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Abstract

TinyGALS is a globally asynchronous, locally synchronous model for programming
event-driven embedded systems. At the local level, software components communicate
with each other synchronously via method calls. Components are composed to form mod-
ules. At the global level, modules communicate with each other asynchronously via mes-
sage passing, which separates the flow of control between modules. TinyGUYS is a
guarded yet synchronous model designed to allow thread-safe sharing of global state be-
tween modules without explicitly passing messages. This programming model is structured
such that code for all intermodule communication, module triggering mechanisms, and ac-
cess to guarded global variables can be automatically generated from a high level specifica-
tion. We present language constructs for this specification, as well as a detailed description
of the semantics of this programming model. We also discuss issues of determinacy that
result from the event-driven nature of the target application domain. '

We have implemented the programming model and tools for code generation on a wire-
less sensor network platform known as the Berkeley motes. We present details of the
code generation process, which is designed to be compatible with components written for
TinyOS, a component-based ruﬁtime environment for the motes. We describe a redesign of

a multi-hop ad hoc communication protocol using the TinyGALS model.
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1 Introduction

Emerging embedded systems, such as sensor networks [41], intelligent vehicle/highway
systems [23], smart office spaces [38, 37], peer-to-peer collaborative cell phones and PDAs
[14], are usually networked and event-driven. In these systems, the communication network
is typically formed in an ad hoc manner, and the embedded computers must react to many
(typically unstructured) stimuli, including physical events, user commands, and messages
from other systems. In other words, external events drive the computation in the embedded
system.

As the complexity of networked embedded systems grows, the costs of developing
software for these systems increases dramatically. Embedded software designers face is-
sues such as maintaining consistent state across multiple tasks, handling interrupts, avoid-
ing deadlock, scheduling concurrent threads, managing resources, and conserving power
[17, 26]. Typical technologies for developing embedded software, inherited from writing
device drivers and optimizing assembly code to achieve a fast response and a small memory
footprint, do not scale with the application complexity. In fact, it was not until recently that
“high-level” languages such as C and C++ replaced assembly language as the dominant
embedded software programming languages. Most of these high-level languages, however,
are designed for writing sequential programs to run on an operating system and fail to
handle concurrency intrinsically.

Modem software engineering practices advocate the use of software components such
as standard libraries, objects, and software services to reduce redundant code develop-
ment and improve productivity. However, when developing a component it is not foresee-
able whether it should lock any resources. A software component that does not include
synchronization code may not be thread-safe, and may exhibit unexpected behavior when
composed with other components. On the other hand, if a software component is developed

with resource synchronization in mind, then it may be overspecified in an application that
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does not require synchronization, which will result in a large footprint and slow execution. !

Unlike software for traditional computer systems, software for embedded systems is
application-specific and often encapsulates domain expertise, especially when it must pro-
cess sensor data or control actuators [27]. As a result, although concurrency has long been
a key research theme for systems software such as operating systems and distributed com-
puting middleware [6, 33, 32], formal treatment of them in embedded systems has largely
been ignored by mainstream computer science researchers until recently. The application-
specific nature of embedded software, combined with tight constraints on available pro-
cessing power and memory space, make traditional approaches such as the use of layers of
abstraction and middleware less applicable. A more promising approach is to use formal
concurrency models to construct and analyze software designs, and to use software synthe-
sis technologies to generate application-specific scheduling and execution frameworks that

give designers fine-grained control of timing, concurrency, and memory usage.

One example of this more formal approach are the synchronous languages for reactive
systems [9]. Languages such as Esterel [10] allow users to specify a system using the
notion of global ticks and concurrent zero delay reactions. Their models are specific enough
that the concurrency in the system can be compiled away, and the system behaves like a
state machine at run time. Actor-oriented designs, such as those seen in the Ptolemy II
framework [11], integrate a rich set of sequential and concurrent models, use a system-level
type system to check their composability [28], and compile away as much concurrency as
possible to obtain run-time efficiency and predictability [12]. These approaches give us a

way to formally coordinate the concurrency inherent in the system.

1Herlihy proposes a methodology in [19] for constructing non-blocking and wait-free implementations of
concurrent objects. Programmers implement data objects as stylized sequential programs, with no explicit
synchronization. Each sequential operation is automatically transformed into a non-blocking or wait-free op-
eration via a collection of synchronization and memory managemelit techniques. However, operations may
not have any side-effects other than modifying the memory block occupied by the object. This does not ad-
dress the need for inter-object communication when composing components. Additionally, this methodology
requires additional memory copying, which may become expensive for large objects.

2



Not all concurrency can be compiled away in all applications, especially when the rate
of input events does not match the processing speed of the embedded computers or the real-
time requirements of the applications. Then, multiple threads of execution are needed at run
time. In these situations, it is not uncommon to use asynchronous models to coordinate se-
quential reactions. These coordination models must address how to enable concurrent tasks
to exchange messages and/or share global state. In the PBO (port-based object) model as
implemented in the Chimera real-time operating system [35), data are stored in a global
space. A concurrent task, called a PBO, is free to access the data space at any time. Data
in the space are persistent, and PBOs are triggered only by time with no explicit message
passing among them. In the POLIS co-design [7] approach, software modules are gener-
ated as asynchronous tasks that pass-messages through buffers of size one. There is no
global data space in which to share data; information is only exchanged in the communi-
cation meSsages‘ Event-driven models for servers [40], such as SEDA (staged event-driven
architecture) divide processing into a network of event-driven stages connected by explicit
queues [39].

In this report, we describe a globally asynchronous, locally synchronous (GALS) ap-
proach for programming event-driven embedded systems. This approach provides language
constructs that allow designers to specify concurrency explicitly at the system level while
maintaining the sequential execution of basic components. It also enables the generation
of an application-specific operating system (or more precisely, an execution framework) to

provide a thread-safe execution environment for the components.

” ¢

Terms such as “synchronous,” “asynchronous,” and “globally asynchronous, locally
synchronous (GALS)” mean different things to different communities, thus causing confu-
sion. The circuit and processor design communities use these terms for synchronous and
asynchronous circuits, where synchronous refers to circuits that are driven by a common
clock [22]. In the system modeling community, synchronous often refers to computational
steps and communication (propagation of computed signal values) that take no time (or,
in practice, very little time compared to the intervals between successive arrivals of input

signals. GALS then refers to a modeling paradigm that uses events and handshaking to
3



integrate subsystems that share a common tick (an abstract notion of an instant in time)
[8]. Our notions of synchronous and asynchronous are consistent with the usage of these
terms in distributed programming paradigms [31]. We use synchronous to mean that the
software flow of control transfers immediately to another component and the calling code
blocks awaiting return. Steps do not take infinite time; control eventually returns to the call-
ing code. Asynchronous means that control flow does not transfer immediately to another

component; execution of the other component is decoupled.

Our programming model, called TinyGALS, uses two levels of hierarchy to build an ap-
plication on a single processor. At the application level, modules communicate with each
other asynchronously via message passing. Within each module, components communicate
synchronously via method calls, as in most imperative languages. Thus, the programming
model is globally asynchronous and locally synchronous in terms of the method call mech-
anisms. If modules exchange data that is frequently updated, then message passing at
the global level may become inefficient. In our model, a set of guarded yet synchronous
variables (called TinyGUYS) is provided at the system level for asynchronous modules to
exchange global information “lazily”. These variables are thread-safe, yet components can
quickly read their values. In this programming model, application developers have precise
control over the concurrency in the system, and they can develop software components
without the burden of thinking about multiple threads.

In areactive, event-driven system, most of the processor time is spent waiting for an ex-
ternal trigger or event. A reasonably small amount of additional code to enhance software
modularity will not greatly affect the performance of the system. Automatically gener-
ated code reduces implementation and debug time, since the developer does not need to
reimplement standard constructs (e.g. communication ports, queues, functions, guards on

variables), and the generated code will not contain errors.

In this report, we describe a method for generating code for applications that use the
TinyGALS programming model. In this software synthesis technique, code for commu-
nication and scheduling is automatically generated from applications specified using the

4



TinyGALS language constructs, as well as code for guarding access to TinyGUYS global
variables. We have implemented this for use on the MICA motes [15], a wireless sensor
network platform. The TinyGALS programming model and code generation facilities can

greatly improve software productivity and encourage component reuse.

Our model is influenced by the TinyOS project at the University of California, Berke-
ley [21]. We use the TinyOS component specification syntax in our tools so that users can
reuse existing TinyOS v0.6.1 [5] components in TinyGALS applications. TinyOS compo-
nents provide an interface abstraction that is consistent with synchronous communication
via method calls. However, unlike our model, concurrent tasks in TinyOS are not ex-
posed as part of the component interface. Lack of explicit management of concurrency
forces component developers to manage concurrency by themselves (locking and unlock-

ing semaphores), which makes TinyOS components extremely difficult to develop.

Our approach differs from coordination models like those discussed above in that we
allow designers to directly control the concurrent execution and buffer sizes among asyn-
chronous modules. At the same time, we use a thread-safe global data space to store mes-
sages that do not trigger reactions. Components in our model are entirely sequential, and
they are both easy to develop and backwards compatible with most legacy software. We
also do not rely on the existence of an operating system. Instead, we generate the schedul-
ing framework as part of the application.

The remainder of this report is organized as follows. Section 2 describes the TinyGALS
language constructs and semantics. Section 3 discusses issues related to determinacy of a
TinyGALS program. Section 4 explains a code generation technique based on the two-
level execution hierarchy and a system-level scheduler. Section 5 gives an example of
developing a multi-hop routing protocol using the TinyGALS model. Section 6 discusses
related work, emphasizing relevant embedded software models. Section 7 concludes this

report and describes directions for future work.



2 The TinyGALS Programming Model

TinyGALS is based on a model of computation that contains globally asynchronous and
local_ly synchronous communication. We use this architecture to separate the rates of con-
trol of the system - the reactive part and the computational part — via asynchrony. Thus,
the system can finish reacting to an event without having to wait until full processing of
any tasks related to the event completes. Processing can be deferred until a time at which

the system is not busy reacting to events.

A TinyGALS program contains a single application composed of modules, which are
in turn composed of components. Execution in TinyGALS is driven by events. In Tiny-
GALS, there are three types of events: (1) a hardware interrupt, (2) the transfer of control
flow between two components via a method call, and (3) a message passed between two
modules, whose data is encapsulated as a token. In the third case, we sometimes use the

terms event and token interchangeably.

We first present a simple example and provide an informal, intuitive description of the
TinyGALS architecture. We then describe each of the language constructs (components,

modules, and application) and their semantics.

