the root) in the
tree only needs to maintain states for its parent and direct children. Simulation results
on both flash-crowd-like synthetic workloads and real Web server traces show that SCAN
deploys close to an optimal number of replicas, achieves good load balance, and incurs a
small delay and bandwidth penalty for update multicast relative to static replica placement
on IP multicast.

1.3.3 Scalable Replica Management using Content Clustering (Chapter 5)

SCAN is efficient on the number of replicas deployed. But given the large scale of
the World Wide Web, the per-URL-based replica placement computation and management
overhead is still overwhelming. Traditional Web caching systems and CDNs do not keep
track of the replicas deployed to avoid the management problem, but have to suffer inefficient
replication, and consequently poor performance (see Chapter 5.4).

SCAN reduces the replica management overhead by investigating several cluster-
ing schemes to group the Web documents and to replicate them in the units of clusters.
Evaluations based on various topologies and Web server traces show that without sacrificing
users’ retrieval cost, the management overhead (in terms of amount of states to maintain
and replica location computational cost) is reduced by a factor of 50 - 100. Furthermore,
we propose a unique online Web object popularity prediction algorithm based only on hy-
perlink structures, and applied it for online incremental clustering and replication to adapt
to changes in users’ access patterns. With this scheme, we pushes new content to the ap-
propriate existing clusters even before accessed. It cuts down the retrieval cost by 4.6 times
compared with random replication, and by 8 times compared with no replication. Therefore
it is especially useful to improve document availability during flash crowds.

1.3.4 Scalable Overlay Network Monitoring (Chapters 7, 8 and 9)

End-to-end distance monitoring can enable Internet services, like CDN, to con-
struct an efficient overlay mesh, detect network failures, and facilitate dynamic server selec-
tion. Existing systems either lack scalability or accuracy, or face problems of deployment.
To overcome these shortcomings, we developed a scalable overlay network monitoring system
with two components: Internet Iso-bar for latency estimation and TOM (Tomography-based
Overlay network Monitoring) for loss rate estimation.

Internet Iso-bar clusters hosts based on the similarity of their perceived network
distance to a small number of landmark sites, and chooses the center of each cluster as
a monitor site. The distance between two hosts is estimated using inter- or intra-cluster
distances. Evaluation using real Internet measurements shows that Internet Iso-bar yields
much higher estimation accuracy ? and stability than the traditional latency estimation
systems which are based on network/geographical proximity clustering. Compared with
the best known prior work, GNP [83], our accuracy is similar, but the Internet Iso-bar
further detect 78% of congestion/failures % in real time with 32% false positives because

2The accuracy is the relative error between predicted latency and real latency as defined in [136].
3See the definition of congestion/failures in Chapter 7.3.2.

GNP has the landmark sites as bottleneck for real-time coordinate update. Such accuracy
is suitable for non-business P2P file sharing type of applications.

For mission-critical applications that desire accurate loss rate estimation, previous
work require measurement of O(n?) paths for an overlay network with n end hosts [40].
In contrast, TOM finds a minimal basis set of k linearly independent paths that can fully
describe all the O(n?) paths. It selectively monitors and measures the loss rates of these
paths, and then applies them to estimate the loss rates of all other paths. By extensively
studying synthetic and real topologies, we find that for reasonably large n (e.g., 100), k is
only in the range of O(nlogn). This is explained by the moderately hierarchical nature of
Internet routing. Besides, TOM has good measurement load balancing, tolerates topology
measurement inaccuracies, and is adaptive to topology changes, such as end host join/leave
and routing changes. Both extensive simulation and experiments on the Internet show that
we achieve high path loss rate estimation accuracy. We can also continuously update the
loss rate estimates online. For example, in the Internet experiments, the average update
time is 0.16 second for all 2550 paths, the absolute error of loss rate estimation is 0.0027
and the average error factor is 1.1.

We further demonstrate the effectiveness of the monitoring services with a adap-
tive overlay streaming media system. In contrast to traditional schemes which treat the
underlying network as a best-effort black box and perform adaptations at the transmission
end-points, our live streaming media system leverages scalable monitoring services (such as
Internet Iso-bar and TOM) for real-time path congestion/failure information, and an over-
lay network for adaptive packet relaying and buffering within the delivery infrastructure.
Specifically, streaming clients in our system employs overlay routing to bypass faulty or slow
links and re-establish new connection to streaming servers. Using PlanetLab for Internet
testbed, we show that overlay routing can often improve the loss rate and/or TCP through-
put for lossy paths, and our system can typically adapt to network congestions within five
seconds, achieving skip-free streaming media playback.

The rest of the thesis is organized as the follows. We discuss the CDN-specific
techniques, including replica placement, location and management schemes, in Part I, and
study the more general overlay measurement and monitoring services in Part II. In each
part, we first examine previous work and their limitations, then present our own design,
implementation and evaluation.

Part 1

Replica Placement, Location and
Management

Although quite a few commercial CDNs, like Akamai [4], Digital Island [44] Mirror
Image [79] and Speedera [121], have been deployed, several challenges remain as follows.

1. Relying on centralized location services (CDN name servers), the current CDNs cannot
keep track of the replicas deployed, have poor scalability and are vulnerable to network
DoS attacks.

2. Inefficient replica placement makes it unaffordable to provide replica coherence.

3. Pull-based replica placement causes network congestion and source content server
overloading when visited by flash crowds.

In Part I, we first examine related work on these issues (Chapter 2), then present
our solutions as three major components of SCAN: replica location (Chapter 3), replica
placement and coherence maintenance (Chapter 4) and replica management (Chapter 5).

Chapter 2

Previous Work

In this chapter, we first survey existing content distribution systems, namely Web
caching (Chapter 2.1), uncooperative pull-based CDNs (Chapter 2.2), and cooperative push-
based CDNs (Chapter 2.3). We compare these systems with SCAN, and summarize this
in Table 2.1. Then we discuss the previous work on three building blocks of CDN: object
location services (Chapter 2.4), multicast techniques for update dissemination (Chapter 2.5),
and content clustering (Chapter 2.6). Finally, we summarize the limitations of previous work
in Chapter 2.7.

2.1 Web Caching

Caching can be client-initiated or server-initiated. Most caching schemes in wide-
area, distributed systems are client-initiated, such as used by current Web browsers and
Web proxies [72]. The problems with both of these solutions are myopic. A client cache
does nothing to reduce traffic to a neighboring computer, and a web proxy does not help
neighboring proxies. Thus the effectiveness of caching is ultimately limited to the low level of
sharing of remote documents among clients of the same site [14]. A possible solution, server-
initiated caching, allows servers to determine when and where to distribute objects [13, 14,
59]. Essentially, Content Distribution Networks (CDNs, including our approach) are server-
initiated caching with dedicated edge servers. Previous server-initiated caching systems rely
on unrealistic assumptions. Bestavros, et al. model the Internet as a hierarchy and any
internal node is available as a service proxy [13, 14]. This assumption is not valid because
internal nodes are routers, unlikely to be available as service proxies. Geographical push-
caching autonomously replicate HTML pages based on the global knowledge of the network
topology and clients’ access patterns [59]. More recently, adaptive web caching [77] and
summary cache [48] are proposed to enable the sharing of caches among Web proxies. Caches
exchange content state periodically with other caches, eliminating the delay and unnecessary
use of resources of explicit cache probing. However, each proxy server needs to send index
update of cached contents to all other proxy servers, and needs to store the content indices
of all other proxy servers. Thus even with compact content index summary like the Bloom
filter [48], the state maintenance and exchange overhead is still overwhelming and unscalable
with the number of documents and number of cache servers. For instance, the target

10

Properties Web Web caching | Uncooperative| Cooperativg SCAN
caching (server initi- | pull-based push-
(client ated) CDNs based
initiated) CDNs
Cache/replica No, unco- | Yes, coopera- | No, uncoop- | Yes, coop- | Yes, coop-
sharing for effi- | operative | tive erative erative erative
cient replication
Scalability for re- | No redi- | OK, use | Bad, central- | Bad, cen- | Good,
quest redirection | rection Bloom fil- | ized CDN | tralized decentral-
ter [48] to | name server | CDN ized DHT
exchange name location
replica loca- server services
tions
Granularity of | Per URL Per URL Per URL Per Web- | Per cluster
replication site
Distributed load | No No Yes No Yes
balancing
Replica coherence | No No No No Yes
Network moni- | No No Yes, but un- | No Yes, scal-
toring for fault- scalable mon- able moni-
tolerance itoring toring

Table 2.1: Comparison of various Internet content delivery systems

11

number of proxy servers in [48] is only in the order of 100. Furthermore, without dedicated

infrastructure like CDN, caching proxies can not adapt to network congestion/failures or
provide distributed load balancing.

2.2 Un-cooperative Pull-based CDNs

5.GET request [
wd

s —————————*
i «——*
‘L’L- . 8. Response
e
Client

*
<

6.GET request if cache miss - [
w

7. Response
Local CDN server Web content server

ocal CON
server 1P
address

1. GET reaquest
4.

ress
CDN name server

L

Figure 2.1: Un-cooperative pull-based CDN architecture

Recently, CDNs have been commercialized to provide Web hosting, Internet con-
tent and streaming media delivery. Basically, the contents are pulled to the edge servers
upon clients’ requests. Various mechanisms, such as DNS-based redirection, URL rewriting,
HTTP redirection, etc.[9], have been proposed to direct client requests for objects to one
of the CDN servers (a. k. a. CDN nodes or edge servers). Most of the commercial CDN
providers, such as Akamai [4], Digital Island [44] Mirror Image [79] and Speedera [121] use
DNS-based redirection due to its transparency [68]. Figure 2.1 shows the CDN architecture
using DNS-based redirection. Given the rapid growth of CDN service providers, such as
Akamai (which already has more than 13,000 servers in about 500 networks around the
world [4]), we assume that for each popular clients cluster, there is a CDN server as well as
a local DNS server. The client cluster is the group of clients that are topologically close.
The clients can be grouped by their BGP prefix [67] or by their local DNS servers. The
latter is simple and adopted in practice, but it is not very accurate [74].

Figure 2.1 gives the sequence of operations for a client to retrieve a URL. The
hostname resolution request is sent to the CDN name server via local DNS server. Due
to the nature of centralized location service, the CDN name server cannot afford to keep
records for the locations of each URL replica. Thus it can only redirect the request based
on network proximity, bandwidth availability and server load. The CDN server that gets
the redirected request may not have the replica. In that case, it will pull a replica from the

12

Web content server, then reply to the client.

Due to the uncooperative nature, current CDNs often places many replicas than
necessary and consumes lots of resources for storage and update. Simulations in Chapter 5.4
reveals that with reasonable latency guarantees, cooperative push-based CDN (defined in
Chapter 2.3) only uses a small fractional number of replicas (6-8%) and less than 10% of
the update dissemination bandwidth than the uncooperative schemes.

As a research effort, Rabinovich and Aggarwal propose RaDaR, a global Web
hosting service with dynamic content replication and migration [105]. However, it requires
the DNS to give the complete path from the client to the server, which in practice is often
unavailable.

2.3 Cooperative Push-based CDNs

[5.GETT i replica yet

Web coritent server

6. Response

ut'\O\'\ 4 H
web CDN name server

Figure 2.2: Cooperative push-based CDN architecture

Several recent works proposed to pro-actively push content from the origin Web
server to the CDN edge servers or proxies according to users’ access patterns and global
network topology, and have the replicas cooperatively satisfy clients’ requests [71, 65, 104,
128].

The key advantage of this cooperative push-based replication scheme over the con-
ventional one does not come from the fact that we use push instead of pull (which only saves
compulsory miss), but comes from the cooperative sharing of the replicas deployed. This
cooperative sharing significantly reduces the number of replicas deployed, and consequently
reduces the replication and update cost, as shown in Chapter 5.4.

We can adopt a similar CDN architecture as shown in Figure 2.2 to support such
a cooperative push-based content distribution. First, the Web content server incrementally
pushes contents based on their hyperlink structures and/or some access history collected by

13

CDN name server (Chapter 5.9). The content server runs a “push” daemon, and advertises
the replication to the CDN name server, which maintains the mapping between content,
identified by the host name in its (rewritten) URL, and their replica locations. The mapping
can be coarse (e.g., at the level of Web sites if replication is done in units of Web sites), or
fine-grained (e.g., at the level of URLs if replication is done in units of URLS).

With such replica location tracking, the CDN name server can redirect a client’s
request to its closest replica. Note that the DNS-based redirection allows address resolution
on a per-host level. We combine it with content modification (e.g., URL rewriting) to
achieve per-object redirection [9]. References to different objects are rewritten into different
host names. To reduce the size of the domain name spaces, objects can be clustered as in
Chapter 5, and each cluster shares the same host name. Since the content provider can
rewrite embedded URLs a priori before pushing out the objects, it does not affect the
users’ perceived latency and the one-time overhead is acceptable. In both models, the
CDN edge servers are allowed to execute their cache replacement algorithms. That is, the
mapping in cooperative push-based replication is soft-state. If the client cannot find the
content in the redirected CDN edge server, either the client will ask the CDN name server
for another replica, or the edge server pulls the content from the Web server and replies to
the client.

Li, et al. approach the proxy placement problem with the assumption that the un-
derlying network topologies are trees, and model it as a dynamic programming problem|[71].
While an interesting first step, this approach has an important limitation in that the In-
ternet topology is not a tree. More recent studies [104, 65], based on evaluating real traces
and topologies, have independently reported that a greedy placement algorithm can provide
content distribution networks with performance that is close to optimal. To simplify the
assumption about detailed knowledge of global network topology and clients’ distribution,
topology-informed Internet replica placement was proposed to place replicas on the routers
with big fanout [107]. They show that the router-level topology based replica placement
can achieve average client latencies within a factor of 1.1 - 1.2 of the greedy algorithm, but
only if the placement method is carefully designed.

2.4 Object Location Systems

Networked applications are extending their reach to a variety of devices and ser-
vices over the Internet. Applications expanding to leverage these network resources find
that locating objects on the wide-area is an important problem. Further, the read-mostly
model of shared access, widely popularized by the World-Wide-Web, has led to extensive
object replication, compounding the problem of object location. Work on location ser-
vices has been done in a variety of contexts [39, 58, 61, 137]. These approaches can be
roughly categorized into the following three groups: Centralized Directory Services (CDS),
Replicated Directory Services (RDS), and Distributed Directory Services (DDS).

Extensive work on these directory services have been proposed as we will discuss
in more detail in this subsection. However, to the best of our knowledge, there is no attempt
to benchmark and contrast their performance.

14

L1
Mzl e
— (1010
(4432 Client
=11 2 L 12
Replica—1

Repilca—l

@
@
@) i

® <*
ENTCY R 59
e L4
! Replica-2 R2 | \

1212

Figure 2.4: A Distributed Directory (Tapestry):
Nodes connected via links (solid arrows). Nodes route
to nodes one digit at a time: e.g. 1010 — 2218 —

Client
Figure 2.3: A Centralized Direc-
tory Service (CDS): Clients con-
tact a single directory to discover

the location of a close replica.
Clients subsequently contact the
replica directly. A Replicated
Directory Service (RDS) provides
multiple directories.

9098 — 7598 — 4598. Objects are associated with
one particular “root” node (e.g. 4598). Servers pub-
lish replicas by sending messages toward root, leaving
back-pointers (dotted arrows). Clients route directly
to replicas by sending messages toward root until en-

countering pointer (e.g. 0325 — B4F8 — 4432).

2.4.1 Centralized and Replicated Directory Services

A centralized directory service (CDS) resides on a single server and provides loca-
tion information for every object on the network. See Figure 2.3. Because it resides on a
single server, it is extremely vulnerable to DoS attacks. A variant of this is the replicated
directory service (RDS) which provides multiple directory servers. An RDS provides higher
availability, but suffers consistency overhead. Here we do not consider the partitioned di-
rectory service because it often requires extra meta directory server for maintaining the
partitioning information, such as the root server of DNS.

2.4.2 Distributed Directory Services: the Tapestry Infrastructure

Networking researchers have begun to explore decentralized peer-to-peer location
services with distributed hash table (DHT), such as CAN [108], Chord [124], Pastry [112]
and Tapestry [137]. Such services offer a distributed infrastructure for locating objects
quickly with guaranteed success. Rather than depending on a single server to locate an
object, a query in this model is passed around the network until it reaches a node that
knows the location of the requested object. The lack of a single target in decentralized
location services means they provide very high availability even under attack; the effects of
successfully attacking and disabling a set of nodes is limited to a small set of objects.

In addition, Tapestry exploits locality in routing messages to mobile endpoints

15

such as object replicas; this behavior is in contrast to other structured peer-to-peer overlay
networks [108, 124, 112]. Thus we leverage on Tapestry to build SCAN.

Tapestry is an IP overlay network that uses a distributed, fault-tolerant architec-
ture to track the location of objects in the network. It has two components: a routing mesh
and a distributed location services.

Tapestry Routing Mesh Figure 2.4 shows a portion of Tapestry. Each node
joins Tapestry in a distributed fashion through nearby surrogate servers and set up neigh-
boring links for connection to other Tapestry nodes. The neighboring links are shown as
solid arrows. Such neighboring links provide a route from every node to every other node;
the routing process resolves the destination address one digit at a time. (e.g., ***8§ —
498 — *598 = 4598, where *’s represent wildcards). This routing scheme is based
on the hashed-suffix routing structure originally presented by Plaxton, Rajaraman, and
Richa [103].

Tapestry Distributed Location Service Tapestry assigns a globally unique
name (GUID) to every object. It then deterministically maps each GUID to a unique root
node. Storage servers publish objects by sending messages toward the roots, depositing
location pointers at each hop. Figure 2.4 shows two replicas and the Tapestry root for an
object. These mappings are simply pointers to the server s where o is being stored, and not
a copy of the object itself. Thus for nearby objects, client search messages quickly intersect
the path taken by publish messages, resulting in quick search results that exploit locality.
It is shown in [103] that the average distance travelled in locating an object is proportional
to the distance from that object.

2.5 Multicast for Disseminating Updates

For update dissemination, IP multicast has fundamental problems as the archi-
tectural foundation for Internet distribution. For instance, it works only across space, not
across time, while most content distribution on the Internet works across both [50]. Further,
there is no widely available inter-domain IP multicast.

As an alternative, many application-level multicast systems have been proposed
[50, 32, 52, 98, 23, 138]. Among them, [32, 23, 98] target small group, multi-source applica-
tions, such as video-conferencing, while [50, 52, 138] focus on large-scale, single-source ap-
plications, such as streaming media multicast. Bayeux [138] is also built on top of Tapestry.
It uses the Tapestry location service to find the multicast root(s), and then uses Tapestry
routing to route both the control (e.g., “join”) and data messages. In contrast, we only use
the Tapestry location mechanism to find the nearby replica.

Most ALM systems have scalability problems, since they utilize a central node to
maintain states for all existing children [32, 52, 98, 23], or to handle all “join” requests [138].
Replicating the root is the common solution [52, 138], but this suffers from consistency
problems and communication overhead. On the other hand, Scribe [113] and the update
multicast system of SCAN (namely dissemination tree, see Chapter 4) leverage peer-to-peer
routing and location services, and do not have the scalability problem. Scribe is a large-scale
event notification system, using overlay DHT for both subscription and dissemination. The
dissemination tree is more efficient because we use overlay DHT only for subscription, and

16

use IP for dissemination directly.

2.6 Content Clustering

There is considerable work done in data clustering, such as K-means [66], HAC [129],
CLANRNS [82], etc.. In the Web research community, there have been many interesting
research studies on clustering Web content or identifying related Web pages for various pur-
poses, such as pre-fetching, information retrieval, and Web page organization, etc.. Cohen,
et al. [37] investigated the effect of content clustering based on temporal access patterns and
found it effective in reducing latency, but they considered a single server environment and
didn’t study the more accurate spatial clustering. Padmanabhan and Mogul [93] proposed
a pre-fetching algorithm using a dependency graph. When a page A is accessed, clients
will pre-fetch a page B if the arc from A to B has a large weight in the dependency graph.
Su, et al. proposed a recursive density-based clustering algorithm for efficient information
retrieval on the Web [125]. As in the previous work, our content clustering algorithms also
try to identify groups of pages with similar access pattern. Unlike many previous works,
which are based on analysis of individual client access patterns, we are interested in aggre-
gated clients’ access patterns, since content is replicated for aggregated clients. Also, we
quantify the performance of various cluster-based replications by evaluating their impact
on replication.

Moreover, we examine the stability of content clusters using incremental clustering.
Incremental clustering has been studied in previous work, such as [21] and [135]. However,
to the best our knowledge, none of the previous work looks at incremental clustering as
a way to facilitate content replication and improve the access performance perceived by
clients. We are one of the first to examine clustering Web content for efficient replication,
and use both replication performance and stability as the metrics for evaluation of content
clustering (Chapter 5).

2.7 Summary

In summary, we find that previous work on CDN and its related techniques have
the following limitations.

1. Client-initiated web caching is myopic, while the server-initiated web caching has
unscalable content state exchange overhead. Neither can adapt to network conges-
tion/failures or provide distributed load balancing.

2. CDNs rely on centralized location services, thus they have to either apply inefficient
and pull-based replication (uncooperative CDN), or replicate at the granularity of per
Website and sacrifice the performance to clients (cooperative CDN).

3. There is no performance or DoS attack resilience benchmark for existing location
services. This makes it difficult to compare the alternative proposals.

4. No coherence to replicas/caches: IP multicast doesn’t exist in the Internet, while the
existing application-level multicast has scalability problem.

17

5. Content clustering is based on individual client access patterns, and thus not suitable
for shared, cooperative access of CDNs.

In SCAN, the first two limitations are addressed with distributed location services,
Tapestry, and we propose a network DoS resilience benchmark to contrast its performance
with other alternatives (Chapter 3). For limitation 4, we dynamically place replicas and
self-organize them into a scalable application-level multicast tree to disseminate updates
(Chapter 3). The last limitation is tackled with (incremental) clustering of Web contents
based on aggregated access patterns for better replica management scalability (Chapter 5).

18

Chapter 3

Performance Comparison of Object
Location Systems: A Case Study

of Network Denial of Service (DoS)
Attack Resilience

Traditional CDNs redirect clients’ requests only based on the network proximity,
regardless of where the replicas of requested object have been deployed. This is because their
centralized CDN name servers cannot afford to keep track of the replica locations, which
leads to inefficient replication (see Chapter 5.4). Furthermore, it is a common belief that
such centralized approach has poor scalability and is vulnerable to network DoS attacks.

On the other hand, there are emerging replicated and distributed directory ser-
vices (Chapter 2.4). In this chapter, we seek to compare their performance and choose
the best one for SCAN. In particular, we focus on contrasting the network DoS attack
resilience, which also sheds light on the scalability performance of these services. We will
start with motivation (Chapter 3.1), then the threat model (Chapter 3.2) and benchmark
setup (Chapter 3.3). Finally, We will contrast the DoS resilience of these architectures
(Chapter 3.4).

3.1 Motivation

Network DoS attacks are increasing in frequency, severity and sophistication, mak-
ing it desirable to measure the resilience of systems to DoS attacks. From 1989-1995 the
number of DoS attacks increased 50% per year [60]. Additionally, a 1999 CSI/FBI survey
reported that 32% of respondents detected DoS attacks directed at their systems [62]. To
make things worse, automatic attack tools (such as Tribal Flood Network(TFN), TFN2K,
Trinoo and stacheldrant) allow teenagers to launch widely distributed DoS attack with a few
keystrokes (so called “script kiddies”) [38]. Given the proliferation of DoS attacks, many
mission-critical applications claim DoS resilience. To test these claims, there is a desire
for a general methodology to measure the resilience of a system or service to network DoS

19

attacks.

DoS attacks are difficult to analyze because they are system-wide phenomena.
Viewing components or attackers in isolation often fails to expose interesting behavior. As
a consequence, we choose to observe a simulation of a complete system, including realistic
network topology, client workloads, server architecture, and attack profiles. Chapter 3.3
will describe the simulation environment in detail. Here we wish to understand the types
of attacks that might be mounted against object location services and how we can assess
their impact.

Our work is the first attempt towards benchmarking DoS attacks for arbitrary
network services. In [116], the authors investigated several approaches to fighting TCP SYN
attacks and developed a tool which actively monitored the network for suspicious attack
behavior and terminated dangling connections left by the attacker. In [120], the authors
describe the use of an end-to-end resource accounting in the Scout operating system to
protect against resource-based DoS attacks. Both these works present microbenchmarks
testing the effectiveness of the proposed countermeasure. Our approach differs partly in
that we investigate attacks on availability of a service, rather than on a particular server.

Brown and Patterson [17] investigate the use of fault injection to benchmark avail-
ability and apply their methodology to software RAID systems. Our work is similarly based
on injecting faults into a workload and investigating the effect, but our faults are malicious
in nature.

3.2 Threat Models

Denial of Service attacks come in many shapes and sizes. In fact, the CERT
Coordination Center [20] has proposed the following taxonomy:

e Consumption of network connectivity and/or bandwidth

e Consumption of other resources, i.e., CPU cycles or kernel data structures
e Destruction or alteration of configuration information

e Physical destruction or alteration of network components

Specializing this set for object location services, we identify two general classes of attack:
Flooding Attacks and Corruption Attacks:

3.2.1 Flooding Attacks

The most popular network DoS attack is the flooding attack, in which the attacker
sends superfluous requests at a high rate. Flooding attacks overload the victim’s resources
(such as queues and CPU), and also swamp the local routers, gateways and links. These
DoS attacks can be classified as point-to-point or distributed. There are four major point-to-
point DoS attacks: TCP SYN flooding, UDP flooding, ICMP flooding and Smurf attacks
[43].

Distributed DoS (DDoS) attacks combine point-to-point DoS attacks with dis-
tributed and coordinated control. Figure 3.1 shows the structure of a DDoS attack, with

20

Control traffic
—— Flood traffic

Attacker

‘ Handler

‘ Handler

‘ Agent ‘ ‘ Agent ‘ ‘ Agent‘

Figure 3.1: Structure of a distributed DDoS attacks

one or more attackers controlling handlers, with each handler controlling multiple agents'.
Handlers and agents are extra layers introduced to increase the rate of packet traffic as well
as hide the attackers from view. Each agent can choose the size and type of packets as
well as the duration of flooding. While the victim may be able to identify some agents and
have them taken off-line, the attacker can monitor the effects of the attack and create new
agents accordingly [43]. In general, attack simulation parameters should be chosen to cover
a sufficient spectrum of attack traffic versus legitimate traffic to show interesting results.

3.2.2 Corruption Attacks

When an attacker corrupts or destroys information, we call this a corruption attack.
There are numerous variants on this type of attack. For instance an attacker might alter
configuration information to prevent the use of a computer or network. Or, an attacker
might corrupt routing tables, causing victim nodes to redirect traffic toward the attacker,
which would subsequently drop or deny requests. It is not possible to test all attacks, so
typical examples of this category should be simulated and measured.

3.2.3 Measuring Resilience

DoS attacks reduce resource availability. Here, availability refers to a spectrum of
service quality, not simply “up” versus “down”. Though the choice of Quality of Service
(QoS) metrics depends on the system or service being studied, Brown and Patterson have
suggested performance, completeness, accuracy and capacity as starting points [17]. For our
particular study, we consider metrics of response latency, request throughput, and time to
recover?. We examine the level degradation of a service under attack to assess the resilience
of that service.

!Compromised hosts responsible for generating packet streams directed at the victim.
2A corrupted directory service could prevent service entirely, but this is beyond the scope of the current
study.

21

Of course, Denial of Service is multidimensional in that system A may be more
resilient than system B for one type of attack but less resilient for another. Usually, the
particular threat-model under consideration defines a set of dimensions, one for each class
of threat. Combining these dimensions to yield a particular resilience ranking is a very
system-specific task and hard to generalize. Our solution is to be sufficiently specific in the
definition of the threat model and only quantify the resilience in that model.

3.3 Experimental Setup

We built a complete system on top of ns2 simulator [16]. All of our nodes function
as both clients and hosts with a subset providing the directory service. Clients send lookup
requests to the directory service, which either returns the location of a replica or forwards
the request directly to the replica. We selected some nodes to be attackers and measured
changes in the availability of system resources.

We used 1000 node network topologies generated by GT-ITM [134] using a transit-
stub model. Each graph is made up of five transit domains. These domains are guaranteed
to be connected. Each transit domain consists of an average of eight stub networks. The
stub networks contain edges amongst themselves with a probability of 0.5. Each stub
network consists of an average of 24 nodes, in which nodes are once again connected with a
probability of 0.5. We then extended these topologies with common network bandwidths as
recommended in [52]. Our routers use simple drop-tail queuing with the default NS queue
size 50 (we assumed attackers will spoof their IP addresses, defeating any filtering done by
more complicated queuing policies).

3.3.1 Client Operation

We generated synthetic client workloads using both Zipf’s law [5] and hot-cold [106]
models. Zipf’s law states that if objects are ranked according to their access frequency, then
the number of requests of the object with rank 7 is proportional to 1/i. In a hot-cold model,
a small portion of the objects (10%) receive the majority (90%) of the requests. Our network
has 500 objects, each with three replicas placed on three randomly chosen nodes. The sizes
of objects were chosen randomly from the interval 5KB - 50KB. Nodes request a data object,
wait for the data and then request another, such as when a user is following a series of web
links.

3.3.2 Directory Server Operation

We used five different directory services in our simulations:

CDSr The simplest directory service is the Centralized Directory Server(CDS). Here, one
non-transit node is chosen to be the directory server. Object requests are made in
two stages. First, the directory server is queried and returns the location of a random
replica of the object. Second, the requesting node communicates directly with the
node hosting the replica and the data is returned.

22

CDSo Same as above, except that the directory server returns the location of the replica
which is closest to the requesting node.

RDSr The Replicated Directory Service(RDS) is placed on four random, widely-distributed,
non-transit nodes. Queries are made as above, except that a node must choose one of
the servers to fulfill its request. Here, the choice is made randomly for each request.
The replica is also randomly chosen by the directory server as in the CDSr.

RDSo Same as the RDSr, except that each node sends requests to the nearest directory
server. (Replica choice is still random).

DDS For the DDS, we implemented a simplified version of Tapestry as an extension to
ns. All messages between nodes are passed by ns’s TCP/IP agent. Messages route
through the object’s tree to the statistically closest object replica, and the replica
responds by sending the data contents directly to the requesting node. Our Tapestry
data structures are statically built at the start of the simulation using full knowledge
of the topology, and using hop count as the network distance metric. It should also
be noted that our implementation is un-optimized and is likely slower than a real
implementation would be. On the other hand, the static configuration of Tapestry
may overlook the effect of dynamic node failures on its DDoS resilience. It is our
future work to address that issue.

3.3.3 The Attacks

We modeled two types of attacks in our simulations:

Flooding Attacks

The first attacks we simulated flood some important node(s) and overload their
queues to reduce the number of legitimate requests that get through. We randomly desig-
nated some nodes “agents”; the agents then stream a constant bit rate at the victim. We
varied the number of agents as well as the severity (bit rate) of flooding. The life time
of each agent was randomly chosen from 0 - 200 seconds with new agents immediately
replacing those taken off-line.

For the CDS and RDS, we attacked the directory server(s). We attacked the closest
analogy in Tapestry, the root of a hot object. For comparison with the CDS (RDS), we
flood the root of one (four) hot object(s), keeping the number of attacked nodes the same.

Corruption Attacks

As these attacks are system/service-specific, we only simulated two attacks here
as examples. This is by no means to be an exhaustive list of such attacks. We just discuss
two examples as representatives.

The first attack forces an important node to believe there is a link with negligible
latency between the nodes which are actually the farthest apart. We attack the directory
server of the CDS, a random directory server of the RDS and the Tapestry root node of a
hot object for comparison.

23

=
@

1w 35000 O Tapestry =

O Tapestry —_— B CDS, random abj
O CDS, optimal obj

| @ CDS, random obj L
0 COs, aptimal abj

fx}
=)

25000

1 in 200

&
I

-

20000 +—

15000

=

10000

w
of req

5000
g4 ‘ SN

no atk single atk, dist atks, 4% dist atks, 4% single atk, dist atks, 4% no atk single atk, dist atks, 4% dist atks, 47 single atk, dist atks, 47
S00B/ASms S00B/20ms S00BAOms 2000BAms SO0B/Sms 500B/Ams 500B/20me 500B/10ms 2000B/5ms S00B/Sms

average response latency (100ms)

o

Figure 3.2: Average response latency of Figure 3.3: Throughput of CDS wvs.
CDS vs. Tapestry under DoS flooding Tapestry under DoS flooding attacks
attacks

The second attack is specific to Tapestry; a malicious Tapestry node claims to be
the root node of all objects. By replying with a negative result to any request it receives,
this node can potentially convince clients that requested objects do not exist, denying them
access to an existing resource. The question we ask here is “how many nodes are affected?”

3.4 Results

3.4.1 Flooding Attacks

We performed simulations of flooding attacks on the CDS, RDS, and Tapestry
with hot-cold and Zipf’s law workloads. The results were similar for both workloads, so we
present only hot-cold results.

Comparison of CDS and Tapestry

First, we compare the performance of CDS with Tapestry. We simulated one
attacker at a rate of 500 or 2000 bytes every 5 ms or four attackers at rates between 500
bytes every 20ms and 500 bytes every 5ms. The results are shown in Figures 3.2 and 3.3.
These figures reveal that a single attacker does not significantly influence performance, while
distributed attackers, each flooding at the same high rate, cause severe denial of service.

While a CDS suffers greatly under severe attacks, Tapestry shows some resistance.
This can be explained by the distributed nature of Tapestry. For each simulation, we
normalize the throughput under various attacks vs. mnormal throughput, and plot it as
Figure 3.4. The normalized graph shows that the throughput of CDS drops to 6-7%, while
Tapestry remains over 90% of throughput under the most severe attacks. This is because
Tapestry satisfies many requests even before they reach the root.

