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ABSTRACT
High Throughput VLSI Architectures for Iterative Decoders
by
Engling Yeo

Doctor of Philosophy in Engineering — Electrical Engineering and Computer Sciences
University of California, Berkeley
Professor Borivoje Nikoli¢, Chair

This project addresses the algorithms for and impleinentations of iterative
decoders for error control in communication applications. The iterative codes are based
on various concatenated schemes of convolutional codes, and low-density parity check
(LDPC) codes. The decoding algorithms are instances of message passing or belief
propagation algorithms, which rely on the iterative cooperation between soft-decoding
“modules known as soft-input-soft-output (SISO) decoders.

Tterative decoding is a recent advance in communication theory that is applicable
to wireless, wireline, and optical communications systems. It promises significant
advantage in bit error rate performance at signal to noise ratios very close to the
theoretical capacity bound. However, a direct mapping of the decoding algorithms leads
to a multifold increase in the implementation complexity. As deep submicron technology
matures, there is a possibility of implementing these applications that were once thought
to be too complex to fit onto a single silicon die. We investigate the architectural and
implementation issues related to building iterative decoders in VLSI.

In this research, the computational hardware and memory requirements of
magnetic storage applications provide a platform for evaluation of iterative decoders.
The accomplishments include modifications of algorithms, their simulation, efficient

mapping into architectures, and VLSI implementations provide the final measure of



complexity in terms of power, size, and speed. The VLSI implementations of iterative
decoders based on concatenated convolutional codes or LDPC codes will demonstrate
the effectiveness of various methods for reduced-complexity decoding and reduced
control logic. Besides storage applications, these research results are applicable to

wireless, wireline and optical communications systems.
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Dissertation Committee Chair
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1. INTRODUCTION

1.1. Motivation

The development of the communications industry is characterized by exponential
growth in volume of data and throughput rates. These growths are accompanied by
reduced signal-to-noise ratios at which data is detected. In order to maintain the signal
integrity, the level of sophistication in error correction methods is required to keep pace
with the communication applications. Modern communication systems employ various
forms of redundancies to achieve resilience against interference and noise arising out of a
multitude of sources.

The complexity of integrated circuits for signal processing has historically tracked
the progress in silicon process technology. Each new silicon process generation has
allowed integration of increasingly more complex signal processing schemes into a chip,
constrained by cost and power requirements. For example, detectors used in disk-drive
read channel integrated circuits have moved from 8-state conventional Viterbi decoders,
common in 0.35um technoiogy, to current, state of the art 0.13um detectors that
incorporate 32-state noise-predictive decoders. Despite an exponential growth in
implementation complexity, there is diminishing marginal improvement in bit error rate
(BER) performance. The situation is thus ripe for revolutionary changes to the coding
and signal processing techniques to éhallenge currently prevalent classes of error-

correction algorithms.

Recently, a new class of error correcting codes has demonstrated performance
within 0.5dB of the theoretical limits. These codes comprise two or more concatenated
block codes with corresponding decoders that iteratively exchange messages reflecting
the confidence of each decoded bit. The messages are based on a probability measure
rather than the decisions of the decoded bits. Known as the ‘soft’ information’, the value
of this measure is repeatedly accessed and refined over the several iterations of decoding.
This approach to decoding represents a departure from traditional error-correction
algorithms. These methods are collectively known as iterative decoding.



Although various forms of iterative decoding have existed for four decades, the
discovery of turbo codes [11] and methods for their decoding in 1993 were largely
acknowledged to be the raison d'étre for the current surge in iterative decoding research
and development, both in academia and industry. A large number of publications have
appeared in the areas of code design and ultimate code performance, but somewhat less
attention has been paid to decoding architectures, implementation and system issues. As
the communication industry begins to explore the deployment of iterative codes that
operate at the capacity of a given channel, a detailed understanding of the physical
requirements is necessary to provide an unbiased evaluation. Comparison between BER
performance and implementation complexities are indispensable, but will require

detailed analysis of the intrinsic requirements for implementation of iterative decoders.

1.2. Objective

Effective error correction can reduce the signal-to-noise ratio (SNR) requirement
for an end-to-end reliable communication. Lower SNR requirements in a communication
system result in a variety of implementation advantages. Each 3dB of coding gain is
capable of doubling the system throughput or transmission range, or reducing the
required bandwidth by %. To an end-user, these benefits can translate into extended
battery life in portable wireless devices by lowering transmit power, improved range in
high throughput wireline systems such as very high speed digital subscriber lines
(VDSL), or increased storage densities on magnetic media.

With this in mind, there is a necessity to explore implementation issues of
iterative decoders based on turbo codes or low-density parity check codes [56] for future
generation of communication systems. The realization of an iterative decoder will weigh
the tradeoffs between coding gain performancé and factors affecting the implementation:
namely, power, throughput and area. A number of platforms are evaluated for their
suitability towards realization of the decoder requirements. In particular, the focus will
be on viable high-performance ASIC architectures.

The introduction of any new error-correction scheme on silicon must preserve the

manufacturability and testability of today’s digital systems. Although initial iterative
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decoders [111], [120] were based on analog signal processing, these early
implementations are sensitive to process and temperature variations, and are difficult to
test in production. On the other hand, successful digital implementations, being less
susceptible to these adverse effects, will quickly displace the analog predecessors.
Hence, the analysis of iterative decoder architectures will be centered on digital
implementations.

Iterative decoders are based on block codes, and both encoding and decoding are
processed in the context of a block of data. Depending on the application, the number of
bits in each block ranges between a few hundred (wireless) to a few thousand (magnetic
storage). The soft information exchanged between decoders is typically stored as a three
to five-bit fixed-point number. In general, large block sizes and multiple-bit messages
combine to form a memory requirement that is an order of magnitude larger than a
comparable Viterbi decoder.

The necessity to perform multiple decoding iterations implies that the complexity
of the overall decoder is several times larger than traditional decoders. In order to keep
the area of implementation and power consumption within pracﬁcal. limits, reduced-
complexity methods for the implementation of these decoders will be proposed. In
addition, complexity reduction methods are often advantageous towards improving the
throughput of the decoders. The analysis explores the tradeoffs between throughput, area
and power of implementation, as well as the effects on BER performance of the
decoders. '

This work demonstrates the effectiveness of the proposed iterative decoder
architectures on field-programmable gate arrays (FPGA) and application-specific
integrated circuits (ASIC). An FPGA implementation will offer flexibility in code design
and effective emulation of iterative decoding algorithms with fixed-point representations.
The simulation or run time of an FPGA is expected to be at least an order of magnitude
faster than the use of microprocessor-based programs. ASIC implementations offer the
best balance between performance, power, and area of implementation. Using the latest
process technology, iterative decoding at throughput rates between 500Mb/s and 1Gb/s

will be shown.



1.3. Scope of work

This research is aimed at combining the knowledge of iterative decoders at both
algorithmic and architectural levels. The results will be presented in three different
facets: architectural analysis of decoder structures, code construction exploration with
emphasis on hardware implications, and physical demonstration of decoder
implementations.

Architectural analysis will permit the realization of iterative decoding hardware
with reduced complexities. Effective architectural modifications provide the most
impact on the operating performance of the final decoder implementations. The types of
structures studied include high throughput decoders applying the Maximum A-Posteriori
(MAP) [45] algorithm or the soft-output Viterbi algorithm (SOVA) [38]. These decoders
form the building blocks of a turbo decoder. The throughput bottleneck is identified to
be the one-step recursion known as the Add-Compare-Select (ACS). This is followed by
an evaluation of several competing micro architectures, which demonstrates the optimal
range of decoding frequencies that are associated with each option. The architectural
evaluations will also include comparisons between serial and parallel structures. The
issues and difficulties related to implementation of a parallel or serial architecture are
particularly significant to the realization of an LDPC decoder. The decoding algorithm
of the LDPC decoder has inherent parallelism, which promotes the implementation of a
fully-parallel decoder capable of high-throughput with a low clock rate and low power
consumption. In practice, the interconnect properties of LDPC codes exacerbates the
exploitation of this parallelism. Alternate architectures, including fully and partially
serial LDPC decoders are therefore examined.

The exploration of new code construction techniques will produce LDPC codes
that can be efficiently implemented with reasonable amounts of parallel hardware.
These new codes combine properties that enhance the feasibility of the decoder
implementation, as well as good error-correction performance. Reduced complexity
algorithms are also proposed to replace the standard message-passing algorithm that is
commonly used with LDPC codes.



The results will be demonstrated on FPGAs and ASICs. The proposed
architectures are mapped onto Xilinx Virtex-E FPGAs, and successful implementations
of SOVA and LDPC decoders are achieved in 0.18um and 0.13pum CMOS technologies,
respectively. The physical ASIC design includes logical synthesis and back-end
placement, routing, and final verification steps. The silicon chips are fabricated and
tested on custom-designed digital test-boards.

The magnetic recording channel is used as a demonstration platform. Current
trends in magnetic recording demand throughput rates near 1Gb/s. Magnetic read
channels typically employ partial response signaling, which influences the choice of
iterative decoders. As previously alluded, developments in the magnetic storage industry
are centered about improving the storage density. Increased linear densities on magnetic
media lead to degraded SNR. However reliability with very low BER must be

maintained by the error correction mechanisms.

1.4. Development work in error correction codes

During the period from the 1950’s to 1993, the development of code construction
techniques has largely obtained incremental results in terms of coding gain performance.
The historical milestones achieved by various rate-1/2 codes can illustrate this. In
1960’s, a Bose-Chaudhuri-Hocquenghem (BCH) code, [113-114], demonstrated BER
less than 10 with a SNR that is 5.4dB away from the theoretical limit. With the rise in
popularity of the Viterbi decoder [3], these codes were replaced with convolutional codes
in the 70’s, which achieved similar performance at 4.5dB. By the late 80’s, the
combination of convolutional codes with Reed-Solomon decoding in magnetic recording
applications provided less than 10" BER at 3.9dB from the theoretical limit. Table 1-1
shows that the BER performance has progressed at a rate of less than 1dB per decade
between 1960 and 1990.

In 1993, turbo codes demonstrated the ability to achieve 10°BER at only 0.7dB
away from the theoretical limit. The impact was revolutionary. Not only has BER
performance jumped by 3dB, it has also proven that the theoretical limit of a



transmission channel, based on the communication principles pioneered by Shannon in
1948 [97], was within reach of less than 1dB.

The birth of turbo codes renewed interests in the class of low-density parity check
(LDPC) codes. These codes were first proposed in 1962 [56], but were largely ignored
because the size of the code, in tens of thousands bits, made it intractable for practical
applications. The advent of faster microprocessors in the late 90s paved the way to more
effective design and evaluation of both turbo codes and LDPC codes.

In the decade that followed the introduction of turbo codes, iterative decoding has
been a subject of continual interest in the communications community. This is evident in
the number of new communication standards that have been specified of late. Table 1-2
lists some recent communication standards that have adopted iterative decoding for
forward error correction. In addition, iterative decoding is also currently being
considered for high performance storage applications that require above 1Gb/s

throughput, as well as 10Gb/s optical communications.

TABLE 1-1.
HISTORY OF RATE ¥2 CODES

SNR required for
Year Rate Y2 code 5

10” BER
1948 Shannon Lirmnit 0dB
1967 (255,123) BCH 5.4dB
1977 Convolutional Code 4.5dB
1990 Convolutional + Reed-Solomon Codes : 3.9dB
1993 Iterative Turbo Code ' 0.7dB

2001 Iterative LDPC Code 0.00245dB
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Figure 1-1. Turbo (a) encoder and (b) decoder consisting of serial concatenation of a
convolution code with EPR4 channel.

TABLE 1-2
STANDARD SPECIFICATIONS FOR TURBO DECODING
Standard  Application Iterative Code Throughput
DVB-RCS Digital Video Broadcast  Parallel conc. of 8-state conv. codes 68Mb/s (rate 7/8)
DVB-S2 Digital Video Broadcast LDPC (block size = 64800 bits) 165Mb/s (rates 1/2,
2/3, 3/4, 4/5, 5/6, 118,
8/9, 9/10)
IEEE 802.16  Wireless Networking Turbo product codes 25Mb/s (rate 5/6)
(MAN)
3GPP Wireless Cellular Parallel conc. of 8-state conv. codes 2Mb/s (rate 1/3)
UMTS
CCSDS Space Telemetry Parallel conc. of 16-state conv. codes 384kb/s (rate 1/2)




Turbo codes are formed using two or more component convolutional encoders,
arranged either in a parallel or serial concatenation, and separated by interleaver§. The
interleavers construct a long code from short memory convolutional codes. Decoding
relies on the iterative passing of posterior-probabilities between two or more soft-input-
soft-output (SISO) decoders separated by interleavers and de-interleavers. An example
of a serially concatenated turbo code is shown in Figure 1-1. The interleaver and
deinterleaver are shown as 7 and 7"’ respectively.

