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1 Introduction

The purpose of this document is to describe how one can design Tipi actors. There are three
types of actors: analyzable actors, probe actors, and simulation only actors. Analyzable actors are
used to create semantic operations on inputs, outputs, and state. These actors are synthesizable
and can be translated to and simulated in C++ and Verilog. Probe actors are used to print out
values in the design. Probe actors are not synthesizable, but can be translated to and simulated in
C++ and Verilog. Simulation only actors can be used to embed arbitrary C++. These actors are
restricted in how they can be used. These actors can be translated to and simulated in the C++
simulator. They cannot be translated to, simulated, or synthesized in Verilog.

The three types of actors are described in a constraint based polymorphic functional language.
Constraints are specified as to how an actor can be used, and what happens when a particular
constraint is met. Utilizing this methodology, one can create designs in a correct by construction
manner. A design is exported as a set of primitive operations by analyzing the actors.
Furthermore, a supporting set of tools including simulators, an assembler, and a Verilog hardware
generator are generated for each design based on the primitive operations.

The languages coupled with the Tipi design environment provide a new architecture description
language that is not limited to a particular family of architectures.



2  Port Type Language

The port type language is used to specify the types of ports on the actors. If a designer specifies
the _yype attribute on a port, then it overrides any type specified in the I/O section of the actor
semantics language.

2.1 Constants, Ports, and Instruction

The terminals of the type expressions must either be constant numbers, a reference to the type of
another port, or the special type instruction which represents the width of the instruction. The
combination of these terminals along with the operators in the type expressions provides
designers the ability to customize the semantics of their actors.

2.2 Max

It is important to note that a max_type_expr cannot be the second argument of a subtraction. This
restriction is required in order to maintain the monoticity of the types.

The max expression returns the maximum width. For example, if the output port out of some
actor is defined as:

max (inputA.type, inputB.type)

then the type of out is the type of inputd if inputA > inputB, otherwise, the type of out is the type
of inputB.

2.3 Addand Sub

The operators + and — represent addition and subtraction, respectively.

24 Log

The operator log is defined as follows:

1 ifn<2
log,;(n) otherwise.

log(n), where n is a number



2.5 Ceil and Floor

The operators ceil and floor represent the ceiling and flooring operations, respectively.

The combination of log and ceil are particularly useful for describing address port types. For
example, an address port defined as:

ceil (log(size))
will result in the appropriate type required to address a memory of size size.

The combination of max, log, and floor is useful for defining the width of a constant. For
example, the type of a constant can be defined as:

max{out.type, floor(log(constant + 1)))

will produce a type for the constant that is big enough to represent the constant or it will produce
a type that is larger and matches the type of the output out.

2.6 Converting to Integer

Since we have the log operator it is possible to have types with non-integer values. To deal with
this we implicitly convert types to an integer using the floor operation. This means that the
expression:

log(3) + log(5) isequivalentto floor(log(3) + log(5)).



3  Port Type Language Grammar

type

max_type_expr

max_type_expr list

type_expr

type_id

max_type expr
;ax;typq_expr + type

i max_type expr )
;ax;typg_expr - type_expr
Lypq_expr

max ( max_type expr list )

type expr , max_type expr list
!
type_expr

type_expr + type expr
Lypq_expr - type_expr
1og ( type expr )
Leil ( type_expr )
éloor ( type expr )

t type_expr )

Lypq_id

!

ID . type

I

@ ID . type

!
instruction . type



4 - Analyzable Actor Language

The analyzable actor language is used to describe the computation components of the
architectures. Any actor written in the actor semantics language can be simulated and translated
into hardware.

4.1 Comments

C-style /* */ and C++-style // comments are supported.

4.2 Actor Signature

An actor is given a unique name followed by a list of its inputs and outputs. The semantics are
then described in the program section. For example, an adder could have the signature:

add(inA, inB, out) { program }

4.3 /O List

‘The list of inputs and outputs specified in the actor signature must be defined. Inputs are
preceded by input and outputs are preceded by output. An optional type can be specified. If no
type is specified or if the type cannot be statically resolved, then type resolution will attempt to
resolve the type. For example, the inputs and outputs for the add actor could be defined as:

input inA;
input inB;
output <max(inA.type, inB.type)> out;

Multiports have the special syntax where the port name is preceded by 2 @. Some examples of
input multiports (outputs can also be multiports) are shown:

input @din; // A multiport with an undefined type
input <2> @din; // A multiport with type 2

A multiport is a list of signals with the same type. A more in-depth discussion of lists is included
later.



44 Memory List

Memories are prefixed by reg for registers and ff for flipflops. An optional type can be specified.
If no type is specified or if the type cannot be statically resolved, then type resolution will attempt
to resolve the type. A size for a memory can also be specified. If it is not then the memory is
assumed to be of size 1. Some examples:

reg mem; // 1 register with undefined type

reg <1> mem; // 1 register with type 1

reg mem 10; // 10 registers with undefined type

reg <width> mem 10; // 10 registers with type width

£f mem; // 1 flipflop with undefined type

ff <1> mem; // 1 flipflop with type 1

ff mem 10; // 10 flipflops with undefined type

£ff <1+2> mem 10; // 10 flipflops with type 3 (1+2)
4.5 Rules

The semantics of the actors are described as a product of sums formulation over rules'. Each rule
contains a list of input and output ports. Each port in the rule can have one of six bindings. The
bindings are as follows:

The signal is present.

The signal is not present.

The signal is present and is an enumeration.

The signal is not present and is an enumeration.
P The signal is present and is the instruction.
P The signal is not present and is the instruction.

®© o

-

O ORKF O
.
(e}

CE R R KK

ol .
U

Q

The enumeration binding indicates that the signal takes on a set of enumerated values where a
new unique value is created for each rule that contains the signal with the enumeration binding.

The instruction value indicates that the signal takes on the type of the instruction which is
calculated after the control is generated.