One interesting observation, as shown by the two rightmost sets of data in Fig-
ures 3.2 and 3.3, is that distributed attackers cause more severe DoS than a single attacker,
even when injecting the same amount of flood traffic. The reason for this is that the DoS

24

0.9+ — [— T+—|=cos,
o8 L L — L || random obj
0.7 4 — =
" mCDS,
g 06— — - | optimal obj
T 05+ —
-,
E 04 + [OTapestry,
= overall obj
g0+ = J
0.2 q —
OTapestry,
0.1 — attacked obj
o , , [|

single athk, dist atks, 4% dist atks, 47 single atk, dist atks, 47
500B#Ams S00B/20ms 500B/10ms 2000B/5ms S00B/ASms

Figure 3.4: Normalized throughput of CDS vs. Tapestry under DoS flooding attacks

q00

80 I L —e— CDS, randorm ohj
70 A n —+— CDS, randorm obj L —8— CDS, optimal obj e
| —=— CDS, optimal ohj o0 48 A Tapestry
b P o
B0 i Tapestry e 2 ; PP
= gOp (AT RN _7_/_._' e

50

s

: i ﬁl]
i 5, - | 7
. i \ £ L 7

1 1]

a0

|
40]
|
I

of i

average response latency (100ms}

timegs) time (s)

Figure 3.5: Dynamics of average response Figure 3.6: Dynamics of throughput of CDS
latency of CDS vs. Tapestry under DoS vs. Tapestry under DoS flooding attacks
flooding attacks

attack power of single attacker is limited by the bottleneck bandwidth from the attacker to
the victim.

Figures 3.5 and 3.6 show the dynamics of the most severe flooding attacks on
CDS and Tapestry. The attack(s) start at 40 seconds and end at 110 seconds. Given our
simulation setup, the time to recover for CDS with both policies is 40 seconds. As Tapestry
is not really affected much, its time to recover is negligible.

Comparison of RDS and Tapestry

To explore a replicated directory service, we put four servers on widely-distributed,
non-transit nodes. We investigated two policies: either the client contacts a random direc-
tory server (RDSr) or the closest one (RDSo). We did not simulate consistency traffic
between directories.

Again, the single flooding attack has little effect, so we only present results of DDoS
attacks in Figure 3.7 and 3.8. We randomly selected four non-transit nodes as attackers.
Each of these nodes attacks a directory server in a different subnet or the DDS root of a
hot object; these attacks have little effect. We also randomly selected sixteen non-transit

25

@ 35000

]
h

30000 —
O Tapestry = E Tapestry
2 B random RDS =] S Erandom RDS
= 1 IRDS [
O optimal ROS e T O optima
15 =

20000

]

no atk dist atks, 4% dist atks, 168* dist atks, 16 dist atks, 167 no atk dist atks, 4% dist atks, 167 dist atks, 167 dist atks, 167
500B/Sms 600B/10ms B00B/MAms 500B/ms 500B/Ams 500B/10ms 500B/Ams 500B/1ms

15000 +

o

5 10000 4

average response latency (100ms)
o
of r

5000

o
=

Figure 3.7: Average response latency of Figure 3.8: Throughput of RDS wvs.
RDS vs. Tapestry on DDos flooding attacks Tapestry on DDos flooding attacks

attack agents in groups of four, each from different subnets. Each group attacked one RDS
directory server or the DDS root of a hot object. The attack rate varied from 500 bytes
every 10ms to 500 bytes every 1ms, with each agent set to the same rate.

Both forms of RDS and Tapestry are far more resilient to DoS than CDS (observe
the difference in flooding rates along the X-axes). Thus, replication and topology-aware
locality can significantly increase resilience to DoS attacks. In our simulations, the optimal
RDS always performs better than Tapestry. This is because Tapestry may be forced to
make traverse bottleneck links multiple times, whereas the clients in the same subnet as an
RDS directory server can avoid the bottlenecks entirely. A more interesting observation,
however, is that Tapestry comes very close to optimal RDS; as the number of objects and
size of network increases, the number of replicated directory servers required to compete
with the self-organizing nature of Tapestry is likely to increase, making Tapestry a better
overall choice. Meanwhile, Tapestry outperforms the random RDS on severe attacks, lending
credence to the locality properties of Tapestry.

3.4.2 Corruption Attacks

When we compromised routing information at important nodes, the CDS and
RDS, which access a random replica, are not affected®. The performance of the CDS which
returns the optimal replica was degraded to 85%. The impact to Tapestry is negligible,
with overall performance reduced by only 2.2%. We also simulated the Tapestry-specific
node spoofing attack. The effects of the attack are displayed in Figure 3.9. The attack
affects 24% of the network.

3.4.3 Resiliency Ranking

How might we combine the results of previous sections into a single ranking? As
Denial of Service is multidimensional (Chapter 3.2.3), we might assign weights to different
types of attacks based on perceived severity or frequency. For instance, if we assign 80%
weight to flooding attacks and 10% each to two “corruption” attacks, we can roughly rank

3We assume that the directory server(s) are not routers or gateways.

26

Figure 3.9: Nodes accessing each replica of an attacked object. Neighbor table corruption
at the black square node renders all nodes enclosed by round-corner rectangles unable to
locate the object. Simulation of 100 nodes and 60 objects (15% hot).

the directory services as in Table 3.1. It is our future work to automate the weight generation
more systematically (Chapter 10.2).

Here we simulate all eight attacks in Figures 3.2, 3.3, 3.7 and 3.8 for all three types
of directory services and report a weighted sum of normalized throughputs. The weights
are assigned in proportion to the amounts of flood traffic and the normalization is based on
the corresponding directory service performance without attack; this will vary from system
to system, but does give an idea how these services differ in terms of DoS resilience.

From Table 3.1, RDS with the optimal directory server has the best resilience.
However, the optimal directory server requirement is not very realistic. Thus we choose
DDS, and in particular, Tapestry, for our location services. In the next chapter, we will

Directory services Flooding Corruption Node spoofing | Total score | Rank
attack (80%) | attack (10%) | attack (10%)

CDS, random replica 0.027 N/A N/A 0.2216 4

CDS, optimal replica 0.023 0.85 N/A 0.2034 5

RDS, random dir server 0.17 N/A N/A 0.336 3

RDS, optimal dir server 0.48 N/A N/A 0.584 1

DDS (Tapestry) 0.35 0.978 0.76 0.4538 2

Table 3.1: Attempting to rank the five different directory services. “N/A” means that the

attack is not applicable to the service, and we give it a score of 1.0.

27

discuss how to leverage Tapestry to dynamically place replicas and build application-level
multicast tree for update dissemination.

28

Chapter 4

Dynamic Replica Placement

As shown in Figure 1.2, replica placement is a key component of SCAN. According
to users’ requests, it dynamically places a minimal number of replicas while meeting client
QoS and server capacity constraints. The location services discussed in last chapter are
notified about the new replicas via Tapestry PUBLISHOBJECT API [137]. The replicas
are grouped into clusters to reduce the management overhead, and network-level adaptation
is enabled via overlay monitoring services (to be covered in the next few chapters).

In this chapter, we will study replica placement, and how these replicas are self-
organized into a application-level multicast tree (termed as dissemination tree, or d-tree)
with small delay and bandwidth consumption for update dissemination. The important
intuition here is that the presence of the DOLR (distributed overlay location and routing)
system enables simultaneous placement of replicas and construction of a d-tree without
contacting the data source. As a result, each node in a d-tree must maintain state only
for its parent and direct children. Simulation results on both flash-crowd-like synthetic
workloads and real Web server traces show that SCAN meets the the design goals.

For the rest of this chapter, we will first formulate the replica placement problem
in Chapter 4.1, then present our algorithms in Chapter 4.2, evaluation methodology in
Chapter 4.3 and evaluation results in Chapter 4.4.

4.1 Problem Formulation

There is a large design space for modelling Web replica placement as an opti-
mization problem and we describe it as follows. Consider a popular Web site or a CDN
hosting server, which aims to improve its performance by pushing its content to some host-
ing server nodes. The problem is to dynamically decide where content is to be replicated so
that some objective function is optimized under a dynamic traffic pattern and set of clients’
QoS and/or resource constraints. The objective function can either minimize clients’ QoS
metrics, such as latency, loss rate, throughput, efc., or minimize the replication cost of CDN
service providers, e.g., network bandwidth consumption, or an overall cost function if each
link is associated with a cost. For Web content delivery, the major resource consumption
in replication cost is the network access bandwidth at each Internet Data Center (IDC) to
the backbone network. Thus when given a Web object, the cost is linearly proportional to

29

the number of replicas.

As Qiu, et al. tried to minimize the total response latency of all the clients’
requests with the number of replicas as constraint [104], we tackle the replica placement
problem from another angle: minimize the number of replicas when meeting clients’ latency
constraints and servers’ capacity constraints. Here we assume that clients give reasonable
latency constraints as it can be negotiated through a service-level agreement (SLA) between
clients and CDN vendors. Thus we formulate the Web content placement problem as follows.
Given a network G with C clients and S server nodes, each client ¢; has its latency constraint
d;, and each server s; has its load/bandwidth/storage capacity constraint l;. The problem
is to find a smallest set of servers S’ such that the distance between any client ¢; and its
“parent” server s., € S’ is bounded by d;. More formally, find the minimum K, such that
there is a set S’ C S with |S'| = Kand V c € C, 3 s, € S such that distance(c, s.) < d.
Meanwhile, these clients C' and servers S’ self-organize into an application-level multicast
tree with C as leaves and V s; € S’, its fan-out degree (i.e., number of direct children)
satisfies f(s;) < ;.

4.2 Replica Placement Algorithms

The presence of an underlying DOLR with routing locality can be exploited to
perform simultaneous replica placement and tree construction. Every SCAN server is a
member of the DOLR. Hence, new replicas are published into the DOLR. Further, each
client directs its requests to its proxy SCAN server; this proxy server interacts with other
SCAN servers to deliver content to the client.

Although we use the DOLR to locate replicas during tree building, we otherwise
communicate through IP. In particular, we use IP between nodes in a d-tree — parents and
children keep track of one another. Further, when a client makes a request that results in
placement of a new replica, the client’s proxy keeps a cached pointer to this new replica.
This permits direct routing of requests from the proxy to the replica. Cached pointers are
soft state since we can always use the DOLR to locate replicas.

4.2.1 Goals for Replica Placement

Replica placement attempts to satisfy both client latency and server load con-
straints. Client latency refers to the round-trip time required for a client to read informa-
tion from the SCAN system. We keep this within a pre-specified limit. Server load refers to
the communication volume handled by a given server. We assume that the load is directly
related to the number of clients it handles and number of d-tree children it serves. We keep
the load below a specified maximum. Our goal is to meet these constraints while minimizing
the number of deployed replicas, keeping the d-tree balanced, and generating as little traffic
during update as possible. Our success will be explored in Chapter 4.4.

4.2.2 Dynamic Placement

Our dynamic placement algorithm proceeds in two phases: replica search and
replica placement. The replica search phase attempts to find an existing replica that meets

30

the client latency constraint without being overloaded. If this is successful, we place a link
in the client and cache it at the client’s proxy server. If not, we proceed to the replica
placement phase to place a new replica.

Replica search uses the DOLR to contact a replica “close” to the client proxy; call
this the entry replica. The locality property of the DOLR ensures that the entry replica is a
reasonable candidate to communicate with the client. Further, since the d-tree is connected,
the entry replica can contact all other replicas. We can thus imagine three search variants:
Singular (consider only the entry replica), Localized (consider the parent, children, and
siblings of the entry replica), and Ezhaustive (consider all replicas). For a given variant, we
check each of the included replicas and select one that meets our constraints; if none meet
the constraint, we proceed to place a new replica.

procedure DynamicReplicaPlacement_Naive(c, o)
1 c¢sends JOIN request to o through DOLR, reaches entry server s. Request
collects IPy, distoyeriay(c,s') and rey for each server s’ on the path.
2 if r¢; > 0 then
if distoyeriay (¢, s) < d. then s becomes parent of c, exit.

else
3 s pings ¢ to get distrp(c, s).
if dist;p(c, s) < d. then s becomes parent of ¢, exit.
end
end

5 At s, choose s’ on path with rcy > 0 and smallest distoyeriay(t,c) < de
if 7 such s' then
6 for each server s’ on the path, s collects dist;p(c,s’) and chooses s’

with rcg > 0 and smallest distrp(t,c) < d.
end

7 s puts a replica on s’ and becomes its parent, s’ becomes parent of c.
8 s’ publishes replica in DOLR, exit.

Algorithm 1: Naive Dynamic Replica Placement. Notation: Object o. Client ¢ with latency constraint
d.. Entry Server s. Every server s’ has remaining capacity rcy (additional children it can handle). The
overlay distance (distoyeriay(X,y)) and IP distance (dist;p(x,y)) are the round trip time (RTT) on overlay
network and IP network, separately.

We restrict replica placement to servers visited by the DOLR routing protocol when
sending a message from the client’s proxy to the entry replica. We can locate these servers
without knowledge of global IP topology. The locality properties of the DOLR suggest that
these are good places for replicas. We consider two placement strategies: Fager places the
replica as close to the client as possible and Lazy places the replica as far from the client as
possible. If all servers that meet the latency constraint are overloaded, we replace an old
replica; if the entry server is overloaded, we disconnect the oldest link among its d-trees.

31

procedure DynamicReplicaPlacement_Smart(c, o)
1 ¢ sends JOIN request to o through DOLR, reaches entry server s
2 From s, request forwarded to children (sc), parent (p), and siblings (ss)
3 Each family member ¢ with r¢; > 0 sends r¢; to ¢. ¢ measures dist;p(t, c)
through TCP three-way handshaking.
4 if 3 t and dist;p(t,c) < d. then
cchooses t as parent with biggest r¢; and dist;p(t,c) < d., exit.

else
6 ¢ sends PLACEMENT request to o through DOLR, reaches entry
server s
Request collects IPgy, distoyeriay(c,s’) and rcy for each server s’ on
the path.

7 At s, choose s' on path with reg > 0 and largest distoperiay(t, ¢) < de
if 3 such s’ then

8 for each server s’ on the path, s collects dist;p(c,s’) and chooses
s' with reg > 0 and largest distrp(t,c) < d,.
end
9 s puts a replica on s’ and becomes its parent, s’ becomes parent of c.
10 s’ publishes replica in DOLR, exit.
end

Algorithm 2: Smart Dynamic Replica Placement. Notation: Object o. Client ¢ with latency constraint
d.. Entry Server s. Every server s’ has remaining capacity rcy (additional children it can handle). The
overlay distance (distoyeriay(%,y)) and IP distance (dist;p(x,y)) are the round trip time (RTT) on overlay
network and IP network, separately.

32

Dynamic Techniques

We can now combine some of the above options for search and placement to gen-
erate dynamic replica management algorithms. Two options that we would like to highlight
are as follows.

e Naive Placement: A simple combination utilizes Singular search and Fager placement.
This heuristic generates minimal search and placement traffic.

e Smart Placement: A more sophisticated algorithm is shown in Algorithm 4. This
algorithm utilizes Localized search and Lazy placement.

Note that we try to use the overlay latency to estimate the IP latency in order
to save “ping” messages. Here the client can start a daemon program provided by its
CDN service provider when launching the browser so that it can actively participate in
the protocols. The locality property of Tapestry naturally leads to the locality of d-tree,
i.e., the parent and children tend to be close to each other in terms of the number of IP
hops between them. This provides good delay and multicast bandwidth consumption when
disseminating updates, as measured in Chapter 4.4. The tradeoff between the naive and
smart approaches is that the latter consumes more “join” traffic to construct a tree with
fewer replicas, covering more clients, with less delay and multicast bandwidth consumption.
We evaluate this tradeoff in Chapter 4.4.

Static Comparisons

The replica placement methods given above are unlikely to be optimal in terms
of the number of replicas deployed, since clients are added sequentially and with limited
knowledge of the network topology. In the static approach, the root server has complete
knowledge of the network and places replicas after getting all the requests from the clients.
In this scheme, updates are disseminated through IP multicast. Static placement is not
very realistic, but may provide better performance since it exploits knowledge of the client
distribution and global network topology.

The problem formulated in Chapter 4.1 can be converted to a special case of the
capacitated facility location problem [64] defined as follows. Given a set of locations i at
which facilities may be built, building a facility at location ¢ incurs a cost of f;. Each client
J must be assigned to one facility, incurring a cost of d;c;; where d; denotes the demand of
the node j, and ¢;; denotes the distance between 4 and j. Each facility can serve at most
l; clients. The objective is to find the number of facilities and their locations yielding the
minimum total cost.

To map the facility location problem to ours, we set f; always 1, and set c;; 0
if location 7 can cover client j or oo otherwise. The best approximation algorithm known
today uses the primal-dual schema and Lagrangian relaxation to achieve a guaranteed factor
of 4 [64]. However, this algorithm is too complicated for practical use. Instead, we designed
a greedy algorithm that has a logarithmic approximation ratio.

Besides the previous notations, we define the following variables: set of covered
clients by s: Cg, Cs C C and V ¢ € Cy, distrp(c, s) < d.; set of possible server parents for
client ¢: S., S C Sand V s € S, distrp(c, s) < d..

33

procedure ReplicaPlacement_Greedy_DistLoadBalancing(C', S)

input : Set of clients to be covered: C, total set of servers: S

output: Set of servers chosen for replica placement: S’

while C is not empty do
Choose s € S which has the largest value of min(cardinality |Cj|,
remaining capacity rcy)

s'=5'U {s}

S=25-{s}
if |Cs| < re¢g then C = C - C
else

Sort each element ¢ € Cy in increasing order of |S,|
Choose the first rcg clients in Cs as Cschosen

C=0C- CsChosen
end

recompute S, for V¢ € C
end

return S’.

Algorithm 3: Static Replica Placement with Load Balancing

We consider two types of static replica placement:
e [P Static: The root has global IP topology knowledge.

e Quverlay Static: For each client ¢, the root only knows the servers on the Tapestry
path from ¢ to the root which can cover that client (in IP distance).

The first of these is a “guaranteed-not-to-exceed” optimal placement. We expect
that it will consume the least total number of replicas and lowest multicast traffic. The
second algorithm explores the best that we could expect to achieve gathering all topology
information from the DOLR system.

4.2.3 Soft State Tree Management

Soft-state infrastructures have the potential to be extremely robust, precisely be-
cause they can be easily reconfigured to adapt to circumstances. For SCAN we target two
types of adaptation: fault recovery and performance tuning.

To achieve fault resilience, the data source sends periodic heartbeat messages
through the d-tree. Members know the frequency of these heartbeats and can react when
they have not seen one for a sufficiently long time. In such a situation, the replica initiates
a rejoin process — similar to the replica search phase above — to find a new parent. Further,
each member periodically sends a refresh message to its parent. If the parent does not get
the refresh message within a certain threshold, it invalidates the child’s entry. With such
soft-state group management, any SCAN server may crash without significantly affecting
overall CDN performance.

34

Performance tuning consists of pruning and re-balancing the d-tree. Replicas at
the leaves are pruned when they have seen insufficient client traffic. To balance the d-tree,
each member periodically rejoins the tree to find a new parent.

4.3 Evaluation Methodology

We implement an event-driven simulator for SCAN because ns2 [16] can only
scale up to one thousand nodes. This includes a packet-level network simulator (with a
static version of the Tapestry DOLR) and a replica management framework. The soft-state
replica layer is driven from simulated clients running workloads. Our methodology includes
evaluation metrics, network setup and workloads.

4.3.1 Metrics

Our goal is to evaluate the replica schemes of Chapter 4.2.2. These strategies are
dynamic naive placement (od_naive), dynamic smart placement (od_smart), overlay static
placement (overlay_s), and static placement on IP network (IP_s). We compare the efficacy
of these four schemes via three classes of metrics:

o Quality of Replica Placement: Includes number of deployed replicas and degree of
load distribution, measured by the ratio of the standard deviation vs. the mean of
the number of client children for each replica server.

e Multicast Performance: We measure the relative delay penalty (RDP) and the band-
width consumption which is computed by summing the number of bytes multiplied
by the transmission time over every link in the network. For example, the bandwidth
consumption for 1K bytes transmitted in two links (one has 10 ms, the other 20 ms
latency) is 1IKB x (10+20)ms = 0.03(KB.sec).

e Tree Construction Traffic: We count both the number of application-level messages
sent and the bandwidth consumption for deploying replicas and constructing d-tree.

In addition, we quantify the effectiveness of capacity constraints by computing the mazimal
load with or without constraints. The maximal load is defined as the maximal number of
client cache children on any SCAN server. Sensitivity analysis are carried out for various
client /server ratios and server densities.

4.3.2 Network Setup

We use the GT-ITM transit-stub model to generate five 5000-node topologies
[134]. The results are averaged over the experiments on the five topologies. A packet-level,
priority-queue based event manager is implemented to simulate the network latency. The
simulator models the propagation delay of physical links, but does not model bandwidth
limitations, queuing delays, or packet losses.

We utilize two strategies for placing SCAN servers. One selects all SCAN servers
at random (labelled random SCAN). The other preferentially chooses transit and gateway

35

Table 4.1: Statistics of Web site access logs used for simulation

Web site | Period # Requests # Clients | # Client groups | # Objects
total - simulated total - simulated | simulated

MSNBC | 10-11 am, 8/2/99 | 1604944 - 1377620 | 139890 16369 - 4000 4186

NASA All day, 7/1/95 64398 - 64398 5177 1842 - 1842 3258

nodes (labelled backbone SCAN). This latter approach mimics the strategy of placing SCAN
servers strategically in the network.

To compare with a DNS-redirection-based Web content distribution network (CDN),
we simulate typical behavior of such a system. We assume that every client request is redi-
rected to the closest CDN server, which will cache a copy of the requested information
for the client. This means that popular objects may be cached in every CDN server. We
assume that content servers are allowed to send updates to replicas via IP multicast.

4.3.3 Workloads

To evaluate the replication schemes, we use both a synthetic workload and access
logs collected from real Web servers. These workloads are a first step toward exploring more
general uses of SCAN.

Our synthetic workload is a simplified approximation of flash crowds. Flash crowds
are unpredictable, event-driven traffic surges that swamp servers and disrupt site services.
For our simulation, all the clients (not servers) make requests to a given hot object in
random order.

Our trace-driven simulation includes a large and popular commercial news site,
MSNBC [80], as well as traces from NASA Kennedy Space Center [81]. Table 4.1 shows
the detailed trace information. We use the access logs in the following way. We group the
Web clients based on BGP prefixes [67] using the BGP tables from a BBNPlanet (Genuity)
router [12]. For the NASA traces, since most entries in the traces contain host names, we
group the clients based on their domains, which we define as the last two parts of the host
names (e.g., al.bl.com and a2.bl.com belong to the same domain). Given the maximal
topology we can simulate is 5000 (limited by machine memory), we simulate all the clients
groups for NASA and 4000 top client groups (cover 86.1% of requests) for MSNBC. Since
the clients are unlikely to be on transit nodes nor on server nodes, we map them randomly
to the rest of nodes in the topology.

4.4 Evaluation Results

In this section, we evaluate the performance of the SCAN dynamic replica man-
agement algorithms. What we will show is that:

e For realistic workloads, SCAN places close to an optimal number of replicas, while pro-
viding good load balance, low delay, and reasonable update bandwidth consumption
relative to static replica placement on IP multicast.

e SCAN outperforms the existing DNS-redirection based CDNs on both replication and
update bandwidth consumption.

36

120

— O randorn SCAN 18 B random SCAN |—
100 3 14 B hackbone SCAN [
W backbone SCAN o171 —
a0 1 8 L
2
@08 1

I
=
|

[
[
!

06 1+
~
w04 1 :
02 1 .
0

Mumber of replicas deployed
o
]

Ratio of load standard deviation
s

fom
|

od_naive od_smart overlay s IP_s od_naive od_smart overlay s IP_s

Figure 4.1: Number of replicas deployed (left) and load distribution on selected servers
(right) (500 SCAN servers)

e The performance of SCAN is relatively insensitive to the SCAN server deployment,
client /server ratio, and server density.

e The capacity constraint is quite effective at balancing load.

We will first present results on synthetic workload, and then the results of real
Web traces.

4.4.1 Results for the Synthetic Workload

We start by examining the synthetic, flash crowd workload. 500 nodes are chosen
to be SCAN servers with either “random” or “backbone” approach. Remaining nodes are
clients and access some hot object in a random order. We randomly choose one non-transit
SCAN server to be the data source and set as 50KB the size of the hot object. Further, we
assume the latency constraint is 50ms and the load capacity is 200 clients/server.

Comparison Between Strategies

Figure 4.1 shows the number of replicas placed and the load distribution on these
servers. Od_smart approach uses only about 30% to 60% of the servers used by od_naive,
is even better than overlay_s, and is very close to the optimal case: IP_s. Also note that
od_smart has better load distribution than od_naive and owverlay_s, close to IP_s for both
random and backbone SCAN.

Relative Delay Penalty (RDP) is the ratio of the overlay delay between the root
and any member in d-tree vs. the unicast delay between them [32]. In Figure 4.2, od_smart
has better RDP than od_naive, and 85% of od_smart RDPs between any member server and
the root pairs are within 4. Figure 4.3 contrasts the bandwidth consumption of various
replica placement techniques with the optimal IP static placement. The results are very
encouraging: the bandwidth consumption of od_smart is quite close to IP_s and is much less
than that of od_naive.

The performance above is achieved at the cost of d-tree construction (Figure 4.4).
However, for both random and backbone SCAN, od_smart approach produces less than three
times of the messages of od_naive and less than six times of that for optimal case: IP_s.
Meanwhile, od_naive uses almost the same amount of bandwidth as IP_s while od_smart
uses about three to five times that of IP_s.

,,,,,,,,,

4
‘© 1
o *
g o9 i -
L A
g 08 i
2 o7t o
8 f
5 06 7
8 3(* 5
s 05| N
) £y
8 04 r *;‘
f= *
g 03} ‘.
I} T
S o02¢ g overlay_naive, random SCAN ———
2 overlay_smart, random SCAN
8 01 overlay_naive, backbone SCAN -
g o | overlay_smart, backbone SCAN —x
3 0 1 2 3 4 5
RDP

6

7

37

O Use overlay multicast

W Use IP multicast

random

od_naive, od_smart,

T T
IP_s, od_naive, od_smart IP_s,

random random backbone backbone backbone

Figure 4.2: Cumulative distribution of RDP Figure 4.3: Bandwidth consumption of 1MB
update multicast (500 SCAN servers)

(500 SCAN servers)

0 Erandom SCAN

| backbone SCAN [

20 +—7 :
” W
0 i

Number of messages for d-tree
construction (K)
(5N]
[

od_naive od_smart overlay_s

2500

sec)

2000
1500

1000

500

E random SCAN

| | mbackoone scan| |

Bandwidth cost for d-tree
construction (KB™

o

B

il

od_naive od smart overlay s

P s

Figure 4.4: Number of application-level messages (left) and total bandwidth consumed
(right) for d-tree construction (500 SCAN servers)

In short, the smart dynamic algorithm has performance that is close to the ideal
case (static placement with IP multicast). It places close to an optimal number of replicas,
provides better load distribution, and less delay and multicast bandwidth consumption than
the naive approach — at the price of three to five times as much tree construction traffic.
Since d-tree construction is a much less frequent than data access and update this is a good
tradeoff.

Due to the limited number and/or distribution of servers, there may exist some
clients who cannot be covered when facing the QoS and capacity requirements. In this case,
our algorithm can provide hints as where to place more servers. Note that experiments
show that the naive scheme has many more uncovered clients than the smart one, due to
the nature of its unbalanced load. Thus, we remove it from consideration for the rest of
synthetic workload study.

38

3000 4

& & 3500
£ 2500 /0— —e—od_smart, wiLB | 5 sp0n /._ —e— 0d_smart, wi LB
= 3
s 2000 —8— od_srmart, wio LB| % 2500 / —@— od_smart, wio LB
5 / g 2000
-‘E 1500 —— overlay_s, wi LB ﬁ / —f— overlay_s, wi LB
= = 1500
= / —sc—overlay_s,wioLB| £ / —w— overlay_s, wio LB
= 1000 = 1000
=2 / ——IP_s,wilB 2 ,6/ —#—IP_s,wi LB
*® 500 - » 500
) =
£ ﬁ —#—IP_s, wio LB E o —ﬁé : R , | —#—IP_s, wio LB

0 - 100 1000 4500

100 1000 4500 clients clients clients

clients clients clients

Figure 4.5: Maximal load measured with and without load balancing constraints (LB) for
various numbers of clients (left: 500 random servers, right: 500 backbone servers)

Comparison with a CDN

As an additional comparison, we contrast the overlay smart approach with a DNS-
redirection-based CDN. Compared with a traditional CDN, the overlay smart approach uses
a fraction of the number of replicas (6-8%) and less than 10% of bandwidth for disseminating
updates.

Effectiveness of Distributed Load Balancing

We study how the capacity constraint helps load balancing with three client pop-
ulations: 100, 1000 and 4500. The former two are randomly selected from 4500 clients.
Figure 4.5 shows that lack of capacity constraints (labelled w/o LB) leads to hot spot or
congestion: some servers will take on about 2-13 times their maximum load. Performance
with load balancing is labelled as w/ LB for contrast.

Performance Sensitivity to Client/Server Ratio

We further evaluate SCAN with the three client populations Figure 4.6 shows the
number of replicas deployed. When the number of clients is small, w/ LB and w/o LB do
not differ much because no server exceeds the constraint. The number of replicas required
for od_smart is consistently less than that of overlay_s and within the bound of 1.5 for IP_s.
As before, we also simulate other metrics, such as load distribution, delay and bandwidth
penalty for update multicast under various client/server ratios. The trends are similar, that
is, “od_smart” is always better than “overlay_s”, and very close to “IP_s”.

Performance Sensitivity to Server Density

Next, we increase the density of SCAN servers. We randomly choose 2500 out
of the 5000 nodes to be SCAN servers and measure the resulting performance. Obviously,
this configuration can support better QoS for clients and require less capacity for servers.
Hence, we set the latency constraint to be 30 ms and capacity constraint 50 clients/server.
The number of clients vary from 100 to 2500.

39

70 - 504
45 S
&0 ;}‘ —a— od_smart, w/ 4 —— od_smart, wf
b / LB @ / LB
L 50 —B—od_smart, wio | 2 35 —— od_smart, wi
E‘ 41 / LE I iLB & 0 /’ —a—lu_\?erlay 5, wilB
[= ;%— —— overlay_ s, w = 5,
s / V- S 25 / //>K
g /ﬁ/_//ﬁw ——ovetlay_s,wio | @ an M —><—E\éerlav_5.wfﬂ
LB
£ —s—|P_g, wi LB E 15 ——[P_s,wiLA
2 - N =
0 —#—IP_s, wio LB < —#—|P_s,wio LB
0 r .] n . .
100 clierts 1000 4500 100 cliertz 1000 4500
clients clients cients clients

Figure 4.6: Number of replicas deployed with and without load balancing constraints (LB)
for various numbers of clients (left: 500 random servers, right: 500 backbone servers)

(o)

3]

=
'

00 4

300 —— 0d_smart, wf &00
LB —e— od_smart, wi LB
250 —@— od_smatt, wio a00
LB />< —B— od_smart, wio LB
200 —— OWerlay_s, wi 400
LB / —— overlay_s, wi LB
300

—— Overlay_s, wio

150
IT:'EI /LA
o ?:,,__-Y —#—|P_s, wio LB 100 —#—|P_s,wio LB
u] T T 1

100 clients 500 clients 2500 clients

—— overlay_s, wio LB

Number of replicas deployed
max load (number of clients)

100 clients 500 clients 2500 cilerts

Figure 4.7: Number of replicas deployed (left) and maximal load (right) on 2500 random
SCAN servers with and without the load balancing constraint (LB)

With very dense SCAN servers, our od_smart still uses less replicas than overlay_s,
although they are quite close. IP_s only needs about half of the replicas, as in Figure 4.7. In
addition, we notice that the load balancing is still effective. That is, overloaded machines
or congestion cannot be avoided simply by adding more servers while neglecting careful
design.

In summary, od_smart performs well with various SCAN server deployments, var-
ious client/server ratios, and various server densities. The capacity constraint based dis-
tributed load balancing is effective.

4.4.2 Results for Web Traces Workload

Next, we explore the behavior of SCAN for Web traces with documents of widely
varying popularity. Figure 4.8.a characterizes the request distribution for the two traces
used (note that the z-axis is logarithmic.). This figure reveals that the request number for
different URLs is quite unevenly distributed for both traces.

For each URL in the traces, we compute the number of replicas generated with
od_naive, od_smart, and IP_s. Then we normalize the replica numbers of od_naive and

Percentage of requests covered

40

100 2 100
90 | fo% 9 r]
80 | = 807]
70 | 5 0 1
60 |- % 60 1
50 t S 50 1
o
40 | S a0t + 1
o
0 - o 30 1
20l 2 20 | od_naive, NASA traces |
g od_smart, NASA traces
10 | s NAsAataces 1 E 10} 1 od_naive, MSNBC traces -+ |
0 , 81299 MSNBC traces ——— 3 od_smart, MSNBC traces -
1 10 100 10000 O 1 10

Number of top URLS picked Number of replicas deployed normalized by that of IP_s

Figure 4.8: Simulation with NASA and MSNBC traces on 100 backbone SCAN servers.
(a) Percentage of requests covered by different number of top URLs (left); (b) the CDF of
replica number deployed with od_naive and od_smart normalized by the number of replicas
using I P_s (right)

od_smart by dividing them with the replica number of IP_s. We plot the CDF of such ratios
for both NASA and MSNBC in Figure 4.8.b. The lower percentage part of the CDF curves
are overlapped and close to 1. The reasons are most of the URLs have very few requests,
and we only simulate a limited period, thus the number of replicas deployed by the three
methods are very small and similar. However, od_smart and od_naive differ significantly for
popular objects, exhibited in the higher percentage part. Od_smart is very close to IP_s,
for all objects, the ratio is less than 2.7 for NASA and 4.1 for MSNBC, while the ratio for
od_naive can go as high as 5.0 and 15.0, respectively.

