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Abstract

In this paper we examine a general method of approximation, — known
as Kikuchi epprozimation method, — for finding the marginals of a product-
distribution. The Kikuchi approximation method defines a certain con-
strained optimization problem, called the Kikuchi problem, and treats its
stationary points as approximations to the desired marginals. In this paper
we show how to associate a graph to any Kikuchi problem, and describe
a class of local message-passing algorithms along the edges of any such
graph, which attempt to find the solutions to the problem. We give con-
ditions under which such algorithms converge to a stationary point of the
optimization problem. Implementation of these algorithms on graphs with
fewer edges require fewer operations in each iteration. We therefore char-
acterize minimal graphs for a Kikuchi problem, which are those with the
minimum number of edges, and show that all such minimal graphs have the
same number of loops and share several important connectivity properties.
We show that if the minimal graph is cycle-free, then Kikuchi approxi-
mation method is exact and the converse is also true generically; together
with the fact that in the cycle-free case the above-mentioned iterative algo-
rithms are equivalent to the well-known belief propagation algorithm, our
results imply that, generically, Kikuchi approximation method can be exact
if and only if traditional junction tree methods could also solve the problem
exactly.



1 Introduction

In its most general form, the problem of finding the marginals of a product-
function is encountered frequently in various branches of science and engineering.
An important special case, the probabilistic inference problem (Cowell et al., 1999),
is to infer the most probable scenarios, given a collection of observations. Under
a Bayesian causality model, this is equivalent to finding the marginals of a joint
probability distribution which is in the form of the product of certain conditional
probability functions. Applications of the probabilistic inference problem range
from medical diagnosis to speech recognition and error-correcting codes.

Example 1. Consider the soft decoding of an (n,k) binary linear code with
(n— k) x n parity check matrix H, see e.g. (Wicker, 1995). Let P(x;y*) represent
the joint a posteriori probability density of bits of a codeword x := (z1,- - ,Ta),
with noisy observations y* := (¥}, --,¥s) over a binary memoryless channel.
Then P(x;y*) can be represented as the product of some indicator functions
representing the parity checks between the bits of the codewords, as well as con-
ditional probabilities representing the noisy observations:

n—k

1 n n
Px;y) = 7 [[10Q_ Hisz; = 0) ]| P(z:) P(yi =)
i=1 j=1 j=1
where 1(-) is the indicator function, taking values 1 or 0 depending on whether its
argument is true or false; Z is a normalizing constant called the partition function.
In this case, the marginal P;(z;;y") is used to find the most probable value of the
ith bit. 0

In some applications, one is mainly interested in calculating the partition func-
tion:

Example 2. In a circuit-switched network one is interested in finding the invariant
distribution of calls in progress along routes of the network. It can be shown, see
e.g. (Walrand and Varaiya, 1996), that the invariant distribution has the form

w(z1, -, Ty) = q1(z1) »-éQM(SL'M) Hl(Z 2 < ny)

Jj=1 i€R;



Here M is the total number of routes, z; is the number of calls along route 4, g;(z:)
is the (known) invariant distribution of z; if the links had an infinite number of
circuits, L is the number of links in the network, n; is the capacity of link j,
and R; C {1,---, M} is the index set of routes that use link j. Finally Z is the
partition function, defined by

M L
Z = Z HQZ(SC,)H 1(2 x; < nj).

Ty, ,xpm t=1 j=1 i€R;

Therefore in order to calculate the invariant distribution, one only needs to cal-
culate the partition function Z. O

As another example, in thermal physics one can derive various thermodynami-
cal properties of a system, such as the average energy and entropy, if the partition
function is known as a function of the temperature, see e.g. (Kittel and Kroemer,
1980). '

Although the general marginalization problem can be exponentially complex,
scientists and engineers have long explored ways to reduce the computational
complexity of the calculations required to find the marginals, either exactly or ap-
proximately, see e.g. (Pearl, 1988; Aji and McEliece, 2000; Morita, 1994; Yedidia
et al., 2001; Luby, 2002; Pakzad and Anantharam, 2004). Most approaches use a
graphical model to represent the interdependence of variables in the factor func-
tions, and use message-passing algorithms on this graph to localize the calcula-
tions. Belief propagation (Pearl, 1988) is one such algorithm. The success of
low-density parity check (LDPC) codes (Gallager, 1963; MacKay and Neal, 1995)
and turbo codes (Berrou et al., 1993) which are decoded using instances of the
belief propagation algorithm on a loopy graph (McEliece et al., 1998), motivated
many communications engineers to look more closely at belief propagation and
junction graphs. So far, however, a general characterization of the quality of ap-
proximation and convergence properties of loopy belief propagation has not been
discovered, despite a number of excellent partial results which have considerably
increased our understanding of the dynamics of such algorithms, see e.g. (Richard-
son and Urbanke, 2001; Weiss, 2000; Richardson et al., 2001; Divsalar et al., 1998;
Richardson, 2000; MacKay and Neal, 1995).



