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Abstract

We consider the so-called Generalized Principal Component Analysis (GPCA) problem, i.e., the problem of
identifying n linear subspaces of a K -dimensional linear space from a collection of sample points drawn from these
subspaces. In the absence of noise, we cast GPCA in an algebraic geometric framework in which the number of
subspaces n becomes the degree of a certain polynomial and the subspace parameters become the factors (roots) of
such a polynomial. In the presence of noise, we cast GPCA as a constrained nonlinear least squares problem which
minimizes the error between the noisy points and their projections subject to all mixture constraints. By converting
this constrained problem into an unconstrained one, we obtain an optimal function from which the subspaces can be
directly recovered using standard non-linear optimization techniques.

In the case of subspaces of dimension k = K — 1, i.e., hyperplanes, we show that the number of hyperplanes »n
can be obtained from the rank of a certain matrix that depends on the data. Given 7, the estimation of the hyperplanes
is essentially equivalent to a factorization problem in the space of homogeneous polynomials of degree n in X
variables. After proving that such a problem admits a unique solution, we propose two algorithms for estimating the
hyperplanes. The polynomial factorization algorithm (PFA) cbtains a basis for each hyperplane from the roots of a
polynomial of degree n in one variable and from the solution of K — 2 linear systems in n variables. This shows
that the GPCA problem has a closed form solution when n < 4. The polynomial differentiation algorithm (PDA)
obtains a basis for each hyperplane by evaluating the derivatives of the polynomial representing the hyperplanes at a
collection of points in each one of the hyperplanes. We select those points either by intersecting the hyperplanes with
arandomly chosen line, or by else by choosing points in the dataset that minimize a certain distance function.

In the case of subspaces of equal dimension ky = --- = k, = k < K — 1, we first derive rank constraints
on.the data from which one can estimate the number of subspaces n and their dimension k. Given n and k, we
show that the estimation of the subspaces can be reduced to the estimation of hyperplanes of dimensionk = K’ — 1
which are obtained by first projecting the data onto a K’-dimensional subspace of R¥ . Therefore, the estimation of
the subspaces can be done using either the polynomial factorization or the polynomial differentiation algorithm for
hyperplanes.

In the case of subspaces of arbitrary dimensions, 1 < k;,..., k. < K—1, we show that the union of all subspaces
can be represented by a collection of homogeneous polynomials of degree n is K variables, whose coefficients can
be estimated linearly from data. Given such polynomials, we show that one can obtain vectors normal to each one of
the subspaces by evaluating the derivatives of such polynomials at a collection of points in each one of the subspaces.
The estimation of the dimension and of a basis for (the complement of) each subspace is then equivalent to applying
standard PCA to the set of normal vectors. The above algorithm is in essence a generalization of the polynomial
differentiation algorithm to subspaces of arbitrary dimensions.

Our theory can be applied to a variety of estimation problems in which the data comes simultaneously from
multiple (approximately) linear models. Our experiments on low-dimensional data show that PDA gives about half
of the error of the PFA and improves the performance of iterative techniques, such as K-subspace and EM, by about
50% with respect to random initialization. We also present applications of our algorithm on computer vision problems
such as vanishing point detection, 2-D and 3-D motion segmentation, and face clustering under varying illumination.

* Research supported by ONR grant N00014-00-1-0621 and UIUC ECE Department startup fund.



1 Introduction

Principal Component Analysis (PCA) [11] refers to the problem of identifying a linear subspace S C R¥ of unknown
dimension k < K from N sample points 27 € S, j = 1,2,..., N. This problem shows up in a variety of applications
in many fields, e.g., pattern recognition, data compression, image analysis, regression, etc., and can be solved in a
remarkably simple way from the singular value decomposition (SVD) of the data matrix [z!,x2,...,2V] € RK*N,
In the presence of noise, this purely algebraic solution has the geometric interpretation of minimizing the sum of the
squared distances from the (noisy) data points 7 to their projections %7 in S.

In addition to this algebraic-geometric interpretation, PCA can also be understood in a probabilistic manner. In
Probabilistic PCA [20] (PPCA), the noises are assumed to be independent samples drawn from an unknown distribu-
tion, and the problem becomes one of identifying the subspace and the parameters of the distribution in a maximum
likelihood sense. When the underlying noise distribution is Gaussian, the algebraic-geometric and probabilistic inter-
pretations coincide [3]. However, when the underlying distribution is non Gaussian the solution to PPCA is no longer
linear. For example, in [3] PCA is generalized to arbitrary distributions in the exponential family. The authors use
Bregman distances to derive the log-likelihood as a nonlinear function of the natural parameter of the distribution. The
log-likelihood is then minimized using standard nonlinear optimization techniques.

Another extension of PCA is nonlinear principal components (NLPCA) or Kernel PCA (KPCA), which is the
problem of identifying a nonlinear manifold from sample data points. The standard solution to NLPCA [15] is
based on first embedding the data into a higher-dimensional feature space F' and then applying standard PCA to the
embedded data. That is, one assumes that there exists an embedding of the data such that the embedded data points lie
on a linear subspace of a higher-dimensional space. Since in practice the dimension of F can be large, a more practical
solution is obtained from the eigenvalue decomposition of the so-called kerne! matrix, hence the name KPCA. One of
the disadvantages of KPCA is that it is unclear what kernel to use for a given problem, since the choice of the kemel
naturally depends on the nonlinear structure of the manifold to be identified. In fact, learning kernels is an active topic
of research in the KPCA community.

In this paper, we consider the following (alternative) extension of PCA to the case of mixtures of subspaces, which
we call Generalized Principal Component Analysis (GPCA):

Problem 1 (Generalized Principal Component Analysis (GPCA))
Given a set of sample points X = {x’ € R¥}, drawn from n > 1 different linear subspaces {S; C R¥}2_,
of dimension k; =dim(S;), 0 < k; < K, identify each subspace S; without knowing which points belong to which
subspace. By identifying the subspaces we mean the following:

1. Identify the number of subspaces n and their dimensions {k;}2;

2. Identify a basis (or a set of principal components) for each subspace S; (or equivalently S;-);

3. Group or segment the given NV data points into the subspace(s) to which they belong.

Figure 1 illustrates the case of n = 3 subspaces of R of dimensions ky = ke = k3 = 2.
R3

Figure 1: Three (n = 3) 2-dimensional subspaces S1, S, 53 in R3. The objective of GPCA is to identify all three
subspaces from samples {2} drawn from these subspaces.



1.1 Previous work on mixtures of principal components

Geometric approaches to mixtures of principal components have been proposed in the computer vision community on
the context of 3-D motion segmentation. The main idea is to first segment the data associated with each subspace,
and then apply standard PCA to each group. Kanatani [12] (see also [2, 4]) demonstrated that when the pairwise
intersection of the subspaces is trivial, which implies that X > nk, one can use the SVD of all the data to build a
similarity matrix from which the segmentation can be easily extracted. In the presence of noise the segmentation of
the data becomes a quite challenging problem which can be solved using a time-consuming graph-theoretic approach
as demonstrated in {4]. When the intersection of the subspaces in nontrivial, the segmentation of the data is usually
done in an ad-hoc fashion using clustering algorithms such as K-means. The only existing geometric solution is for
the case of two planes in R3 and was developed by Shizawa and Mase [17] in the context of 2-D segmentation of
transparent motions.! To the best of our knowledge, our work is the first one to provide a geometric solution for an
arbitrary number 7 of different subspaces of any dimensions &y, - - - , k,, and with arbitrary intersections among them.

Probabilistic approaches to mixtures of principal components [19] assume that sample points within each subspace
are drawn from an unknown probability distribution. The membership of the data points to each one of the subspaces is
modeled with a multinomial distribution whose parameters are referred to as the mixing proportions. The parameters
of this mixture model are estimated in a Maximum Likelihood or Maximum a Posteriori framework as follows: one
first estimates the membership of the data given a current estimate of the model parameters, and then estimates the
model parameters given a current estimate of the membership of the data. This is usually done in an iterative manner
using the Expectation Maximization (EM) algorithm. However, the probabilistic approach to mixtures of principal
components suffers from the following disadvantages:

1. Itis hard to analyze some theoretical questions such as the existence and uniqueness of a solution to the problem.

2. Itrelies on a probabilistic model for the data, which is restricted to certain classes of distributions or indepen-
dence assumptions.

3. The convergence of EM is in general very sensitive to initialization, hence there is no guarantee that it will
converge to the optimal solution. To the best of our knowledge, there is no global initialization irrespective of
the distribution of the data.

4. There are many cases in which it is very hard to solve the grouping problem correctly, and yet it is possible to
obtain a quite precise estimate of the subspaces. In those cases, a direct estimation of the subspaces (without
grouping) seems more appropriate than an estimation based on incorrectly segmented data.

One may therefore ask
1. Is there an algebraic way of initializing statistical approaches to subspace segmentation?
2. Isis possible to find algebraic constraints that do not depend on the segmentation of the data?
3. Ifyes, can one use these constraints to estimate all the subspaces directly from all the data?

4. Furthermore, since some information about the number of subspaces must also be contained in the data, is there
an algebraic way of obtaining an initial estimate for the number of subspaces?

1.2 Our approach to mixtures of principal components: GPCA

In this paper, we propose a novel algebraic-geometric approach to modeling mixtures of subspaces called Generalized
Principal Component Analysis (GPCA), which under mild assumptions guarantees a unique global solution to clus-
tering of subspaces based on simple linear algebraic techniques. The key to our approach is to view the mixture of
subspaces as a projective algebraic variety. Estimating the variety from sample data points becomes a particular case
of NLPCA for which one can derive the embedding of the data analytically. Then, estimating the individual subspaces
is equivalent to estimating the components of the algebraic variety. Unlike previous work, our approach allows ar-
bitrary intersections among the subspaces (as long as they are different) and does not require previous segmentation
of the data in order to estimate the subspaces. Instead, the subspaces are estimated directly by using segmentation
independent constraints that are satisfied by all data points, regardless of the subspace to which they belong.
More specifically, the main aspects behind our approach are the following:

We thank Dr. David Fleet for pointing out this reference.



1. Algebraic sets and varieties: We show in Section 2 that the union of n linear subspaces of R¥ corresponds
to the (projective) algebraic set defined by one or more homogeneous polynomials of degree » in K variables.
Estimating a collection of subspaces is then equivalent to estimating the algebraic variety defined by such a set
of polynomials.

2. Mixtures of (K — 1)-dimensional subspaces: We show in Section 3 that the union of n subspaces of dimension
k = K —1 is defined by a unique homogeneous polynomial p,,(z). The degree of p,(z) turns out to be the
number of hyperplanes n and each one of the » factors of p,(x) corresponds to each one of the n hyperplanes.
Hence the problem of identifying a collection of hyperplanes boils down to estimating and factoring p,(x).
Since every sample point & must satisfy pn(x) = 0, one can retrieve p, (z) directly from the given samples
without knowing the segmentation of the data. In fact, the number n of subspaces is exactly the lowest degree of
Pn(x) such that p, () = 0 for all sample points. This leads to a simple matrix rank condition which determines
the number of hyperplanes n. Given n, the polynomial p,(z) can be determined from the solution of a set of
linear equations. Given p, (), the estimation of the hyperplanes is essentially equivalent to factoring p,, (x) into
a product of n linear factors. We present two algorithms for solving the factorization problem. The polynomial
Jactorization algorithm (PFA) obtains a normal to each hyperplane from the roots of a polynomial of degree n
in one variable and from the solution of K — 2 linear systems in n variables. Thus the problem has a closed form
solution if and only if n < 4. The polynomial differentiation algorithm obtains the normals to each hyperplane
from the derivatives of p,, () evaluated at a collection of n points lying on each one of the hyperplanes.

3. Mixtures of k-dimensional subspaces (k < (K — 1)): We show in Section 4 that even though the union of n
subspaces of dimension k < K —1 is defined by more than one homogeneous polynomial, one can still reduce it
to the case of a single polynomial by projecting the data onto a (k+-1)-dimensional subspace of R X. However, in
order to project the data we need to know the dimension of the subspaces k. In standard PCA, where n = 1, one
can always estimate k from the rank of the data matrix. In the case of n subspaces, we derive rank constraints
from which one can simultaneously estimate n and k, after embedding the data into a higher-dimensional space.
Given n and k, one can use the equations of the projected subspaces to first segment the data using GPCA for
hyperplanes and then estimate a basis for the original subspaces using standard PCA. Although a single generic
projection is sufficient, we also derive a generalization of the polynomial differentiation algorithm that uses
multiple projections to estimate each subspace.

4. Mixtures of subspaces of arbitrary dimensions: We show in Section 5 that in the case of subspaces of arbitrary
dimensions one cannot recover a set of factorable polynomials representing the algebraic variety. Instead, one
can only recover a basis for such polynomials whose elements may not be factorable. However, we show that
one can still recover a set of vectors normal to the subspaces by evaluating the derivatives of these polynomials
at points on the subspaces, regardless of whether they are factorable or not. Given such normal vectors, the
estimation of a basis for the the subspaces and their dimensions can be done by applying standard PCA to the
set of normal vectors. This algorithm is in essence a generalization of the polynomial differentiation algorithm
to subspaces of arbitrary dimensions.

5. Maximum likelihood estimation: In Section 6 consider the GPCA problem in the presence of noisy data. We
assume a simple probabilistic model in which the data points are corrupted by zero-mean Gaussian noise and
cast GPCA as a constrained nonlinear least squares problem which minimizes the error between noisy points
and their projections subject to all mixture constraints. By converting this constrained problem into an uncon-
strained one, we obtain an optimal function from which the subspaces can be directly recovered using standard
nonlinear optimization techniques. We show that the optimal objective function is just a normalized version of
the algebraic error minimized by our analytic solution to GPCA. Although this means that the algebraic solution
to GPCA may be sub-optimal in the presence of noise, we can still use it as a global initializer for any of the
existing iterative algorithms for clustering mixtures of subspaces. For example, in Section 7 we derive the equa-
tions of the K-subspace and EM algorithms for mixtures of subspaces, and show how to use GPCA to initialize
them.

Our theory can be applied to a variety of estimation problems in which the data comes simultaneously from
multiple (approximately) linear models. In Section 8 we present experiments on low-dimensional data showing that
the polynomial differentiation algorithm gives about half of the error of the polynomial factorization algorithm and
improves the performance of iterative techniques, such as K-subspace and EM, by about 50% with respect to random
initialization. In Section 9 we present applications of GPCA in computer vision problems, such as detection of
vanishing points, 2-D and 3-D motion segmentation, and face clustering under varying illumination.



Remark 1 (Higher order SVD) Ir is natural t0 ask if an algebraic solution to the GPCA problem can be obtained
by using some generalization of the SVD to higher-order tensors. It turns out that although the SVD has a multi-
linear counterpart, the so-called higher order singular value decomposition (HOSVD) [5], such a generalization is
not unique. Furthermore, while the SVD of a matrix A = USVT produces a diagonal matrix I, the HOSVD of a
tensor A produces a tensor S which is in general not diagonal. Thus, it is not possible to directly apply HOSVD to the
mixture of PCAs problem.

2 Representing mixtures of subspaces as algebraic sets and varieties
We represent each subspace S; by choosing a basis
B; = [bay, ..., by—iy)] € RFE* (K=K )
for its orthogonal complement? S;-. With this representation, each subspace is described as
K—k;
Si={zxeR¥:Bfz=0}={zeRX: /\(bg;-a:=0)}. . ¥))
i=1

Therefore, an arbitrary point z lies on one of the subspaces if and only if

n n K-k n
@eS)v---v(@eS)=\(=es)=\/ A\ tfz=0= A\ L ,Hz=0), 3
i=1 =1 j=1 o i=l

where the right hand side (RHS) of (3) is obtained by exchanging ands and ors using De Morgan’s laws, and o
represents a particular choice of one normal vector b;,(;) from each basis B;. Notice that each one of the [T, (K —k;)
equations in the RHS is of the form

V(biTa(i)m = 0) = (pﬂd(m) = H(b:'rd(i)m) = 0) s O}

i=1 i=1

which is simply a homogeneous polynomial of degree » in K variables, i.e., an element of the ring R, (K) =
Ruz1,...,zK], thatis factorable’ as a product of n linear expressions in z, i.e., an element of RF(K) C R.(K).
Therefore, the collection of subspaces Z = UJL, S; is an algebraic set that can be represented with a set of up to
m < T, (K — k;) independent homogeneous polynomials of the form (4).

Example 1 (Representing the z — y plane and the 2 axis) Consider the case of n = 2 subspaces of R® of dimension
dim(S;) = 2 and dim(Sz) = 1 represented as:

Sl={meR3:x3=0} and Sz={m€R322}1=0/\$2=0}.
A point x = (z, x2, z3)T belongs to Sy U S if an only if
(((z1 =0) v (z3 = 0)) A((z2 = 0) V (z3 = 0))) = ((z123 = 0) A (z223 = 0)).
Therefore, we can represent Z = S1 U S; as the zero set of the two polynomials
pa(z) =212z and  py(x) = zo23.

Remark 2 From an algebraic point of view, determining the algebraic set Z is equivalent 1o determining the ideal
I(Z) of Z, i.e., the set of polynomials that vanish on Z [9]. In this case, the ideal I(Z) is a homogeneous ideal that
can be graded by degree as I = I4®- - -® 1, ®I+1®- - -. Then it is clear that I, is spanned by the set of polynomials
of degree 1, {pno(x)}. Furthermore, if we let I' be the sub-ideal of I generated by the polynomials {ppo ()}, then I
is exactly the radical ideal* of the ideal I, i.e., I = rad[I').