2.1 Introduction: An Example

Module count Module leds
S

- fireOut count_out leds_in fi
init M0, counTER 25 e >— <0,

-~/ INT_TO_LEDS
fire() .. init()

it
fireOut()
Sy

D

count_start initQ CLOCK
—

Figure 1: An example application with two modules.
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The example shown in Figure 1 is a simple application in which a hardware clock up-
dates a software counter, whose binary value is displayed on a set of LEDs. The TinyGALS
implementation of this application contains two modules: count and leds. Module
count contains two components: COUNTER and CLOCK. Module 1eds contains a single
component; INT_TO_LEDS.

At runtime, the system framework initializes the COUNTER and INT_TO_LEDS com-
ponents via the initialization ports (both named init) of modules count and leds,
respectively. The runtime system then activates execution of the application via the sys-

tem start port, which in this example begins at the count_start input port of module

count.

The hardware clock encapsulated by the CLOCK component periodically produces an
event on the link between the CLOCK and COUNTER components via an interrupt service
routine. The link represents a method call originating from the CLOCK component. The
COUNTER component will respond to the call immediately by processing the event and
generating another event at the count_out output port of module count. The token
(encapsulated data) corresponding to the event produced at count_out is stored in the
input port to which the output port is connected, 1eds_in. Later, the runtime scheduler
will activate the 1eds module in response to this event. This possibly delayed response
corresponds to an asynchronous communication between modules and allows for decou-
pling of the execution of modules. Finally, the INT_TO_LEDS component will process
the event and display the value on the hardware LEDs.

2.2 TinyGALS Language Constructs

A TinyGALS program contains a single application composed of modules, which are in
turn composed of components. In this section we describe the language constructs for each

of these (components, modules, and application). Semantics are discussed in Section 2.3.
7



2.2.1 TinyGALS Components

Components are the most basic elements of a TinyGALS program. A TinyGALS compo-
nent C is a 3-tuple:

C = (Ve, X, Ic), )

where Vc is a set of internal variables, X¢ is a set of external variables, and I¢ is a set
of methods that constitute the interface of C. The internal variables carry the state of C
from one invocation of an interface method of C to another. The external variables can
be accessed by C through read and write operations.? The set of methods I¢ is further
divided into two disjoint sets: ACCEPT Sc and USESc. The methods in ACCEPT Sc can
be called by other components (these are the inputs of component C), while the methods
in USESc are those needed by C and may possibly belong to other components (these are
the outputs of component C).3 Thus, a component is like an object in most object-oriented
programming languages, but with explicit definition of the external variables and methods
it uses. Syntactically, a component is defined in two parts — an interface definition and an

implementation.

Figure 2 shows a fragment of the code for the interface definition of the COUNTER
componeni shown in Figure 1, while Figure 3 shows a fragment of the code for its imple-
mentation.* In Figure 2, we see that the component has two ACCEPT'S methods and one
USES method. In Figure 3, we see that the component accesses an internal variable of type
short named _counter. Using the tuple notation given in Equation 1, the COUNTER
component can be defined as C = (V¢ = {_counter},Xc = 0,Ic = {init, fire, fireOut}).

2External variables are implemented as TinyGUYS. See Section 2.4 for more information.
3Using TinyOS conventions, ACCEPT S¢ is the set formed by the union of the TinyOS ACCEPTS and

HANDLES methods, and USES is the set formed by the union of the TinyOS USES and SIGNALS methods.
4The syntax is similar to that of TinyOS.
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// Component interface for COUNTER.
COMPONENT COUNTER;

ACCEPTS{
char init(void);
void fire(void);

};
USES{
char fireOut (short value);

}:

Figure 2: Fragment of code for interface definition of the COUNTER com-
ponent shown in Figure 1.

2.2.2 TinyGALS Modules

Modules are the major building blocks of a TinyGALS program, encompassing one or more
TinyGALS components. A TinyGALS module M is a 6-tuple:

M = (COMPONENT Sy, INITy,INPORT Sy, OU TPORT Sy,PARAMETERSy,LINKSy),
)

where COMPONENT S is the set of components that form the module; INITy, is a list
of initialization methods that belong to the components in COMPONENT Sy ; INPORT Sy
and OUTPORT Sy are sets that specify the input ports and output ports of the module, re-
spectively; PARAMETERSy is a set of variables external to the components’; and LINK Sy
specifies the relations among the interface methods of the components (Ic in Equation 1)
and the input and output ports of the module (INPORT Sy and OUTPORTS)). Section
2.3.3 describes links in more detail, including which configurations of components within

a module are valid.

Modules are different from components; INPORTSM and QUT PORT Sy of a module
M are not the same as ACCEPTSc and USES¢ of a component C. While ACCEPTS¢

SRefer to information on TinyGUYS in Section 2.4.
9



// Component implementation for COUNTER.
char init(){

—counter = 0;

return 1;

}
void fire(){
—counter++;
CALL_COMMAND (fireOut) (_counter) ;

}

Figure 3: Fragment of code for implementation of the COUNTER component
shown in Figure 1. This provides the method bodes for the interface defined
in Figure 2. The internal variable _counter is of type short.

and USESc refer to method calls and may be connected to ports in INPORT Sy, and
OUTPORT Sy, INPORT Sy and OUTPORT Sy are not executable. Additionally, ports
in INPORT Sy that are connected to ports in OUTPORT Sy contain an implicit queue (see
Section 2.3.4).

Initialization methods in INIT)y are slightly different from input ports in INPORT Sy;
they do not contain implicit queues since buffering of data is not needed during initializa-

tion.

Figure 4 gives the module definition code for the module count in the application
shown in Figure 1. The definition states that module count contains two components,
COUNTER and CLOCK. Note that compbnent CLOCK accepts init () anduses £ireQut ();
component COUNTER accepts init () and fire(), and uses £ireQut () (see Figure
2. The init section states that the init () method of component COUNTER belongs
to the initialization list of the module. The connection section at the bottom of Figure 4
declares that the £ireOut () method of component CLOCK is mapped to the fire ()
method of component COUNTER; the £ireOut () method of component COUNTER is
mapped to the count_out outport of module count; and that the count_start in-

port of module count is mapped to the init () method of component CLOCK.
10



// Module definition for count.
include components{

COUNTER;

CLOCK;

};

init{
COUNTER:init;

}i

ports in{
count_start;

};
ports out{
count_out;

};

CLOCK: fireQut COUNTER:fire
COUNTER: fireOut count_out
count_start CLOCK:init

Figure 4: The definition of the count module shown in Figure 1.

Using the tuple notation given in Equation 2, the count module can be defined as

M = (COMPONENTSy = {COUNTER,CLOCK }
INITy = [COUNTER: init],
INPORTSy = {count_start},
OUTPORTSy = {count_out},
PARAME TERtS'M = 0,
LINKSy = {(CLOCK : fireOut,COUNTER: fire),
(COUNTER: fireOut,count out),
(count_start,CLOCK : init)}).

The code for the module 1eds is shown in Figure 5 for completeness. We will discuss
the semantics of the execution of components within a module in more detail in Section

2.3.3.
11



// Module definition for leds.
include components{
INT_TO_LEDS;

}:
init{
INT_TO_LEDS:init;

}:
ports in{
leds_in;

}:

ports out{

}:

leds_in INT_TO_LEDS:fire

Figure 5: The definition of the 1eds module shown in Figure 1.

2.23 TinyGALS Application

At the top level of a TinyGALS program, modules are connected to form a complete appli-
cation. A TinyGALS application 4 is a 5-tuple:

A = (MODULES4,GLOBALS,,VARMAPS,,CONNECTIONS,,START,), (3)

where MODULES, is a list of modules in the application; GLOBALS, is a set of global
variables; VARMAPS, is a set of mappings, each of which maps a global variable to a
parameter (in PARAMETERSy;) of a module in MODULES,%; CONNECTIONS, is a
set of the connections between module output ports and input ports; START) is the name
of an input port of exactly one modulé in the application. Section 2.3.4 describes which

configurations of modules within an application are valid.

Figure 6 shows the code for defining the application shown in Figure 1. The application
contains two modules, count and 1eds. The output port count_out of module count
is connected to the input port leds_in of module 1eds. The definition declares that the

connection between count_out and leds_in has a FIFO queue of size 50. The last

6Refer to information on TinyGUYS in Section 2.4.
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// Application definition.
include modules{

count;

leds;

count_out -> leds_in 50
START@ count_start

Figure 6: Definition of the application shown in Figure 1.

line in the definition says that the system start port is count_staxrt. Note that arguments
(initial data) may be passed to the system start port on the same line.

Using the tuple notation given in Equation 3, the example application can be defined as

A= (MODULES;, = [count,leds),
GLOBALS, = 0,
VARMAPS, = 0,

CONNECTIONSy = [(count_out,leds_in)),

START, = count_start).

2.3 TinyGALS Semantics

In this section, we discuss the semantics of execution within a component, between com-
ponents within a module, and between modules within an application. We also include a

discussion of the conditions for well-formedness an application.

2.3.1 Assumptions

The TinyGALS architecture is intended for a platform with a single processor. All mem-

ory is statically allocated; there is no dynamic memory allocation. A TinyGALS program
13



runs in a single thread of execution (single stack), which may be interrupted by the hard-
ware. Reentrant code can have multiple simultaneous, interleaved, or nested invocations
which will not interfere with each other. In this section, we assume that interrupts are not
reentrant, but thap an interrupt is masked while servicing it (interleaved invocations are dis-
abled). However, other interrupts may occur while servicing the interrupt.” There are no
other sources of preemption other than hardware interrupts. When using components in
which interrupts are enabled in the interrupt handler, we must take special care in placing
constraints on what constitutes a valid configuration of components within a module in
order to avoid unexpected reentrancy, which may lead to race conditions and other nonde-

terminacy issues. We assume the existence of a clock, which is used to order events.

2.3.2 TinyGALS Components

There are three cases in which a component C may begin execution: (1) an interrupt from
the hardware that C encapsulates, (2) an event arrives on the module input port linked to
one of the interface methods of C, or (3) another component calls one of the interface meth-
ods of C. In the first case, the component is a source component and when activated bya
hardware interrupt, the corresponding interrupt service routine is run. Source components
do not connect to any module input ports. In the second case, the component is a triggered
component, and the event triggers the execution of the method (in ACCEPTS¢) to which
the input port is linked. Both source components and triggered components may call other
components (via the methods in USESc), which results in the third case, where the com-

ponent is a called component. Once activated, a component executes to completion. That

"The avr-gec compiler for the Atmel AVR microcontroller on the MICA motes provides two macros for
writing user-defined interrupt service routines (locations specified in the interrupt vector table). The SIGNAL
macro indicates that the specified function is a signal handler; interrupts are disabled inside the function. The
INTERRUPT macro indicates that the specified function is an interrupt handler; interrupts are enabled inside
the function. In the TinyOS v0.6.1 distribution, the following components use the INTERRUPT macro on the
MICA motes: CLOCK, RF.PROXIMITY, TIMESTAMP, LOGGER, UART (transmission only); the following
components re-enable interrupts inside of the SIGNAL macro on the MICA motes: MIC and ADC.