In addition, we contrast the bandwidth consumption for disseminating updates.
Given an update of unit size, for each URL, we compute the bandwidth consumed by using
(1) overlay multicast on an od_naive tree, (2) overlay multicast on an od_smart tree, and
(3) IP multicast on an I P_s tree. Again, we have metric (1) and (2) normalized by (3), and
plot the CDF of the ratios. The curves are quite similar to Figure 4.8.b.

In conclusion, although od_smart and od_naive perform similarly for infrequent
or cold objects, od_smart outperforms dramatically over od_naive for hot objects which
dominate overall requests.

4.4.3 Discussion

How does the distortion of topology through Tapestry affect replica placement?
Notice that the overlay distance through Tapestry, on average, is about 2-3 times more
than the IP distance. Our simulations in Chapter 4.4, shed some light on the resulting
penalty: Overlay_s applies exactly the same algorithm as IP_s for replica placement, but
uses the static Tapestry-level topology instead of IP-level topology. Simulation results show
that overlay_s places 1.5 - 2 times more replicas than I P;. For similar reasons, od_smart
outperforms overlay_s. The reason is that od_smart uses “ping” messages to get the real
IP distance between clients and servers. This observation also explains why od_smart gets

41

similar performance to IP_s. One could imagine scaling overlay latency by an expected
“stretch” factor to estimate real IP distance — thereby reducing ping probe traffic.

So far, we have discussed how to deploy, locate and maintain the coherence of
the replicas. In the next chapter, we will cluster the contents to reduce the replica index
management overhead without sacrificing the performance.

42

Chapter 5

Scalable Replica Management
using Content Clustering

5.1 Introduction

In the previous chapters, we examined scalable replica locations and dynamic
replica placement. As mentioned in Chapter 1, there are more than 3.3 billion Web pages [55]
and a daily growth of 7 million pages [95]. Thus to manage the content replicas for such
a gigantic scale remains a big challenge. In this chapter, we address the management
overhead issues via content clustering. In other words, we focus on an orthogonal issue in
Web replication: what content is to be replicated, and in what granularity.

We start by analyzing several access traces from large commercial and government
Web servers. Our analysis shows that 10% of hot data can cover over 80% of requests, and
this coverage can last for at least a week in all the traces under study. This suggests that
it is cost effective to replicate only the hot data and leave the cold data at the origin Web
server.

Then we compare the traditional un-cooperative pulling (Chapter 2.2) vs. cooper-
ative pushing (Chapter 2.3). Simulations on a variety of network topologies using real Web
traces show that the latter scheme can yield similar clients’ latency with only about 4-5%
of the replication and update cost compared to the former scheme.

Motivated by this observation, we explore how to efficiently push content to CDN
nodes. Our study is based on cooperative-push based CDN, but the technique is also
applicable to SCAN.

We compare the performance between per Web site-based replication (hot data
only) versus per hot URL-based replication. We find per URL-based scheme yields a 60-70%
reduction in clients’ latency. However, it is very expensive to perform such a fine-grained
replication: it takes 102 hours to come up with the replication strategy for 10 replicas per
URL on a PII-400 server. This is clearly not acceptable in practice.

To address the issue, we propose several clustering algorithms that group Web
content based on their correlation, and replicate objects in units of content clusters (i.e.,
all the objects in the same cluster are replicated together). We evaluate the performance
of cluster-based replication by simulating their behavior on a variety of network topologies

43

Web Site Period Duration # Requests # Clients # Client Groups
avg - min - max avg - min - max avg - min - max
MSNBC 8/99-10/99 | 10 am-11 am | 1.5M - 642K - 1.7M | 129K - 69K - 150K | 15.6K - 10K - 17K
NASA 7/95 - 8/95 All day 79K - 61K - 101K 5940 - 4781 - 7671 | 2378 - 1784 - 3011
WorldCup | 5/98 - 7/98 All day 29M - 1M - 73M 103K - 13K - 218K | N/A
Table 5.1: Access logs used.

using the real traces. Our results show that the cluster-based replication schemes yield
performance close to that of the URL-based scheme, but only at 1% - 2% of computation
and management cost (The management cost includes communication overhead and the
cost of keeping track of where content has been replicated). For instance, the computation
time for 10 replicas per URL with 20 clusters is only 2.5 hours under the same platform.

Finally, as the users’ access pattern changes over time, it is important to adapt
content clusters to such changes. Simulations show that clustering and replicating content
based on old access pattern does not work well beyond one week; on the other hand,
complete re-clustering and re-distribution, though achieves good performance, has large
overhead. To address the issue, we explore incremental clustering that adaptively add new
documents to the existing content clusters. We examine both offline and online incremental
clustering, where the former assumes access history is available while the latter predicts
access pattern based on hyperlink structure. Our results show that the offline clustering
yields close to the performance of the complete re-clustering with much lower overhead.
The online incremental clustering and replication reduce the retrieval cost by 4.6 times
compared with random replication, and by 8 times compared with no replication. So it is
very useful to improve document availability during flash crowds.

The rest of the chapter is organized as follows. We describe our simulation method-
ology in Chapter 5.2, and study the temporal stability of popular documents in Chapter 5.3.
In Chapter 5.4, we compare the performance of the pull-based vs. push-based replication.
We formulate the push-based content placement problem in Chapter 5.5, and compare the
Web site-based replication and the URL-based replication using trace-driven simulation in
Chapter 5.6. We describe content clustering techniques for efficient replication in Chap-
ter 5.7, and evaluate their performance in Chapter 5.8. In Chapter 5.9, we examine offline
and online incremental clustering that take into account of changes in users’ access pattern.
Finally we conclude in Chapter 5.10.

5.2 Simulation Methodology

Throughout the chapter, we use trace-driven simulations to evaluate the perfor-
mance of various schemes. In this section, we describe the network topologies and Web
traces we use for evaluation.

5.2.1 Network Topology

In our simulations, we use three random network topologies generated from the
GT-ITM internetwork topology generator [134]: pure random, Waxman, and Transit-Stub.

44

30

Percentage of requests generated

20 ¥
10| 7/1/95 NASA ——
o . . . @/2/99 MSNBC —
0 2000 4000 6000 8000 10000 12000 14000 16000
Number of client groups

Figure 5.1: The CDF of the number of requests generated by the Web client groups defined
by BGP prefixes for the MSNBC traces, and by domains for the NASA traces.

In the pure random model, nodes are randomly assigned to locations on a plane, with a
uniform probability p of an edge added between a pair of nodes. The Waxman model also
places nodes randomly, but creates an edge between a pair of node u and v with probability
P(u,v) = ae=4PL) where d = | — |, L is the maximum Euclidean distance between any
two vertices, and a > 0 and # < 1. The Transit-Stub model generates network topologies
composed of interconnected transit and stub domains, and better reflects the hierarchical
structure of real networks. We further experiment with various parameters in every topology
model.

In addition to using synthetic topologies, we also construct an AS-level Internet
topology using BGP routing data collected from a set of seven geographically-dispersed
BGP peers in April 2000 [63]. Each BGP routing table entry specifies an AS path, ASq,
ASs, ..., AS,, etc., to a destination address prefix block. We construct a graph using the AS
paths, where individual clients and address prefix blocks are mapped to their corresponding
AS nodes in the graph, and every AS pair has an edge with the weight being the shortest AS
hop count between them. While not very detailed, an AS-level topology at least partially
reflects the true topology of the Internet.

5.2.2 Web Workload

In our evaluation, we use the access logs collected at the MSNBC server site [80],
as shown in Table 5.1. MSNBC is a popular news site that is consistently ranked among
the busiest sites in the Web [75]. For diversity, we also use the traces collected at NASA
Kennedy Space Center in Florida [81] during 1995 and the World Cup Web site in 1998 [8§].
Table 5.1 shows the detailed trace information. The number of client groups is unavailable
in the WorldCup traces because it anonymizes the clients’ Internet Protocol (IP) addresses.
As a result, we are unable to group clients to study their aggregated behavior for clustering.
So we only use it to analyze stability of document popularity.

Both the NASA and WorldCup traces contain accesses to images and HTML
content. For administrative reasons, MSNBC traces only record accesses to HTML content.

We use the access logs in the following way. When using the AS-level topology, we
group clients in the traces based on their AS numbers. When using random topologies, we

45

group the Web clients based on BGP prefixes [67] using the BGP tables from a BBNPlanet
(Genuity) router [12]. For the NASA traces, since most entries in the traces contain host
names, we group the clients based on their domains, which we define as the last two parts
of the host names (e.g., al.bl.com and a2.bl.com belong to the same domain). Figure 5.1
plots the CDF of the number of requests generated by Web client groups. As we can see,
in August 2, 1999 MSNBC traces, the top 10, 100, 1000, 3000 groups account for 18.58%,
33.40%, 62.01%, and 81.26% of requests, respectively; in July 1, 1995 NASA traces, the top
10, 100, 1000 groups account for 25.41%, 48.02%, and 91.73% of requests, respectively.

We choose top 1000 client groups in the traces since they cover most of the requests
(62-92%) and map them to 1000 nodes in the random topologies. Assigning a group C; to
a node P; in the graph means that the weight of the node P; is equal to the number of
requests generated by the group C;.

In our simulations, we assume that replicas can be placed on any node, where a
node represents a popular IP cluster in the MSNBC traces, or a popular domain in the
NASA traces. Given the rapid growth of CDN service providers, such as Akamai (which
already has more than 15,000 servers in about 1,100 networks around the world [4]), we
believe this is a realistic assumption. Moreover, for any URL, the first replica is always at
the origin Web server (a randomly selected node), as in [71, 104]. However, including or
excluding the original server as a replica is not a fundamental choice and has little impact
on our results.

5.2.3 Performance Metric

We use the average retrieval cost as our performance metric, where the retrieval
cost of a Web request is the sum of the costs of all edges along the path from the source
to the replica from which the content is downloaded. In the synthetic topologies, the edge
costs are generated by the Georgia Tech Internetwork Topology Models (GT-ITM) [134].
In the AS-level Internet topology, the edge costs are all 1, so the average retrieval cost
represents the average number of AS hops that a request traverses.

5.3 Stability of Hot Data

20000 MSNBC traces

18000

2500 NASA traces 16000 World Cup traces 16000

14000 14000

o £12000
4

12000 8
»
1500 -t T 210000 Stoooo
[* 8000

=] i 8000
31000 5000 6000

4000 4000
2000 2000

500

3

07/01 07/02 07/03 07/04 07/05 07/06 07/07 06/29 06/30 07/0L 07/02 07/03 8/1 82 83 84 85 86 87 88 89 810 811

Date Date Date

Figure 5.2: The number of URLs accessed in NASA, WorldCup, and MSNBC daily traces.

(a) 7 days of NASA traces

100

Percentage of requests covered

Percentage of requests covered

46

60

40

20

_wz‘accesses covered for 7/1/95 itself ——
. accesses covered for 7/2/95 ----x---
accesses covered for 7/3/95 -
accesses covered for 7/4/95 &
accesses covered for 7/5/95 ---=--
accesses covered for 7/6/95 ---e--
accesses covered for 7/7/95 -~

10 100 1000

Number of top documents picked

120 T T
accesses covered for 6/29/98 itself ——
accesses covered for 6/30/98 ----x---
accesses covered for 7/1/98 -
100 r accesses covered for 7/2/98 & !
accesses covered for 7/3/98 --=-
80 - - i
< ¥
60 - R
40 - R
20 q
g T e
0
1 10 100 1000

Number of top documents picked

(b) 5 days of WorldCup Traces

100
80 -
Q
k]
i}
3 60 _,, 1
< !
° i
o i
8)
§ 40 + ,
o s
[
Q 7/1/95 vs 7/2/95 —+—
7/1/195 vs 7/3/95 -
20 1 7/1/95 Vs 7/4/95 -]
7/1/95 vs 7/5/95 @
7/1/95 vs 7/6/95 ---a---
0 ‘ 7/1/95 vs 7/7/95 --o--
1 10 100 1000
Number of top documents picked
100
\
\
80
g \
o \
3 60 \
S
Q
(=)
8
S 40
o
2
20r 6/29/98 vs 6/30/98 —— |
6/29/98 Vs 7/1/98 ----x---
6/29/98 vs 7/2/98 -x--
0 ‘ 6/29/98 vs 7/3/98 o
1 10 100 1000
Number of top documents picked
100]
so| |
e | |
% [
3 60 |
o /
g /
g 4O |
5 /
o
20 [8/2/99 vs 8/3/99
/ 8/2/99 vs 8/4/99 -
8/2/99 vs 8/5/99 ke
| 8/2/99 vs 8/10/99 a
0 ‘ 8/2/99 vs 8/11/99 e
1 10 100 1000

Number of top documents picked

Percentage of requests covered

100
80
60 -
40 -
“accesses covered for 8/2/99 itself —
20 accesses covered for 8/3/99 e
accesses covered for 8/4/99 e
accesses covered for 8/5/99 o
accesses covered for 8/10/99 o
0 accesses covered for 8/11/99 B
1 10 100 1000

Number of top documents picked

(c) 6 days of MSNBC traces

Figure 5.3: Hot Web page stability of popularity ranking (left column), and stability of
access request coverage (right column) with daily intervals.

47

NASA traces 16000 Waorld Cup traces
2500
14000 +
2000 12000 A
2]
E:H.SOO N IS S) - élOOOO B
=) 000 1 5 S e e [
3 3 6000
500 4000 -
2000 -
0 0
07/01 08/01 08/31
05/01 05/31 06/30 07/26
Date Date
(a) The number of URLs accessed.
100 T T 100 T T
80 q 80 q
g PR g
= X % =
o 7 o o
3 60} e — 3 60} —
= Henod =
o 5\ o * *
) X) A
D \ D B
g 8 B R
S 40t % 1 S 40t oo e
g b g * S)
g) g S P
20 + , 20 t ,*f —
5/1/98 vs 5/31/98 ——
7/1/95 vs 8/1/95 —+— /5/1/98 vs 6/30/98 —-—-
0) 7/1/95 vs 8/31/95 ----x--- 0) s 5/1/9§ VS 7/26/98 %
1 10 100 1000 1 10 100 1000
Number of top documents picked Number of top documents picked
(b) Hot Web page stability of popularity ranking.
100 100 ; —
accesses covered for 5/1/98 itself ——
accesses covered for 5/31/98 -------
accesses covered for 6/30/98 -
g 80 | g 80 b accesses covered for 7/26/98 & ot
g g o
3 8
2 2 il
o 60 r o 60 r p R
3 g
g g /(
‘S k] xx
o 40 o 40 /A o
g 2
£ € -
S 20 / g 20¢ i 1
_x-xx¥ accesses covered for 7/1/95 itself —— xBomaBs
o accesses covered for 8/1/95 ——x— T
accesses covered for 8/31/95 - K xns a
0 I 0 i {54 1 1
1 10 100 1000 1 10 100 1000

Number of top documents picked

Number of top documents picked

(c) Hot Web page stability of access request coverage.

Figure 5.4: Number of URLs and hot Web page statistics for NASA (left column) and
WorldCup (right column) with monthly intervals.

48

Many studies report that Web accesses follow the Zipf-like distribution [15], which
are also exhibited by our traces. This indicates that there is large variation in the number
of requests received by different Web pages, and it is important to focus on popular pages
when doing replication. For replicating popular pages to be an effective approach, the
popularity of the pages needs to be stable. In this section, we investigate this issue.

We analyze the stability of Web pages using the following two metrics: (i) the
stability of Web page popularity rankings, as used in [94], and (ii) the stability of request
coverage from (previous) popular Web pages. The latter is an important metric to quantify
the efficiency of pre-fetching/pushing of hot Web data. One of our interesting findings is
that while the popularity ranking may fluctuate, the request coverage still remains stable.

We study the stability of both metrics in various time scales: within a month, a
day, an hour, a minute, and a second. They show similar patterns, so we only present the
results for the daily and monthly scale. Figures 5.2 and 5.4(a) show the number of unique
URLs in the traces. Figures 5.3 and 5.4 show the stability results for the time gap of a
few days and one month, respectively. In all the graphs on the top of Figures 5.3 and 5.4,
the z axis is the number of most popular documents picked from each day, and the y axis
is the percentage of overlap between the documents picked from the two days. As we can
see, the overlap is mostly over 60%, which indicates many documents are popular on both
days. On the other hand, for the WorldCup site, which is event-driven and frequently has
new content added, the overlap sometimes drops to 40%.

A natural question arises: whether the old hot documents can continue to cover
a majority of requests as time evolves. The graphs of Figures 5.3 and 5.4 shed light on
this. Here we pick the hot documents from the first day, and plot the percentage of requests
covered by these documents for the first day itself and for the following days. As we can see,
the request coverage remains quite stable. The top 10% of objects on one day can continue
to cover over 80% requests for at least the subsequent week. We also find that the stability
of content varies across different Web sites. For example, the stability period of WorldCup
site is around a week, while the top 10% objects at the NASA site can continue to cover
the majority of requests for two months.

Based on the above observations, we conclude that when performing replica place-
ment, we only need to consider the top few URLs (e.g., 10%), as they account for most
of the requests. Furthermore, since the request coverage of these top URLs remains stable
for a long period (at least a week), it is reasonable to replicate based on previous access
patterns, and change the provision infrequently. This helps to reduce the cost of replication,
computation, and management. We will examine this issue further in Chapter 5.9.

5.4 Replication Methods: Un-cooperative Pulling vs. Coop-
erative Pushing

As mentioned before, for simplicity, our scalable replica management study is based
on cooperative push-based CDNs, another emerging paradigm shift from the conventional
CDNs. In this section, we compare the performance between the un-cooperative pulling
versus cooperative pushing (see Chapters 2.2 and 2.3) using trace-driven simulation as
follows.

49

We apply the MSNBC trace during 10am - 1lam of 8/2/1999 to a transit-stub
topology. We choose the top 1000 URLs and top 1000 client groups with 964466 requests in
total. In our evaluation, we assume that there is a CDN node located in every client group.
In the un-cooperative pulling, we assume that a request is always redirected to the client’s
local CDN node and the latency between the client and its local CDN node is negligible
(i.e., latencies incurred at step 5 and 8 shown in Figures 2.1 and 2.2 are zero.), since they
both belong to the same client group. In the cooperative push-based scheme, we replicate
content in units of URLs to achieve similar clients’ latency. Requests are directed to the
closest replicas. (If the content is not replicated, the request goes to the origin server.) The
details of replication algorithm will be explained in Chapter 5.6. As shown in Figures 2.1
and 2.2, the resolution steps (1-4) to locate a CDN node are the same for both schemes.
Therefore we only need to compare the time for the “GET” request (steps 5-8 in Figures 2.1
and 2.2).

Our results show that the un-cooperative pulling out-sources 121016 URL replicas
(with a total size of 470.3MB) to achieve an average round trip time (RTT) of 79.2ms, where
the URL replica is the total number of times URLSs being replicated (e.g., U RL; replicated
3 times, and U RLs replicated 5 times, then the replication cost is 8 URL replicas). In com-
parison, the cooperative push-based scheme (per URL) distributes only 5000 URL replicas
(with a total size of 18.5MB) to achieve a comparable average latency (i.e., 77.9ms) *.

We also use the same access logs along with the corresponding modification logs
to compare the cost of pushing updates to the replicas to maintain consistency. In our
experiment, whenever a URL is modified, the Web server must notify all the nodes that
contain the URL. Because the update size is unavailable in the trace, we use the total number
of messages sent as our performance metric. With 11,509 update events in 8/2/1999, the un-
cooperative pulling uses 1349655 messages (about 1.3GB if we assume average update size
is 1KB), while the cooperative per-URL based pushing only uses 54564 messages (53.3MB),
about 4% update traffic, to achieve comparable user latency.

The results above show that cooperative pushing yields much lower traffic, com-
pared to the traditional un-cooperative pulling, which is currently in commercial use. The
main reason for the traffic savings is that in the cooperative scheme, Web pages are strate-
gically placed at selected locations, and a client’s request is directed to the closest CDN
node that contains the requested objects, while in the un-cooperative scheme, requests
are directed to the closest CDN node that may or may not contain the requested objects.
Therefore, while the analysis is based on one-hour trace, the performance benefit of cooper-
ative pushing does not reduce over a longer period of time due to content modification and
creation. Of course, the performance benefit of the cooperative push-based scheme comes
at the cost of maintaining content directory information. However this cost is adjustable
by changing the granularity of content clusters as shown in Chapter 5.7.

Another advantage of the cooperative scheme is the ability to smoothly trade off
management and replication cost for better client performance due to the combination of
informed request redirection and content clustering (Chapter 5.7). In comparison, in the

'Here we compare the number of URL replicas under two schemes. But these replicas are not generated
within an hour (10-11am) because many of these URLs are old and have been requested earlier. See the
stability of hot content in Chapter 5.3.

50

uncooperative scheme, requests can be satisfied either at a local replica or at the origin
Web server, but not at a nearby replica due to lack of informed request redirection. As a
result, the uncooperative scheme does not have much flexibility in adjusting replication and
management cost.

Furthermore, for newly created content that has not been accessed, cooperative
pushing is the only way to improve its availability and performance. We will study such
performance benefits in Chapter 5.9.2.

Motivated by the observations, in the remainder of the chapter we explore how to
effectively push content to CDN nodes.

5.5 Problem Formulation

We describe the Web content placement problem as follows. Consider a popular
Web site or a CDN hosting server, which aims to improve its performance by pushing its
content to some hosting server nodes. The problem is to decide what content is to be
replicated and where to place the replicas so that some objective function is optimized
under a given traffic pattern and a set of resource constraints. The objective function can
minimize either clients’ latency, or loss rate, or total bandwidth consumption, or an overall
cost function if each link is associated with a cost.

For Web content delivery, the major constraint in replication is the network access
bandwidth at each Internet Data Center (IDC) to the backbone network. Moreover, replica-
tion is not a one-time cost. Once a page is replicated, we need to spend additional resources
to keep it consistent. Depending on the update and access rate, the cost of keeping replicas
consistent can be high.

Based on the above observations, we formulate the Web content placement problem
as follows. Given a set of URLs U and a set of locations L to which the URLs can be
replicated, replicating a URL incurs a replication cost. A client j fetching a URL u from
the ith replica of u located at [,,(;) incurs a cost of Cjalu(i)’ where Cjzlu(i) denotes the distance
between j and [,(;. Depending on the metric we want to optimize, the distance between
two nodes can reflect either the latency, or loss rate, or total bandwidth consumption or
link cost. The problem is to find a replication strategy (i.e., for each URL u, we decide the
set of locations [,; to which u is replicated) such that it minimizes

> (D (minie r,Cju,,)

JECL uel;

subject to the constraint that the total replication cost is bounded by R, where C'L is the
set of clients, U; is the set of URLs requested by the j-th client, R, is the set of locations to

which URL v has been replicated. (The total replication cost is either) . |u| assuming
the replication cost of all URLs is the same, or), ;|u| * f(u) to take into account of
different URL sizes, where |u| is the number of different locations to which u is replicated,
f(u) is the size of URL u.)

51

5.6 Replica Placement: Per Web Site vs. Per URL

In this section, we examine if replication at a fine granularity can help to improve
the performance for push-based scheme. One natural question arises: is it possible to
replicate a modern Web site only partially? There are about 40% of HTTP requests to
which the reply are generated dynamically and thus uncacheable [49]. However, the rest
of requests can still be satisfied with partial cache. Many current CDN operators, such as
Akamai [4], only cache individual URL based on clients’ demand [41].

Our performance metric is the total latency incurred for all the clients to fetch
their requested documents, as recorded in the traces. We compare the performance of
replicating all the hot data at a Web site as one unit (i.e., per Web site-based replication,
see Algorithm 4) versus replicating content in units of individual URLs (i.e., per URL-based
replication, see Algorithm 5). For simplicity, we assume that all URLSs are of the same size.
The non-uniform nature of size distribution actually has little effect on the results as shown
in Chapter 5.8.2.

For both algorithms below, totalU RL is the number of distinct URLs at the Web
site to be replicated, currRepCost is the current number of URL replicas deployed, and
mazRepCost is the total number of URL replicas that can be deployed.

procedure GreedyPlacement_Site(maxRepCost, totalU RL)
Initially, all the URLs reside at the origin Web server, curr RepCost =
totalURL

2 while currRepCost < maxzRepCost do

[

3 foreach node i without the Web site replica do
4 Compute the clients’ total latency reduction if the Web site is
replicated to ¢ (denoted as gain,)
end
5 Choose node j with maximal gain; and replicate the Web site to j

6 currRepCost + = totalURL
end

Algorithm 4: Greedy Replica Placement (Per Web site)

When replicating content in units of URLs, not all URLs have the same number of
replicas. Given a fixed replication cost, we give a higher priority to URLs that yield more
improvement in performance. Algorithm 5 uses a greedy approach to achieve it: at each
step, we choose the < object, location > pair that gives the largest performance gain.

We will compare the computational cost of the two algorithms with clustering-
based approach in Chapter 5.7. Figure 5.5 shows the performance gap between per Web
site-based replication and per URL-based replication. The first replica is always at the origin
Web server for both schemes, as described in Chapter 5.2. In our simulation, we choose
top 1000 URLs from August 2, 1999 MSNBC traces, covering 95% of requests, or top 300
URLs from July 1, 1995 NASA traces, covering 91% of requests. For the MSNBC traces,
per URL-based replication can consistently yield a 60-70% reduction in clients’ latency; for
the NASA traces, the improvement is 30-40%. The larger improvement in the MSNBC
traces is likely due to the fact that requests in the MSNBC traces are more concentrated

52

procedure GreedyPlacement_URL(mazRepCost, totalU RL)
1 Initially, all the URLSs reside at the origin Web server, curr RepCost =
totalURL
2 foreach URL u do
foreach node i do
Compute the clients’ total latency reduction for accessing u if u is
replicated to i (denoted as gain,,)

end
5 Choose node j with maximal gain,;, best_site, = j and maz_gain,
= gainy,
end
6 while currRepCost < maxRepCost do
7 Choose URL v with maximal maz_gain,, replicate v to best_site,
8 Repeat steps 3, 4 and 5 for v
9 curr RepCost + +
end
Algorithm 5: Greedy Replica Placement (Per URL)
300 —_— 1200 —
\ Replicate per Web site —+— Replicate per Web site —+—
250 Replicate per URL -~ Replicate per URL -
B ' B
[] 4 o
3] | o
< 200 <
> >
k3 ! k3
§ 0| | 8
(] “‘. (0]
=) 4 o
g 100 | <
: X. -
z S z
50 7 Kerooeeg
A S SV
0 — 0 —
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 10
Average number of replicas per URL Average number of replicas per URL

Figure 5.5: Performance of the per Web site-based replication vs. the per URL-based
replication for August 2, 1999 MSNBC traces on a transit-stub topology (left) and July 1,

1995 NASA traces on a pure random topology (right).

53

on a small number of pages, as reported in [94]. As a result, replicating the very hot data
to more locations, which is allowed in per URL-based scheme, is more beneficial.

One simple improvement to per Web-site based replication is to limit the set of
URLs to be replicated to only the most popular ones. However it is crucial to determine the
number of hot URLs to be replicated based on their popularity. This is essentially a simple
variant of the popularity-based clustering discussed in Chapter 5.7.2, except that there are
two clusters, and only the hot one is replicated. We found that once the optimum size of hot
URL set is available, it can achieve the performance close to that of the popularity-based
clustering. However, the greedy algorithm for choosing replica locations of the hot URL set
(Algorithm 4) is still important, and much better than simply distributing the small set of
hot URLs across all client groups. Simulations show that under the same replication cost,
its average retrieval cost can be 2 - 5 times that of per URL based replication (Algorithm 5).

5.7 Clustering Web Content

In the previous section, we have shown that a fine-grained replication scheme can
reduce clients’ latency by up to 60-70%. However since there are thousands of hot objects
that need to be replicated, searching over all the possible < object, location > combinations
is prohibitive. In our simulations, it takes 102 hours to come up with a replication strategy
for 10 replicas per URL on a PII-400 low end server. This approach is too expensive
for practical use even using high end servers. To achieve the benefit of the fine-grained
replication at reasonable computation and management cost, in this section, we investigate
clustering Web content based on their access pattern, and replicate content in units of
clusters.

At a high level, clustering enables us to smoothly tradeoff the computation and
management cost for better clients’ performance. Per URL-based replication is one extreme
of clustering: create a cluster for each URL. It can achieve good performance at the cost
of high management overhead. In comparison, per Web site-based replication is another
extreme: one cluster for each Web site. While it is easy to manage, its performance is
much worse than the former approach, as shown in Chapter 5.6. We can smoothly tradeoff
between the two by adjusting the number of clusters. This provides more flexibility and
choices in CDN replication. Depending on the CDN provider’s need, it can choose whichever
operating point it finds appropriate.

Below we quantify how clustering helps to reduce computation and management
cost. The notations are in Table 5.2. Suppose there are N objects, and M (roughly
N/10) hot objects to be put into K clusters (K < M). Assume on average there are
R replicas/URL that can be distributed to S CDN servers to serve C' clients. In the per
cluster-based replication, we not only record where each cluster is stored, but also keep track
of the cluster to which each URL belongs. Note that even when R approaches hundreds
and M approaches tens of thousands, it is quite trivial to store all the information. The
storage cost of per URL based replication is also manageable.

On the other hand, the computation cost of the replication schemes is much higher,
and becomes an important factor that determines the feasibility of the schemes in practice.
The computational complexities of Algorithm 4 and Algorithm 5 are O(RSC) [104] and

54

Symbols | Meanings

N number of objects

M number of hot objects

K number of clusters

R number of replicas per URL

S number of CDN servers

C number of clients

Ip placement adaptation frequency
fe clustering frequency

Table 5.2: Table of notations

Replication Scheme | States to Maintain | Computation Cost

Per Web Site O(R) fp x O(RSC)

Per Cluster O(RK + M) fp x O(KR x (K + SC)) + fe x O(MK)
Per URL O(RM) fp x OMR x (M + SC))

Table 5.3: Management overhead comparison for replication at different granularities, where
K< M.

O(MR x (M + SC)), respectively. In Algorithm 5, there are M R iterations and for each
we have to choose the < object, location > pair which will give the most performance gain
from M candidates. After that, the next best location for that object and its cost gain
need to be updated with O(SC) computation cost. Similarly, the complexity of the cluster-
based replication algorithm is O(KR x (K + SC)). There is an additional clustering cost,
which varies with the clustering algorithm that is used. Assuming the placement adaptation
frequency is f, and the clustering frequency is f., Table 5.3 summarizes the management
cost for the various replication schemes. As we will show in Chapter 5.9, the content clusters
remain stable for at least one week. Therefore f. is small, and the computational cost of
clustering is negligible compared to the cost of the replication.

One possible clustering scheme is to group URLs based on their directories. While
simple, this approach may not capture correlations between URLs’ access patterns for the
following reasons. First, deciding where to place a URL is a complicated process, since it
is difficult to predict without consulting the actual traces whether two URLs are likely to
be accessed together. Even with full knowledge about the contents of URLs, the decision
is still ad hoc since people have different interpretations of the same data. Also, most
Web sites are organized with convenience of maintenance in mind, and such organization
does not correspond well to the actual correlation of URLs. For example, a Web site may
place its HTML files in one directory and images in another, even though a HTML file is
always accessed together with its linked images. Finally, it can be difficult to determine the
appropriate directory level to separate the URLs.

We test our hypothesis with the MSNBC traces of August 1, 1999: we cluster
the top 1000 URLs using the 21 top level directories, and then use the greedy algorithms
to place on average 3 replicas/URL (i.e., 3000 replicas in total). Compared with per Web
site-based replication, it reduces latency only by 12% for pure random graph topology, and

55

by 3.5% for transit-stub topology. Therefore the directory-based clustering only yields a
marginal benefit over the Web site based replication for the MSNBC site; in comparison,
as we will show later, clustering content based on access pattern can yield more significant
performance improvement: 40% - 50% for the above configuration.

In the remaining of this section, we examine content clustering based on access
patterns. We start by introducing our general clustering framework, and then describe the
correlation distance metrics we use for clustering.

5.7.1 General Clustering Framework

Clustering data involves two steps. First, we define the correlation distance be-
tween every pair of URLs based on a certain correlation metric. Then given n URLs and
their correlation distance, we apply standard clustering schemes to group them. We will
describe our distance metrics in Chapter 5.7.2. Regardless of how the distance is defined,
we can use the following clustering algorithms to group the data.

We explore two generic clustering methods. The first one aims to minimize the
maximum diameter of all clusters while limiting the number of clusters. The diameter of
cluster 7 is defined as the maximum distance between any pair of URLs in cluster 7. It
represents the worst-case correlation within that cluster. The second one aims to minimize
the number of clusters while limiting the maximum diameter of all clusters.

1. Minimize the maximum diameter of all clusters while limiting the number of clusters.
We use the classical K-split algorithm by T. F. Gonzalez [54]. Tt is a O(NK) approx-
imation algorithm, where N is the number of points and K is the number of clusters.
It guarantees solution within twice the optimal.

2. Minimize the number of clusters while limiting the diameter of each cluster. This can
be reduced to the problem of finding cliques in a graph using the following algorithm:
Let N denote the set of URLs to be clustered, and d denote the maximum diameter of
a cluster. Build graph G(V, F) such that V' = N and edge (u,v) € E < dist(u,v) < d,
VYu,v € V. We can choose d using some heuristics, e.g., a function of average distance
over all URLs. Under this transformation, every cluster corresponds to exactly one
clique present in the generated graph. Although the problem of partitioning graphs
into cliques is NP-complete, we adopt the best known approximation algorithm with
time complexity O(N?) [45].

We have applied both clustering algorithms, and obtained similar results. To avoid
redundancy, for the rest of this chapter, we only use the first clustering algorithm.

