Copyright © 2003, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

PERFORMANCE ANALYSIS OF THE
PERIPHERAL - PROCESSOR INTERACTION
IN EMBEDDED SYSTEMS

by

Christian Sauer, Matthias Gries, Chidamber Kulkarni
and Kurt Keutzer

Memorandum No. UCB/ERL M03/26

1 June 2003

PERFORMANCE ANALYSIS OF THE
PERIPHERAL ~ PROCESSOR INTERACTION
IN EMBEDDED SYSTEMS

by

Christian Sauer, Matthias Gries, Chidamber Kulkarni
and Kurt Keutzer

Memorandum No. UCB/ERL M03/26

1 June 2003

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Performance Analysis of the Peripheral — Processor
Interaction in Embedded Systems

Christian Sauer', Matthias Gries?, Chidamber Kulkamni?, Kurt Keutzer®

! Infineon Technologies, Corporate Research, Munich
% University of Califomia, Berkeley
{sauer, gries, kulkarni, keutzer} @eecs.berkeley.edu

Abstract. Designs of interconnection networks, memory hierarchy, and
processors have received significant attention in the context of system-on-a-
chip research. However, almost 30-40% of the on-chip real estate is spent on
peripherals, which are heterogeneous in nature and have almost been neglected
Jrom a research perspective. Thus understanding issues that contribute to
heterogeneity of peripherals is critical in making their design more
homogeneous and regular. In this paper we present a study that models a
complete embedded system including an operating system to understand the
interplay between peripherals and the remaining system for different aspects.
The results of benchmarking serial and infrared communication interfaces
show that the protocol overhead handled at the peripheral-processor interface
is at least 39% and between 16% and 60% of the effective system load are due
10 the peripheral. Our main observation based on this work is that a careful
balance between local peripheral resources (buffer architecture, DMA policy,
supported protocol stack functions) versus the granularity (number, frequency)
and complexity (flow control) of system interaction is fundamental to optimizing
peripheral-processor interaction (and making them homogeneous).

Introduction

Rapid progress in embedded systems, such as Internet-attached devices, has given a
new impetus to a wide and fast growing range of input-output (I/0) peripheral device
standards such as USB, IrDA, IEEE 1394, and IEEE 802.11. This in turn has resulted
in system architectures that combine customized blocks for peripherals with
programmable processor cores.

Processors, memory hierarchies, interconnection networks, and peripherals are the
main building blocks for these application specific programmable system-on-a-chip
architectures. During the design process a lot of emphasis is put on the first three, but
peripherals, including communication interfaces as their largest subset, are often
neglected and their complexity is underestimated. This is mainly due to the general
perception that peripherals constitute standard intellectual property (IP) blocks and
that they are usually integrated at design time. Increasingly these peripherals are
becoming bottlenecks to both the design process and the performance of the end

system, due to their heterogeneity and ad-hoc integration practice based on a localized
view of the interfaces between processor and peripheral.

Our analysis of state-of-the-art chips [9] for multimedia and network domains
clearly shows that 1) peripherals and communication interfaces account for a
significant share of the total system, typically between 30% and 40% of the die area,
2) there is a large number of heterogeneous peripheral functions even on a single chip,
and 3) a single peripheral can be more complex than a processor core. Finally, the
software interface for such peripheral devices, which comprises device drivers and
often the related protocol management, is becoming complex and more
heterogeneous, resulting in a challenge for designing reliable software [1 1].

Thus any successful solution to the problem of heterogeneity, complexity,
reliability, and ad-hoc integration methods necessitates a better understanding of
existing mechanisms related to peripheral design and the corresponding system
profile. Indeed, the primary goal of our research is to achieve a reduction in the
diversity of peripherals thereby making the design process more regular and
potentially simpler. The advantages of such a system are not only the unified design
process, but also an increase in robustness of the overall system, due to a regular
software interface for device drivers.

The main goal of this paper is to obtain a detailed understanding of the contribution
of protocol-related overhead of peripherals to the utilization of the system and its
components, and to reveal issues that contribute to the heterogeneity of such
interfaces, showing the potential for optimization.