In order for a rule to be true in the product of sums formulation, the signals on the ports in the
rule’s port list must match the bindings. The firing rules for the add are shown below:

or (
fire (inA.p.1, inB.p.1l, out.p.l)
{ out = inA + inB; }
no_fire (inA.p.0, inB.p.0, out.p.0)
{1} _
)

The firing rules are interpreted as: The actor is valid if inputA, inputB, and out are present or if
inputd, inputB, and out are not present; if inputA, inputB, and out are present then out = inputd +
inputB.

! In the future, we will support a quantifier-free first-order logic syntax.



The and operator can also be used to constrain the actors. Actors are only valid when the rule
constraints are valid. A design is only valid when all actors are valid.

4.6 Statements

The contents of a rule are composed of set of statements that execute in parallel. Each statement
contains an optional set of declarations followed by a set of paralle]l assignments. The structure
of a rule is shown below:

statement,
declaration
assignment,

assignment,

statement,
declaration
assignment,

assignment,

4.7 Declarations

Each statement may contain an optional declaration section. The declarations can be used in the
assignments of the statement. The structure of a statement with declarations is as follows:

let
val decl, = expr,;
val decl; = decl,;

val declg
in
assignment;

exXprg;

assignment,
end

The declarations between let and in are performed sequentially so earlier declarations can be used
in later ones. The assignments between in and end occur in parallel and can use any of the
declarations.

10



4.8 Assignments

The set of parallel assignments consist of assignment expressions, state write expressions, and
simulation expressions.

4.8.1 Output Assignments

Output assignments assign outputs to expressions on inputs and memory values. An additional
constraint is added to the rule constraints so that each output is only assigned a single value.
Assignment expressions have the form:

out = expr;
4.8.2 State Write

State writes are used to assign values to memories. State writes have the form:
mem{ expraqir] = expry;

State writes are non-blocking so the contents of the memory are updated at the end of the cycle.

4.8.3 Expressions

Each expr in the output assignments and state writes is composed of a combination of axiomatic
operations. All examples are shown with output assignments, but the left hand side of the assigns
can all be interchanged with mem{[expr,.4.].

4.8.3.1 Case

A case expression evaluates the first expression to determine what value to assign.

out = case (expr) { O => expry, |

n~-1 => exprp,.; |
_ => expr,

}

An ALU example using the case expression is shown below:

out = case (control){ 0 => inA + inB
1 => inA - inB
2 => inA * inB
3 => inA / inB
=> inA

}:

All case expressions must include a default case.

11



4.8.3.2 If-Then-Else

An if-then-else expression evaluates a Boolean expression bool_expr and then assigns the
expression expr; in the then section if bool_expr evaluates to true; otherwise, the expression expr;
in the else section is assigned. The format of an if-then-else expression is shown below:

out = if bool_expr then expr; else expry;

4.8.3.3 Conditionals

Conditional expressions provide an alternative syntax to the if-then-else expression. The format
of a conditional expression is shown below:

out = bool expr ? expr; : exprs;
4.8.3.4 State Read

A state read expression is used to access a particular location in a memory. The format of a read
expression is shown below:

out = mem(expragi,l:

4.8.3.5 Indexing

An indexing expression is used to extract a range of bits from any expression. The format of an
indexing expression is shown below:

out = (expr) [type;:type,);

The indexing expression provides an alternative to creating declarations. For example, the two
following statement using a declaration:

let

val tmp = inA + inB;
in

out = tmp[<max (inA.type, inB.type)> - 2:0};
end

is equivalent to the following statement using an indexed expression:

out = (inA + inB) [<max (inA.type, inB.type)> - 2:0];
The key difference between using a declaration and using an indexed expression is that the
declaration is created once (an implementation would share the hardware to produce the

declaration). In the case where the declaration is only used once, as in the example, the
constructs will result in equivalent implementations.

12



4.8.3.6 Concatenation

The concatenation expression is used to construct a new signal by combining signals.

out = {inA, inB};

In this case, out is signal with the bits of ind followed by the bits of inB.

4.8.3.7 Replication

The replication expression provides a shorthand for concatenating the same signal a set number of
times.

out = constant{inA};

In this case, out is signal with the bits of in4 replicated constant number of times.

4.8.3.8 Arithmetic Operators

The standard arithmetic operators that are found in standard hardware description languages, such
as Verilog and VHDL, and in standard high-level languages, such as C/C++ and Java, are
supported. The types of these arithmetic operators can be found in the type system section. The
supported operators are shown below:

out = expr; + exprs; // addition

out = expr; - expr; // subtraction
out = expr; * expry; // multiplication
out = expr; / expry; // division

out = expr; % expr,; // modulo

13



4.8.3.9 Bit Manipulation Operators

The standard bit manipulation operators that are found in standard hardware description
languages, such as Verilog and VHDL, are supported. The types of these bit manipulation
operators can be found in the type system section. The supported operators are shown below:

out = expr; & exprs; // bit-wise and

out = expr; ~& expry; // bit-wise nand

out = expr; | expry; // bit-wise or

out = expr; ~| exprs; // bit-wise nor

out = expr; * exprs; // bit-wise xor

out = expr; ~* expr,; // bit-wise xnor

out = expr; “~ exprs; // bit-wise xnor

out = expr; << expry; // logical shift left
out = expr; >> expr; // logical shift right
out = ~expr; // bit-wise invert
out = &expr; // and reduce

out = ~&expr; // nand reduce

out = |expr; // or reduce

out = ~|expr; // nor reduce

out = “expr; // xor reduce

out = ~“expr; // xnor reduce

out = “~expr; - // xnor reduce

4.8.3.10 Boolean Operators

The standard Boolean operators that are found in standard hardware description languages, such
as Verilog and VHDL, and in standard high-level languages, such as C/C++ and Java, are
supported. The types of these Boolean operators can be found in the type system section. The
supported operators are shown below:

expr; == expr, // equality

expr; '= expr, // inequality

expr; < exprs // less than

expr; <= expr; // less than or equal
expr; > expr; // greater than

expr; >= expr, // greater than or equal
bool_expr; && bool_expr, // Boolean and
bool_expr; || bool_expr, // Boolean or
{bool_expr // Boolean not