It was shown recently in (Yedidia et al., 2001) that there is a close connection
between loopy belief propagation and certain approximations to the variational
free energy in statistical physics. Specifically, as we will also discuss in this pa-
per, the fixed points of the belief propagation algorithm were shown to coincide
with the stationary points of Bethe free energy subject to consistency constraints.
Here, Bethe free energy is an approximation to the variational free energy. The
Bethe approximation is only a special case of a more general class of approxima-
tions called Kikuchi approzimations (Kikuchi, 1951). A class of iterative message-
passing algorithms was introduced in (Yedidia et al., 2001), which attempt to find
the stationary points of Kikuchi free energy. Using such message-passing algo-
rithms is expected to result in approximations that are closer to the marginals
than are the ones given by belief propagation.

In this paper we will explore a wide range of ideas related to the Kikuchi ap-
proximation method. In particular, we discuss necessary conditions for uniqueness
of the minimizers of the Kikuchi free energy, introduce graphical representations
for the problem, and define minimal graphical representations, which result in it-
erative solutions that are often significantly less complex than the algorithms dis-
cussed in (Yedidia et al., 2001), (Yedidia et al., 2002) and (McEliece and Yildrim,
2003). Furthermore, we will show that, for generic problems, Kikuchi approxima-
tion yields the exact marginals if and only if this minimal graphical representa-
tion of the Kikuchi problem is loop-free.! We will also address the more general
problem of approximating the entropy of a product distribution in terms of the
entropies of its marginals.

Other researchers have developed various techniques based on related ideas,
each with specific advantages over traditional loopy belief propagation. Yuille
(Yuille, 2002) derived a ‘double-loop,’ free-energy minimizing algorithm that is
guaranteed to converge, unlike loopy belief propagation. Welling and Teh (Welling
and Teh, 2001) formulate an algorithm of gradient descent type, which is guar-
anteed to find a fixed point of Bethe free energy. Wainwright and Jordan (Wain-
wright and Jordan, 2003) discuss convex relaxations of the variational principle,
resulting in efficient algorithms which yield upper bounds to the partition function.

1 By ‘Kikuchi problem’ we mean the problem of minimizing the Kikuchi free energy, subject
to some consistency constraints.



The outline of this paper is as follows: We define the marginalization problem
and set up some necessary notation in Section 2. In Section 3 we review the
connection with methods in statistical physics, define the Kikuchi approximation
method as one which approximates the desired marginals as the constrained fixed
points of an appropriately-defined ‘free energy functional’, and further show that
there are iterative message-passing algorithms whose fixed-points correspond to
the stationary points of the Kikuchi functional. Sufficient conditions for convexity
of the Kikuchi functional are also provided. The restriction of these results to the
Bethe case gives a strengthening of the famous single-loop criterion of

In Section 4 we introduce the notion of graphical representations for a Kikuchi
problem, establish the connection with junction trees, and prove results on the
exactness of Kikuchi approximation. In Section 5 we derive the generalized belief
propagation (GBP) algorithm of (Yedidia et al., 2001) on any arbitrary graphical
representation of a Kikuchi problem. This is a generalization of results in (Yedidia
et al., 2002) and (McEliece and Yildrim, 2003). Some experimental results are
reported in Section 6, comparing the convergence properties of GBP algorithm as
presented in (Yedidia et al., 2002) and (McEliece and Yildrim, 2003), with the
most compact GBP algorithm derived in this paper.

2 Problem Setup

Let x := (2o, + ,Tn-1), where for each i € [N] := {0,--- , N —1}, z; is a variable
taking value in [g;] := {0,--- ,¢; — 1}, with ¢; > 2. '

Let R be a collection of subsets of [N]; we call each 7 € R a region. We assume
that each variable index i € [N] appears in at least one region r € R.

Associated with each region r € R is a nonnegative kernel function, o, (x,),
depending only on the variables that appear in 7. Then the corresponding R-
decomposable (Boltzmann) product distribution is defined as

1
B(x):= I e (x0) (1)
reR
Here Z is the normalizing constant and is called the partition function. For a
subset s C [N], we denote by B,(xs) 1= ) B(x) the s-marginal of B(x).

XINNs



Problem: The problem considered in this paper is that of finding one or more of
the B, (x,)’s for 7 € R, and/or the partition function Z. O

The methods developed in this paper to solve this problem are best described
in the language of partially ordered sets or posets, see e.g. (Stanley, 1986). Specif-
ically, the collection R of regions can be viewed as a poset with set inclusion as
its partial ordering relation. This is because inclusion is reflexive (Vr € R, C T),
antisymmetric (r C s and s C r implies 7 = s), and transitive (r C sand s C ¢
implies 7 C t). We write 7 C ¢ to denote strict inclusion. We say ¢ coversu in R
and write u < t, ifu,t € R, uCtand AvE€ Rst. uCv Ct.

Definition. Given a poset R, its Hasse diagram Gp is a directed acyclic graph
(DAG)?, whose vertices are the elements of R, and whose edges correspond to
cover relations in R, i.e. an edge (t — u) exists in Gg iff u < . O

It follows that for any two distinct nodes r,s € R, we have r C s iff there is a
directed path from s to r in Gg.