5.7.2 Correlation Distance

In this section, we describe the correlation distance we use. We explore three
orthogonal distance metrics: one based on spatial locality, one based on temporal locality,
and another based on popularity locality. The metrics can also be based on semantics, such
as the hyperlink structures or XML tags in Web pages. We will examine the hyperlink
structure for online incremental clustering in Chapter 5.9.2, and leave the clustering based
on other metadata, such as XML tags, for future work.

56

Spatial Clustering

First, we look at clustering content based on their spatial locality in the access
patterns. At a high level, we would like to cluster URLs that share similar access distribution
across different regions. For example, two URLs that both receive the largest number of
accesses from New York and Texas and both receive the least number of accesses from
California may be clustered together.

We use BGP prefixes or domain names to partition the Internet into different
regions, as described in Chapter 5.2. We represent the access distribution of a URL using
a spatial access vector, where the 7th field denotes the number of accesses to the URL from
the ¢-th client group. Given L client groups, each URL is uniquely identified as a point
in L-dimensional space. In our simulation, we use the top 1000 clusters (i.e., L = 1000),
covering 70% - 92% of requests.

We define the correlation distance between URLs A and B in two ways: either
(i) the Euclidean distance between the points in the L-dimension space that represent the
access distribution of URL A and B, or (ii) the complement of cosine vector similarity of
spatial access vector A and B.

ZZ 1 A; X B;
\/Zzl XZZ 1()

Essentially, if we view each spatial access vector as an arrow in high-dimension space, the
vector similarity gives the cosine of the angle formed by the two arrows.

correl_dist(A, B) = 1 — vector_similarity(A,B) = 1 — (5.1)

Temporal Clustering

In this section, we examine temporal clustering, which clusters Web content based
on temporal locality of the access pattern.

There are many ways to define temporal locality. One possibility is to divide
the traces into n time slots, and assign a temporal access vector to each URL, where the
element 7 is the number of accesses to that URL from the time slot 7. Then we can use
similar methods in spatial clustering to define the correlation distance. However, in our
experiments we found that many URLs share similar temporal access vectors because of
specific events, but they are not accessed together. One typical example is in the event-
driven WorldCup trace, where the corresponding URLs in English and French have very
similar temporal access patterns during game time, but as expected are almost never fetched
together by any client groups.

To address this issue, we consider URLSs are correlated only if they are requested
in a short period by the same client. In particular, we extend the co-occurrence based
clustering by Su, et al. [125]. At a high-level, the algorithm divides requests from a client
into variable length sessions, and only considers URLs requested together during a client’s
session to be related. We make the following enhancements: (i) we empirically determine
the session boundary rather than choose an arbitrary time interval; (ii) we quantify the
similarity in documents’ temporal locality using the co-occurrence frequency.

Determine session boundaries: First, we need to determine user sessions,
where a session refers to a sequence of requests initiated by a user without pro-longed

o7

pauses in between. We apply the heuristic described in [3] to detect the session boundary:
we consider a session has ended if it is idle for sufficiently long time (called session-inactivity
period); and we empirically determine the session inactivity period as the knee point where
the change in its value does not yield a significant change in the total number of sessions [3].
Both the MSNBC and NASA traces have the session-inactivity period as 10 - 15 minutes,
and we choose 12 minutes in our simulations.

Correlation in temporal locality: We compute the correlation distance be-
tween any two URLs based on the co-occurrence frequency (see Algorithm 6). This reflects
the similarity in their temporal locality and thus the likelihood of being retrieved together by
a client. Assume that we partition the traces into p sessions. The number of co-occurrences
of A and B in the session i is denoted as f;(A, B), which is calculated by counting the
number of interleaving access pairs (not necessarily adjacent) for A and B.

procedure TemporalCorrelationDistance()

1 foreach session with access sequence (s1, sa, ...Sp) do
2 for i = 1; i < n-1; i++ do
3 for j = i+1; < n; j++ do
4 if s; # s; then fi(s;, s;)++; fi(s), si)++;
5 else exit the inner for loop to avoid counting duplicate pairs
end
end

end
6 foreach URL A do compute the number of occurrences o(A)
7 foreach pair of URLs (A, B) do
8 Co-occurrence values f(A,B) = Y F . fi(A, B)

9 Co-occurrence frequency c¢(A, B) = %
10 Correlation distance correl_dist(A,B) =1 — ¢(A, B)

end

Algorithm 6: Temporal Correlation Distance Computation

Steps 2 to 5 of Algorithm 6 computes f;(A, B). For example, if the access sequence
is “ABCCA” in session i. The interleaving access pairs for A and B are AB and BA, so
fi(A,B) = f;(B,A) = 2. Similarly, f;(A,C) = f;(C, A) =3, fi(B,C) = f;(C,B) = 2. Note
that in Step 8 and 9, since f(A, B) is symmetric, so is ¢(A, B). Moreover, 0 < ¢(A, B) <
1 and ¢(A, A) = 1. The larger the ¢(A, B), the more closely correlated the two URLs are,
and the more likely they are to be accessed together. Step 10 reflects the property that
distance decreases with the increase in the correlation.

Popularity-based Clustering

Finally, we consider the approach of clustering URLs by their access frequency.
We consider two metrics. The first correlation distance metric is defined as

correl_dist(A, B) = |access_freq(A) — access_freq(B)]

The second distance metric is even simpler. If N URLs are to be clustered into K

58

clusters, we sort them according to the total number of accesses, and place URLs 1 ... L%J
into cluster 1, and URLs |%|+1 ... 28] into cluster 2, and so on.

We tested both metrics on MSNBC traces and they yield very similar results.
Therefore we only use the simpler approach for evaluation in the rest of the chapter.

Traces Collection for Clustering

The three clustering techniques all require access statistics, which can be collected
at CDN name servers or CDN servers. The popularity-based clustering requires the least
amount of information: only the hit counts of the popular Web objects. In comparison,
the temporal clustering requires the most fine-grained information — the number of co-
occurrences of popular objects, which can be calculated based on the access time, and
source IP address for each request. The spatial clustering is in between the two: for each
popular Web object, it needs to know how many requests are generated from each popular
client group, where the client groups are determined using BGP prefixes collected over
widely dispersed routers [67].

5.8 Performance of Cluster-based Replication

In this section, we evaluate the performance of different clustering algorithms on
a variety of network topologies using the real Web server traces.

5.8.1 Performance Comparison of Various Clustering Schemes

First we compare the performance of various cluster-based algorithms. In our
simulations, we use the top 1000 URLs from the MSNBC traces covering 95% of requests,
and the top 300 URLs from the NASA traces covering 91% of requests. The replication
algorithm we use is similar to Algorithm 5 in Chapter 5.6. In the iteration step 7, we choose
the < cluster,location > pair that gives the largest performance gain per URL.

Figure 5.6 compares the performance of various clustering schemes. The starting
points of all the clustering performance curves represent the single cluster case, which
corresponds to per Web site-based replication. The end points represent per URL-based
replication, another extreme scenario where each URL is a cluster.

As we can see, the clustering schemes are efficient. Even with the constraint of
a small number of clusters (i.e., 1% - 2% of the number of Web pages), spatial clustering
based on Euclidean distance between access vectors and popularity-based clustering achieve
performance close to that of the per URL-based replication, at much lower management
cost (see Chapter 5.7). Spatial clustering with cosine similarity and temporal clustering do
not perform as well. It is interesting that although the popularity-based clustering does
not capture variations in individual clients’ access patterns, it achieves comparable and
sometimes better performance than the more fine-grained approaches. A possible reason is
that many popular documents are globally popular [132], and access frequency becomes the
most important metric that captures different documents’ access pattern.

59

10 + ,
Spatial clustering: Euclidean distance —e—
5| Spatial clustering: cosine similarity -----
Access frequency clustering %
Temporal clustering -8

1 10 100 1000
Number of clusters

Average retrieval cost

(a) On a pure random topology

Spatial clustering: Euclidean distance —e— 1
Spatial clustering: cosine similarity -----
Access frequency clustering %]
Temporal clustering -8

Average retrieval cost
o = N w £y (3] o ~ o)
:

1 10 100 1000
Number of clusters

(b) On a transit-stub topology

600
500
%
8
< 400
>
2
® 300
(0]
g 200 |]
9]
2 Spatial clustering: Euclidean distance —e—
100 Spatial clustering: cosine similarity --->-- 4
Access frequency clustering %
0 Temporal clustering -8
1 10 100 1000
Number of clusters
100
@
g 80
=
<_]>.’
= 60
©
(0]
2 40
[0
2 Spatial clustering: Euclidean distance —e—
20 - spatial clustering: cosine similarity - 1
Access frequency clustering %
0 Temporal clustering -8
1 10 100 1000
Number of clusters
1400
1200
@
8 1000
§
2 800
©
) 600
g
400 t 1
2 Spatial clustering: Euclidean distance —e—
200 | Spatial clustering: cosine similarity -
Access frequency clustering %
Temporal clustering -8

1 10 100 1000
Number of clusters

30 r 1

20 + f
Spatial clustering: Euclidean distance —e—
10 - Spatial clustering: cosine similarity ---->---
Access frequency clustering %
Temporal clustering -8

1 10 100 1000
Number of clusters

Average retrieval cost

(¢) On an AS-level topology

Figure 5.6: Performance of various clustering approaches for MSNBC August 2, 1999 traces
with averagely 5 replicas/URL (left) and for NASA July 1, 1995 traces with averagely 3

replicas/URL (right) on various topologies.

60

The relative rankings of various schemes are consistent across different network
topologies. The performance difference is smaller in the AS topology, because the distance
between pairs of nodes is not as widely distributed as in the other topologies.

300
250 A
—— Replicate per Web site
[
o200 LMoo
o 200 -=- Replicate with access
% frequency clustering
% 150 -
[}
D
o
2 100 -
<
50 4
0
1 3 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
Average number of replicas per URL

Figure 5.7: Performance of cluster-based replication for MSNBC August 2, 1999 traces (in
20 clusters) with up to 50 replica/URL on a transit-stub topology

We also evaluate the performance of cluster-based replication by varying the repli-
cation cost (i.e., the average number of replicas/URL). Figure 5.7 shows the performance
results when we use the access frequency clustering scheme and 20 content clusters. As be-
fore, cluster-based scheme out-performs per Web site scheme by over 50%. As expected the
performance gap between per Web site and per cluster replication decreases as the number
of replicas per URL increases. Compared to per URL-based replication, the cluster-based
replication is more scalable: it reduces running time by over 20 times, and reduces the
amount of state by about 50 times.

5.8.2 Effects of Non-Uniform File size

So far, we assume each replicated URL consumes one unit of replication cost. In
this section, we compute the replication cost by taking into account of different URL sizes.
The cost of replicating a URL is its file size. We modify Algorithm 5 in Chapter 5.6 so
that in iteration step 7, we choose the < cluster,location > pair that gives the largest
performance gain per byte.

We ran the experiments using the top 1000 URLSs of the MSNBC traces on August
2, 1999. Table 5.4 shows the performance of the Euclidean distance based spatial clustering
with the cost of 3 Website replicas on a transit stub topology. The results exhibit a similar
trend as those obtained under the assumption of uniform URL size: per URL-based repli-
cation out-performs per Web site-based replication by 40%, and the cluster-based schemes
(50 clusters) achieve similar performance as per URL-based replication (1000 clusters) with
only about 5% management cost if we ignore the cost for clustering.

61

Per site | 10 clusters | 50 clusters | 300 clusters | Per URL
132.7 108.1 84.7 81.3 80.4

Table 5.4: Average retrieval cost with non-uniform file size

Methods Static 1 | Static 2 | Optimal
Traces used for clustering | training | training | new

Traces used for replication | training | new new

Traces used for evaluation | new new new

Table 5.5: Static and optimal clustering schemes

5.9 Incremental Clustering

In the previous sections, we have presented cluster-based replication, and showed
it is flexible and can smoothly trade off replication cost for better user performance. In
this section we examine how the cluster-based replication scheme adapts to changes in
users’ access patterns. One option is to re-distribute the existing content clusters without
changing the clusters. We call it static clustering (Chapter 5.9.1). A better alternative,
termed incremental clustering, gradually adds new popular URLs to existing clusters and
replicates them (Chapter 5.9.2). We can determine new popular URLs either by observing
users’ accesses (offline) or by predicting future accesses (online). Below we will study
different ways to adapt to changes in user workload, and compare their performance and
cost.

5.9.1 Static Clustering

It is important to determine the frequency of cluster perturbation and redistribu-
tion. If the clients’ interested URLs and access patterns change very fast, a fine-grained
replication scheme that considers how a client retrieves multiple URLs together may require
frequent adaptation. The extra maintenance and clustering cost may dictate that per Web
site replication approach should be used instead. To investigate whether this would be a
serious concern, we evaluate three methods, as shown in Table 5.5 using MSNBC traces:
training traces and new traces, where the training traces and new traces are access traces
for Day 1 and Day 2, respectively (Day 2 follows Day 1 either immediately or a few days
apart).

Note that in the static 1 and static 2 methods, accesses to the URLs that are not
included in the training traces have to go to the origin Web server, potentially incurring a
higher cost. We consider the spatial clustering based on Euclidean distance (referred as SC)
and popularity (i.e., access frequency) based clustering (referred as AFC), the two with the
best performance in Chapter 5.8. We simulate on pure random, Waxman, transit-stub, and
AS topologies. The results for different topologies are similar, and below we only present
the results from transit-stub topologies.

We use the following simulation configuration throughout this section unless oth-
erwise specified. We use 8/2/99 MSNBC traces as the training traces, and use 8/3/99,
8/4/99, 8/5/99, 8/10/99, 8/11/99, 9/27/99, 9/28/99, 9/29/99, 9/30/99 and 10/1/99 traces
as the new traces. We choose the top 1000 client groups from the training traces, and they

62

@ Static clustering, old replication
W Static clustering, re-replication
O Reclustering, re-replication (optimal)
60 0 Offline incremental clustering, step 1 only
B Offline incremental clustering, replication
50 4
17
S 40
]
&
£30
2
()
j=2)
T 20
[
>
<
10
0 Es
8/3 8/4 8/5 8/10 811 9/27 9/28 9/29 9/30 10/1
New traces

(a) Cluster based on the Euclidean distance of spatial vector.
60

B Static clustering 1
a0 A
40 4 O Static clustering 2
a0 48 =

_ i i @ Reclustering, re-
20 e ;
replication (optimal)

10

W Cffline incremental

0 - clustering

8/3 Bi4 8BS BAD 811 82T 9528 928 830 1041

Mew traces

Average retrieval cost

(b) Cluster based on the access frequency.

Figure 5.8: Stability analysis of the per cluster replication for MSNBC 1999 traces with
8/2/99 as training traces (averagely 5 replicas/URL).

63

have over 70% overlap with the top 1000 client groups in the new traces. So we use the same
set of client groups for our performance evaluation in this section. To study the dynamics
of content, we choose the top 1000 URLs from each daily traces. We use SC or AFC to
cluster them into 20 groups when applicable.

As shown in Figure 5.8, using the past workload information performs significantly
worse than using the actual workload. The average retrieval cost almost doubles when the
time gap is more than a week. The performance of AFC is about 15-30% worse than
that of SC for static 1 method and 6-12% worse for static 2 method. In addition, as we
would expect, the difference in the performance gap increases with the time gap. The
redistribution of old clusters based on the new traces does not help for SC, and helps to
improve 12-16% for AFC'. The increase in the clients’ latency is largely due to the creation
of new contents, which have to be fetched from the origin site according to our assumption.
(The numbers of new URLs are shown in row 1 of Table 5.6.) In the next section, we will
use various incremental clustering to address this issue.

5.9.2 Incremental Clustering

In this section, we examine how to incrementally add new documents to existing
clusters without much perturbation. First, we formulate the problem, and set up framework
for generic incremental clustering. Then we investigate both online and offline incremental
clustering. The former predicts access patterns of new objects based on hyperlink structures,
while the latter assumes such access information is available. Finally, we compare their
performance and management cost with the complete re-clustering and re-distribution.

Problem Formulation

We define the problem of incremental clustering for distributed replication system
as follows. Given N URLs, initially they are partitioned into K clusters and replicated to
various locations to minimize the total cost of all clients’ requests. The total number of
URL replicas created is T'. After some time, V' of the original objects become cold when the
number of requests to them drops below a certain threshold, while W new popular objects
emerge, and need to be clustered and replicated to achieve good performance. To prevent
the number of replicas T' from increasing dramatically, we can either explicitly reclaim the
cold object replicas or implicitly replace them through policies such as LRU and LFU. For
simplicity, we adopt the latter approach. The replication cost is defined as the total number
of replicas distributed for new popular objects.

One possible approach is to completely re-cluster and re-replicate the new (N —
V 4+ W) objects, as the optimal scheme in Table 5.5. One possible approach is to completely
re-cluster and re-replicate the new (N — V + W) objects as the third scheme described in
Chapter 5.9.1. However this approach is undesirable in practice, because it requires re-
shuffling the replicated objects and re-building the content directory, which incurs extra
replication traffic and management cost. Therefore our goal is to find a replication strat-
egy that balances the tradeoff between replication and management cost versus clients’
performance.

Incremental clustering takes the following two steps:

64

Row Date of new traces | 8/3 | 8/4 | 8/5 | 8/10 | 8/11 | 9/27 | 9/28 | 9/29 | 9/30 | 10/1
in 1999

1 # of new popular | 315 | 389 | 431 | 489 | 483 | 539 | 538 |[530 | 526 | 523
URLs

2 # of cold URL | 948 | 1205 | 1391 | 1606 | 1582 | 1772 | 1805 | 1748 | 1761 | 1739
replicas freed

3 # of orphan | 0 0 2 1 1 6 4 6 8 6
URLs when using
|'Unew - 'U—c>| >r

4 # of orphan | 0 0 2 0 1 6 4 6 7 5
URLs when using

|Uﬂ€w B U_C>| > Tmaxz

5 # of new URL | 983 1091 | 1050 | 1521 | 1503 | 1618 | 1621 | 1610 | 1592 | 1551
replicas de-
ployed for non-
orphan URLs
(|mew — el < 1)

6 # of new clusters | 0 0 2 1 1 3 3 3 3 3
generated for
orphan URLs

(|vnew — U—c>| >7)

7 # of URL repli- | 0 0 341 | 85 79 154 | 184 | 138 | 169 | 188
cas deployed for
orphan URLs
(Itmeas — 5] > 7):
row 2 - row 5 if
row 2 > row

8 # of new URL | 1329 | 1492 | 1499 | 1742 | 1574 | 2087 | 1774 | 1973 | 1936 | 2133
replicas deployed
(Access frequency
clustering)

Table 5.6: Statistics and cost evaluation for offline incremental clustering. Using MSNBC
traces with 8/2/99 as training traces, 20 clusters, and averagely 5 replicas/URL. Results
for clustering based on SC (row 3 - 7) and AFC (row 8).

65

Crawled time on 5/3/2002 8am | 10am | 1pm
of crawled URLs (non image files) 4016 | 4019 | 4082
of URL clusters (clustering with the same parent URL) | 531 | 535 633

Table 5.7: Statistics and clustering of crawled MSNBC traces

STEP 1: If the correlation between the new URL and an existing content cluster
exceeds a threshold, add the new URL to the cluster that has the highest correlation.

STEP 2: If there are still new URLs left (referred as orphan URLs), create new
clusters and replicate them.

Online Incremental Clustering

Pushing newly created documents are useful during unexpected flash crowds events,
such as disasters. Without clients’ access information, we predict access pattern of new doc-
uments using the following two methods based on hyperlink structures.

1. Cluster URLs based on their parent URLs, where we say URL a is URL b’s parent if
a has a hyperlink pointing to b. There is one exception: many URLs point back to
the root index page, but the root page should not be included in any children cluster
because its popularity differs significantly from other pages.

2. Cluster URLs based on their hyperlink depth. The hyperlink depth of URL o is defined
as the smallest number of hyperlinks needed to traverse before reaching o, starting
from the root page of the Web server.

In our evaluation, we use WebReaper 9.0 [130] to crawl http://www.msnbc.com/
at 8 a.m., 10 a.m. and 1 p.m. (PDT time), respectively, on May 3, 2002. Given a URL,
the WebReaper downloads and parses the page. Then it recursively downloads the pages
pointed by the URL until a pre-defined hyperlink depth is reached. We set the depth to be
3 in our experiment. We ignore any URLs outside www.msnbc.com except the outsourced
images. Since we also consider the URLs pointed by all the crawled documents, our analysis
includes all pages within 4 hyperlink distance away from the root page. Clustering based on
the hyperlink depth generates 4 clusters, e.g., depth = 1, 2, 3, and 4 (exclusive of the root
page). The access logs do not record accesses to image files, such as .gif and .jpg. We have
the access information for the remaining URLs, whose statistics are shown in Table 5.7. In
general, about 60% of these URLs are accessed within the next two hours after crawling.

To measure the popularity correlation within a cluster, we define access frequency
span (in short, af_span) as follows.

standard deviation of access frequency

af_span =
average access frequency

We have MSNBC access logs from 8 a.m. - 12 p.m. and 1 p.m. - 3 p.m. on May 3, 2002. For
every hour during 8 a.m. - 12 p.m. and 1 p.m. - 3 p.m., we use the most recently crawled
files to cluster content, and then use the access frequency recorded in the corresponding

66

access logs to compute a f_span for each cluster. We also compute the average, 10 percentile
and 90 percentile of af_span in all clusters, and show the results in Figure 5.9.

In Figure 5.9, both clustering methods show much better popularity correlation
(i.e., smaller af_span) than treating all URLs (except the root) as a single cluster. Method
1 consistently out-performs method 2. Based on the observation, we design an online
incremental clustering algorithm as follows. We assign each new URL o to the existing
cluster that has the largest number of URLs sharing the same parent URL with o (i.e.,
the largest number of sibling URLs). If there are ties, we are conservative, and pick the
cluster that has the largest number of replicas. Note that o may have multiple parents, so
we consider all the children of its parents as its siblings except the root page. When a new
URL o is assigned to cluster ¢, we replicate o to all the replicas to which cluster ¢ has been
replicated.

We simulate the approach on a 1000-node transit-stub topology as follows. First,
among all the URLs crawled at 8am, 2496 of them were accessed during 8am - 10am. We
use AFC to cluster and replicate them based on the 8am - 10am access logs, with 5 replicas
per URL on average. Among those new URLs that appear in the 10am crawling, but not
in the 8am crawling, 16 of them were accessed during 10am - 12pm. Some of them were
quite popular, receiving 33262 requests in total during 10am - 12pm. We use the online
incremental clustering algorithms above to cluster and replicate the 16 new URLs with a
replication cost of 406 URL replicas. This yields an average retrieval cost of 56. We also
apply the static AFC by using 10am - 12pm access logs, and completely re-clustering and
re-replicating all these 2512 (2496 + 16) URLs, with 5 replicas per URL on average. As
it requires information about future workload and complete re-clustering and re-replication
of content, it serves as the optimal case, and yields an average retrieval cost of 26.2 for
the 16 new URLs. However, if the new URLs are not pushed but only cached after it is
accessed, the average retrieval cost becomes 457; and if we replicate the 16 new URLs to
random places using the same replication cost as in the online incremental clustering (406
URL replicas), the average retrieval cost becomes 259.

These results show that the online incremental clustering and replication cuts the
retrieval cost by 4.6 times compared to random pushing, and by 8 times compared to no
push. Compared to the optimal case, the retrieval cost doubles. But since it requires no
access history nor complete re-clustering or replication, such performance is quite good.

Offline Incremental Clustering

Now we study offline incremental clustering, which uses access history as input.

STEP 1: In the SC clustering, when creating clusters for the training traces, we
record the center and diameter of each cluster. Given a cluster U with p URLs, each URL
u; is identified by its spatial access vector v; and correlation_distance(u;, uj) = |uf — ’U_J>|
We define the center c¢ as %ﬁ The radius r is mami(|v_c> - Fﬂ), which is the maximum
Euclidean distance between the center and any URL in U. For each new URL m, we
add it to an existing cluster U whose center c is closest to m, if either |m — v_c>| <ror
|m — Ui| < Tmag 18 satisfied, where 7 is the radius of cluster U, and 7,4, is the maximum
radius of all clusters.

67

18

14 B

12 b

Access frequency span

JED P11

2 | Clustering with the same URL parent ——+—
Clustering with the same hyperlink depth =---x---

0 All URLs (except the root URL) x
Access logs Used: 8-9am 9-10am 10-11lam 11-12pm 1-2pm 2-3pm
Web content used: crawled at 8am crawled at 10am crawled at 1pm

Figure 5.9: Popularity correlation analysis for semantics-based clustering. The error bar
shows the average, 10 and 90 percentile of a f_span.

Our analysis of MSNBC traces shows that most of the new URLs can find their
homes in old clusters (as shown in rows 3 and 4 of Table 5.6); this implies the spatial
access vector of most URLs are quite stable, even after about two months. Furthermore,
the difference between using |m - 'u_g| < r and |m - 'u_g| < Tmag 18 insignificant. So
we consider the former in the remaining of this section. Once a new URL is assigned to a
cluster, the URL is replicated to all the replicas to which the cluster has been replicated.
Row 5 of Table 5.6 shows the number of new URL replicas.

procedure IncrementalClusteringReplication_ OrphanURLs()

1 Compute and record the biggest diameter d of original clusters from the
training traces

2 Use limit diameter clustering (Chapter 5.7) to cluster the orphan URLs
into K’ clusters with diameter d

3 | = number of cold URL replicas freed - number of URL replicas deployed
for non-orphan URLs in Step 1.

4 if | > 0 then replicate the K’ clusters with [replicas

5 else Replicate the K’ clusters with !’ replicas, where I’ = number of
orphan URLs X average number of replicas per URL

Algorithm 7: Incremental Clustering and Replication for Orphan URLs (Spatial
Clustering)

In the AFC clustering, the correlation between URLs is computed using their
ranks in access frequency. Given K clusters sorted in decreasing order of popularity, a new

68

URL of rank 4 (in the new traces) is assigned to [£]th cluster. In this case, all new URLs
can be assigned to one of the existing clusters, and step 2 is unnecessary.

Figure 5.8 shows the performance after the completion of Step 1. As we can see,
incremental clustering has improvement over static clustering by 20% for SC, and 30-40%
for AFC'. At this stage, SC and AFC have similar performance. But notice that AFC has
replicated all the new URLs while SC' still has orphan URLs for the next step. In addition,
AFC deploys more new URL replicas (row 8 of Table 5.6) than SC (row 5 of Table 5.6) at
this stage.

STEP 2: We further improve the performance by clustering and replicating the
orphan URLs. Our goal is (1) to maintain the worst-case correlation between existing
clusters after adding new ones, and (2) to prevent the total number of URL replicas from
increasing dramatically due to replication of new URLs. Step 2 only applies to SC, and we
use Algorithm 7.

Row 6 and 7 in Table 5.6 show the number of new clusters generated by orphan
URLs and the number of URL replicas deployed for the orphan URLs. As Figure 5.8
(top) shows, SC out-performs AFC by about 20% after step 2, and achieves comparable
performance to complete re-clustering and re-replication, while using only 30 - 40% of
the replication cost compared to the complete re-clustering and re-replication. (The total
replication cost of the latter scheme is 4000 URL replicas: 1000 URLs x 5 replicas/URL,
except 1000 URL replicas residing at the origin Web server.)

To summarize, in this section, we study online and offline incremental clustering,
and show they are very effective in improving users’ perceived performance with small
replication cost.

5.10 Summary

In this chapter, we explore how to efficiently push content to CDN nodes for
cooperative access. Using trace-driven simulations, we show that replicating content in
units of URLs out-performs replicating in units of Web sites by 60 - 70%. To address the
scalability issue of such a fine-grained replication, we examine several clustering schemes
to group the Web documents and replicate them in units of clusters. Our evaluations
based on various topologies and Web server traces show that we can achieve performance
comparable to per URL-based replication at only 1% - 2% of the management cost. To
adapt to changes in users’ access patterns, we consider both offline and online incremental
clustering. Our results show that the offline clustering yields the performance close to that
of the complete re-clustering at much lower overhead; the online incremental clustering and
replication reduce the retrieval cost by 4.6 - 8 times compared to no replication and random
replication.

In particular, for the content without access history (e.g., newly created URLs), we
can incrementally add them to existing content clusters based on hyperlink structures, and
push them to the locations to which the cluster has been replicated. This online incremental
cluster-based replication is very useful to improve document availability during flash crowds.

In conclusion, our main contributions of this chapter include (i) cluster-based
replication schemes to smoothly trade off management and computation cost for better

69

clients’ performance in a CDN environment, (ii) an incremental clustering framework to
adapt to changes in users’ access patterns, and (iii) an online popularity prediction scheme
based on hyperlink structures.

In summary, in Part I, we present how to locate, replicate and manage contents
scalably, efficiently, and adaptively to users’ dynamics. In the next part, we will discuss
overlay network measurement and monitoring services for providing adaptation on the net-
work and system levels.

Part 11

Overlay Network Measurement
and Monitoring

70

71

In the first part of the thesis, we built a CDN which is scalable, efficient, and
adaptive to users’ dynamics. In this part, we will shift our focus to network dynamics.
Our technique is generally applicable to the emerging class of large-scale globally overlay
network services and applications, such as CDN, overlay routing and location, application-
level multicast, virtual private network (VPN) management, and peer-to-peer file sharing.
As these systems have flexibility in choosing their communication paths and targets, they
can benefit significantly from network distance (e.g., latency and loss rate) prediction. For
instance, CDN can achieve proximity and fault tolerance through selecting or switching to
the “best” CDN edge server to satisfy each client’s request.

Unfortunately, the infrastructure ossification and lack of understanding of the In-
ternet artifact remain to be key challenges for network distance estimation. For the first
challenge, the ability to deploy innovative disruptive technologies in the core infrastruc-
ture (which is operated mainly by businesses) is extremely limited. Consequently, various
forms of overlay networks, which introduce new functionality within the network near the
edges, have been proposed and some deployed in the Internet. Thus we design our network
measurement and monitoring services on the overlay network. Even though, it has proved
difficult to characterize, understand, and model the enormous volume and great variety of
Internet traffic in terms of large-scale behaviors.

In the second part, we will explore these challenges to build scalable and accurate
end-to-end network distance monitoring systems. We will first survey previous work and
their limitations in Chapter 6. Then to address their shortcomings, we present a latency
monitoring system, Internet Iso-bar, in Chapter 7 and a loss rate monitoring system, TOM,
in Chapter 8. To demonstrate how Internet applications can benefit from such monitoring
services, we build and evaluate a monitoring-based adaptive overlay streaming media system
in Chapter 9.

72

Chapter 6

Previous Work

Among the distance metrics, latency is a common one, and the easiest one to
measure and scale, thus there is much prior work [4, 51, 127, 83]. Measurement of other
general metrics, e.g., loss rate, bandwidth, jitter, etc. are much more challenging and harder
to scale. Next, we group existing systems into these two categories, and compare them with
the network measurement and monitoring systems of our own.

6.1 Latency Estimation Systems

A latency estimation system can be built as an infrastructure service [4, 51, 127]
or a peer-to-peer service [83]. The former assumes dedicated infrastructure support, and
can provide continuous dynamic monitoring, while the latter assumes that the end clients
measure the distance with little support from the service providers. We compare them with
our Internet Isobar (Chapter 7) in Table 6.1.

6.1.1 Infrastructure-based Latency Estimation Systems

Both industry [4] and academia [51, 127] have built infrastructure-based latency
estimation systems. But they are either not scalable [4], or based on triangulation in-
equality which doesn’t really hold in today’s Internet [51], or not very accurate for latency
estimation [51, 127], or assuming the wide existence of measurement servers [127]. Next,
we discuss these systems in more details.

Content Distribution Network (Akamai’s Network Operations Command Cen-
ter (NOCQ))

For each client address prefix (subnet), Akamai performs traceroute from all CDN
servers to find a few core routers (close to clients) that are always on the path to client clus-
ters. They constantly monitor the distance from every Internet Data Center (IDC) which
hosts the CDN edge servers, to these routers to decide the relative distance to clients [70]
. Although working in real operation, this approach has a potential scalability problem.

! As a proprietary technique, there is no white paper available regarding this subject, to the best of our
knowledge.

73

Properties | Akamai IDMaps Network Distance | GNP Internet Iso-
NOCC Maps bar

Type Infrastructur¢ Infrastructure | Infrastructure Peer-to- Infrastructure

peer

Scalability | Traceroute | Proximity- Proximity-based NL mea- | Similarity-
from each | based cluster- | hierarchical clus- | surements based clus-
edge server | ing of APs, | tering, O(N) | (each land- | tering,
farm to | O(K? + AP) | measurements mark takes | K2 + N mea-
all client | measure- O(N) of | surements
subnets ments them)

Estimation| Use dis- | Based on | Proximity- Based Similarity-

technique | tance be- | triangulation | based cluster- | on high- | based clus-
tween edge | inequal- ing, dist(hq, | dimension tering, differ-
server farms | ity and | hg)=maximum coordinates, | ent inter- &
to mearby | proximity- (dist(m(hy), symmetric | intra- cluster
router of | based clus- | m(hg)), distance estimation
clients tering dist(m(hy), hq),

diSt(m(hg), hg))

Monitors | CDN edge | Transit AS’s | Traceroute servers | End hosts End hosts

/land- servers

marks

deploy-

ment

Table 6.1: Comparison of various Internet latency estimation systems, assuming there are
N end hosts, AP address prefixes, L landmarks and K clusters, m(h;) is the monitor of the
cluster to which host h; belongs.

74

There are more than 8800 Internet Service Providers (ISPs). Suppose every ISP has an
IDC for hosting CDN servers and clients are grouped by autonomous systems (AS’s), we
need 114 million traceroute measurements to build distance maps among 13,000 existing
AS’s. A similar amount of measurements is needed to maintain the distance maps. Though
they divide the maps into regions, and only measure the distance between the IDCs and
core routers of AS’s in each region [70], the amount of measurements is only reduced by
the factor of the number of regions (assume the ISPs and AS’s are evenly distributed in the
regions). While helpful when the number of regions is big, this approach will lose agility
because the CDN servers in one region cannot serve the clients in other regions.