Currently, Boolean expressions can only be used within other expressions. It is not possible to
assign an output a Boolean type, nor is it possible to create a Boolean type input. This does not
mean you cannot perform Boolean operations; the bit manipulation operators on single bit
unsigned integers can be used to do this. In the future, this restriction will be removed (see future
enhancements). -

14



4.8.3.11 Symbols

The symbol expressions are used to access the individual bits of the inputs and outputs of the
actor. The following example shows how individual bits can be assigned and accessed:

out[30:0) = inA[31:1);
out[31] = inA[0]);

In the above case, the top 31 bits of ind are assigned to the lower 31 bits of out, and the upper bit
of out is assigned the lower bit of ind. Also note, in the case of a single bit, only one range
number is required (i.e. ind/0] is shorthand and equivalent to in4/0:0).

The range operator can also be used to reverse bits in an assignment as shown below:
out = inA[0:32);
In the above case, out is assigned the bits of in4 reversed.

In the examples above, the msb and Isb values in the ranges were all constants. The language
also allows these to be arbitrary types as was shown in the indexing expression example. We
could rewrite the first example in a polymorphic manner as:

out [out.type-2:0]) = inA[out.type-1:1];
out [out.type-1]) = inA{0];

4.8.3.12 Constants

Constants are defined in a manner similar to Verilog constants. Examples of constants are shown
below:

3747 // 3-bit decimal 7

3’D7 // 3-bit decimal 7

7 // decimal 7 (number of bits are unresolved)
6’045 // 6-bit octal 45 .

67045 // 6-bit octal 45 )

4’ he // 4-bit hex e

4’ He // 4-bit hex e

3’b001 - // 3-bit binary 001
3'B001 // 3-bit binary 001

The above examples demonstrates specifying constants when their widths are known. However,
when the number of bits is not known we are allowed to specify our constants to be polymorphic.
In any of the cases shown above, the number to the left of ’ can be specified as a type
expression. The definition of the constant actor as shown below takes advantage of this
construct:

15



Const (out, trigger) ({

output out;

input trigger;

or (

fire(trigger.p.1l, out.p.1) {

out =

}

<max (out.type,

floor (log(value) + 1)))’d value;

no_fire (trigger.p.0, out.p.0)

)
}

In the above example, the width of the constant is either large enough to represent the
environment variable value or it is 0-extended to be the width of out. If out is smaller than the

number of bits required to represent value, then this actor is in an illegal context.

4.9 Environment Variables

As shown in the constant actor expression, environment variables that evaluate to constant
unsigned integers are supported. These environment variables are specified outside the actor.

4.10 Operator Precedence

The order of operations follows that as defined in Verilog. The operator precedence is shown

below. All the operators associate left to right.

unary operators:! & ~& | ~ A AN + ~

If a different order is required then use parentheses.

*/ %
+ -
<< >>

< <= > >=

& ~& A A
[ ~

&&

I

?:

16
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4.11 Simulation Functions

In cases where the actor semantics language is not sufficient, simulation functions can be used.

Simulation functions can be used for analysis, debugging, and interfacing to other programs. The

simulation functions cannot change values in the simulation of the actor (i.e. they are read-only

black boxed components). Extreme caution should be practiced when using simulation functions

since they are not analyzed and could easily corrupt the generated simulators. Simulation

iunctions are ignored during hardware generation. An example of a simulation function is shown
elow:

#begin sim
print{ind) { cout << inA << endl; }
#end

Any simulation function must be prefixed by #begin sim and suffixed by #end. The body of the
simulation function contains a name, a parameter list of ports, and an arbitrary C++ expression.
A simulation function is translated into a C++ function. If the C++ is malformed, then it will
only be caught during compilation of the simulator, not during the generation.

Simulation functions execute in parallel with the other assignments. This requires that one
exercises caution when using simulation functions. For example if there are the two statements:

out = inA + inB;
#begin sim

print (out) { cout << out << endl; }
#end

1t is not clear what the value of out is since the statements are executed in parallel. If the value of
out = ind + inB for the current cycle is desired then the following should be used:

out = inA + inB;
#begin sim

print(inA, inB) { cout << (inA + inB) << endl; .}
#end

Using a declaration also solves the problem:

let
val tmp = inA + inB;
in
out = tmp;
#begin sim
print (tmp) { cout << tmp << endl; }
#end
end

A mechanism is available in the schematic editor to enable and disable the simulation functions
within an actor or hierarchical actor. For actors, there is a Boolean parameter called
includeSimulation. For hierarchical actors, there is a Boolean parameter called includeSimulation
and includeDescendantSimulation. If includeSimulation is true for some hierarchical actor, then
all of its descendants have their simulation functions enabled. If includeSimulation and
includeDescendantSimulation are true for all ancestors of an actor, then that actor has its

17



simulation functions enabled. In all other scenarios, the simulation functions for the actor are
disabled.