Throughout this paper we will need the following definitions. Let R be a poset
of subsets of [N] with the partial ordering of inclusion. For each subset r C [N]
we define:

Ancestors: A(r):={s€e R : rCs}
Descendants D(r):={s€R:sCr}
Forebears (Up-set) F(ry:={s€R : rCs}

Further for 7 € R we define

Parents P(r):={s€R : r=<s}
Children C(r):={s€R :s<r}

Note that in each of these definitions, the collection of subsets being defined
is comprised of regions, even though the argument 7 of A(r), D(r) and F(r) need

2 Traditionally the Hasse diagram is drawn as an ‘undirected graph, with an implied upward
direction’ (see (Stanley, 1986)). This is indeed equivalent to a DAG, which will be the view used
in this paper.



not be a region itself. For a collection S of subsets of [N], we define F(S) :=
Uses F(s). Finally we define the depth of each region 7 € R as:

{0 if r is maximal

1 + max,ep(r) d(s) otherwise

3 Kikuchi Approximation Method

3.1 Connection with Statistical Physics

In the setup described in Section 2, we can view z; as the ‘spin’ of the particle at
position i in a system of NV particles. Let b(x) denote a probability distribution on
the configuration of spins, and consider a function E(x) called the energy function.
Suppose the energy function is R-decomposable, i.e. E(x) = > g Er(x,) for
certain functions {E.(x;),r € R}.

In statistical physics one defines (Helmholtz) variational free energy as the
following functional of the distribution:

F(b(x)) := U(b(x)) — H(b(x)) (2)

where U := __ b(x)E(x) is the average energy and H := — ) b(x)log(b(x)) is
the entropy of the system. We make the connection with the problem formulation
of Section 2 by setting E,(x,) := —log(ar(x,)). We can then write

E(z) = E.(x,)

T€ER

== Z log(axr(xr))

TER
= — log(-;— H ar(xr)) - IOg(Z)

TER

= —log(B(x)) - log(Z)

where B(x) is the Boltzmann distribution of (1). Then the variational free energy



can be rewritten as follows:

F(b) = b(x)( —log(B(x)) — log(2)) + ) _ b(x) log(b(x))

= 3 blx) og( %) ~ log(2)

= KL(b||B) — log(2)

where KL(b||B) is the Kullback-Leibler divergence between b(x) and B(x), see
e.g. (Cover and Thomas, 1991). It is then clear that F'(b) is uniquely minimized
when b(x) equals the Boltzmann distribution B(x) of (1), and we have

Fo = min F(b(x)) = F(B(x)) = —log(2) (3)

As mentioned in the introduction, equation (3) is of great interest in science
and engineering. Physicists are interested in finding the log-partition function
Fy, as a function of a temperature variable, which we have omitted here, since
thermodynamical properties of physical systems can be derived from it. In esti-
mation problems in engineering, one is interested in finding the marginals of the
Boltzmann distribution B(x). This is called the probabilistic inference problem.
However, equation (3), viewed as an optimization problem, does not prescribe a
practical way for computing these quantities, as it involves minimization over the
exponentially large domain of distributions b(x).

Given that the energy function is R-decomposable, to simplify the minimiza-
tion problem (3) one may try to reformulate it in a way that is, loosely speaking,
also R-decomposable. A natural way to do this is to try to represent the free
energy as a functional of the R-marginals of the distribution b(x).

Definition. We will call a collection {b.(x,),r € R} of probability functions,
which may or may not be the marginals of a single distribution, a collection of
R-pseudo-marginals.

A collection of R-pseudo-marginals that are further the marginals of a probability
distribution b(x) are called the R-marginals of b(x). O

Define Ag to be the family of the R-marginals of all probability distributions
on x, i.e. a collection {b,(x,),” € R} belongs to Ag if and only if there exists a



distribution b(x) s.t. V7 € R, by(x,) = b(x). Then we can rewrite (3) as

XN\

Fo = min FR({br(X,-)})

{br(xr)}eAR (4)
br(x,)} = in  Fr{{b,(xr
(b)) = ang | min  Fa({br(x))
where
FR({br}) = b(x): {br}}%{lrlrlrirginab of b F(b(x))
Since E(x) is R-decomposable, the average energy decomposes as
Ubx) =Y be(%) Er(xr) (5)

r€R Xr

where b,(x,)’s are the marginals of distribution b(x). In general however, the
entropy term in the free energy (2) cannot be decomposed in terms of the R-
marginals of b(x). The key component of the Kikuchi approximation method is
to use an approximation of the form

H(b(x)) = > k- He(br(%r)) (6)
reR
where H,(b-(x,)) := — Y, br(xr)log(b.(x,)) is the regional entropy associated

with a region r € R, and k,’s are suitable constants to be determined.