One other class of codes that will be analyzed in detail are LDPC codes. These
codes are constructed from bipartite graphs consisting of variable nodes and constraint
nodes. Each variable node represents a bit, while each constraint node represents a parity
checksum of the subset of variable nodes adjacent to it. A sequence of bits that satisfy all
the parity constraints is a valid codeword. The iterative decoding of LDPC codes
computes messages corresponding alternatively to the variable nodes and the constraint
nodes, and passes these messages along edges defined by the underlying graph.

The bipartite graph of an LDPC decoder defines the network for messages to be
passed between a large number of nodes. Similar to the interleaver, a direct mapping of
the network using hard-wired routes leads to congestion in the interconnect. The
congestion can be circumvented through the use of memory. However, unlike the
interleavers used in turbo codes, which have a one-to-one connectivity, LDPC graphs
have at least a few edges emanating from each variable node. The number of edges is
several times larger than that in an interleaver network, and results in higher cost of

memory requirement and placing the memory access in the critical path of the decoder.



100000
-5
1/21LDPC, N=10, 1100 iterations for BER of 10
o 10000 1 iS/9 Capacity Bound
E 23 Oapacit§ Bound
B 1000 1
S 1/2Capacity Bound 2/3 Turbo, v=4, N=64k 1,2, and 3 iterations
o 8/9 Turbo, v=4, N=4k
>
.‘3 lm N
2 : 2/3 Conv. Code,
1/28Turbo, v=4,N=64k 1/2Conv. Code,  v=4, N=64k
10 1i1,2 and3iterations ., _ v=4, N=gdk '
8/9 LDPC, N=4k - 8/9 Conv. Code,
1,3,and5 meraﬁons "“«\ v=3, N=4k
1 L} L} L) "‘"; L] T .
0 2 4 6 8 10 12
SNR (db)

Figure 1-2. Complexity comparisons between various coding schemes.

Although interests have flourished in the development of iterative decoding
techniques based on turbo or low-density parity-check codes, difficulties persists at
incorporating iterative decoding systems into commercial products. Figure 1-2 shows the
relative computational complexity and memory requirement comparisons between
conventional convolutional codes and the iterative codes, based on the number of
additions required. The plotted values are obtained through 64 iterations of decoding.
Both turbo and low-density parity check dec;)ders require soft-input-soft-output decoders,
which are about 3 to 5 times the complexity of a convolutional decoder. Additionally,
the iterative nature of the decoding leads to overall complexities that are at least an order
greater than that of existing convolﬁtional decoders.

The choice of platforms for the implementation of iterative decoding is dictated
primarily by the performance constraints such as throughput, power, area, and latency, as
well as two often understated and intangible considerations: flexibility and scalability.

Flexibility of a platform represents the ease with which an implementation can be
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updated for changes in the target specification. Scalability captures the ease of using the
same platform for extensions of the applic;ation that may require higher throughputs,
increased code block sizes, higher edge degrees for low density parity check codes, or
increased number of states in the constituent convolutional code of the turbo system.

General-purpose microprocessors and digital signal processors (DSPs) have a
limited number of single-instruction-per-cycle execution units but provide the most
flexibility. These platforms naturally implement the serial architecture for iterative
decoding. Microprocessors and DSPs are used as tools by the majority of researchers in
this field to design, simulate, and perform comparative analysis of iterative codes.
Performing simulations with BER below 10, however, is a lengthy process on such
platforms. Recently, there has been increased momentum in the use of DSPs in wireless
devices built to standards specified by the third generation partnership program (3GPP).
These specifications require turbo decoding at throughputs up to 2Mb/s, which is an
order of magnitude faster than rates that are typically achievable by a handful of
execution units. The advanced DSPs include a “turbo coprocessor” [118], which is
essentially an ASIC accelerator with limited programmability.

FPGAs offer more opportunities for parallelism with. reduced flexibility.
However, fully parallel decoders face mismatch between the routing requirements of the
programmable interconnect fabric and edges in a factor graph. FPGAs are intended for
datapath intensive designs, and thus have an interconnect grid optimized for local
routing. The disorganized nature of an LDPC or interleaver graph, for instance, requires
global and significantly longer routing. Existing implementations of iterative decoders
on FPGA continue to circumvent this problem by using time-shared hardware and
memories in place of interconnect.

Custom ASIC is well suited for direct mapped architectures, offering even higher
performance with further reduction in flexibility. An LDPC decoder [1] implemented in
0.16um CMOS technology achieves a 1Gb/s throughput by fully exploiting the
pérallelism in the LDPC decoding algorithm. The logic density of this implementation is
limited to only 50% to accommodate a large on-chip interconnect. In addition, the
parallel architecture is not easily scalable to codes with larger blog:k sizes. For decoding

10



within 0.1dB of the capacity bound, block sizes with tens of thousands of bits are

required [93]. With at least 10 times more interconnect wires, a parallel implementation

will face imminent routing congestion, and may exceed viable chip areas.

Current ASIC implementations of turbo decoders [98] are serial, targeting

wireless applications.

Decoding throughput is 2Mb/s with 10 iterations of the two

constituent convolutional decoders. A high throughput ASIC turbo decoder, limited by

the interleaver memory access, should be able to decode at throughputs over 500Mb/s.

Table 1-3 provides a summary of related implementations on different computational

platforms.
Table 1-3
SUMMARY OF PLATFORMS FOR ITERATIVE DECODERS
Platform Architecture  Example Implementation difficulty
implementations
Microprocessor/  Serial 133kb/s rate-¥4 LDPC Limited number of processing units
DSP decoder on DSP [110] (ALU)
FPGA Parallel None Mismatch of interconnect
requirements and capabilities
FPGA Serial 56Mb/s rate-Y2 LDPC Control for memory access
decoder [109]
6.5Mb/s  8-state MAP
decoder [108] (3 windows)
Custom ASIC Parallel 1Gb/s rate-¥%2 LDPC decoder Routing congestion; Not scalable
[1] 1024-bit code block
Custom ASIC Serial 2Mb/s 8-state MAP decoder Interleaver addresses computed on
[33] the fly. Implementation was
optimized for low power. 500Mb/s
high throughput MAP decoder is
theoretically feasible.
Custom ASIC Parallel Analog MAP decoder in Interleavers not included.
(Analog) BiCMOS technology [111]

Sensitive to process and temperature
variations.  Difficult to test in
production. Not scalable with
improvements in process technology
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L.5. Related Work

Currently, a handful of research implementations of the Maximum A-Posteriori
decoder (used in turbo decoders) [33], [89], [98], soft-output Viterbi decoders [14], [16],
and LDPC decoders [31], [96] are available. = The industry [1], [113], [114] has also
been active in the development of iterative decoders. In general, these efforts are
targeted towards wireless applications. Low rate codes such as rate-1/2, or 2/3 codes, are
considered, and the decoders have throughput requirements in the order of a few Mb/s
and stringent power constraints. In addition, higher throughputs in the neighborhood of
Gb/s have been achieved using analog methods [111] [120]. Although these efforts
differ from the objective of this work (high-throughput digital implementations with high
code rates), they provide valuable data points for comparison of the various architectures.

To date, most efforts in implementations of iterative decoders pay little attention
to the construction of the code. Conversely, notable results from [87], [88], and [93]
have demonstrated very successful methods for code construction techniques, but with
little considerations towards the implementation issues of the decoders. The
discontinuity between code construction and decoder implementations often leads to
conflicts between the requirements of high performance error-correction codes and the
practical constraints that limit the realizations of the decoders. This research is a
deliberate departure from the above methodology by considering both code construction
and its implications on the decoder architectures. We combine properties that lead to
good performing codes with structural designs that permit the practical implementation
of the decoders. In this light, the approach has similar objectives with ongoing efforts in
LDPC implementations by Mansour and Shanbhag [96], though the detailed approaches
are tangential with respect to one another.

Iterative decoding has been considered for use in magnetic recording [37], [66],
[68] [69] applications. The codes considered have high code rates (e.g. 8/9, 16/17), and
decoder throughput requirements are above 500Mb/s. The prevalent use of a partial
response signaling has driven the use of the transmission channel as a rate-1
convolutional encoder. The next chapter will provide details of such a channel model.

The partial response channel is described and evaluated for its suitability towards
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different types of iterative codes. A number of current channel detection methods are

also introduced.
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2. TRANSMISSION CHANNELS AND CODING

This chapter defines characteristics of a binary communication channel that will
be used as a demonstration platform for the proposed iterative decoder architectures. The
properties of the channel model are motivated by requirements from magnetic storage
application. ~ Conventional magnetic hard disk channels employ partial response
maximum likelihood detection methods. As areal recording densities rise towards
100Gb/inch®> and beyond, the detection will be required to operate at lower SNRs.
Perfect channel equalization, which used to be the basis of forward error correction,
becomes increasingly difficult to achieve. Hence there is a requirement for advanced
signal processing that will be able to maintain the integrity of the system.

Iterative decoding techniques based on turbo or low-density parity-check codes
promise substantial gains in SNR performance. The main difficulties in incorporating
iterative decoding systems in existing commercial products are the complexity of the
decoder, its size, and implementation of timing recovery, as well as possible byte-error
propagation. The successful implementation of these systems will allow the use of
iterative decoders in magnetic disk drive read channels with data throughputs that
significantly outperform . that of current commercial systems, while maintaining
manufacturability and testability.

As a vehicle for the performance analysis, a common channel model is described
in the following sections. The sector size comprises 4096 user bits, which is a
representative block size for most iterative decoding applications such as high-speed

wireline and optical communications.
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2.1. Channel capacity
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Figure 2-1. Generic representation of communication systems

The classical communication system can be categorized into a number of broad
areas depicted in Figure 2-1. The user bits, u, are encoded through a pre-determined
coding scheme. The output, x, is passed through the modulator and demodulator, which
perform physical transmission of the encoded information through a non-ideal channel,
" which introduces noise, attenuation, phase delay and other detrimental effects. Forward
error correction commonly assumes additive white Gaussian noise. This affects the
design of the demodulator, which usually includes a channel detector and equalizer.

In 1948, Shannon introduced the general theory of coding. The objectives are
two-fold. First, the number of bits required for representation of a given sequence of user
bits is minimized (source coding). Secondly, the transfer rate achievable with error-free
transmission is maximized (channel coding). The following discussion is restricted to
discrete-time systems with discrete-inputs and continuous outputs. This model is
relevant for the majority of digital communication systems in which the encoders operate
on binary inputs, while the decoders are subject to thermal noise from the channel.

Source coding is based on a statistical model of a generator for the user bits, u.
Assuming the simplified special case that these input samples are drawn from a random

process Uj with independent and identically distributed (i.i.d) samples, the average
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number of bits required to represent each user bit without distortion is given by the
entropy of U, defined in 2.1, with £ as the alphabet space of U. Sampling ;he source is
at r repetitions per second, the rate of the source, R, is given by 2.2. The theorem then

states the source can be encoded into a bit stream with minimum bit rate of R.

H{U)=- %P(Uk =u)log, p(U, =u) (2.1)
uelly
R=rH({U) (22)

Likewise, the output of the communication system shown in Figure 2-1 can be
considered as a random process U ¢+ The concept of channel coding defines the capacity
per symbol, Cs, of a channel to be the maximum mutual information, 1, between the input

‘random variable U and the output random variable U .

IvD0)=HE)-HU10) (2.3)
c, =p1(13g)1(vﬂ) (24)

Transmitting at a rate of s symbols per second, the capacity of the channel, C, is

given by
(25)

The source coding and channel coding theorems can be combined to form a
general channel capacity theorem. Given a source with rate R, and a channel with
capacity C, there exist encoders that will ensure asymptotically error-free transmission if
R<C

From an implementation perspective, it is often more useful to define the capacity
of a channel in terms of the available SNR. For example, the capacity of a band-
unlimited channel for binary transmission is defined in 2.6 as a function of the signal

power, P, and noise variance, N. A plot of the relationship is shown in Figure 2-2.