20One could also choose a basis for S; directly, especially if k << K. However, we will show later in the chapter paper that GPCA can always
be reduced to the case K/ = max{k;} -+ 1, hence the orthogonal representation is more convenient.

3From now on, we will use the word | factorable as a shorthand for factorable into a product of linear forms.

4An ideal ] is called a radical ideal if f is in / as long as f* is in I for some integer 5.



The problem of identifying each subspace S; is then equivalent to one of solving for the normal bases {B;}}_,
from the set of nonlinear equations in (4). A standard technique used in algebra to render a nonlinear problem into a
linear one is to find an embedding that lifts the problem into a higher-dimensional space. To this end, notice that the set
of all homogeneous polynomials of degree » in K variables, R,,(X), can be made into a vector space under the usual
addition and scalar multiplication. Furthermore, R, (K) is generated by the set of monomials ™ = z7*z}? - - - 23X,
with0 <n; <n,j=1,...,K,andny +ny + - - + ng = n. Itis readily seen that there are a total of

Mn(K)=(n-iI-{IEI1)=(n+I:—1) S)

different monomials, thus the dimension of R,,(K) as a vector space is M, (K).> Therefore, we can define the
following embedding (or lifting) from R¥ into RMn,

Definition 1 (Veronese map) Given n and K, the Veronese map of degree n, v, : RK — RM»_js defined as:
Vp: [:zl,...,a:K]TH[...,m“,...]T, 6)
where =™ is a monomial of the form 7 x3? - - - 23X with 1 chosen in the degree-lexicographic order:

Remark 3 (Polynomial embedding) In the context of Kernel methods, the Veronese map is usually referred 1o as the
polynomial embedding and the ambient space RM~ is called the feature space.

Example 2 (The Veronese map in two variables) If = € R2, the Veronese map of. degree n is given by:

1

Un(Z1,22) = [27,27~ zg,z’l"zxg, e ,:L';']T. Q)

Thanks to the Veronese map, each polynomial in (4) becomes the following linear expression in the vector coeffi-
cients ¢, € RM»

(@) = va(@)Ten =) cny,.ngez}? - -2hE =0, ®

where ¢q,,,. ., € R represents the coefficient of monomial ™. Therefore, if we apply (8) to the given collection
of N sample points X = {z/ }f’:l, we obtain the following system of linear equations on the vector of coefficients
cn € RMn
Un (wl)T
Un (a:2)T
Lo(K) ¢ = ] cn=0cR”Y, )

Un (mN )T
where L, (K) € RV*Mn js the matrix of embedded data points.5

Remark 4 (Kernel Matrix) In the context of Kernel PCA, if the polynomial embedding is used, then C = LTL,, €
RMnxMn is exactly the covariance matrix in feature space and K. = L,LT € RV*N s the kernel matrix associated
with the N embedded samples. -

Remark 5 (GPCA and KPCA) The basic modeling assumption in KPCA is that there exists an embedding of the
data into a higher-dimensional feature space F such that the features live in a linear subspace of F'. However, there is
no general methodology for finding the correct embedding for a particular problem. Equation (9) shows analytically
that the commonly used polynomial embedding vy, is the right one to use in KPCA when the data lives in a collection
of subspaces, because the embedded data points {v,(x’ )}f;l live in a (M,, — m)-dimensional subspace of RM~,

We notice from equation (9) that the vector of coefficients c,, of each one of the polynomials in the ideal I,, =
span{p,(x)} must lie in the null space of the embedded data matrix L,,. Therefore, if m = dim(l,;) < l;’[,f‘:, (K —k;)
is the number of independent polynomials generating I,, and we are given sufficient sample points {=7} j=1in general
position” in Z = U, S;, then

My, - [[(K - k:) < rank(Lp) = M, ~m < M,, - 1. (10

i=1

SFrom now on, we will use My, = M, (K) whenever the dimension K of the ambient space is understood.

$From now on, we will use L,, = Ln, (&) whenever the dimension K of the ambient space is understood.

7In principle, we need to have N > 371 ki sample points in UL, S, with at least k; points in general position within each subspace S;,
i.e., the k; points must span S;. However, because we are representing each polynomial Pn () linearly via the vector of coefficients ¢, we need
a number of samples such that a basis for I, can be uniquely recovered from the null space of L. Therefore, by a sufficient number of sample
points in general position we mean a number of samples such that rank(Ly) = My, — m, where m = dim(In).



In principle, given sufficient sample points in general configuration in U}, S;, one should be able to recover a set
of generators for the polynomials in /,, by computing the null space of L,,. However, we can not do so because an
arbitrary vector in the null space of L, corresponds to an arbitrary polynomial in R,, (K) that may not be factorable as
a product of n linear forms. For example, both z2 + 2122 and x2 — z,z are factorable, but their linear combination
(sum) z} + 22 is not. One way of avoiding this problem is to find a basis for the null space of L,, whose elements
correspond to coefficients of factorable polynomials. This is in general a daunting task, since it is equivalent to solving
a set of polynomials of degree n in several variables.?

In the following sections, we propose an alternative solution to the above problem. In Section 3, we consider the
case of subspaces of dimension k; = --- = k, = k = K — 1, i.e., hyperplanes, and show that it can be solved by
recovering a single (hence factorable) polynomial. In Section 4, we consider the case of subspaces of equal dimension
ky = -+« =k, = k < K — 1 and show that it can be reduced to the case of hyperplanes after projecting the data
onto a (k + 1)-dimensional subspace of RX. In Section 5, we consider the most general case of subspaces of arbitrary
dimensions and propose a solution to the GPCA problem that computes a basis for each subspace in spite of the fact
that the polynomials estimated from the null space of L,, may not be factorable.

3 Estimating a mixture of hyperplanes of dimension K — 1

In this section, we consider a particular case of the GPCA problem in which all the subspaces have equal dimension
ky = --- = kn = k = K — 1. In Section 3.1, we show that the collection of hyperplanes can be represented with
a unique (factorable) polynomial p, () whose degree n, the number of hyperplanes, can be recovered from a rank
constraint on the embedded data matrix L,, and whose coefficients c, can be recovered by solving a linear system. In
Section 3.2, we propose an algorithm for estimating the hyperplanes based on polynomial factorization that computes
a normal to each hyperplane from the roots of a polynomial of degree n in one variable plus the solution of a collection
of K — 2 linear systems in n variables. In Section 3.3, we propose a second algorithm for estimating the subspaces
based on polynomial differentiation and division, which computes a normal to each hyperplane from the derivatives
of pn () evaluated at n points each one lying on each one of the hyperplanes.

3.1 Estimating the number of hyperplanes » and the vector of coefficients c,,

We start by noticing that every (K — 1)-dimensional subspace S; C RX can be defined in terms of a nonzero normal
vector b; € RX as follows:®

Si={ze€ RK . b,ra: =bjyzy +biszo + ... + bigTg = 0}. (11)
Therefore, a point € R¥ lying on one of the hyperplanes S; must satisfy the formula:
(Te=0) v (BIx=0) v---v (bIz =0), (12)

which is equivalent to the following homogeneous polynomial of degree 7 in & with real coefficients:

pa(e) = [J(®=) =0. 13)

i=1

The problem of identifying each subspace S is then equivalent to one of solving for the vectors {b;}%_, from the
nonlinear equation (13). A standard technique used in algebra to render a nonlinear problem into a linear one is to find
an embedding that lifts the problem into a higher-dimensional space. As demonstrated in Section 2, we can use the
Veronese map of degree, vy, to convert equation (13) into the following linear expression in the vector of coefficients
cn € RMn; .

Pa(x) = Vn(m)Tcn = Zcm.nz,-.-mxm?lm;z <z =0, (14)

where cp, ... n, € R represents the coefficient of monomial ™.

8To the best of our knowledge, althcugh it has been shown thata polynomial-time algorithm exists, the algorithm is not yet known [18).
9Since the subspaces S; are all different from each other, we assume that the normal vectors {b:}7, are pairwise linearly independent.



Example 3 (Representing two planes in R%) Ifn = 2 and K = 3, then we have

p2(x) = (bu1zy + biazy + b13z3)(b2121 + baazz + baszs)
vo(x) = [}, 2122, 2123, 73, 223, 23T
c2 = [b11ba, ﬁlhztb1zbzg, 911b23'l"b13b2'l) b12baz, b1abaa +b13bas, brsbas]” -

€2,0,0 c1,1,0 €1,0,1 €0,2,0 €o,1,1 €0,0,2

Remark 6 Notice thateach cy,,...ny is a symmetric multilinear function of (b1, b, . . ., b,), that is cn, ... n, is linear
in each b; and:

Cny,.enge (bh b29 ey bn) =Cny,...,ni (ba(l)’ ba’(Z)) “eey ba('n))for allo € Gih (15)
where G, is the permutation group of n elements.

Remark 7 (Symmetric Tensors) Any homogeneous polynomial of degree n in K variables is also a symmetric n-th
order tensor in K variables, i.e., an element of Sym™(R¥). Furthermore, the vector of coefficients c,, of the polynomial
Pn(x) can be interpreted as the symmetric tensor product of the coefficients b;’s of each polynomial of degree 1, that
is:
en 2 Symb1 @52 ®...®bn) = D by(1) ®bo@) ® - .. ® by(m)
€S,

where ® represents the tensor or Kronecker product and =~ represents the homeomorphism between the symmetric
tensor Sym(by ® b2 ® ... ® by) in Sym™(RK) and its symmetric part written as a vector c,, in RM~.

As demonstrated in Section 2 (see equation (9)), after applying (14) to the given collection of N sample points
x7}¥ |, we obtain the following system of linear equations on the vector of coefficients c,,
i=1

Vn(a:l)T
V. 2:2 T
Locn= "(: ) cn=0€RN. (16)

Vn(a;N)T

Remark 8 (Brill’s equations on the entries of c,) Given n, one can solve Jfor cy, from (16) in a linear fashion. How-
ever, notice that the entries of ¢y, cannot be independent from each other, because the polynomial p,(x) must be
Jactorable as a product of linear forms. The factorability of p,, () enforces constraints on the entries of c,,, which are
polynomials of degree (n + 1) on My, variables, the so-called Brill’s equations [7]. In Example 3, where n = 2 and
K =3, Brill’s equations are C%'O'ICQ,Q_O —€1,1,001,0,1€0,1,1 +¢% 1 oC0,0,2 + c2,0,0(c3.1,1 — 4c0,2,0¢0,0,2) = 0. However,
if we are given enough sample points N and there is no noise on the data, then the solution of (16) will automatically
satisfy Brill's equations. Understanding how to use Brill’s equations to improve the estimation of cy, in the case of
noisy data will be a subject of future research.

We now study under what conditions we can solve for n and c,, from equation (16). To this end, notice that if the
number of hyperplanes n was known, we could immediately recover c,, as the eigenvector of LT L,, associated with
its smallest eigenvalue. However, since the above linear system (16) depends explicitly on the number of hyperplanes
n, we cannot estimate c,, directly without knowing 7 in advance. It turns out that the estimation of the number of
hyperplanes . is very much related to the conditions under which the solution for ¢, is unique (up to a scale factor),
as stated by the following theorem.

Theorem 1 (Number of hyperplanes) Assume that a collection of N > M, —1 sample points {x7 }f’=1 on n different
(K — 1)-dimensional subspaces of R¥ is given. Let L; € RN*M: be the matrix defined in (16), but computed with
the Veronese map v;(x) of degree i. If the sample points are in general position and at least K — 1 points correspond
to each hyperplane, then:
>M; -1, i< n,
rank(L;) { =M; -1, i=n, amn
< M; - 1, i>n.

Therefore, the number n of hyperplanes is given by:

|n = min{i : rank(L;) = M; - 1}. | (18)




Proof. Consider the polynomial p,(x) as a polynomial over the algebraically closed field C and assume that each
hyperplane b7 2 = 0 is different from each other. Then the ideal I generated by p, () is a radical ideal with p,, (x)
as its only generator. According to Hilbert’s Nullstellensatz (see page 380, [14]), there is a one-to-one correspondence
between such an ideal J and the algebraic set (also called algebraic variety in Algebra)

Z(I)={z:VYpeIl,p(x) =0} cCK

associated with it. Hence its generator p,(x) is uniquely determined by points in this algebraic set. By definition,
Pn(x) has the lowest degree among all the elements in the ideal I. Hence no polynomial with lower degree would
vanish on all points in these subspaces. Furthermore, since all coefficients b; are real, if z + =1y € CX isin Z(J),
both z € R and y € R¥ are in the set of (real) subspaces, because b7 (z + v—Ty) =0 bTz =0 A bTy = 0.
Hence all points on the (real) subspaces determine the polynomial p,,(z) uniquely and vice-versa. Therefore, there is
no polynomial of degree i < 7 that is satisfied by all the data, hence rank(L;) = M; for i < n. Conversely, there
are multiple polynomials of degree i > n, namely any multiple of p,,(z), which are satisfied by all the data, hence
rank(L;) < M; — 1fori > n. Thus the case i = n is the only one in which the linear system (16) has a unique
solution (up to a scale factor), namely the vector of coefficients c,, of the polynomial p,(x). .

Remark 9 In the presence of noise, one cannot directly estimate n from (18), because the matrix L; is always full
rank. In practice we declare the rank of L; 10 be 1 if 0,41/(01 + - - - + 0r) < €, where oy, is the k-th singular value
of L; and € > 0 is a pre-specified threshold. We have found this simple criterion to work well in our experiments.

Theorem 1 and the linear system in equation (16) allow us to determine the number of hyperplanes n and the vector
of coefficients c,, respectively, from sample points {7}/, . The rest of the problem becomes now how to recover
the normal vectors {b;}%.; from c,.. Sections 3.2 and 3.3 present two algorithms for recovering the normal vectors
based on polynomial factorization and polynomial differentiation and division, respectively.

3.2 Estimating the hyperplanes: the polynomial factorization algorithm (PFA)
In this section, we give a constructive solution to the GPCA problem in the case of hyperplanes based on polynomial
factorization. More specifically, we prove the following theorem:

Theorem 2 (GPCA for mixtures of hyperplanes by polynomial factorization) The GPCA problem withky = --- =
kn = k = K — 1 is algebraically equivalent to the factorization of a homogeneous polynomial of degree n in K vari-
ables into a product of n polynomials of degree 1. This is in turn algebraically equivalent to solving for the roots of a
polynomial of degree 1 in one variable plus solving K — 2 linear systems in n. variables. Thus the GPCA problem for
k = K — 1 has a unique solution which can be obtained in closed form whenn < 4.

3.2.1 GPCA as a polynomial factorization problem
From equations (13) and (14) we have that;
n K
pn(x) = Z:cm-"m---mx‘";“"”g2 TR = (Z b"jmj) .
i=1 \ j=1

Therefore, the problem of recovering {b;} ., from c, is equivalent to the following polynomial factorization problem.

Problem 2 (Factorization of homogeneous polynomials)

Given a factorable homogeneous polynomial of degree 7 in K variables pn(x) € RE(K), factor it into n different
polynomials of degree one in K variables {(b7 z) € R; (K)}2.,.

Remark 10 (Factorization of symmetric tensors) The polynomial factorization problem can also be interpreted as
a tensor factorization problem: Given an n-th order symmetric tensor V in Sym™(RX), find vectors vy, vs, ..., v, €
RX such that
V=SymviQ@u:®... Qup) = Z Up(1) @ Ug(2) @ - .. ® Yo (n)
oceC,
Notice that
v: ]RKxn i Symn(RK)1 ('Ul,‘Uz, R t'vn) iand Sym(vl R®12Q...0 vﬂ)

maps a K x n-dimensional space 10 an M., -dimensional space. In general My, is much larger than (Kxn—n+1).1

10We here subtract n — 1 parameters on the right is because we only have to consider unit vectors.



Therefore, not all symmetric tensors in the space Sym™(RK) can be factored in the above way.

Notice that an arbitrary element of R,,(K) is not necessarily factorable into n distinct elements of R; (K), e.g.,
the polynomial z% + 122 + 3 is not. However, the existence of a factorization for Pn(z) is guaranteed by its
definition as a product of linear functionals. In relation to the uniqueness of the factorization, it is clear that each b;
can be multiplied by an arbitrary scale to obtain the same c,, up to scale. Since we can fix the norm of ¢, to be 1
when solving (16), we are actually free to choose the scale of n — 1 of the b;’s only. The following proposition is a
consequence of the well-known Gauss Lemma in Algebra (see page 181, [14]) and guarantees the uniqueness of the
factorization of p,,(x) up to n — 1 scales:

Proposition 1 (Uniqueness of the factorization) Since R is a factorial ring, the set of polynomials in K variables
R[zy,...,zk] is also factorial, that is any polynomial p € Rz, ...,z k) has a unique factorization into irreducible
elements. In particular, any element of the set of homogeneous polynomials R,,(K) C R|z;,...,zk] has a unique
Jactorization.

3.2.2 Solving the polynomial factorization problem

Knowing the existence and uniqueness of a solution to the polynomial factorization problem (Problem 2), we are
now interested in finding an algorithm that recovers the b;’s from c,,. For ease of exposition, we will first present
an example with the case n = 2 and K = 3, because it gives most of the intuition about our general algorithm for
arbitrary n and K.