Internet Distance Maps (IDMaps)

IDMaps has special HOPS servers (called Tracers) that measure the distances
among themselves and to other end hosts [51]. The distance between two end hosts A and
B is estimated as the sum of 3 distances: distance between A and its nearest Tracer T1,
distance between B and its nearest Tracer T5 and the shortest path distance between T}
and Ty. To achieve scalability, they group the clients by Address Prefix (AP) which is a
consecutive address range of IP addresses within which all hosts are equidistant (with some
tolerance) to the rest of Internet. This grouping scheme leads to hundreds of thousands
of APs, which are further clustered based on network proximity. The problem is that
such a clustering requires pair-wise distance between all AP pairs. As a heuristic, Tracers
are placed on transit AS’s. However, this requires the cooperation of network providers.
IDMaps also faces problems with prediction accuracy. First, their estimation is based on the
triangulation inequality, which does not hold unless Tracers are placed on or very close to
the shortest path between clients. Second, this proximity-based clustering is not as accurate
as the similarity-based clustering used by Internet Iso-bar as we will show in Chapter 7.4.

Network Distance Maps

To tackle the scalability problem, Theilmann and Rothermel have proposed net-
work distance maps [127]. Their approach creates a hierarchical decomposition of the net-
work into regions, assigns each host to its closest measurement server (mServers) and es-
timates the distance between two hosts by the distance between their two assigned closest
mServers. The maps can also be adapted to the changing network conditions.

However, there are two key features that distinguish our Internet Isobar (Chap-
ter 7) from theirs. Firstly, they assume the existence of measurement servers (mServers)
and do not consider the problem of placing the monitoring sites. Secondly, they assign the
client to its closest mServer, which is equivalent to proximity-based clustering. Our analysis
based on real measurement data shows that the similarity-based clustering has much better
estimation accuracy and stability than the proximity-based clustering does (Chapter 7.4).

6.1.2 Peer-to-peer Latency Estimation Systems

Peer-to-peer latency estimation systems associate each node with a coordinate,
and use the Euclidean distance between the coordinates to estimate their network distance

75

between the nodes. They use either geographical coordinates [59] or coordinates computed
based on the network distance to a few landmark nodes [83, 99]. The fundamental problem
of these schemes is the assumption of symmetric distance.

Geographical-based distance estimation

Geographical distance was used to predict the real network distance in [59]. How-
ever, results show that the correlation between geographical distances and network distances
is quite poor, especially between different network backbones [59, 83].

Global Network Positioning (GNP)

GNP is based on absolute coordinates computed from modelling the Internet as
a D-dimensional geometric space [83]. Every end host maintains its own coordinates, and
network distances to other hosts are predicted by evaluating a distance function (e.g., Eu-
clidean distance) over their coordinates. For static estimation, it is much more accurate
than IDMaps. However, the landmark sites are potential bottlenecks because every host has
to measure its distance to the landmarks to compute and update its coordinates. Recently,
a lighthouse system is proposed to overcome that limitation by calculating the coordinates
with arbitrary set of reference points, then transforming the local coordinates to the global
ones [99].

Moreover, it is hard to achieve real-time distance estimation — both source and
destination have to obtain measurements to D + 1 landmarks (D is the dimension used
in estimation), re-compute the coordinates, and exchange the coordinates to get the esti-
mation. Thus it is not suitable as an online monitoring system. Moreover, GNP can only
model symmetric distance, and its optimization algorithms are expensive to run.

6.2 Other Metrics Estimation Systems

The systems above provide good latency estimation under normal conditions, but
they cannot estimate other metrics, such as loss rate, bandwidth, etc.. The fundamental
idea for infrastructure-based services is to cluster the end hosts, and then use one from each
cluster as the representative. Unless all the hosts in the same cluster take the same route
as their representative monitor to reach other hosts, the representative cannot detect the
congestion/failures for the hosts in its cluster.

Similarly for the peer-to-peer services like GNP, the coordinates of an end host are
computed based on the latency to some landmark sites, and cannot really reflect the path
conditions to other hosts.

In contrast, there is another class of overlay network distance estimation systems
which can detect path congestion, outages and periods of degraded performance within sec-
onds and have applications bypass them. In general, such systems are much harder to scale
than the latency estimation systems because each path to be estimated may take different
routes. Typical example is resilient overlay network (RON) [40]. People also proposed to
leverage the underlying network topology to improve the measurement efficiency. But none

76

solves the problem of monitor deployment for constructing an overlay network monitoring
service. We propose our own system TOM in Chapter 8.

6.2.1 RON

A RON is an architecture that allows distributed Internet applications to detect
and recover from path outages and periods of degraded performance within several seconds.
They keep monitoring the functioning and quality of Internet paths between every pair of
RON nodes. Thus it has very high accuracy for many metrics, like latency, loss rate and
throughput, but also has serious scalability problem.

6.2.2 Topology-based Efficient Measurement

Shavitt, et al. use algebraic tools to compute the distances that are not explicitly
measured [119]. Given certain “Tracer” stations deployed and some direct measurements
among the Tracers, they search for path or path segments whose loss rates can be inferred
from these measurements. Thus their focus is not on Tracer/path selection. Neither do
they examine the topology measurement errors or the topology change problems.

Recently, Ozmutlu, et al. selected a minimal subset of paths to cover all links for
monitoring, assuming link-by-link latency is available via end-to-end measurement [90].
Their approach has the following three limitations.

e Traceroute cannot give accurate link-by-link latency. Many routers in the Internet
hide their identities.

e It is not applicable for loss rate, because it is difficult to estimate link-by-link loss
rates from end-to-end measurements. Many applications, like streaming media and
multiplayer gaming, are more sensitive to loss rate than latency.

e [t assumes static routing paths and does not consider topology changes.

To address these problems, in the next two chapters, we will present our latency
estimation system, Internet Iso-bar, and loss rate estimation system, TOM.

7

Chapter 7

Internet Iso-bar: A Scalable
Overlay Network Latency
Estimation System

7.1 Introduction

In this part, the general problem we want to study is as follows: Given N end hosts
that may belong to different administrative domains and O(N?) paths among them, how
to monitor and estimate the properties of these paths with small measurement overhead?
Besides accurate, efficient, and scalable, a network distance monitoring system should also
be incrementally deployable, and easy to use.

We will focus on the monitoring and estimation of latency in this chapter, and loss
rate for the next chapter. The difference between these two metrics is: latency is easy to
measure and easier to achieve measurement scalability, while the loss rate is more important
for some applications. We will show why latency estimation scheme is not good enough for
loss rate or congestion/failure estimation, then provide an efficient scheme of measuring the
loss rate without sacrificing accuracy.

For latency estimation, we propose a clustering-based scheme: Internet Iso-bar,
which clusters the end hosts based on the similarity in their distance to a small set of sites.
The cluster centers are selected as monitoring sites for active and continuous probing. The
distance between any pair of hosts is estimated using inter- or intra-cluster distances. No
knowledge of network topology is needed.

We evaluate the estimation accuracy and stability of our scheme with real Internet
measurements from NLANR [85]. Stability is examined on various time scales: daily, weekly,
monthly, etc.. Our results show that Iso-bar has high estimation accuracy and stability,
comparable to the state-of-the-art work, GNP [83]. In contrast to GNP, the distributed
small measurement overhead of Iso-bar enables online monitoring which detects the majority
of congestion/failures in real time with certain false positive. To the best of our knowledge,
our work is the first attempt to evaluate the stability of various distance estimation schemes
using real Internet measurements.

The rest of the chapter is organized as follows. The clustering and distance estima-

78

A Landmark

O Monitor ~ ----- Distance from monitor to its hosts

O End Host —— Distance measurements among monitors

Figure 7.1: Internet Iso-bar architecture for a peer-to-peer system

tion techniques of Internet Iso-bar are presented in Chapter 7.2. We describe our simulation
methodology in Chapter 7.3, and evaluate the accuracy and stability of different schemes
in Chapter 7.4. Finally, we conclude in Chapter 7.5.

7.2 Architecture and Algorithms

The key idea of Internet Iso-bar (referred to as Iso-bar hereafter) is as follows.
We group N hosts into K clusters based on several distance metrics (Chapter 7.2.1 and
Chapter 7.2.2), and choose cluster centers as monitors (Chapter 7.2.2). The monitors
continuously measure the distance among themselves as well as to hosts belonging to its
cluster so that the distance between any pair of hosts can be estimated using intra- and
inter-cluster distance (Chapter 7.2.3), as shown in Figure 7.1. Meanwhile, the measurement
overhead is negligible (Chapter 7.2.4).

7.2.1 Distance Metrics

First we define the distance metrics for clustering. There are many ways to define
Internet distance, including hop count, latency, loss rate, or bandwidth. In this chapter, we
define the Internet distance to be the round trip time (RTT). Given asymmetric routing,
RTT may not reflect the absolute network distance between two hosts. But in many cases,
it still serves as a good approximation of the end-to-end distance we aim to estimate.

Using network proximity

Let net_dist(i, j) denote the measured network distance between host 7 and host j,
and cor_dist(i, j) denote the correlation distance between them, i.e., the smaller cor_dist(i, j)
is, the more i and j are correlated. We can directly use net_dist(i,j) for clustering (i.e.,

79

cor_dist(i,j) = met_dist(i,j)). This is adopted by IDMaps [51] and Network Distance
Maps [127]. However, although it requires all pair-wise distance measurements, this scheme
is not very accurate, as shown in Chapter 7.4. Next, we introduce the network similarity
based clustering, which can significantly reduce the amount of measurements.

Using network similarity (Iso-bar)

As in GNP, each host 7 measures distance to landmarks and forms a network
distance vector (referred as metV;). However, unlike GNP, netV; is only used for initial
clustering; and once clusters are formed, we use significantly fewer measurement probes (as
will be shown in Chapter 7.2.4) for distance estimation.

netV; is a m-dimensional vector, where m is the number of landmarks. The land-
marks can be all or a subset of the end hosts plus any outside servers that accept measure-
ments.

Let wy denote the k-th landmark, and wy(netV;) denote the k-th element of the
vector netV;, which stands for the distance between host 7 and the k-th landmark. The
correlation distance between two hosts can be defined as the Euclidean distance between
their network distance vectors:

cor_dist(i, j) = |netV; — netV;| = Z(wk(netVi) — wi(netVj))? (7.1)
k=1

In addition, cosine vector similarity has been widely used to measure the similarity
between two vectors. An alternative distance metric is to use the complement of vector
similarity.

_ mnetVi-metV; Y iy wi(netV;) - wy(netV;)
netVilnetV;] /S fun etV - S e (neiV P

(7.2)

cor_dist(i,j) =1

Essentially, if we view each vector as an arrow in high-dimension space, the formula
above gives the sine of the angle between the arrows of netV; and netV;.

7.2.2 Generic Clustering Methods

Given a distance metric, we apply generic clustering algorithms to group hosts.
We define the radius of cluster i as the maximum distance between the monitor (center
node) and any host in cluster i, denoted as C;. Our clustering seeks to minimize the
maximum radius of all clusters, or to minimize the sum of distances between every host and
its monitor. The former aims to optimize the worst case prediction, while the latter tries
to optimize the average prediction.

Clustering to optimize the worst case (the maximal radius)

The goal is to place a given number of monitors so that the maximum radius is
minimized (denoted as limit_-num_minRmaz clustering). This problem is known as the
minimum K-center problem [51]. We use the algorithm in [54] to achieve an approximation

80

within a factor of 2 in O(NK) time, where N is the number of end hosts, and K is the
number of clusters. More formally, find the minimum K, such that there is a set N' C N
with |[N'| = Kand V h € N, 3 ¢;, € N’ such that distance(h, ¢;) < d.

Clustering to optimize the average case (the average radius)

We formulate the clustering problem that minimizes the sum of intra-cluster dis-
tance as follows. Given N points, we select K of them to be centers, and assign each point
J to the closest center. If point j is assigned to center 7, we incur a cost ¢;j, where ¢;; is the
correlation distance between point ¢ and j. The goal is to select K centers so as to minimize
the sum of assignment costs (denoted as limit_num_minDistSum clustering). This is an

NP-hard minimum K-median problem. We use a 4-approximation algorithm with running
time of O(N?3) [22].

7.2.3 Distance Estimation

We need to consider congestion estimation for accurate latency estimation. Con-
gestion is not common - our analysis of one-week NLANR 105 million ping measurements
shows that only 0.96% of probes were congested (see the definition of congestion in Chap-
ter 7.3.2). Of these, about 20% happen at the last mile. We infer that a node has last
mile congestion when the majority (> 90%) of its measurements are simultaneously con-
gested. The rest of the congestion exhibits strong spatial correlation, which suggests that a
few congested links dominate the end-to-end congestion. Currently, we examine congestion
estimation without any knowledge of network topology, and apply a conservative heuristic
to Iso-bar, which estimates the distance between host 7 and j as follows.

e j and j belong to the same cluster with monitor m. If either path(m, i) or path(m, j) is
congested, report path(i, j) as congested. Otherwise, predicted_dist(i,j) = (dist(m,1)
+ dist(m, j))/ 2.

e i belongs to cluster of monitor m; and j belongs to the cluster of m;. If one of
path(m;, 1), path(m;, m;), and path(m;, j) is congested, report path(i, j) as congested.
Otherwise predicted_dist(i,j) = dist(m;,m;). Note that path(m;,i) and path(m;, j)
are used for monitoring of last mile congestion, and they are not included in the
latency estimation of normal cases.

To reduce false positive congestion alerts, each monitor checks whether it has last
mile congestion. If so, the monitor will not use its measurements for congestion inference.

Evaluation based on real Internet measurements show that with only 15 monitors
for 106 widely dispersed sites, Iso-bar can capture 78% of congestion with a 32% false
positive ratio (Chapter 7.4). This suggests that the monitoring paths used by Iso-bar
encompass most of the congested links. However, such congestion estimation accuracy is
by no means satisfactory. In the next Chapter, we will discuss how to have good loss
rate estimation, though at a bit more expensive measurement cost (O(N log N) amount of
measurements instead of O(K? + N) here).

81

0.9 -
0.8
0.7
0.6
05
04

Cumulative Probability

03
02
0.1

0 2‘0 4‘0 (;O 86 160 12‘0 140

Minimum Round Trip Time (msec)
Figure 7.2: CDF of 06/25/01 daily minimum RTT on between each pair of NLANR AMP
hosts

Note that we need many more inter-cluster estimates than intra-cluster estimates.
For example, given N hosts evenly divided into K clusters, and considering all pairs of hosts
for distance estimation, the ratio of inter-cluster estimates to intra-cluster estimates will be
approximately K — 1.

7.2.4 Measurement Traffic

The measurement traffic of Iso-bar is negligible compared with other normal traffic
in a P2P system. Given K clusters, N hosts, and measurement frequency f, the total
number of measurement packets is f x (K? 4+ N). FastTrack, a very popular P2P system,
has 2 million unique IP addresses per day, and most of them have less than 15 minutes
on-time. Its total daily traffic is 1.78 TB [118]. Assume Iso-bar has 1000 clusters for such a
system, and uses 32-byte UDP packet to measure RTT every minute, the total measurement
traffic is (2M + 1K?) x 15 x (32B x 2) = 2.9GB, around 0.16% of total normal traffic.

7.3 Evaluation Methodology

7.3.1 Internet Measurement Data

We evaluate the performance of different schemes for distance estimation using the
real Internet measurement data from the National Laboratory of Applied Network Research
(NLANR) Active Measurement Project (AMP) data [85]. The RTT was measured by ICMP
packets in the NLANR traces. There are 119 sites participating in the NLANR AMP
project, each of which uses a dedicated machine to measure the RTT between itself and the
other participating sites by sending ICMP packets. Measurements are made every minute,
resulting in a total of 1440 measurements for each day. We collected one month of raw data
(6/25/01 to 7/24/01), and one day of more recent data (12/6/01). After filtering out sites
with incomplete measurements, we have 106 hosts (i.e., N = 106 in our experiments) and
a total of 15 million measurements each day. Figure 7.2 shows the cumulative distribution
function (CDF) of minimum RTT between every pair of hosts.

82

To have more accurate latency estimation through ping measurement, we use a
sliding window of 10 samples, and choose the minimum RTT value in the sliding window
as the latency sample. If all the 10 ping measurements are lost !, we denote the latency
sample as “loss”. Based on one day’s trace, we compute the geometric mean ? of all latency
samples between every pair of sites i and j as net_dist(i,j), and use them for clustering
or coordinate calculation in GNP. We refer to this day as the birth date. We then use the
raw measurements of a future day to evaluate the estimation accuracy from each technique.
The future day is referred as the estimation date.

7.3.2 Estimation Accuracy Metric

At each window slot, we define the measurement to be congested if 1) the latency
sample is loss; or 2) the latency sample > (geometric mean x geometric standard deviation).
The geometric mean and geometric standard deviation are calculated based on the mea-
surements of birth date. With the techniques in Chapter 7.2.3, we examine the amount of
real congestion captured and the false positive ratio, i.e., 7= nggggfg dof; ej; iffegfjﬁfisepm iod-
For uncongested latency samples, the following relative prediction error defined

in [136] is applied as a measure for estimation accuracy:

predicted distance

)]

where Avg refers to the average value computed over each of the measurement events
(i.e., 1440 in the NLANR daily traces except the congested samples). Both the predicted
distance and measured distance are latency samples. The relative error reflects how much
the estimation deviates from the target value.

Given different estimation techniques, the predicted distance could be either static
or dynamic (see Chapter 7.3.3).

GNP is not scalable enough for online update of the coordinates. Therefore we
use each site’s coordinates obtained from the birth date for distance estimation. For any
pair of hosts 7 and j, the same estimated value is used consistently as predicted distance
when we calculate the daily relative error.

For Iso-bar, we assume the monitors actively measuring the distance among them-
selves, as well as to the other hosts in its cluster. We use these measurements to predict
the distance between clients as in Chapter 7.2.3.

relative error = Avg[|loga(,
measured distance

7.3.3 Analysis of Estimation Accuracy
Static analysis

For static analysis, we use the measurement data of the same day both for offline
setup (clustering or coordinates computation) and for online estimation. That is, the birth
date and the estimation date are the same. This will help give a sense of the absolute
accuracy of each estimation technique without temporal variation.

!Each ping sends at most 4 ICMP packets over 4 seconds before it reports a loss.
*We use the geometric mean because Internet distance measurements obey a heavy-tailed distribution,
as do our datasets.

83

Birth date: 06/25/01 Estimation date: 06/25/01

09
0.8
2
= 07
Q
8
S 0.6
o
o 05
2
8 04 g 1
> o
E o3} /% ,
) /B
0.2 + o Network similiarity based: limit number —— 4
/ twork cosine vector similarity based : limit number ----x---
0.1 & Network similarity based: limit diameter - -
0 Network gosme vector §|mllar|ty basgd: limit dlamgter a
0 0.2 0.4 0.6 0.8 1
Relative Error
Birth date: 06/25/01 Estimation date: 07/24/01 Birth date: 06/25/01 Estimation date: 12/06/01
1 1
09 r 09 r
08 r 0.8
= =
= 0.7 z 0.7
8 8
8 0.6 8 0.6
a a
o 05r o 05
= =
8 04 r 8 04 r
=} =}
g 03 g 03
(8] /; o “
0.2 r Network similiarity based: limit number —+— - 0.2 r i Network similiarity based: limit number —+— -
Aétwork cosine vector similarity based : limit number ----x-- X twork cosine vector similarity based : limit number -------
0.1 r /& Network similarity based: limit diameter - 1 0.1 & Network similarity based: limit diameter - 1
0 Network cosme vector S|m|Iar|ty based Ilmltdlameter o 0 “" Network cosme vector S|m|Iar|ty based Ilmltdlameter o
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Relative Error Relative Error

Figure 7.3: Evaluation of generic clustering methods with static analysis (top) and stability
analysis (bottom).

Stability analysis

It is even more interesting to examine how well estimations derived from a single
day’s data perform over multiple time intervals. We evaluate the stability of various distance
estimation schemes over a six-month period. The birth date is 06/25/01, and the estimation
dates are 6/25/01 - 7/01/01, 7/8/01, 7/24/01, and 12/06/01, respectively.

7.4 Evaluation Results

In this section, we first describe different Internet distance estimation techniques
to be used for comparison, and then evaluate the sensitivity of Iso-bar with varying number
of landmarks. Finally, we present the accuracy and stability of various estimation schemes.
7.4.1 Internet Distance Estimation Techniques Evaluated

We compare four distance estimation schemes:

e Omniscient approach

e GNP

84

e Clustering with network distance vector (Iso-bar)

— Using Euclidean distance (Net_sim)

— Using vector similarity (Net_vsim)
e Clustering with network proximity

The omniscient approach makes distance estimation based on complete knowledge of every
pair-wise distance on the birth date. It estimates the distance between any pair of hosts as
the geometric mean of the actual latency samples on the birth date. For a fair comparison,
We use 15 landmarks (in 7 dimensions as configured in [83]) for GNP and 15 clusters for
clustering approaches. For GNP, we ran five experiments, choosing random landmarks each
time, and present the one with the best results.
For Iso-bar approaches, clustering based on Net_sim slightly outperforms Net_vsim,

as shown in Figure 7.3). So we only use Net_sim, and refer it as Iso-bar hereafter.

7.4.2 Iso-bar Sensitivity to Different Number of Landmarks

In this section, we examine how dependent clustering performance is on the number
of landmarks. Our approach is to compare the performance of Iso-bar (limit_num_minDistSum)
when the number of randomly-chosen landmarks M varies from 6 to 106. Simulation shows
they differ by less than 5% in terms of prediction accuracy (Figure 7.4). This suggests
that only a small number of landmarks is sufficient. Unlike GNP, the landmarks are used
for initial clustering only (see Chapter 7.2.1). We use 15 landmarks for the remaining
experiments.

7.4.3 Results of Estimation Accuracy and Stability

We first present results on latency estimation when there is no congestion, then
show the congestion estimation performance of clustering-based dynamic monitoring sys-
tems.

Normal latency estimation

For uncongested latency samples, Figure 7.5 shows the CDF of the relative errors
for both static and stability analysis. The stability results for daily, weekly and monthly
intervals are very close to the static results. Figure 7.6 shows the amount of relative errors
that are below the 90th percentile, and how they change over time. In this metric, a lower
value represents a higher level of accuracy. Most methods are relatively stable, except the
omniscient scheme and GNP. Both of them have scalability problems for continuous update
of the distance estimation. Thus unlike the clustering-based approaches, we do not update
their distance estimation.

We make the following observations. First, estimation based on the omniscient
approach gives the highest accuracy of all the estimation dates. We believe this represents
an underlying stability in the current Internet. Whether the stability is applicable to other
parts of Internet in general needs further verification. However, as a static estimation

Birth date: 06/25/01 Estimation date: 06/25/01

85

1 T
09
0.8
g 0.7
Q
g
S 0.6
o
o 05
=
8 04t
=]
g 0.3 |
o
02 r | 6 Landmarks —— 4
7 15 Landmarks ----x--
017 60 Landmarks -
0)) 106 Landmarks --a
0 0.2 0.4 0.6 0.8 1
Relative Error
Birth date: 06/25/01 Estimation date: 07/24/01 Birth date: 06/25/01 Estimation date: 12/06/01
1 1
I i
09 (;;ﬁ;‘ﬁ:’;ﬁ;,,ﬁ” 09
R 0.8
2z =
= B z 0.7 +
8 8
8 R 8 0.6
s {1 % ost
= =
8 E 8 04t
=} =}
£ 1 £ osf
(8] (8]
6 Landmarks —— A 0.2 r 6 Landmarks —— A
15 Landmarks ----¢--- 15 Landmarks -------
60 Landmarks - 7 0.1 / 60 Landmarks —%-— -
0)) 106 Lanqurks o 0)) 106 Lanqurks o
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Relative Error Relative Error
Figure 7.4: Sensitivity of Internet Iso-bar to various number of landmarks: static (top) and

stability analysis (bottom).

86

Birth date: 06/25/01 Estimation date: 06/25/01 Birth date: 06/25/01 Estimation date: 06/26/01

Cumulative Probability
Cumulative Probability

Omniscent —+—
GNP -

Omniscent —+—
GN -

Iso-bar: limit_num_minDistSum -
Iso-bar: limit_num_minRmax -
Geographical proximity based clustering --=--
Network proximity based clustering ----

Iso-bar: limit_number_minDistSum -+
Iso-bar: limit_number_minRmax -
Geographical proximity based clustering -—=-- 4
Network proximity based clustering ----

0 - 0 -
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Relative Error Relative Error
Birth date: 06/25/01 Estimation date: 07/01/01 Birth date: 06/25/01 Estimation date: 07/08/01

Omniscent —— -
GNP
Iso-bar: limit_number_minDistSum -----

Iso-bar: limit_number_minRmax &

Geographical proximity based clustering --=-- 1

Network proximity‘based clusteging R

Omniscent —— -
GNP -

Iso-bar: limit_number_minDistSum -
Iso-bar: limit_number_minRmax -

Geographical proximity based clustering ---=-- 1
Network proximity‘based clusteging o

Cumulative Probability
Cumulative Probability

*ee

0 L 0 L
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Relative Error Relative Error
Birth date: 06/25/01 Estimation date: 07/24/01 Birth date: 06/25/01 Estimation date: 12/06/01
1

0.9
0.8
0.7
0.6
0.5
0.4
0.3

Cumulative Probability
Cumulative Probability

Omniscent —+—
GN

Omniscent —+—
GNP
Iso-bar: limit_num_minDistSum -+
Iso-bar: limit_num_minRmax -
Geographical proximity based clustering ---=-- 1
Network proximity‘based cluster‘ing R

Iso-bar: limit_number_minDistSum -
Iso-bar: limit_number_minRmax -

Geographical proximity based clustering ---=-- 1
Network proximity based clustering ---o--

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Relative Error Relative Error

Figure 7.5: Cumulative Distribution Function (CDF) of relative prediction errors for both
static analysis and stability analysis (6-monthly interval)

87

80 Percentile 90 Percentile
0.8 1.2
,,,,,,, o S
- 1 77777
0.6 & __ 3

,,, e
08 F T mmmmmm g T
5 04% e = = R, 5 o6l a - = e]
g U g Jo B
E 0.2 FT S E 0.4
[} [}
o o
0.2 |
0F Omniscent ——
GNP -
Iso-bar: limit_num_minDistSum - 0F Iso-bar: limit_num_minDistSum -
Iso-bar: limit_num_minRmax e Iso-bar: limit_num_minRmax e
0.2 Geographical proximity based clustering ---=-- 1 02} Geographical proximity based clustering ---=-- i
Network proximity based clustering ----- : Network proximity based clustering -----
06/25/01 06/26/01 07/01/01 [y 5¢q 07/08/01 07/24/01 12/06/01 06/25/01 06/26/01 07/01/01 Date 07/08/01 07/24/01 12/06/01

Figure 7.6: 80 percentile (left) and 90 percentile (right) of the relative errors for various
estimation schemes under six different time intervals

scheme, the omniscient approach can not report any congestion information. Furthermore,
it requires the full N x N network distance matrix, and is thus not scalable. Note that the
omniscient approach does not achieve perfect accuracy when it is used to estimate distance
on the actual birth date, because the distance estimate between any pair of hosts is the
geometric mean of latency samples obtained during the whole day. The error reflects the
amount of fluctuation in RTT within a day.

Second, GNP and Iso-bar (limit_-num_minDistSum) have similar performance,
only a little bit worse than the omniscient scheme. This implies that GNP provides a very
accurate estimate when the underlying data set is stable. However, GNP requires all hosts
to constantly measure distance to the landmarks for online monitoring, which is impractical.
Thus it cannot report timely congestion information.

Third, the network distance similarity based clustering performs much better than
the network proximity based clustering, which is used in IDMaps [51] and Network Distance
Maps [127].

Finally, it is interesting to see that geographical distance proximity based clustering
performs better than network distance proximity based clustering. This may be because
most sites in our experimental data set are educational and research institutes, and they
are connected by the same backbone: Internet2. The correlation between geographical
distance and network distance need to be further verified. Previous work has indicated that
estimation techniques based on geographic distance in general results in poor accuracy [83].

Congestion/failure estimation

During the week of 06/25/01 to 07/01/01, there are averagely 148K congested
measurements per day, and Iso-bar (limit_num_minDistSum) captures 78% of congestion
with a 32% false positive ratio. Clustering with network proximity captures 75% of conges-
tion with a 44% false positive ratio. Note that given 15 monitors, the measurement overhead
is (15x14 + 106 - 15), which is less than 3% of RON measurement cost (106x105).

88

7.5 Summary

In summary, in this chapter, we propose a clustering-based overlay latency mon-
itoring service, the Internet Iso-bar. In contrast to traditional network or geographical
proximity based clustering, Iso-bar groups hosts based on the similarity of their perceived
distance to a small number of landmarks. Evaluation based on real Internet measurements
show that Iso-bar has small online measurement overhead, and high latency estimation ac-
curacy and stability, comparable to the best known work, GNP. Unlike static estimation
systems like GNP, Iso-bar can also detect the majority of congestion/failures in real time
with certain false positive.

The congestion/failure detection accuracy is reasonable for non-mission-critical
applications, such as P2P file sharing, but probably not acceptable for applications that de-
mand high availability, like Virtual Private Network (VPN). In the next chapter, we will in-
troduce a tomography-based monitoring service which provides accurate congestion/failure
estimation with a bit more measurement overhead than Iso-bar (O(Nlog N) amount of
measurements instead of O(K? 4+ N), but still much less than O(N?)).

89

Chapter 8

TOM: A Tomography-based
Overlay Monitoring System

8.1 Introduction

In the previous chapter, we presented a scalable and accurate overlay latency
monitoring system, Internet Iso-bar. In this chapter, we will focus on loss rate estimation
for congestion and failure monitoring. Consider an overlay network of n end hosts; we
define a path to be a routing path between a pair of end hosts, and a link to be an IP link
between routers. A path is a concatenation of links. There are O(n?) paths among the n
end hosts, and we wish to select a minimal subset of paths to monitor so that the loss rates
and latencies of all other paths can be inferred. The loss rates are used to estimate the
congestion/failures on the overlay paths.

To this end, we propose a tomography-based overlay network monitoring system
in which we selectively monitor a basis set of k paths (typically & < n?). Any end-to-end
path can be written as a unique linear combination of paths in the basis set. Consequently,
by monitoring loss rates for the paths in the basis set, we infer loss rates for all end-to-end
paths. This can also be extended to other additive metrics, such as latency. The end-to-end
path loss rates can be computed even when the paths contain unidentifiable links for which
loss rates cannot be computed. We provide an intuitive picture of this characterization
process in terms of wvirtual links.

Although congestion outbursts within seconds are hard to detect and bypass,
the delay in Internet inter-domain path failovers averages over three minutes [69]. Our
loss rate estimation will filter out measurement noise with smoothing techniques, such as
exponentially-weighted moving average (EWMA), and detect these path failovers quickly
to have applications circumvent them.

Network tomography has been extensively studied ([36] provides a good sur-
vey). Most existing systems assume that limited measurement information is available
(often in a multicast tree-like structure), and they try to infer the characteristics of the
links [1, 2, 18, 92] or shared congestion [114] in the middle of the network. In many cases,
these inferences are restricted due to limited measurement and the irregularity of Internet
topologies. They are facing a fundamentally under-constrained system (as the unidentifi-

90

able links in Chapter 8.2). Thus the inferences are only of statistical meanings, and no hard
guarantee.

In contrast, we do not care about the characteristics of individual links. Further-
more, we do not have any restriction on the paths to measure. Our goal is to selectively
measure a small subset of paths so that we can infer the loss rates of all other paths.

Our key observation is that k& grows relatively slowly as a function of n. The
dimension k is bounded by the number of links in the subgraph induced by the routing paths.
In an Internet-like topology with a power-law degree distribution, there are O(N) links,
where N is the total number of end hosts in the network. This is because a small number
of nodes have high degree and the links between them are heavily used [47]. Consequently,
if n = O(N), then k£ < O(n). However, even when n < N, the moderately hierarchical
structure of the network causes many routing paths to overlap [126], so that the number of
links in the routing path subgraph grows much slower than O(n?). Our extensive study of
both synthetic and real Internet topologies suggests that for a randomly selected subset of
n end hosts, & grows like O(nlogn) when n is sufficiently large (say 100).

In addition, we design efficient algorithms to adapt to topology changes (such as
end host join/leave and routing changes), distributes measurement load evenly across the
end hosts, and handle topology measurement errors.

Both simulation and PlanetLab [102] experiments results show that we achieve
high accuracy when estimating path loss rates with O(nlogn) measurements. For the
PlanetLab experiments, the average absolute error of loss rate estimation is only 0.0027,
and the average error factor is 1.1, although about 10% of the paths have no or incomplete
routing information. The average setup (monitoring path selection) time is 0.75 second, and
the online update of the loss rates for all 2550 paths takes only 0.16 second. In addition, we
adapt to topology changes within seconds without sacrificing accuracy. The measurement
load balancing reduces the load variation and the maximum vs. mean load ratio significantly,
by up to a factor of 7.3.

The rest of the chapter is organized as follows. We describe our model and basic
theory in Chapter 8.2 and present the basic algorithms in Chapter 8.3. We extend the
algorithms to adapt to topology changes in Chapter 8.4, and to handle overloading and
topology measurement errors in Chapter 8.5. The methodology and results of simulation
are described in Chapter 8.6, and those of real Internet experiments are presented in Chap-
ter 8.7. Finally, we discuss the generalization of our framework in Chapter 8.8 and conclude
in Chapter 8.9.

8.2 The Algebraic Model and Scalability Analysis

In this section, we develop the model for tomography-based overlay monitoring.