R< C=Y%logx(1+P/N) - (2.6)
16



Minimum R vs SNR

9 T L] L T ¥
1 1 1 ] 1 ] t ] I}
' ' ' 1 1 1 1 1 |
1 i I ] ] ] ] ' ]
8r---- TTTTTATTT i i FTTTTY T T F o
| | ! ' ' ' 1 '
' 1 t ! ' ' 1 0 |
] ] 1
O B e e e e
1 ' 1 | 1 1 1
P I U S SN SR S N O i I S
) 1 ' ' 1 ' |
3 I | ) I | ! |
T R e e e e S R
) 1 ' ) ' 1 ) 1
2 I : ) I ' ) |
S4r---- R AR ol S . C
@ 1 ' ] [ 1 1 '
S IS TR SO S S NN NS SR b
1 1 1 ' 1 ) |
: I . ! i ) I
k-4 = __-L-_--_:_-..--..-___I_ __________ : _____ |
: ' ' | | | | , I
1 1 i 1 1 1 | ' |
o G S S SO SO SO SR S S
1 1 ) ' 1 1 | ' I
| 1 ' ) ) 1 | ' |
0 N RS S S S S S S
0 5 10 15 20 25 30 35 40 45 50

SNR (db)

Figure 2-2. Plot of relationship between minimum rate of code and available SNR for a
band-limited binary transmission.

2.2. Partial response channel

Magnetic read channel systems make use of non-return-to-zero invert (NRZI)
modulation. Each binary bit is stored by magnetizing the medium with one of two
possible magnetic field directions. The read head contains a ferromagnetic material that
hovers less than 20um above the rotating medium. Changes in magnetic fields induce in
a pulse. A positive pulse corresponds to a 0—1 transition and vice-versa. The isolated
pulse shown in Figure 2-3 is modeled as a Lorentzian, with the 50% pdse-widﬁ, PWso,
defined as the interval over which the height of the pulse is greater or equal than 50% of
its maximum value. As data rates increase, consecutive analog pulses may be overlapped
due to the smoothening effect of the bandwidth limitations in the receiver. This

phenomenon causes simple peak detection techniques to fail.
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Figure 2-3. Various types of partial response channels.

Partial response systems equalize the isolated pulse to preset response targets
shown in Figure 2-3. The sampled sequence of an isolated pulse in a partial response
class 4 (PR4) system is [0 1 1 0]. Likewise, an enhanced partial response class 4 (EPR4)
system is sampled as [0 1 2 1 0], and a double-enhanced partial response class 4 (E*PR4)
" system, as [0 13 10].

These partial response systems correspond to convolutional codes with different
equivalent polynomials. The impulse response of the channel is given by the
superimposition of a pair of positive and negative pulses, separated by a sampling period.
Figure 2-4 and Figure 2-5 illustrate such behavior and provide the equivalent code
polynomials for the two example partial response channels.
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Stored bits: 000 1 000
Magneticfield: —» =& = « 5 5 >

Generated pulses:

Sampled sequence: 0 0 1 0 -1 0 0 0 O
Polynomial: 1 -D?=(1+D)(1-D)

Figure 2-4. Impulse response for a PR4 system.

Stored bits: 0 0010O0O0
Magnetic field: — — =2 «—> — =
2

Generated pulses:

Sampledsequence: 0 1 1 -1 -1 0 O...
Polynomial: 1+D-D?-D?=(1-D)(1+D)’

Figure 2-5. Impulse response for an EPR4 system.
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2.3. Partial response maximum likelihood (PRML) systems
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Figure 2-6. Rate 2 convolutional encoder; code polynomial is (1, W)'

Since the 1990’s 'Partial Response Maximum Likelihood' (PRML) detectors have
been the choice detectors for uncoded, linear, intersymbol-interference (ISI) magnetic
channels. PRML systems convert the continuous-time signal into discrete-time samples
that are sufficient statistics for decoding. Under this conversion, the ISI channel can be
treated as a convolutional encoder, with coefficients that are extracted from the equalized
pulse shape. This permits the channels to be decoded with the Viterbi algorithm, which
is used with convolutional codes to detect the sequence of input bits. The operation of a
convolutional encoder and the Viterbi decoder is briefly explained.

Convolutional encoders make use of v shift-registers to store a short history of
the input bits. The specific wiring between the shift registers is defined by the code

polynomial. A rate Y2 convolutional encoder with a polynomial of (1, IIT+II))—2) is shown

in Figure 2-6. The code polynomial contains a recursive feedback loop. For applications

that require other code rates, the sequence of x; and x’; can be punctured accordingly.
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(a) (b)

Figure 2-7. Finite state machine (a) and trellis (b) representation of convolutional
encoder.

The configuration of the registers of a convolutional encoder define a finite state
machine. For a binary convolutional encoder with v registers, there are up to 2" states.
Figure 2-7(a) shows this finite-state-machine with each transition edge labeled with an
input/output pair. The demodulator decodes by recreating the sequence of states
traversed in the encoder. This introduces an additional time dimension, and the encoder
is represented as a time-expanded state-machine, also known as a trellis (Figure 2-7b).

The trellis is a convenient way to represent the evolution of the finite-state
machine. In addition, the function of a Viterbi decoder is very often explained as a
search for the most likely path through a trellis. The nodes found along this path reflect
the sequence of input bits. The binary decisions produced by this decoder are known as
‘hard’ outputs. These differ from ‘soft’ output decoders that provide an additional
numerical value measuring the confidence of each decoded bit. Soft output decoders are
introduced briefly in the next section, and will be elaborated in the context of building
blocks for iterative decoding in the following chapters.
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In PRML systems, the equivalent code polynomials indicate the number of states
required in the Viterbi decoder. For example, the PR4 and EPR4 systems shown in
Figure 2-4 and Figure 2-5 require 4-state and 8-state decoders respectively. As the
amount of ISI increases with higher recording densities, state-of-the-art detectors evolve
to 16-state and 32-state systems. This causes an exponential growth in the complexity of
the detectors despite improvements in error correction performance that are measured in

less than 0.5dB increments.

2.4. Concatenated codes in partial response channels

Partial response systems are particularly well suited for implementation of serially
concatenated forward error correction codes [68]. Figure 2-8 shows an application of
turbo code with an outer encoder serially concatenated with an inner channel encoder.

An interleaver, T, separates and decorrelates the sequence of bits between the two
encoders.  This allows an iterative suboptimum-decoding algorithm based on
uncorrelated information exchange between the two component decoders to be applied.
The interleaver improves the coding gain through constructing a long code from short
memory convolutional codes. Long codes have larger minimum distance and lower
number of low-weight codewords. Interleavers also make the overall code more resilient
against burst errors. The minimum sizes of the interleavers that will result in substantial
improvement in error performance is in the order of a few hundred bits.

Iterative decoders rely on the repetitive exchange of information and cooperation
between two or more soft-input soft-output (SISO) decoders that are matched to the inner
or outer codes. Soft-output decoders for convolutional codes implement the Bahl-Cocke-
Jelinek-Raviv (BCIR) [4] or Soft-Output Viterbi algorithms (SOVA) [5]). Both
algorithms are instances of a larger class of message-passing algorithms, which exploit
the linear structure of convolutional codes. An example configuration is shown in Figure
2-9.
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Figure 2-8. Serially concatenated codes that make use of a partial-response channel as an
inner encoder.
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Figure 2-9. Iterative decoder system for serially concatenated codes.

The outer code can be replaced with a LDPC code. Systems employing LDPC
encoding do not require explicit interleaver/deinterleavers. By construction, each LDPC
code introduces random ordering of at least a few thousand bits. These codes generally
have less ordered structures, which leads to increased routing-complexity in LDPC
decoders.

In the following chapter, the message-passing algorithm will be discussed in
detail. The decoding algorithms for both turbo codes and LDPC codes will be
elaborated. These will reveal the implementation requirements of the corresponding

decoders.

23



3. MESSAGE PASSING ALGORITHMS

This chapter introduces the concept of constrained coding, which is the basis of
all iterative decoding. Iterative decoders rely on the cooperation between two or more
SISO decoders. Each SISO decoder implements a message-passing algorithm, which is
defined according to the type of coding constraint(s). These concepts are presented in
the context of turbo codes and I.DPC codes.

The computational complexities and message-passing network requirements
associated with realization of message passing algorithms are introduced. These
algorithms are analyzed in terms of their VLSI requirements and limitations, and the
~ impact of complexity-reduction techniques on BER performance. = For example, the
messages are represented in log-likelihood form for the benefit of reduced hardware
complexity. These issues will be examined within a unified graphical framework that

consists of an interconnected network of variable nodes and constraint nodes [7].

3.1. Constrained coding and SISO decoders

Constrained coding is loosely defined as the conversion of a block of user bits
into a codeword comprising intersecting subsets of coded bits. The elements in each
subset are bounded by a constraint, such as an even parity or a valid codeword under
BCH encoding. For instance, consider the two convolutional encoders used in the
serially concatenated turbo scheme, which was presented in the last chapter. Each output
bit of a convolutional encoder is constrained by an even parity with respect to a small
number of bits in the input sequence. As the parity results from the outer encoder feed
through the interleaver and into the inner encoder implemented by the EPR4 channel, the

sequence of neighboring bits is further constrained.
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Figure 3-1 Bi-partite graph representation of a 4-state trellis code.

SISO decoders operate with respect to one or more of these constraints specified
by the construction of the code. This explains the intuitive use of the two SISO decoders
matched to the convolutional codes. In general, the relationship between the variables in
the code and the constraints that bind them together can be represented by a bi-partite
graph. This graph consists of two classes of nodes: variable nodes and constraint nodes.

Each variable node is connected to a group of check nodes, and vice-versa.
Variable nodes symbolize the outcome of either individual bits, or groups of bits. Each
constraint node represents a particular rule that is applied on the adjacent variable nodes.
An example bi-partite graph representation of a turbo convolutional code is shown in
Figure 3-1. It has the form of a trellis, which characterizes the time-indexed finite state
machine within a convolutional encoder. The circles correspond to variable nodes. Dark
circles (S;.4) represent the states in the trellis, which are formed by stored input values in
the encoder, while the light circles (Xi.g) represent the output values of the encoder.
Each constraint node (white squares) binds two adjacent states with the output of the
encoder. In other words, by observing the starting and ending states, the corresponding

transmitted output of the encoder can also be determined.
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Figure 3-2. Bi-partite graph representation of LDPC codes.

The linear structure of the trellis provides an implementation advantage, which is
exploited by SISO decoders implementing either the MAP algorithm or the SOVA. The
trellis is partitioned into cascading sections of identical slices. Each slice is
representative of a sample period. The decoders employ recursive algorithms to
implement the decoding operations in a serial fashion. Over time, a number of possible
paths through the trellis of the code are reconstructed, and the most-likely outcome will
provide a decoded decision. The soft values, or confidence measures relating to each
decoded bit, are based on the differences between the aggregate weights associated with
these paths.

Another bipartite graph representation, which is used for representing LDPC
codes, is shown in Figure 3-2. The variable nodes (dark circles) represent the coded bits
(including both user and parity bits) while the constraint ncdes (squares) represent even-
parity checksum constraints. In general, LDPC codes are described by sparse graphs
with far less structure than the previous trellis example. .

SISO decoders used with LDPC codes have a finer granularity, and are organized
as check node or variable node processing elements (PE) according to the bipartite graph.
The edges in the graph correspond to interconnect between the PEs. In the above
example, a check node PE, C,, inputs a list of messages from the adjacent variable node
PEs, Vi, V3, V4, and Ve. The computation evaluates a list of posterior probabilities, which
are returned to the same set of adjacent variable nodes. Likewise, an example variable

node PE, V, will be evaluating messages that are passed between V, and the adjacent
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check node PEs, C; and Cs. These PEs implement the message-passing algorithm, which
will be described in Section 3.2.3.

In both turbo codes and LDPC codes, the decoding process begins by initializing
each variable node with a prior probability. The prior probabilities are based on some
initial assessment provided by the demodulator, such as the sampled signal obtained at
the receiver, or any a-priori information of the probability distribution of the set of
information bits. The iterative nature is reflected by the repeated evaluation and relay of
messages between the two classes of nodes. The process of decoding with respect to
distinct constraints and information exchange effectively propagates information
throughout the entire graph. It eventually results in a solution based on the weighted

inter-dependencies between all variables in the block code.

3.2. SISO algorithms
Three particular SISO algorithms are discussed: The MAP decoder and a SOVA
decoder, which are used in turbo codes, and the message-passing algorithm used with
decoding LDPC codes and block product codes.