. Example 4 (Estimating two planes in R3) Consider the case n = 2 and K = 3 illustrated in Example 3. Then

pa®) = (b]z)(b3T) = (buzy + biozs + byazs)(barzy + bagTa + baax3)
= (buba)z} + (br1baa+bizbar)z1z2 + (br1bas+biabar)z12s +
€2,0,0 €1,1,0 €1,0,1
(b12b22)73 + (br2bas+bisbag)zozs + (b1abos)z.
€0,2,0 €o0,1,1 €0,0,2

We notice that the last three terms correspond to a polynomial in x5 and 3 only, which is equal to the product of the
last two terms of the original factors, i.e.,

€0,2,0%3 + €0,1,172%3 + €0,0,223 = (b1222 + bi3z3)(baazs + baaxs).
After dividing by x2 and letting t = x5 /x3 we obtain
g2(t) = co,2,0t® + co,1,1t + Co,0,2 = (brat + byz)(baat + baa).

Since c; € R® is known, so is the second order polynomial qs(t). Thus we can obtain %}g and g2 from the roots t,
and t3 of q3(t). Since by and b, are only computable up 10 scale, we can actually divide c3 by co 2,0 (if nonzero) and
set the last two entries of by and b, to

biz=1, bia=—t1, bapp=1, boyy=—t.

We are left with the computation of the first entry of by and by. We notice that the coefficients c1,1,0 and 10,1 are
linear functions of the unknowns b1y and by,. Thus we can obtain by, and by from

b b2 ] [ b €1,1,0
=| o 19
[ bz b3 b21 €1,0,1 (19
provided that basb13 — bagbia # 0, ie., ift) # to.

We conclude from the Example 4 that, if co 2.0 = b12boz # 0 and beaby3 — bagby # 0, then the factorization of a
homogeneous polynomial of degree n = 2 in K = 3 variables can be done in the following two steps: (1) solve for
the last two entries of {b;}}%., from the roots of a polynomial g,,(t) associated with the last n + 1 = 3 coefficients of
Pa(x); and (2) solve for the first K — 2 entries of {b;}., from K — 2 linear systems in n variables.

We now generalize these two steps to arbitrary n and K.
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1. Solving for the last two entries of each b;: Consider the last n + 1 coefficients of p, (z):
[co,....0n,0 5 €0,...0m=1,11 -, Co,...00n]T €R"L, (20)

which define the following homogeneous polynomial of degree n in the two variables z x_; and T:

Zcov ,0 nK-— lrnKxKK-],‘xnx = H (b"K-lxK 1 + bleK) (21)
i=1

Letting t = zg . /zx, we have that:

n n
I Gix-1zx-1 + bixczx) = 0 & [ (bik-1t + bix) = 0.

i=1 i=1

Hence the n roots of the polynomial

gn(t) = co,...0m,0t" + €0,....0,n-1,1t" "1 + - -+ Co,..00,n (22)

are exactly t; = —b;x /bix -1, forall i = 1,...,n. Therefore, after dividing c,, by co,...,0,n,0 (if nonzero), we
obtain the last two entries of each b; as:

(biK—l ) btK) = (1 ) _tt) i= 1:' <oy (23)

If bik -1 = O for some i, then some of leading coefficients of g, (t) are zero and we cannot proceed as before,
because gy, (t) has less than n roots. More specifically, assume that the first £ < n coefficients of g, (t) are
zero and divide c,, by the (£ 4 1)-st coefficient. In this case, we can choose (bix—1,bix) = (0,1), for i =
1,...,4, and obtain {(bix -1, bix )} e 41 from the n — £ roots of ¢,(t) using equation (23). Finally, if all the
coefficients of g, (t) are equal to zero, we set (b;x—1, bix) = (0,0), foralli = 1,...,n

2. Solving for the first K — 2 entries of each b;: We have demonstrated how to obtain the last two entries of
each b; from the roots of a polynomial of degree » in one variable. We are now left with the computation of the
first K’ — 2 entries of each b;. We assume that we have computed b;j,i = 1,...,n,5 = J + 1,... K for some
J, starting with the case J = K — 2, and show how to linearly solve for b;;, i = 1,...,n. As in Example 4,
the key is to consider the coefficients of p,(x) associated to monomials of the form = J253Y - 23X, which
are linear in x;. These coefficients are of the form co,...0,1,n,41,....nx and are linear in b;;. To see this, we
notice that the polynomial ) co, WO msirremi Ty -+ TR is equal to the partial of p, () with respect to
zgyevaluatedatzy =z =--- = x5 = 0. Since

i-1
a’gf’ e (H(bTw)) 3 by (H(sz) I1 (sz)) 24

i=1 i=1 £=i41
after evaluating at z; = 25 = --- = 7 = 0 we obtain
n
D0, Lmsg i BT TR = ) buag] (), (25)
i=1
where

i-1 K n K
g (z) = H( > sz%') II ( >, b,,-x,-) (26)

=1 \j=J+1 =il \j=J+1

is a homogeneous polynomlal of degree n—1 in the last K — J variables in z. Let V; be the vector of coefficients
of the polynomial g/ (). From equation (25) we get

b1y ©9,...,0,1,n—1,0,...,0
by co,...,0,1,n-2,1,...,0

(VW v - VI T | = . 27
bnj ©o,...,0,1,0,0,...,n~1

from which we can linearly solve for the unknowns {b;;}%.,. Notice that the vectors {V{}7, are known,
because they are functions of the known {b;;}7.,, where j = J +1,... K.

11



3.2.3 Uniqueness of the solution given by the factorization algorithm

According to Proposition 1, the polynomial factorization problem admits a unique solution. However, the factorization
algorithm that we have just proposed may not give a unique solution. For example, the algorithm fails for ps(x) =
z2z3 € Rp(3). This is because it does not use all the entries of c,, in order to obtain the factorization. In fact, it only
uses the entries that are linear in the unknowns.

We will now analyze the conditions under which the proposed algorithm does provide a unique solution. From
equation (27), we notice that this is the case if and only if the vectors 'V{ yeeny V,{ are linearly independent. The
following proposition gives a more specific necessary and sufficient condition for the uniqueness in terms of the
normal vectors {b;}2_;:

Proposition 2 (Uniqueness of the solution given by the algorithm) The vectors ! }i, are linearly independent
ifand only ifforall T # s, 1 < r,s < n, the vectors (b,-_].;h bris2,...,bekc) and (bss41,b5542, - - -, bsxc) are pair-
wise linearly independent. Furthermore, the vectors { V,-K ~°}i=1 are linearly independent if and only if the polynomial

n(t) has distinct roots and at most one of its leading coefficients is zero.

Proof. We do the proof by induction on n. Let hf(z) = "X | +1 bijzj. By definition, the vectors V; are linearly

independent if ’
n
B! =3 skl bl ki, - hI =0 (28)
=1

ifandonly ifa; =0,0; € R, i =1,...,n. If n = 2, (28) reduces to:
arhi + azhd =0, 29)

Therefore V{ is independent from V3 if and only if h{ is independent from hJ, which happens if and only if
(b1741,b1542, . ..,b1x) is independent from (b2741, 02542, . . .,bag). Thus the proposition is true for » = 2. Now
assume the that the proposition is true for n — 1. After dividing (28) by hi we obtain:

R’ hd...hJ n
h—f=al$+Zaih2’---h{.lh{+l.--h,{=0. (30)
1 1 ~ d

=2 h
polynomial in R, —1 (K —J)

Iflal = 0, then the proof reduces to the case n — 1, which is true by the induction hypothesis. If a; 3 0, then
ﬁ%’ﬁn must belong to R,_;(K — J), which happens only if A is proportional to some h{, i = 2,...,n, ie. if

(51741, b1742,. .., b1k) is proportional to some (big+1,0i542, . - ., bixc). The fact that the choice of h{ as a divisor
was arbitrary completes the proof of the first part. As for the second part, by construction the vectors (b1, brx ) and
(bsxc—1, bsxc) are independent if and only if the roots of gn(t) are distinct and g,, (t) has at most one leading coefficient
equal to zero. ]

3.24 Obtaining a unique solution for the degenerate cases

Proposition 2 states that in order for the K — 2 linear systems in (27) to have a unique solution, we must make
sure that the polynomial g,,(t) is non-degenerate, i.e., gn(t) has no repeated roots and at most one of its leading
coefficients is zero. One possible approach to avoid non-uniqueness is to choose a pair of variables (z ;, z;/) for which
the corresponding polynomial g, (t) is non-degenerate. The following proposition guarantees that we can do so if
n = 2. Unfortunately the result is not true for n > 2 as shown by Example 5.

Proposition 3 (Choosing a good pair of variables when n = 2)
Given a factorable polynomial py(x), there exist a pair of variables (zj,zj+) such that the associated polynomial
q2(t) is non-degenerate.

Proof. For the sake of contradiction, assume that for any pair of variables (z 4»%;j¢) the associated polynomial g (t)
has a repeated root or the first two leading coefficients are zero. Proposition 2 implies that for all J# 3’ (b, byy) is
parallel to (b2;, ba;/), hence, all the 2 x 2 minors of the matrix B = [b1 b2]T € R?*K are equal to zero. This implies
that b, is parallel to by, violating the assumption of different subspaces. n

12



Example § (A polynomial with repeated roots) Consider the following polynomial in R3(3):
p3(x) = (z1 + 22 + z3)(zy + 229 + 223)(z1 + 222 + x3).

The associated polynomlals in two variables are 4z3 + 10z3z3 + 8z2x3 4 273, 3 + 4zdzs + 53173 + 222 and
23 + 52325 + 8123 + 423, and all of them have repeated roots.

We conclude that, even though the uniqueness of the factorization is guaranteed by Proposition 1, there are some
cases for n > 2 for which our factorization algorithm (based on solving for the rcots a polynomial of degree » in one
variable plus K — 2 linear systems in n variables) will not be able to provide the unigue solution. The reason for this
is that our algorithm is not using a!l the coefficients in c,,, but only the ones for which the problem is linear.

One possible algorithm to obtain a unique solution for these degenerate cases is to consider the coefficients of
Pn(x) which have not been used. Since the equations associated to those coefficients are polynomials of degree d > 2
in the unknowns {b;;}1-.;, we will not pursue this direction here. Instead, we will try to find a linear transformation on
, hence on the b;;’s, that gives a new vector. of coefficients ¢;, whose associated polynomial g}, (t) is non-degenerate.
It is clear that we only need to modify the entries of each b; associated to the last two variables. Thus, we consider the
following linear transformation T : RX — RX:

z=Ty = E T, E Y. ' (31)

Under this transformation, the polynomial p,, () becomes:

n n K-1 K-2 K-1
Pn(y) = pu(Ty) = [[ 67 (Ty) = II ( > bisys +[t Y b+ biK—l] YK -1 +[t > b+ biK] yx)-

i=1 =1l j=1 i=1 i=1

~ s - s

bik-1(t) bk (t)

Therefore, the polynomial associated to yx_, and yx will have distinct roots for all ¢ € R, except for the t’s which
are roots of the following second order polynomial:

ri-1 (0 () = b1 ()b (2) (32)

forsome r # s, 1 < 7, s < n. Since there are a total of n(n + 1)/2 such polynomials, each of them having at most 2
roots, we can choose ¢ arbitrarily, except for n(n + 1) values.

Once ¢ has been chosen, we need to compute the coefficients ¢/, of the new polynomial p/,(y). The following
proposition establishes the relationship between ¢,, and c/,:

Proposition 4 Let c,, and c;, be the coefficients of the polynomials p,(x) € Rn(K) and pl,(y) = pn (Tz) € Ry, (K ),
mspectzvely, where T : RK — RX is a non-singular linear map. Then T induces a linear transformation T : RMn —
RMn, ¢, — ¢!, = Tcp. Furthermore, the column of T associated to Cny,na,....nx i given by the coefficients of the
polynomml

(@)™ (Gy)™ - (ERy)™~, (33)

where £T is the j-th row of T.

Proof. Let pn(m) pi(x) € RE(K) and a, 8 € R. Then the polynomial ap}. (<) + Bp2(z) is transformed by T into
ap}(Ly) + Bpi(Ly). Therefore 7" is linear. Now in order to find the column of T associated t0 cn, ny,....nsxc» WE just
need to apply the transformation 7" to the monomial z}' 232 - . - 7% K = (eTz)™ (e z)"2 ... (ekx)"¥, where {eJ M,
is the standard basis for RX. We obtain (e] T'y)™ (eI Ty)"2 - (€% Ty)"¥, orequivalently (€] y)™ (€3 y)™2 --- (€%
[

Remark 11 Due to the upper triangular structure of T in (31), the matrix T will be lower triangular. Furthermore,
since each entry of T is a polynomial of degree at most 1 in t, the entries of T will be polynomials of degree at most n
int.
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By construction, the polynomial g;,(¢) associated to the last two variables of p/,(y) will have no repeated roots.
Therefore, we can apply the previously described factorization algorithm to the coefficients ¢/, of pf, (¥) to obtain the
set of transformed normal vectors {b;}%,. Since by definition of p{,(y) we have b;T = b'T, the original normal
vectors are given by b; = T-Tb]. It tums out that, due to the particular structure of T', we do not actually need to .
compute T-7. We can obtain {b;}}_, directly from {b}}2_, and ¢ as follows:

bij = bgj i=1,...,n, j5=1,.... K -2
biK'l = béK—l _tz_;(:_l.z bt'j, 1= 1,...,n (34)
bs = :'K-tzf;lbij, i=1,...,n

We illustrate the proposed transformation with the following example:
Example 6 Letn =3 and K = 3. Then T and T are given by:

1 ¢t ¢t
T=|01 ¢ (35)
001
and
[ 1 0 0 0 0 0 0 0 0 0]
3t 1 0 0 0 0 0 0 00
3t t 1 0 0 0 0 0 00O
3t2 2 0 1 0 0 0 0 0O
5 | 62 2242t 2t 2t 1 0 0 000
T= 32 22 2t 2 t 1 0 0 00 (36)
3 2 0 t 0 0 1 000
33 3422 2 24 t 0 3 1 00
3t 23442 22 3422 24t ¢t 32 2 1 0
A A . 2t B 2t 1]

We summarize the results of this section with the polynomial factorization algorithm (PFA) for mixtures of hyper-
planes, a GPCA problem withky = --- =k, = K — 1.

Algorithm 1 (Polynomial Factorization Algorithm (PFA) for Mixtures of Hyperplanes)
Given sample points {7}/, lying on a collection of hyperplanes {S; c R¥}7_,, find the number of hyperplanes 7
and the normal vector to each hyperplane {b; € R¥}2., as follows:

1. Apply the Veronese map of order i, for i = 1,2, ..., to the vectors {z’ }}":1 and form the matrix L; in (16).
Stop when rank(L;) = M; — 1 and set the number of hyperplanes . to be the current . Then solve for ¢, from
Lyc, = 0 and normalize so that ||e, || = 1.

2. (a) Get the coefficients of the univariate polynomial g, (t) from the last » + 1 entries of c.,.

(b) If the first £, 0 < £ < n, coefficients of gy, (t) are equal to zero, set (bix—1,b:ix) = (0,1) fori = 1,..., ¢
Then use (23) to compute {(b;x -1, bix)}jp—_ 4 from the n — £ roots of g, (t).

(¢) If all the coefficients of g, (t) are zero, set (bix—1, bix) = (0,0),fori =1,...,n.

(d) If (bric—1,brk) is parallel to (bsx -1, bexc) for some r 5 s, apply the transformation & = Ty in (31) and
repeat 2(a), 2(b) and 2(c) for the transformed polynomial p}, (v) to obtain {(b}x_,, bl x)} ;-

3. Given (bix-1,bix), i = 1,...,n, solve for {b;;}*, from (27) for J = K — 2,..., 1. If a transformation T
was used in 2(d), then compute b; from b and ¢ using equation (34).

3.3 Estimating the hyperplanes: the polynomial differentiation algorithm (PDA)

The main attraction of the polynomial factorization algorithm (PFA) (Algorithm 1) is that it shows that one can estimate
a collection of hyperplanes in a purely algebraic fashion. Furthermore, the PFA does not requires initialization for the
normal vectors or the clustering of the data, and the solution can be obtained in closed form for n < 4 hyperplanes.
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However, the PFA presents some disadvantages when applied to noisy data. For instance, there are some degener-
ate cases for which some of the X' — 2 linear systems have more than one solution, namely whenever the polynomial
gn (t) has repeated roots. Furthermore, even when the true roots of g, (t) are different, as long as two of them are close
to each other the estimated roots may become complex if ¢, is computed from noisy data points. In this case, one
cannot proceed with the rest of the algorithm (solving the K — 2 linear systems), because it assumes that the roots
of g, (t) are real and non-repeated. One may be tempted to choose the real part of such complex solutions when they
occur, however this leads to the degenerate case of repeated roots described before. Alternatively, since choosing the
last two variables to build the polynomial gy (t) is arbitrary, one could try choosing a different pair of variables such
that the corresponding roots are real and distinct. However, we saw in example 5, that the are polynomials that are
factorable, yet every pair of variables has repeated roots. Furthermore, even if there was a pair of variables such that
the associated univariate polynomial g, (t) had non-repeated roots, it is not clear how to choose such a pair without
considering all possible pairwise combinations, because the b,’s are unknown

In this section, we propose a new algorithm for estimating the normal vectors {b; }i-; which is based on polynomial
differentiation rather than polynomial factorization. We show that given c,, one can recover {b;}2, by evaluating the
derivatives of p,(x) at points on the hyperplanes. Therefore, the polynomial differentiation algorithm does not the
have problems of complex roots or degenerate configuration present in the PFA. More specifically, the polynomial
differentiation algorithm (PDA) consists of the following two steps:

1. Compute the number of hyperplanes n and the vector of coefficients ¢,, from the linear system L,c, = 0, as
described in Section 3.1.