Given n end hosts to be monitored, we assume that they belong to an overlay
network (such as a virtual private network), or that they cooperate to share the monitoring
services. Thus, we can measure the routing topology and loss rate of any path. The end
hosts are under the control of a central authority (e.g., an overlay network operation center
(ONOC)) to measure the topology and loss rates of paths, though in the future we plan to
investigate techniques to distribute the work of the central authority.

91

- i Overlay Network
-7 Operation Center

End hosts

&i—
Figure 8.1: Architecture of a tomography-based overlay network monitoring system

For simplicity, we mostly assume symmetric routing and un-directional links in
the chapter. But our techniques work without changes for asymmetric routing, as used
in the Internet experiments. Figure 8.1 shows an example where there are four end hosts
on the overlay network. There are six paths and four links. The end hosts measure the
topology and report to the ONOC, which selects four paths and instruments two of the end
hosts to measure the loss rates of the four paths. The end hosts periodically report the
loss rates measured to the ONOC. Then the ONOC infers the loss rates of every link, and
consequently the loss rates of the other two paths. Applications can query the ONOC for
the loss rate of any path, or they can set up triggers to receive alerts when the loss rates of
paths of interest exceed a certain threshold.

The path loss rates can be measured by either passive observation of normal traffic
to estimate packet drop rate [92] or active measurement. The measurements of selected
paths do not have to be taken at exactly the same time because Zhang, et al. report that
the loss rate remains operationally stable in the time scale of an hour [136]. The network
topology can be measured via traceroute or other advanced tools [56, 35]. We discuss
topology changes in Chapter 8.4.

8.2.1 Theory and Notations

Suppose an overlay network spans s IP links. We represent a path by a column
vector v € {0,1}*, where the jth entry v; is one if link j is part of the path, and zero
otherwise. Suppose link j drops packets with probability /;; then the probability p of
packet loss on the path represented by v is given by

1-p=JJa-1;)" (8.1)

By taking logarithms on both sides of (8.1), we have

log (1—p) = vjlog (1 — 1) (8.2)
j=1

If we define a column vector z € RS with elements z; := log (1 — [;), and write v’ for the
row vector which is the transpose of v, we can rewrite (8.2) in the following dot product

form:
S

log (1 —p) = Zvjxj =vlz (8.3)
7=1

92

Symbols Meanings

M total number of nodes

N number of end hosts

n number of end hosts on the overlay

r = 0(n?) number of end-to-end paths

S # of IP links that the overlay spans on
t number of identifiable links

G € {0,1}"*5 | original path matrix
G € {0,1}%*5 | reduced path matrix
k<s rank of G

loss rate on ith link

Li

;i loss rate on ¢th measurement path
X log(1 —1;)

b; log(1 — py)

v vector in {0, 1} (represents path)
p loss rate along a path
N

R

(GQ) null space of G
(GT) row(path) space of G (== range(G"))

Table 8.1: Table of notations

Considering all 7 = O(n?) paths in the overlay network, there are r linear equations
of the form (8.3). Putting them together, we form a rectangular matrix G € {0,1}"*¢ to
represent these paths. Each row of G represents a path in the network: G;; = 1 when
path 4 contains link j, and G;; = 0 otherwise. Let p; be the probability of packet loss
during transmission on the ¢th path, and let b € R" be a column vector with elements
b; := log (1 —p;). Then we write the system of equations relating the link losses to path
losses as

Gz =1b (8.4)
In general, the measurement matrix G may be rank deficient: i.e., £ = rank(G) and k < s.
If G is rank deficient, we will be unable to determine the loss rate of some links from (8.4).
We call these links unidentifiable as in [18].

link

(1. 1 0) row space

(measured)
-

(unmeasured) link 1

link 3

0

1

1
null space /'

bz

Figure 8.2: Sample overlay network.

93

We illustrate how rank deficiency can occur in Figure 8.2. There are three end
hosts (A, B, and C) on the overlay, three links (1, 2 and 3) and three paths between the
end hosts. Because links 1 and 2 always appear together, their individual loss rates cannot
be computed from the measurements. For example, suppose that z1 + z9 = by = —0.06
and z3 = by = —0.01. We know that z; = —0.03 + « and 2o = —0.03 — « for some «, but
the value of a cannot be determined from the end-to-end measurements. The set of vectors
o} [1 -1 O]T which are not defined by (8.4) can be added to x without affecting b. This
set of vectors is the null space of G.

To separate the identifiable and unidentifiable components of z, we write z as
T = xG + TN, where z¢ € R(GT) is in the row space of G and zy € N(G) is in the
orthogonal null space of G (i.e. Gzy = 0). The vector g contains all the information we
can know from (8.4) and the path measurements. For instance, we can determine z; + z2
in Figure 8.2, but not z; — 2. Intuitively, links 1 and 2 together form a single virtual link
with an identifiable loss rate z1 + zo. All end-to-end paths can be written in terms of such
virtual links, as we describe in more details in Chapter 8.2.3. So z¢ involves all the links,
while z only involves unidentifiable links. The decomposition of z for the sample overlay
network is shown below.

1 0 b1 /2
zG (ml';x?) 1| +a3 |0] = [b1/2 (8.5)
0 1 by
xN:M -1 (8.6)

Because z¢ lies in the k-dimensional space R(G'), only k independent equations
of the r equations in (8.4) are needed to uniquely identify 2. By measuring k independent
paths, we can compute zg. Since b = Gx = Gzg + Gxy = Gzg, we can compute all
elements of b from z¢, and thus obtain the loss rate of all other paths. For example, in
Figure 8.2, we only need to measure b; and by to compute x¢, from which we can calculate
bs. Detailed algorithms are described in Chapter 8.3.

8.2.2 Scalability Analysis

In this section, we will examine asymptotically how big k is in terms of n.

Theorem 1 Given a power-law degree network topology of M mnodes, the frequency fq of
nodes with outdegree d is proportional to d°, where ¢ is the outdegree exponent constant (i.e.,
faocd®). Withd > 1 and ¢ < =2 (as found in [47]), the number of end hosts N is at least
M/2.

Proof: Given that the power-law distribution topology has out-degree exponent: the
frequency f4 of an outdegree d is proportional to the outdegree to the power of a constant,
i.e., fg = Nd, where N is the proportion constant. Assume that end hosts have degree 1,
then the number of end hosts is N.

94

If ¢ < —1, then

M—1
M = NY d& (8.7)
d=1
M-1
< N <1+/ wcd:c> (8.8)
1
o0
< N<1+/ wcd:c> (8.9)
1
- N(1--t (8.10)
N 1+e¢ ’
c
= N 8.11
1+c ()
Therefore, the fraction % is at least % =1+ % If ¢ < —2 then % > % [|

This theorem also follows the intuition that the number of end hosts should be
more than the number of routers in the Internet.

Meanwhile, Faloutsos, et al. prove that such a topology has only O(M) links
(Lemma 2 in [47]). Combining the two facts, given N end hosts, there are at most O(N)
links in the topology. Thus, if the majority of the end hosts are on the overlay network
(n = O(N)), the dimension of R(GT) is O(n).

What about if only a small portion of the end hosts are on the overlay? Tangmu-
narunkit, et al. found that the power-law degree Internet topology has moderate hierarchy
due to the heavy-tailed degree distribution [126]. Because G is an r by s matrix, k is
bounded by the number of links s. If it is strict hierarchy like a tree, s = O(n), thus
k = O(n). But if there is no hierarchy at all (e.g., clique), k = O(n?) because all the O(n?)
paths are linearly independent. Moderate hierarchy should fall in between. We found that
for reasonably large n (e.g, 100), K = O(nlogn).

We run linear regression tests of our hypothesis on both synthetic and real topolo-
gies. We experiment with three types of BRITE router-level topologies: Barabasi-Albert,
Waxman and hierarchical models, as well as a real router level topology with 284,805
nodes [56]. For hierarchical topologies, BRITE first generates an autonomous system (AS)
level topology with a Barabasi-Albert model or a Waxman model. Then for each AS,
BRITE generates the router-level topologies with another Barabasi-Albert model or Wax-
man model. So there are four types of possible topologies, and they all have the same trend
for regression. We just show the results of AS-level Barabasi-Albert model and router-level
Waxman model as the representative. For simplicity, we only compute an upper bound on
k for the real topology. We prune nodes and links that are not on the overlay paths, and
collapse linear link chains with no branches into one link, then we count the number of links
as the upper bound.

We randomly select end hosts, which has the least degree, to form an overlay
network. We fit linear regression of k£ on O(n), O(nlogn), O(n'?°), O(n'%), and O(n'™).
As shown in Figure 8.3, results for each type of topology are averaged over three runs with
different topologies for synthetic ones and with different random sets of end hosts for the real
one. We find that for Barabasi-Albert, Waxman and real topologies, O(n) regression has

95

8000~ 12000 - v
¢
v
o + original measurement 3
7000 - original measurement Qo % reggression onn 3 i
% regression onn X
o regression on nlogn ¥ 0 10000~ o regressionon n‘iozgsn é
; 1.25) * x regression on n’ Z
x regressino on n o 15
6000 - O regression on n*® g O regressiononn U
175 V_regression on n
vV _regression on n
. 8000 - Fy g
< 5000 - ¢ = 3
2 i 3 .5 v
8
g L% v g cop 0
@ @
H cog 0 K % v
g 4000 v £ 60001 Q0
3 é o d * v
] * 5 e ¢
2 6 v s P
5 x 9 5 * 2 o v
& 3000 e 4 & 5 X
* v
: £ 92 6 v 4000 Yo X0
* Q2 o6 v X o v
o
2000 - L P . z x 6 v
¥ Q o v 5 o v
* Q 2000 - ¥Ry
o..v x 9
1000f % Qo o v
¥ 2 o v R 6 v
% Y % v
§ 2200 S N N N SR SR N S A S S S A R R
100 200 300 400 500 700 800 900 1000 100 200 300 400 500 700 800 900 1000
Number of end hosts on the overlay (n) Number of end hosts on the overlay (n)
x 10"
7z
9000
- original measurement v
- original measurement v % regression on n o
8000 - * regressiononn 3 6F o regression on nlogn x
o regression on nlogn - " 125 ¥ o
x regression on nt? $ 6 x TEQTESS!UH on nl s 5 *
7000 - ¢ regression on nt® 5 * [regress!on on n1 s ¥ %
¥ regression on 7> g % sl vV __regression on n g :
o) .
6000 =)
< @ 3 §
3 g 4r i
g
€ 5000 " & g . %
& 3 £ 59
=
£ § v : .82
5 4000 & 37 23 L e Y
£ § o s -o#
= % 8 Q v
& e @ o v « xR 90
3000{ ©ee .k Q 6 V
oL
* 2 o v M ; XY
<} .
2000 *.R. 0w x o o v
* R o v . X 0 v
* 9
* 9 6 v 1+ s X o ..w
10001 ¥R 0w X o v
* 2 o v ¢F R o v
2 ¢ v
o i i i i i i i i i ot : s s ; ; i i ; j
100 200 300 400 500 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000

Figure 8.3:

Number of end hosts on the overlay (n)

Number of end hosts on the overlay (n)

Regression of k£ in various functions of n under different router-level topologies.

Top: Barabasi-Albert model of 20K nodes (left), and Waxman model of 10K nodes (right).
Bottom: hierarchical model of 20K nodes (left) and a real topology of 284K routers (right).

96

G=[1 1]
Rank(G)=1

110
G=

[1 01
Rank(G)=2

G=
0011 3 ¥
14 Vi I .
Rank(G)=3 E irtualization [j5
Real links (solid) and all of the overlay Virtual links

paths (dotted) traversing them

Figure 8.4: Sample parts of IP network and overlay paths.

the least residual errors, while for a hierarchical model, O(n logn) fits best. Conservatively
speaking, we have k = O(nlogn).

8.2.3 Intuition through Virtual Links

In Chapter 8.2.1, we explain in algebraic terms how to compute all end-to-end path
loss rates from only k& path measurements. Our actual computations are based completely
on this algebraic picture; however, these formulas may not seem intuitive. We now describe
a more intuitive picture using the notion of virtual links. The key idea is that although the
loss rates of some individual links are uncomputable (unidentifiable links), each of them is
covered by some path segment whose loss rate is computable, and the loss rates of these
path segments are sufficient to compute the path loss rates in which we are interested.

We choose a minimal set of such path segments that can fully describe all end-
to-end paths, and refer to them as wvirtual links. If a link is identifiable, the link itself is a
virtual link.

Figure 8.4 illustrates some examples. In the top figure, the virtual link is a con-
catenation of two sequential physical links as we discussed before. In the middle figure,
there are three links, but only two paths traverse these links. Thus, rank(G) = 2 and none
of the links are identifiable. In the bottom figure, there are four links, and a total of four
paths traversing them. But the four paths are linearly dependent, so rank(G) = 3, and none
of the link loss rate are computable. We can use any three out of the four paths as virtual
links, and the other one can be linearly represented by the virtual links. For example, path
4" can be described as virtual links 2+43-1.

Since the dimension of R(G?) is k, the minimum number of virtual links which

97

can fully describe R(GT) is also k. z¢ is a linear combination of the vectors representing
the virtual links. Since virtual links are identifiable, z¢ is also computable. From z¢, we
can compute the loss rates of all end-to-end paths as we can do with virtual links.

8.3 Basic Algorithms

In this section, we describe basic static algorithms. We will present the dynamic
algorithms for topology changes in the next section.

8.3.1 Selecting Measurement Paths

To characterize all O(n?) end-to-end paths, we monitor k linearly independent
end-to-end paths and form a reduced system

Grg="b (8.12)

where G € {0,1}%*% and b € R¥ consist of k rows of G and b, respectively. Linearly
independent sets of rows and columns in rank-deficient problems are usually computed
using rank-revealing decompositions [53]. For a dense r by s matrix with rank &, common
rank-revealing decompositions include Gaussian elimination with complete pivoting (as used
in [119]), QR with column pivoting, and the singular value decomposition (SVD). The
former two cost O(rks), and the SVD costs O(rs?). Our G matrix is very sparse; that is,
there are only a few non-zeros per row. Rank-revealing decompositions for many sparse
problems can be computed much more quickly than in the dense case. However, the exact
cost depends strongly on the structure of the problem, and efficient computation rank-
revealing decompositions of sparse matrices is an open area of research [76], [100].

We select rows using Algorithm 8, which is a variant of the QR procedure [53,
p.223]. The procedure incrementally builds a decomposition

GT = QR (8.13)

where Q € R**¥ is a matrix with orthonormal columns and R € R¥*¥ ig upper triangular.
We do not store @ explicitly; instead, we write @ as R~'G”. The idea is the same as the
classical Gram-Schmidt algorithm: as each row is inspected, we subtract off any components
in the space spanned by the previous rows, so that the remainder is orthogonal to all previous
rows. If the remainder is zero, then the row was linearly dependent upon the previous rows;
otherwise, we extend the factorization.

In practice, we use a variant of Algorithm 8 which uses optimized routines from the
LAPACK library [6] and inspects several rows at a time. The time complexity of processing
each vector is dominated by the solution of a triangular system to compute ng, which costs
O(k?). The total cost of the algorithm is O(rk?) and the constant in the bound is modest
(see the running time results in Chapter 8.6.4 and 8.7.2). The memory cost is roughly k2/2
single-precision floating point numbers for storing the R factor.

When k exceeds 10000 the O(k?) memory requirement becomes too onerous. We
note that dense factorization methods may still be feasible if the number of overlay end-hosts
is small or if we relax our original problem statement.

98

procedure SelectPath(G)
1 for every row v in G do

2 Ril? = R_TG’UTA: QT’UT
3 Ry = vl = [|[Ri2|?
4 if R22 75 0 then
5 Mark v as a measurement path
6 G = [G]

v

R Ry

R = N
! [0 Rm]
end
end

Algorithm 8: Path (Row) Selection Algorithm

8.3.2 Path Loss Calculations

The QR decomposition which we use to select measurement paths is also used to
compute a solution to the underdetermined system (8.12). To choose a unique solution z¢
to Gzg = b, we impose the additional constraint that zg = G”y. We can then compute

y = RT'R™Tb
rg = GTZ/

This is a standard method for finding the minimum norm solution to an underdetermined
system (see [53], [42]). Once we have computed z¢, we can compute b = Gz, and from
there infer the loss rates of the remaining paths. The dominant cost in the computation
is the solution of two triangular linear systems for g, which only costs O(k?) and is much
smaller than that of the measurement path selection. Thus we can update loss rate estimates
online, as verified in Chapters 8.6.4 and 8.7.2.

8.4 Dynamic Algorithms for Topology Changes

During normal operation, new links may appear or disappear, routing paths be-
tween end hosts may change, and hosts may enter or exit the overlay network. These
changes may cause rows or columns to be added to or removed from G, or entries in G
may change. In this section, we design efficient algorithms to incrementally adapt to these
changes.

8.4.1 Path Additions and Deletions

The basic building blocks for topology updates are path additions and deletions.
We have already handled path additions in Algorithm 8; adding a path v during an update
is no different than adding a path v during the initial scan of G. In both cases, we decide
whether to add v to G and update R.

99

To delete a path that is not in G is trivial; we just remove it from G. But to
remove a path from G is more complicated. We need to update R; this can be done in
O(Kk?) time by standard algorithms (see e.g. Algorithm 3.4 in [123, p.338]). In general,
we may then need to replace the deleted path with another measurement path. Finding a
replacement path, or deciding that no such path is needed, can be done by re-scanning the
rows of G as in Algorithm 8; however, this would take time O(rk?).

procedure DeletePath(v, G, G, R)

1 if deleted path v is measured then

2 j = index of v in G

3 Yy = G‘TRflR*Tej

4 Remove v from G and G

5 Update R (Algorithm 3.4 in [123, p.338])

6 r=QGy

7 if 4 ¢ such that r; # 0 then

8 Add the ith path from G to G (Algorithm 8, steps 2-7)

end
end

9 else Remove v from G

Algorithm 9: Path deletion algorithm

We now describe Algorithm 9 to delete a path v more efficiently. Suppose v
corresponds to the ith row in G and the jth row in G, we define G’ € RE-1)xs a5 the
measurement path matrix after deleting the ith row, and G’ € R"=1*$ ag the path matrix
after removing the jth row. By deleting v from G, we reduce the dimension of G from k to
k — 1. Intuitively, our algorithm works in the following two steps.

1. Find a vector y that only describes the direction removed by deleting the ith row of
G.

2. Test if the path space of G’ is orthogonal to that direction, i.e., find whether there
is any path p € G’ that has a non-zero component on that direction. If not, no
replacement path is needed. Otherwise, replace v with any of such path p, and update
the QR decomposition.

Next, we describe how each step is implemented. To find y which is in the path
space of G but not of G/, we solve the linear system Gy = e;, where ¢; is the vector of all
zeros except for a one in entry 4. This system is similar to the linear system we solved to
find z¢, and one solution is y = GTR 1R Te,.

Once we have computed y, we compute 7 = G'y, where G’ is the updated G matrix.
Because we chose y to make G’y = 0, all the elements of 7 corresponding to selected rows
are zero. Paths such that r; # 0 are guaranteed to be independent of G', since if row j of
G could be written as w? G’ for some w, then r; would be wT G’y = 0. If all elements of r
are zero, then y is a null vector for all of G'; in this case, the dimension &’ of the row space
of G’ is k — 1, and we do not need to replace the deleted measurement path. Otherwise, we
can find any j such that r; # 0 and add the jth path to G’ to replace the deleted path.

100

Take the overlay network in Figure 8.2 for example, suppose G is composed of the

paths AB and BC, i.e., G = [} } (1)] Then we delete path BC, G’ =[1 1 0]T and

G = [(1) (1) (1]] Applying Algorithm 9, we have y = [0 0 1]7 and » = [0 1]T. Thus

the second path in G', AC, should be added to G'. If we view such path deletion with the
geometry of the linear system, the path space of G’ remains as a plane in Figure 8.2, but
G' only has one dimension of the path space left, so we need to add AC to G'.

When deleting a path used in G, the factor R can be updated in O(k?) time. To
find a replacement row, we need to compute a sparse matrix-vector product involving G,
which takes O(n? x (average path length)) operations. Since most routing paths are short,

the dominant cost will typically be the update of R. So the complexity of Algorithm 9 is
O(k?).

8.4.2 End hosts Join/Leave the Overlay

To add an end host h, we use Algorithm 8 to scan all the new paths from h, for
a cost of O(nk?). However, to delete an end host h, to simply use Algorithm 9 to delete
each path involving h is not efficient. These paths are often dependent to each other. Thus
deleting one path form G often causes adding another to-be-removed path into G. To avoid
that, we remove all these paths from G first, then use the updated G in Algorithm 9 to
remove each h-related path in G. Each path in G can be removed in O(k?) time; the total
cost of end host deletion is then at most O(nk?).

8.4.3 Routing Changes

In the network, routing changes or link failures can affect multiple paths in G.
Most Internet paths remain stable over days [97]. So we can incrementally measure the
topology to detect changes. Each end host measures the paths to all other end hosts daily,
and for each end host, such measurement load can be evenly distributed throughout the
day.

For each link, we keep a list of the paths that traverse it. If any path is reported
as changed for certain link(s), we will examine all other paths that go through those link(s)
because it is highly likely that those paths can change their routes as well. We use Algo-
rithms 8 and 9 to incrementally incorporate each path change.

8.5 Other Practical Issues

To further improve the scalability and accuracy, we need to have good load bal-
ancing, handle topology measurement errors, and to be robust to monitoring node failures,
as discussed in this section.

101

8.5.1 Measurement Load Balancing

To avoid overloading any single node or its access link, we evenly distribute the
measurements among the end hosts. We randomly reorder the paths in G before scanning
them for selection in Algorithm 8. Since each path has equal probability to be selected for
monitoring, the measurement load on each end host is similar. Note any basis set generated
from Algorithm 8 is sufficient to describe all paths G. Thus the load balancing has no effect
on the loss rate estimation accuracy.

8.5.2 Handling Topology Measurement Errors

Because our goal is to estimate the end-to-end path loss rate instead of any interior
link loss rate, we can handle certain topology measurement inaccuracies, such as incomplete
routing information and poor router alias resolution.

For completely untraceable paths, we add a direct link between the source and
the destination. In our system, these paths will become selected paths for monitoring. For
paths that only gives partial routes, we add links from where the normal route becomes
unavailable (e.g., self loops or displaying “* * *” in traceroute), to where the normal route
resumes or to the destination if such anomalies persist to the end. For instance, if the
@ KA 4pe, dest), the path is composed of three links: (src
ip1), (ip1, ip2), and (ipa, dest). By treating the untraceable path (segment) as a normal
link, the resulting topology is equivalent to the one with complete routing information for
calculating the path loss rates.

For topologies with router aliases which may present one physical link as several
links, we do not really have to resolve these aliases. At worst, our failure to recognize the
links as the same will result in a few more path measurements because the rank of G is
higher. For these links, their corresponding entries in zg will be assigned similar values
because they are really a single link. Thus the path loss rate estimation accuracy is not
affected, as verified by Internet experiments in Chapter 8.7.

measured route is (src, ipy,

8.5.3 Robustness and Real-time Response

There are some scenarios such that the overlay monitoring system can fail to
provide real-time loss rate estimation for some paths. This can happen when a routing
change is just detected, or the measurement node(s) crash, or some node(s) just join or
leave the overlay network. Before we incrementally set up new measurement path(s) and
collect results, for a short period, there are some paths for which we can not compute loss
rates. However, we can still return bounds on the computed loss rate (see Chapter 8.8). For
example, we can check whether all the links on the incomputable path are covered by G,
and if so, yield an upper bound (though possibly a pessimistic one) quickly. Furthermore,
such bounds may be already sufficient for some applications.

102

"99er oATyIsod 9s[e} oY) ST . oweyds asim-ired o) puR SUWIYDS
mo uvom)aq oryel yred porojruouwr o) ST YJIN "syyed AR[I0AO o) UO J0U oIv eI} SYUI[PUR SOPOU o1} soaowol Jurtunid oIoym
‘Burunad 1e7ye sUI[JO IoqUINU B} SMOYS JV "YI0MJoU AR[ISAO B[} UO SISOY PUS JO IJoquINU 8y SeAl3 rJ() *(UW0130(q) [opou [ed1yd
-IeIoNY pue (o[ppru) urwxep) ‘(doy) 1meqry-iseqereyqg :sordojodo) 1einor f ,1Yd JO sodA) 9011} I0J S)Nsol UOTIRNWIS :Z'§ 9[qRL,

%10 | %6°66 | SE6TCT | %E0 | %S'66 | 80ICCL | %€ | S65€ | 09vL 0¢Lyel 00¢
%10 | %0001 0€8% | %C0 | %866 L¥8y %l | €19 | ¥€0¢ LL007 0S6¥ 00T y99 10000
M&H.o &w.mm 1822y &w.o &N.@@ T1EETY %V | L8LT | 920€ 100T 0S87¥ 00€ 09T | 000
%C0 | %866 €E9F | %90 | %166 8897 %IT | 928 | O00€T 0s6v 00T
%€0 | %966 6L6€ | %9T | %V'86 L0cy %0T | I8% | 964 1102 0S6¥ 001 zie | 0001
%S0 | %966 096 %0C | %886 v€01 %8T | 9T | T¥¥ 4q! 0¢
dd | 98eroa00 Teoa dd | 98eroa00 Teoa («/3) | (%) dv | reuiduo | («)syyed | (u)TQ | 12101 | sepou
(1eq[ID)) syred Assoj (1moureg) syyed Asso] MJIN | Juex syut] Jo # Jjo # SIS0 puo Jo # | jo #
%GT | %I°66 | 18886 | %L'S | %196 | 6V0€6 | %IT | 69LET | 1290¢ 0¢Lyel 00¢
%0 | %966 L09€ | %ET | %V'86 GELE | %€S | 909¢ | 8EFS 00007 0S6¥ 00T 0249 boooe
%I'T | %I1°66 | ¢8L8C | %I'L | %896 | G€16C | %O0T | €9SF | €929 00001 0S87¥ 00€ 0891 | 000
%V0 | %S66 ¥e0€ | %6'€ | %S'L6 L90€ | %9€ | TLLIT | 966¢ 0s6v 00T
%S0 | %L66 6€SC | %9V | %986 ¥9ee | %81 606 8€¢l 0002 0S6¥ 001 cee | 0001
%0 | %966 628 | %T'T | %066 0L %0¥ 987 L8L 4q! 0¢
dd | 98eren00 | [eax dd | 98erenoo | [eax | (4/y) () dv | reutsuo | (u)syyed | (u)TO | [e10% | sepou
(1eqn)) syjred Asso] (1qmoutag) syjed Asso] | YJIN | ued syuty Jo # Jjo # S1S0Y puo Jo # | jo #
%V'0 | %%66 | €ELVI | %SG | %8L6 | OT8L9 | %G | GGL9 | S¥CIT 0¢.ycl 00¢
%90 | %966 9vve | %V'E€ | %V'86 8€LT | %LT | 8TET | €T9¢ ~666¢ 056¥ 00T £000T 0000%
%€0 | %966 | 6000C | %LV | %986 | ¢S661 | %9 | I¥SC | L6LE 1666 0S87¥ 00€ 6372 | 000¢
%10 | %L'66 L.2C | %0C | %1'66 1282 | %61 | 626 | G191 0s6¥ 00T
%C0 | %666 8891 | %0°C | %066 €L0C | %11 | €¥S 162 1661 056V 001 90¢ | 0001
%C0 | %0001 L8V | %E€T | %966 LEY %ce | SLT €y qcel 0¢
dd | 98e1en00 | [eax dAd | e8emenod | Teax | («4/y) | () dy | reuduo | (u)syred | (u)JQ | [e101 | sepou
(1eqny) syred Assoj (moureq) syjed £sso] | YJIN | quel syuty jo # jo # SIS0y puo Jo # | jo #

103

‘Sumue[eq peO[MOYIIM surowW TN, PUR ‘SUDULR[R(PRO[1M sUBOW T, AR[IDAO UO S$)SOT|
pua Jo Iequinu oY) st 821G J() "so130[0do) H [, [SNOLIRA I0] UOIINLIISIP (19AT8091 10 I9PUSS SB) PRO[JUSWRINSES]N '8 d[qR],

49'0¢ | 9€°¢ | €8'Cg | T0°C | 68'T | 97°0 | €8'T | 970 | e8'91 | T0°€ | 1e'61 | ¥9'¢ | C€'1 | €20 | 9€'1 | 2€'0 | 00S |-
60°L | 99°C | 98'8 | ¥O'€ | 60T | €¥°0 | LT'T | 8%'0 | 69€ | 62¢ | 00'¢€ | €61 | 650 | O¥'0 | €50 | 9€°0 | 00T
9LSc | €17 | €6'6¢ | Lp'€ | 94T | 8P°0 | eL'T | Ap'0 | Se'LT | ¥A'e | 0481 | A67¢ | 1€'1 | 1€°0 | 6S°1 | 2€°0 | 00€ | o0
91°0T | L6'C | 8T'6 | 09'C | 6€'T | €6°0 | 8T'T | 6¥°0 | 099 | 9€°C | T1°9 | G&'C | 260 | Ly'0 | 68°0 | ¥¥'0 | 00T
LCOL | e€c | 900L | ¥Le | 671 | Jy0 | 8€'1 | 190 | L9°0L | 19°€ | €€'11 | Te’€ | P€'1 | ¥9°0 | V'l | 190 | 00L | .
6% | 1¢'C | O8'% | 8¢'C | .80 | €¢°0 | 96°0 | ¢%'0 | 60F | L0'€ | 16'¢ | T¥'¢ | ¥6°0 | 990 | OT'T | €90 | 0¢
dIN | g7 | dIN | T | 1IN | g7 | 1IN | 97T | 1IN | 7 | 1IN | g7 | IN | dT | 1IN | 971
IOADAI IOpUos I9ADDI I9pUDS IOADI IOpUos I9ADDI I9pUDS (u)
NN AD HININ AD 9Z1s | sopou
[opowW [edIyDIRISIY [epou IBqy-Iseqriedg T0 | Jo #
"Z°8 9[qRL, Ul Sk ouIes ay) pauyep a1k J pur YJN A30[0d0) 1IN0l [eal ' 10J S)NSAI UOIIR[NUWIG :¢°Q d[qR],
%V'0 | %966 | €61 | %L'€ | %646 | CSIVI | %ch | 90€8 81¢cl 00661 00¢
%E0 | %966 199€ | %6°1 | %L'86 0L8€ | %%99 | €61¢€ elps 056% 00T
%0 | %0001 ¢l6 | %60 | %L66 168 %E8 | L101 860¢ 49! 0%
dJ | o8erea0d | eax dJ | @%erer0o | Teer | (u4/y) | (y) | Surunid zeye | (u)syjed | (u) Aefrea0 uo
(11eqrH) syyed Assof (rmouteg) syjed Asso] | YJIN | Juer syuI[jo # Jo # $1S07 puo JO #

104

8.6 FEvaluation

In this section, we present our evaluation metrics, simulation methodology and
simulation results.

8.6.1 Metrics

The metrics include path loss rate estimation accuracy, variation of measurement
loads among the end hosts, and speed of setup, update, and topology change adaptation.

To compare the inferred loss rate p with real loss rate p, we analyze both absolute
error and error factor. The absolute error is |p — p|. We adopt the error factor F.(p,p)

defined in [18] as follows:
5 p(e) ple)

F.(p.p) = max {ﬁ(g) (e } (8.14)
where p(e) = max(e,p) and p(e) = max(e,p). Thus, p and p are treated as no less than
€, and then the error factor is the maximum ratio, upwards or downwards, by which they
differ. We use the default value ¢ = 0.001 as in [18]. If the estimation is perfect, the error
factor is one.

Furthermore, we classify a path to be lossy if its loss rate exceeds 5%, which is
the threshold between “tolerable loss” and “serious loss” as defined in [136]. We report the
true number of lossy paths, the percentage of real lossy paths identified (coverage) and the
false positive rate, all averaged over five runs of experiment for each configuration.

There are two types of measurement load: 1) sending probes, and 2) receiving
probes and computing loss rates. The load reflects the CPU and uplink /downlink bandwidth
consumption. For each end host h, its measurement load is linearly proportional to, and thus
denoted by the number of monitored paths with h as sender/receiver. Then we compute its
variation across end hosts in terms of the coefficient of variation (CV) and the mazimum
vs. mean ratio (MMR), for sending load and receiving load separately. The CV of a
distribution z, defined as below, is a standard metric for measuring inequality of x, while
the MMR checks if there is any single node whose load is significantly higher than the
average load.

standard deviation(x)

CV(z) = (8.15)

mean(z)

The simulations only consider undirected links, so for each monitored path, we randomly
select one end host as sender and the other as receiver. This is applied to all simulations
with or without load balancing.

8.6.2 Simulation Methodology

We consider the following dimensions for simulation.

e Topology type: three types of synthetic topologies from BRITE (see Chapter 8.6.3)
and a real router-level topology from [56]. All the hierarchical models have similar
results, we just use Barabasi-Albert at the AS level and Waxman at the router level
as the representative.

105

e Topology size: the number of nodes ranges from 1000 to 20000 !. Note that the node
count includes both internal nodes (i.e., routers) and end hosts.

e Fraction of end hosts on the overlay network: we define end hosts to be the nodes
with the least degree. Then we randomly choose from 10% to 50% of end hosts to be
on the overlay network. This gives us pessimistic results because other distributions
of end hosts will probably have more sharing of the routing paths among them. We
prune the graphs to remove the nodes and links that are not referenced by any path
on the overlay network.

e Link loss rate distribution: 90% of the links are classified as “good” and the rest as
“bad”. We use two different models for assigning loss rate to links as in [92]. In the
first model (LLRD,), the loss rate for good links is selected uniformly at random in
the 0-1% range and that for bad links is chosen in the 5-10% range. In the second
model (LLRD5), the loss rate ranges for good and bad links are 0-1% and 1-100%
respectively. Given space limitations, most results are under model LLRD; except
for Chapter 8.6.4.

e Loss model: After assigning each link a loss rate, we use either a Bernoulli or a Gilbert
model to simulate the loss processes at each link. For a Bernoulli model, each packet
traversing a link is dropped at independently fixed probability as the loss rate of the
link. For a Gilbert model, the link fluctuates between a good state (no packet dropped)
and a bad state (all packets dropped). According to Paxon’s observed measurement
of Internet [96], the probability of remaining in bad state is set to be 35% as in [92].
Thus, the Gilbert model is more likely to generate bursty losses than the Bernoulli
model. The other state transition probabilities are selected so that the average loss
rates matches the loss rate assigned to the link.