The related work for this paper is in three domains: those discussing the
characterization and profiling of operating systems and protocol stacks, those
addressing the synthesis of device drivers, and those addressing the interface and
communication protocol synthesis problem.

In the domain of operating system and protocol stack characterization, the main
focus is either on the impact of different processors on the operating system [71[8] or
on the different timing profiles based on commercial benchmarks such as SPEC.
Many of these works do not address the impact on device driver related issues. In the
embedded domain there have been some works which investigate the impact on driver
or peripheral related power consumption [1]{12] but do not present a comprehensive
picture on the impact of protocol stack and driver/peripheral aspects on bus, memory
or even CPU. Apart from these works we find papers addressing device driver
synthesis [5][14], which are concerned primarily with capturing existing
driver/peripheral interfaces and encapsulating platform specifics so as to achieve
portability. However, only little attention has been given to optimization of the
overhead in performance introduced due to portability. Also the underlying interfaces
remain unchanged. The synthesis of interfaces and communication protocols
[6][10](13] has focused on formal models and automated techniques based on a
localized view of the involved interfaces. In addition, there have been approaches that
realize peripheral functions in software running on the core processor [4].

In summary, a lot of effort has been put into understanding meta-level operating
system aspects, device driver and interface synthesis but existing work provides little
insight into issues related to the optimization of lower-layers such as device drivers
and peripheral ~ processor interaction. Thus, it is essential to study and investigate

these missing aspects to characterize the peripheral environment properly, so that the
system integration and optimization can be eased and simplified.

In this paper, we model and evaluate a complete system comprising an ARM
processor core, required controllers for interrupts and memory accesses, peripheral
devices (UART, IrDA), and an embedded (uC-)Linux operating system.

The remaining paper is organized as follows: The next section briefly introduces
trade-offs involved with the design of peripheral-processor interfaces. Section 3
presents the experiment system set-up and discusses different aspects of system
adaptation. Section 4 presents and discusses the results obtained and identifies the
bottlenecks in the total system due to device drivers and the related communication
protocol. We conclude the paper with a summary of our main observations.

Interface Design Trade-offs

Multiple aspects characterize the peripheral - processor interaction. In particular, for
an embedded system one needs to consider system load, communication overhead,
interrupt overhead, and memory accesses due to the peripheral. The design space of a
peripheral is quite complex, since we need to make many different trade-offs to
address the above issues. Three of the main trade-offs are:

e Complexity of control in the peripheral (or related protocol stacks) as compared to
the memory space and memory operations.

* Types of event handling mechanisms such as based on interrupts compared to
those based on polling.

¢ Computational complexity of the processor as compared to the peripheral itself.

In addition, we also need to take into account software management aspects such as
modularity of the system, robustess of the device driver interface; etc,

A better understanding of the peripheral — processor interaction is fundamental to the
investigation of potential solutions to optimization of this interface. For this purpose
we have assembled a framework that allows modeling a realistic embedded system in
sufficient detail and also, lets users implement different optimizations. The goal of
such an exercise is to enable experimentation with repartitioning of the functionality
between peripherals and the processor, and the ability to adapt different interfaces for
peripherals. In this paper we will focus on characterization and profiling of a realistic
system to understand the above stated trade-offs.

System and Application

In this section we introduce the different aspects of the system, namely the simulation
setup based on a processor simulator, the operating system, our application, and their
adaptation for our needs. Our goal is to use a minimal but realistic embedded system

configuration that still exposes interfaces and their interaction with the environment
sufficiently to characterize and identify bottlenecks.

We use an ARM based system [3] since the ARM processor family is well
established and used in a wide variety of embedded systems. In addition, open source
operating systems and public domain tool chains including simulators are available,
which allows us to extend and customize the simulator and the OS with various
peripheral modules.

For this paper, we implement interface functionality for two cases: a) Serial
communication to consider the simplest possible way of connecting two systems and
b) infrared (I'DA) communication due to its widespread use in handheld devices.
Furthermore, these protocols provide two different implementations schemes: infrared
is part of the operating OS/device driver whereas the serial communication requires a
separate application.