14



is, the interrupt service routine or method finishes.

Reentrancy problems may arise if a component is both a source component and a trig-
gered component. An event on a linked module input port may trigger the execution of
a component method. While the method runs, an interrupt may arrive, leading to pos-

sible race conditions if the interrupt modifies internal variables of the same component.
Therefore, to improve the ease of analyzability of the system and eliminate the need to
make components reentrant, source components must not also be triggered components,
and vice versa. The same argument also applies to source components and called compo-
nents. Therefore, it is necessary that source components only have outputs (USESc) and
no inputs (ACCEPT S¢). Additional rules for linking components together are detailed in

the next section.

In Figure 3, _counter is an internal variable. Each time the fire() method of
COUNTER is called, the component will call the £ireOut () method with the value of the
internal variable _counter as its argument. The CALIL_COMMAND macro indicates that
the £ireOut () method will be called synchronously (we will explain this further in the
next section). The component only needs to know the type signature of £ireOut (), but

it does not matter to which component the method is linked.

2.3.3 TinyGALS Modules

Flow of control between components within a TinyGALS module occurs on links. A link is
arelation within a module M between a component method (in USESc) and another com-
ponent method (in ACCEPT S;-), between an input port of the module (in INPORT S)s) and
a component method (in ACCEPT S¢), or between a component method (in USESc) and
an output port of the module (in OUT PORT Sy). Links represent synchronous communi-
cation via method calls. When a component calls an external method (in USES¢) through
CALL_COMMAND, the flow of control in the module is immediately transferred to the callee

component or port. The external method can return a value through CALL_COMMAND just
15



as in a normal method call.® The graph of components and links between them is an ab-
straction of the call graph of methods within a module, where the methods associated with
a single component are grouped together.

. The execution of modules is controlled by a scheduler in the TinyGALS runtime sys-
tem. There are two cases in which a module M may begin execution: (1) a triggered
component is activated, or (2) a source component is activated. In the first case, the sched-
uler activates the component attached to an input port of M in response to an event sent
to M by another module. In the second case, M contains a source component which has
received a hardware interrupt. Notice that in this case, M may be interrupting the execution
of another module. A module is considered to be finished executing when the components

inside of it have finished executing and control has returned to the scheduler.

As discussed in the previous section, preemption of the normal thread of execution by
an interrupt may lead to reentrancy problems. Therefore, we must place some restrictions

on what configurations of components within a module are allowed.

Cycles within modules (between components) are not allowed, otherwise reentrant
components are required.’ Therefore, any valid configurations of components within a
module can be modeled as a directed acyclic graph (DAG). A source DAG in a module
M is formed by starting with a source component C in M and following all forward links
between C and other components in M. Figure 7 shows an example of a source DAG in-
side of a module. A triggered DAG in a module M is formed by starting with a triggered
component C in M and following all forward links between C and other components in M.

Figure 8 shows an example of a triggered DAG inside of a module.

In general, within a module, source DAGs and triggered DAGs must be not be con-
nected. In Figure 9, the source DAG (C1, C3) is connected to the triggered DAG (C2,
C3). Suppose C2 is triggered by an event on the input port of M and calls C3. Reentrancy

8In TinyOS, the return value indicates whether the command completed successfully or not.
9Recursion within components is allowed. However, the recursion must be bounded for the system to be

live.
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Module M

( C1 H C2j—->

Figure 7: A source DAG inside Module M. This DAG is activated by a hardware interrupt.

Module M

— C1 C2 ™~

Figure 8: A triggered DAG inside Module M. This DAG is activated by the arrival of an

event at the module input port.

problems may occur if an interrupt causes C1 to preempt C3.

Module M
-

Figure 9: Not allowed; source DAG connected to triggered DAG.

If all interrupts are masked during interrupt handling (interrupts are disabled), then we
need not place any additional restrictions on source DAGs. However, if interrupts are not
masked (interrupts are enabled), then a source DAG must not be connected to any other

source DAG within the same module.

Triggered DAGs can be connected to other triggered DAGs, since with a single thread
of execution, it is not possible for a triggered component to preempt a component in any
other triggered DAG. Recall that once triggered, the components in a triggered DAG will
execute to completion. We must also place restrictions on what connections are allowed

between component methods and module ports, since some configurations may lead to
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nondeterministic component firing order.

Let us first assume that both module input ports and module output ports are totally
ordered (we assign the order to be the same as the order specified in the ports in and
ports out sections of the module definition file). However, we assume that compo-
nents are not ordered. As discussed earlier, the configuration of components inside of a
module must not contain cycles and must follow the rules above regarding source and trig-
gered DAGs. Then module input ports may either be associated with one method of a
single component C (in ACCEPT S¢) or with one or more module output ports. Likewise,
outgoing component methods (USES) may be associated with either one method of a sin-
gle component C (in ACCEPT S¢) or with one or more module output ports.!® Incoming
component methods (ACCEPT S) may be associated with any number or combination of
component methods (USES) and module input ports, but they may not be associated with
module output ports. Likewise, module output ports may be associated with any number

or combination of outgoing component methods (USES) and module output ports.

If neither module input ports nor module output ports are ordered, then module input
ports and outgoing component methods may only be associated with either a single method

or with a single output port.

In Figure 4, the connection section at the bottom of the module definition declares
that whenever the count_start input port is triggered (which will be explained in
the next section), the init () method of CLOCK will be called; whenever CLOCK calls
fireOut (), the method fire () of COUNTER will be called; and whenever COUNTER

calls f£ireOut (), an event will be produced at the count_out output port.

"In the existing TinyOS constructs, one caller (outgoing component method) can have multiple callees.
The interpretation is that when the caller calls, all the callees will be called in a possibly non-deterministic
order. One of the callee’s return values will be returned to the caller. Although multiple callees are not part
of the TinyGALS semantics, it is supported by our software tools to be compatible with TinyOS.
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234 TinyGALS Application

The execution of a TinyGALS system begins with initialization of all methods specified in
INITy, for all modules M;. “The order in which modules are initialized is the same as the
order in which they are listed in the application configuration file (e.g., as in Figure 6). The
order in which methods are initialized for a single module is the same as the order in which

they are listed in the module configuration file (e.g., as in Figure 4 or Figure 5).

Execution of the application begins at the system start port (START}), which is a mod-
ule input port declared in the START® section of the application configuration file. After
module initialization, the TinyGALS runtime system triggers the system start port exactly
once. Additional start triggers are not used since there is a single thread of execution. If
initial arguments were declared in the application configuration file, these are passed to
the component input method that is linked to the system start port at this time. For ex-
ample, in Figure 6, the application starts when the runtime system triggers the input port
count_start of module count. The compdnents in the triggered DAG of the starting
module execute to completion and may generate one or more events at the output port(s)
of the module, which we discuss next. During execution, interrupts may occur and pre-
empt the normal thread of execution. However, control will eventually return to the normal

thread of execution.

During application execution, communication between module ports occurs asynchro-
nously via FIFO queues. When a component within a module calls a method that is linked
to an output port, the arguments of the call are converted into tokens. For each input port
connected to the output port, a copy of the token is placed in its FIFO queue. Later, a
scheduler in the TinyGALS runtime system will remove a token from the FIFO queue and
call the method that is linked to the input port with the contents of the token as its argu-
ments. The queue separates the flow of control between modules; the call to the output port
will return immediately, and the component within the module can proceed. Communica-
tion between modules is also possible without the transfer of data. In this case, an empty

message (token) transferred between ports acts as a trigger for activation of the receiving
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module. Tokens are placed in input port queues atomically, so other source components
cannot interrupt this operation. Note that since each input port of a module M is linked to a
component method, each token that arrives on any input port of M corresponds to a future
invocation of the component(s) in M. When the system is not responding to interrupts or

events on input ports, the system does nothing (i.e., sleeps).

The TinyGALS semantics do not define exactly when the input port is triggered. We
discuss the ramifications of token generation order on the determinacy of the system in
Section 3. Our current implementation processes the tokens in the order that they are
generated as defined by the hardware clock. Tokens generated at the same logical time
are ordered according to the global ordering of module input ports, which we discuss next.
The runtime system maintains a global event queue which keeps track of the tokens in
all module input port queues in the system. Currently, the runtime system activates the
modules corresponding to the tokens in the global event queue using FIFO scheduling.
More sophisticated scheduling algorithms can be added, such as ones that take care of
timing and energy concerns.

In the previous section, we discussed limitations on the configuration of links between
components within a module. Connections between modules are much less restrictive.
Cycles are allowed between modules. This does not lead to reentrancy problems because
the queue on a module input port acts as a delay in the loop. Module output ports may be
connected to one or more module input ports, and module input ports may be connected
to one or mére module output ports. The single-output-multiple-input connection acts as
a fork. For example, in Figure 10, every token produced by A_out will be duplicated
and trigger both B_in and C_in. Tokens that are produced at the same “time”, as in the
previous example, are processed with respect to the global input port ordering. Input ports
are first ordered by module order, as they appear in the application configuration file, then in
the order in which they are declared in the module configuration file. The multiple-output-
single-input connection has a merge semantics, such that tokens from multiple sources are
merged into a single stream in the order that the tokens are produced. This type of merge

does not introduce any additional sources of nondeterminacy. See Section 3 for a discussion
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of interrupts and their effect on the order of events in the global event queue.

Module B

Module A

A_out -= B_in

Module C

C_in

Figure 10: Single output multiple input connection.

2.4 TinyGUYS

The TinyGALS programming model has the advantage that the modules become decoupled
through message passing and are easier to develop independently. However, each mes-
sage passed will trigger the scheduler and activate a receiving module, which may quickly
become inefficient if there is global state which must be updated frequently. TinyGUYS
(Guarded Yet Synchronous) is a mechanism for sharing global state, allowing quick access
but with protected modification of the data.