We repeat our experiments five times for each simulation configuration unless
denoted otherwise, where each repetition has a new topology and new loss rate assignments.
The path loss rate is simulated based on the transmission of 10000 packets. Using the loss
rates of selected paths as input, we compute z, then the loss rates of all other paths.

8.6.3 Results for Different Topologies

For all topologies in Chapter 8.6.2, we achieve high loss rate estimation accuracy.
Results for the Bernoulli and the Gilbert models are similar. Since the Gilbert loss model is
more realistic, we plot the cumulative distribution functions (CDFs) of absolute errors and
error factors with the Gilbert model in Figure 8.5. For all the configurations, the absolute
errors are less than 0.008 and the error factors are less than 1.18. Waxman topologies have
similar results, and we omit them in the interest of space.

The lossy path inference results are shown in Table 8.2. Notice that k£ is much
smaller than the number of IP links that the overlay network spans, which means that
there are many IP links whose loss rates are unidentifiable. Although different topologies
have similar asymptotic regression trend for k£ as O(nlogn), they have different constants.

120000 is the largest topology we can simulate on a 1.5GHz Pentium 4 machine with 512M memory.

Cumulative percentage (%) Cumulative percentage (%)

Cumulative percentage (%)

100
90
80
70
60
50
40
30
20

10f

100
20
80
70
60
50
40
30
20
10

70

60
50
40
30
20
10

1000 nodes, 50 end hosts
1000 nodes, 100 end hosts
5000 nodes, 100 end hosts -
5000 nodes, 300 end hosts =

20000 nodes, 100 end hosts
20000 nqdes, 500 end hpsts

R

RN

On;,‘é e S

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045

Absolute error

BRITE Barabasi-Albert topology

1000 nodes, 50 end hosts
1000 nodes, 100 end hosts
5000 nodes, 100 end hosts -
5000 nodes, 300 end hosts &

20000 nodes, 100 end hosts

)) 20000 nodes, 500 end hosts

I

o
L

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007
Absolute error

0.008

Cumulative percentage (%)

Cumulative percentage (%)

100
90
80
70
60
50
40
30
20

106

10F

100
20
80
70
60
50
40
30

20 §
10f

1000 nodes, 100 end hosts ----x--

5000 nodes, 100 end hosts -

5000 nodes, 300 end hosts =
20000 nodes, 100 end hosts ---=--
20000 nqdes, 500 end hpsts -

o

1000 nodes, 50 end hosts —— |

1

1.02 1.04

106 108 11 112 114 116

Relative error factor

1.18

1000 nodes, 100 end hosts ---

1000 nodes, 50 end hosts —— |

5000 nodes, 100 end hosts -

5000 nodes, 300 end hosts

20000 nodes, 100 end hosts ---#-- 7
20000 nodes, 500 end hosts ---o--

a

1

1.01 1.02

1.03

1.04 105 106 1.07

1.08

Relative error factor

BRITE Hierarchical topology

1.09

50 end hosts ——

100 end hosts ---

200 end hosts -——*-—

% 100
q 90
] . 80f

g

E q Py 70
g

q € 60
Q
<3

1 g 50
(3

, 2 40
<

g g 30
3

q 20

50 end hosts ——
100 end hosts - 7] 10
))) 200 end hosts -——*-— 0)
0 0.001 0.002 0.003 0.004 0.005 0.006 1 1.02

Absolute error

Real topology of 284K routers

1.04

.
1.06

1.08

11

1.12

Relative error factor

Figure 8.5: Cumulative distribution of absolute errors (left) and error factors (right) under
Gilbert loss model for various topologies.

107

of | # of end hosts | lossy paths (Gilbert) speed (second)
nodes | total | overlay | real | coverage | FP | setup | update
50 495 99.8% | 1.1% | 0.13 0.08
1000|506 100 1989 99.8% | 3.0% | 0.91 0.17
100 2367 99.6% | 3.5% | 1.98 0.22
300 21696 | 99.2% | 1.4% | 79.0 1.89
100 2686 98.8% | 1.1% | 3.00 0.25
500 67817 | 99.0% | 4.6% | 1250 4.33

5000 | 2489

20000 1000

Table 8.5: Simulation results with model LLRDs. Use the same Barabasi-Albert topologies
as in Table 8.2. Refer to Table 8.2 for statistics like rank. FP is the false positive rate.

For an overlay network with given number of end hosts, the more IP links it spans on,
the bigger k is. We found that Waxman topologies have the largest £ among all synthetic
topologies. For all configurations, the lossy path coverage is more than 96% and the false
positive ratio is less than 8%. Many of the false positives and false negatives are caused by
small estimation errors for paths with loss rates near the 5% threshold.

We also test our algorithms in the 284,805-node real router-level topology from [56].
There are 65,801 end host routers and 860,683 links. We get the same trend of results as
illustrated in Figure 8.5 and Table 8.3. The CDFs include all the path estimates, including
the monitored paths for which we know the real loss rates. Given the same number of end
hosts, the ranks in the real topology are higher than those of the synthetic ones. But as we
find in Chapter 8.2.2, the growth of k£ is still in the range of O(n).

8.6.4 Results for Different Link Loss Rate Distribution and Running
Time

We have also run all the simulations above with model LLRD5. The loss rate
estimation is a bit less accurate than it is under LLRD1, but we still find over 95% of the
lossy paths with a false positive rate under 10%. Given space limitations, we only show the
lossy path inference with the Barabasi-Albert topology model and the Gilbert loss model
in Table 8.5.

The running time for LLRD and LLRD are similar, as in Table 8.5. All speed
results in this paper are based on a 1.5 GHz Pentium 4 machine with 512M memory. Note
that it takes about 20 minutes to setup (select the measurement paths) for an overlay of
500 end hosts, but only several seconds for an overlay of size 100. The update (loss rate
calculation) time is small for all cases, only 4.3 seconds for 124,750 paths. Thus it is feasible
to update online.

8.6.5 Results for Measurement Load Balancing

We examine the measurement load distribution for both synthetic and real topolo-
gies, and the results are shown in Table 8.4. Given the space constraints, we only show
the results for Barabasi-Albert and hierarchical model. Our load balancing scheme reduces
CV and MMR substantially for all cases, and especially for MMR. For instance, a 500-node

108

overlay on a 20000-node network of Barabasi-Albert model has its MMR reduced by 7.3
times.

We further plot the histogram of measurement load distribution by putting the
load values of each node into 10 equally spaced bins, and counting the number of nodes in
each bin as y-axis. The z-axis denotes the center of each bin, as illustrated in Figure 8.6.
With load balancing, the histogram roughly follow the normal distribution. In contrast,
the histogram without load balancing is close to an exponential distribution. Note that the
y-axis in this plot is logarithmic: an empty bar means that the bin contains one member,
and 0.1 means the bin is empty.

80
70 4
60 =
50 -
40 4
30 A

20 4
104
0 T T T T T T
n -
— [
N

o
S
s}

iy
o
s}

-

Number of end hosts in each bin

T T T T
< o
® ®© o
« M ow

Number of end hosts in each bin =
.
o

~ o Il @ (@ |d| @
P - N 2 I8 S (9 [8 S
© e & d 383§ g
Amount of measurements 01 Amount of measurements
(average for each bin) (average for each bin)
(a) with load balancing (b) without load balancing

Figure 8.6: Histogram of the measurement load distribution (as sender) for an overlay of
300 end hosts on a 5000-node Barabasi-Albert topology.

8.6.6 Results for Topology Changes

We study two common scenarios in P2P and overlay networks: end hosts joining
and leaving as well as routing changes. Again, the Bernoulli and the Gilbert models have
similar results, thus we only show those of the Gilbert model.

End hosts join/leave

of end | # of | rank lossy paths
hosts paths real | coverage | FP
40 780 616 470 99.9% | 0.2%
+5 +210 | +221 | +153 | 100.0% | 0.1%

(45) (990) | (837) | (623)
+5 1235 | +160 | +172 | 99.8% | 0.2%
(50) | (1225) | (997) | (795)

Table 8.6: Simulation results for adding end hosts on a real router topology. FP is the false
positive rate. Denoted as “+added_value (total_value)”.

For the real router topology, we start with an overlay network of 40 random end
hosts. Then we randomly add an end host to join the overlay, and repeat the process until
the size of the overlay reaches 45 and 50. Averaged over three runs, the results in Table 8.6
show that there is no obvious accuracy degradation caused by accumulated numerical errors.

109

of end | # of rank lossy paths
hosts paths real coverage | FP
60 1770 1397.0 | 1180.3 99.9% | 0.2%
-5 -285 -245.3 | -210.0 99.8% | 0.2%
(55) (1485) | (1151.7) | (970.3)
-10 -260 -156.7 | -150.6 99.9% | 0.1%
(50) (1225) | (995.0) | (819.7)

Table 8.7: Simulation results for deleting end hosts on a real router topology. FP is the
false positive rate. Denoted as “-reduced_value (total_value)”.

The average running time for adding a path is 125 msec, and for adding a node, 1.18 second.
Notice that we add a block of paths together to speedup adding node (Chapter 8.3).

Similarly, for removing end hosts, we start with an overlay network of 60 random
end hosts, then randomly select an end host to delete from the overlay, and repeat the
process until the size of the overlay is reduced to 55 and 50. Again, the accumulated
numerical error is negligible as shown in Table 8.7. As shown in Chapter 8.4, deleting a
path in G is much more complicated than adding a path. With the same machine, the
average time for deleting a path is 445 msec, and for deleting a node, 16.9 seconds. We
note that the current implementation is not optimized: we can speed up node deletion by
processing several paths simultaneously, and we can speed up path addition and deletion
with iterative methods such as CGNE or GMRES [10]. Since the time to add/delete a
path is O(k?), and to add/delete a node is O(nk?), we expect our updating scheme to be
substantially faster than the O(n2k?) cost of re-initialization for larger n.

Routing changes

We form an overlay network with 50 random end hosts on the real router topology.
Then we simulate topology changes by randomly choosing a link that is on some path of
the overlay and removing of such a link will not cause disconnection for any pair of overlay
end hosts. Then we assume that the link is broken, and re-route the affected path(s).
Algorithms in Chapter 8.4 incrementally incorporate each path change. Averaged over
three runs, results in Table 8.8 show that we adapt quickly, and still have accurate path
loss rate estimation.

of paths affected 40.7
of monitored paths affected 36.3
of unique nodes affected 41.7
of real lossy paths (before/after) | 761.0/784.0
coverage (before/after) 99.8%/99.8%
false positive rate (before/after) 0.2%/0.1%
average running time 17.3 seconds

Table 8.8: Simulation results for removing a link from a real router topology.

110

8.7 Internet Experiments

We implemented our system on the PlanetLab [102] testbed. In this section, we
present the experimental results from the implementation.

8.7.1 Methodology

We choose 51 PlanetLab hosts, each from a different organization as shown in
Table 8.9. All the international PlanetLab hosts are universities.

Areas and Domains # of hosts
.edu 33

.org
US (40) .net
.gov
.us

France
Europ Sweden
(6) Denmark
Inter- Germany
national UK
(11) Asia Taiwan
(2) Hong Kong
Canada
Australia,

=N = = N = = =] = = =] N

Table 8.9: Distribution of PlanetLab hosts for experiments.

First, we measure the topology among these sites by simultaneously running
“traceroute” to find the paths from each host to all others. Each host saves its desti-
nation IP addresses for sending measurement packets later. Then we measure the loss rates
between every pair of hosts. Our measurement consists of 300 trials, each of which lasts 300
msec. During a trial, each host sends a 40-byte UDP packet ? to every other host. Usually
the hosts will finish sending before the 300 msec trial is finished. For each path, the receiver
counts the number of packets received out of 300 to calculate the loss rate.

To prevent any host from receiving too many packets simultaneously, each host
sends packets to other hosts in a different random order. Furthermore, any single host uses
a different permutation in each trial so that each destination has equal opportunity to be
sent later in each trial, because when sending packets in a batch, the packets sent later are
more likely to be dropped. Such random permutations are pre-generated by each host. To
ensure that all hosts in the network take measurements at the same time, we set up sender
and receiver daemons, then use a well-connected server to broadcast a “START” command.

220-byte IP header + 8-byte UDP header + 12-byte data on sequence number and sending time.

111

Will the probing traffic itself cause losses? We did sensitivity analysis on sending
frequency as shown in Figure 8.7. All experiments were executed between lam-3am PDT
June 24, 2003, when most networks are free. The traffic rate from or to each host is
(51 — 1) x sending_freq x 40 bytes/sec. The number of lossy paths does not change much
when the sending rate varies, except when the sending rate is over 12.8Mbps, since many
servers can not sustain that sending rate. We choose a 300 msec sending interval to collect
loss rate statistics quickly but with moderate bandwidth consumption.

Bandwidth consumption (Kbps)

160016 160 1600 16000
1400 |-
@ 1200
g
< 1000 |
n
3
2 goof
o
S 600 [
£
=3
Z 400 |
200 |
Oﬁ L L
1 10 100 1000

Sending frequency (number of trials per second)

Figure 8.7: Sensitivity test of sending frequency

Note that the experiments above use O(n?) measurements so that we can compare
the real loss rates with our inferred loss rates. In fact, our technique only requires O(n logn)
measurements. Thus, given good load balancing, each host only needs to send to O(logn)
hosts. Even for an overlay network of 400 random end hosts on the real topology of 284K
nodes that we used before, £ = 18668. If we reduce the measurement frequency to one trial
per second, the traffic consumption for each host is 18668/400x 40 bytes/sec = 14.9Kbps,
which is typically less than 5% of the bandwidth of today’s “broadband” Internet links. We
can use adaptive measurement techniques in [40] to further reduce the overheads.

8.7.2 Results

From June 24 to June 27, 2003, we ran the experiments 100 times, mostly during
peak hours 9am - 6pm PDT. Each experiment generates 51 x 50x 300 = 765K UDP packets,
totaling 76.5M packets for all experiments. We run the loss rate measurements three to
four times every hour, and run the pair-wise traceroute every two hours. Across the 100
runs, the average number of selected monitoring paths (G) is 871.9, about one third of total
number of end-to-end paths, 2550. Table 8.10 shows the loss rate distribution on all the
paths of the 100 runs. About 96% of the paths are non-lossy. Among the lossy paths, most
of the loss rates are less than 0.5. Though we try to choose stable nodes for experiments,
about 25% of the lossy paths have 100% losses and are likely caused by node failures or

other reachability problems as discussed in Chapter 8.7.2.

112

loss [0, 0.05) lossy path [0.05, 1.0] (4.1%)
rate | L [0.05, 0.1) [[0.1, 0.3) | [0.3, 0.5) | [0.5, 1.0) | 1.0
% 95.9% 15.2% 31.0% 23.9% 4.3% 25.6%

Table 8.10: Loss rate distribution: lossy vs. mnon-lossy and the sub-percentage of lossy
paths.

Accuracy and speed

When identifying the lossy paths (loss rates > 0.05), the average coverage is 95.6%
and the average false positive rate is 2.75% Figure 8.8 shows the CDFs for the coverage and
the false positive rate. Notice that 40 runs have 100% coverage and 90 runs have coverage
over 85%. 58 runs have no false positives and 90 runs have false positive rates less than

10%.

False positive rate (%)
0 2 4 6 8 10 12 14 16 18

100

S

[}

j=2]

8

c

Q

o

5]

o

[

=

K|

=] L

g 30

=1

o 20

0 Coverage of lossy paths
0 . . False positive rate ------
100 95 90 85 80 75

Coverage of lossy paths (%)

Figure 8.8: Cumulative percentage of the coverage and the false positive rates for lossy path
inference in the 100 experiments.

As in the simulations, many of the false positives and false negatives absolute error
across the 100 runs is only 0.0027 for all paths, and 0.0058 for lossy paths. We pick the
run with the worst accuracy in coverage (69.2%), and plot the CDF's of absolute errors and
error factors in Figure 8.9. Since we only use 300 packets to measure the loss rate, the loss
rate precision granularity is 0.0033, so we use ¢ = 0.005 for error factor calculation. The
average error factor is only 1.1 for all paths.

Even for the worst case, 95% of absolute errors in loss rate estimation are less
than 0.014, and 95% of error factors are less than 2.1. To further view the overall statistics,
we pick 95 percentile of absolute errors and error factors in each run, and plot the CDF's
on those metrics. The results are shown in Figure 8.10. Notice that 90 runs have the 95
percentile of absolute errors less than 0.0133, and 90 runs have the 95 percentile of error
factors less than 2.0.

The average running time for selecting monitoring paths based on topology mea-
surement is 0.75 second, and for loss rate calculation of all 2550 paths is 0.16 second.

In short, we achieve high accuracy for loss rate estimation in real time with both
Internet experiments and simulations.

113

Error factors of loss rate estimation

1 15 2 2.5 3 3.5 4
100 , —

Cumulative Percentage (%)

30 |
20 |
oy Absolute error 4
0 .) Error factor -

0 0.005 0.01 0.015 0.02

Absolute errors of loss rate estimation

Figure 8.9: Cumulative percentage of the absolute errors and error factors for the experiment
with the worst accuracy in coverage.

95 percentile of error factors

1 1.2 1.4 1.6 1.8 2 2.2
100 T T T
90 - R
g 8o R
g 70f R
it
S 60 - R
o
8 50r g
2 a0} 1
8
=] . B
2 30
=1
o 20 - R
10 oo 95 percentile of absolute errors 1
0)) 95 pqrcentile of error factor§ e
0 0.005 0.01 0.015 0.02 0.025 0.03

95 percentile of absolute errors

Figure 8.10: Cumulative percentage of the 95 percentile of absolute errors and error factors
for the 100 experiments.

114

Topology error tolerance

The limitation of traceroute, which we use to measure the topology among the
end hosts, led to many topology measurement inaccuracies. As found in [122], many of the
routers on the paths among PlanetLab nodes have aliases. We did not use sophisticated
techniques to resolve these aliases. Thus, the topology we have is far from accurate. But
we are still be able to get good results as above.

Some nodes were down, or were unreachable from certain nodes. For instance,
planetlabl.ipls.internet2.planet-lab.org,planetlab2.sttl.internet2.planet-1ab.
org and planet2.berkeley.intel-research.net often can not reach uwl.accretive-dsl.
nodes.planet-lab.org, while other nodes can. Meanwhile, some routers are hidden and
we only get partial routing paths. Averaging over 14 sets of traceroutes, 245 out of 51 x 50
= 2550 paths have no or incomplete routing information. The accurate loss rate estimation
results show that the technique is robust against topology measurement errors.

8.8 Discussion

In this section, we generalize our framework to infer the path loss rate bound when
we have only restricted measurements.

We note that, in addition to the equations (8.4), the unknown z; must satisfy
the inequalities z; < 0. While we do not make use of them in our current work, these
inequalities can be used in conjunction with (8.4) to bound failure probabilities, both from
below and from above. For example, the loss probability /; is bounded above by the loss
probability of the least lossy path that includes link j. More generally, we have the following
theorem:

Theorem 2 Let v € {0,1}* represent a network path with loss probability p, and let w =
GTc for some c € R" (i.e. w € R(GT)). Then

1. If v < w elementwise, then log(1 —p) > c''b

2. If v > w elementwise, then log(1 —p) < c’'b

Proof: In the first case, v < w so that v —w < 0 elementwise. Since z < 0 elementwise,
(v —w)Tz >0, or vl'z > wl'z. We know log(1 — p) = vTz from (8.3), and w'z = ' Gz =
c’'b. By substitution, we have log(1 — p) > c¢'b. The second case is nearly identical. [|
In principle, we can compute good upper and lower bounds on path loss rates by

solving two linear programming problems:

1. Maximize c!'b subject to GTc, > v,
2. Minimize c;fb subject to GT¢; < w.

Then 1 — exp(c] b) < p <1 —exp(cl'b). When v € R(GT), we have v = GT¢, = GT¢;, and
the bound is tight. While this approach seems to offer bounds on path loss probabilities
that are possibly optimal given the measured data, we have not yet applied the technique
in practice.

115

8.9 Summary

In this chapter, we present a tomography-based overlay network loss rate moni-
toring system. For an overlay of n end hosts, the space of O(n?) paths can be characterized
by a basis of O(nlogn) paths. We selectively monitor these basis paths, then use the mea-
surements to infer the loss rates of all other paths. Our approach updates the path loss rate
estimation in real time, offers fast adaptation to topology changes, distributes balanced load
to end hosts, and handles topology measurement errors. Both simulation and real Internet
implementation show promising results.

Internet Iso-bar and TOM form the overlay network monitoring services for SCAN
as in Figure 1.2. How does CDN benefit from such monitoring services? In the next chapter,
we present a case study for live media streaming.

116

Chapter 9

Case Study: Streaming Media over
A Monitoring-based Adaptive
Overlay Network

Streaming delivery of media is an important technology behind applications such as
Internet video conferencing and streaming playback. Traditional streaming media systems
treat the underlying network as a best-effort black box, and adaptations are performed at
the transmission end-points. In this chapter, we design, implement and evaluate an adaptive
live streaming media system that leverages scalable monitoring services (such as Internet
Iso-bar and TOM) for real-time path congestion/failure information, and an overlay network
for adaptive packet relaying and buffering within the delivery infrastructure. Specifically,
streaming clients in our system employs overlay routing to bypass faulty or slow links and
re-establish new connection to streaming servers. We introduce a buffering technique in the
overlay network to enable retransmission of lost packets during path switching, resulting in
skip-free playback for live content. Using PlanetLab for Internet testbed, we show that in
many cases, overlay routing can achieve lower loss rate and/or higher TCP throughput. Our
PlanetLab experiments also show that our system can typically adapt to network congestion
in less than five seconds, and effectively achieve skip-free streaming media playback.

For the rest of this chapter, we will first survey existing streaming media technolo-
gies in Chapter 9.1, then the diversity of overlay paths in Chapter 9.2, followed by the design
and implementation of monitoring-based adaptive overlay streaming media in Chapter 9.3.
Finally, we presented our evaluation methodology and results in Chapter 9.4.

9.1 Streaming Media Technologies

Streaming media applications typically require sustained network performance in
terms of throughput, packet loss, and even latency for interactive applications. In contrast,
the Internet provides unpredictable and time-varying service. To address the mismatch in
transport requirements, many techniques have been developed and are employed by existing
streaming systems. We classify the techniques into three main categories: source-coding,

117

end-point adaptation, and infrastructure support. These techniques are complementary to
the proposed adaptive overlay scheme, and can be employed in conjunction.

9.1.1 Source-coding

Video streaming is significantly more challenging than audio streaming due to
the higher bit-rate and higher error-sensitivity of video data. Nevertheless, great progress
has been made in video compression technology to reduce the transmission bandwidth of
video. In particular, MPEG-4 enables video streaming services to wireless devices and is
the basis of streaming service in third generation (3G) cellular systems [46]. More recently,
H.264 [131] has been standardized and represents significant compression improvement over
MPEG-4. Scalable video compression is a technology suitable for time-varying environ-
ments, and both MPEG-2 and MPEG-4 have scalable compression mode. However, due to
compression performance and complexity issues, scalable compression has not been widely
deployed in streaming systems today. Besides better compression efficiency, newer com-
pression standards also handle losses better. In particular, MPEG-4 has an error-resilience
feature that targets transport in both packet-erasure and bit-error channels [57].

9.1.2 End-point Adaptation

To adapt to a time-varying channel, streaming systems typically employs adap-
tations at the transmission end-points. Specifically, for live events, time-varying network
throughput can be accommodated by adaptively adjusting the quality of the video being
produced. For stored media, current streaming solutions typically employed an adaptive
switching technique under which multiple copies of the same content at different bit-rates
are stored. The transmission end then adaptively switches, in mid-stream, to a copy with
bit-rate commensurate with prevalent network conditions. The technique has been labelled
SureStream by RealNetworks® [109] and Intelligent Streaming by Microsoft® [78]. In
terms of time-varying losses, many end-point adaptive techniques that employs forward
error correction (FEC) and retransmissions have been proposed, including unequal error
protection, where FEC is differentially applied to different parts of video data with differ-
ent error-sensitivity [19]. Live streams can further benefit from client feedback information
to avoid using lost frames for predictive coding of future frames. This scheme is sometimes
known as Reference Picture Selection in H.263 and H.264 literature [131].

9.1.3 Infrastructure Support

Similar to data delivery, the advent of CDN technology in the Internet has im-
proved media streaming via edge caching. The use of multiple paths for streaming in a CDN
context has been investigated for the purposes of increased throughput [84] and avoiding
burst losses [7]. However, none of the work address how to find multiple paths without
sharing bottleneck or correlated failures.

118

9.2 Path Improvement with Overlay Routing

End-to-end route selection schemes have been shown effective to improve today’s
IP routing. Detour project found that for 30-80% of paths, there is an alternate overlay path
with significantly superior quality in terms of round-trip time, loss rate and bandwidth [115].
However, for most of their datasets, they did not measure all paths simultaneously, nor do
they measure all hops on a single synthetic paths simultaneously. Instead, they rely on
long-term time averages of each metric of path quality. In [40], Anderson, et al. studied
the loss rate, latency and TCP throughput improvement on an overlay network of only 12 -
16 nodes, and found that about 5% of samples have significant improvement (i.e., loss rate
reduction by 0.05 and double throughput). But they uses bi-directional measurements and
take the half as uni-directional performance which is not accurate for asymmetric routing
and asymmetric link performance [34].

In this section, we revisit the overlay routing enhancement with improved measure-
ments on a globally distributed overlay network of 51 nodes. We use the same PlanetLab
measurement data as in Chapter 8.7. Note that for each set of measurements, the uni-
directional loss rates and round-trip time for all pair of paths are measured simultaneously,
and all overlay paths are measured.

We study the performance improvement achieved through single-node relay on
the overlay network. For each path (sr¢ — dest) considered, we find the overlay path
(sr¢ — relay — dest) that gives most performance improvement. The performance of
overlay path is computed with the formulas below. [r stands for loss rate and ¢p stands for
throughput.

Irovertay = 1 — (1 = Ir(src — relay))(1 — lr(relay — dest)) (9.1)

tPoveriay = min(tp(src — relay), tp(relay — dest)) (9.2)

9.2.1 Loss Rate Improvement

In a total of 2550 x 100 = 255,000 path measurements, 10,980 (or 4.1%) are lossy .
Among them, 5,705 paths (52.0%) have loss rate reduced by 0.05 or more and 3,084 paths
(28.1%) change from lossy to non-lossy.

9.2.2 TCP Throughput Improvement

For simplicity, we use the formula from [40] as below to estimate the TCP through-

V1.5
rtt X Viloss_rate

where rtt is the round-trip time and loss_rate is the uni-directional loss rate of the path.

It provides a good estimation of the path throughput for a wide range of loss rate [91].
Among the 255,000 path measurements, 60,320 paths (24%) have non-zero loss

rate, and thus computable throughput. When the loss rate is 1.0, the path is disconnected,

put.

throughput = (9.3)

!See the definition of lossy path in Chapter 8.7.

119

so we set the throughput to be zero. Note that most paths with small bandwidth has
non-zero loss rates. So this subset covers most of the paths of which the throughput can be
improved.

Since we only consider a subset of the possible overlay paths (24%), the per-
formance improvement below is a conservative estimation. Still, the results are very en-
couraging. Among the 60,320 path measurements, 32,939 (54.6%) paths have improved
throughput, and 13,734 (22.8%) paths have throughput which is doubled or more.

9.3 Monitoring-based Adaptive Overlay Streaming Media

Inspired by the effectiveness of overlay routing performance improvement, we pro-
pose an adaptive overlay network for streaming media that incorporates two important
features. First, adaptive overlay routing is performed to bypass, in mid-session, link conges-
tion and failure. Rather than conforming to degrading throughput or loss as many existing
systems do, our adaptive overlay routing scheme can effectively and actively improve the
quality of the delivery path. Second, to assist smooth or skip-free playback at the client,
we employ an efficient buffering scheme in the overlay nodes so that packets transmitted
during the overlay path switching time can be transmitted at a later time. Since stream-
ing clients typically have 10 to 15 seconds of buffer time before playback starts, skip-free
playback is possible if path switching takes less than 10 seconds, as we shall demonstrate in
Chapter 9.4. Note that our techniques are orthogonal to the previous work in Chapter 9.1.

9.3.1 Architecture

In addition to streaming media clients and server, the system is composed of a
set of overlay nodes, e.g., the CDN. For the rest of this chapter, we refer “overlay nodes”
as “nodes”. These nodes and the server are monitored by Internet Iso-bar and/or TOM.
Thus there is an Overlay Network Operation Center (ONOC) which instruments some of
the nodes to continuously measure some paths for a complete map of network conditions
among the nodes.

We call this proactive agility, which maintains the complete map before receiving
backup path requests. Alternatively, we can reactively measure and look for backup paths
after receiving such requests. We adopt the former approach because we view the overlay
monitoring service as shared by many service providers. The proactive approach offers quick
response while the monitoring cost is amortized by large amount of users.

Normally a client directly connects to a server for streaming media content. It also
registers the path and sets up a trigger for path performance warnings at ONOC. When the
path incurs congestion/failure, ONOC detects that either through passive monitoring by
the client or through some active probing instrumented by ONOC. Then ONOC searches
for an alternative overlay path to bypass the faulty path 2, and sends that to the client if
such path exists. The client tears down the current connection, sets up a new connection
via overlay node(s), and attempts to concatenate the new streams with the old one for
skip-free effect. The event driven diagram is shown in Figure 9.1.

>The path selection can be based on multiple metrics as in [33].

120

5. Alert + OVERLAY NETWORK
New Overlay Path OPERATION CENTER

. . —
2. Register trigger 1. Setup =
- connection ‘fé

4. Detect congestion SERVER

failure

ﬁ (/3. Network congestion /

7. Skip-free streaming
media recovery

6. Setup New Path

OVERLAY RELAY
NODE

Figure 9.1: Event-driven diagram of monitoring-based adaptive overlay media streaming

Given millions of clients, we cannot monitor the network distance for each of them.
We group the client by the autonomous system (AS) (or more sophisticated technique
like [67]) and assume that there is an overlay node (referred as proxy) in the same AS of
the client and experiences similar congestion/losses as the client does. If congestion is in
the last mile of the client (i.e., the access network through which the client is connected to
the Internet), any scheme based on path diversity will not work. For simplicity, we assume
that the client and its overlay proxy are the same node.

9.3.2 Skip-free (Lossless) Streaming Media Recovery

To bypass network congestion or failures, the client needs to tear down the current
connection, switch to the overlay path and reestablish the connection to the server. For
live streaming media or when the server is broadcasting the media to multiple clients, the
reconnected client may lose part of the data. In this section, we discuss the protocol and
implementations for continuous (skip-free) media playback.

We add a buffering layer at the server and an overlay layer at the client to work
with legacy client and server softwares. The architecture is shown in Figure 9.2. Our
implementation is built on Winamp [88] client and SHOUTcast [87] media server software.
Media transport for SHOUTcast is carried using TCP, nevertheless, our adaptive overlay
routing and buffering techniques are applicable to other transport mechanisms such as
RTP/UDP.

When a client sends a connection request to the streaming media server, the media
server responds with a server header indicating the server type, build, etc.. The buffering
layer at the server keeps track of the current number of bytes broadcasted and inserts that
information into the server header. The overlay layer at the client also records the current
number of bytes broadcasted. This is to ensure that both the server and the client have a
common reference point as the absolute byte offset from the beginning of the media, then
the client starts counting the number of bytes it receives.

During normal video streaming playback, both the server and the client know the
number of bytes broadcasted. The data flows directly from the SHOUTcast server to the
client. Meanwhile, the most recent data streamed are cached in the buffering layer of the

Client 4

MEDIA
OVERLAY NETWORK
SOURCE OPERATION CENTER , _ CLIENT
‘ Winamp client
¢ SERVER Triggering / : m— verlay
SHOUTcast alert + new path Winamp Video/Audio Filter | | ayer
= Server - \E:@ =
& RELAY| |
\ Byte Counter
Overlay Layer \ o
Buffering Layer \\ ’ Path Management ‘
\\ $’
\\ Y
‘\ TCP/IP Layer
A/rn/tgrnet
\\\\ N i //
< \ \ ~ /
N \ \ S 7
\ \ \ S 4
\\ \ \\ S~ //
Client1 |,”
5)
i LQJ
! N
From | ‘OEJ\ Client 2
SHOUTcast | & 3 Fol
server ° | o)
S | — NEN
Calculated | @ | ﬁ /| INTERNET
concatenation - ~ Client 3
point ,,,{ 5}
N~ 5

Figure 9.2: Architecture of monitoring-based adaptive overlay media streaming

121

122

server.

When a path change occurs, the client sets up a new path via overlay node(s)
to connect to the streaming media server. When reconnected, the filtering layer of client
issues a “reset” signal along with the clients last known number of bytes the server broad-
casted (denoted as client_count). The server then uses the current number of bytes broad-
casted (server_count) to determine the amount of broadcast data that the client is missing
(server_count — client_count). If the amount of missing data is no larger than the buffer
size, the server resumes data transmission from exactly the point where the connection
dropped before, and the client will have perfect concatenation with the old media streams.

During the path change, the Winamp client is disconnected from the server, but it
will continue the playback with data in its own buffer. If it receives new streams from the
reestablished connection before running out of the buffer, the client will perceive continuous
skip-free media playback. The path change and stream concatenation are transparent to
the user.