3.2.1. Maxnmum a-posteriori decoder

A MAP decoder implements the BCJR algorithm [45]. It is used to obtain the a-
posteriori information for partial response channel decoding, as well as outer decoding
when a convolutional code is employed as the outer code. A MAP decoder provides the
log-likelihood of each bit received from a convolution encoder. Convolutional encoders
are typically described by a discrete, causal, linear, time-invariant transfer function, such
as the 14+ D - D%D? encoder shown in Figure 3-3. D" represents an input delayed by n
sample periods.

The encoder implements each delay with a single-bit register. A finite state
machine, whose states are given by the contents in the registers, can model the entire
encoder. An L-delay encoder with binary inputs will therefore have 2 states. An
example of a radix-2 trellis for a binary input system is shown in Figure 34.
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Figure 3-5. Convolutional encoder with MAP decoder.

The operation of the MAP decoder is explained in the context of a single
convolutional encoder/decoder system, as shown in Figure 3-5. In general, the MAP
decoder is a two-input, two-output discrete-time system that is applied to a block of N
bits. The inputs are the received symbols y,, and prior probabilities, p(ux), of the encoder
inputs, u, € {0,1}. The time indices are represented by k € {l,---,N}.
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Define the set of received symbols as 5 ={y,,¥,,¥s.....yy}. Based on the
observations, ¥ , the decoder outputs the conditional probabilities of x; and uy, expressed
as p(x, 15) and p(u, | 7) respectively. Recall the trellis representation of the encoder

finite state machine. The sequence of x; can be deterministically derived from a given
sequence of u;. Therefore, this discussion will focus on the evaluation of probability
measures for uy.

In particular, for binary inputs, p(x, | ¥) comprises two components:
plu, =017) and p(u, =115). The evaluation of these values is simplified using a
combination of Bayes’ theorem and a different representation of the probabilities, known

as the likelihood ratio. Bayes’ theorem defines that

pl =115)= 2l =L)
p(3)
= plu, =0,5)
p(3)
In many cases, the only inputs available to the decoder are the observations, ¥ .

3.1
P(uk =0l y)

Without any a-priori knowledge of the source of user bits, u;, it is impossible to

determine the denominator, p(3), in 3.1. The likelihood ratio removes the necessity to

compute this value by defining
Likelihood ratio = 2% =L1%)
plw, =015)
_ 3.2)
= P(uk =LYy )
p (uk = O’ 5" )

Hence the decoder is required to evaluate the joint probabilities, p(u, =1,5) and
plu, =0,5). These values are expressed as the sum of transition probabilities in 3.3. A

transition between each pair of states, (sx-1=S;, 5;=S;), is possible only when there is a

corresponding connection in the trellis. Each valid transition uniquely defines u; and x;.
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plu, =l,§)=szs,p(uk =1s,_,=8,8= s,.,y)
i j

P(u;‘ =07y)= zp(uk =0’Sk—l =Sl"sk =S"’3;) (3-3)

5.5,

5.5, €15,.5,.5;...5,. }

Given a particular state, s;, subsequent outputs of the encoder, Xi.1, X2, ..., are
independent of internal state of the encoder prior to step k. This observation provides the
following expansion of the individual terms in (3.3). The symbol yi is defined as the set
of received symbols between step k and step I, {y,, Yyu1» Yiszoeeos Vi }-

p(uk’sk-l =8,85 = Sj’i;)
= p(sk—l =S J’lH)‘ p(uk’sk =S, )’kN I8y = Si)
= p(sk-l =S, ylH)' p(uk’sk = Sj’yk IS = Sr)' P(ymN I's, = Sj’) (34
= ak-l(Si)'V(uk’si’)’k’sj)‘ﬂk(sj)

where a; B, and yare defined as:

ak(St)=p(sk =S:’ylk)
=2]‘,ak-l(sj )'7(“1:-1’31’}’1:-1’5:)

B.(5,)=plrin" 15, =5,) (3.5)
= ;ﬁkﬂ (Si ) 7(uk+l’sj s Yeers S )

7(uk,5,,}’k.sg)=1’(upsk =Si’yk Isk-l =Sj)
=P[“k =f(snsj)]'1’(3’k 1x, =8(Si'sj»

Each term is expanded as the product of three terms, o, ,(S;), f, (S j), and
7(uk 3855 VS, ), which are explicitly defined in (3.5).The messages a;_(S;),and 5, (S j)
are computed through forward and backward iteration, and are commonly known as the

forward and backward state metrics respectively. ;.S j,yk,S,-) is a probability
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measure associated with the transition from state S; to state S; and the received symbol as
a result of the tmnsition, Y& It is commonly known as the branch metric in relation to a
branch in the trellis representation.

The above equations are computationally intensive due to the requirement to
evaluate multiplicative terms. The algorithm is rearranged in the log-domain in order to
ease the computational load. Details of these operations can be found in [102], but in
general, the computations defined by BCJR algorithm fall into three categories: branch

metric computation, forward/backward iteration, and combination of state metrics.

3.2.1.1.Branch metric computation

For each edge in the trellis connecting si.; with si, define a branch metric based
on the a-priori information of % and the observed symbol, y;. The values of u; and x; can
be inferred from the starting and ending states, and are therefore expressed as functions, f
and g respectively. The value of y; is a sample of x; in the presence of additive noise. As

such, P[y, 1x,)] depends on the probability distribution of the noise source.

Vk(Sk—vsk)z ln{P(uk = f(sk—l’sk)}

3.6
(P, 13, = g(sp00500] G0

3.2.1.2.Forward/backward iteration

For each node in the trellis, define a pair of forward/backward iterating state
metrics as shown in (3.7) and (3.8). Each state metric is dependent on the values of the

preceding/succeeding state metrics that are adjacent to the node.

CXP[ak—l (Sk-l )"' 1£° (s"" % ) +}
. : 3.7
% (Sk ) {exp[ag.n (s - )"’ Ve (s k-12 5k )] .
exp[ﬂkﬂ (S0 )+ Vina (542550 ) +} | A
o : 3.8
Ails.) {exp[ﬂm CARES C ’)] >
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3.2.1.3.Combination of state metrics

Working in log-likelihood domain, this last step involves the combination of

appropriate forward and backward state metrics to evaluate the log-likelihood of the

. Plu, =11y) P(x, =11y)
——=—r1, and ts, In| —/———%1.
encoder inputs m[P (4, =01 ) and outputs, In Pz, =01)
In P(u,c=1|5'i)
P(uk =017)

=ln{ ZCXP[ak-l(si)'*'y(uk =f(Si’Sj)-Si’yk'sj)'*'ﬂk(sj)]} (3.9)

S,.SI 3 u,=f(S,4.Sl)=l

—lﬂ{ zexp[ak-l (Si)+7(uk = f(Si'Sj)'si’ y,,,Sj)+ By (Sj )]}

51.8;3 uy=£(5;.5,)=0

lnl:P(xk =1|§)]

P(x, =015)

=ln{ ZCXP[ak-l(Si)"‘?'(xk =8(S."Sj)’sss)’k’sj)+ ﬂk(sj)]} (3.10)

5,53 x=g(5;.5))=1

—ln{ Ze#p[ak_,(si)+ 7("1: = g(Sij)vSi’yk%'Sj )"‘ B (Sj )]}

S,~.S, 3 xk=g(S;.Sl)=0

In summary, the MAP decoder calculates the conditional probabilities of the
transmitted bits by observing a long sequence of received symbols. The memory effect
of convolutional codes is reproduced by propagating the state metrics in both forward
and backward directions through the trellis. The algorithm is simplified by the use of
log-probability and defining a log-likelihood representation. Despite this, the MAP
decoder remains significantly more complex than the Viterbi algorithm [3], which has
been the choice decoder for non-concatenated convolutional codes in the past. However,
the significance of the MAP decoder is brought to light in the context of turbo decoders,
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which require soft outputs. In the next section, the Viterbi algorithm is adapted to

provide such soft outputs for use with turbo decoders.

3.2.2. Soft-output Viterbi algorithm (SOVA)

The Viterbi algorithm searches for the maximum-likelihood decision, X, by
finding the most-likely (ML) path through a trellis representation. In a binary channel, an
error in the decoding implies that the correct output is the complementary decision %.

Based on this observation, the soft-output Viterbi algorithm (SOVA) searches for
the two most-likely (ML) paths that trace back to complementary bit decisions, % and %.
The difference in path metric between these two paths is representative of the confidence
of the decoded bit.

The path metrics are determined by an iterative process that is used in all Viterbi
decoders. The derivation of the procedure is very similar to that described for MAP
decoders in Section 3.2.1. Branch metrics are computed in the same manner as in (3.6). -

The state metric corresponding to state s at instance k is represented by smf(s, ). There

is no backward iteration, and the forward iteration is based on the following recursion.

sm(s, ) = Max{exp[sm(s,._ )+ 7i (se-1-5: )b explsm(s; )+ 7 (sz-1-5 )} (3.11)

Similarities between (3.7) and (3.11) can be observed. The log-of-sum function
in (3.7) is approximated with a maximization function, Max(-). The maximum selection
also determines a particular branch at the corresponding node in the trellis. After some

latency, these decisions are read back recursively in a process known as a traceback to

determine the most-likely path, o
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Figure 3-6. Two-stage traceback in a SOVA decoder to determine the two ML paths, o
and .

With high probability, the next most-likely traceback path, £, will coincide with &
for some number of steps before a branch occurs. In order to determine S, each node
along &ris evaluated for possible branching. Only branches that lead to a complementary
bit decision are considered valid candidates for S. The difference in path metric between
each valid branch and a, observed at the node where branching occurs, is compared. The
next most-likely path is determined by the branch which corresponds to the minimum
difference. .

It is further assumed that the absolute values of the path metrics, SMyand SMp,
dominate over that of other paths. The probability of selecting B over & (i.e. the wrong
decision) is given by (3.12). The log-likelihood of a correct output by the SOVA decoder
is then given by (3.13).

P = exp(— M P )
T exp(-M, )+ exp(— Mg )
- 1
1+exp(A)

(3.12)
; A=My-M,
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Io CorrectDecision —lo 1-P,,
g WrongDecision ) (3.13)

=A=Mg-M,

Figure 3-6 shows that the ML path, @, is determined using the Viterbi algorithm
with an L-step traceback. This is followed by another M-step traceback that resolves the
next ML path, 5, based on maximal probability of a deviation from o

3.2.3. Message passing algorithm used in LDPC decoder

As briefly introduced, LDPC decoders implement the message-passing algorithm
by associating each node and edge in the underlying bipartite graph (Figure 3-2) with a
PE and interconnect, respectively. The outputs from each PE are sent as messages to
other adjacent PEs. An iteration of LDPC decoding consists of a round of message
computation at all variable node PEs, followed another round of message computation at
all check node PEs.

An alternative mathematical definition of an LDPC code uses a parity check

matrix, H. Each valid codeword 5c'=[x,,x2,...,xN]T satisfies the definition in (3.14)

under GF(2) computations.

H-%=0 (3.14)

An NxM parity check matrix defines a code with N bits (variable nodes) and M

parity checks (check nodes). Hence, each LDPC code comprises M different parity check
constraints. Each column in the matrix represents a particular bit, while each row
represents a parity checksum. The entries in the matrix are binary; a non-zero (i.e. ‘1°)
entry at row i and column j of the matrix indicates that the j* bit is a member of the i
parity checksum. In most LDPC codes, each bit is a member of four or five parity

checksums, thus forming the intersecting constraints discussed in Chapter 1.
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For the same reasons as discussed in earlier sections, the LDPC decoder of
interest operates in the log-probability domain. The inputs to an N-bit LDPC decoder are
the log-likelihood ratios of x,, as defined in (3.15).

=1n [P’il—l)-] n=1,2,..,N (3.15)
Prx. = 0)

a

Let W (m) = {n: H,,= 1} be the set of variable nodes that are connected to check
node m, and t(n) = {m: Hy,, = 1)} be the set of check nodes that are connected to
variable node n. Qnn and Ry, refer to the messages that are passed between variable n
and check m as defined in (3.16) and (3.17) respectively.