One must be very careful when implementing global data spaces in concurrent pro-
grams. Many modules may access the same global variables at the same time. It is possible
that while one module is reading the variables, an interrupt may occur and preempt the
reading. The interrupt service routine may modify the global variables. When the module
resumes reading the remaining variables after handling the interrupt, it may see an inconsis-
tent state. In the TinyGUYS mechanism, global variables are guarded. Modules may read
the global variables synchronously (i.e., without delay). However, writes to the variable
are asynchronous in the sense that all writes are delayed. A write to a TinyGUYS global
variable is actually a write to a copy of the global variable. One can think of this as a write
buffer of size one. Because there is only one buffer per global variable, the last module to

write to the variable “wins”, i.e., the last value written will be the new value of the global
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// Application def. // Module def. for a // Component impl. for Al

include modules{ include components{ ..
A; Al; void fire() {
B; }:

}: parameters{ int a;

globals{ int A_param; a=PARAMETER_GET (A_param) ;
statevar; }: a++;

}; ven PARAMETER_PUT (A_param) (a) ;

statevar <=> A_param
statevar <=> B_param };

Figure 11: Defining and accessing TinyGUYS variables.

variable. TinyGUYS variables are updated atomically by the scheduler only when it is safe
(e.g., after one module finishes and before the scheduler triggers the next module). One
can think of this as a way of formalizing race conditions. We discuss how to eliminate race

conditions in Section 3.1.

TinyGUYS have global names (GLOBALS,) that are mapped to the parameters (PARAMETERSy)
of each module M. If a component C uses a parameter, it must declare it as an external
variable (Xc). Figure 11 shows some sample code for defining and accessing TinyGUYS
variables. The left-hand column of Figure 11 shows an application definition, which con-
tains a list of global variable names, as well as a list of mappings from global names to local
names. These local variables must be defined as parameters of the modules; this is shown
in the center column of Figure 11. Local variables can be accessed within a component
by using special constructs, PARAME'f‘ER_GET and PARAMETER_PUT, as shown in the
right-hand column of Figure 11. This style of declaration, in which the types of the global
variables must be declared at the module level, is slightly awkward. This means that the
types must be declared for each module that uses the global variables. It also increases the
fragility of the component code, since the components do not know the types of the global
variables. In the future, we plan to improve this mechanism to use scoping, perhaps in a
way similar to scoped parameters in Ptolemy II [11]. We could also use the Ptolemy II type

system to improve the way in which types must be declared in TinyGALS.
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3 Discussion

In this section we discuss issues related to determinacy of a TinyGALS program. We begin
with definitions for a TinyGALS system, system state (including quiescent system state
and active system state), module iteration (in response to an interrupt and in response to
an event), and system execution. We also review the conditions for well-formedness of a
TinyGALS system.

Definition 1 (System). A system consists of an application and a global event queue. Recall
that an application is defined as:

A= (MODULES,,GLOBALS,,VARMAPSs,CONNECTIONS4,START)).

Recall that the inport associated with a connection between modules has a FIFO queue
for ordering and storing events destined for the inport. The global event queue provides
an ordering for tokens in all inport queues. Whenever a token is stored in an inport queue,
a representation of this event (implemented as an identifier for the inport queue) is also
inserted into the global event queue. Thus, events that are produced earlier in time appear
in the global event queue before events that are produced later in time (with respect to the
system clock). Events that are produced at the same time (e.g., as in Figures 12 or 10) are
ordered first by order of appearance in the application modules list MODULES,), then
by order of appearance in the modules inports list /NPORTS},, which is an ordered list
created from the modules inports set INPORT Syy).

(event, 1)
Module M - ]f' (evm’t:)
I

Figure 12: Two events are produced at the same time.

Definition 2 (System state). The system state consists of four main items:
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1. The values of all internal variables of all components Ve
2. The contents of the global event queue.

3. The contents of all of the queues associated with module input ports in the applica-
tion.

4. The values of all TinyGUYS (GLOBALS,).

Recall that the global event queue contains the events in the system, but the module

input ports contain the data associated with the event, encapsulated as a token.

There are two distinct kinds of system state: quiescent and active.

Definition 2.1 (quiescent system state). A system state is quiescent if there are no events
in the global event queue, and hence, no events in any of the module inport queues in the

system.

Definition 2.2 (active system state). A system state is active if there is at least one event
in the global event queue, and hence, at least one event in the queue of at least one module

inport.

Note that a TinyGALS system actually starts in an active system state, since execution
begins by triggering a module input port.

Execution of the system can be partitioned into module iterations based on component

execution.

Definition 3 (Component execution). A source component is activated when the hardware
it encapsulates receives an interrupt. A triggered or called component C is activated when
one of its methods (in ACCEPT S¢) is called. Component execution is the execution of the
code in the body of the interrupt service routine or method through which the component

has been activated.
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Note that the code executed upon component activation may call other methods in the
same component or in a linked component. Component execution also includes execution

of all external code until control returns and execution of the code body has completed.

Definition 4 (Module iteration). An iteration of a module M is the execution of a subset

of the components inside of M in response to either an interrupt or an event.

We define these two types of module iterations in more detail, including what we mean

by “subset of components”.

Definition 4.1 (Module iteration in response to an interrupt). Suppose module M is
iterated in response to interrupt 1. Let C be the component corresponding to interrupt 1.
Recall from Section 2.3.2 that C therefore must be a source component. Create a source
DAG D by starting with C and following all forward links between C and other components
in M. Iteration of the module consists of the execution of the components in D beginning
with C. Note that iteration of the module may cause it to produce one or more events on its
output port(s).

Definition 4.2 (Module iteration in response to an event). Suppose module M is iterated
in response to an event E stored at the head of one of its inport queues, Q. Let C be
the component corresponding to Q. Recall from Section 2.3.2 that C therefore must be
a triggered component. Create a triggered DAG D by starting with C and following all
forward links between C and other components in M. Iteration of the module consists of
the execution of the components in D beginning with C. As with the interrupt case, iteration

of the module may cause it to produce one or more events on its output port(s).

We can now discuss how to choose the module iteration order.

Definition 5 (System execution). Given a system state and zero or more interrupts, system

execution is the iteration of modules until the system reaches a quiescent state. The order

in which modules are executed is the same as the order of events in the global event queue.
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Conditions for well-formedness Here, we summarize the conditions for well-formedness

of a system, as discussed in Section 2.3.

1‘. Source (interrupt-driven) components must only have outputs, they may not have
inputs. In other words, source components may not also be triggered components
(triggered by an event on a module input port) nor called components (called by

other components).

2. Cycles among components within a module are not allowed, but loops around mod-

ules are allowed.

3. Within a module, component source DAGs and triggered DAGs must be discon-

nected.

4. Within a module, component source DAGs must not be connected to other source
DAGs, but triggered DAGs may be connected to other triggered DAGs. We assume
that an interrupt whose handler is running is masked, but other interrupts are not

masked.

5. Within a module, outgoing component methods may be associated with either one

method of another component, or with one or more module output ports.

6. Within a module, module input ports may be associated with either one method of a

single component, or with one or more module output ports.

3.1 Determinacy

Given the definitions in the previous section, we first discuss determinism of a TinyGALS
system in the case of a single interrupt when in a quiescent state. We then discuss deter-
minism for one or more interrupts during module iteration in the cases where there are no

global variables and when there are global variables.
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In our intuitive notion of determinacy, given an initial quiescent system state and a set
of interrupts that occur at known times, the system will always produce the same outputs

and end up in the same state after responding to the interrupts.

Theorem 1 (Determinacy). A system is determinate if for each quiescent state and a single

interrupt, there is only one system execution path.

a module iteration
interrupt /

my/ m my  my

i i T W\A/\‘i
q0 ao,0 ao,1 apn—-1 1
quiescent ~ ————__——  quiescent
state active states state

Figure 13: Single interrupt.

Recall that a TinyGALS system starts in an active system state. The application start
port is a module input port which is in turn linked to a component C inside the module.
The component C is a triggered component, which is part of a DAG. Components in this
triggered DAG execute and may generate events at the output port(s) of the module. System
execution proceeds until the system reaches a quiescent state. From this quiescent state, we

can analyze the determinacy of a TinyGALS system.

Figure 13 depicts iteration of a TinyGALS system between two quiescent states due
to activation by an interrupt Jo. A TinyGALS system is determinate, since the system
execution path is the order in which the modules are iterated, and in each of the steps
mo,my, ..., My, the module selected is determined by the order of events in the global event

queue.

What if we consider the case in which we have one or more interrupts during a module

iteration, that is, between quiescent states, as is usually true in an event-driven system?
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Determinacy of a system without global variables. We will first examine the case
where there are no TinyGUYS global variables.

Let us consider a module M that contains a component C which produces events on
the outports of M. Suppose the iteration of module M is interrupted one or more times.
Since source DAGs must not be connected to triggered DAGs, the interrupt(s) cannot cause
the production of events on outports of M that would be used in the case of a normal
uninterrupted iteration. However, the interrupt(s) may cause insertion of events into other
module inport queues, and hence insertions into the global event queue. Depending on the
relative timing between the interrupts and the production of events by C at outports of M,
the order of events in the global event queue may not be consistent between multiple runs
of the system if the same interrupts occur during the same module iteration, but at slightly

different times. This is a source of non-determinacy.

If we wish to reduce the non-determinacy in the system, a partial solution is to delay
producing outputs from the module being iterated until the end of its iteration. If we know
the order of interrupts, then we can predict the state of the system after a single module
iteration even if it is interrupted one or more times. Figure 14 shows a system execution in
which a single module iteration is interrupted by multiple interrupts. In our notation, ai. &
refers to an active system state after an interrupt J; starting from quiescent state g j and after
module iteration my. In Figure 14, the superscript in a’l‘.,k is a shorthand for the sequence of

interrupts Iy, Iy, b5, . . ., I..

hLh I,

q0 ‘15 0 a(x),l a{),n q1

£

Figure 14: One or more interrupts where modules have delayed output.

In order to determine the value of active system state a; ;, we can “add” the combined

system states. Suppose active state a",,o would be the next state after an iteration of the
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module corresponding to interrupt 1; from quiescent state go, and that active state a%‘O
would be the next state after an iteration of the module corresponding to interrupt I, from
go. This is illustrated in Figure 15.

I
90 ai).o

Figure 15: Active system state after one interrupt.