File-Transfer application

File transfers, like the download of MP3 songs or e-mail synchronization, are
examples for essential tasks of numerous embedded devices, especially in the domain
of Intemnet-attached devices and handhelds. In order to expose the interaction between
peripheral/communication interfaces and the remaining system, we have chosen a file
transfer as benchmark since it is a small, but complete application and can be
implemented on top of numerous protocol stacks such as USB, IrDA, and serial data
links (UART).

For this study, a file is downloaded from a remote server into the system under
observation. System and server are connected via their serial interfaces (see Figure 1).
Kermit [2] is used as reliable protocol for the serial communication case whereas the
IrDA stack guarantees reliable transmission in the infrared case. The workload of the
communication interface not only depends on link properties (such as reliability) but
also on the size of the file transferred. For this paper, we use synthetic files of sizes
between 100 and 16000 Byte as workload and assume an unreliable link.

Architecture

We use an ARM processor as a CPU in our set-up. The system under test, as shown in
Figure 1, is based on the AT91x40 series from ATMEL [3]. It contains an
ARM7TDMi core with 4 MB RAM, 4 MB ROM, interrupt controller (AIC) and a set
of peripherals, namely two timers (TC0/1) and two serial interfaces (UARTO0/ 1) with
DMA capabilities (PDC).

We use an ARM simulator (ARMulator) with the GNU debugger (gdb) as our
simulation backbone. We have modified the emulator to reflect the AT91 specific set
of peripherals. The simulator accurately models instructions and their memory and
/O transactions and uses a flat memory model without data or instruction caches. The
access to peripheral registers is memory mapped.

el ““d"mi"e | Serial File Transfer |
[l s oo
=

File Server

Embedded

Fig. 1. Embedded System and Evaluation Environment.

Atmel’s AT91x40 is designed to run with clock frequencies up to 40 MHz. Since
the clock-per-instruction ratio for the ARM7 processor core is 1.9 and the transfer rate
is up to 115 Kb/s for an UART, the available instruction budget lies somewhere
between 361 (for 10 MHz) and 1460 Instructions (for 40 MHz) per transferred byte.

Embedded Software/Operating System

The operating system for our setup is uC-Linux!, a derivative of the Linux 2.4 kernel
that targets microcontrollers without a Memory Management Unit (MMU). The OS
and its drivers can be customized to run on different processors and peripheral
configurations. We have chosen a minimal configuration that contains only (beside
the kernel and support for our devices) RAM/ROM disk support, a ROM based file
system, loadable kernel modules, and a few core applications like msh, init, stty,
ircpy, G-kermit and ush (see below).

System Adaptation

We had to implement the following crucial adaptations in order to make the complete
set-up functional and useful in the context of peripherals as follows:

! www.uclinux.org

Additional peripheral - The ARM system? needed to be extended with a second,
more precise UART interface model, since the first simple one is only used for
console and keyboard I/O of the system.

Distributed simulation — In order to utilize the infrastructure of the simulation
host the second UART interface in the emulator is mapped onto a TCP/IP port of
the host. Thus, a telnet connection can be used (in combination with ush) for the
file transfer. This operation mode is used for investigating the serial interface. For
the infrared communication, another mode is used, which allows the connection of
a second, identical system to the system under test. Both systems run in lock step
and share the same simulation time. The TCP/IP based communication is solely
part of the simulator backplane and fully transparent to the simulated interface and
protocols.

IrDA support — Linux device drivers for the infrared interface are still in
experimental status and required some bug fixes to get corresponding sockets and
utility packages to work in the ARMulator tool set. Based on the IrDA-Utils
package, a bi-directional copy program was implemented (ircpy).

ARM applications — Besides ircpy a shell (ush) that redirects I/O to the char
device ttyS1 (our UART) was implemented. This enables a terminal connection to
the device and thus allows applications to communicate via stdin/out with our
system. The G-kermit program® uses this established link for reliable file transfers.