The minimum size of buffers on the server and client for skip-free playback depends
on the streaming bitrate and the adaptation time defined as the period from the moment
that congestion/failure occurs to successful stream concatenation. The maximum streaming
bitrate for DSL/cabel modem is 450 Kbps [110]. As shown in Chapter 9.4.2, the adaptation
time is less than 10 seconds. Thus a buffer of 1MB is sufficient. Even if the missing data is
bigger than the server buffer size, the server can still start from the beginning of the buffer
to alleviate the losses.

Implementation Details

Each normal client has a data queue. There is a main thread reading data from the
SHOUTecast server and enqueuing the data to each queue. Every client also has a dequeuing
thread which dequeues the data and sends it to the client. When disconnected, the client
removes the queue and exit the dequeuing thread.

For each reconnected client, a separate rewind thread (denoted as the dotted curve
in the server buffering layer of Figure 9.2) will be spawned to calculate the byte offset of the
streaming data where the client left off (the concatenation point in Figure 9.2), and transmit
the data from the buffer. The sending rate of the rewind thread for the reconnected client
is higher than that of those normal clients so that the reconnected client can refill its buffer
quickly. From our experiments, the catch up time is negligible to the path switch time.

When the reconnected client catches up with normal clients, i.e., the rewind thread
reaches the same index of the streaming data as the main thread, the main thread will take
over the client, and the rewind thread can exit. To avoid the synchronization overhead
between these two threads, we have the main thread enqueue the reconnected client as well
(denote the starting index as reconnection point). Since the catch up time is negligible
(in the order of seconds), we assume that the queue of reconnected client can hold the
transmitted data of the main thread in that period. Then the rewind thread only needs to
transmit the data from the concatenation point to the reconnection point. After that, it
becomes a normal dequeuing thread, transmitting data from the queue to the client.

We can also apply this technique to application-level media multicast. So the edge
overlay nodes use skip-free technique for their clients. Presumably, this technique is also

123

applicable to wireless streaming media when the handoff occurs.

9.4 Evaluation

9.4.1 Methodology

We implement the client overlay layer in 2200 lines of C# code and the server
buffering layer and overlay relay layer in Java, with 1100 lines and 900 lines of code, respec-
tively.

We deploy our system on PlanetLab [102], a global network testbed. For most of
our experiments, we place the SHOUTcast server on various locations as in Chapter 9.4.2.
The ONOC is at Stanford University, the overlay relay node is at HP Lab of Palo Alto,
California, and the Winamp client is at U. C. Berkeley. The client is an Intel PIII/500MHz
Windows XP machine with 256 MB RAM on 100Mbps switched Ethernet. All other hosts
are PlanetLab nodes, 1.0GHz-1.8GHz Linux machines with 512MB-883MB RAM.

The bottleneck is introduced by using a Packeteer® PacketShaper [133]. The
streaming bitrate is about 600 Kbps and less than the normal available bandwidth between
client and server. During streaming, we set the bandwidth limit from SHOUTcast server
to Winamp client as 76 Kbps.

For congestion detection, we have the client passively monitor the throughput every
200-300 msec and use exponential-weighted moving average (EWMA) for better stability.
If the smoothed throughput drops below certain threshold (e.g., 50% of streaming bitrate),
we assume that congestion occurs.

The baseline for comparison is the client-server streaming media without monitoring-
based adaptation. Thus when congestion occurs, the Winamp client will gradually run out
of buffer, and eventually stall the media playback while our monitoring-based approach will
adapt to the congestion. There are two metrics: 1) the adaptation time defined as the
period from the moment that congestion/failure occurs to successful stream concatenation,
and 2) Effectiveness of skip-free continuous playback. In the next section, we will report
our experiment results on both metrics.

9.4.2 Experiment Results

The adaptation time breakdown are as follows.

1. Detection of congestions: the time from introducing the bottleneck link via Packet-
Shaper to when the client detects the congestion is 0.5 second on average.

2. Client reports the congestion to the ONOC. It depends on the latency between client
and the ONOC, and is even less than 0.1 second in our experiment.

3. ONOC searches for non-lossy overlay path from the client to the server, and sends to
the client. We run the loss rate calculation and path finding on TOM for a 51-node
overlay network on PlanetLab. On average it takes 0.66 second.

124

4. Client tears down old connection, sets up new connection via overlay node and gets
the new media data concatenated. This depends on the distance between client to the
relay node and relay node to the server. For instance, we vary the locations of servers
as in Table 9.1, the average time for this step is 0.73 second (exclusive of DNS lookup
time since ONOC sends the client the IP address of overlay relay node directly.). One
can imagine that different locations of relay node will have similar effect.

Areas and Domains Time (second)
ucsd.edu, San Diego, CA 0.60
nbgisp.com, Seattle, WA 0.43
US (6) nec-labs.com, Princeton, NJ 0.59
Ibl.gov, Berkeley, CA 0.64
berkeley.intel-research.net, Berkeley, CA 0.54
atl.ga.us, Atlanta, GA 0.75
France 1.22
Europd Sweden 0.93
(5) Denmark 0.75
Inter- Germany 0.87
national UK 0.70
9) Asia Taiwan 0.90
(2) Hong Kong 0.71
Canada 0.60
Australia 0.78

Table 9.1: Distribution of SHOUTcast servers on PlanetLab and corresponding latencies.

The total adaptation time is less than three seconds. It may get larger with
different location of overlay relay node, but at most just for a few seconds. Conservatively
speaking, the adaptation time is less than five to ten seconds.

In addition, all the experiments with various server locations as above show perfect
concatenation of streaming media and skip-free playback. Given that the overlay routing
can significantly improve the loss rate and TCP throughput (Chapter 9.2), we believe that
monitoring-based adaptive overlay streaming media system can effectively bypass the faulty
links and achieve skip-free media playback.

In summary, in Part 11, we propose a scalable network monitoring services with two
components: Internet Iso-bar for latency estimation, and TOM for loss rate estimation. We
further demonstrate their effectiveness with a monitoring-based adaptive overlay streaming
media system.

125

Chapter 10

Conclusions

We endeavored in this thesis to build a content distribution network, SCAN, with
good scalability, efficiency, agility and security. The Internet being an enormous, highly-
dynamic, heterogeneous, and untrusted environment makes this undertaking immensely
challenging.

Central to my dissertation is the combination of theory and real-world measurement-
based simulation and implementation. I draw from diverse fields of applied mathematics,
such as combinatorial algorithms and linear algebra as needed to better understand the de-
sign space structure. Meanwhile, real-world trace analysis, simulation and implementation
conducted were used to expose the real behavior of the Internet, reveal intriguing points
in the design space, and to validate the design decisions. Valuable insights gained through
measurement-based analysis have ultimately led to several changes of the original design
choices. To get access to real Internet measurement (often proprietary), we have actively
collaborated with industrial researchers from various places, such as AT&T Labs - Research,
HP Labs, Keynote Inc., Microsoft Research, and National Laboratory for Applied Network
Research (NLANR).

This chapter concludes the dissertation by summarizing the major contributions
of the thesis and suggesting some key directions for future work.

10.1 Thesis Summary
We made the following contributions in our thesis:

e We designed the first simulation-based network DoS resilience benchmark, and applied
it to evaluate three type of object location services: the centralized, the replicated,
and the emerging distributed object location service [24].

e We proposed a novel CDN, SCAN, on top of a DHT, Tapestry. SCAN dynamically
places close-to-minimal number of replicas to meet client QoS (e.g., latency) and
server resource constraints, with overlay network topology only. Furthermore, these
replicas self-organize into an application-level multicast tree. In contrast to previous
work, each node in the tree (including the root) only needs to maintain states for

126

its parent and direct children, thus truly scalable. Simulation results on both flash-
crowd-like synthetic workloads and real Web server traces show that our design goals
are met [26, 27].

To reduce the replica management overhead, we investigated several clustering schemes
based on aggregated users’ access patterns to find contents that are likely to be accessed
by groups of clients who are topologically close. Previous work focus on individual
user’s access patterns for prefetching - in fact we found such clustering works poorly
for replication in CDN-like shared access environment. Evaluations based on various
topologies and Web server traces show that our clustering-based replication reduces
the management overhead by a factor of 50 - 100 without sacrificing end users’ retrieval
performance [30, 31].

We proposed the first online Web object popularity prediction algorithm based only
on hyperlink structures, and applied it for online incremental clustering and replica-
tion to adapt to changes in users’ access patterns. Through this scheme, we push new
content to the appropriate existing cluster replicas even before accessed. In addition
to reducing the management overhead as before, it cuts down the retrieval cost by 4.6
times compared with random replication, and by 8 times compared with no replica-
tion. In comparison with pull-based replication, it can effectively improve document
availability during flash crowds [30, 31].

Traditional latency estimation system cluster end hosts based on network /geographical
proximity, or rely on a few landmark sites for all distance measurements and updates.
We built a novel latency estimation system, Internet Iso-bar, which clusters end hosts
based on the similarity of their perceived network distance to a small number of land-
mark sites, and chooses the centroid of each cluster as monitoring site. Evaluation
using real Internet measurements shows that our scheme offers much better accuracy
and stability than previous clustering-based approaches, and such performance is in-
sensitive to the number of landmarks. Our accuracy is comparable to GNP, but our
distributed measurement further enables online monitoring. For a real overlay network
of 106 hosts, it detects 78% of congestion/failures with 32% of false positive [28, 29].

For accurate loss rate monitoring of an overlay network with n end hosts, previous
work requires O(n?) measurement, thus unscalable. We designed and implemented
an overlay monitoring system, TOM, which finds a minimal basis set of O(nlogn)
linearly independent paths that can fully describe all the O(n?) paths. It selectively
monitors and measures the loss rates of these paths, and then applies them to estimate
the loss rates of all other paths. In addition, TOM is adaptive to topology changes,
has good load balancing and handles topology measurement inaccuracies. Both ex-
tensive simulation and PlanetLab experiments show that we achieve high path loss
rate estimation accuracy. We can also continuously update the loss rate estimates
online. For example, in the Internet experiments, the average update time is 0.16
second for all 2550 paths, the average absolute error of loss rate estimation is 0.0027
and the average error factor is 1.1. So it can precisely find lossy and non-lossy paths
for clients [25].

127

e To demonstrate how Internet Iso-bar and TOM can benefit applications, we designed
and implemented a monitoring-based adaptive overlay streaming media system. Tra-
ditional streaming media schemes treat the underlying network as a best-effort black
box and perform adaptations only at the transmission end-points. Instead, our system
leverages scalable monitoring services for real-time path congestion/failure informa-
tion, and an overlay network for adaptive packet relaying and buffering within the de-
livery infrastructure. Specifically, streaming clients employs overlay routing to bypass
faulty or slow links and re-establish new connection to streaming servers. Experiments
on the Internet show that our system typically adapts to network congestions within
five seconds and achieves skip-free streaming media playback.

10.2 Future Work
There are three general areas of future work suggested by our research.

e General DoS resilience benchmark While our network DoS resilience study in
Chapter 3 is very specific, we feel that some of our methodology can be applied in
a more general setting. In particular, our approach of simulating a complete, well-
behaved system and then injecting malicious faults and measuring the consequences
should be generally applicable. Of course, we have only simulated static clients,
servers, and attackers; one future task will be to incorporate more dynamic behavior.
We also hope to extend the scope of our simulations to more applications. Note that
the specifics, from system setup to the threat model, vary greatly from system to
system. We hope to explore techniques for combining results across multiple dimen-
sions, possibly extending the automated approach for weight generation suggested by
Bayuk [11]. As more attempts are made to quantify the DoS resilience of different
systems, we hope to better understand both the nature of DoS attacks and how to
measure their impact.

e Semantic search on peer-to-peer CDN The search in current CDNs is based on
an globally uniquely identifiable object name or number. But end users are often
more desirable for “semantic search”, searching for all relevant documents instead
of simple match with keywords or document name. The world produces between
1 and 2 exabytes (or 10'® bytes) of unique information per year, which is roughly
250 megabytes for every man, woman, and child on earth. Printed documents of all
kinds comprise only 0.03% of the total [73]. Distributed CDN provides a scalable
platform for hosting such huge scale of data. But it remains an open question as how
to semantically index and search the documents which are continuously updated and
added to the data warehouse. Again, we can possibly leverage the DHT techniques
as in SCAN.

e Scalable network diagnostics system When building the tomography-based over-
lay network monitoring system, the traditional linear decomposition technique may
have overly onerous memory requirement when the rank of path matrix exceeds 10,000.
For more efficient monitored path selection, we plan to investigate the use of iterative

128

methods [10], [76] such as CGNE or GMRES both to select paths and to compute
loss rate vectors. In our preliminary experiments, the path matrix G has been well-
conditioned, which suggests that iterative methods may converge quickly. We are also
applying the inequality bounds in Chapter 8.8 for diagnostics, to detect which links
or path segments fail when end-to-end congestion occurs.

129

Bibliography

[1]

[10]

A. Adams, T. Bu, R. Caceres, N. Duffield, T.Friedman, J. Horowitz, F. Lo Presti, S.B.
Moon, V. Paxson, and D. Towsley. The use of end-to-end multicast measurements for
characterizing internal network behavior. In IEEE Communications, May, 2000.

M. Adler, T. Bu, R. Sitaraman, and D. Towsley. Tree layout for internal network
characterizations in multicast networks. In 3rd International Workshop on Networked
Group Communication (NGC), 2001.

A. Adya, P. Bahl, and L. Qiu. Analyzing browse patterns of mobile clients. In
Proceedings of SIGCOMM Internet Measurement Workshop, 2001.

Akamai Technologies Inc. http://www.akamai.com/en/html/about/company_info.
html.

V. Almeida, A. Bestavros, M. Crovella, and A. de Oliveria. Characterizing reference
locality in the WWW. In Proceeding of the IEEE Conf. on Parallel and Distributed
Information Systems, 1996.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’
Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, third edi-
tion, 1999.

J. Apostolopoulos, T. Wong, W. Tan, and S. Wee. Multiple description streaming
media content delivery networks. In IEEE INFOCOM, July 2002.

M. Arlitt and T. Jin. Workload characterization of the 1998 World Cup Web site.
HP Tech Report HPL-1999-35(R.1).

A. Barbir, B. Cain, F. Douglis, M. Green, M. Hofmann, R. Nair,
D. Potter, and O. Spatscheck. Known CN request-routing mechanisms.
http://www.ietf.org/internet-drafts/draft-ietf-cdi-known-request-routing-00.txt.

R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,
R. Pozo, C. Romine, and H. Van der Vorst. Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, 2nd Edition. STAM, Philadelphia,
PA, 1994.

[11]

[12]

[13]

[21]

[22]

[23]

[24]

[25]

130

J. Bayuk. Measuring security. In First workshop on information-security-system rating
and ranking, May 2001. http://www.acsac.org/measurement/position-papers/
Bayuk.pdf.

BBNPlanet. telnet://ner-routes.bbnplanet.net.

A. Bestavros. Demand-based document dissemination to reduce traffic and balance
load in distributed information systems. In Proc. of the IEEE Symposium on Parallel
and Distributed Processing, 1995.

A. Bestavros and C. Cunha. Server-initiated document dissemination for the WWW.
In IEEE Data Engineering Bulletin, Sep. 1996.

L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and Zipf-like
distributions: Evidence and implications. In Proc. of IEEE INFOCOMM, 1999.

Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd, John Heidemann, Ahmed
Helmy, Polly Huang, Steven McCanne, Kannan Varadhan, Ya Xu, and Haobo Yu.
Advances in network simulation. IEEE Computer, 33(5):59-67, May 2000.

Aaron Brown and David Patterson. Towards availability benchmarks: A case study
of software RAID systems. In Proceedings of the 2000 USENIX Annual Technical
Conference, San Diego, CA, June 2000.

T. Bu, N. Duffield, F. Presti, and D. Towsley. Network tomography on general topolo-
gies. In ACM SIGMETRICS, 2002.

A. R. Calderbank and N. Seshadri. Multilevel codes for unequal error protection.
IEEE Transaction on Information Theory, 39(4):1234-1248, 1993.

CERT Coordination Center. Denial of service attacks. http://www.cert.org/tech_
tips/denial_of_service.html, 1999.

M. Charikar, C. Chekuri, T. Feder, and R. Motwani. Incremental clustering and
dynamic information retrieval. In Proc. of ACM STOC, 1997.

M. Charikar and S. Guha. Improved combinatorial algorithms for the facility location
and k-median problems. In Proceedings of FOCS, 1999.

Y. Chawathe, S. McCanne, and E. Brewer. RMX: Reliable multicast for heterogeneous
networks. In Proceedings of IEEE INFOCOM, 2000.

Y. Chen, A. Bargteil, D. Bindel, R. Katz, and J. Kubiatowicz. Quantifying network
denial of service: A location service case study. In Proc. of the Third International
Conference on Information and Communications Security (ICICS), 2001.

Y. Chen, D. Bindel, and R. H. Katz. Tomography-based overlay network monitor-
ing. In Proc. of ACM SIGCOMM Internet Measurement Conference (IMC), 2003.
extended abstract.

[26]

[27]

28]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

131

Y. Chen, R. H. Katz, and J. D. Kubiatowicz. Dynamic replica placement for scal-
able content delivery. In Proc. of the First International Workshop on Peer-to-Peer
Systems (IPTPS), Mar. 2002.

Y. Chen, R. H. Katz, and J. D. Kubiatowicz. SCAN: a dynamic scalable and effi-
cient content distribution network. In Proc. of the First International Conference on
Pervasive Computing, Aug. 2002.

Y. Chen, K. Lim, C. Overton, and R. H. Katz. On the stability of network distance
estimation. In ACM SIGMETRICS Performance FEvaluation Review (PER), Sep.
2002.

Y. Chen, C. Overton, and R. H. Katz. Internet Iso-bar: A scalable overlay distance
monitoring system. Journal of Computer Resource Management, Computer Measure-
ment Group, Spring Edition, 2002.

Y. Chen, L. Qiu, W. Chen, L. Nguyen, and R. H. Katz. Clustering Web content for
efficient replication. In Proc. of the 10th IEEE International Conference on Network
Protocols (ICNP), 2002.

Y. Chen, L. Qiu, W. Chen, L. Nguyen, and R. H. Katz. Efficient and adaptive Web
replication using content clustering. IEEE Journal on Selected Areas in Communi-

cations (J-SAC), Special Issue on Internet and WWW Measurement, Mapping, and
Modeling, 21(6):979-994, 2003.

Y. Chu, S. Rao, and H. Zhang. A case for end system multicast. In Proceedings of
ACM SIGMETRICS, June 2000.

Y. Chu, S. G. Rao, S. Seshan, and H. Zhang. Enabling conferencing applications on
the Internet using an overlay multicast architecture. In ACM SIGCOMM, 2001.

K. Claffy, H.-W. Braun, and G. Polyzos. Measurement considerations for assessing
unidirectional latencies. Journal of Internetworking, 1993.

M. Coates, R. Castro, and R. Nowak. Maximum likelihood identification of network
topology from edge-based unicast measurements. In ACM SIGMETRICS, 2002.

Mark Coates, Alfred Hero, Robert Nowak, and Bin Yu. Internet Tomography. IEEE
Signal Processing Magazine, 19(3):47-65, 2002.

E. Cohen, B. Krishnamurthy, and J. Rexford. Improving end-to-end performance of
the web using server volumes and proxy filters. In Proceedings of ACM SIGCOMM,
Sep 1998.

CERT/CC advisory ca-2000-01 Computer Emergency Response Team. Denial-of-
service developments. http://www.cert.org/advisories/CA-2000-01.html, 2000.

S. Czerwinski, B. Zhao, T. Hodes, A. Joseph, and R. Katz. An architecture for a
secure service discovery service. In Proc. of ACM/IEEE MobiCom Conf., 1999.

[40]

[41]
[42]
[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]
[56]

132

H. Balakrishnan D. G. Andersen, M. F. Kaashoek, and R. Morris. Resilient overlay
networks. In Proc. of ACM SOSP, 2001.

P. Danzig. Former V. P. Techonology of Akamai, Personal communication.
J.W. Demmel. Applied Numerical Linear Algebra. STAM, 1997.

S. Dietrich, N. Long, and D. Dittrich. Anaylzing distributed denial of service tools:
the Shaft case. In Proceedings of the 14th Systems Administration Conference (LISA),
Aug 2000.

Digital Island Inc. http://www.digitalisland.com.

J. Edachery, A. Sen, and F. J. Brandenburg. Graph clustering using distance-k cliques.
In Proc. of Graph Drawing, Sep 1999.

I. Elsen, F. Hartung, U. Horn, M. Kampmann, and L. Peters. Streaming technology
in 3G mobile communication systems. IEEE Computer, 34(9):46-53, 2001.

M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationship of the Inter-
net topology. In ACM SIGCOMM, 1999.

L. Fan, P. Cao, J. Almeida, and A. Broder. Summary cache: A scalable wide-area
Web cache sharing protocol. In Proc. of ACM SIGCOMM Conf., 1998.

A Feldmann, R. Caceres, F. Douglis, G. Glass, and M. Rabinovich. Performance
of Web proxy caching in heterogeneous bandwidth environments. In Proceedings of
IEEE Infocom, 1999.

P. Francis. Yoid: Your own Internet distribution. Technical report, ACIRI,
http://www.aciri.org/yoid, April, 2000.

P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and L. Zhang. IDMaps: A
global Internet host distance estimation service. IEEE/ACM Trans. on Networking,
Oct. 2001.

D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and Jr J. W. O’Toole. Overcast:
Reliable multicasting with an overlay network. In Proc. of USENIX Symp. on OSDI,
2000.

G.H. Golub and C.F. Van Loan. Matriz Computations. The Johns Hopkins University
Press, 1989.

T. F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoret-
ical Computer Science, 38:293-306, 1985.

Google Inc. http://wuw.google.com/, 2003.

R. Govindan and H. Tangmunarunkit. Heuristics for Internet map discovery. In IEEE
INFOCOM, 2000.

[57]

[58]

[59]

[60]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

133

S. Gringeri, R. Egorov, K. Shuaib, A. Lewis, and B. Basch. Robust compression and
transmission of MPEG-4 video. In ACM MultiMedia, 1999.

Erik Guttman, Charles Perkins, John Veizades, and Michael Day. Service Location
Protocol, Version 2. IETF Internet Draft, November 1998. RFC 2165.

J. Gwertzman and M. Seltzer. An analysis of geographical push-caching. In Proceed-
ings of International Conference on Distributed Computing Systems, 1997.

J. Howard. An Analysis of Security Incidents on the Internet. PhD thesis, Carnegie
Mellon University, Aug. 1998.

Timothy A. Howes. The Lightweight Directory Access Protocol: X.500 Lite. Technical
Report 95-8, Center for Information Technology Integration, U. Mich., July 1995.

Computer Security Institute and Federal Bureau of Investigation. 1999 CSI/FBI com-
puter crime and security survey. In Computer Security Institute publication, March
2000.

IPMA project. http://www.merit.edu/ipma.

K. Jain and V. Varirani. Approximation algorithms for metric facility location and
k-median problems using the primal-dual schema and lagrangian relaxation. In Proc.
of IEEE FOCS, 1999.

S. Jamin, C. Jin, A. Kurc, D. Raz, and Y. Shavitt. Constrained mirror placement on
the Internet. In Proceedings of IEEE Infocom, 2001.

L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster
Analysis. John Wiley & Sons, 1990.

B. Krishnamurthy and J. Wang. On network-aware clustering of Web clients. In Proc.
of SIGCOMM, 2000.

B. Krishnamurthy, C. Wills, and Y. Zhang. On the use and performance of content
distribution networks. In Proceedings of SIGCOMM Internet Measurement Workshop,
2001.

Craig Labovitz, Abha Ahuja, Abhijit Abose, and Farnam Jahanian. An experimental
study of delayed Internet routing convergence. In Proceedings of ACM SIGCOMM,
2000.

T. Leighton. The challenges of delivering content and applications on the Internet.
Talk at UC Berkeley, Oct. 2002.

B. Li, M. J. Golin, G. F. Italiano, X. Deng, and K. Sohraby. On the optimal placement
of Web proxies in the Internet. In Proceedings of IEEE INFOCOM, 1999.

A. Luotonen and K. Altis. World-Wide Web proxies. In Proc. of the First International
Conference on the WWW, 1994.

73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]
[81]

[82]

[83]

[84]

[85]
[86]
[87]
[88]
[89]

[90]

[91]

134

P. Lyman and H. R. Varian. How much information, 2002. Retrieved from http:
//www.sims.berkeley.edu/how-much-info.

Z. M. Mao, C. Cranor, F. Douglis, M. Rabinovich, O. Spatscheck, and J. Wang. A
precise and efficient evaluation of the proximity between Web clients and their local
DNS servers. In Proc. of USENIX Technical Conf., 2002.

MediaMetrix. http://www.mediametrix.com.

C. Meyer and D. Pierce. Steps toward an iterative rank-revealing method. Technical
Report ISSTECH-95-013, Boeing Information and Support Services, 1995.

S. Michel, K. Nguyen, A. Rosenstein, L. Zhang, S. Floyd, and V. Jacobson. Adaptive
Web caching: Towards a new caching architecture. In Proceedings of 3rd International
WWW Caching Workshop, June, 1998.

Microsoft Windows Media. http://www.microsoft.com/windows/windowsmedia.
Mirror Image Internet Inc. http://www.mirror-image.com.
MSNBC. http://www.msnbc.com.

NASA kennedy space center server traces. http://ita.ee.1bl.gov/html/contrib/
NASA-HTTP.html.

R. Ng and J. Han. Efficient and effective clustering methods for data mining. In Proc.
of Intl. Conf. on VLDB, 1994.

T. Ng and H. Zhang. Predicting Internet network distance with coordinates-based
approaches. In Proc. of IEEE INFOCOM Conf., 2002.

T. Nguyen and A. Zakhor. Path diversity with forward error correction (PDF) system
for packet switched networks. In IEEE INFOCOM, 2003.

NLANR. http://amp.nlanr.net/.

Nua Analysis. http://www.usabilitynews.com/news/article637.asp, Sep. 2002.
Nullsoft. Shoutcast. http://www.shoutcast.com/.

Nullsoft. Winamp. http://www.winamp.com/.

NY Times. http://www.cs.columbia.edu/"hgs/internet/traffic.html, Sep.
2002.

H. C. Ozmutlu, N. Gautam, and R. Barton. Managing end-to-end network perfor-
mance via optimized monitoring strategies. Journal of Network and System Manage-
ment, Special Issue on Management of Converged Networks, 10(1), 2002.

J. Padhye, V. Firoiu, D. Towsley, and J. Krusoe. Modeling TCP throughput: A
simple model and its empirical validation. In ACM SIGCOMM, 1998.

[92]

[93]

[94]

[99]

[100]

[101]

[102]
[103]

[104]

[105]

[106]

107]

135

V. Padmanabhan, L. Qiu, and H. Wang. Server-based inference of Internet perfor-
mance. In IEEE INFOCOM, 2003.

V. N. Padmanabhan and J. C. Mogul. Using predictive prefetching to improve World
Wide Web latency. In ACM SIGCOMM Computer Communication Review, July 1996.

V. N. Padmanabhan and L. Qiu. Content and access dynamics of a busy web site:
Findings and implications. In Proc. of ACM SIGCOMM Conf., 2000.

M. Pastore. The Web: More than 2 billion pages strong, July 2000. http:
//cyberatlas.internet.com/big_picture/traffic_patterns/article/.

V. Paxon. End-to-end Internet packet dynamics. In ACM SIGCOMM, 1997.

V. Paxon. End-to-end routing behavior in the Internet. IEEE/ACM Transactions on
Networking, 5(5), 1997.

D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel. ALMI: An application level
multicast infrastructure. In Proceedings of 3rd USENIX Symposium on Internet Tech-
nologies, 2001.

M. Pias, J. Crowcroft, S. Wilbur, T. Harris, and S. Bhatti. Lighthouses for scalable
distributed location. In Proc. of 2nd International Workshop on Peer-to-Peer Systems
(IPTPS), Mar. 2003.

D. Pierce and J. Lewis. Sparse multifrontal rank revealing QR factorization. STAM
Journal on Matriz Analysis and Applications, 18(1), January 1997.

A. Piszcz, N. Orlans, Z. Eyler-Walker, and D. Moore. Engineering issues for
an adaptive defense network. Technical report, MITRE Technical Report MTR
01W0000103, 2001. http://www.mitre.org/work/tech_papers/tech_papers_01/
piszcz_engineering})/piszcz_engineering.pdf.

PlanetLab. http://www.planet-lab.org/.

C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing nearby copies of replicated
objects in a distributed environment. In Proc. of the SCP SPAA, 1997.

L. Qiu, V. N. Padmanabhan, and G. M. Voelker. On the placement of Web server
replica. In Proceedings of IEEE INFOCOM, 2001.

M. Rabinovich and A. Aggarwal. RaDaR: A scalable architecture for a global Web
hosting service. In Proceedings of WWW, 1999.

M. Rabinovich, I. Rabinovich, R. Rajaraman, and A. Aggarwal. A dynamic object
replication and migration protocol for an Internet hosting service. In Proceedings of
IEEE Int. Conf. on Distributed Computing Systems, May 1999.

P. Radoslavov, R. Govindan, and D. Estrin. Topology-informed Internet replica place-
ment. In Proceedings of the International Workshop on Web Caching and Content
Distribution, 2001.

[108]

[109]
[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

136

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-
addressable network. In Proceedings of ACM SIGCOMM, 2001.

Real Networks Inc. http://www.real.com/.

RealOne Player. Pre-processing and encoding: Making the most of your bandwidth.
http://service.real.com/learnnav/ppthl.html.

P. Rodriguez and S. Sibal. SPREAD: Scalable platform for reliable and efficient
automated distribution. In Proceedings of WW W, 2000.

A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems. In Proc. of ACM Middleware, 2001.

A. Rowstron, A-M. Kermarrec, M. Castro, and P. Druschel. SCRIBE: The design of a
large-scale event notification infrastructure. In Proceedings of International Workshop
on Networked Group Communication (NGC), 2001.

D. Rubenstein, J. F. Kurose, and D. F. Towsley. Detecting shared congestion of flows
via end-to-end measurement. IEEE/ACM Transactions on Networking, 10(3), 2002.

S. Savage, A. Collins, E. Hoffman, J. Snell, and T. Anderson. The end-to-end effects
of internet path selection. In ACM SIGCOMM, 1999.

C. Schuba, I. Krsul, M. Kuhn, and et. al. Analysis of a DoS attack on TCP. In
Proceedings of the 1997 IEEE Symposium on Security and Privacy, May 1997.

Semiconductor Industry Association, European Semiconductor Industry Associa-
tion, Japan Electronics and Information Technology Industries Association, Korea
Semiconductor Industry Association, and Taiwan Semiconductor Industry Associa-
tion. [International Technology Roadmap for Semiconductors 2002 Update. http:
//public.itrs.net/, 2003.

S. Sen and J. Wang. Analyzing peer-to-peer traffic across large networks. In ACM
SIGCOMM IMW, 2003.

Y. Shavitt, X. Sun, A. Wool, and B. Yener. Computing the unmeasured: An algebraic
approach to Internet mapping. In IEEE INFOCOM, 2001.

O. Spatscheck and L. Peterson. Defending against DoS attacks in Scout. In Proceedings
of the 3rd Symposium on Operating System Design and Implementation, 1999.

Speedera Inc. http://www.speedera.com.

N. Spring, D. Wetherall, and T. Anderson. Scriptroute: A facility for distributed
Internet measurement. In USITS, 2003.

G. W. Stewart. Matriz Algorithms: Basic Decompositions. Society for Industrial and
Applied Mathematics, 1998.

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

137

[138]

137

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A
scalable peer-to-peer lookup service for Internet applications. In Proceedings of ACM
SIGCOMM, 2001.

Z. Su, Q. Yang, H. Zhang, X. Xu, and Y. Hu. Correlation-based document clustering
using Web. In Proceedings of the 34th HAWAII International conference on System
Sciences, January 2001.

H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenker, and W. Willinger. Network
topology generators: Degree-based vs structural. In ACM SIGCOMM, 2002.

W. Theilmann and K. Rothermel. Dynamic distance maps of Internet. In Proceedings
of IEEE Infocom, 2000.

A. Venkataramani, P. Yalagandula, R. Kokku, S. Sharif, and M. Dahlin. The potential
costs and benefits of long term prefetching for content distribution. In Proc. of Web
Content Caching and Distribution Workshop 2001, 2001.

E. M. Voorhees. Implementing agglomerative hierarchical clustering algorithms for
use in document retrieval. Information Processing & Management, 22(6):465-476,
1986.

WebReaper. http://www.webreaper.net.

T. Wiegand et al. Overview of the H.264/AVC video coding standard. IEEE Trans.
Circuits and Sys. for Video Technology, 13(7), 2003.

Alec Wolman, Geoffrey M. Voelker, Nitin Sharma, Neal Cardwell, Molly Brown,
Tashana Landray, Denise Pinnel, Anna R. Karlin, and Henry M. Levy. Organization-
based analysis of web-object sharing and caching. In USENIX Symposium on Internet
Technologies and Systems, 1999.

Workgroup Solutions. PacketShaper: Bandwidth Control and IP Management. http:
//www.bandwidth-management.org/.

E. Zegura, K. Calvert, and S. Bhattacharjee. How to model an Internetwork. In
Proceedings of IEEE INFOCOM, 1996.

T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An efficient data clustering
method for very large databases. In Proc. of ACM SIGMOD Conf., 1996.

Y. Zhang, N Duffield, V. Paxson, and S. Shenker. On the constancy of Internet path
properties. In Proc. of SIGCOMM Internet Measurement Workshop, 2001.

B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. Kubiatowicz.
Tapestry: A resilient global-scale overlay for service deployment. IEEE Journal on
Selected Areas in Communications, 2003.

S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. D. Kubiatowicz. Bayeux:
An architecture for scalable and fault-tolerant wide-area data dissemination. In Pro-
ceedings of ACM NOSSDAV, 2001.