We assume that the handlers for interrupts I, I, ... . , I, execute quickly enough such that
they are not interleaved (e.g., I> does not interrupt the handling of I;). Then the system state
before the iteration of module M in response to interrupt Iy has completed but after inter-
rupts /) and I, would be a(l,,o + a%,o, where the value of this expression is the system state in
which the new events produced in active system state a%,o are inserted (or “appended”) into
the corresponding module inport queues in active system state a(!,,o. We can extend this to
any finite number of interrupts, I,, as shown in Figure 16. It is necessary that the number
of interrupts be finite for liveness of the system. From the performance perspective, it is
also necessary that interrupt handling be fast enough that the handling of the first interrupt
Ip completes in a reasonable length of time. If the interrupts are interleaved, we must add
the system state (append module inport queue contents) in the order in which the interrupt
handlers finish.

Another solution, which leads to greater predictability in the system, is to preschedule
module iterations. That is, if an interrupt occurs, a sequence of module iterations is sched-
uled and executed, during which interrupts are masked. One can also queue interrupts in
order to eliminate preemption. Then, system execution is deterministic for a fixed sequence

of interrupts. However, both of these approaches reduces the reactiveness of the system.

Determinacy of a system with global variables. Let us now discuss system determinacy

in the case where there are TinyGUYS global variables (GLOBALS,).
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Figure 16: Acﬁve system state determined by adding the active system state after one non-

interleaved interrupt.

Suppose that module M writes to a global variable. Also suppose that the iteration
of module M is interrupted, and a component in the interrupting source DAG writes to the
same global variable. Then without timing information, we cannot predict the final value of
the global variable at the end of the iteration. (Note that when read, a global variable always
contains the same value throughoﬁt an entire module iteration). As currently defined, the
state of the system after the iteration of module M is interrupted by one or more interrupts is
highly dependent on the time at which the components in M write to the global variable(s).

There are several possible alternatives eliminate this source of nondeterminacy.

Solution 1 Allow only one writer for each TinyGUYS global variable.

Solution 2 Allow multiple writers, but only if they can never write at the same time. That
is, if a component in a triggered DAG writes to a TinyGUYS global variable,
no component in any source DAG can be a writer (but components in other trig-
gered DAGs are allowed since they cannot execute at the same time). Likewise,
if a component in a source DAG writes to a TinyGUYS global variable then no
component in any triggered DAG can be a writer. Components in other source

DAGs are only allowed to write if all interrupts are masked.

Solution 3 Delay writes to a TinyGUYS global variable by an iterating module until the

end of the iteration.
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Solution 4 Prioritize writes such that once a high priority writer has written to the TinyGUYS

global variables, lower priority writes will be lost.

Summary We have just discussed system determinacy in the case of a single interrupt
and determination of system state when a module iteration is interrupted by one or more
interrupts.

If we do not use one of the solutions presented, the system state at the completion of an
interrupted module iteration depends on the timing of the interrupts. Without prescheduling
module iterations, the next quiescent system state after an interrupted module iteration is
also highly dependent on module execution times and the timing of the interrupts.

However, event-driven systems are usually designed to be reactive. In these cases,
interrupts should be considered as high priority events which should affect the system state

as soon as possible.

4 Code Generation

Given the highly structured architecture of the TinyGALS model, code for scheduling and
event handling can be automatically generated to release software developers from writing
error-prone concurrency control code. We have created a set of code generation tools for
the MICA motes that, given the definitions for the components, modules, and application,
will automatically generate all the code necessary for (1) component links and module
connections, (2) system initialization and start of execution, (3) communication between
modules, and (4) TinyGUYS global variable reads and writes.

In this section, we also give an overview of the implementation of the TinyGALS sched-

uler and how it interacts with TinyOS, as well as data on the memory usage of TinyGALS.
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Figure 17: A code generation example.

Throughout this section, we will use the example system illustrated in Figure 17. This
system is composed of two modules: A and B. Module A contains two components, ACOMP1
and ACOMP2. Component ACOMP2 accesses a parameter and has a definition similar to
the definition of component A1 given in Figure 11. Module B contains a single component
named BCOMP1, which has a function called £ire () that is connected to the input port
B_in of module B. Figure 17 also summarizes all functions and data structures generated

by the code generator.

4.1 Links and Connections

The code generator will generate a set of aliases which create the maps for the links between
components, as well as the maps for the connections between modules. In the example, an
alias will be generated for the link between ACOMP1 and ACOMP?2, and for the connection

between modules A and B.
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4.2 System Initialization and Start of Execution

The code generator will create a system-level initialization function called app_init (),
which contains calls to the INIT methods of each module in the system. The order of
modules listed in the system definition determines the order in which the INIT methods will
be called. The app_init () function is one of the first functions called by the TinyGALS
runtime scheduler before executing the application. In Figure 17, only module A contains
an initialization list. Therefore, the generated app_init () function will only contain a
call to ACOMP1:init.

The code generator will also create the application start function, app_start (). This
function will trigger the input port of the module defined as the system start port. In the
example, app_start () will contain a trigger for the input port A_in of module A.

4.3 Communication

The code generator will automatically generate a set of scheduler data structures and func-

tions for each connection between modules.

For each input port of a module, the code generator will generate a queue of length n,
where n is specified in the application definition file. The width of the queue depends on the
number of arguments to the method that is connected to the port. If there are no arguments,
then as an optimization, no queue is generated for the port (but space is still reserved for
events in the scheduler event queue). A pointer and a counter are also generated for each
input port to keep track of the location and number of tokens in the queue. For the example
in Figure 17, the definition of port B_in will result in the generation of a port queue called
B_in_0[] (assuming port B_in is linked to a function with a single argument), as well

as the generation of B_in_head and B_in_count.

-For each output port of a module, the code generator will generate a function that has
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the same name as the output port. This outport function is called whenever a methbd of
a component wishes to write to an output port. The type signature of the outport function
matches that of the method that connects to the port. For each input port connected to
the outport, a put () function is generated which handles the actual copying of data to
the inport queue. The put () function also adds the port identifier to the scheduler event
queue so that the scheduler will activate the module at a later time. The outport function
calls the appropriate put () function for each connected inport. In the example of Figure
17, for the outport A_out of module A, a function A_out () is generated, which in turn
calls the generated function B_in_put () to insert data into the queue.

If the queue is full when attempting to insert data into the queue, there are several
strategies that can be taken. We currently take the simple approach of dropping events
that occur when the queue is full. However, an alternate method is to generate a callback
function which will attempt to re-queue the event at a later time. Yet another approach
would be to place a higher priority on more recent events by deleting the oldest event in the

queue to make room for the new event.

For each connection between a component method and a module input port, a function
will be generated with a name formed from the name of the input port and the name of
the component method. When the scheduler activates a module via an input port, it first
calls this generated function to remove data from the input port queue and pass it to the
component method. In Figure 17, module B contains an input port B_in, which is con-
nected to the fire () method of component BCOMP1. The code generator will create a
function called BCOMP1_FIRE(), which removes data queued in B_in_0 [ ], modifies
B_in_headand B_in_count, and calls BCOMP1: fire.

44 TinyGUYS

The code generator will generate a pair of data structures and a pair of access functions

for each TinyGUYS global variable declared in the system definition. The pair of data
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structures consists of a data storage location of the type specified in the module definition
that uses the global variable, along with a buffer for the storage location. The pair of
access functions consists of a PARAM_GET () function that returns the value of the global
variable,v and a PARAM_PUT () function that stores a new value for the variable in the
variable’s buffer. A generated flag indicates whether the scheduler needs to update the
variables by copying data from the buffer.

In the example of Figure 17, a global variable named params.statevar will be
generated, along with a buffer named params_buffer.statevar. The code genera-
tor will also create functions statevar_PARAM_GET () and statevar_PARAM_PUT().

4.5 Scheduling

Execution in the system begins in the scheduler, which performs all of the runtime ini-
tialization.!! Figure 18 describes the TinyGALS scheduling algorithm. There is a single
scheduler in TinyGALS which checks the global event queue for events. When there is an
event, the scheduler first copies buffered values of into the actual storage for any modified
TinyGUYS global variables. The scheduler removes the token corresponding to the event
from the appropriate module input port and passes the value of the token to the component
method linked to the input port. When there are no events in the global event queue, then
the scheduler runs any posted TinyOS tasks. When there are no events or TinyOS tasks,
then the system goes to sleep. In summary, the TinyGALS scheduler is a two-level sched-
uler. TinyGALS modules run at the highest priority, and TinyOS tasks run at the lowest

priority.

In TinyGALS, we eliminate the MAIN component of TinyOS and instead place this functionality in the
initialization sequence of the scheduler.
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if there is an event in the global event queue then {

if any TinyGUYS have been modified

Copy buffered values into variables.

end if

Get token corresponding to event out of input port.

Pass value to the method linked to the input port.
else if there is a TinyOS task then {

Take task out of task queue.

Run task.
end if

Figure 18: TinyGALS scheduling algorithm.

4.6 Memory Usage

Tables 1 and 2 show the sizes of the generated functions and variables for the system
shown in Figure 17. Note that the system contains one port. Here, we assume that the
method linked to A_out writes values of type short and returns a confirmation value of
type char. Additionally, the queue connected to inport B_in is of size 50 (i.e., it holds 50
elements of type short). Thus, memory usage of a TinyGALS application is determined
mainly by the user-specified queue sizes and total number of ports in the system. The Tiny-
GALS communication framework is very lightweight, since event queues are generated as

application-specific data structures.

Table 3 compares the sizes of the TinyGALS and original TinyOS portions of the sched-
uler. The code size of the TinyGALS scheduler is only 114 bytes. For backwards compat-
ibility with TinyOS tasks, we include the original 86 byte TinyOS scheduler. If TinyOS
tasks are not used, the scheduler is about the same size as before. Refer to Section 6.1 on
why TinyOS tasks are made obsolete by the TinyGALS model.

12The queue holds 50 elements of type short.
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Table 1: Sizes of generated functions

Function Name Bytes of code (decimal)
app_init () 58
app_start () 6
A_out() 12
B_in_put() 160
BCOMP1_FIRE() ‘ 98
A_param_PARAM_ GET() 10
A_param_PARAM PUT() 16

Table 2: Sizes of generated variables

Variable Name Bytes (decimal)
eventqueue_head 2
params 2
entrypoints 2
eventqueue_count 2
eventqueue 12 100
ports 12 104

params_buffer_flag

params_buffer 2

Table 3: Size of scheduler (number of bytes in decimal)

TinyGALS 114
TinyOS 86

Total 200
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S5 Example

The TinyGALS programming model and code generation tools have been implemented
for the Berkeley motes [21], a wireless networked sensor platform, and are compatible
with existing TinyOS v0.6.1 components [5]. In this section, we give an example of the
redesign of a multi-hop ad hoc communication protocol known as the beaconless protocol,
or BLESS.