Debug mode control — For the purpose of characterization a number of debug
modules have been implemented in the emulator to closely watch program counter,
memory accesses, the UART interfaces and the interrupt controller. Accessing
reserved memory addresses via “gdb” commands can control these modules
(enable/disable/reset/print).

System characterization and analysis

In this section we present a detailed system evaluation based on our set-up. The goal
of our study is to understand the interaction between a peripheral and the surrounding
system, especially the device driver. We therefore examine: 1) the communication
overhead that needs to be handled by the peripheral for a particular protocol stack, 2)
the profile of executed software and system load distribution to quantify the influence
of the peripheral on computation and data movement, and 3) memory utilization and
I/O access patterns for the memory mapped device and finally discuss our
observations.

2 www uclinux.org/pub/uClinux/utilities/armulator/

3

www mbia.edwkermit/gkermit.html

Protocol and communication overhead

For our application, the protocol overhead is introduced by G-Kermit* (in the serial
communication case) or the IrDA protocol stack’ (access IrTLAP, management IrLMP,
and transport TinyTP layers). Both protocols enable reliable packet-based transfers
over a point-to-point connection.

The observable protocol overhead has five principal origins: a) Accompanying
data: Besides the file content, descriptive information (like filename, type, and
attributes) needs to be transferred. b) Protocol initialization: At the beginning of
each session, parameters (e.g. packet length) need to be negotiated. c) Packet frame:
Payload is encapsulated by header (start byte, packet length, and packet sequence
number), and checksum. d) Payload transcoding: e.g. special control characters need
to be escaped. ¢) Flow control: mechanism based on additional control packets
(handshake, acknowledge). The latter three origins generate a permanent overhead,
whereas the first two introduce only an initial, per session overhead.

1049

b

Protocol overhead [%]

2

%
B% % 9%

G-Kermit
10

100 200 300 400 500 600 800 1000 2000 4000 8000 16000
File size [byte]

Fig. 2. Relative protocol overhead per payload size.

The amount of data that is passed through the UART peripheral is shown in Figure
2 for different payload sizes. Due to the mentioned initialization effects the overhead
is high especially for small transfers, comprising up to 1740% (IrDA) of the payload
size. Although with larger transfers the influence of initialization flattens and constant
effects prevail, the overhead remains significant with 40% (Kermit) to 47% (IrDA) of
the payload size. For unreliable communication links this overhead can be expected to

4 www.columbia.edwkermit/gkermit.html
s www.irda.org

be even higher because packet retransmissions and related link layer activities are
necessary.

As expected, the relatively simple G-Kermit protocol defines a lower bound for the
overhead. In the case of infrared communication, the situation becomes worse since
additional protocol layers affect not only the amount of received data but also require
more data sent back to the opposite layer. Downloading a 1000 byte file (as
considered in the subsequent sections) requires 1570 bytes by serial or 3080 bytes by
infrared to be transferred by the peripheral.

Software execution profile

The function call stack for data
transfers in our system has two

ipp @i_mﬂl origins/entry points: a) the
G-Kermit pcn’pher‘a] device and b) the user
application. In the first hardware

User space initiated case, the UART receives

Kernel space data and generates an interrupt as

soon as the data has been transferred
into the main memory. The data is
passed from there to the application
(which independently calls the file
system read) via different OS layers
(char/tty driver — file system/fs —
Fig. 3. Software layers application; charf/irtty — irda —
for serial and infrared net/socket — application) and a total
communication. of five different buffers. In the
second application initiated case, a
file system write is called that traps into the kernel and copies the data into another
similar set of buffers to enable the transmission by the device driver’s service routine.
In order to measure the system load, program counter (PC) traces are generated
while executing the application with different workloads. These traces are used to
compile histograms that summarize the system load in five to six classes with respect
to call stack and OS layers®:

* Application — all user space applications, G-kermit or ircpy in our case.

* Kernel — all general system functionality: process scheduling, time handling,
interrupt routines, signal interface; excluding system idle loop.