2. Compute the normal vectors {b;}; as the derivative of p,(z) evaluated at the n points {y; € S;}~_,, with
each point lying on only one of the hyperplanes.

Therefore, the problem of clustering hyperplanes will be reduced to first finding one point per hyperplane, and
then evaluating the derivative of p,(x), as we describe below.
33.1 Obtaining normal vectors by differentiation

Imagine, for the time being, that we were given a set of n points {y, % 1» each one lying on only one of the n
hyperplanes, thatis y; € S; fori = 1,...,n. This corresponds to a particular supervised learning setting in which we
are given only one example per cluster. Now let us consider the derivative of p,, (x) evaluated at each y;. We have:

Do) = 2 = - T107=) = 3 ) [[67=) e

Because H,;&i(b;"yj) = 0 for j # 1, one can obtain each one of the normal vectors as

Dp.(y;) .
o= Pl 38
el n 8

Therefore, in the supervised leaming setting in which we know one point in each one of the hyperplanes, the
clustering problem can be solved analytically by simply evaluating the partials of p,,(x) at each one the points with
known labels.

Let us now consider the unsupervised learning scenario in which we do not know the membership of any of the
data points. We first present an algebraic algorithm for finding one point in each one of the hyperplanes, based on
intersecting a random line with each one of the hyperplanes. We then present a simple algorithm that finds one point
in each hyperplane from the points in the dataset that minimize a certain distance function.

3.3.2 Obtaining one point per hyperplane: an algebraic solution

Consider a random line £ = {tv + o, t € R} with direction v and base point xo. We can always obtain one point in
each hyperplane by intersecting £ with the union of all the hyperplanes, except when the chosen line is parallel to one
of the hyperplanes, which corresponds to a zero-measure set of lines. Since at the intersection points we must have
Pn(tv + o) = 0, the n points {y,}™; can be obtained as

[i=tiv+zo i=1,...,n,| (39)
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where {t;}7._, are the roots of the univariate polynomial of degree n

gn(t) = pu(tv + @0) = [ [ (6] v + b o). (40)

i=1

The problem is now how to choose v and xo. In the absence of noise, one can choose a line at random, because
the set of lines that intersect a collection of n hyperplanes into n distinct points is an open set. However, there is a zero
measure set of lines for-which the roots of g,(t) are not real and distinct. For example, if ¢ = 0 or if @ is parallel
to v, then the number of roots is either one or infinity. These two cases can be obviously avoided. Another degenerate
configuration happens when the direction v is parallel to one of the hyperplanes. In this case the polynomial g, (£) has
less than n roots, because at least one of them is at infinity. Since v is parallel to one of the hyperplanes if and only if
bTv = Oforsomei = 1,...,n, this degenerate case can be avoided by choosing v such that p,,(v) # 0. Therefore,
in the absence of noise, we randomly choose xo and v on the unit sphere and if the above conditions are met, we
proceed with the computation of ¢;, y; and by, else we randomly choose a new line. Of course, in the presence of
noise, different choices of £ would give rise to different normal vectors. In order to make the process more robust, we
choose multiple lines {£,}72.; and compute the set of normal vectors {b;} corresponding to each line. For each set
of normal vectors we reconstruct their corresponding collection of hyperplanes {S;.}, and then project each data point
in X onto the closest hyperplane. We then choose the set of subspaces that gives the smallest reconstruction error. In
our experiments, choosing . = 3 random lines was enough to obtain a small reconstruction error.

Remark 12 (Connection with PFA) Notice that the first step of the PFA (solving for the roots of a univariate poly-
nomial) is a special case of the above algorithm in which the line L is chosen as T = [0,...,0,0, l]T andv =
[,...,0,1, O]T. Therefore, we can summarize together the PFA discussed in the preceding section and the PDA
described in this section in the following algorithm.

Algorithm 2 (PFA and Algebraic PDA for Mixtures of Hyperplanes)

solve L,c, = 0;

set pa(x) = cIvp(x);

compute the n roots ¢y, . . ., t,, of the univariate polynomial g, (t) = pn(tv + o) with:
* PFA: 20=[0,...,0,0,1]T and v=[0,...,0,1,0)7;
e PDA: x( and v chosen randomly;

obtain the hyperplane normal vectors b;:
¢ PFA: solve K — 2 linear systems of equations to find the normal vectors b;;
e PDA: differentiate.p, () to obtain b; = “%:7"(%:-}“ aty; = xg + vi;.

3.3.3 Obtaining one point per hyperplane: a recursive solution

As we will see in Section 5, the technique of intersecting a line with each one of the hyperplanes does not generalize
to subspaces of arbitrary dimensions. We therefore propose an alternative algorithm for computing one point per
hyperplane. The idea is that we can always choose a point y,, lying on one of the hyperplanes by checking that
Pn(yn) = 0. Since we are given a set of data points X = {x? }3=1 lying on the hyperplanes, in principle we can
choose y,, to be any of the data points. However, in the presence of noise and outliers a random choice of Y, may be
far from the true hyperplanes. Another possibility is to choose y,, as the point in X that minimizes |pn (). However,
the above choice has the following problems in the presence of noise:

1. The value |p, ()| is merely an algebraic error, i.e., it does not really represent the geometric distance from x
to the closest subspace. Furthermore, notice that finding the geometric distance to each subspace is in principle
hard, because we do not know the normal vectors {b;}2,.

2. Points z lying close to the intersection of two or more subspaces are more likely to be chosen, because two or
more factors in p,(z) = (bTx)- - (blx) are approximately zero, which yields a smaller value for |p, ().
Furthermore, since Dpy, () = 0 for x in the intersection of two or more subspaces, one should avoid choosing
points close to the intersections, because they will give very noisy estimates of the normal vectors. In fact, we
can see from (37) that for arbitrary  the vector Dp,, () is a linear combination of the normal vectors {6},
Thus if @ is close to two subspaces the derivative will be a linear combination of both normals.
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It turns out that one can avoid both of these problems thanks to the following lemma.

Lemma 1 Let & € S; be the projection of a point = € RX onto its closest hyperplane S;. Then the Euclidean distance
Jrom x to S; is given by

— 3l = P (@)l 212
Iz =&l = nop oy + Ole = 217). @D

Proof. Replace m = 1 in the proof of Lemma 2. | |

The importance of Lemma 1 is that it allows us to compute a first order approximation of the distance from
each point in X to its closest hyperplane without having to first compute the normal vectors. In fact the geometric
distance (41) depends only on the polynomial p,, (x) and is obtained by normalizing the algebraic error |p,, (z)| by the
norm of the derivative || Dp,,(x)||. Therefore, we can use this geometric distance to choose a point in the data set close
to one of the subspaces as: )|

_ . lpn(z
Un = e X bpn(@)20 [Dpa(@)]’ “2)

and then compute the normal vector at y,, as b, = Dpn(y,,)/||Dpn(¥,,)||- Notice that points z close to the intersec-
tion of two or more hyperplanes are immediately avoided, because Dp,,(x) ~ 0.

In order to find a point y,,_, in one of the other (n — 1) hyperplanes, we could just remove the points on the
subspace S, = {x : bTz = 0} from X and compute y,,_, similarly to (42), but minimizing over X \ S,. However,
in the presence of noise we would have to choose a threshold in order to determine which points correspond to S,
and the algorithm would depend on the choice of such a threshold. Alternatively, we notice that a point 2 lying on one
of the other (n — 1) hyperplanes should satisfy

Pa-1(x) = pa(x)/(brz) = (b]z) - (b]_,z) = 0. 43)

Therefore, similarly to (42), we can choose a point on (close to) U}';ll S; as the point in the data set that minimizes
[Pr—-1(x)|/||Dpn-1(x)||. By applying the same reasoning to the remaining hyperplanes, we obtain the following
recursive polynomial differentiation algorithm (PDA-rec) for finding one point per hyperplane and computing the
normal vectors.

Algorithm 3 (Polynomial Differentiation Algorithm (PDA) for Mixtures of Hyperplanes)

solve L,c, = 0;
set pp(x) = el (x);
fori=n:1
, . Ipi(z)|
. — _—’ 44
Yi T X Dmer#o [Dpi(a)] “
Dp;(y;)
b, = __', @5)
) | Dp: ()
pi-1(x) = %ii(fn—), (46)
end; T

assign point 27 to subspace S; if i = argmine-; ... . |b7 2|

Remark 13 (Polynomial division) Notice that the last step of the PDA is to divide p; (<) by b & 10 obtain p;_, ().
Given the vector of coefficients of p;(x), c; ERM:, and the normal vector b; € R¥, solving for the vector of coefficients
of pi—1(x), c;_y ERMi-1, is simply a linear problem of the form D;(b;)c;—1 = c;, with D;(b;) € RMixMi-1,

Remark 14 Notice that one can avoid computing p;(x) in each step of the PDA and choose y;_, by a heuristic
distance function (therefore not optimal). Since a point in U}_,S; must satisfy (bTz) - - - (bTx) = 0, we can choose a

point y;_, inU,_}S; by as
s “g;nzz“;" +96 (CY))]
arg min ’
o X Dpe @#0 |(bx) - (bIz)| + 6

where we add a small positive number & > 0 to both the numerator and denominator in order to avoid the case in
which both of them are zero (e.g. with perfect data).

Yi-1=
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Remark 15 (Merging PDA-alg and PDA-rec) Notice that, in the presence of noise, PDA-rec Jinds points that are
close 10 but not necessarily in the hyperplanes. To resolve this problem, we may add an additional computation
Jrom the first step of PDA-alg to each iteration of PDA-rec as follows: First choose y; and obtain b; from Dp;(y;)
according 10 PDA-rec; then set ¢ = y; and v = b; and solve for the roots of qu(t) = pn(tv + ®o). Choose the root
t* = min(|t;]) and obtain a new point lying on one of the hyperplanes as y; — t*v + zo.

4 Estimating a mixture of subspaces of equal dimension k < K

We showed in Section 2 that estimating a collection of subspaces of arbitrary dimensions is equivalent to estimating
and factoring a collection of homogeneous polynomials from sample data points. However, we also showed that in
general one can only recover a basis for those factorable polynomials, and that each element in the basis may not be
factorable. ‘

In Section 3 we considered the particular case of data lying on hyperplanes, and showed that in this case there is a
single polynomial representing the data, which is automatically factorable.

In this section, we extend the results of Section 3 to the case of subspaces of equal dimension 0 < ky = --- =
kn = k < K. In Section 4.1 we show that if the dimension of the subspaces k is known, then it is possible to
recover a factorable polynomial by first projecting the data onto a generic (k + 1)-dimensional subspace of RX. Since
in practice the dimension of the subspaces could be unknown, in Section 4.2 we derive rank constraints on the data
matrix that allow us to simultaneously estimate the number of subspaces n and their dimension k. Given n and k, in
Section 4.3 we present two algorithms for recovering the subspaces. The first one uses a single projection followed
by either PFA or PDA to segment the data, and then obtains a basis for each one of the original subspaces by applying
PCA to the segmented data. The second one uses multiple projections followed by a generalization of PDA that deals
with multiple polynomials.

4.1 Projecting samples onto a (k + 1)-dimensional subspace

In this section, we show that the segmentation of a sample set X drawn from n k-dimensional subspaces of a space of
dimension K > k is preserved after projecting the sample set X onto a generic subspace @ of dimension k+1 (< K).
An example is shown in Figure 2, where two lines L; and L, in R? are projected onto a plane @ not orthogonal to the
plane containing the lines.

Ra
L d

L,
/L
o 1 _j;..
-
Q
Figure 2: Two 1-dimensional subspaces L, L, in R? projected onto a 2-dimensional plane Q. Clearly, the membership
of each sample (labeled as “+"on the lines) is preserved through the projection.

More generally, let us denote the projection onto a (k + 1)-dimensional subspace Q as
Q:RESQ zma 48)
and the projection of S; as S| = ng(S;). Also let X’ = mo(X) be the set of projected data points lying on the

collection of projected subspaces Z’ = mg(Z) = UL, S!.
From a geometric point of view, we notice that if the subspace Q is in general position!!, then dim(S!) remains

11 As defined by the transversality conditions in footnotes 12 and 13.
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to be k — no reduction in the dimension of each subspace!2, and there is a one-to-one correspondence between S
and S; - no reduction in the number of subspaces!? n. In other words, if the subspace Q is in general position, then
segmenting the original collection of subspaces Z = UZ_, S; is equivalent to segmenting the collection of projected
subspaces Z’ = UL, SI.

The effect of such a projection can also be explained from an algebraic viewpoint. As we discussed in Sections 2,
when 0 < k < K—1 determining the ideal I(Z) requires the identification of all its generators. However, after projecting
the data onto the subspace Q the ideal J(Z’) becomes a principal ideal which is generated by a unique homogeneous
polynomial p, (x’), as demonstrated in Section 3. Therefore, when k is known, identifying Z is equivalent to identi-
fying p}, (=), and the GPCA problem for subspaces of equal dimension k, where 0 < k < K, can always be reduced to
the case of hyperplanes. Furthermore, since p!, (z')eI(Z2') is factorable and a'=nq(x), then p(x) =p, (') € I(Z) is
also factorable. Therefore, each projection onto a (k + 1)-dimensional subspace Q produces a factorable polynomial
Pn(x) €I(Z). Thus, we can obtain a basis of factorable polynomials of degree 7 in J (Z) by choosing a large enough
collection of projections {mg}.

The projection of samples onto a (k + 1)-dimensional space also reveals an interesting duality between the two
cases dim(S;) = k and dim(S;) = K — k. If S; is a 1-dimensional subspace of RX, i.e., a line through the origin,
then for every sample point € S; we can choose K — 1 vectors {v1,¥2,. .., ¥x_1} which together with = form
an orthogonal basis of RX. Then each point y; lies in the subspace S orthogonal to S;, which we simply denote
as the co-subspace of S;. Thus, the problem of segmenting samples from n 1-dimensional subspaces Z = UL, S:iis
equivalent one of segmenting a corresponding set of co-samples from n (K — 1)-dimensional co-subspaces ur,St.
At first sight, this construction of duality does not apply to subspaces S; of dimension k > 1, because it is impossible
to compute co-samples ¥y € S+ associated to a sample £ € S; without knowing S;. However, if we apply one
of the GPCA algorithms in Section 3 (PFA or PDA) to the projected data X', we obtain a collection of vectors
{b; € R¥*+1}n; normal to the subspaces {S} C Q}~., in Q, respectively. If we now embed each vector b; back into
the space R¥ through the inclusion ¢g : Q@ — RX and call b; = «(b’), then we have b; L S! and b; L Q*, thus
bi L S; is a vector orthogonal to the original subspace S;. The overall process can be summarized by the following
diagram:

{z eUS;} 2% {2 € US!) ﬁ’,—g‘»: {¥ eusit} <& (b e uSt). - (49)

Through this process, a different choice for the subspace Q will give rise to a different set of vectors {b} in the co-
subspaces US;. The more projection subspaces Q) we use, the more co-samples we draw from these co-subspaces.
Notice that if we do not segment the data right after we obtain the normal vectors {b}}%.; from each Q, we will not
know the co-subspace S with which each normal vector b is associated. Therefore, we will be facing exactly the
dual problem to the original GPCA problem: Segmentation of samples {z} drawn from the subspaces US; versus
segmentation of (induced) co-samples {b} drawn from the co-subspaces US;". Therefore, the two cases dim(S;) = k
and dim(S;) = K — k are indeed dual to each other, hence computationally equivalent.

4.2 Estimating the number of subspaces n and their dimension &

In order to be able to project samples onto a (k + 1)-dimensional space, we need to know the dimension of the original
subspaces k. If we were estimating a single subspace, as in standard PCA we could obtain k directly as the rank of the
data matrix [11]. However, since we are studying the case of n subspaces, whenever k is unknown we need to know
how to compute it from data. In this section, we study under what conditions the problem of recovering » and k from
data is well-posed, and derive rank conditions on the data from which one can estimate n and k.

First of all, we notice that a simultaneous recovery of n and k may be ambiguous if we are not clear about what we
are asking for. For example, in the extreme cases, one may interpret the sample set X as N 1-dimensional subspaces,
with each subspace spanned by each one of the sample points & € X, or one may view the whole X as belonging
to one K-dimensional subspace, i.e., R¥ itself. Besides these two trivial interpretations, ambiguity may also arise in
cases such as that of Figure 3, in which a collection of lines can also be interpreted as a collection of planes.

A formal way of resolving such ambiguous interpretations in the absence of noise is by looking at the algebraic
structure of the GPCA problem. We notice that the sample points are drawn from a collection of subspaces {S; ) N
which can always be interpreted as an algebraic set Z = UL, S; generated by irreducible subsets S;’s (irreducible
algebraic sets are also called varieties). The decomposition of Z into {S;}7, is always unique [9]. Therefore, the
k = dim(S;) and the number of subspaces n are always uniquely defined in a purely algebraic fashion. In this sense,

12This requires that Q be transversal to each S7, ie., span{Q, S1} = RX fori = 1,2,...,n. Since n is finite, this transversality condition
can be easily satisfied. Furthermore, the set of positions for @ which violate the transversality condition is only a zero-measure closed set [10].