The specific generation of motes, called MICA, that we used in this example has a
4MHz ATMEGA103L microcontroller, 128KB programming memory, 4KB data memory,
5 types of sensors, and an RF communication component. MICA motes operate off of two
AA batteries. BLESS is a single base multi-hop protocol, where a single base station col-
lects information from a distributed wireless sensor network. BLESS dynamically builds a
routing tree rooted at the base station. A sensor node finds its parent node in the routing

tree by listening to the network traffic.

(a) All nodes that can hear the (b) When a one-hop node (c) Three-hop nodes label
base station label themselves sends a message, unlabeled themselves.
as one hop from the base. nodes that overhear this mes-

sage will label themselves as

two-hop nodes.

Figure 19: Illustration of the BLESS protocol.

The base station periodically sends a beacon message. Those nodes that directly receive
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this message will label themselves one hop from the base, as in Figure 19(a). When a
one-hop node sends an information message, some nodes that did not hear the base will
overhear the one-hop node’s message, as shown in Figure 19(b). These nodes will label
themselves two-hop nodes and will remember to send their information message to the
one-hop node they just overheard, which is now their parent node The one-hop node will
forward any packets destined for itself to the base. After a two-hop node has sent an
information message the process will repeat and three-hop nodes will be designated, and
so on, as illustrated in Figure 19(c). Thus the information messages destined for the base
also function as routing beacon messages. A timeout clock is used to re-initialize the parent
list to empty, which allows nodes to tolerate unreliable links as well as nodes that join and

leave the network dynamically

From a single node point of view, the BLESS protocol responds to three types of input
events — information messages sent by the local application, network messages overheard
or to be forwarded, and the timeout event to reset the parent variables. The three threads
of reaction are intertwined. For example, while a node is busy forwarding a message from
its child node, its own application may try to send a message and may modify the message
buffer. It is also possible that, while a node sends an information message, an overheard
message may arrive, which will change the node’s parent and in turn the hop number of
this node.

The BLESS protocol is implemented in TinyOS v0.6.1 as a single monolithic compo-
nent with eight method call interfaces that handle all three threads of reaction internally. All
methods are non-reentrant. To avoid concurrent modification of message buffers, the com-
ponent makes extensive use of a pending lock. Six of the eight methods contain code that
adjusts behavior accordingly after setting and/or checking thekpending lock. Even so, due
to the -cognp]exity of managing message queues, the queuing of events is left to application

designers who use this component.

Using the TinyGALS model, we redesigned and implemented the BLESS protocol on
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the motes as three separate modules: BLESS_Start, BLESS_Receive, and BLESS_Send!3,
each of which only deals with a single thread of reaction. In addition, there are a number of
global variables that use the TinyGUYS mechanism and are accessed from within at least

two of the modules. This structure is displayed in Figure 20.

TinyGUYS
Variables

—
3
Send Message

Num Hops
Heard Index

Parent Index
Motes Heard[]
Heard Hops[]

init

Figure 20: Structure of BLESS implementation under TinyGALS. Each shaded rectangle

represents a module. The guarded global variables are shown on the right.

The BLESS_Start module contains a single component that prepares an outgoing
message initiated by the local application. The input port of BLESS_Start is connected
to this application module and the output port is connected to the sending component within
BLESS_Send. The BLESS_Start module reads the guarded global variables to deter-

mine the current parent node and set up the outgoing message.

The BLESS_Receive module is comprised of two components: Generic Comm'*
receives messages from the radio, and Process Message processes those messages.
The output port of BLESS_Receive is connected to the sending component within BLESS_Send
to pass messages that must be forwarded to the base. The BLESS_Receive module ac-
cesses the guarded global variables both in order to update them and to use them when

forwarding a message.

1*Resetting the parent is done within a separate module triggered directly by the clock.
Y4Generic Comm is the same as GENERIC_COMM, an off-the-shelf TinyOS component that implements

the network stack.
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The BLESS_ Send module is comprised of two components, one for reformatting mes-

sages, Send Message, and the second for sending messages over the radio, Generic Comm.

No global variables are used.

Table 4 shows the sizes of the redesigned BLESS implementation, as well as the orig-
inal BLESS implementation. For fair comparison, we only account for the sizes of the
components inside of the modules. The last row of the table shows the total application
sizes for two implementations of a target counting application which uses each BLESS

implementation.

From the table, we can deduce that 1170 (3366 - 2196 = 1170) additional bytes of code
appear in the redesigned BLESS implementation. This difference is a 53.28% (1170/2196)
increase in code size from the original implementation. However, this difference con-
tributes only 9.156% (1170/12778) to the total code size of the new application. Tiny-
GALS sacrifices some space in memory for improved software modularity and code reuse.

Applications that would take one week to implement now take us only 3 days to implement.

In the above example, the BLESS_Send module is conveniently used by both of the
other two modules to send the specialized router message. Additionally, we avoid poten-
tial problems with shared state and interrupts through the use of TinyGUYS global vari-
ables. TinyGUYS simplifies the code writing and debugging process by eliminating the
need for explicit locks. TinyGALS also provides easy management of message queues. In
the TinyGALS architecture of the above example, when a message is to be sent through
Send Message, a request is queued at the input port to the BLESS_Send module.
When processing time is available, BLESS_Send will run after dequeuing the messages
from its input port. This same call in the existing TinyOS implementation would result
in the message being sent immediately, or, if busy, not at all, due to its usage of a single
pending lock. Use of the TinyGALS programming model leads to programs with better

code structure and improved communication network reliability.
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Table 4: Code size comparison of BLESS implementations (bytes in decimal)

redesigned BLESS original BLESS
BLESS_Start 540 | BLESS_COMP 2196
BLESS_Receive 2730
BLESS_Send - 96
Total 3366
New Application 12778 | Old Application 10582

6 Related Work

In this section, we summarize the features of several operating systems and/or software
architectures and discuss how they relate to TinyGALS. We begin with TinyOS, which
is closely tied with the component model of TinyGALS. We then discuss PBOs (port-
based objects) and FPBOs (featherweight port-based objects), whose SVAR (state variable)
mechanism influenced the design of TinyGUYS. We discuss the Click Modular Router
project, which has interesting parallels to the TinyGALS model of computation. We also
discuss Ptolemy II and the CI (component interaction) domain, as well as TM (Timed
Multitasking), which are areas that we plan to explore in more detail in extensions to the
existing TinyGALS model and implenientation.

6.1 TinyOS

TinyOS is an operating system specifically designed for networked embedded systems.
[20] describes TinyOS in detail. TinyOS provides a set of reusable software components.
A TinyOS application connects components using a wiring specification that is indepen-
dent of component implementation. Some TinyOS components are thin wrappers around
hardware, although most are software modules which process data; the distinction is invis-
ible to the developer. Decomposing different OS services into separate components allows

unused services to be excluded from the application.
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There are two sources of concurrency in TinyOS: tasks and events. Tasks are a deferred
computation mechanism. Components can post tasks; the post operation returns immedi-
ately, deferring the computation until the scheduler executes the task later. Tasks run to
completion and do not preempt each other. Events signify either an event from the envi-
ronment or completion of a spliz-phase operation. Split-phase operations are long-latency
-operations where operation request and completion are separate functions. Commands are
typically requests to execute an operation. If the operation is split-phase, the command
returns immediately and completion will be signaled with an event; non-split-phase oper-
ations do not have completion events. Events also run to completion, but may preempt
the execution of a task or another event. Resource contention is typically handled through
explicit rejection of concurrent requests. Because tasks execute non-preemptively, TinyOS
has no blocking operations. TinyOS execution is ultimately driven by events representing

hardware interrupts.

In Section 1, we intreduced TinyOS and its influence on the TinyGALS model. Later
sections and footnotes contain details on the ties between TinyOS and TinyGALS.

In TinyOS, many components such as PHOTO and other wrappers for device drivers are
“split phase”, which means that they are actually both source and triggered components. A
higher level component will call the device driver component to ask for data. This call will
return immediately. Later, the device driver component will interrupt with the ready data.
The hidden source aspect of these types of components may lead to TinyOS configurations
with race conditions or other synchronization problems. Although the TinyOS architecture
allows components to reject coricurrent requests, it is up to the software developer to write
thread-safe code. This job is actually quite difficult, especially after components are wired
together and may have interleaved events. In Sections 2.3 and 3, we showed how the
TinyGALS component model enables users to analyze potential sources of concurrency
problems more easily by identifying source, triggered, and called components and defined
what kinds of links between components are valid.

The TinyGALS programming model removes the need for TinyOS tasks. Both trig-
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gered modules in TinyGALS and tasks in TinyOS provide a method for deferring compu-
tation. However, TinyOS tasks are not explicitly defined in the interface of the component,
so it is difficult for a developer wiring off-the-shelf components together to predict what
non-interrupt driven computations will run in the system. In TinyOS tasks must be short;
lengthy operations should be spread across multiple tasks. However, since there is no com-
munication between tasks, the only way to share data is through the internal state of a
component. The user must write synchronization code to ensure that there are no race con-
ditions when multiple threads of execution access this data. TinyGALS modules, on the
other hand, allow the developer to explicitly define “tasks” at the application level, which is
a more natural way to write applications. The asynchronous and synchronous parts of the
system are clearly separated to provide a well-defined model of computation, which leads
to programs that are easier to debug. The globally asynchronous nature of TinyGALS pro-
vides a way for tasks to communicate. The developer has no need to write synchronization
code when using TinyGUYS to share data between tasks; the code is automatically gener-
ated by the TinyGALS tools.

6.2 Port-Based Objects

The port-based object (PBO) [35] is a software abstraction for designing and implementing
dynamically reconfigurable real-time software. The software framework was developed for
the Chimera multiprocessor real-time operating system (RTOS). A PBO is an independent
concurrent process, and there is no explicit synchronization with other processes. PBOs
may execute either periodically or aperiodically. A PBO communicates other PBOs only
through its input ports and output ports. Configuration constants are used to reconfigure
generic components for use with specific hardware or applications. PBOs may also have
resource ports that connect to sensors and actuators via I/O device drivers, which are not
PBOs.