As discussed in (Pakzad and Anantharam, ), we may view RU {[N]} as a
poset with partial ordering of inclusion. For each r € R define ¢, := —u(r, [N])
where p(-, ) is the Mébius function. Then the Mébius inversion formula, see e.g.
(Stanley, 1986), shows that ¢,’s are defined uniquely by the following equations:

e=1- Y ¢ (7)

where A(r) is the set of ancestors of 7, as defined in Section 2. Following (Yedidia
et al., 2001) we call the c.’s defined in this manner the overcounting factors. As
it turns out, c,’s are the natural choice for the constants {k,} in (6), as we show
in Proposition 1:



Proposition 1. The only choice of factors {k.} which can result in ezactness of
(6) for all R-decomposable Boltzmann distributions ,- i.e. distributions b(x) :=
+ [T, er - (x:) for all choices of {a,,r € R}~ is the Mibius overcounting factors

{cr}-

We will prove this proposition in Section 4. In fact the original choice of {k}
in the Kikuchi approximation method (Kikuchi, 1951) was also {k-} = {c-}. It
will also be shown that this exactness happens if and only the collection R of
regions is ‘loop-free’ in an appropriate sense, which will be defined in Section 4.1. '

The Kikuchi approximation method, which will be defined more formally in
Section 3.2, proposes to solve a constrained minimization problem of the following
form (cf. equation (4)):

B.(x;)} =~ {b; = i FX({b,(x, 8
{Br(x;)} = {b7(xr)} := arg L ({or(x:)}) (8)
Here FX({b:}), known as the Kikuchi free energy, see e.g. (Kikuchi, 1951), is
defined as (cf. equation (35) in (Yedidia et al., 2001))
FX({br(x)}) =3 brlxr) Er(xe) + ) D er be(x7) log(br(x,)) - (9)
réER xr réeR xr

and AX is a set of constraints to enforce consistency between the b,’s, defined as

A .= {{br(x,), r€R} : Vi, ue R st. tC u,Zbu(xu) = by(x:)
Xu\t
and Yu€ R, D bu(x,) =1} (10)
Xu

Note that in general the constraints of AX are not enough to guarantee that

every collection of pseudo-marginals {b,, 7 € R} € Af is in fact the collection

of the marginals of a single distribution function b(x); a collection may very well

satisfy all the consistency constraints of (10) and not be the marginals of any
distribution.

In Section 4 we discuss conditions on R that guarantee that the free energy
F(b) can be viewed as a functional of the marginals of b(x), i.e. {br,7 € R}, and,
as such a functional, equals the Kikuchi functional FX. Further we discuss condi-
tions on R under which the constraint set A% equals the family of R-marginals Ag.

10



3.2 Kikuchi Approximation Method

In this section we formulate the Kikuchi approximation method for solving the
marginalization problem posed in Section 2. We will further describe conditions
on the collection of regions R, which are expected to improve the quality of the
approximations.

Let Ry be a collection of regions, and {a2(x.), 7 € Ro} be a collection of
kernel functions. We are interested in solving the marginalization problem posed
in Section 2 for Ry and {a?}.

Let R be another collection of regions obtained from Ry in such a way that
V7' € Ry, 3r € Rs.t. ¥ C r. Then one can always form3 a collection of R-kernels

{a,(x;), T € R} so that — 3" _plog(ar(x:)) = — X g, log(al(x,)) =t E(x).

Now for each r € R, define B,(x,) := [[,c, @s(xs). Then the Boltzmann
distribution of equation (1) takes the following product forms:

Il o2 (%) _ [lcr (%) _ 1,er Br(x)
RDZ - RZ - R > (11)

where the last equality follows from the fact that, by (7), > ¢z ¢ = 1 for all
s€R.

B(x) =

Using approximations (9) and (10) we are now interested in solving the fol-
lowing:

Problem (Kikuchi Approximation):

_ ~ F* .— min K
log(Z) ~ F* : i 0 Fg ({b-(x,)}) )
and {Bi(x)} = (B} s ave | min P ({0x))
O

Note now that by equation (4), if F(b(x)) = FK ({b-(x;)}) for all b(x), and Ag =
AKX, then the minimizer collection {b}(x,)} of (12) would correspond exactly to

3Note however that the way this assignment is done can impact the quality of the approxi-
mations to (4) provided by (12).
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the collection of the marginals of the product function B(x) of equation (11);
hence, if the Kikuchi approximate free energy F% ({b.}) is close to F'(b), and local
consistency constraint set A% is also close to Ag, the minimizers {b}} of equation
(12) are expected to be close approximations to these marginals.

Our focus in the rest of this paper shifts to the above problem and to the
relation between the solution to this problem and the original one in Section 2.
An important question which we address in detail is when the b}’s are equal to the
marginals B, of the Boltzmann distribution. We also address in detail in Section
4 message-passing algorithms on graphs which solve equation (12) which are more
efficient than the ones known to date, such as the generalized belief propagation
(Yedidia et al., 2002) and poset belief propagation (McEliece and Yildrim, 2003).

The collection R of regions effectively specifies both the Kikuchi approximation
(9), and the constraint set (10). It is also evident that (12) as an approximation
method can be applied for any given FX and AK; better choices of R simply result
in better approximations. Therefore we can define the Kikuchi approximation
method as the general class of constrained minimization problems given by (12),
which are parameterized by the poset! R of regions, and local kernel functions
a,(x,) for each r € R.

It remains to specify which choices of R yield good approximations of the
marginals. In the remainder of this paper we only consider collections of regions
R that have the same maximal regions as Ro. Expansion of the maximal regions
corresponds to ‘clustering’ methods, as discussed in (Pearl, 1988). The techniques
developed here to derive low complexity message-passing algorithms to solve the
Kikuchi approximation problem can also be applied after clustering.