"3This requires that all 5] be transversal to each other in Q, which is guaranteed if we further require Q to be transversal to 5 N S§ for
i,j = 1,...,n. All Q's which violate this condition form a zero-measure set.
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P

L

Figure 3: A set of samples that can be interpreted as coming either from four 1-dimensional subspaces L1, Ly, Ls, L4
in R3, or from two 2-dimensional subspaces P;, P; in R3.

for the case shown in Figure 3, the first interpretation (4 lines) would be the right one and the second one (2 planes)
would be incorrect since, e.g., Ly U Ly is not an irreducible algebraic set.

Having established that the problem of simultaneously estimating = and k is well-posed, we are left with deriving
an actual formula to compute them. We consider the following three cases.

4.2.1 Casel: k known

Imagine for a moment that & was known, and that we wanted to compute n only. Since k is known, we can first project
the data onto a (k + 1)-dimensional space and then form the matrix L;(k + 1) in (9) by applying the Veronese map
of degree i = 1,2,... to the projected data. From our analysis in Sections 2 and 4.1, there is a unique polynomial
of degree n generating J(Z’) whose coefficients are in the null space of L, (k + 1). Thus rank(L, (k + 1)) =
M, (k + 1) — 1. Furthermore, there cannot be a polynomial of lower degree that is satisfied by all the data, hence
rank(L;(k + 1)) = M;i(k + 1) for i < n. Similarly, there are infinitely many polynomials of degree more than n that
are satisfied by all the data, namely any multiple of p,, (). Therefore, rank(L;(k + 1)) < M;(k + 1) —1fori > n.
Consequently, if k is known and a generic set of N > M,, — 1 sample points are given, we can compute n by first
projecting the data onto a (k + 1)-dimensional space and then setting

[n = min{i : rank(L;(k + 1)) = My(k + 1) — 1}.| (50)

4.2.2 Case2: n known

~ Consider now the opposite case in which n is known, but k is unknown. Let L, (¢ + 1) be defined as in (9), but
computed from the data projected onto an (£ + 1)-dimensional subspace. When £ < k, we have a collection of
(€ + 1)-dimensional subspaces in a (£ + 1)-dimensional space, which implies that L, (£ + 1) is full rank. If £ = k,
then from (54) we have that rank(L,(¢ + 1)) = Mp(£+ 1) — 1. When £ > k, then equation (9) has more than one
solution, thus rank(Ln (€ + 1)) < M. (€ + 1) — 1. Therefore, if n is known, we can compute k as

|k = min{¢: rank(Ln (¢ + 1)) = M, (€ +1) — 1}, | (51)

4.2.3 Case 3: n and k& unknown

We are left with the case in which both n and k are unknown. Let L;(¢ + 1) be defined as in (9), but computed by
applying the Veronese map of degree © to the data projected onto an (¢ + 1)-dimensional subspace. As before, if £ < k
then L;(€+1) is full rank for all i. When £ = k, L;(¢+ 1) is full rank for i < n, drops rank by one if i = n and drops
rank by more than one if ¢ > n. Thus one can set k to be the smallest integer £ for which there exist an i such that
Li(£ + 1) drops rank, that is

[k =min{¢: 3i > 1 such that rank(L;(£ + 1)) < M;(€ + 1)}. | (52)

Given k one can compute 7 as in equation (54).
More formally, we have shown the following.

Theorem 3 (Number of subspaces n and their dimension k) Assume that a collection of N > My(k + 1) - 1
sample points {z7}., on n different k-dimensional subspaces of R¥ is given. Let Ly(£ + 1) € RN*Ms(k+1) po e
matrix defined in (9), but computed with the Veronese map v; of degree i applied to the data projected onto a generic
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(€ + 1)-dimensional subspace of R¥. If the sample points are in general position and at least k points correspond to
each subspace, then the dimension of the subspaces k can be obtained as:

[ £ =min{€: 3i > 1 such that rank(L;(£ + 1)) < M (£ + 1}.| (53)

and the number n. of subspaces is given by:

[n = min{i : rank(Ls(k + 1)) = Mi(k + 1) — 1}. | (54)

Proof. Since the theorem deals with the case of data projected onto RX’, with K’ = k + 1, and the projected data
points live on hyperplanes, equation (54) is a direct consequence of Theorem 1. The rest of the theorem follows from
the analysis given in this section. [ ]

Corollary 1 The vector of coefficients c,, € RM~(¥+1) of the homogeneous polynomial p,,(x) can be uniquely deter-
mined (up to a scale factor) as the kernel of the matrix Ly, (k + 1) € RN*Mn(k+1) from at least M, (k + 1) — 1 points
on the subspaces, with at least k points on each subspace.

Remark 16 The above statement indirectly claims that in order to linearly estimate the polynomial p,(x), one needs
as many sample points as the dimension of the feature space. It is therefore unclear whether one could apply the kernel
trick zo reduce the dimensionality of the problem.

Remark 17 Although we have derived rank conditions on the data from which n and k can be estimated, in practice
this requires to search for up to possibly (K — 1) values for k and [N/(K — 1)) values for n. The problem becomes
even harder in the presence of noise, since one needs to threshold the singular values of Li(¢ + 1) to determine its
rank (see Remark 9). In our experience, the rank conditions work well when either k or n are known. It remains open
to find a good search strategy for n. and k when both of them are unknown.

4.3 Estimating the subspaces: the polynomial differentiation algorithm (PDA)

As we discussed in Section 4.1, when k£ < K — 1, there are both geometric and algebraic reasons that suggest that
we should first project the sample set X onto a (k + 1)-dimensional subspace, say Q, of RX. In many practical
applications the dimension of the subspaces & is small compared to the dimensionality of the data K. Therefore,
we can choose Q so that the variance of the projected data is maximized, which is equivalent to choosing Q as the
subspace spanned by the first k+ 1 principal components of the data. Given the projected data, we can apply one of the
GPCA algorithms given in Section 3 (PFA or PDA) to obtain a normal vector to each one of the projected subspaces
restricted to Q. In the absence of noise, we can use the (projected) normals to segment the projected data points, which
automatically induces a segmentation of the original data into different groups. Given the segmentation of the data,
we can estimate a basis for the original subspaces in R¥ by applying PCA to each group. This leads to the following
algorithm for estimating subspaces of equal dimension based on a single projection computed using PCA.

Algorithm 4 (PCA-GPCA Algorithm for Mixtures of Subspaces of Equal Dimension k < K —1)

1. Obtain the number of subspaces n and their dimension & as in Theorem 3.

2. Apply PCA with k + 1 principal components to the original data points [¢,...,z"] € R¥*¥ to obtain the
projected data points [z',...,2'N] € RE+DXN,

3. Apply GPCA for hyperplanes (PFA or PDA) to the projected data [z, . . ., z/y] € R*+1*¥ (o obtain a collection
of normal vectors {b] € RF+1}7_,.

4. Cluster the original data by assigning point =7 to subspace S; if

i=arg min |b'7 2. (55)
i=1,...,n

5. Obtain a basis for S; by applying PCA to the pointsin S;, fori =1,...,n.
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However, it is important to notice that Algorithm 4 can fail to give the correct segmentation. For example, consider
the case of data in R® lying on n = 3 lines along the z, y and z axis. If the data is such that the covariance matrix is
the identity, then in the first step of the algorithm we could obtain the z — y plane as the two principal components.
Hence the segmentation of the data would not be preserved, because one of the lines (the z-axis) is projected onto the
origin. Even though cases like this are rare,'* in the presence of noise one could choose a projection @ that is close
to a degenerate configuration, thus affecting the quality of the segmentation. Furthermore, the algorithm also has the
disadvantage of having to cluster the data before estimating a basis for each subspace, which further increases the
dependency of its performance on the choice of Q.

In the rest of the section, we propose an alternative solution that uses multiple randomly chosen projections. The
algorithm is a generalization of the polynomial differentiation algorithm (PDA) that uses multiple randomly chosen
projections to determine a basis for each subspace.

Let {Q*}7, be a collection of m randomly chosen (k+1)-dimensional subspaces of R*. For each £, let p/,,(z') be
the polynomial representing the collection of projected subspaces {S! = 7Qe(S:i) Hiys and let ppe(x) = pl, (o ()
be its corresponding polynomial in I(Z). Then, from the analysis of Section 3.3 we have that if y; € S; then

Opne(x)

€ Si foralle=1,...,m. (56)
ox

=Yy

In other words, if we are given a collection of n points {y; € S;}, with each point lying on only one of the subspaces,
then we can estimate a collection of vectors normal to each one of the subspaces from the partial derivatives of the m
polynomials {pne()};2.,. The question is now how to obtain a collection of n points {v; € S}, each one lying
on only one of the subspaces. As in the case of hyperplanes, we can choose points z in the data set X that minimize
a certain distance from z to its closest subspace. The following lemma tells us how to compute such a distance.

Lemma 2 The Euclidean distance from point x to its closest subspace is given by

e ~ || = ny/ Pa(@)(DPa(@)T DPa(a)) Pa(@)T + O(Jlz - 5), S

where Pp(x) = [pn1() - - - pnm ()] € R¥™™, DP, (x) = [Dpn1(z) - - - Dppm(x)) € RE*™, and At is the Moore-
Penrose inverse of A. '

Proof. The projection Z of a point z onto the zero set of the polynomials {Pne}72, can be obtained as the solution of
the following constrained optimization problem

min (| - 2|

subjectto pne(E)=0 ¢=1,...,m. 58)

By using Lagrange multipliers A € R™, we can convert this problem into the unconstrained optimization problem
min |2 — z||? + Pa(Z)A. (59)
=,

From the first order conditions with respect to & we have

2(% — ) + DP,(&)\. (60)

After multiplying on the left by (DP,(&))T and (& — x)7, respectively, we obtain
A = 2(DP,(&)TDP,(%))' DP,(2)"z (61)
I& -2 = %mTDP,.(:i:))., ©2)

where we have used the fact that (DP,(2))T@ = nP,(&) = 0. After replacing (61) on (62) we obtain that the
squared distance from & to its closest subspace can be expressed as

|2 — zl|? = 27 DP(%)(DPa(2)T DP.(2)) DP. (%) . (63)
After expanding in Taylor series about & = z, and noticing that DPn(z)Tz = nP, (x)T we obtain
I — 2|12 % n?Pa(2) (DPa ()T DPu(x)) Pa(2)7, (64)

14Recall from Section 2 that the set of subspaces @ that fail to preserve the segmentation is a zero-measure set.
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which completes the proof. n
Thanks to Lemma 2, we can choose a point Yy, in the dataset X that lies on (close to) one of the subspaces as:

= ; T t T
Un= L XBRN, ¢0Pn(a:)(DP,.(a:) DP,(x))' P,(x)T. (65)

Given y,,, we can compute the collection of normal vectors {bne € SE }72., from the derivatives of p.(z) at y,,. In
order to find a point y,,_, in one of the remaining (n — 1) subspaces, but not in S,,, we find a new set of polynomials
{P(n-1)e(x)} in the ideal of the algebraic set UPS!S;. Since the polynomial pn,(z) is factorable and one of its factors
is precisely bZ,z, as in the case of hyperplanes, we can obtain the polynomials {p(,,_1)e(z)} by polynomial division
as
Pne(x)
pn,!—l(z) wa . (66)
By applying the same reasoning to the remaining subspaces, we obtain a set of normal vectors {bie} to each
subspace 5;, i = 1,...,n, from each projection Q%, £ = 1,...,m. If m > K — k and the subspaces {@4x,
are in general position, then we can immediately obtain a basis B; for S by applying PCA to the matrix of normal
vectors [bny,. .., bpm] € REX™, If not, the matrix B; still allows us to segment the data into different groups. Then,
we can obtain a basis for S; by applying PCA to the data points in S;. We therefore have the following polynomial
differentiation algorithm (PDA) for mixtures of subspaces of equal dimension k < K — 1.

Algorithm 5 (PDA for Mixtures of Subspaces of Equal Dimension k < X — 1)

obtain the number of subspaces n and their dimension & as in Theorem 3.
for{=1:m,
choose a (k + 1)-dimensional subspace Q¢ C RX;
build the data matrix L}, € RV*Mn(k+1) from the projected data X’ = mgm (X );
solve for the vector of coefficients ¢}, € RM~(*+1) from L/ ,¢! , = 0;

set pue(x) = c’f,u,,(nqe (x));

end;
fori=n:1,
do
P(xz) = [pa(z),...,pim(x)] € R1*™, - (67)
v = _agmin  P(=)(DP()"DP(z)) P(=)T, (68)
b, = "g:+?:;", fort=1,...,m, (69)
Pi-1e = %fi:)., foré=1,...,m, (70)
B; = PCA([bi,...,bim]) ()
end;
end;

assign point x7 to subspace S; if i = argming—; ... | BT 7.
ifm < K — k, then

obtain a basis for S; by applying PCA to the datain S;, fori = 1,...,n.
end.
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5 Estimating a mixture of subspaces of arbitrary dimensions {k;}7

Our analysis in Sections 3 and 4 shows that for subspaces of equal dimension k < K — 1 one can always estimate a
set of factorable polynomials from the data, either directly as in the case of hyperplanes where k = K — 1, or after a
suitable projection onto a (k + 1)-dimensional subspace when k < K — 1.

In this section, we consider the most general case in which each subspace can have a possibly different dimension,
hence we cannot obtain a collection of factorable polynomials representing the data. Instead, as described in Section 2,
we can only obtain a basis {pae(x)} for those factorable polynomials and each element in the basis may not be
factorable. In Section 5.1 we show that it is still possible to obtain a collection of normal vectors to one of the
subspaces from the derivatives of the given polynomials {pn.(x)}, even when they are not factorable. Given the
normals to that subspace {bn, € S;'} the rest of the problem is to divide the original polynomials by the linear forms
defined by the normals in order to obtain the polynomials p,_1 ¢(x) defining the remaining n.— 1 subspaces. However,
in this case we cannot perform polynomial division, because the given polynomials {pne(x)} may not be factorable.
In Section 5.2, we derive an algorithm that uses the data and the estimated normals to estimate the polynomials
{Pn-1,¢(z)}, without performing polynomial division.

5.1 Obtaining subspace bases by polynomial differentiation

Recall from Section 2 that given a set of points X = {z/ }§"=1 lying on a collection of subspaces {S; ¢ R¥}~,,
the algebraic set Z = UL, S; can be represented with a collection of polynomials {pne(x) = cZvn(x)} whose
coefficients lie in the (m = dim(I(Z)))-dimensional null space of the embedded data matrix L,, € RN*Mn_je..
. Lpcae = 0forf = 1,...,m. The GPCA problem is then equivalent to estimating a basis B; for S, where i =
1,...,n from the set of not necessarily factorable polynomials {Pne(z)} ;.

As we also hinted in Section 2, one could first try to find a change of basis for the null space of L,, that gives
a set of factorable polynomials, and then apply some variation of the PDA to obtain the bases {B:}®,. However,
this amounts to solving a set of polynomials of degree n in several variables. Fortunately, similarly to the case of
. subspaces of equal dimension, we can exploit the local linear structure of the algebraic set Z to first obtain a basis for
the orthogonal complement to each subspace by differentiating all the polynomials obtained from null(L,) (factorable

or not). We can do so thanks to the following (even more general) statement.

Lemma 3 Let p be any polynomial in the ideal I of an algebraic set Z, i.e., p(x) = 0,V € Z. If TxyZ is the
(Zariski) tangent space to Z at a smooth point o, then the derivative of p(x) at o satisfies:

1 9p(z)
ox

=0, VteT,Z (72)

<o
Furthermore, (Tzy Z)* = span{gl}’,{,;22 ,Vp € I}.
x0

Proof. Equation (72) is obvious since p(x) = 0 on Z and the left hand side is merely a directional derivative along
t at the regular point 9. The fact that the derivatives span the entire normal space is the consequence of the general
dimension theory for algebraic varieties [1, 8, 6]. [

Notice that, for a particular p(x) in one of the homogeneous components, say I, (n’ > n), of the ideal I, its
derivative could be zero at zo.'* Nevertheless, if we evaluate the derivatives for all the polynomials in the ideal I, they
will span the entire orthogonal complement to the tangent space. In fact, we can do better than this since, as we will
show in the case with n subspaces, we only have to evaluate the derivatives for polynomials in I up to degree n.

The above lemma is particularly useful to the GPCA problem. Since the algebraic set Z that we are dealing with
here is (locally) flat, the tangent space T and its orthogonal complement T+ will be independent of the point at which
they are evaluated.'® To see this more clearly, let {y; € S;}2., be a set of n points each one lying on only one of
the subspaces. Also let c,, be a vector in the null space of L,,. By construction, even though ¢, may not correspond
to a factorable polynomial, it can be written as a linear combination of vectors ¢, which correspond to factorable
polynomials, i.e., ¢, = 3 ascpe. Then

o T
%cn Vﬂ(m)

8
= % E azcztu,,(z) = E o:gbu, (73)
4 [4

T=
Vi a=y;

Y3For instance, for g() € In, let f(xx) = g%(x) € Jon, and its derivative will be zero everywhere.
1€For points in the same subspace S;, T is in fact S itself; and T'L is 1.
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where by, € S;* is a normal vector to subspace S;. Therefore, although cZ v, () may not be factorable, its derivative
at y; still gives a vector normal to S;. Combining this with the analysis in the preceding subsection, we have essentially
proven the following theorem.