Communication between PBOs is performed via state variables stored in global and

local tables. Every input and output port and configuration constant is defined as a state
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variable (SVAR) in the global table, which is stored in shared memory. A PBO can only
access its local table, which contains only the subset of data from the global table that is
needed by the PBO. Since every PBO has its own local table, no synchronization is needed
to read from or write to it. Consistency between the global and local tables is maintained by
the SVAR mechanism, and updates to the tables only occur at predetermined times. Con-
figuration constants are updated only during initialization of the PBO. The state variables
corresponding to input ports are updated prior to executing each cycle of a periodic PBO,
or before processin_g each event for an aperiodic PBO. During its cycle, a PBO may update
the state variables corresponding to output ports at any time. These values are only updated
in the global table after the PBO completes its processing for that cycle or event. All trans-
fers between the local and global tables are performed as critical sections. Although there
is no explicit synchronization or communication among processes, accesses to the same
SVAR in the global table are mutually exclusive, which creates potential implicit block-
ing. Spin-locks are used to lock the global table, and it is assumed that the amount of data
communicated via the ports on each cycle of a PBO is relatively small. It is guaranteed
that the task holding the global lock is on a different processor and will not be preempted,
thus it will release the lock shortly. If the total time that a CPU is locked to transfer a state
variable is small compared to the resolution of the system clock, then there is negligible
effect on the predictability of the system due to this mechanism locking the local CPU.
Since there is only one lock, there is no possibility of deadlock. A task busy-waits with the

local processor locked until it obtains the lock and goes through its critical section.

Echidna [2] is a real-time operating system designed for smaller, single-processor,
embedded microcontrollers. The design is based on the featherweight port based object
(FPBO) [34]. The application programmer interface (API) for the FPBO is identical to
that of the PBO. In an RTOS, PBOs are separate processes, whereas FPBOs all share the
same context. The Chimera implementation uses data replication to maintain data integrity
and avoid race conditions. Echidna implementation takes advantage of context sharing to
eliminate the need for local tables, which is especially important since memory in embed-

ded processors is a limited resource. Access to global data must still be performed as a
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critical section to maintain data integrity. However, instead of using semaphores, Echidna

constraints when preemption can occur.

To summarize, in both the PBO and FPBO model, the software components only com-
municate with other components via SVARs, which are similar to global variables. Updates
to an SVAR are made atomically, and the components always read the latest value of the
SVAR. The SVAR concept is the motivation behind the TinyGUYS strategy of always read-
ing the latest value. However, in TinyGALS, since components within a module may be
tightly coupled in terms of data dependency, updates to TinyGUYS are buffered until a
module has completed execution. This is more closely related to the local tables in the
Chimera implementation than the global tables in the Echidna implementation. However,
there is no possibility of blocking when using the TinyGUYS mechanism.

63 Click

Click [25, 24] is a flexible, modular software architecture for creating routers. A Click
router configuration consists of a directed graph, where the vertices are called elements and
the edges are called connections. In this section, we provide a detailed description of the
constructs and processing in Click and compare it to TinyGALS.

Elements in Click An element is a software module which usually performs a simple
computation as a step in packet proceésing. An element is implemented as a C++ object
that may maintain private state. Each element belongs to one element class, which spec-
ifies the code that should be executed when the element processes a packet, as well as
the element’s initialization procedure and data layout. An element can have any number
of input and output ports. There are three types of ports: push, pull, and agnostic. In
Click diagrams, push ports are drawn in black, pull ports in white, and agnostic ports with
a double outline. Each element supports one or more method interfaces, through which

they communicate at runtime. Every element supports the simple packet-transfer interface,
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but elements can create and export arbitrary additional interfaces. An element may also
have an optional configuration string which contains additional arguments that are passed
to the element at router initialization time. The Click configuration language allows users
to define compound elements, which are router configuration fragments that behave like
element classes. At initialization time, each use of a compound element is compiled into

the corresponding collection of simple elements.

Figure 21 shows an example Click element that belongs to the Tee element class, which
sends a copy of each incoming packet to each output port. The element has one input port.
It is initialized with the configuration string “2”, which in this case configures the element
to have two output ports.

element class

input port -------» p Te'e( ? ) i:::::::- output ports

configuration string

Figure 21: An example Click element.

Connections in Click A connection represents a possible path for packet handoff and
attaches the output ;;ort of an element to the input port of another element. A connection
is implemented as a single virtual function call. A connection between two push ports is
a push connection, where packet handoff along the connection is initiated by the source
element (or source end, in the case of a chain of push connections). A connection between
two pull ports is a pull connection, where packet handoff along the connection is initiated by
the destination element (or destination end, in the case of a chain of pull connections). An
agnostic port behaves as a push port when connected to push ports and as a pull port when
connected to pull ports, but each agnostic port must be used as push or pull exclusively.
In addition, if packets arriving on an agnostic input might be emitted immediately on an
agnostic output, then both input and output must be used in the same way (either push
or pull). When a Click router is initialized, the system propagates constraints until every

agnostic port has been assigned to either push or pull. A connection between a push port
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and a pull port is illegal. Every push output and every pull input must be connected exactly
once. However, push inputs and pull outputs may be connected more than once. There are
no implicit queues on input and output ports (or the associated performance and complexity
costs). Queues in Click must be defined explicitly and appear as Queue elements. A Queue
has a.push input port (responds to pushed packets by enqueueing them) and a pull output
port (responds to pull requests by dequeuing packets and returning them).

Another type of element is the Click packet scheduler. This is an element with multiple
pull inputs and one pull output. The element reacts to requests for packets by choosing
one of its inputs, pulling a packet from it, and returning the packet. If the chosen input has
no packets ready, the scheduler will usually try other inputs. Both Queues and scheduling
elements have a single pull output, so to an element downstream, Queues and schedulers
are indistinguishable. This leads to an ability to create virtual queues, which are compound

elements that act like queues but implement more complex behavior than FIFO queuing,.

Click runtime system Click runs as a kernel thread inside the Linux 2.2 kernel. The
kernel thread runs the Click router driver, which loops over the task queue and runs each
task using stride scheduling [36]. A task is an element that would like special access to CPU
time. An element should be on the task queue if it frequently initiates push or pull requests
without receiving a corresponding request. Most elements are never placed on the task
queue; they are implicitly scheduled when their push () or pull () methods are called.
Since Click runs in a single thread, a call to push () or pull () must return to its caller
before another task can begin. The router will continue to process each pushed packet,
following it from element to element along a path in the router graph (a chain of push ()
calls, or a chain of pull () calls), until it is explicitly stored or dropped (and similarly
for pull requests). Placement of Queues in the configuration graph determines how CPU
scheduling may be performed. For example, device-handling elements such as FromDevice
and.ToDevice place themselves on Click’s task queue. When activated, FromDevice polls
the device’s receive DMA queue for newly arrived packets and pushes them through the

configuration graph. ToDevice examines the device’s transmit DMA queue for empty slots
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and pulls packets from its input. Click is a pure polling system; the device never interrupts
the processor.

Timers are another way of activating an element besides tasks. An element can have any
number of active timers, where each timer calls an arbitrary method when it fires. Timers

are implemented using Linux timer queues.

FromDevice 1——» Null 11—» I:-——-+ Nuﬂ———- ToDevice
receive ush (p)
packer p| o2 B)_| —Push(p) _

turn return _{enqueuep
e —

ready to
‘_.El"-—ll-(—)"“' <—-—231"1"‘Q'_— transmit

dequeue p

and return it % return
L i endp

Figure 22: A simple Click configuration with sequence diagram.

Figure 22 shows a simple Click router configuration with a push chain (FromDevice
and Null) and a pull chain (Null and ToDevice). The two chains are separated by a Queue
element. The Null element simply passes a packet from its input port to its output port;
it performs no processing on the packet. Note that in the sequence diagram in Figure 22,
time moves downwards. Control flow moves forward during a push sequence, and moves
backward during a pull sequence. Data flow (in this case, the packet p) always moves

forwards.

Figure 23 illustrates the basic execution sequence of Figure 22. When the task corre-
sponding to FromDevice is activated, the element polls the receive DMA ring for a packet.
FromDevice calls push () on its output port, which calls the push () method of Nhll. The
push () method of Null calls push () on its output port, which calls the push () method
of the Queue. The Queue element enqueues the packet if its queue is not full; otherwise
it drops the packet. The calls to push () then return in the reverse order. Later, the task
corresponding to ToDevice is activated. If there is an empty slot in its transmit DMA ring,

ToDevice calls pull () on its input port, which calls the pull () method of Null. The
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Figure 23: Flowchart for Click configuration shown in Figure 22.
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pull () method of Null calls pull () on its input port, which calls the pull () method
of the Queue. The Queue element dequeues the packet and returns it through the return of
the pull () calls.

Overhead in Click Modularity in Click results in two main sources of overhead. The first
source of overhead comes from passing packets between elements. This causes one or two
virtual function calls, which involves loading the relevant function pointer from a virtual
function table, as well as an indirect jump through that function pointer. This overhead is
avoidable — the Click distribution contains a tool to eliminate all virtual function calls from
a Click configuration. The second source of overhead comes from unnecessarily general
element code. The authors of [25] found that element generality had a relatively small
effect on Click’s performance since not many elements in a particular configuration offered

much opportunity for specialization.

Comparison of Click to TinyGALS An element in Click is comparable to a component
in TinyGALS in the sense that both are objects with private state. Rules in Click on con-
necting elements together are similar to those for connecting components in TinyGALS
— push outputs must be connected exactly once, but push inputs may be connected more
than once (see Sections 2.3.3 and 3). Both types of objects (Click elements and TinyGALS
components) communicate with other objects via method calls. In Click, there is no funda-
mental difference between push processing and pull processing in Click at the method call
level of view; they are sets of method calls that differ only in name. However, the direction
of control flow with respect to data flow in the two types of processing are opposite of
each other. Push processing can be thought of as event-driven computation (if we ignore
the polling aspect of Click), where control and data flow downstream in response to an
upstream event. Pull processing can be thought of as demand-driven computation, where

control flows upstream in order to compute data needed downstream.

Figure 24 helps to provide a more detailed analysis of the difference in control and data
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Figure 24: Click vs. TinyGALS.

flow between Click and TinyGALS. Figure 24 shows a push processing chain of four ele-
ments connected to a queue, which is connected to a pull processing chain of two elements.
In Click, control begins at element C1 and flows to the right and returns after it reaches the
Queue. Data (a packet) flows to the right until it reaches the Queue. If we visualize this
configuration as a TinyGALS model, with elements C1 and C2 grouped into a module A
and elements C3 and C4 grouped into a module B, then we see that a TinyGALS module
forms a boundary for control flow.

Note that a compound element in Click does not form the boundary of control flow. In
Click, if an element inside of a compound element calls a method on its output, control will
flow to the connected element (recall that a compound element is compiled to a chain of
simple elements). In TinyGALS, data flow within a module is not represented explicitly.
Data flow between components in a module can have a direction different from the link
arrow direction, unlike in Click, where data flow is the same direction as the connection.