Message from variable n to check m:

Om=0,+ 2 R, (3.16)

mn
meg(n)\m

Message from check m to variable n:

Rm=d>"( Yy @0, }{ I1 senl m] ()" (3.17)

neN(m)\n nev(m)\n
@(x)=-log (lanh(—%x)): ®'(x} x20 (3.18)
®(x) =—log (tanh(% x)) ’ (3.19)

&~ (x) = 2tanh* [exp(~ x)] |
The decoder begins by initializing the first round of variable-to-check messages
with the input log-likelihood ratios of the corresponding variable nodes. The operation at
each bit node is conceptually straightforward. The output messages are obtained by

summing all input messages together with the prior information.
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Figure 3-7. Plot of ®(x) against x.

Each check node, m, receives a number of messages, R,n», from a pre-determined
set of variable nodes. The calculations shown in (3.17) can be partitioned into three

*segments. Most codes are constructed on the basis of even parity, which implies that

(=1)** =1. The checksum is obtained by evaluating the product of the signum of input

messages, || sgn(Q,,). Finally, the absolute value of the output is determined by
nEv(m)\n

summing the results of applying the ®(-) function on the input messages, followed by the
inverse function, ®7'(-).

Figure 3-7 shows a plot of ®(x) against. x. The inverse function, ®7'(-), can be
easily verified to be equal to ®(-). The function has a reciprocal effect on its operands.

A detailed derivation of the function is beyond the scope of this text. However, an

intuitive explanation is offered as follows.
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In evaluating the parity checksum of a group of bits, the confidence of the output
is strongly affected by the input bit with the least confidence. This is because flipping
the outcome of a single bit changes the checksum value. Consider a log-likelihood ratio

with a minimum absolute value amongst a group of messages, Onm. Applying ®(-) on

this input results in a large output value, which dominates the sum, 2 ®(0,,.).
nEN(m)\n

Finally, the inverse function is applied to this sum, and the message from the check node
PE shows a weak confidence, which reflects the small value of the input message.

In the rest of this chapter, an overall view of the operational requirements of the
SISO decoders is presented.

3.3. Requirements of iterative decoders

The requiremeﬁts of SISO decoders can be mostly classified into two categories,
computational and message passing requirements. This final section distinguishes
several SISO decoder algorithms in \terms of these requirements. This will permit the
next two chapters, which describe specific architectures for implementations of the SISO

decoders, to describe the work in the context of targeted requirements.

3.3.1. Computational requirements

The key arithmetic computation in any iterative decoder is the evaluation of
marginal posterior functions. Each node in the graph is associated with a processing
element that evaluates the marginal function of its input messages. Let X and Y be two

random variables jointly defined such that

Y p(X =xY=y)=1 | (3.20)
x y
The marginalized functions are described by
P(X=x)=) p(X =x,Y =y) : (3.21)
¥y
PY=y)=Y p(X=xy=y) (3.22)
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The joint probabilities summed on the right-hand side of (3.21) and (3.22) are
evaluated by the product of probabilities of independent events. Such computations are
sometimes referred to as the sum-product algorithm. Although the decoding of iterative
codes is derived from the sum-product algorithm, expressing the equations as sum of log-
probabilities or log-likelihood ratios is preferred in implementation because it replaces
the required multipliers with adders. However, the sum of probabilities is transformed
into a complex combination of exponentials and logarithmic functions. To simplify the
hardware, the computation is approximated with the maximum value of the input
operands, followed by an additive correction factor, which is determined through a table
lookup.

An example of the sum-product algorithm processed in log-probability domain is
the Add-Compare-Select-Add (ACSA) recursion in a maximum a-posteriori (MAP)
decoder (Figure 3-8a). The “add” operation simplifies what would otherwise be two
product terms if the decoder was implemented in the probability domain. The “compare”
and “select” operations approximate the logarithm of a sum of exponentials. This
approximation leads to an implementation loss of about 0.5dB in a turbo system.
However, adding a correction factor to the output of the ACS can bring the performance
back within 0.1dB of the performance with a MAP decoder [55]. This correction factor
. is based on the weights of the difference of the two sums. The throughputs of MAP
decoders are limited by the implementation of the add-compare-select (ACS) structure
due to the single-step recursion that prevents pipelining. This is similar to the more
commonly used Viterbi decoders.

Another example of the sum-product computation in log-probability domain can
be found in LDPC decoders (Figure 3-8b). The check-to-variable message computation
needs to evaluates [J(1-2p, ), where p, represents the probability that a bit x, equals to

n
1. Performing the same computations in the log-probability domain simplifies the
evaluation of the product, but also requires the implementation of

PD(x)=-log (tanh(%)] This non-linear, monotonic complex function is not easily
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implemented with full precision, requiring the use of CORDIC functions [113] that can

be significantly more costly than the adders used in summation. Fortunately, iterative

decoders require low fixed-point precisions, frequently just three to five bits. This

implies that ®(x) can be evaluated using lookup tables that are efficiently implemented

with simple combinatorial logic functions or small ROM-based lookups.

State M Mo — DT Lut 1@-——<SM’
" " 04
e.g. "010 sv22M2 ()
Add | Comp |Select/ Add
Table lookup | (Correction Term)
@
» Delay
» Delay
hd & 3
'in‘ml'— < | S. 1 D =<> g J \‘ > 'Rm.nl’
LUT LUT
LUT + LUT
uir! | \: - %) ,Z|LJ > R, ]
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Figure 3-8. Arithmetic computation associated with nodes in factor graphs of (a) a
convolutional code, and (b) an LDPC code.
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3.3.2. Message-passing requirements for iterative codes

The edges shown in the bipartite graph representations (Figure 3-1 or Figure 3-2)
of iterative decoders correspond to a network of interconnects. These wires implement a
message-passing network by facilitating the exchange of messages between nodes in a
factor graph.

The properties of these connections affect both the performance of the code as
well as the practical implementation of the message-passing network. In general, good
codes exhibit codewords with large minimum distance and a small number of low-weight
codewords. These characteristics are found in graphs with large expansibility, girth, and
absence of short cycles. These graphs tend to have a disorganized. structure, which
complicates the implementation of the message-passing network by requiring long global

interconnects or memories accessed through an unstructured pattern.

3.3.2.1. Interleavers

Although the SISO decoders used with turbo codes take advantage of the well-
structured linear construction of convolutional codes, the required interleavers, which
separate the SISO decoders, will destroy the organized structure. Good interleavers are
known to break low weight input sequences and increase free Hamming distance of the
code or reduce number of codewords with small distances in the code distance spectrum.
Much of this depends on the ability of the interleaver output to appear random with
respect to the input sequence.

Although a high throughput interleaver can be realized through a direct-mapped
network of interconnects, this will potentially result in routing congestion due to the
sparseness of the interleaving network. In practice, the interleaving function is executed
by writing the relayed messages sequentially into random access memory, and output by
reading through a permuted sequence. The order of addresses used in the read-access can
be stored in a separate read-only memory (ROM). However, storing the output sequence
in a ROM results in overhead that can be greater than the actual amount of memory
actually required for the soft outputs only. For example, a block code of 4096 bits will
require 12-bit addresses. This contrasts with the 5 to 7 bits that are typical of the soft
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outputs permuted by the interleaver. The choice of interleaver is essentially a search
space of N!. In the past, a number of different algorithms performing this search have
been proposed. These algorithms lead to interleavers that are either deterministic or non-
deterministic.

Non-deterministic interleavers require the output sequence to be stored in a
ROM. Common examples of such interleavers are the random interleaver and the S-
random interleaver [105]. The latter is often used as a benchmark for interleaver designs.
S-random interleavers employ an iterative process that randomly selects numbers and
compares them to ensure a minimum spreading effect. In general, indices that are less
than s, apart in an input sequence must be mapped to indices that are further than s, apart
in the output sequence.

Deterministic interleavers are of more interest to the implementation of turbo
decoder hardware. This class of interleavers include pseudo-random interleavers realized
with shift registers, congruential interleavers [98] [107] and golden interleavers [106].
An example of a psendo-random interleaver based on three single-bit registers or flip-
flops is shown in Figure 3-9. Given a non-zero initial value, the binary contents in the
registers will form a 3-bit address, whose value will cycle between 1 and 7. Such
interleavers are always limited to a period of (2-1) cycles, and are often not applicable

for turbo codes with arbitrary block sizes.

' Congruential interleavers, by far, are the most commonly implemented. They can
be realized using simple shifting or modulo division [98]. The output sequence 7(i) is
defined by

7(i)=(ip+ s)mod N (3.23)
where the value of p is relatively prime with respect to N, and s represents an integer
chosen by heuristics. The basic example of a congruential block interleaver writes the
inputs row-wise into a memory array, and reads the outputs column-wise. The sequential
write/read pattern along rows/columns allows the memory access operations of this
interleaver to make use of cycle counters to activate both word (row) lines and bit

(column) lines, thereby eliminating the necessity to perform memory-address decoding.
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More complex interleavers are often derived from congruential interleavers. The PIL
interleaver that is currently adopted for the UMTS-3GPP channel-coding standard is
defined with a two-dimensional interleaving table containing the output addresses. The
entries in the table are accessed through a pre-determined row permutation sequence, and

a column permutation based on a modulo function.
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Figure 3-9. Pseudo random interleaver realized with three single-bit registers.
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Figure 3-10. Interleavers and deinterleavers implemented using alternating read/write
buffers.
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Finally, golden interleavers are based on the golden section value g=0.618 that

satisfies

1—
—£- 4 3.24)
g

This algorithm has good distance properties, but requires multiplicative and sorting
operations, which are computationally much more intensive compared to the congruential
interleavers. Hence they have not been very widely used.

The practice of writing the messages into an array of SRAM, and reading them
out through a permuted sequence usually requires two banks of buffers alternating
between read/write for consecutive blocks of data (Figure 3-10). This is due to the
randomness of the interleaver output sequence, which makes it difficult to realize in-
place storage.  Although a multitude of interleaver designs exists, practical
considerations are likely to determine the type of interleaver selected for implementation
with a turbo decoder.

3.3.2.2. LDPC interconnect

Likewise, an LDPC decoder is required to provide a network for connectivity
between a large number of variable nodes and check nodes. A direct mapping of the
network using hard-wired routes can lead to congestion in the interconnect fabric because
the LDPC graphs typically have unstructured factor graphs. As in the turbo decoder, the
congestion can be circumvented through the use of memory at the cost of large memory
requirement and placing the memory access in the critical path of the decoder.

More recently however, LDPC codes employing graphs with structured patterns
have emerged, and they impose a reduced set of constraints on the implementation of the
decoders. A few examples of these codes and the implementation advantages that they
provide will also be described in the description of architectures for LDPC decoders.

3.4. Summary

The chapter has described the message passing algorithms implemented by BCJR,
SOVA and LDPC decoders. It has also highlighted some of the difficulties associated
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with implementation of the computational and message passing requirements. In the

next two chapters, suitable architectures will be presented for each of these decoders.
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4. ARCHITECTURES OF SISO DECODERS FOR TURBO CODES

The efficient mapping of algorithms into architectures is presented. The system
level implications of a turbo decoder are discussed in this chapter. This is followed by
detailed analysis of the SISO decoders and interleavers that realize the building blocks.
The successful implementation of a decoder is dependent on application constraints that
determine the target throughputs, power, and area of implementation. The choice of
direct-mapped architectures for iterative decoding algorithms affects both computational

and message-passing requirements as described in the previous chapter.

4.1, System level considerations

In general, communication systems break their processing into a sequence of
operations. An example is a generic receiver, shown in Figure 4-1. The signal received
at the antenna is passed through a low-pass filter (LPF) and immediately digitized by an
analog-digital converter (ADC). Beyond this, equalization, error correction and detection
are performed in the digital domain.

Traditional receivers implement different operations at line rates to ensure a
constant flow of data. However, the implementation of block-based iterative codes will
depart from this practice. At the output of the channel equalizer, sufficient memory will
have to be allocated to store several frames of received symbols. This allows the block-
based symbol interleaving/deinterleaving in turbo codes, or message passing in LDPC
codes to be carried out.

Increased memory requirement, iterative decoders translates into large latencies.
The minimum latency is the delay required to transmit one block of data. With block
sizes that start from a few hundred bits and multiple decoding iterations, the resulting

latencies are a few orders of magnitude longer than that of traditional decoders.
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Figure 4-1. Pipelined blocks in a generic communications receiver.

Current technology permits systems with throughputs at up to a few Mb/s to be
clocked at a multiple of the symbol frequency. For example, a 2Mb/s MAP decoder is
clocked at 88MHz such that more than ten decoding iterations can be completed within
an additional latency equivalent to one block period [98]. On the other hand,
applications such as magnetic storage require throughputs close to 1Gb/s.  This high
throughput, coupled with the bottlenecks imposed by the ACS recursions in MAP and
SOVA decoders implies that the turbo decoders will need to operate at line rates. SISO
decoders operated at line rates result in additional latencies of one block delay per
decoding iteration.