Theorem 4 (Polynomial differentiation) For the GPCA problem, if the given sample set X is such that dim(null(L,,)) =
dim(,,) and one generic point y, is given for each subspace S;, then we have

7]
St = span{ %cfun(:c)l‘my , Ven € nl.lll(Ln)}. 749

Theorem 4 states a useful fact about the ideal I associated with a union of subspaces. If we know the number
of subspaces n and we are given a set of points {y; € S;}, then in order to obtain the bases {B;} we do not have
to evaluate the derivatives for all polynomials in I. It suffices to evaluate the derivatives of polynomials in I,, only.
Therefore, as a consequence of the theorem we already have the sketch of an algorithm for computing a basis for S;-
(hence for S;), given {y;}: : ‘

¢ Compute a basis for the null space null(L,,) using, for example, SVD.

o Evaluate the derivative of the (possibly nonfactorable) polynomial cZv, () at y, for each ¢, in the basis of
null(L,) to obtain a set of normal vectors in S;-.

o Compute a basis for S;- by applying PCA to the normal vectors obtained in step 2. PCA should automatically
give the dimension of each subspace k; = dim(S;) as:

ki = K —rank(DP,(y;)), i=1,...,n. (75)

Example 7 (The = — y plane and the 2 axis (revisited)) As in Example 1, let us consider the case of n = 2 sub-
spaces of R® of dimension dim(S,) = 2 and dim(S;) = 1 represented as:

S1={a:€IR3:a:3=0} and 52={:B€1R3:a:1=0/\z2=0},
Then we can represent Z = Sy U S as the zero set of the two polynomials
pu(z)=xz123 and  pa(zx) = z273.

The derivatives of these two polynomials are:

T 0
Dpa(z) = [03] and  Dpy(x) = l:xs] ,
I T

which evaluated at y, = (1,1,0)T € 8, and yé = (0,0, l)T € Sy yield

00 10
DPy(y;)= [0 0| and DPy(y,)= |0 1].
11 00

By applying PCA to DP,(y,) and D Py(y,) we obtain a basis for Si- and S as

0 10
Bl= 0 and .Bz= 0 1].
1 00

Remark 18 (Overestimating the number of subspaces) Notice that one may replace n. with any n' > nin Theo-
rem 4 and the conclusion still holds. Therefore, at least in principle, choosing a polynomial embedding of a higher
degree n' does not prevent us from correctly computing the subspaces using the same method, as long as the given
samples are sufficient for us to recover a basis for I,: from the null space of L. In practice, we should try to use the
lowest possible degree to avoid the high computational cost associated with a redundant embedding.



Remark 19 (Underestimating the number of subspaces) Let Sy and Sp be the z and y axis in R3, respectively.
Then a basis for the set of polynomials of degree two that vanish on Sy U Sy is {129, 2123, T273, :z:%} However,
since the two lines lie in the x—y plane, there is a polynomial of degree one in null(L,), p; () = z3, that also vanishes
on 5, U Sy. Furthermore, the derivative of p)(x) at points on the lines gives a single normal vector (0,0, 1]T, which
is the normal to the x — y plane. This example shows that in the case of subspaces of arbitrary dimensions one may
underestimate both the number of subspaces and the dimension of the orthogonal bases. As stated in Remark 2, this
situation happens whenever the ideal I(Z) contains polynomials of degree d < n. However, one may still recover the
correct structure by increasing the degree of the embedding as follows: increase the degree of embedding incrementally
Srom i = 1 until L; drops rank at i = d < n; for i > d collect the derivatives (normal vectors) at every point in the
data set; stop when the derivatives no longer increase the dimension for the orthogonal complements.

Remark 20 (Duality) Recall from our analysis in Section 4.1 that a GPCA problem with subspaces of equal dimen-
sionky = -+ - = ky = k is dual t0 a GPCA problem withky = - .- = k,, = K — k. It turns out that Theorem 4 allows
us to generalize this duality result to subspaces of arbitrary dimensions. To this end, we notice that the derivatives of
thJe_ polynomials P, evaluated at a point = on a subspace S; gives a basis B; = {bie} for its orthogonal complement
Fak

DP,: z€8: w— B;CSt. (76)
Each vector b € B; can be viewed as a co-sample, i.e., as a sample point drawn Jfrom the complement subspace
Si to S;. Therefore, if we evaluate the derivatives of P,, at all the sample points X = {x}, we obtain a set of co-
samples B = {b} for the union of all the complement subspaces US;-. Obviously, identifying Si* from B is exactly a
GPCA problem that is dual 1o the original problem. If we apply again the PDA algorithm to B, then the output of the
algorithm will be exactly the bases for the subspaces (S#)* = S;.17

Remark 21 (Connection with spectral clustering) Although GPCA can be viewed as a special clustering problem,
many of the classical clustering algorithms such as spectral clustering cannot be directly applied. This is because
in order for spectral clustering techniques to work well, we should be able to define a distance function that is small
Jor pairs of points in the same subspace and large for points in different subspaces. Such a distance should therefore
depend only the geometry of the subspaces but not on the locations of the points inside the subspaces. The Euclidean
distance between sample points in the sample set X clearly does not have this property. '®

However, thanks to the duality equation (76), one can compute a basis Jfor Si- at every point z; in S;. A distance
Jfunction between a point @; in S; and x; in S; can be defined between the two bases:

Di; = (S&, 57, an

where we use (-,-) to denote the largest subspace angle between the two subspaces. Notice that this distance does not
depend on the particular location of the point in each subspace. Based on this distance Sunction, one can define an
N x N similarity matrix, e.g., S;; = exp(—D?j), Jor the N samples in X. This allows one to apply the classical
spectral clustering algorithms to group the sample points according to their subspaces. Here the duality plays a
crucial role of converting a multilinear clustering problem to a standard spectral clustering problem.

5.2 Obtaining one point per subspace by polynomial division

From the results in the previous section, we notice that one can obtain a basis for each S directly from the derivatives
of the polynomials representing U, S;. However, in order to proceed we need to have one point per subspace, i.e.,
we need to know the vectors {y; € S;}i.;. In the case of hyperplanes, this could readily be done by intersecting a
line £ with each one of the subspaces. However, this solution does not generalize to the case of subspaces of arbitrary
dimensions. Consider for example the case of data lying on three one-dimensional subspaces of R3. Then a randomly
chosen line £ may not intersect any of the one-dimensional subspaces. Furthermore, because polynomials in the null
space of Ly, are no longer factorable, their zero set is no longer a union of subspaces, hence the points of intersection
with £ may not lie in any of the subspaces.

In this section, we propose a generalization of the recursive PDA for mixtures of hyperplanes described in Sec-
tion 3.3.3. To this end, let {pne(z)}, be the set of m polynomials whose coefficients are in the null space of the
data matrix L,,. Also, let & be the projection of a point € R onto its closest subspace. From Lemma 2 we have
that the Euclidean distance from point  to its closest subspace is given by

ke ~ &|| = ny/ Pa(2) (DPa(@)T DPw(2)) Pa(@)T + O(llz - 2[2), (78)

17This comes at no surprise at all once one realizes that the polynomials associated with the dual problem can be viewed as polynomials in the
coordinate ring for the original subspaces. According to [6], Chapter 16, their derivatives are exactly tangent vectors on these subspaces.

18This explains why spectral clustering algorithms typically do not work well when there is intersection among different groups, which is
unfortunately the case with mixtures of hyperplanes.
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where Po(2) = [pn1() - - pnm ()] € R*™, DP,(x) = [Dpni () - - - Dpam(e)] € RK*™ and At is the Moore-
Penrose inverse of A. Therefore, we can choose a point y,, lying on (close to) one of the subspaces as:

Un = zejacr:%)’}],.j&#o Po(z)(DPu(z)TDPu(x)) Pu(=)T, (79

and then compute the basis B,, € R¥*(K=kn) for SL by applying PCA to DP,(y,,).

In order to find a point y,,_; in one of the remaining (n — 1) subspaces, but not in S,,, we need to find a new
set of polynomials {p(»_1)¢(x)} defining the algebraic set UZSS;. In the case of hyperplanes this was done by
polynomial division, which is equivalent to solving for a vector ¢,,_; € RM»-1 from a linear system of the form
Dn(bn)en-1 = cq, where b, € Sj (see Remark 13). In the case of subspaces of arbitrary dimensions, we cannot
simply divide pne(x) by bZx for b, € S, because the polynomials {pne(z)} may not be factorable. Furthermore,
they do not necessarily have b;’::c as a common factor. The following theorem resolves this difficulty by showing how
to compute the polynomials associated to the remaining subspaces U}:ll S;.

Theorem 5 (Polynomial division) For the GPCA problem, if the given sample set X is such that dim(null(L,,)) =
dim(I,), then the set of homogeneous polynomials of degree (n — 1) associated with the remainder of algebraic set
ULy Si are exactly {cI_ vn_1(x)} for all c,_; € RMn=1 that satisfy

LnDn(bn)cn—l =0, (80)
where b, can be any vector in S} '

Proof. We first show the necessity. That is, any polynomial of degree n — 1, ¢I_;»,_;(x), that vanishes on U271 S;
n-1 =1

satisfies the above equation. Since a point = in the original algebraic set U, S; belongs to either UXS!S; or S, we

have ¢f_;v_1(x) = 0 or blz = O as long as b, € S}. Hence p(z) = (cI_,vn_1())(bTx) = 0, and p(z) must
be a linear combination of polynomials in P,. If we denote p(x) as ¢ v, (), then the vector of coefficients ¢,, must
be in the null space of L. From cZv,(z) = (c¢I_;Va-1(x))(bZx), the relationship between c,, and c,—; can be
written as Dy (b, )cn—1 = cp. Since Lpe, = 0, ¢,—1 needs to satisfy the following linear system of equations

LoDn(bn)ca_y = 0. (81)

We now show the sufficiency. That is, if ¢,,—; is a solution to (80), then ¢,=D,,(b,)c,.~1 is in the null space of L,,.
From the construction of Dy, we have ¢Zvy(x) = (¢I_;vn—1(z))(bIx). Then for every & € UZS'S; not in Sy, we
have €I_,v,_1(x) = 0, because bZ z 5 0. Therefore, ¢ _,vn_1(x) is a homogeneous polynomial of degree (n — 1)

that vanishes on U™ S;. =

=1
Thus a collection of polynomials {p(—1)e(z)} for UZS!S; can be obtained from the null space of L.Dp(db,) €
RN xMa-1_ By applying the same reasoning to the remaining subspaces, we obtain the following recursive polynomial
differentiation algorithm (PDA-rec) for finding one point per subspace and computing the matrices of normal vectors.
In the case in which all the subspaces are hyperplanes, Algorithm 6 reduces exactly to Algorithm 3.

Remark 22 (Avoiding polynomial division) Similarly to the case of hyperplanes (see Remark 6), one may avoid
computing P; by choosing the points y, with a heuristic function. Since a point in U}, S, must satisfy || BT || - - - || BT z|| =
0, we can choose a point y;_, on U,_}S, as:

VP (@) (DP, (@) DP, (@) Po(@)T + 6 s5)

;1 = arg min y
Vi1 = 28 Do 1Bz |BZz|| + 6

where 6 > 0 is chosen to avoid cases in which both the numerator and the denominator are zero (e.g., with perfect
data).

6 Optimal GPCA in the presence of noise

In the previous sections, we addressed the GPCA problem in a purely algebraic fashion and proposed various al-
gorithms for estimating a collection of subspaces using polynomial factorization or polynomial differentiation and
division. In essence, all the algorithms we have presented so far use linear algebraic techniques to solve for the bases

B; = [by,. .., bi(k —k,)) of S+, wherei = 1,...,n, from a set of nonlinear equations of the form (see equation (4))
pro(@’) = [[(0L ') =0  for j=1,...,N, (86)
i=1

27



Algorithm 6 (Polynomial Differentiation Algorithm (PDA) for Mixtures of Subspaces)
given the number of subspaces n, form the embedded data matrix L,, € RN*Mn

fori=n:1,
solve L;c = 0 to obtain a basis {c;¢};-., of null(L;);
set pie(€) = chvn(z) and Py(x) = [pir(x) - - - pir, ()] € RIX™S;

do _ _ . -
vi = gmin  P(z)(DP(z)" DF(=)) P(=)", (82)
L.y = LiDi(by), with b; the first column of B;, (84)
end;
end;

assign point =7 to subspace S; if i = argming=1,... » ||BY 7).

with o representing a particular choice of one normal vector bis(:) from basis B;.

However, the algebraic algorithms provide a “linear” solution to the GPCA problem at the cost of neglecting the
nonlinear constraints that the entries of each one of the vector of coefficients ¢n € RM» must satisfy, the so-called
Brill’s equations (see Remark 8). In the presence of noise, one could set up an optimization problem that searches
directly for the bases {B;}, instead of the searching first for the polynomials {Pno}- This can be done by minimizing
the violation of the above algebraic equations (or some variation of them) in a least squares sense. For example, we
could minimize the algebraic error

N n
Ea(By,....Bn) = Y [ 17211, )

Jj=li=1

which should be zero if there was no noise. Minimizing this algebraic error in fact provides a more robust estimate
of the subspace bases, because it uses a minimal representation of the unknowns. However, the solution to this
optimization problem may be biased, because the algebraic error in (87) does not coincide with the negative log-
likelihood (up to constant factors) of the data given the parameters.

In this section, we derive an optimal algorithm for reconstructing the subspaces when the sample data points are
corrupted with i.i.d. zero-mean Gaussian noise. We show that the optimal solution can be obtained by minimizing a
function similar to the algebraic error in (87), but properly normalized. Since our derivation is based on segmentation
independent constraints, we do not need to model the membership of each data point with a probability distribution.
This represents a great advantage over EM-like techniques, because we do not need to iterate between the Expectation
and Maximization steps. In fact, our approach eliminates the Expectation step algebraically and solves the GPCA
problem by directly optimizing over the subspace parameters (Maximization step). .

Let X = {z7 € R¥}X, be the given set of data points, which are generated by adding i.i.d. zero-mean Gaussian
noise to a set of noise free points {#’ € R¥}X, lying on a collection of subspaces {S; ¢ RX }~., of dimension
k; = dim(S;), where 0 < k; < K, fori = 1,...,n. Given the number of subspaces n, the subspace dimensions
{ki}i=1, and the collection of noisy data points X, we would like to find a basis B; € R¥*(K-k) for S by
minimizing the error between the data and the noise free points

N . .
o lE - 22 (88)

Jj=1
subject to the fact that the noise free points {Z’}}_; must lie on one of the subspaces.

To this end, notice that for each noise free data point &7 there exists.a subspace S; such that &' € S;. In other
words, there exists a matrix B; such that BY 27 = 0. Therefore, a point =7 belongs to one of the subspaces if and only
if

. n .
(@) =[] 1872 = 0. (89)

i=1
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Therefore, we can estimate the bases By, B,, ..., B, by solving the following constrained optimization problem

) N ouei
min j=1 18 — 7|2
subjectto [T, [|BTfz'|| =0 i=1...,N (90)

BTB; =1 ¢ REK-k)x(K=ki) ;=1 p

where the last constraint forces the columns of each basis B; to be orthonormal.
By using Lagrangian multipliers A7 for each constraint on %’ and a matrix of Lagrange multipliers A; = AT €
R(¥=k)x(K-k) for each constraint on B;, the above optimization problem is equivalent to minimizing

N N n n
D118 — 2|+ 3 W TT BT &) + Y wace(Ai(I — BT By)). o

j=1 =1 i=1 i=1

After taking partial derivatives with respect to &7 and setting them to zero we obtain

2(%' — a’) + M Dp,(37) = 0. 92
After multiplying on the left by Dp,,(%’)T and (&' — «7)T we obtain
i Dpn(éj)rmj
No= == 93)
| Dpn ()12
12 -2/ = %w"TDpn(a'c")A" , o4)
where we have used the fact that
3T 3y — 2T ST NBEE N o o7 = T (BT - j
ST Dpn(@) =" Y [T s BBT = n ] [IBT &) = npu(d) =0 ©3)
i=1 i 14 i=1

After substituting (93) and (94) on the objective function (88) we obtain

- . z o )"
Eo({#'},{B:}) = Z%ﬂ_)z)

=1

(96)

We can obtain an objective function on the bases only by considering first order statistics of p,,(x7). Since this is
equivalent to setting &’ = 27 in (96) and =T Dp,,(z7) = np,(x7), we obtain the simplified objective function

Eo(By,...,Bn) = i (npa(29)” _ ZN: n? [Ty |BY 7| on
ol\D1,..., 8y : "Dpn(z])“2 L " n . |BT a3 "BBT '] |2 ’
et 571 || i Tes gy Bi BT =

which is essentially the same as the algebraic error (87), but properly normalized according to the chosen noise model.

In summary, we can obtain an estimate of the bases { B;}], by minimizing the objective function Eo(B;, ..., By)
subject to the constraints BY B; = I, fori = 1,...,n. One can use standard nonlinear optimization techniques to
minimize Eo starting from the solution given by Algorithm 6, or any of the other GPCA algorithms depending on the
case.

Remark 23 (Optimal error in the case of hyperplanes) In the particular case of data lying on hyperplanes, we have
that B; = b; € RX fori =1,...,n. Therefore, the objective function in (97) becomes

ZN (npn(29))” ZN n? [T5, (b7 242

Eo(by,...,by) = ~ =10 % - . 8)
j=1 |1 Dpn (7)) i=1 |1 T, Ht¢i(b{w")biIF

as demonstrated in [21].