* Idle — non-functional. Although the idle loop technically belongs to the kernel a
separate class helps identifying those non-functional instructions.

® Char — character device drivers. This class contains everything necessary to access
our UARTS (n_tty, tty_io, atmel, random).

Library functions called from one of the classes count always to the calling class, e.g.
atmelreceive_chars() calls memcopy().

e IrDA - infrared protocol stack (access IrLAP, management IrLMP, and transport
TinyTP layers) and ir_tty coupling to UART.

o FS —file system functions.

Figure 4 shows the relative distribution of executed instructions among our classes
looking at the steady state for the transfer of a 1000 byte file. Initializations like load
of application or UART setup/device discovery are not considered. The data is
normalized to the total number of active instructions, i.e. without idle cycles, for
speed independence.

We observe that in the serial case the interaction between peripheral and the
remaining system across the char device driver accounts for an already significant
share (16%) of the overall load. Furthermore, this driver is also the primary system
aspect involved (followed by the interrupt handler (irq, softirq) 7%, timer and
scheduler 5%), as Table | reveals. The application, however, accounts for 2/3" of all
executed instructions because of the protocol processing done at the application level.
In the infrared case, the protocol layers are realized within the irda driver.
Consequently, the irda driver is with 47% the largest share of the system load.

net8%

1% |—— app—

IrDA Serial
Fig. 4. Distribution of executed Instructions.

Tables 1 and 2 present the load per class and byte transferred in more detail,
broken down by largest contributing functions. The number of 35 instructions per
byte spent in the device driver (char) for the serial case is surprisingly high. This
seems, at least in parts, due to multiple data movements. The six instructions per byte
for the receive_chars function, for instance, only copy UART status & data between

Table 1. Instruction count by function (serial case).

buffers and schedule the next processing step. In the case of infrared we find a similar
number of instructions (14.4 + 11.9) for comparable functionality spent in the char
device driver and the irtty layer, respectively. The infrared protocol processing can be
accounted with 34 instructions which are mainly (2/3") spent on frame processing.

Using the instruction budget (361 — 1460) for Atmel’s AT91x40 in Section 0, we
realize that: 1) 222 (118) non-idle instructions lead to a total system occupation
between 15% (8%) and 61% (33%) for the serial (infrared) case, 2) the overall
execution time is determined by the 1/0 speed only, and 3) the infrared transfer takes
at least twice as long as the serial transfer at the same /O speed because twice as
much data and protocol overhead need to be transferred.

Table 2. Instruction count by function (infrared).

Task class Largest functions Instructions per byte Task class Largest functions Instructions per byts
read_chan 124 random SHAtransform 3.7 43
n_tty n_ty_recsive_buf 22 R 0post_block 1.5
writs_chan 14 17.2 Lty write_chan 0.8 25
receive_chars 6.2 char rs_write 22
char e g—;’n”fwm 23 aimel) roceive_chars 13 65
transmit_chars 08 tty_io tty_writo 0.7 10 144
start_rx 0.7 153 corel... 58
Ty_fo fy_read 15 33 358 net m fg 0
iq ?gamo ;2 state_inside_frame 99
| . stuff_byte 46
i check_ir_lock 1.5 128 irda a0 . oump 38
kernel :d,meed sehadae 75 ;; irda_dzla_indication 26
- - ’ state_begin_frame 22 M2
sgnal zs'm;?}." :z 33 Irtty_receive_buf 66
~ ' ' 312 M0 | iy change speed_co.. 46 119 sgp
fs sys_read 27 Sys_arm sys_viork 133 133
sys_write 15 13.1 irg do_RQ 17 a3
G-kermit 142.7 emel ::r?e o.g .
Total 2228 1.
mm kmalloc 10 2
softirg do_softirg 1.0 3.0
4.8 296
fs Sys_wiile 1.4 5.0
ircpy 128
Total 1179
Memory and I/O Accesses

The last part of this paper addresses memory accesses, especially those that involve
our peripheral, the UART. The simulator not only accurately models instructions and
their memory and /O transactions but also those DMA accesses that are originated in
the PDC/UART. Accesses to peripheral registers are memory mapped. Thus, the
complete interaction with the UART will be reflected in the following.