The extended latencies are also intolerable for traditional decision-directed timing
recovery techniques. These methods employ adaptive channel equalization filter, which
relies on the decisions from the detector. In order be effective, the latency through the
receiver chain must be kept to a minimum. This issue has not been widely researched,
and remains a potential barrier to the successful shift towards use of iterative codes.
Nonetheless, timing recovery is beyond the scope of this work, and perfect timing

recovery has been assumed where necessary.

4.2. MAP decoder
The MAP algorithm defines the operations corresponding to a vertical slice of the

trellis, as shown in Figure 4-2. The architectures for implementation of these recursive
structures are discussed. This will provide estimates of the sustainable throughputs that
will eventually affect the decision towards realization of other non-timing-critical

elements, such as the memory and the branch metric generator blocks.
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Figure 4-2. MAP algorithm defines operations on a vertical slice of trellis.

4.2.1. Forward and backward recursion

Both forward (3.7) and backward (3.8) recursions make use of similar structures.
At time-instance k, the current branch metrics (%) are added to the corresponding state

metrics (o) from the previous iteration at (k-1):

Ay =0y (55)+ 72 (55215 5%)

, , 4.1)
Ay =0 (85)+ Vi (55 5¢)
The logarithm of the sum of exponentials is evaluated with a ‘¥-operator:
W(Ag, 4)) = Infe + ¢4 )
4.2)

= max{Ao A+ lnﬁ + e'|A°'A‘|}
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The second term in (4.2) can be approximated with a lookup table [55]. The
lookup table function is strictly monotonic. A 32-entry table can be efficiently
implemented as combinatorial logic in less than 0.05mm?’ in 0.13pum CMOS process.
Figure 4-3 depicts a structure that evaluates this sequence of operations. The comparison
is implemented through subtraction and the most-significant bit (MSB) of the difference,
which is the sign bit, selects the maximum value. The recursion elements used in MAP
decoders are named as add-compare-select-add (ACSA) units after the sequence of
operations required in each iteration or symbol period. This term is intentionally similar
to the .use of add-compare-select (ACS) in Viterbi decoders and reflects the similarity in
path recursion as applied towards trellis-based convolutional codes, as well as the
throughput bottleneck it poses towards decoder implementations.

Most of the delay penalty of the final add in the ACSA can be removed by
retiming. Figure 4-4 shows an add-add-compare-select (AACS), which has shifted the
final addition in Figure 4-3 to the head of the recursion. The AACS structure naturally
favors ripple-carry adders because the carry profile of each adder follows that of the
preceding adder. Assuming B-bit fixed-point representations of the recurring state

metrics,

Total delay of all additions = (B+1+1) X Delayrun adder 4.3)

The delay penalty of the additive LUT term is reduced to the delay of a single-bit
full-adder. In 0.13 um CMOS technology, this delay corresponds to approximately
100ps. With 9-bit representations, the delay overhead is 10%.

Further arithmetic optimization of the AACS structure yields small gains.
Accelerating the additions by using, for instance, a carry-select makes it difficult for each
adder to follow the carry profile, resulting in little performance improvement at the

expense of large area penalties.
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Figure 4-3. Add-Compare-Select-Add unit for either forward or backward recursions
using the W(.) operator as indicated within the box.
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Figure 4-4. Retimed ACSA that hides penalty of final addition.

The implementation of the AACS can take advantage of previously published
Viterbi decoder add-compare-select structures. The state metrics (either ¢ or fy) are
represented with sm, while the branch metrics (j) are represented with bm. The change
of notation helps to highlight the parallels between an ACS used in a Viterbi decoder,
and the AACS used in a MAP decoder.

Previous high throughput implementations of the Viterbi decoder, [6] [51] [53],
unrolled the ACS loop in order to perform two-step iterations of the trellis recursions
within a single clock period. These lookahead methods replace the original radix-2 trellis
(Figure 4-5) with a radix-4 trellis (Figure 4-6) at the cost of increased interconnect and

computational complexity.
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Figure 4-6. Radix-4 trellis and AACS structure.

A radix-4 AACS computes four sums in parallel followed by a four-way
comparison. In order to minimize the critical-path delay, the comparison is realized
using six paralle]l pair-wise subtractions of the four output sums. In addition, the
comparator has to output the minimum difference that separates any pair of inputs. This
value is used as input to the lookup table, which provides the correction term.
Furthermore, the two-level addition is replaced with faster 3-input adders. In general, the
overall critical-path delay increases. However, due to the doubled symbol rate, the

effective throughput is improved if this increase is less than two-fold.
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Figure 4-7. Radix-2 concurrent AACS structure.

An alternative approach with a lower area overhead is the concurrent ACS [65]
that was proposed for a Viterbi decoder. The concept maintains the use of a radix-2
trellis, but performs the addition and comparison operations in parallel. It requires the
comparison to be realized with a four-input adder using carry-lookahead structures [103].
A sub-8ns four-input adder was implemented in 0.6pum CMOS using two layers of three-
to-two carry-save adders, followed by a final carry-lookahead adder. However, when
applied to MAP ;iecoding, a concurrent AACS (Figure 4-7) will require the parallel
execution one 6-input adder and two 3-input adders. The critical path through the six-
input adder and a multiplexer determines the throughput of the concurrent AACS.

Finally, an architecture, obtained through further retiming and transformation of
the AACS unit, [34] [80], has a critical path comprising a 3-input adder and a multiplexer.
The sequence of operations are reordered as a comparison between the two sums,
followed by selection of the appropriate maximum value, and finally, addition of the two
pairs of corresponding branch metrics and lookup table outputs. The resulting structure
has been labeled as a Compare-Select-Add-Add (CSAA) unit. The reordering yields no
performance gain: the subtraction no longer follows the addition and the carry profile is
flattened by the multiplexer. The complete delays of the additions and subtraction appear
in the critical path.
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Figure 4-9. Transformed add-compare-select-add (ACSA) structure.

This delay can be hidden by moving the add operations before the select
operation, as shown in Figure 4-9. The resulting structure executes both the compare and
adds in parallel. This modification decreases the critical path delay at the cost of doubled
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number of adders and multiplexers. This structure is labeled as a transformed add-
compare-select-add (ACSA). Compared with the concurrent AACS, the transformed
ACSA enjoys lower overall complexity and a shorter critical path, which consists of a 3-
input adder and a multiplexer.

The use of redundant numbering system with MSB-first computations has also
been previously explored as an option to enhance the throughput of Viterbi decoders [6].
These methods achieve improvement in performance at the expense of large area due to
the cost of carry-save representation. In section 4.3.2, further comparative analysis of

the various ACS structures under varying delay constraints will be described.

4.2.2. Combining forward / backward state metrics

In the previous chapter, the final step in obtaining the confidence measures from a
MAP decoder is evaluated in a § block. The path metrics obtained from both forward
and backward recursions are combined. The definition in (3.9) is rearranged to make use
of the W-operators described by (4.2)..

exp[ak—l(si)"' 7("k = f(Si’Sj)’si’yk’Sj)"'ﬂk (Sj)]}_

In
S",S}' E] xk=g(S,-,Sj)=l

ln{ )Y exp[ak_, (S;)+ 7(u,‘ = f(S.-,Sj)vSn)’k,Sj )+ B (Sj )]}

Si.Sj E) xk=g(s,~,s}-)w

4.4

=m{ s oglmls, A6, )]}-m{ Zeaslo(5)+ 4,5

Sj3 x=g(Sj)=1 S; 3 xp=g(S;)=1

Let
j=[.8]st.8;3 x =g(S5) =1

i=[9..16]s.t.5;3 x, = g(S;)) =1
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The nested W-operations derived in (4.4) can be realized with a tree of ‘¥’ blocks.
Figure 4-10 shows this structure. There absence of feedback loops makes this structure
suitable for pipelined processing. Inserting registers or flip-flops between each level of
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the tree will ensure that the critical-path delay of the € block is less than that of the AACS

block or any one of its derivative structures.

4.2.3. Memory requirements

A direct implementation of the BCJR algorithm initiates the two recursions from
opposite ends of the underlying trellis representation. This will require the memory
storage of at least one full set of path metrics corresponding to all nodes in the entire
length of the trellis of a block code, which is illustrated in Figure 4-11 for a block length
of N bits. The forward recursion tracks the rate and direction of the arriving symbols,
and completes immediately after the decoder has received the entire block of symbols at
time N. The backward recursion follows next. Intermediate o values are stored in the
memory until the corresponding S values are available to be combined in the § block.

For an example code with constraint length 3, block size of 4096, and 5-bit
representation for the state metrics, the memory requirement will be 2°x4096x5 = 164
kb. Although this requirement can be implemented in SRAM, the critical path of the
MAP decoder will invariantly be affected. Memory access is approximately 2ns
(general-purpose single-ported 32kb memories in 0.13 um CMOS technology),
significantly more than the 1ns required to add two pairs of short-wordlength numbers
and select the maximum result in the ACS decoding logic (0.13um CMOS ASIC design).
Decreasing average memory access time by increasing the number of /O ports is
unsuitable because it leads to geometric growth in memory area. In addition to
difficulties associated with memory requirements, a direct implementation of the BCJR
algorithm also leads to extended latencies through each round of decoding. As
previously noted, the decoder only initiates the backward recursions after receiving all
symbols in a block. In principle, the prolonged latency is insignificant compared to the
total latency required to coalesce the outputs of the SISO decoders for interleaving and
deinterleaving through a few rounds of iterative decoding. However, a shortened latency
through the first round of decoding may be advantageous towards decision-directed

equalization and timing recovery efforts.
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Figure 4-11. Direct implementation of BCJR requires memory storage of path metrics
corresponding to each node in the trellis for the entire length of the block code.

The MAP decoder can avoid the pitfalls of large memory requirements and
lengthy latencies by adopting windowing methods. Windowed BCJR algorithms address
the difficulties of implementing backward recursions. Instead of initiating the backward
recursions from the end of the trellis, these approximate algorithms take advantage of the
observation that the backward recursion can begin from any arbitrary position along the
trellis with uniform initial values. After a number of startup steps, defined as L, the path
metrics converge with high certainty towards their asymptotic values, hence defined as
the values obtained through a full backward recursion. This property is commonly

exploited with the use of a finite traceback window length in Viterbi decoders. The value
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of L is historically set at five times the constraint length of the underlying convolutional
code [3].

An implementation of windowed BCJR with asymptotically equivalent
performance can be achieved using two overlapping windows for the backward
recursion, shown in Figure 4-12 [4]. Each window spans a length of 2L and processes in
two distinct modes. In the first mode, a startup sequence consisting of the initial L cycles
performs the backward recursions. The values of fs obtained in this mode are unreliable
and are not processed in the & block. The second mode comprises the next L cycles,
which produces S outputs that are considered to have insignificant difference from the
asymptotic values. Path metrics obtained from the second mode are processed in the
ensuing £ block together with the appropriate ;s. The use of two overlapping windows
ensures that an overall recursion rate of 1 symbol per period is maintained. One of the
windows always produces reliable state metrics, while the other is processing the startup
sequence. This method hides the overhead delay incurred in computing the startup
sequence. It results in lower memory requirement and decoding latency at the expense of
additional computational hardware.

Figure 4-13 shows a state-slice of the MAP decoder that is able to maintain a
throughput equal to the symbol arrival rate. The y-memory stores the branch metrics. An
0-ACSA performs the forward recursion and stores its outputs in the o-Memory. Two 5
ACSAs perform the backward recursion in accordance with the overlapping window
method. |

As previously noted, high throughput implementation of a MAP decoder requires
a high-speed memory access that is faster than the typical SRAM-based memories.
Memories using flip-flop based registers are fast (100ps delay in 0.13um CMOS ASIC
design) but each register costs about 5 times the area of a comparable SRAM cell. As
such, it is necessary to schedule the memory access pattern in order to minimize both the

memory requirement and the amount of overhead in control logic.
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Figure 4-12. Backward iteration using 2 overlapping windows, Wy and W, for BCJR
algorithm. The shaded outputs are not used in the ensuing & block.

Figure 4-13. State-slice of a MAP decoder structure.
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Figure 4-14. Memory read and write access of branch metrics ¥.