It certainly seems that minimization with more local consistency constraints on
{b.(x,)} should result in better approximations, since the true marginals would
satisfy all such constraints. At the same time, the entropy approximations of
the type given in equation (6) are also expected to improve if more regions are
included. Therefore one might conclude that for a given collection of maximal
regions of Ry, augmenting them by introducing additional subregions to form R,
— where the a,’s corresponding to the augmented subregions are taken to be 1 —

4Note that although ‘inclusion’ is certainly the most natural partial ordering for R, the
problem is well-defined for any arbitrary partial ordering.

12



should improve the approximation (at the expense of increasing the complexity of
the underlying minimization).

Let G be a labelled graph whose vertices are identified with subsets of [N].
We define the following connectivity conditions on G:

Vi € [N], the subgraph of G consisting of the regions in F({4}) is connected.
(A1)
Generalizing this, we can devise condition (An) on G, for each n € {1,--- ,N} as
follows:

Vs C [N], |s| <, the subgraph of G on regions in F(s) is connected. (An)

We say a poset R has property (An) iff its Hasse diagram G satisfies con-
dition (An). Note that in the context of Kikuchi problem (12), property (An)
guarantees that the beliefs at all regions will be consistent at the level of any
subset x, of the variables of cardinality up to n. It is therefore natural to require
that R satisfies at least condition (A1). We call a poset R satisfying (An) for all
n, a totally connected poset.

Inspired by (Aji and McEliece, 2001), one might insist that acceptable approx-
imations of the entropy term (6) are those in which each variable z; appears the
same number of times on the two sides of the equality sign, i.e.

Y =1 for each i =0,--- ,N —1 (B1)
reF({i})

We can extend this condition also, as follows:

Z =1 foreach s C[N], |s|<n st. F(s)#0 (Bn)
reF(s)

Conditions (Bn) are called the balance condtions, and we call a poset R satisfying
(Bn) for all n, a totally balanced poset.

These conditions are expected to give progressively better approximate solu-
tions, although they will not in general guarantee an exact solution.

The original cluster variational method of Kikuchi as defined in (Morita, 1994)
and (Yedidia et al., 2001) in effect chooses R to be the smallest collection of

13



regions including Ry which is closed under non-empty intersection of regions. The
following proposition shows that the choice of R made in the cluster variational
method is expected to give a reasonable Kikuchi approximation.

Proposition 2. Any collection of regions R which is closed under non-empty
intersection of regions is totally connected and totally balanced.

Proof. Note first that if u,v € R and u C v, then there is a directed path from v to
u in Gg, where all the nodes in the path contain u. Let ¢ # @ be any subset of [V},
and let , s € F(t) be any two regions containing t. Then rNs must lie in R, since
R is closed under non-empty intersections. Therefore r and s each are connected
in Gg to r N s, where all the vertices on the paths from r to r N s and from s to
rNs contain rNs, which in turn contains . This proves that R is totally connected.

Now let 7 C [N] be a subset such that F(r) # @. If r € R, then by definition of
the overcounting factors ), s =1 and we are done. Suppose then that r € R.
We will show that there is a unique minimal s € F(r), so that F(r) = F(s). If
not, then there must be at least two minimal regions ¢, and ¢, in F(r), with
t, € to and £y € t;. Then ¢; N, is'a region, strictly smaller than both ¢; and t2,
which lies in F(r) since it contains r. This would contradict ¢; and ¢; each being
minimal in F(r). Therefore there exists an s € R such that F(s) = F(r), and
therefore ) ,c 7)€t = Dyer(s) & = 1- This proves that R is totally balanced. O

The special case when the Hasse diagram Gg has depth 2, i.e. there are no
distinct 7,s,t € R such that r C s C ¢, is called the Bethe case in this paper.
In this case G can be thought of as a hypergraph in which the maximal regions
of R are the vertices and the minimal regions are the hyperedges. If we insist,
as assumed in (Yedidia et al., 2001), that the maximal regions be pairs {i, 5} of
indices for 4,5 € [N], and that the minimal regions be all the singletons {i} for
i € [N], then we will in fact have a poset R of depth 2 which is closed under
intersection; this is what was called the Bethe case in (Yedidia et al., 2001). Our
notion of Bethe case is more general than that of (Yedidia et al., 2001), since no
restriction on the size of the regions is necessary, and we allow for R not to be
closed under intersection.

On the other hand, (Aji and McEliece, 2001) considers only the case when the
aforementioned ‘hypergraph’ view of Gg is a graph, i.e. the minimal elements of

14



R are covered by at most two regions, so the hyperedges are in fact edges. It
can be immediately verified that he ‘junction graph’ condition given in (Aji and
McEliece, 2001) is simply the intersection of conditions (A1) and (B1) above. It
can also be shown that the ‘junction graph’ condition of (Aji and McEliece, 2001)
does not imply either (A2) or (B2).

We now give an example to illustrate some of the notions defined in this section.