For our benchmark (1000 Byte file transfer), in total, we recognize 196000 (serial)
and 218000 (infrared) non-idle data accesses to the main memory, originated by the
CPU (not counting any reads of instructions nor the peripheral DMA accesses). In

10

average, the memory is accessed two times for every three executed instructions
(ratios: 0.56 serial, 0.6 infrared). Figure 5 shows the distribution of these accesses
among our classes. In the serial case, we observe that just three sub classes (atmel,
n_tty, and irq), account already for 55% of all OS memory accesses. The atmel serial
driver is the most significant class. In the infrared case, the atmel driver still remains
significant, but the irda driver class clearly dominates with 41%.

6%

app

56.2%

irda

net, 8.8%
irda.o, 41.0%®
itty.o, 4.3%

char

tty_io, 0.8%

random, 1.4%

n_tty, 1.5%
atmel, 7.1% @

char

1.5% tty_io
®6.5% n_tty
©9.8% atmel

kemel

others, 6.7%
mm, 3.4%

irg, 5.3%
sys_am, 9.5%

5.4% others
2.1% sched
2.4% lime
®7.9%irq

IrDA Serial

Fig. 5. Distribution of memory accesses among classes.

The CPU accesses the memory mostly in full words (88%, 81%), sometimes byte
wise (12%, 17%), and only in a very few cases in half words. The memory mapped
peripheral accesses are broken down by device in Table 3. The direct memory
mapped CPU access to the UART [U1] is the reason for 7% (serial) and 4% (infrared)
of all accesses initiated by atmel.

Table 3. I/0 Accesses by Peripheral Device.

Peripheral device Number of accesses — IrDA Number of accesses — serial
Read Write Total Read Write Total
Interrupt controller [AIC] 507 507 1014 294 364 658
Timer/Counter [TC| 102 0 102 18 0 18
Serial Interface [U1) 107 450 557 200 1135 1335
Total 716 957 1673 512 1499 2011

While the Timer device requires little maintenance, relatively much interaction is
necessary for the serial interface. Looking closer into the UART, in Table 4, we
realize that all accesses are directed to peripheral control registers. Data is transferred
by the device’ DMA controller directly to the memory and therefore, only pointer and

buffer length for such DMA must be set up. Interestingly, a sequence of 12 (average)
control accesses must be executed per interaction because we count for the serial case
1335 accesses and a total of 109 events (91 receive interrupts and 18 transmit
sequences, as shown later in Table 5). A peripheral interaction is either the reaction to
DMA transfers plus subsequent interrupt (receive) or initiates (write data pointer) a
transfer in order to transmit data (see Tables 4, 5).

Table 4. Control and Data Accesses for the UART peripheral.

SerialInterfacs [U1] Number of :fmses -1DA Number of accesses - Serial
- Read Write Tota! Read Write Total

DMA Receivedata pir 0 2 23 0 74 2]
setup Receive counter 46 23 69 91 148 239

Transmit data ptr 0 15 15 0 18 18

Transmit counter 0 s 75 0 127 127

Control UART control 0 166 166 - 364 364
INT enable/disable - 46+ 58 104 - 91+ 165 256
Channel status 61 - 61 109 - 109

Receive Timeout 0 44 45 0 148 148

Tota! 107 450 559 200 1135 1335

Table 5. UART1/memory DMA transfers.

DA Le:‘;m Serl :n‘;m

Serial Interface [U1} Bytes Number [byte) Bytes Number {byte]
Device ~ memory 2159 23 939 1385 91 152
Memory - device 926 15 61.7 141 18 78
Total 3085 38 812 1526 109 14

Although the DMA controllers could handle the full driver buffer size of 256 bytes,
only 16 byte DMA transfers are at best executed in the serial case, as Table 5 reveals.
Considering that the data is also moved into a special buffer (read, write) before the
transfer is setup in a sequence of 12 cycles the usage of DMA is actually more
expensive than writing directly to the device. The situation improves in the case of
infrared. Here, the DMA is with an average transfer of 80 bytes much better utilized.
Besides the amount of local memory, the length of a transfer depends only on the
granularity of the used communication protocol. In our case in fact, the number of
interactions equals the number of transmitted packets (23 received, 15 send).