The timing diagram of a scheme that would limit the interval between the
production and three consumption cycles to 3L is shown in Figure 4-14. The
implementation partitions each y-memory block into 3 sections of length L (3 sections of
L columns in Figure 4-14) and deliberately delays the first forward iteration by 2L. New
data is cyclically written into each of the partitions while the write/read access pattern
within each partition is continuously alternated between left-to-right and right-to-left
directions every L periods. Each branch metric entry, %, in memory is read once by each
of the three ACSA’s. After the third and final read access, the memory location is
immediately replaced with new data. The repetitive nature of the memory access within
each partition promotes reduction in control logic, compared to random access memory,
and is implemented as a bi-directional shift register.

Similarly, observations on the production and consumption patterns of the o

values will indicate that each o--Memory block can be implemented with a bi-directional

L-word shift register. The o4 and [ values are summed in a tree structure (Figure 4-10)
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that evaluates (4). Although the maximum latency through each MAP decoder is 4L (80

cycles for L = 20), it remains insignificant compared to that of the interleaver.

4.3. Soft output Viterbi decoder

As noted in the previous chapter, the complexity of MAP decoders can be traded
for marginally degraded BEﬁ performance by replacing them with decoders applying the
soft-output Viterbi algorithm (SOVA), [26] [38] [39]. Section 3.2.2 described the
process as a two-stage algorithm. The first stage (right half) determines the most-likely
path, o, through the trellis using the Viterbi algorithm. The second stage evaluates all

possible branches originating from this path in order to determine f, the next-most-likely
path that leads to a complimentary decision.

An early VLSI implementation of a SOVA decoder [51] achieved 40Mb/s
throughput in a 1lum CMOS standard cell technology. In order to reduce the power and
area of the implementation, RAM macros were used. The path selections were done with
the register-exchange technique to reduce the overall latency. A low power
implementation of the SOVA decoder [16] uses DRAM blocks for path selection. The
DRAMs need to be clocked at a multiple frequency of the decoding symbol rate. This
places the memory as the limiting factor in the decoding throughput of the design.

The architecture of a high throughput SOVA decoder will be discussed in the
next section, followed by the micro-architectural analysis of various add-compare-select
structures in power, area, and delay space. A detailed description of the deeply pipelined
mechanisms for the traceback, equivalence detection, and comparison of competing path

metrics will also be provided.

4.3.1. SOVA decoder architecture

The architecture of an eight-state high throughput SOVA decoder is shown in
Figure 4-15. The choice of eight states is synonymous with the application of EPR4
channels in the magnetic recording industry. The branch metric generator, eight ACS
units, and the L-step survivor memory unit (SMU) form the building blocks of a
conventional Viterbi decoder. Eight parallel ACSs compute the pairs of cumulative path
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metrics and select the winning paths in the underlying trellis representation of the
convolutional code.

Each ACS also outputs the difference in path metrics between the two competing
paths. The path decisions are stored into an array of L-step flip-flop-based FIFO buffers.
The choice of flip-flops, in contrast to the use of RAM blocks in [16], permits a high
throughput implementation that is independent of the delay of SRAM modules. The
delayed signals are used in the M-step pathjequivalence detector (PED) to determine the
equivalence between each pair of competing decisions obtained through a j-step
tracebaék, je{l2,...M}.

The path metric differences from the eight ACSs are stored in FIFOs registers of
depth L. Using the output decision from the SMU as a multiplexer select signal, the
delayed metric difference at the most-likely state is input to a reliability measure unit
(RMU). The SMU output is also used to select the results of the equivalence tests
performed on competing traceback paths that start to deviate from the most-likely state.
The selected equivalence results are evaluated in the RMU in order to output the
minimum path metric difference reflecting competing traceback paths that result in
complementary bit decisions, £and % .

Architectural and implementation details of the blocks in a SOVA decoder will
be discussed in the following sections. The ACS structures are analyzed in Section 4.3.2,

and several options for survivor path decoding are presented in Section 4.3.3.

43.2. Add-Compare-Select structures

The implementation of a high throughput SOVA decoder is dependent upon the
realization of the ACS blocks under practical power and area constraints. Prior to this
work, the only form of comparison amongst the various competing structures was the
assessment of area penalty for ACS structures optimized strictly for minimum delay [82]
[54]. The surveyed structures were derived from prior publications spanning a 20-year
history in research of high throughput Viterbi decoders.
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In contrast, this work performed an exploration to examine the area-throughput
and power-throughput tradeoffs across a range of permissible critical path delay
constraints. Using the radix-2 baseline, the different ACS structures were synthesized
using low-threshold cells with high supply at best-case conditions. The test was
conducted through architectural synthesis of a block of eight ACSs using general-purpose
standard-cell 0.18um CMOS technology. A network resembling the underlying trellis
structure interconnected the ACSs. The decision outputs of the ACS structures were
loaded with 200fF to simulate the large capacitive load in the register-exchange and FIFO
memories.

Besides the baseline, structures tested include the concurrent ACS, the
transformed and retimed CSA, as well as the radix-4 ACS. These structures are
respectively analogous to the concurrent AACS, transformed ACSA, and radix-4 AACS.
Since the SOVA does not require an additive correction term, the associated set of adders
can be removed.

Results of the synthesis experiment are plotted in Figure 4-16 and Figure 4-17.
The synthesis algorithm [104] trades a higher area for delay reduction through sizing and
logic transformations. Each curve tracks the same behavior. As the decreasing critical
path constraint approaches a minimum value, the area and power consumption of the
synthesized structure increases asymptotically due to the use of increased gate sizes. The
kinks in the curves correspond to optimization boundary conditions where logic
transformations are preferred over increased sizing.

Table 4-1 shows a comparison of the power, area and delay of the test structures.
The absolute numbers are dependent on the setup of the experiment such as the exact
drive strengths of the inputs and capacitive output loads. However, the relative numbers
are applicable for a wide range of operating conditions. As expected, the radix-4 ACS,
which has been accounted for the doubled symbol rate, has the least critical path delay.
The throughput is faster than the next-fastest structure by a margin of 17%, but requires
almost three times the area and two times the power. The radix-4 ACS is consistently

larger, and consumes more power than any of the other structures.
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Both transformed CSA and concurrent ACS are able to achieve improvement in
throughput with significantly less area and power penalty. The choice of ACS structure is
dependent on the required critical path delay, and can be inferred from Figure 4-16 and
Figure 4-17. The FO4 delay in this implementation technology is 50ps. At this particular
set of operating conditions, the transformed CSA structure is suitable for applications
with critical path delays specified between 26 to 29 FO4 delays. The concurrent ACS
becomes the choice structure for delays between 29 to 35 FO4 delays. For low
throughput rates with critical path delays above 35 FO4 delays, the ACS structure is the

best choice in terms of both area and power consumption.

4.3.3. Survivor path decoding

The two ML paths are determined by a two-stage traceback. A survivor memory
unit (SMU) is cascaded with a combination of path-equivalence detector (PED) and
reliability measure unit (RMU). The SMU and PED have similar functions. Both
essentially examine a list of competing paths by retracing a history of decisions and path
metric differences. Previous implementations of the SOVA used either the register-
exchange method [51] or memory traceback [83] methods.

TABLE 4-1.
MAXIMUM THROUGHPUT EFFICIENCY OF VARIOUS ACS ARCHITECTURES
Relative Relative Relative Critical Path
Symbol Area Power
Throughput
Radix-2 ACS 1 1.00 1.00 (2 x 2-input Adders) +
(1x Multiplexer)
Radix-2 Concurrent 1.2 1.46 1.63 (1 x 4-input Adder) +
ACS (1 x Multiplexer)
Radix-2 CSA 14 1.99 1.89 (1 x 2-input Adder) +
(1 x Multiplexer)
Radix-4 ACS 1.6 5.86 3.94 (1 x 2-input Adder) +

(1 x 4-way comparator) +
(1 x Multiplexer)
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A. Register-exchange and memory-traceback methods

A register-exchange consists of a two-dimensional array of one-bit registers and
multiplexers as shown in Figure 4-18. The registers in successive stages are
interconnected to resemble the trellis structure of the convolutional code. A global clock
signal controls the registers. The frequency of the clock determines the throughput of the
Viterbi decoder. The path decision from each of the eight ACSs is input to the register-
exchange pipeline, and also selects the outputs of a corresponding row of multiplexers.
At each clock cycle, a multiplexer located at row i and column k {ie[l,2,...,8],
ke[1,2,...,L]} outputs a bit decision corresponding to a traceback of length k, originating
from state i. This bit is stored in a register, and will be input to a multiplexer at column
k+1 in the following clock cycle.

The memory traceback method has commonly been used in low-throughput,
low-power applications. It simply writes a vector of path decisions from the ACS
recursions into RAM in each iteration of the Viterbi algorithm. After an initial startup
delay, the decisions are retraced by reading the stored decisions in the reverse direction.
Previous solutions have generally employed some variation of the k-pointer traceback
architecture [83). They used k-1 parallel read pointers that accessed as many independent
banks of memory, while a write pointe;' simultaneously stored the decisions from the
ACS recursions into a k% memory bank. An alternative [16] is to use a single bank of
multi-ported DRAM.

The memory traceback method permits the design of very compact RAM that
provides significant area advantages. In 0.18um CMOS technology, the area of a typical
SRAM cell is about 2.4um?, in contrast with the 50pm? area required for a flip-flop used

in the register-exchange method.
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Figure 4-18. Example 8-state register-exchange survivor memory unit used in VA-SMU.

The memory traceback method stores the intermediate bit decisions in static
locations in memory. Since SRAM blocks typically operate by reading or writing
multiple bits per cycle, a vector of decisions output by the parallel ACSs can be written
into memory simultaneously. = The traceback operation only needs to recall those bit
decisions that constitute pért of a traceback path. This contrasts with the register--
exchange method, which constantly moves an array of bit decisions through a pipeline of
flip-flops. In principle, this gives the memory traceback method inherent power benefits.
As the number of states rises, the register exchange is required to shift an increasing

number of bits through its pipeline. However, for decoders with small number of states,
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the use of standard SRAM modules offers little power or area advantage over register-
exchange because of the overhead of peripheral circuitry and standard word addressing
[52]. Register-exchange achieves high throughputs easily because its critical path
consists only of a multiplexer and a register. On the other hand, standard SRAM macros
in 0.18um techr;ology have much longer cycle times than the synthesized CSA recursion.
Therefore, with the small number of states in our decoder, the register-exchange is the
appropriate structure for high throughput implementations.

B. Path equivalence detector (PED) and reliability measure unit (RMU)

With the emphasis on high throughput implementation, this section examines the
use of register-exchange and the modifications necessary to implement the path
equivalence detector (PED) and reliability measure unit (RMU). The register-exchange
method used in the SMU provides a convenient way to determine if competing traceback
paths lead to equivalent bit decisions. The two inputs to each multiplexer reflect the
competing bit decisions, and a test for their equivalence can be realized by the addition of
an XOR gate at each multiplexer location (Figure 4-19). The ensuing Boolean outputs

E‘E,-j (n) indicate the equivalence between the two competing decisions obtained through
a j-step traceback from state i.

From ACS;, the difference between the two path metrics, 4;(n), arriving at time n,
state i, is retained in FIFO buffers; i€ {1,2,...,8}. The output from the SMU selects A{n)
and EQ;j(n), which correspond to the values along the ML path, as inputs to the RMU
(Figure 4-20).

The RMU consists of comparators and multiplexers in a pipeline that selects the
minimum A(n) along the ML path. It is initialized with the maximum binary
representation of the reliability measure, “111111”. Based on the EQ inputs, each
pipelined section outputs one of the following:

EQ=0: Reliability measure from the previous step

EQ = 1: Min{4, Reliability measure from the previous step }
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Figure 4-20. Pipelined section of reliability measure unit (RMU).

Compared with a Viterbi decoder implementation, the total size of the SMU and
PED is approximately doubled (L = M). The RMU overhead includes M pipeline stages,
each of which consists of a 2-input comparator with its Boolean output logically AND’d

with the EQ j input, a multiplexer and a 6-bit register. The overall latency through the

SOVA decoder is L + M. The additional latency remains insignificant compared to the
overall latency in the Turbo-SOVA system, which is dominated by the latency through
the interleavers.

Based on the discussion provided in this section, a 500Mb/s 8-state SOVA

decoder has been implemented in 0.18um CMOS technology. The decoder occupies a

core area of 0.5mm?, and dissipates 400mW power with random input data.