4.12 Lists

In order to better handle components that have the same basic semantic structure regardless on
the number of input or output ports they have, support for lists has been implemented. The
operations implemented only allow list manipulations in very controlled ways.

o The first list manipulation operation implemented allows for the generation of constraints
based on the size of sets. The description of base memory actors utilizes this construct as is
shown below:

Reg(readData, read, write, readAddr, writeAddr, writeData) {

output <writeData.type> RreadData;
input Qread;

input Q@write;

input <ceil(log(size))> @readAddr;
input <ceil(log(size))> RwriteAddr;
input <readData.type> @writeData;

reg mem size;

and (
foreach(i) {
or(
_read(read[$i).p.1, readAddr[$i].p.1, readData[$i].p.1) {
readData[$i) = mem([readAddr([$i]];
}
-ho_read(read($i).p.0, readAddr($i].p.0, readData[$i].p.0)
()
)
}
foreach(i) {
or{
_write(write[$i).p.1, writeAddr($i).p.1, writeData[$i].p.1) {
mem([writeAddr[$i]] = writeData[$i];
}
_no_write(write[$i]).p.0, writeAddr{$i).p.0, writeData([$i]).p.0)
{}

}

The above design is a polymorphic register file. The foreach expressions are interpreted with
replication semantics. For each list that is indexed by the foreach variable (in this case i ), we
determine which list has a maximum cardinality N. The expression in the foreach expression is
then replicated N times with i ranging from 0 to N-1. If we have a readData multiport (list) with
2 elements with a type of 32 bits, a writeData with 1 element, and a size of 32, then the following
actor description gets expanded into the following. Type resolution is also shown.
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Reg(readData, read, write, readAddr, writeAddr, writeData) {

output <32> readData[0];
output <32> readData{l]:;

input
input
input
input
input
input
input

<0>
<0>
<0>
<5>
<5>
<5>

read([0];
read[1l];
write([O0];
readAddr (0] ;
readAddr[1};
writeAddr(0]:;

<32> writeDatal[0];

reg <32> mem 32;

and (

or (

)

_read O(read[0).p.1, readAddr([0].p.1, readData([0].p.1l) {

}

readData[0] = mem[readAddr({0]]):;

_no_read_1(read[0]}.p.0, readAddr[0]).p.0, readData(0]}.p.0)

or(

)

(1

_read_2(read[l).p.l, readAddr[l].p.l, readData[l].p.1l) {

}

readData[l] = mem{readAddr(1]]:;

_no_read_3(read(l).p.0, readAddr{l1l).p.0, readData[l).p.0)

or(

}

8

_write_4(write([0].p.1, writeAddr(0].p.1l, writeData([0].p.1) {

}

mem({writeAddr[0)] = writeData[0);

_no_write 5(write(0).p.0, writeAddr([0).p.0, writeData[0].p.0)

)

{}

The resulting expansion yields a two read port, one write port 32-bit register file with 32
individual registers. To change the number of registers change size. To change the type, set the
type of the read or write data port. To change the number of ports, simply add or remove
relations to the read and write data ports. The resolved types of width 0 should be interpreted as
these ports do not contain any information for the data path. This is because they are simply
being used to constrain the control.

By default, an unconnected port is assumed to have one connected relation. This was chosen to
stress the fact that foreach expressions only have replication semantics. If no relation was
connected to the write data port in the above design, the same expansion would have occurred.
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¢ The second list manipulation operation implemented allows for the generation of lists of input
and output port bindings within a rule. The description of a polymorphic mux utilizes this
construct as is shown below:

Mux (out, din, select) {

output out;
input <out.type> @din;
input select;

or(
foreach (i) {
fire(out.p.1l, din($i).p.1,
foreach(j) { if ($i != $3) din[$3).p.0 },
select.p.l.e) {
out = din[$i];
}
}
no_fire(out.p.0, @din.p.0, select.p.0.e) {}
)
}

The above describes a N:1 mux where N is the cardinality of the list on din. An enumerated
binding has also been used here. This means that there is a unique value in the enumeration of
select for each of the N din inputs. The nested foreach expression here allows for the selection of
1 of N signals. The only comparison allowed is inequality. The @ construct in the no_fire rule
means that each element in the dir list is bound to .p.0. If din was connected to 2 relations and
had a width of 10, then the following expansion would occur. Type resolution is also shown.

Mux (out, din, select) ({

output <10> out;

input <10> din[0];
input <10> din([1);
input <0> select;

or (
fire O(out.p.1, din[0).p.1, din(1].p.0, select.p.l.e) {
out = din{0]; -
) -
fire_l{out.p.l, din[0).p.0, din[1].p.1, select.p.l.e) {
out = din[1l}; :
}

no_fire 2(out.p.0, din{0].p.0, din[1]).p.0, select.p.0.e) {}
}
Again, the select signal resolves to a width 0 signal since it only provides control constraints.

Any other mux can be generated by connecting a different number of relations to din and by

changing either the type of din or out. Furthermore, a 1:N demux has a similar construct except
that the semantics of fire are out/$i] = din.
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The third list manipulation operation implemented allows for the generation of multiple

assignments. The description of a polymorphic data demux utilizes this construct as is shown
below:

DataDemux (out, din, select) {

output @out;
input <out.type> din;
input select;

or(

fire(Gout.p.1l, din.p.1, select.p.l) {
foreach(i) ({

out[$i) = case select of $i => din | _ => <out.type>'d0;
}

}
no_fire(@out.p.0, din.p.0, select.p.0) {}

}

The above construct allows for an arbitrary 1:N demux. A unique assignment is made to each

element of out. If out was connected to 2 relations and had a type of 7 then the following
expansion would occur. Type resolution is also shown.

DataDemux (out, din, select) {

output <7> out(0];
output <7> out[1]);
input <7> din;
input <2> select;

or (
fire(out[0).p.1, out(l].p.1l, din.p.1, select.p.l) {
out[0) = case select of 0 => din | _ => 7'd0;
out[l]) = case select of 1 => din | _ => 7'd0; -

}
no_fire(Qout.p.0, din.p.0, select.p.0) {}

}

In the case of data demux, the select signal is actually used in the data path, so it has a width (in
this case a width of 1).
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e The final list manipulation operation implemented allows for the generation.of multiple
match assignments within a case expression. The description of a polymorphic data mux
utilizes this construct as is shown below:

DataMux (out, din, select) {

output out;
input <out.type> @din;
input select;

or (
fire(out.p.1l, @din.p.1l, select.p.l) {
out = case select of
foreach (i) {
$i => din[$%$i] |
}
_ => <out.type>'d0;
}
no_fire (out.p.0, @din.p.0, select.p.0) ()
)
}

The above description allows for an arbitrary N:1 data mux. If din was connected 2 relations and
had a width of 66 then the following expansion would occur. Type resolution is also shown.