Discussion

For the serial case, the char device driver, which handles the interaction between
UART and processor/operating system, is not only the largest system aspect involved,
but also accounts for a significant share of at least 16% of the system load and 18% of
all memory accesses. Including the protocol processing as in case of IrDA, this
numbers increase to 60% of the system load and 66% of all accesses. While this
clearly confirms the successful separation of OS concerns, it also indicates the

12

necessity for the careful design of processor/OS - peripheral interfaces and the
partitioning of tasks among peripheral and processor.

The assessment of Atmel’s AT91x40 for our application shows, that the system
would already be utilized between 8% and 61% by our application only. That means,
6 MHz of the processor speed are necessary to handle the 115kbps serial
communication — a difference by a factor of 52. For the infrared communication,
which needs twice as long, the factor is still 26. Although we consider only a minimal
set of interfaces, this indicates arising problems for larger numbers of peripherals with
potentially higher I/0 bandwidth.

We find the number of 35 instructions spent per serially transferred byte within the
char driver surprisingly high. It is caused partly by the movement of data across
multiple buffers in different layers. Although the introduction of multiple driver
layers is advantageous for abstraction and flexibility for programming both, user
applications as well as drivers itself, we believe that optimizations across these layers
are essential for an efficient implementation. This is supported by the somewhat
better, but still high number of 22 instructions in case of the IrDA char driver
implementation.

We find the measured communication overhead between 39% and 47% for larger
transfers to be significant, especially, if the protocol stack as in case of Kermit is
executed on top of the operating system, encompassing multiple layers and buffers.
For unreliable connections packet retransmissions and related link layer activities may
in addition require substantial system resources. Thus localizing the communication
overhead to the peripheral by repartitioning the protocol stack is crucial. The IrDA
protocol implementation within the device driver layers demonstrates already some
relief for the higher OS/application layers compared to Kermit in the serial case.

We find the DMA capabilities within our system for the serial transfer
underutilized, leading to additional bus congestion and communication delay; only a
few bytes (15, 8) are transferred with each access, partly due to assumptions about the
peripheral buffer size (NS PC16550 compatible mode) but also to the fine-grain
structure of the communication. The IrDA protocol stack optimizes the first issue by
deploying all local memory within the peripheral. In that way just a single interaction
is required per infrared packet in our setup. The second issue, again, requires a
different system partitioning that restricts fine grain feedback communication to the
peripheral.

Approaches for Improving the Peripheral — Processor Interaction

The observations discussed in the previous section indicate clear potential for
optimizing the processor — peripheral device interaction. In fact, we recognize three
main approaches to this problem:

e Interaction across software layers — Most of the software layering is introduced
for programming abstraction and flexibility/portability reasons and is not needed
for a particular set of application and device. In our setup, for instance, 50% of the
OS buffers and the related copy operations could be saved. Such optimization

13

however, requires a comprehensive/complete view onto application/OS/driver and
hardware. Recent work addressing the customization of operating systems can be
found in [15].

* Processor support for fine grain I/Q device interaction — Standard processor
architectures such as the ARM7 core provide only little support for frequent
interrupts or excessive memory accesses. For communication-centric systems,
potentially with multiple high bandwidth peripherals, deterministic scheduling and
fast interrupt handling are however crucial tasks. Although achievable by over-
provisioning, some hardware support such as multiple register contexts, or register
mapped 1O could leverage more cost efficient systems. In that way, the observed
discrepancy of a factor of 52 in required processor to peripheral speed could be
reduced. Embedded network processors such as [16] already utilize such
techniques.