4.4. Summary

The chapter has described architectures suitable for high throughput
implementations of the MAP and SOVA decoders. The memory requirements were
realized using fast shift registers. The throughput bottleneck is found at the AACS or

ACS recursions, and a number of micro-architectures have been discussed and evaluated.
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In particular, the SOVA architecture has been implemented on an ASIC platform with the
CSA structure. The details will be presented in Chapter 7. The next two chapters will
look at architectural issues that are relavant to the design of an LDPC decoder.

72



5. LDPC DECODER ARCHITECTURES

Two types of LDPC decoder implementations, the parallel and serial architectures,
are introduced. These belong to opposite ends in the spectrum of possible architectures,
and affects the manner in which PEs in an LDPC decoder communicate with one another,
either through an interconnect fabric or memory elements. The benefits and difficulties
of each of these structures are investigated, and implementation issues such as area,
power, and throughput are discussed. |

The building blocks of an LDPC decoder are presented first. The fixed-point
implementation of PEs associated with each class of nodes, and their implications on the
overall decoder architecture are elaborated.

In addition, the final section in this chapter introduces some aspects of specific
classes of LDPC codes based on finite field geometries [77] and rectangular lattices
[114]. These codes have demonstrated properties that are highly advantageous towards

the implementation perspective.

5.1. Parallel architectures

The message-passing algorithm used in LDPC decoders is inherently parallel. A
hardware implementation of an LDPC decoder can exploit maximum amount of
parallelism by associating each node in the underlying bipartite graph (Figure 5-1) with a
processing element, and each edge with wire interconnect. A fully parallel architecture
provides potentially the fastest decoding throughput and lowest power dissipation.

In order to demonstrate the effects of scalability, a decoder for an example rate-
8/9 LDPC code, with a block size of 4608 is examined. The variable nodes and check
nodes have edge degrees of 3 and 27 respectively. The fully parallel decoder requires 512
check node processing elements and 4608 bit node processing elements. Based on the
computational requirements of the processing elements, the approximate complexity of
the decoder implementation is obtained through synthesis in 0.13um CMOS technology.
The estimates are listed in Table 5-1
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Variable-to-Check Processing Element

Check-to-Variable Processing Element

Figure 5-1. Parallel architecture.

Assuming perfect timing recovery and ignoring the issue of decoding latency, a
fully parallel LDPC decoder can maintain a high throughput even when operated at low
clock frequency and power supply. This results in a low power implementation. Figure
5-2 shows an example structure that takes advantage of the serial nature of a channel
decoder. The extrinsic information is input through a shift-register chain. The soft inputs
at the variable-to-check PEs are only valid once every N cycles, for a block size of N.

Therefore, the parallel LDPC decoder is required to complete the decoding iterations in N

cycles.
TABLE 5-1
COMPLEXITY ESTIMATES FOR OUTER DECODER WITH LDPC APPLICATION
512x4608 decoder 512x4608 decoder
(Speed opt.) (Power opt.)

Number Gates* 3,152,896 1,560,576

Delay (ns) (per iteration) 6.7 10.1

Area (um®) 55,698,944 36,611,072
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Figure 5-2. Parallel LDPC decoder with serial input stream from channel decoder.

An example implementation of a rate-}2, 1024-bit LDPC decoder [1] in 0.16um
technology with 5 metal layers succeeded in demonstrating such a parallel architecture..
The log-likelihood inputs enter the decoder via 16 shift-register chains, which also
operate as serial to parallel converters. The outputs feed directly into a fabric of
interconnect that links 1024 variable node PEs with 512 check node PEs. This effectively
maps the entire bipartite graph onto silicon. The massive parallelism permits a high
throughput implementation of 1Gb/s with a relatively low-frequency clock at 64MHz.
The decoder completes 64 iterations of decoding within one block-delay (1024ns) and
dissipates less than 700mW.

Such throughput and power efficiency comes at the cost of area, which is not
revealed by Table 5-1 either. Due to a high level of routing congestion, the decoder
occupies an area of 7mmx7mm, where logic density is only 50% in order to
accommodate the complexity of the interconnect fabric.c Compared with the
implementation in [1], a silicon realization of a 4608-bit decoder will have at least 4
times more interconnect wires that are also prohibitively long. Increased number of
routing layers will help, but the logic density is unlikely to fall below 50%. In general,
the random connectivity defined in LDPC codes leads to long interconnect lengths that
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are of the order of the core dimensions. As the size of the code grows, the floorplan
utilization is also expected to deteriorate.

A usual solution to address congestion in a design is partitioning. The number of
long global interconnects are reduced at the expense of increased number of short local
interconnects; the target is to achieve a net reduction in average length of interconnects.
However, due to the interlaced data dependencies in LDPC codes, partitioning is difficult,
although a notable effort is based on simulated annealing to minimize the total length of

interconnect [112].

5.2. Serial architectures

A serial architecture removes the problem of routing congestion by replacing the
physical interconnect with SRAM. Using a limited number of processing elements [31]
as shown in Figure 5-3. Serial architectures require significantly less gates and area of
implementation. An LDPC decoder with a targeted clock of more than S00MHz will
require direct-mapped hardware of the processing elements that compute both variable-
to-check and check-to-variable messages, Onm and Rn, respectively. These messages are
stored temporarily in memory between their generation and consumption cycles. This
structure results in less area and much less routing, but dramatically increases memory
requirements.

A direct implementation of the architecture shown in Figure 5-4 will face
imminént stalls as each stage of decoding waits for the previous stage to fill the data
dependencies. The solution to this alternates the two sets of processing elements between
consecutive blocks of codewords. Each memory block in the LDPC decoder is
implemented as a pair of buffers that are alternatively accessed (Figure 5-4). This ensures
that the input data is always available in memory. The outputs of each processing
elements overwrite the memory locations of its inputs. Under such a scheme, full
utilization of hardware is assured if both sets of hardware evaluate and compute messages

at the same throughput rate.
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Figure 5-4. Serial decoding by alternating between two memory buffers containing
consecutive blocks of data
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The memory implementation of serial architectures has to address the random
network of edges in the bipartite graph and interlaced data dependencies in the message
computations. The example in Figure 5-5 shows that dependencies from the variable
node B fan out to four other variable nodes A, D, E, and F in the one iteration. The
dependencies from nodes A and F, in turn, fan out to the remaining node, C. In LDPC
codes with good asymptotic performance, the trace of dependencies fans out rapidly
through each iteration. This behavior is related to the girth of the graph [84] and implies
that the two classes of computations over a single block of inputs, variable-to-check and
check-to-variable processing, cannot be overlapped.

Hence, the size of the memory required is dependent on the total number of edges
in the particular code design. The example 4608-bit LDPC code used in previous
sections comprises a total of 13824 (4608 x 3) edges in the graph. Each edge corresponds
to a message that has to be stored in memory. The lack of spatial locality between any
subset of bit nodes connected to the same check node (and vice versa) makes it
impossible to update the messages for the next round of decoding until a majority of the
messages in a particular direction are received. Therefore, the size of the memory
requirement is dependent on the total number of edges in the particular code design. A
serialized rate 8/9 4608-bit LDPC In 0.13pm CMOS technology, the density of an SRAM
is approximately 15um?bit. Using 4-bit fixed-point messaging, the area of memory
required is 0.8mm?® This is equivalent to the size of one hundred bit-node processing
elements.

Serial architectures that use more than one processing element require memory
devices with operating frequencies that are faster than the datapath, or multiple I/O ports.
With a memory access time of approximately 2ns in 0.13 um for 1024 32kB, the
increased frequency approach is not suitable for high throughput decoder implementation.
Memories with multiple I/O ports have significantly larger areas due to the requirement
for additional address decoders, word and bit lines. The access time for multiported
SRAM is also slower to account for the increased loading effect of the bit lines. The next
section discusses architectures comprising several processing element that communicate

with a bank of memories via a common bus interface.
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Figure 5-5. Tracing dependencies through a bipartite graph.

5.3. Shared memory architectures and partitioned matrix

In order to improve the speed of multiple-memory access, a solution [31] divides
the memory into a bank of P independent SRAMs, and uses a crossbar switch to enable
communication between P processing elements. Each processing element selects an
input from one of the SRAMs in each period of the memory cycle. However, inadvertent
memory access collisions will cause the processing elements to stall. An ad-hoc
scheduling method is used to minimize the number of such conflicts. Once determined,
this schedule has to be stored as ROM data. This requirement is similar with the case of

interleavers that cannot reproduce the interleaving sequence on the fly.
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Figure 5-6. MXN parity check matrix partitioned into jxk subblocks.

More generally, the scheduling problem is analogous to shuffling the rows and
columns of the parity check matrix in order to obtain a well-partitioned design. A well-
partitioned design permits the parity check matrix to be divided into groups of jxk sub-
blocks, with each of the jxk partitions being either a zero matrix or some permutation of
the identity matrix. The latter has a maximum of one non-zero entry in each column and
each row. Recently, a number of deterministic algebraic method, [96] and [114], have
produced LDPC codes that exhibit this nature. The corresponding LDPC parity check
matrix can be arranged in the manner shown Figure 5-6. Such partitioning permits
messages, variable nodes, and check nodes to be grouped according to the dividing
perforations. Grouped messages can be stored in a common bank of memory. The
partitioning divides the matrix into groups of rows and columns. Each of these grouped
columns represents a collection of variable nodes that share a single processing element
for variable node processing. Likewise, the grouped rows represent a collection of parity
checks and share a single PE designed for check node processing. Each non-zero sub-
block in the partitioned matrix represents a custom interconnect between a pair of shared
PEs. Although these codes have properties that benefit the decoder hardware
implementations, they tend to display higher error floors [101], which is a result of low

weight ccdewords.
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Contrary fo the common practice of defining implementation architecture after a
particular code has been defined; it is possible to design a pseudo-random code such that
the implementation benefits of the shared memory architecture are intrinsic. One could
start with the definition of the size, column weight, and row weight of a parity check
matrix. The column weight determines the number of parallel ports that the shared
memories need to support. Both column weight and row weight define the fan-in and
fan-out of the corresponding PEs, which affects the area, power consumption and
throughput of the implementation. Depending on practical constraints, the maximum
numbers of realizable variable-node and check-node PEs are determined as "/; and ¥/,
respectively.  Finally, the parity check matrix is assembled by concatenating blocks
obtained from a list that comprises the jxk zero matrix and all permutations of binary
matrixes containing a non-zero entry in each column and each row. The column weight
and row weight specifications are observed by stacking as many jxk sub-blocks in each
column or row, respectively. During the process of block assembly, one should be aware
that short cycles in the graph should be avoided. For example, cycles of length four can
be prevented by specifying that the bit-wise XOR between any two columns in the parity
check matrix will not have more than one non-zero entry in the resulting vector.

Partitioning of an LDPC decoder does not decrease the overall size of memory
requirement, but can result in smaller and faster memory implementations. All messages
corresponding to variable nodes in the same group are stored on a single bank of memory,
local to the shared computational logic implementing the variable node processing. Since
each sub-block has at most one non-zero entry in each row, each parity check will
read/write from at most one location within the shared bank of memory. Without further
constraint on the property of the parity check matrix, the edge degree on a variable node
determines the number of ports required in the bank of memory. LDPC codes with small
edge degrees will therefore benefit most from this architecture. Figure 5-7 shows an
example of shared memory architecture of an LDPC decoder for a code described with a
column weight of 3 (variable nodes have edge degree of 3).
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Figure 5-7. Shared memory architectures with shared computational logic, and
interconnect. :

5.4. Computation blocks
The arithmetic requirements of an LDPC decoder were presented in the Chapter 3.

Onm was defined as the message computed at variable node n, and passed to check node
m. Conversely, R, represents the message computed at check node m, and passed to
variable node n. The description of the variable node processing in (3.16) shows a large
number of common terms in the summation. The equation can be reformulated as (5.1)
to reduce the overall number of required additions. Likewise, (5.2) shows a

reformulation of (3.17) that exploits common summation and sign-product terms.

Qnm =a, + z Rm'n
mEu(n)\m

(5.1)
=a, +( YR, ]— R,

mEu(n)
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An example structure for computation of O, is shown in Figure 5-8. Introducing
pipeline registers within the tree structure can increase the throughput of the computation.
If the edge degree of the variable node is high, the tree structure will require a large
number of messages to be simultaneously available at the inputs of the processing
elements. This is feasible if each input message is routed through a custom wire
interconnect. However, architectures that make use of SRAM memory will face
difficulties in providing a large set of parallel messages due t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>