Example 3. Consider the (16, 8) linear code represented by the bipartite graph
of Figure 1, where the top nodes correspond to parity checks, and the bottom
nodes correspond to symbol bits. This graph can be interpreted as the Hasse
diagram of a two-level poset, where the regions associated with the ‘bit-nodes’ are
{1},{2},--- , {16} respectively, and the region associated with each ‘check-node’
is the subset of {1,--- ,16} corresponding to the bits that constitute that parity
check. This is an example of the Bethe case, where the regions corresponding

Figure 1: Tanner Graph of a Linear Code

to the check-nodes are maximal and those corresponding to the bit-nodes are
minimal. The overcounting factors corresponding to the check-nodes are equal
to 1, while those corresponding to the bit-nodes equal “one minus the number of
check-nodes connected to that bit-node”. In this case each bit-node is connected to
three check-nodes, so that the overcounting factors for all bit-nodes equal 1 —3 =
—2. In this case, the GBP algorithm we discuss in Section 5 will reduce to
the original Gallager-Tanner decoding algorithm for LDPC codes, see (Gallager,
1963), (Tanner, 1981).

This poset has property (A1), but not (A2): note for example that the re-
gions corresponding to the first and third check-nodes are {2,6,7,14,15,16} and
{2,6,7,10,12, 16} respectively, both containing {2, 6}, but they are not connected
through regions that contain {2,6}.
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Also, this poset satisfies (B1), but not (B2): for s := {2,6}, F(s) is precisely
the first and third check-node regions. Then 3 cr=1+1=2#1.

On the other hand, one can throw in all the intersections of the check-node
regions to create the poset whose Hasse diagram is shown in Figure 2.

Figure 2: Alternative Poset of Linear Code of Example 3

Here the nodes in the middle row correspond to the intersections of the check-
node regions, in the first row, to which they are connected; e.g. the second node
in the middle row corresponds to region {2,6,7,16}, which is the intersection of
the first and third check-node regions.

It is easy to verify that this poset is totally connected and totally balanced. O

3.3 Lagrange Multipliers and Iterative Solutions

Lagrange’s method can be used to solve the constrained minimization problem
(12). We form the Lagrangian:

L= 33 (=br(x,) log(an (%)) + cr br(%r) log(by(xr)))
TER X
+ Z Z Z Are(3e) (Be(x) — Z b (%))

r€ER t<r Xt Xp\t

+ 3 (D belx)—1) (13)

reR Xr
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where coefficients A:(s;) enforce consistency constraints, and coefficients &, en-
force normalization constraints, and as before ¢ < r means that r covers t. Note
that since the edge-constraints of G are a sufficient representation of AK as dis-
cussed before, we need only define \; for pairs r,t € R with t <7, i.e. along the
edges of Gg.

Setting partial derivative 8L/b.(x,) = 0 for each r € R gives an equation for
b-(x,) in terms of \,,’s and A’s. The consistency constraints give update rules for
each )\, in terms of other A multipliers. Once a set of messages m,; (from r to ¢, -
for each edge (r — t) of GR) has been defined in terms of the Lagrange multipliers
Ar¢'s, these update rules define an iterative algorithm whose fixed points are the
stationary points of the given constrained minimization problem.

In Section 5 we will give detailed derivation for a nice such algorithm called the
‘generalized belief propagation’ (GBP) algorithm, see also (Yedidia et al., 2001),
and we will also see that the belief propagation algorithm of (Pearl, 1988) is the
restriction of the above algorithm in the Bethe case. It should be noted that the
algorithm we derive in Section 5, although called GBP, can be considerably less
complex than the one called GBP in (Yedidia et al., 2001). This is because of
certain systematic complexity-reducing transformations we carry out in Section
4, which constitute the major practical contribution of this work.

3.4 Convexity Conditions

In this section we describe our results regarding the convexity of the optimization
problem (12), which we first reported in (Pakzad and Anantharam, )-

Kikuchi free energy (9) constrained on {b,} € A¥ is bounded below and hence
the constrained minimization problem (12) always has a global minimum. There-
fore, as discussed in Section 3.3, the message passing algorithms derived from
Lagrangian (13) always possess at least one fixed point (see (Yuille, 2002) for an
algorithm that is guaranteed to find a minimum of F¥).

The following result gives sufficient conditions on R for the problem (12) to
have precisely one minimum:

Theorem 3. Kikuchi free energy functional (9) is strictly convez on AE (and
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hence the constrained minimization problem has a unique solution) if the over-
counting factors ¢, € R satisfy:

VSCR, Y ¢=0 (14)

where, as defined in Section 2, F(S) := UsesF(s) ={r € R: Is€ Ss.t.7C s}
is the set of forebears of S.

Proof. Note that Kikuchi approximate free energy, as a functional of the pseudo-
marginals {b.(x;)} € AX consists of an energy term - which is linear, - and a
linear combination of entropy terms, with both positive and negative coefficients.
We will show that if the hypothesis of the theorem holds, there is a matching
between the negative and the positive terms such that the overall entropy term
will be a positive linear combination of KL divergence terms which are strictly
convex, see e.g. (Cover and Thomas, 1991). We will prove the existence of such
matching using results from the bipartite graph theory.