DataMux (out, din, select) {

output <66> out;

input <66> din[0);
input <66> din[1);
input <1> select;

or(
fire(out.p.1l, din{0).p.1, din(1}.p.1, select.p.l) {
out = case select of 0 => din{[0] |
1 => din[1] |
=> 66'd0;

}
no_fire(out.p.0, din{0].p.0, din{l).p.0, select.p.0) {}
)
}

The above examples demonstrate some of the uses of the four Joreach expressions. More
examples include the relation, distributor, and flipflop. In the future, the use of foreach may be
extended in order to create more sophisticated expansions. Also, more comparison operators may
be introduced to control expansions.

4.13 Type Resolution

As shown in many of the previous examples, types can be specified as constants, as expressions
in terms of other ports’ types and constants, or left unspecified. Allowing such freedom provides
the designer a means to design type polymorphic actors. In order to resolve the unspecified types,
a type resolution algorithm was implemented. The type resolution algorithm propagates types
form sources to sinks by using the default typing rules as well as the user defined types. Type
resolution errors will be indicated in cases where there is a type conflict and where a type cannot
be resolved. The type expressions have been developed in a way that type resolution proceeds in
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a mom_)tonic increasing manner. If it turns out that the types are not converging then a type
resolution error indicating that a type resolution cycle has occurred is displayed.

When generating the operations, there can be unresolved types, but all types must be resolved
before generating the simulators and hardware. As seen in previous examples, it is possible to
resolve a type to a 0 width bit type. A 0 width type indicates that the port contains no information
for the data path. It does not mean that the signal disappears. It is up to the controller synthesis
to determine the true width of 0 width type ports.

4.14 Methodology of Designing an Actor

An actor is designed by describing the valid firing constraints and what actions should occur
when the constraints are met. If possible an actor should be designed as a polymorphic actor. A
designer must consider how his or her actor should behave in the context of a network of actors.
After constructing a network of actors, the Tipi tools statically analyze and solve the constraints
to determine all the valid source to sink minimal operations (independent operations are not
combined to create product operations). Sources are all the input ports to a MescalPE and all the
read ports of memory elements. Sinks are all the output ports of a MescalPE and all the write
ports of memory elements. The set of minimal operations represent the architecture. The
supporting control for these minimal operations are automatically generated. To summarize, the
constraints specified by all"the actors in a network are statically analyzed and solved in order to
export the architecture as a set of minimal source to sink operations.

4.15 Possible Future Enhancements

There are two possible future enhancements that should be explored. The first extension would
allow for a richer set of constraints. The second extension would allow actors to defer their
definitions to black boxed components.

4.15.1 Quantifier Free First Order Logic on Constraints

As mentioned earlier, it would be nice to be able to specify constraints on control signals. There
is no reason why we cannot support this in the existing framework. If one wants to always fire
two memory actors at the same time, there is no way to use the existing hierarchy to make this
happen. There are two ways that one could get this behavior. The first method is to combine the
two memory actors into one actor. The second method is to use the constraints view to create a
spatial constraint. Basically, we want a way to specify the constraints that would be currently
specified in the constraints view in the actor language. This requires constraints across the
hierarchy. Furthermore, to ease the specifying of constraints it would be nice to support
quantifier free first order logic instead of only product of sums. -
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4.15.2 Read and Write Black Boxed Components

Currently simulation functions are read only. This certainly gives guarantees on the safety of the
generated simulators, but fails to allow a designer to use a black boxed component within an
actor. In the future, the language may support read and write black boxed components. The main
disadvantage of supporting this feature is that it allows arbitrary code, which cannot be analyzed,
to interact with the simulator.
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S

Analyzable Actor Language Grammar

/* C-style /* */ and C++-style // comments are supported */

precedence
precedence
precedence
precedence
precedence
precedence
precedence
precedence
precedence
precedence
precedence

actor

port_list

program

memory_list

io list

memory

{0-71+
[0-9a~-fA-F]+
se= [0-1])+
[(~#1*

*, /I%
!, UAND, UNAND, UOR, UNOR, UXNOR1l, UXNOR2, ~

-’

= ((_*[a-2A-2]}+) | (_+[a-2zA-20-9]+)) [_a-zA-20-9] *
= [0-9]+

foreach, #begin sim, and, or, ID

1]

ID ( port_list ) { program }
ID , port_list

|
ID

io_list memory list rule constraint

|
lo_list rule constraint

memory memory list

!
memory

io_list input
lq_list output
lnput
Lutput

reg ID ;

Leg < type > ID ;

Leg ID NUMBER ;

Leg < type > ID NUMBER ;
éf ID ;

éf < type > ID ;

éf ID NUMBER ;

|
ff < type > ID NUMBER
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input ::= input io_definition ;
output ::= output io_definition ;
io_defintion ::= ID

l type > ID

¢

| N
< type > @ ID

type ::= max_type expr
zlnax_type_expr + type
l( max_type expr )
rlnax__type_expr - type_expr
tlzype_expr

max_type_expr ::= max ( max_type expr list )

0

max_type expr list type_expr , max type expr list
|

type expr

type_expr ] type _expr + type expr
Lype_expr - type_expr
Jl.og { type_expr )
éeil ( type_expr )
;.loor ( type expr )

|( type _expr )

Itype_.id

type_id ::= NUMBER
|
ID . type

|
@ ID . type

I
instruction . type

/* currently, support only exists for POS formulations */
/* arbitrary AND-OR expressions will eventually be supported */

rule_constraint ::= and ( rule constraint_list )