7 Initialization of iterative algorithms in the presence of noise

In this section, we briefly describe two algorithms for clustering subspaces: K-subspace and Expectation Maximiza-
tion (EM). Both algorithms start with a random initialization for the subspace bases, and then iterate between the
segmentation of the data and the estimation of the bases. Therefore, we can use either K-subspace or EM to improve
the linear algebraic estimate given by GPCA (PFA or PDA).
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7.1 The K-subspace algorithm

The K-subspace algorithm is an extension of the well-known K-means algorithm to the case of mixtures of subspaces.
K-subspace minimizes a weighted square distance from point 7 to subspace S; which is defined as

n N n N n
3> wyllBf 22 = "5 wijtrace(BY x/aiT B;) = > trace(BT :B;) (99)

i=1 j=1 i=1 j=1 i=1

where the weights w;; represent the membership of the data point j to subspace i and T; = E;‘;I wixi T ¢ REK*K
can be interpreted as the covariance matrix of the data points in subspace S;. The K-subspace algorithm starts by
randomly initializing the bases {B;}7,. Then, the algorithm minimizes the error function (99) using a coordinate
descent algorithm that iterates between the following two steps.

In the first step it minimizes over {w;;} with { B;} held constant, which gives the following formula for the weights
_ 1 i=arg mjnl:l,...,n "BgT‘BJ "2
Wi = {0 otherwise ' (100

In the second step, K-subspace minimizes (99) over the bases { B;}7_; with the weights {w;;} held constant. Since
the bases are not uniquely defined, we impose the additional constraint that the columns of B; are orthonormal, i.c.,
B[ B; = I. By using a matrix of Lagrange multipliers A; = AT ¢ R(X—k)X(K—k:) we can minimize the Lagrangian

> trace(BT 5;B;) + ) trace(Ai(I — BT B))). (101)

i=1 i=1
After taking partial derivatives with respect to B; and setting them to zero we obtain
X.B; = B;A;. (102)
After multiplying by BT on the left and noticing that BY B; = I, we obtain BT ;B; = A;. This implies that A; > 0,
because X; > 0. Furthermore, after replacing Bf £; B; = A; on the the objective function (99) we obtain

n N

> > wylBf2|? = Z": trace(A;). (103)
i=1

i=1 j=1

Therefore, the objective function is minimized by choosing A; as a diagonal matrix with the eigenvalues of X; in the
diagonal and B; as the matrix of eigenvectors of ;. Given the new B;, one can recompute the weights w;; and then
iterate until convergence.

7.2 The Expectation Maximization algorithm

The EM algorithm assumes that the data points {x’}}, are generated by firstly choosing one of the subspaces
{S:}i=y, say subspace S;, according to a multinomial distribution with parameters {0 < m; < e, Y m=1,
and secondly choosing a point 27 = &’ + B;s;;, where & is a noise free point lying on S, and s;; is zero-mean
Gaussian noise with covariance 0?1 € R(K=k)X(K=k) et z;; = 1 denote the event that point j corresponds to
subspace 7. Then the complete log-likelihood (neglecting constant factors) on both the data =7 and the latent variables
zi; is given by

N n T_in2 Z45 N =n T i 12
. Bfzi Bz’

log I I I | (;‘ €xp (-%)) = E E zij(log(m;) — log(oy)) — Zij"—wl—l-
j=li=1 ! i j=1i=1 3

E-step: Computing the expected log-likelihood. Given a current estimate for the parameters § = {(Bs, 00, ™)}y,
we can compute the expected value of the latent variables

BT Jn2
= exp(- 18,5 1)

. BT zi||2
iy Eexp(-1E5 T

wi; = Elz;la’,0] = P(zi; = 1|27,0) =
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Then the expected complete log-likelihood is given by

N n j
BT zi|?

3> wilog(m) — log(o) - wi A2

1

i=1 i=1

M-step: Maximizing the expected log-likelihood. The Lagrangian for «; is

n N n ZN o
ZZwsjlog(m)+z\(l—zm) | i

i=1 j=1 i=1 N

The Lagrangian for B; is

2
20;

n TY. B;
Z —trace (w) + trace(Ai(B,-TB,- -I) = B = 20',-23,'/\".

$=1

Similarly to the K-subspace algorithm, the objective function for B; becomes — 3oi; trace(A;), with A; > 0. Thus
B; is a matrix whose columns are the eigenvectors of T; associated with the (K — k;) smallest eigenvalues. Finally,
after taking derivatives of the expected log-likelihood with respect to o; we obtain

N .
2 Zj:l wi;|| BT 7|2

gy = N
Ej:l Wiy

If for all i o; = o, then we have y
2 _ et =1 Wiil| BT =9 ||?
N .

o

8 Experiments on synthetic data

In this section, we evaluate the performance of PFA and PDA (algebraic and recursive) by comparing them with K-
subspace and EM on synthetically generated data. The experimental setup consists of choosing n = 2, 3, 4 collections
of N = 200~ points lying on randomly chosen k = 2 dimensional subspaces of R3. Zero-mean Gaussian noise from
with s.t.d. from 0% to 5% is added to the sample points. We run 1000 trials for each noise level. For each trial the
error between the true (unit) normals {b;}7., and the estimates {b;}2., is computed as -

error = % Xn: acos (b?in) (degrees). (104)
i=1

8.1 Error versus noise

Figure 4 (left) and Figure 4 (right) plot the mean error as a function of the noise level for PFA, PDA, K-subspace, and
EM for a number of subspaces of n = 4. Similar results were obtained for n = 2, 3, though with smaller errors.

Notice that the estimates of PDA-alg with 7n = 1 line are only slightly better than those of PFA, while the estimates
of PDA-alg with m = 3 and PDA-rec with § = 0.02 have an error of about 50% compared to PFA. For PDA-alg we
observed that the error decreases as m increases, though the increase of performance was not significant for m > 3.

For PDA-rec the choice of § was not important (results were similar for € [0.001, 0.1)), as long as it is a small
number. The best performance (among the purely algebraic algorithms) is obtained by PDA-rec, because it deals
automatically with noisy data and outliers by choosing the points in an optimal fashion.

Notice also that both K-subspace and EM have a nonzero error in the noiseless case, showing that they frequently
converge to a local minima when a single randomly chosen initialization is used. When initialized with PDA-rec, both
K-means and EM reduce the error to approximately 35-50% with respect to random initialization.

8.2 Error versus number of subspaces

Figure 5 plots the estimation error of PDA-rec as a function of the number of subspaces n, for different levels of noise.
As expected, the error increases as a function of n.
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Figure 4: Error versus noise for data lying on n = 4 subspaces of R? of dimension k = 2. Left: PFA, PDA-alg(m =1

and m = 3) and PDA-rec (§ = 0.02). Right: PDA-rec, K-subspace and EM randomly initialized, K-subspace and EM
initialized with PDA-rec, and EM initialized with K-subspace initialized with PDA-rec.
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Figure 5: Error versus noise for PDA-rec (§ = 0.02) for data lyingonn = 1,...,4 subspaces of R3 of dimension
k=2

8.3 Computing time

Table 1 shows the mean computing time and the mean number of iterations for a MATLAB implementation of each
one of the algorithms. Among the algebraic algorithms, the fastest one is PFA which directly factors p,,(z) given cn.
The extra cost of PDA-alg and PDA-rec relative to PFA is on building the polynomial ¢, (t) and computing Dp,, ()
forall x € X, respectively. Overall, PDA-rec gives half of the error of PFA in about twice as much time. Notice also
that PDA-rec reduces the number of iterations of K-subspace and EM to approximately 1/3 and 1/2, respectively. The
computing times for K-subspace and EM are also reduced even if the extra time spent on initialization with PDA-rec
or PDA-rec + K-subspace is included.

Table 1: Mean computing time and mean number of iterations for each one of the algorithms.

Algorithm | L,c=0 | PFA PDA-alg | PDA-alg | PDA-rec
Time (sec.) | 0.0854 0.1025 0.1765 0.3588 0.1818
# IteratiorL 1 1 3 1

o o PDA-rec PDA-RTW
Algorithm | K-sub +K-sub EM +EM sub+EM
Time (sec.) | 0.4637 0.2525 1.0408 0.6636 0.7528
# Iterations | 19.7 7.1 30.8 17.1 15.0
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9 Applications of GPCA in computer vision

This section presents applications of GPCA in computer vision problems, such as vanishing point detection, 2D and
3D motion segmentation, and face clustering with varying illumination.

9.1 Detection of vanishing points

Given a collection of parallel lines in 3D, it is well know that their perspective projections intersect at the so-called
vanishing point, which is located either in the image or at infinity. Given n set of parallel lines, we represent their
images in projective space as {€; € P*}X | and the vanishing points as {v; €P2}™_, . Since for each line j there exists
a vanishing point v; such that 'v?ﬂj = 0, the problem of estimating the n vanishing points from the set of N lines
without knowing which subsets of lines intersect in the same point, is equivalent to estimating a collection of n planes
in R? with normal vectors {v; € P?}7_, from sample data points {€; € P2}/, Figure 6 (left) shows an example
from the Corel Database with n = 3 sets of N = 30 manually extracted parallel lines. For each one of the three set
of lines we computed their intersecting point (assuming known segmentation) and regarded those intersection points
as ground truth data. We then applied recursive PDA to the set of lines assuming unknown segmentation and used the
resulting vanishing points to initialize K-subspace. The vanishing points estimated by PDA and PDA + K-subspace
are shown in Figure 6 (center) and compared with the ground truth. The error in the estimation of the vanishing
points with respect to the ground truth are 1.7°, 11.1° and 1.5° for PDA and 0.4°, 2.0°, and 0.0° for PDA+K-sub.
Figure 6 (right) shows the segmentation of the lines obtained by PDA. There is only one misclassified line, the top
horizontal line in the image, because it approximately passes through two of the vanishing points.

gm—/—\/
= Ground Truth " fed

¢ GPCA-PDA
= GPCA-PDA + K-sub

-200 -100 ] 100 5 10 15 20 25 30

g8 8 8 & B B g

Figure 6: Detecting vanishing points using GPCA. Left: Image #364081 from the Corel database with 3 sets of
10 parallel lines superimposed. Center: Comparing the vanishing points estimated by PDA and PDA followed by
K-subspace with the ground truth. Right: Segmentation of the 30 lines given by PDA.

9.2 Segmentation of 2-D translational motions from image intensities

In this section, we apply GPCA to the problem of segmenting the 2-D motion field of a video sequence from mea-
surements of the partial derivatives of the image intensities. We assume that the scene can be modeled as a mixture
of purely translational 2-D motion models.!® That is, we assume that the optical flow at every pixel in the image
sequence, u = [u, v, 1] € P2, can take one out of n possible values {ui}iL,. Furthermore, we assume that the number
of motion models is unknown. If we assume that the surface of each object is Lambertian, then the optical flow of
pixel z = [z1,2,1]T € P? is related to the partials of the image intensity y = [I,,I.,,I;]T € R® at z by the
well-known brightness constancy constraint

yTu=Lu+I,v+1,=0. (105)

Given the vector of partial derivatives y of an arbitrary pixel z in the scene, there exists an optical flow u; such that
yTu; = 0. Thus the following multibody brightness constancy constraint must be satisfied by all the pixels in the
image

n

an(¥) = (uiy)(wiy) - (uiy) = [[(wTy) = aTv,(y) =0. (106)

i=1

19We generalize to the affine motion model in [23].
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The multibody brightness constancy constraint, gn(y), is a homogeneous polynomial of degree n on y. We denote
its vector of coefficients & € RM», where M, = (n + 1)(n + 2)/2, as the multibody optical flow associated with the
scene. Therefore, the segmentation of purely translational motion models from image intensities can be interpreted as
a GPCA problem with k = 2 and K’ = 3, i.e., the segmentation of planes in R3. The optical flows {u;}-; correspond
to the normals to the planes, and the image partial derivatives {7 5‘;1 are the data points. Therefore, we can use any
of the GPCA algorithms for hyperplanes (PFA or PDA) to determine the number of motion models n and the motion
models {w;};_, from the image derivatives {y7}\L,.

Figure 7 shows a frame of the flower garden and the corresponding image data projected onto the I, -I; plane
to facilitate visualization. We observe from 7(b) that the image partial derivatives lie approximately on three planes

passing through the origin. Notice that the image data is quite noisy and contains many outliers.

02p

ik A _
-02| g
> -04 -1
S e R e T e e e,
(a) A frame from the flower garden sequence (b) Image data projected onto the I,-I, plane

Figure 7: The flower garden sequence and its image derivatives projected onto the I.-I. plane.

Figure 8 shows segmentation results for frames 1, 11, 21 and 31 of the flower garden sequence. This results are
obtained by applying PFA (Algorithm 1) to the image data, followed by the EM algorithm for mixtures of subspaces
described in Section 7.2. The sequence is segmented into three groups: the tree, the houses and the grass.?’ Notice
that even though the purely translational motion model is fairly simplistic and clearly inappropriate for this sequence,
the GPCA algorithm gives a relatively good segmentation that can be easily improved with some post-processing that
incorporates spatial constraints. A better segmentation can also be obtained by using a richer motion model, such as
the affine motion model, as we study in [23].

We now apply GPCA to the segmentation of dynamic scenes with translucent motions. We consider a scene in
which a semi-transparent screen is moving horizontally in front of a hand that is moving vertically. In this case, there
is no notion of a connected group of pixels moving together. In fact, almost every pixel moves independently from
its neighbors, yet there are two groups of pixels moving together. Notice that any segmentation algorithm based on
computing either optical flow, or an affine model [25], or a motion profile [16], from a local neighborhood would fail,
since there is no local neighborhood containing a single motion model. Figure 9 shows the segmentation of the first
five frames of the sequence using GPCA followed by EM. The algorithm is able to segment out a reasonably good
outline of the moving hand. Notice that it is not possible to obtain the whole hand as a single group, because the hand
has no texture.

9.3 Segmentation of 2-D affine motions from feature points or optical flow

In this section, we consider the problem of segmenting a collection of 2-D affine motions from measurements of either
the optical flow at each pixel, or the position of a set of feature points in two frames of a video sequence, and show
that they are GPCA problems with K’ = 5 and k = 3.

9.3.1 2-D Motion segmentation from optical flow

Let {u; € P*}]L; be N measurements of the optical flow at the N pixels {z; € P?}!_,. We assume that the optical
flow field can be modeled as a collection of n 2-D affine motion models {A; € R3*3}2,. That is, for each optical

20We did not cluster pixels without texture, such as pixels in the sky, because the image derivatives are approximately zero for those pixels, i.e.,
y = 0., and hence they can be assigned to either of the three models.
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(b) Houses (c) Grass

Figure 8: Segmenting frames 1, 11, 21 and 31 of the the flower garden sequence using GPCA applied to the image
derivatives.

flow u; there exists an affine motion A; such that

a1 a1z Qg
uj = Aiz; = |agy ax a2 z;. (107)
0 0 1

In other words, the optical flow u = [u,v,1]7 at pixel & = [z, 22, 1] € P? is related to the affine motion parameters
ai1,@12,- .-, az3 by -

a1y + a2 + a1z —u 0 (108)
a21T1 + agexs +agz —v = 0. (109)

Equations (108) and (109) define a three-dimensional subspace of a five-dimensional space with coordinates
[z1,22,1,u,v]T € R®. The estimation of those subspaces from data points [z1, za, 1,u, v]T lying on those subspaces
is simply a GPCA problem withky = -+ =k, = k = 3and K = 5.

According to our discussion in Section 4.1, we can reduce this problem to a GPCA problem with k = 3 and K = 4
by first projecting the data onto a four-dimensional space. The particular structure of equations (108) and (109)
with normal vectors [a11, a2, a13,—1,0]7 and [az;, a2, a3,0, —1]7 suggests to project the data onto two four-
dimensional subspaces with coordinates [z1, z, z3,u]” and [z, 2, z3, v]T. Each one of these two projections allows
us to compute the first and second row of each affine motion model, respectively, by using any of the GPCA algorithms
for hyperplanes described in Section 3.

However, it could happen that, even though the affine motions {A;}}., are different from each other, a particular
row could be common to two or more affine motions. Therefore, in general we will obtain n; < n first rows and
nz < n second rows from each one of the two projections. Furthermore, even if ny = ns = n, we still do not know
which first and second rows correspond to the same affine motion model.

Fortunately, we can exploit the structure of the problem in order to find the affine motions {A;}2, from the

collection of first and second rows, {ay; € R%}?2, and {ax € R3}12,, respectively. To this end, let £; € RV and

i=1
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Figure 9: Segmenting a sequence with a hand moving behind a moving semi-transparent screen using GPCA applied
to the image derivatives.

£, € RY be vectors of labels giving the segmentation of the data according to each projection, i.e.,

6(j) = 1+ if i=arg _min laTx; —u;| j=1,...,N (110)
=1,..., n)
&) = ¢ if  i=ag _min |afz;—v;| j=1,...,N. (111)

Then the N rows of the matrix of labels [€; £] € RY*?2 will take on only n different values. Let the rows of
L = [£;;] € R™*? be the n different rows in [£; £2]. Then the affine motion models can be computed as

T
Qe
A= ag%z i=1,...,n (112)

€3

We therefore have the following algorithm (Algorithm 7) for segmenting a collection of 2-D affine motion models
from optical flow measurements.