* Repartitioning of task distribution among processor and peripheral - By
repartitioning functionality among processor and peripheral, the designer can trade
off local peripheral resources (buffer architecture, DMA policy, supported protocol
stack functions) and the granularity (number, frequency) and complexity (flow
control) of interaction. In this way, the system could be relieved from fine grain
communication and also the protocol overhead — in our case between 39% and
229% for the serial transfer — would be kept local to the interface.

Conclusions

In this paper, we have modeled and evaluated a complete embedded system including
operating system to profile and understand the interplay between peripherals and the
remaining system. The main conclusions for our configuration are:

* The processor-peripheral interaction accounts for a significant share of system
load, because of an unfavorable task partitioning between processor and peripheral.

o Communication-intensive and fine-grain device interaction is expensive for
standard processors, because of little support for frequent context switches and I/O
accesses.

¢ The interaction between the different layers of device drivers, operating system,
and the application are highly suboptimal resulting in excessive memory
usage/copying of data.

In summary, peripherals indeed contribute significantly to the overall system
performance, and hence, a disciplined approach to the design and integration of
peripherals is required, which is the focus of our current research.

14

References

[1] A. Acquaviva, L. Benini, B. Ricco, “Energy Characterization of

Embedded Real-Time Operating Systems,” In. Conf on Parallel
Architectures and Compilation Techniques (PACT), Spain, 2001

[2] F. da Cruz, B. Catchings, “Kermit: A File Transfer Protocol for Universities”,
Part I+11, Byte Magazine, vol. 9, no. 6+7, USA, 1984

[3] Datasheet, Atmel AT91x40 series, www.atmel.com

[4] D. Lioupis, A. Papagiannis, D. Psihogiou, “A Systematic Approach to Software
Peripherals for Embedded Systems,” Int. Symp. on Hardware/Software Codesign
(CODES), Denmark, 2001

[5] M. O’Nils, A. Jantsch, “Operating System Sensitive Device Driver Synthesis
from Implementation Independent Protocol Specification,” Design Automation
and Test in Europe (DATE), Germany, 1999

[6] R. B. Ortega, L. Lavagno, G. Borriello, “Models and Methods for HW/SW
Intellectual Property Interfacing, * ASI Proceedings on System Synthesis, Italy,
1998

[7] J. Redstone, S. Eggers, H. Levy, “An Analysis of Operating Systems Behavior on
a Simultaneous Multithreaded Architecture,” 9" ASPLOS Conference, 2000

[8] M. Rosenblum, E. Bugnion, S. A. Herrod, E. Witchel, A. Gupta, “The Impact of
Architectural Trends on Operating System Performance,” 15" ACM Symposium
on Operating Systems Principles (SOSP), Colorado, USA, 1995

[9] C. Sauer, "Modeling Peripherals,” Fully Programmable Systems Theme, GSRC
Workshop, Stanford, CA, 2002.

[10]). Smith and G. De Micheli, “Automated Composition of Hardware
Components,” 35" Design Automation Conf. (DAC), 1998

[11]R. Short, B. Stuart, “Windows XP crash data,” Driver Development Keynote,
WinHEC, Anaheim, USA, 2001

[12]F. Vahid, J. Henkel, “Instruction based System-level Power Evaluation of
System-on-a-Chip Peripheral Cores,” 13" Int. Symp. on System Synthesis (ISSS),
Spain, 2000

[13]S. Vercauteren, B. Lin, "Hardware/Software Communication and System
Integration for Embedded Architectures,” Kiuwer Journal on Design Automation
Jor Embedded Systems, vol. 2, no. 3/4, 1997

[14]S. Wang, S. Malik, R. Bergamaschi, “Modeling and Integration of Peripheral
Devices in Embedded Systems,” Design Automation and Test in Europe (DATE),
Germany, 2003

[15]]. Navarro, “OS and Software Stack Customization,” Embedded Software
Theme, GSRC Workshop, Anaheim, CA, 2003

[16]T. Halfhill, “Ubicom’s new NPU stays small,” Microprocessor Report, April
21th 2003 ’

15