I
or ( rule_constraint_list )

i
rule list

I
foreach ( ID ) { rule constraint list }
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rule constraint list ::= rule constraint rule constraint list
I
rule constraint

rule list ::= rule rule_list
[
rule
rule ::= ID ( symbol decl list ) {}

I
ID ( symbol decl list ) {statement_list)

symbol_decl ::= 1ID dotted

|
@ ID dotted

I
foreach symbol_ decl

symbol_decl list 22

foreach _symbol , symbol decl_list
;ymboL_decl r Symbol decl list
}oreach_symbol

Lymbol_decl

0

foreach_symbol foreach ( ID ) { foreach cond
foreach_symbol decl }

i
foreach ( ID ) { foreach_symbol_decl }

foreach_symbol_decl ::= ID [ $ ID ) dotted

foreach cond ;:= if ( $ ID != $ ID)
statement list ::= statement statement_list
.Ista tement
statement ;2= let decl list in statement_expr list end

I
statement_expr_list

decl list ::= decl decl_list
Lecl
decl ::= val ID = expr :;
Lal < type > ID = expr ;
statement_expr list ::= statement expr statement expr list
Ltatemen;_expr
statement_expr ::= foreach ( ID ) { statement_expr }

|
#begin sim simulation function #end
|
symbol expr
|
ID [ expr ]

expr ;

expr ;
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simulation_function

function param list

expr

ID ( )

|

ID ( function param list )
!

ID ( ) SIMEXPR

|
ID ( function param list ) SIMEXPR

symbol_expr , function param list
|
symbol_expr

case_expr
.!ite_expr
.Lymbol_expr
;ndexed_expr

clronca tenation expr
l‘epl ication expr
Iconst_exp.r

I( expr )

Lool_expr ? expr : expr
lzxpr + expr

éxpr - expr

éxpr * expr

:::D [ expr ]

<|-:-xpr / expr

glexpr % expr

tlaxpr & expr

Iexpr ~& expr

prr | expr

e’!xpr ~| expr

prr ~ expr

éxpr ~* expr

éxpr “~ expr

<Iaxpr << expr

éxp: >> expr

-l- expr

|
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& expr UAND
|

~& expr UNAND
: expr UOR
ll expr UNOR
’l‘ expr UXOR
-lv" expr UXNOR1
'|‘~ expr UXNOR2

const_expr :

decimal_ number
I

octal number

|

hex_number

|
binary_number

decimal number ::= NUMBER
|
NUMBER decimal_ base NUMBER

|
< type > decimal base NUMBER

octal_number ::= NUMBER octal_base NUMBER

I
< type > octal base OCTAL NUMBER

hex _number ::= NUMBER hex base NUMBER

|
< type > hex base HEX NUMBER

binary number ::= NUMBER binary base NUMBER

|
< type > binary base BINARY NUMBER

decimal_base r:= 'd | D
octal_base rx= Yo | YO -
hex base 2= *h | ‘H
binary base ::= ‘b | 'B
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bool expr ::= expr == expr
expr != expr

expr < expr

prr <= expr

l:-xpr > expr

prr >= expr

I( bool_expr )
leool_expr && bool_expr
]

bool_expr || bool_expr
:bool_expr

case_expr ::= case expr of case _statement

case_statement :s= foreach ( ID ) { $ ID => expr | } _ => expr
tlnatch_expr_list _ => expr

match_expr_list f:= match_expr match expr list

|
match_expr

match _expr ::= NUMBER => expr |
ite_expr ::= if bool expr then expr else expr
iconcatenation_expr ::= { concatenation list )}
concatenation list ::= expr , concatenation_ list

el-:-xpr
replication_expr ::= NUMBER { expr }
dotted 2= .p.1 | .p.0 | .p.l.e | .p.0.e

|
.p.l.op | .p.0.0p

indexed expr ::= ( expr ) [ type )
|
( expr ) [ type : type )

symbol expr ::= 1ID
}D [ type ]
iD [ type : type )
Z:ID [ $ID)
::ZD[$ID] [ type )
1D[$ID] [ type : type ]
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6 Probe Language

Probe actors have the same semantics as analyzable actors, but only support write expressions in
the assignments section. Probe actors also have the requirements that their firing rule constraints
are a tautology. The tautology requirement guarantees that probe actors do not introduce any new
semantics to the design. Furthermore, probe actors can only have inputs.

6.1 Write Expressions

A write expression is used to print an expression to standard out. The format of a write
expression is shown below.

_write(expr);

Any expression, as defined in the analyzable actor language, can be used as the argument to
__write. An example probe actor is shown below:

Probe (din) {
input din;

or(
fire(din.p.1) {
__write(din);
}
no_fire(din.p.0) {}
)
}

The probe actor is used to analyze the input signal. Note that the constraints are a tautology (i.e.
if din is present do fire, else if din is not present do no_fire).
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7  Probe Language Grammar

/* C-style /* */ and C++-style // comments are supported */

((_*[a-2R-2]+) | (_+[a-2zA-20-9]+)) [_a-2A-20-9)*

UNOR, UXNOR1, UXNOR2,

or, ID

ID ( port list ) { program }

ID HEES
NUMBER ::= [0-9]+
OCTAL_NUMBER ::= [0-7]+
HEX NUMBER ::= [0-9a-fA-F)+
BINARY NUMBER ::= [0-1]+
precedence left ?, :
precedence left ||
precedence left &&
precedence left |, ~|
precedence left &, ~&, *~, ~*
precedence left ==, l=, <, <=, <, >=
precedence left <<, >>
precedence left +, -
precedence 1oft *, /[, %
precedence .2t !, UAND, UNAND, UOR,
precedence left foreach, #begin sim, and,
actor 2=
port_list ::= 1ID , port list
|
ID
program ::= do_list rule constraint
io_list ::= lo list input
|
input
input dr=

io defintion

type

max_type_expr

max_type expr_list =

::= 1ID
|

input io definition ;