Form a bipartite graph G(V+,V~, E) with vertex sets V* and V'~ and the
edge set E as follows:

e For each r € R with ¢, < 0, create |c,| nodes {v;, - o} in v,
e For each s € R with ¢, > 0, create ¢; nodes {ul,--- ,uf} in V*.
e To form the edge set E, connect each vf € V™ toeach uf € V¥ iff r C s.

For a subset S C V—, denote by N(S) the subset of nodes in V* that are connected
to a node in S. Then graph G has the following property:

vSc VT, IS| < |N(S) (15)

. To see this, let S = {v} : (s,4) € T} where the index set Z consists of
some pairs of the form (s, ) with ¢; < 0 and 0 < % < |cs|. Now create another
index set Z as Z := {(s,j) : (s,4) € T forsomei ,0 < j < |cs|}, and let
S:={v} : (s,4) € Z}. Then clearly S C S and hence |S| < [S], but notice that
N(S) = N(S). Also note that [S| = =Y ,crci, where T :={t € R : (},1) € 7}.
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Further,

Sa= ¥ at ¥ a

te A(T) teA(T);ce >0 teA(T);ce <0
te A(T);ce<0

< IN(S)]

where the second equality follows from the definitions of | N (S)| and A(T'). But by
the hypothesis of the theorem, — >, .~ ¢; < D ote A(T) Ct- Putting these all together,
we get |S] < |S] = - Dter €t < ZteA(T) ¢ < |N(S)| = IN(S)| as claimed.

Then the bipartite graph satisfies the hypothesis of Hall’s Matching Theorem
(see (Hall, 1935)), and hence there is a matching on G that saturates every vertex
of V—. In other words, there is matching M = {(v},u])} such that every vi € V'~
is uniquely matched with a 4 € V*+. Denote by U the subset of vertices in V*
that are left unmatched.

We now rewrite the entropy term of the Kikuchi free energy, i.e. the second
summation in (9), using the matching M. For each {b,} € AX:

Z Cr Z b, log(b,) = Z Cr Z b, log(br) + Z Cs Z bs log(bs)

TER Xr ric, <0 Xr 8:cs>0 Xs
== Z zizbrbg(br)'*' Z Zszbs log(bs)
ric,<0 i=1 x, s:ics>0 j=1 x, :
==Y D bloglb)+ D > bslog(bs)
vieV— Xr ulev+ Xs
= > (D bolog(b) — D b,log(br)) + D D bslog(bs)
(viud)eM Xs Xr wley Xs
= Y Yhla()+ Y Y bilog(h) (16)
(viud)eM Xs ’ uleU Xs

Notice that for each (vi,ul) € M, by definition of the bipartite graph G, we have
r C s. Further we have taken {b,} € A%, and so that }°, _bs(x;) = by(x;) which
implies the last equality.

Now note that the first term in (16) is a sum of KL-divergences®, which are
strictly convex as functions of their arguments, and the second term is a sum

5To be precise, each term differs from a true KL-divergence by a constant.
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of negative entropy functions which are also strictly convex, see e.g. (Cover and
Thomas, 1991). On the other hand, as mentioned earlier, the average energy term
of the Kikuchi free energy, i.e. the first summation in (9), is linear in {b,}. Since,
constrained by A¥, the Kikuchi free energy is in effect a functional only of the
pseudo-marginals associated to the mazimalregions in R, and since each maximal
region contributes such a KL-divergence term in (16), the Kikuchi functional as a
whole is also strictly convex. O

Corollary 4. (c¢f. Theorem 3 in (Aji and McEliece, 2001)) In the Bethe case,
the constrained minimization problem (12) has a unigue solution if the graphical
representation Gr of R has at most one loop.

Proof. Let S C R be a subset of regions, and consider the sum Ag := >, ¢ () Cr-
Note that in the Bethe case, ¢, = 1 — (# of parents of r) for all 7 € R. This
means that for each region r € R, the contribution of ¢, to the sum Ag can be
broken up as a contribution of (+1) for the vertex r, and a contribution of (-1)
for each edge of the Hasse graph ending in . Therefore, As is precisely equal to
the number of vertices minus the number of edges of the Hasse graph of F(S5),
which is a subgraph of Gg. Therefore the sum is nonnegative iff this subgraph
has at most one loop.

By Theorem 3, a sufficient condition for uniqueness of solution to the con-
strained minimization problem (12) is that the sum Ag above be nonnegative for
all subsets S C R. In particular, choosing S = R implies, by above, that Ggr has
at most one loop. On the other hand, if Gg has at most one loop, then any of
its subgraphs will have no more than one loop, and by the above argument Ag
will be nonnegative for each S C R. The consequence is that the nonnegativity
of As for all S C R is equivalent to the statement that Gr have at most one loop.
Therefore the sufficient condition (14) for the uniqueness of solution is that Ggr
have no more than one loop. O

Once we define a suitable notion of graphical representation for a general

collection of regions in the next section, we will generalize the result of Corollary
4.
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4 Graphical Representations of the Kikuchi Ap-

proximation Problem

In this section we define the notion of graphical representations, for a Kikuchi
approximation problem. The algorithms of the type discussed in Section 3.3 can
then be viewed as message-passing algorithms along the edges of such graphs. We
will discuss this in detail in Section 5.