9.3.2 2-D Motion segmentation from feature points

Let {.1:{ € P? 3'_v=1 and {:z:% € p? ?;1 be a collection of N feature points in two frames of a video sequence.
We assume that the motion of those features can be modeled as a collection of n 2-D affine motion models {A; €

R3*3}%_ . That is, for each feature pair (¢, ) there exist a 2-D affine motion A; such that

) ) 211 a1z a3 .
z) = Ajx] = |ag1 ass a3| x]. (113)
0 0 1

We notice that if we replace 2 = w in the above equations, then the problem of segmenting 2-D affine motion models
from feature points becomes identical to the problem of segmenting 2-D affine motion models from optical flow. We
can therefore use Algorithm 7 to estimate the collection of affine motion models from the given feature points.
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Algorithm 7 (Segmentation of 2-D affine motions from optical flow)

Given measurements of optical flow {w;}; atthe N pixels {z;}/_,, recover the number of affine motion models n,

the affine matrix A; associated with motion 4, and the segmentation of the image measurements as follows:

1. Affine motions. Estimate the number of affine motions and the affine matrices as follows:

(a) Apply a GPCA algorithm with k = 3 and K = 4 to the data {[z;,u;]7})_, to determine the number of
different first rows n; < 7 in the affine matrices {A;}]., and the n; different first rows {ay; € R3}11,.
Cluster the data into n; groups and define a vector of labels £; € R" such that £;(5) = 7 if point xT;
belongs to group .

(b) Repeat step 1(a) with data {[x;, v;]T }}_, to obtain n, < n different second rows {az; € R®}72, and the
corresponding vector of labels £5 € RYV.

(c) Extract the n different rows from the matrix of labels [£; £2] € RV *2 into the matrix £ = [£;;] € R™*2
and use them to compute the affine motions {A;} ; as in (112).

i=1

2. Segmentation of the image measurements. Assign image measurement ( ;, u;) to the affine motion A; that
minimizes |lu; — A;x;||2.

9.4 Segmentation of 3-D translational motions from feature points

In this section, we apply GPCA to the problem of segmenting the 3-D motion of multiple objects undergoing a purely
translational motion. We assume that the scene can be modeled as a mixture of purely translational motion models,?!
{Ti}iL,, where T; € R represents the translation of object i relative to the camera between the two consecutive
frames.

Given the images x; and x; of a point in object 7 in the first and second frame, respectively, the rays x, » and
T; are coplanar, as illustrated in Figure 10. Therefore z1, 2 and 7; must satisfy the well-known epipolar constraint
for linear motions

2T (T, x 21) = 0. (114)

Figure 10: Epipolar geometry: Two projections 1,22 € R? of a 3-D point p from two vantage points. The relative
Euclidean transformation between the two vantage points is given by T; € R®. The intersection of the line (01, 02)
with each image plane is the so-called epipole e;. The epipolar line £ is the intersection of the plane (p, 01, 02) with
the first image plane.

In the case of an uncalibrated camera, the epipolar constraint reads = (e; x x;) = 0, where e; € R is known as
the epipole and is linearly related to the translation vector T; € R®. Since the epipolar constraint can be conveniently
rewritten as

el (za x 1) =0, (115)

21'We generalize to the case of arbitrary rotation and translation in [24, 22], where we consider the problem of segmenting a mixture of funda-
mental matrices.
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motions.

where e; € R? represents the epipole associated with the i* motion, i = 1,...,n, if we define the vector £ =
(x2 x z;) € R? as a data point, then we have that el = 0. Therefore, given any image pair (1, 22) corresponding
~ toone of the n moving objects, the vector £ = x5 x 1, the so-called epipolar line, satisfies the following homogeneous
polynomial of degree n

an(€) = (e €)(e3) -~ (e]£) = fI(e.-T 8 =&"v,(e)=0. (116)

i=1

We denote the vector of coefficients & € RMn, where M,, = (n+1)(n+2)/2, as the multibody epipole. We conclude
that the segmentation of linearly moving objects can be interpreted as a GPCA problem with & = 2 and K = 3, where
the epipoles {e;}]_, correspond to the normal to the planes and the epipolar lines {£7} j-":l are the data points.

Therefore, given a set of images {(x], :c%)};.v:l of a collection of N points in 3D undergoing n distinct linear
motions ey, ..., e, € R3, one can use the set of epipolar lines £/ = :c% x o, where 7 = 1,..., N, to estimate the
number of motions n and the epipoles e; using the GPCA algorithms for hyperplanes (PFA or PDA).

Figure 11 shows the performance of recursive PDA on synthetic image data. We choose n = 2, 3, 4 collections of
N = 100n image pairs undergoing a purely translational motion. Zero-mean Gaussian noise from 0 to 1 pixel s.t.d.
is added to the image data for an image size of 500 x 500. We run 1000 trials for each noise level. For each trial the
error between the true (unit) epipoles {e;}7; and the estimates {&;}7., is computed as

1« .
error = ~ Z acos (€] &;) (degrees). 117

i=1

As expected, the performance deteriorates as the level of noise or the number of motion increases. The maximum
error is of 12° for n = 4 motions. Notice also that the percentage of correctly classified image pairs reduces as the
noise or the number of motions increases. The percentage of correct classification is always above 70%.

We now apply PFA and recursive PDA to a sequence with n = 2 linearly moving objects (a truck and a car) and
N =92 features (44 for the truck and 48 for the car), as shown in Figure 12 (a). When PFA is applied with an ordering
of (3, 1,2) for the coordinates of the data, then a perfect segmentation is obtained (Figure 12 (c)), and the error in the
translation estimates is 1.2° for the truck and 3.3° for the car. However, if an ordering of (1,2, 3) or (2, 3, 1) is chosen,
PFA gives a very poor segmentation of the data, as shown in Figures 12 (b) and (d), respectively. This shows that the
performance of PFA with noisy data depends on the choice of the ordering of the variables, because the polynomial
gn(2) is built from the last two coordinates only. On the other hand, if we apply PDA to the data we obtain a perfect
segmentation, regardless of the ordering of the coordinates, as shown in Figure 12 (e). The mean error of PDA is 5.9°
for the truck and 1.7° for the car.
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(b) PFA: (1,2,3) (c) PFA: (3,1,2) (d) PFA: (2,3,1) (e) PDA: any order

Figure 12: Segmenting 3-D translational motions using GPCA. Segmentation obtained by PFA and PDA using differ-
ent changes of coordinates.

- 9.5 Face clustering under varying illumination

Given a collection of unlabeled images {I; € R¥} ;“;1 of n different faces taken under varying illumination, we would
like to cluster the images corresponding to the same person. For a Lambertian object, it has been shown that the set
of all images taken under all lighting conditions forms a cone in the image space, which can be well approximated by
a low-dimensional subspace. Therefore, we can cluster the collection of images by estimating a basis for each one of
those subspaces, because the images of different faces will live in different subspaces.

Since in practice the number of pixels K is large compared with the dimension of the subspaces, we first ap-
ply PCA to project the images onto RX" with K’ << K. More specifically, we compute the SVD of the data
(1 12+ IN]jc v = USVT and consider a matrix X € RX"*N consisting of the first K’ columns of V. We obtain a

new set of data points in RX” from each one of the rows of X. We use homogeneous coordinates {z; € R¥ ’“};-";1

so that each subspace goes through the origin.* The new data set also lives in a collection of subspaces, because it is
the projection of the original set of subspaces onto a lower-dimensional linear space.
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Figure 13: Clustering a subset of the Yale Face Database B consisting of 64 frontal views under varying lighting
conditions for subjects 5, 8 and 10. Left: Image data projected onto the three principal components. Right: Clustering
of the images using PDA.

We consider a subset of the Yale Face Database B consisting of N = 64n frontal views of n = 3 faces (subjects
5, 8 and 10) under 64 varying lighting conditions. For computational efficiency, we downsampled each image to K =

22The homogeneous coordinates of a vector € RX are [27'1)T & RK'+1,

39



30 x 40 pixels. Then we projected the data onto the first K’ = 3 principal components, as shown in Figure 13 (left).
We applied GPCA to this data set in homogeneous coordinates (R*). We fitted n = 3 (k = 3)-dimensional subspaces
to the data using the recursive PDA algorithm. Given the subspace normals, we clustered the images by assigning each
image to its closest subspace. Figure 13 (right) shows the segmentation results.

10 Application of GPCA to identification of linear hybrid systems

Hybrid systems are mathematical models that can be used to describe continuous phenomena that exhibit discontinuous
behavior due to sudden changes of dynamics. For instance, the continuous trajectory of a bouncing ball results from the
alternation between free fall and elastic contact. However, hybrid dynamical models can also be used to approximate
a phenomenon that does not itself exhibit discontinuous behavior, by concatenating different models from a simple
class. For instance, a non-linear dynamical system can be approximated by switching among various linear dynamical
models.

A particular but important class of hybrid systems is obtained by assuming that the dynamics between discrete
events are linear. This class of systems is important not only because the analysis and design of lLinear control systems
is well understood, but also because many real processes can be approximated arbitrarily well by models in this class.

In this section, we look at the problem of modeling input/output by a piecewise linear (hybrid) dynamical models:
Given input/output data, we want to simultaneously estimate the number of underlying linear models, the parameters
of each model, the discrete state, and possibly the switching mechanism that governs the transitions from one linear
model to another.

For simplicity, we will concentrate on a class of discrete-time linear hybrid systems, known as piecewise autore-
gresive exogenous systems (PWARX). The evolution of a PWARX system is determined by a collection of n ARX
models {Z;}%.; of the form

Ve=o1y-1+ a2+ -+ Gn,Yt—n, + C1U-1 + U2 + -+ + Cn Utn, (118)

where {u;,t = 1,2,...} is the input, {y,t = 1,2,...} is the output, and {a;};2, and {c;}}=, are the model
parameters. The ARX models are connected by switches indexed by a number of discrete states \; € {1,2,...,n}.
The evolution of the discrete state A, can be described in a variety of ways. In this section, we will restrict ourselves
to the class of Jump-linear systems (JLS), in which ) is a deterministic but unknown input that is piecewise constant
and finite-valued.

We consider the following identification problem:

Problem 3 (Identification of PWARX models)

Given input/output data {u;,y,}7_, generated by a PWARX model with known dimensions ng and n,, estimate the
number of discrete states n, the model parameters {a;}7.%;, {ci}]:, and the discrete state {\;}7_;.

We now show that Problem 3 is simply a GPCA problem with K = n, + n. + 1 and k& = n, + n,, i.e., clustering
of hyperplanes in RX.
We start by noticing that if we let

Et = (Utmngs - ) U1y Ytomgs -+ - Yem1, —Ye) | € RPoFnetl (119)
b=(ca., "+ ,€1,0n,...01,1)T € RPetnetl (120)

then we can write equation (118) as
bTz, =0 t>n, (121)

which is simply the equation of a hyperplane in R¥, where K = n, + n. + 1. This implies that the input/output
data generated by a single ARX models lives in a hyperplane whose normal vector b encodes the parameters of the
ARX model. Therefore if we are given a PWARX model generated with ARX models {Z;}%_,, then we can represent
the PWARX model as a collection of hyperplanes with normal vectors {b;}7, encoding the model parameters. Fur-
thermore, the input/output data generated by the PWARX model must live in the union of all the hyperplanes UL, Si,
where S; = {z : b7z = 0}. In fact, when ), switches from A, = i to At4+1 = J, the input/output data jumps from
hyperplane S; to hyperplane Sj.

Notice also that if we are given input/output (dynamic) data {u., 3 }7_, generated by a PWARX model, then we
can always generate a new set of (static) data points {a:,}'{me. Therefore, according to our analysis in Section 3, if
T —ng+1 2 M,(K) — 1, and the evolution of the discrete state is such that the the discrete modei = 1,...,nis
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Figure 14: Mean error over 1000 trials for the identification of the model parameters (top) and the discrete state
(bottom) as a function of the standard deviation of the measurement error o.

visited at least k = n, +n, times in the time interval 1 < ¢ < T', then one can estimate the number of discrete states n
and the model parameters {;}7.., uniquely using either the polynomial factorization or the polynomial differentiation
algorithms. Then, given the model parameters, one can determine the discrete state as

At=argi=x{1§§n(b?w,)2 for t>n. 122)

We present simulation results on the identification of PWARX systems with n = 3 discrete states. Each ARX
model has dimensions n, = 2 and n, = 1 and is corrupted with i.i.d. zero-mean Gaussian noise w, with standard
deviation o as

¥t = a1(At)ye—1 + az(Ae)ye—2 + c1(Ae)ue—1 + wy. (123)

For each trial, the model parameters (a,, a2) for each discrete state are randomly chosen so that the poles of each linear
system are uniformly distributed on the annulus 0.8 < ||z|| < 1 € C. The model parameter ¢, for each discrete state
is chosen according to a zero-mean unit variance Gaussian distribution. The value of the discrete state was chosen as

1 1<tL30
A=4(2 31<t<60 (124)
3 61<t<100

The input sequence {u,} was drawn from a zero-mean unit variance Gaussian distribution. The noise w, was drawn
from a zero-mean Gaussian noise with standard deviation o € [0, 0.01], which simulate a measurement error of about
1%. Figure 14 shows the mean error on the estimation of the model parameters? and the discrete state, respectively,
as a function of 0. Both the model parameters and the continuous state are correctly estimated with an error that
increases approximately linearly with the amount of noise. Notice that the discrete state is incorrectly estimated
approximately 8% of the times for o = 0.01. Notice also that there is no error for ¢ = 0. Figure 15 shows the
reconstruction of the discrete trajectory for a particular trial with ¢ = 0.01. Notice that there are 5 time instances in
which the estimates of the discrete state are incorrect.

11 Conclusions and open issues

We have proposed a novel approach to the identification of mixtures of subspaces, the so-called Generalized Principal
Component Analysis (GPCA) problem.

23The emvor between the estimated model parameters (a1, &2, &) and the true model parameters (a1, a2, ¢1 ) was computed as (81, 82,é1) —
(a1,a2,c1)]], averaged over the number of models and trials.

%AThe error between the estimated discrete state A and the true discrete state A¢ was computed as the number of times in which A; # A,
averaged over the number of trials.
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Figure 15: Evolution of the estimated discrete state ;.

In the absence of noise, we casted GPCA in an algebraic geometric framework in which the collection of subspaces
is represented by a set of homogeneous polynomials whose degree n corresponds to the number of subspaces and
whose factors (roots) encode the subspace parameters. In the case of n subspaces of equal dimension k, we derived
rank constraints on the data from which one can estimate the number of subspaces n and their dimension k. We
then proposed two algorithms for estimating the subspaces from sample data. The polynomial factorization algorithm
(PFA) is designed for subspaces of co-dimension one, i.e., hyperplanes, and obtains a basis for each hyperplane from
the roots of a polynomial of degree » in one variable and from the solution of a collection of linear systems in n
variables. The polynomial differentiation algorithm (PDA) is designed for subspaces of arbitrary dimensions and
obtains a basis for each subspace by evaluating the derivatives of the set of polynomials representing the subspaces at
a collection of n points in each one of the subspaces. The points are chosen automatically from points in the dataset
that minimize a certain distance function.

In the presence of noise, we casted GPCA as a constrained nonlinear least squares problem which minimizes the
error between the noisy points and their projections subject to all mixture constraints. By converting this constrained
problem into an unconstrained one, we obtained an optimal function from which the subspaces can be recovered using
standard non-linear optimization techniques.

We applied GPCA to a variety of estimation problems in which the data comes simultaneously from multiple
(approximately) linear models. We first presented experiments on low-dimensional data showing that the polynomial
differentiation algorithm gives about half of the error of the polynomial factorization algorithm. We also showed
that the polynomial differentiation algorithm improves the performance of iterative techniques, such as K-subspace
and EM, by about 50% with respect to random initialization. We then presented various applications of GPCA on
computer vision problems such as vanishing point detection, 2-D and 3-D motion segmentation, and face clustering
under varying illumination.

Open issues include a detailed analysis of the robustness of all the GPCA algorithms in the presence of noisy
data. At present, the GPCA algorithms work well when the number and dimension of the subspaces is small, but the
performance deteriorates as the number of subspaces increases. This is because all the algorithms start by estimating
a collection of polynomials in a linear fashion, thus neglecting the nonlinear constraints among the coefficients of
those polynomials, the so-called Brill’s equations. Another open issue has to do with the estimation of the number
of subspaces n and their dimensions {k;}%.,. In the case of hyperplanes and/or subspaces of equal dimension k, we
derived formulas for estimating n and k in the absence of noise. However, the formulas are based on rank constraints
that are hard to verify in the presence of noise. In order to estimate n and k in a robust fashion, one could for example
combine our rank constraints with model selection techniques, similarly to [13). Furthermore, in the case of subspaces
of arbitrary dimensions, the estimation of the number of subspaces is still an open question. In fact, as mentioned in
Remark 19, it is possible to underestimate the number of subspaces even in the noise free case. Finally, throughout the
paper we hinted connections of GPCA with Kemel Methods, e.g., the Veronese map gives an embedding that satisfies
the modeling assumptions of KPCA (see Remark 5), and with spectral clustering techniques, e.g., the polynomial
differentiation algorithm allowed us to define a similarity matrix in Remark 21. Further exploring these connections
and others will be the subject of future research.
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