< type > ID

|
e Ip
I
<

type > @ ID

max_type_expr

max_type expr + type

( max_type_expr )

max_type expr - type_expr

|
type expr

s:= max ( max_type expr list )

|
type_expr

type_expr , max_type expr_list
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type_expr )

type expr + type expr
tl:ype_expr - type_expr
Jl.og ( type_expr )
éeil ( type_expr )
f':'loor ( type _expr )

I( type_expr )

::ype_id

type id ::= NUMBER
:::D . type
(!! ID . type
::.nstruction . type

/* currently, support only exists for POS formulations */
/* arbitrary AND-OR expressions will eventually be supported */

rule constraint ::= and ( rule constraint list )
I

or ( rule constraint_list )
I
rule list

I
foreach ( ID ) { rule constraint list }

-rule constraint list ::= rule constraint rule constraint list
I
rule constraint

rule list ::= rule rule list
|
rule
rule ::= 1ID ( symbol decl list } {}

i
ID ( symbol_decl list ) {statement_list}

symbol_decl ::= ID dotted
|
@ ID dotted
|
foreach_symbol_decl

symbol_decl_list ::= foreach symbol , symbol decl list
.Isymbol_decl , symbol decl list
.Iforeach_symbol
.Isymbol_decl

foreach_symbol ::= foreach ( ID ) { foreach cond

foreach_symbol_decl }

|
foreach ( ID ) { foreach_symbol_decl }
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foreach symbol decl ::= 1ID [ $ ID ] dotted

foreach_cond s:= if ( $ ID = $ ID )
statement_list ::= statement statement_ list
Ltatement
statement ::= let decl list in statement_expr_list end

!
statement_expr list

decl list ::= decl decl list

!
decl
decl ::= wval ID = expr ;

|
val < type > ID = expr ;

Statement_expr_ list ::= statement_expr statement_expr list

!
statement_expr

statement expr ::= foreach ( ID ) { statement_expr }

|
__write ( expr ) ;

expr ::= case_expr
ite_expr
Lymbol_expr
.iindexed_expr
l:onca tenation expr
Lepl ication_expr
(I:onst_expr -
I( expr ) -
l'aool_expr ? expr : expr
clexpr + expr
éxpr - expr
prr * expr
<Iaxpr / expr
éxpr % expr
éxpr & expr
;Iexpr ~& expr
l:'xpr | expr
|
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expr ~| expr
|
expr * expr
|
expr ~" expr
I
expr “~ expr
|
expr << expr
l
expr >> expr
|

~ expr
l expr UAND
'!-& expr UNAND
: expr UOR
’!'I expr UNOR
. expr UXOR
-I-" expr UXNOR1
’I‘~ expr UXNOR2

const_expr :

decimal number
|

octal_ number

|

hex_number

!
binary number

decimal_number ::= NUMBER
I
NUMBER decimal_base NUMBER

I
< type > decimal base NUMBER

octal number ::= NUMBER octal base NUMBER

I
< type > octal_base OCTAL NUMBER

hex_number ::= NUMBER hex base NUMBER

|
< type > hex base HEX NUMBER

binary number ::= NUMBER binary base NUMBER

!
< type > binary base BINARY NUMBER

decimal_base ;:= | D _
octal base ::= ‘o | YO
hex_base ::= *h | ‘H
binary base i:= ‘b | ‘B
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[}

bool_expr

expr == expr
|

expr != expr

elexpr < expr

;xpr <= expr

claxpr > expr

éxpr >= expr

I( bool_expr )
llaool_expr && bool_expr
Ilaool_expr Il bool expr
:bool_expr

case_expr : case expr of case_statement

..

i

case_statement : foreach ( ID ) ( $ ID => expr | } _ => expr

|
match_expr _list _ => expr

match expr list s:= match_expr match expr list
|
match_expr

match_expr ;= NUMBER => expr |

..

ite expr :

if bool expr then expr else expr

concatenation_expr 2z { concatenation list }

concatenation list :

n

expr , concatenation list
|

expr
replication_expr ::= NUMBER { expr }
dotted 2= .p.1 | .p.0 | .p.l.e | .p.0.e
!p.l.op | .p.0.op
indexed _expr ::= (expr) [ type ]
I( expr ) [ type : type )
symbol_expr ::= ID

}D [ type ]

]':D [ type : type )

::ZD [ $ ID )
:'[D[SID][type]

:::D [ $ID ] [ type : type )
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8 Simulator-Only Language

Simulation-only actors have the same semantics as probe actors, but only support simulation
functions in the assignments section. Simulation-only actors also have the requirements that their
constraints are a tautology. The tautology requirement guarantees that simulation only actors do
not introduce any new semantics to the design. Since simulation functions are read-only black
boxed components, these actors are passive and cannot influence the simulation. Furthermore,
these actors can only have inputs.
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9  Simulator-Only Language Grammar

/* C-style /* */ and C++-style // comments are supported */

ip 1= ((_*[a-zA-Z]+) | (_+[a-2A-20-9]+)) [_a-zA~20-9]*
NUMBER ::= [0-9])+
SIMEXPR ::= [~#]*

precedence left foreach, and, or, ID

actor :2:= ID ( port_list ) { program }

port_list ::= ID , port list

m
program ::= 1io_list rule constraint
io_list ::= io_list input

.:anut
input ::= input io_definition ;
io defintion ::= ID

L type > ID

¢

|
< type > @ 1ID

type 22 max_type expr
tirax_type_expr + type
|( max_type expr )
rlnax_type_expr - type expr
|

type expr
max_type expr ::= max ( max_type expr list )
max_type expr list s:= type expr , max_type expr_list
::ype_expr
type_expr $i= type expr + type_expr

tl:ype_expr - type_expr
]|.og ( type_expr )
‘.l,eil ( type_expr )
éloor ( type expr )