Data flow between modules is always the same as the connection arrow direction, although
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TinyGUYS provides a possible hidden avenue for data flow between modules.

Also note that the Click Queue element is not equivalent to the queue on a TinyGALS
module input port. In Click, arrival of data in a queue does not cause downstream objects
to be scheduled, as in TinyGALS. This highlights.the fact that Click configurations cannot
have two push chains (where the end elements are activated as tasks) separated by a Queue.
Additionally, since Click is a pure polling system, it does not respond to events immedi-
ately, unlike TinyGALS, which is interrupt-driven and allows preemption to occur in order
to process events. Much of this is due to the fact that Click’s design is motivated by high
throughput routers, whereas TinyGALS is motivated by a power- and resource-constrained
platform; a TinyGALS system goes to sleep when there are no external events to which to
respond.

Aside from the polling/interrupt-driven difference, push processing in Click is equiv-
alent to synchronous communication between components in a TinyGALS module. Pull
processing in Click, however, does not have a natural equivalent in TinyGALS. In Figure
24, elements C5 and C6 are grouped into a module C. If we reverse the arrow directions
inside of module C, control flow in this new TinyGALS model will be the same as in Click.
However, elements C5 and C6 may have to be rewritten to reflect the fact that C6 is now a

source object, rather than a sink object.

In Click, execution is synchronous within each push (or pull) chain, but execution is
asynchronous between chains, which are separated by a Queue element. From this global
point of view, the execution model of Click is quite similar to the globally asynchronous,

locally synchronous execution model of TinyGALS.

Unlike TinyGALS, elements in Click have no way of sharing global data. The only
way of passing data between Click elements is to add annotations to a packet (information
attached to the packet header, but which is not part of the packet data).

Unlike Click, TinyGALS does not contain timers associated with elements, although
this can be emulated by linking a CLOCK component with an arbitrary component. Also
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unlike Click, the TinyGALS model does not contain a task queue.!3

Pull processing in sensor networks Although TinyGALS does not currently use pull
processing, the following example by Jie Liu given in [42] illustrates a situation in which
pull processing is desirable for eliminating unnecessary computation. Figure 25 shows a
sensor network application in which four nodes cooperate to detect intruders. Each node
is only capable of detecting intruders within a limited range and has a limited battery life.
Communication with other nodes consumes more power than performing local compu-
tations, so nodes should send data only when necessary. Node A has more power and
functionality than other nodes in the system. It is known that an intruder is most likely to
come from the west, somewhat likely to come from the south, but very unlikely to come
from the east or north. Under these assumptions, node A may want to pull data from other
nodes only when needed. Figure 26 shows one possible configuration for this kind of pull
processing. The center component is similar to the Click scheduler element. This example
also demonstrates a way to perform distributed multitasking. Node D (and others) may be
free to perform other computations while node A performs most of the intrusion detection.

This could be an extension to the current single-node architecture of TinyGALS.

w2 el S R

Figure 25: A sensor network application.

13 Although, for backwards compatibility with TinyOS, the TinyGALS runtime system implementation
supports TinyOS tasks, which are long running computations placed in the task queue by a TinyOS compo-
nent method. The scheduler runs tasks in the task queue only after processing all events in the event queue.
Additionally, tasks can be preempted by hardware interrupts. See 6.1 for more information.
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Figure 26: Pull processing across multiple nodes; a configuration for the application in
Figure 25.

6.4 Ptolemy and CI

The Ptolemy project [4] studies heterogeneous modeling, simulation, and design of con-
current systems. Modeling is the act of representing a system or subsystem formally. Ex-
ecutable models are constructed under a model of computation, which is the set of rules
that govern the interaction, communication, and control flow of a set of components in the
model. The Ptolemy II [11] software package includes implementations of a wide variety
of models of computation, called domains. An executable entity in Ptolemy II is called an

actor.

A new domain currently being developed in Ptolemy II, called CI (component interac-
tion), models systems that contain both event-driven and demand-driven styles of compu-
tation. It is moﬁvated by the pﬁsh/pull interaction between data producers and consumers
in middleware services such as the CORBA event service. CI actors can be active (i.e., they
have their own thread of execution) or passive (they are triggered by an active actor). There
is a natural correlation between the CI domain and Click. The MESCAL project [3] has
created a tool called Teepee [30], which is based on Ptolemy II and implements the Click
model of computation. The Ptolemy II actor library contains a ClassWrapper actor, which
could be used to model TinyGALS components. We are currently investigating how CI and

Click can be leveraged to implement an implementation of TinyGALS in Ptolemy II.
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6.5 Timed Multitasking

Timed multitasking (TM) [29] is an event-triggered programming model that takes a time-
centric approach to real-time programming but controls timing properties through deadlines

and events rather than time triggers.

Software components in TM are called actors, due to the implementation of TM in
the Ptolemy project. An actor represents a sequence of reactions, where a reaction is a
finite piece of computation. Actor have state, which carries from one reaction to another.
Actors can only communicate with other actors and the physical world through ports. Un-
like method calls in object-oriented models, interaction with the ports of an actor may not

directly transfer the flow of control to another actor.

Actors in a TM model declare their computing functionality and also specify their exe-
cution requirements in terms of trigger conditions, execution time, and deadlines. An actor
is activated when its trigger condition is satisfied. If there are enough resources at run time,
then the actor will be granted at least the declared execution time before its deadline is
reached. The results of the execution are made available to other actors and the physical
world only at the deadline time. In the cases where an actor cannot finish by its deadline,
the TM model includes an overrun handler to preserve the timing determinism of all other

actors and allow the actor that violates the deadline to come to a quiescent state.

A trigger condition can be built using real-time physical events, communication pack-
ets, and/or messages from other actors. Triggers must be responsible, which means that
once triggered, an actor should not need any additional data to complete its finite compu-
tation. Therefore, actors will never be blocked on reading. The communication among the
actors has an event semantics, in which, unlike state semantics, every piece of data will
be produced and consumed exactly once. Event semantics can be implemented by FIFO

queues. Conceptually, the sender of a communication is never blocked on writing.

[29] describes a method for generating the interfaces and interactions among TM actors
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into an imperative language like C. There are two types of actors — an interrupt service rou-
tines (ISR) responds to external events, and a task is triggered entirely by events produced
by peer actors. These two types do not intersect. In a TM model, an ISR usually appears
as a source actor or a port that transfers events into the model. ISRs do not have triggering
rules, and outputs are made immediately available as trigger events to downstream actors.
An ISR is synthesized as an independent thread. Tasks have a much richer set of interfaces
than ISRs ar_ld have a set of methods that define the split-phase reaction of a task. The TM
runtime system uses an event dispatcher to trigger a task when a new event is received at its
port. Events on a connection between two actors are represented by a global data structure,
which contains the communicating data, a mutual-exclusion lock to guard the access to the

variable if necessary, and a flag indicating whether the event has been consumed.

We suggested in Section 3.1 that a partial method of reducing non-determinacy due
to one or more interrupts during a module iteration is to delay producing outputs from a
module until the end of its iteration. This is similar to the TM method of only producing

outputs at the end of an actor’s deadline.

7 Conclusion

This report describes the TinyGALS programming model for event-driven multitasking
embedded systems. The globally asynchronous, locally synchronous model allows soft-
ware designers to use high-level constructs such as ports and message queues to separate
the flow of control between modules that contain components composed of method calls.
Guarded yet synchronous variables (TinyGUYS) provide a means of exchanging global
data between asynchronous modules without triggering reactions. TinyGALS contains no
blocking mechanisms in the language constructs, which means there is not potential of
deadlock.

We showed that given a single interrupt, the path of a TinyGALS system from one
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quiescent system state to the next quiescent system state can be predicted. Under multiple
interrupts, we can predict the path of a TinyGALS system between module iterations if
constraints are placed on the time at which events are produced at the output ports of a
module, as well as on how many writers are allowed for TinyGUYS. Event-driven systems
are highly timing-dependent, and we can consider interrupts to be high priority events that
should affect the system state as soon as possible. However, the TinyGALS programming
mode] allows us to examine the structure of the system to determine whether interrupts
will change the state. For example, in Figure 27, we know that component C1 is not a
source and that interrupts cannot change its state. Additionally, TinyGALS provides a
task-oriented way of designing an application. In TinyOS, tasks are not visible at the user-
level. In TinyGALS, the structure of the system makes tasks visible (i.e., tasks correspond
to module(s)).

Figure 27: Interrupts cannot change the state of component C1.

TinyGALS is designed for applications in which the system must react to events as
soon as possible. TinyGALS is also intended for use in resource-constrained systems,
since generated TinyGALS code is quite small, and the system is designed to sleep when
not reacting to events. TinyGALS is not designed for real-time applications, since there
is currently no guarantee on the time it will take an interrupt handler to complete, should
it be preempted by non-masked interrupts. TinyGALS and other systems that use a push
model of computation are not meant for processing intensive applications that must avoid

unnecessary chains of computation, since once activated, components run to completion.

The high-level constructs of the TinyGALS programming model are amenable to auto-
matic code generation that releases designers from writing error-prone task synchronization
code. We implemented this model for the Berkeley mote sensor network platform and de-

scribed a multi-hop communication protocol redesigned using the TinyGALS model.
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7.1 Future Work

We plan to reimplement the TinyGALS syntax and code generation tools to be compatible
with nesC [18], the language written for TinyOS v1.0 and higher. We will then be able
to take advantage of additional type checking provided by the nesC compiler. nesC will
probably allow us to create a better way of declaring use of TinyGUYS global variables
with scoping. David Culler notes that the TinyGALS scheduler could be implemented as
a TinyOS task that posts itself and contains code to transfer data between components and
activate them. We plan to investigate the feasibility of this approach with respect to the
generation of code for TinyGALS module input ports.

We also plan to investigate how TinyGALS relates to the CI domain in Ptolemy II and

how this can be leveraged to create a TinyGALS domain or runtime system, similar to that
of TM.

Various improvements could be made to the TinyGALS framework. For example, a
mechanism for writing to input ports whose queues are full could be added so that writes
are blocking and will retry later when the queue is not full. The basic FIFO scheduling of
modules in TinyGALS could be replaced with a priority scheduling algorithm with queue

insertions.

We also wish to investigate the possibility of run-time reconfigurability of modules
— how to replace or reconfigure modules in a TinyGALS system while it is executing.
Another important direction of research is distributed multi-tasking, in which TinyGALS
could be extended to execute in a distributed fashion on multiple nodes, rather than its
current single-node implementation. An interesting area to investigate is that of heterarchy

[16], in which components may belong to multiple concurrent and cross-cutting networks.
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