I( type expr )

|
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type id

type_id r:= NUMBER
|
ID . type
]
@ ID . type
|
instruction . type

/* currently, support only exists for POS formulations */
/* arbitrary AND-OR expressions will eventually be supported */

rule constraint ::= and ( rule constraint_ list )

I
or ( rule_constraint_list )

I
rule list

|
foreach ( ID ) { rule constraint list }

rule constraint list ::= rule constraint rule constraint list

|
rule constraint

rule list ::= rule rule list
I
rule
rule ::= ID ( symbol decl list ) ({}

|
ID ( symbol decl list ) {statement_list}

symbol_decl ::= 1ID dotted
|
@ ID dotted
|
foreach_symbol_decl

symbol_decl list

foreach _symbol , symbol_decl list
Lymbol_decl , Symbol decl list
Loreacﬁ_symbol

Lymbol_decl

.

foreach symbol foreach ( ID ) { foreach cond
foreach symbol_decl }
|

foreach ( ID ) { foreach symbol decl }

foreach symbol decl ::= ID [ $ ID ] dotted

foreach_cond s:= if ( $ ID != $ ID)

statement_list ::= statement statement list
Ltatement

statement ::= statement_expr list

statement expr list ::= statement_expr statement expr_list
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statement_expr

simulation_function

function param list

dotted

symbol_expr

statemen t_expr

foreach ( ID ) { statement_expr }

simulation function

ID
|
ID
!
ID

|
ID

()

( function param list )

{ ) SIMEXPR

( function param list ) SIMEXPR

symbol_expr , function param list

symbol expr

.p.1 1 .p.0 | .p.l.e | .p.0.e
!p.l.op | .p.0.op

ID

{D [ type ]

;D[ type : type ]

}D [ $ ID ]
:IIDISID][type]

{D[ $ID) [ type : type ]
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10 Type System

The type system supports two types. The first type is an arbitrary width unsigned integer (two’s
compliment). The second type is Boolean. Inputs and outputs of actors must be unsigned
integers, but within the expressions for an actor, Booleans can be used.

10.1 Type Resolution Rules

tl : UINT(n) t2 : UINT(m)

tl (+,-,%,%,&,~& },~1,",~","~) t2 : UINT(max(n, m))

tl : UINT(n) t2 : UINT(m) t3 : UINT(m) ... tN+1 : UINT (m)

case t1 of nl => t2 | n2 => t3 | _ tN+1 : UINT(m)

tl : UINT(nl) t2 : UINT(n2) ... tN : UINT(N)

(tl, t2, ... tN) : UINT(nl + n2 + .. N)

tl : bool t2 : UINT(n) t3 : UINT(m)

tl ? t2 : t3 : UINT(max(n, m))

tl : bool t2 : UINT(n) t3 : UINT(m)

if tl then t2 else t3 : UINT(max(n, m))

tl : UINT(n) t2 : UINT(m)

tl / t2 : UINT(n)

tl : UINT(n)

— — —— - —— e e e e

(tl) [msb:1sb] : UINT(abs(msb - 1lsb) + 1)

tl : UINT(n)

nl => tl : UINT(n)

t : UINT(n)

N {t} : UINT(N * n)

tl : UINT(n) t2 : UINT(m)

tl (<<,>>) t2 : UINT(n)
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t ¢ UINT(n)

mem[tl] : UINT (widthpen)

t : UINT(n)

~t : UINT(n)

t : UINT(n)

(&, ~&, le~le®p~","~)t ¢ UINT (1)

tl : UINT(n) t2 : UINT (m)

tl (==,!=,<,<=,>,>=) t2 : bool

tl : bool t2 : bool

tl (&&,11) t2 : bool
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11 Assembly Language

The assembly section allows for the description of a program in terms of operations. Each line of
an assembly program represents a set of operations separated by commas that are executed in
parallel (this is called an instruction). If an operation requires arguments, then they are specified
after the operation. Consecutive lines represent a sequence of instructions to be executed. An

example assembly program is shown below:

{i_10, i_2(2)}
{i_3(), i_4(1,100)}

The above program executes i /() and i_2(2) in parallel and then executes i_3() and i_4(1,100) in
parallel. Also the lines can be thought of location 0 and 1. This allows for the implementation of

jumps.
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12 Assembly Language Grammar

/* C-style /* */ and C++-style // comments are supported */

ID 1=
NUMBER ::= [0-9]+
instructions 2=

labeled _instruction _set ::=

instruction_set 1:=

instruction_list s:=

instruction Pr=

parameter list 1=

parameter 2=

((_*[a-zA-Z)+) | (_+[a-2A-20-9]+)) [_a-zA-20-9]*

labeled_instruction_set instructions

!
labeled_instruction_set

ID : instruction_set

|
instruction_set

{ instruction list }

instruction , instruction list

|
instruction

ID ()

!
ID ( parameter list )

parameter , parameter list

!
parameter

NUMBER

I
ID



13 Constraints Language

The constraints language is utilized to specify spatial and temporal constraints. Constraints can
be specified between operations, between operations and constraints, and between constraints.
Spatial constraints are specified using ||. Temporal constraints are specified using ;. An example
constraint is shown below:

foo(a,b,c) = (i_1(a) |1 i_2(b,c)) ; i_3(4)

The foo(a,b,c) constraint says that i_I(a) and i_2(b,c) should execute in parallel, followed by
i_3(4). Notice how variables and constants can be used.
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14 Constraints Language Grammar

/* C-style /* */ and C++-style // comments are supported */

ip

2:= ((_*[a-2zA-2]}+) | (_+[a-2A-20-9]+)) [_a-2zA-20-9] *
NUMBER ::

[0-9]+

precedence right ;
precedence right ||

constraints ::= constraints ; constraints
Lonstraints || constraints
l constraints )
éonstraint

constraint ::= ID
iD ()

|
ID ( parameter_list )

parameter_list ::= parameter , parameter_list
|
parameter
parameter ::= NUMBER
|
IDp
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