We will further introduce minimal graphical representations for a given collec-
tion R of regions, which are graphical representations with the fewest number of
edges. Our motivation for introduction of such minimal graphs is two-fold.

First, note that the results of Section 3.4 refer to the uniqueness of solution of
the constrained minimization problem (12). However, one is further interested in
the conditions under which these solutions are the exact marginals of the product
distribution (11). As we will show in this section, the exactness of approximations
obtained using (12) corresponds directly to non-existence of loops in the minimal
graphs. In fact, we will show that in the loop-free case, this graph is a junction tree
and the message-passing algorithms of type discussed in Section 3.3 correspond
to a variation of junction tree algorithm.

Second, as we will discuss in detail in Section 5, the message-passing algo-
rithms of the type mentioned in Section 3.3 on minimal graphs will be the most
compact among all graphical representations of the same problem, and can result
in algorithms that are significantly less complex than such algorithms as the GBP
of (Yedidia et al., 2002) and the poset-BP of (McEliece and Yildrim, 2003).

Let G be a directed acyclic graph with vertex set V(G) and edge set £(G).
Parallel to our definitions in Section 2, for each vertex r € V(G) define:

Ancestors: Ag(r) := {s € V : Ja directed path from s to r}
={seV : re Ag(s)}
={seV : (s—r)e&G)}

Descendants Dg(r)
)
yi={s€V : (r—s)e&(G)}
)

Children Colr

(
(
Parents Pe(r
(
Forebears Fel

As in Section 2, for a subset S C V(G) we define Fg(S) := |J e Fol(s)-
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Also define depth of each vertex r € V(G) as:

0 if 'PG(‘I") =0

1 4+ maxXsepg(r) dg(s) otherwise

dg(r) =

Similarly we define the depth of each edge (t — u) of G, as the depth of the
child vertex wu:
dg(t — u) :=de(u)

Note that given a poset R of regions, the above definitions for the Hasse di-
agram Gp are consistent with the corresponding definitions for the poset from
Section 2, i.e. for all r € V(GR), Aggp(r) = A(r) and so on.

Back to the problem at hand, let R be a collection of regions as before, and
let G be a directed acyclic graph whose nodes correspond to the regions r € R.
We will further assume that an edge (s — t) exists in G only if ¢ C s.

Definition. The edge-constraint for an edge (s — t) of G is defined as the follow-
ing functional of the pseudo-marginals {b., r € R}:

EC(e—ty({br, T € R}) := D by(%s) — be(x:) (17)
X\t
When the arguments are clear from the context, we abbreviate this as EC(s—y). U

Definition. We call G a graphical representation of AK if AX can be represented
using the edge-constraints of G, i.e.

A = {{br(x:), 7 € R} : V(s = 1) € E(G), EC(spy =0
andVr € R, » b(x,)=1} (18)

Xr

O

As mentioned in the previous sections, a poset R is most naturally represented
by its Hasse diagram Gg; Hasse diagram uses the transitivity of partial ordering
to represent a poset in the most compact form. Note that our local consistency
constraints also have the transitivity property:

If (r — s),(s — t) and (r — t) are edges in graph G, then

(EC(T_.S) = 0) and (EC(s_,t) = 0) = (EC(T_,t) = 0)
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Therefore the last edge (between ‘grandfather’ and ‘grandchild’) is redundant.
This is why the Hasse diagram Gp is a graphical representation of AKX,

On the other hand, local consistency relations satisfy a property other than
transitivity which can be used to further reduce the representation of AK:
Suppose (r — ), (r — u), (s — t) and (u — t) are edges in graph G, then

(EC(T_.S) = 0) and (EC(,-_.u) = 0) and (EC(u_.t) = 0) = (EC(S_.z) = 0)

Then a graph obtained by removing the edge (s — t) of G is still graphical
representation of AX since the edge-constraint of (s — t) is implied by other
edge-constraints. We will refer to this property as the () property.

We now make precise the reductions in the graphical representation which are
implied by the anti-transitivity property.

Definition. Edges (v — r) and (v — r) are said to be Equivalent Edges for
Removal (EER), and denoted (u — 7) ~ (v — r) if there exists a sequence
(to = 7),-++,(tx — 7) of edges in Gg, with to = v and ¢ = v and with the
property that Vi =1,--- ,k, A(ti-1) NA(t;) # 0, i.e. 3w; € Rs.t. t;—; C w; and
t; C w;. O

Then it is easy to verify that this relation ‘~’ is reflexive, symmetric and
transitive and is hence indeed an equivalence relation. Therefore for each region
r € R, the collection of all the edges leading to r can be partitioned into equiv-
alence classes of edges for removal (EER classes of region 7). In the example of
figure 3(a), {t,u,v} and {w,z,y} are the EER classes of z.

(@ R )

Figure 3: Equivalence of Edges for Removal. In the Hasse diagram (a) of R the
EER classes of z are {t,u,v} and {w, z,y}. (b) is a realization of Sg, the minimal
graphical representation of R.
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Definition. From each EER class {(t; — 7),--- , (tm — 7)}, remove all but one
(representative) edge from the Hasse diagram Gr. Denote the resulting graph by
Skr. O

Figure 3(b) shows one realization of Sg for the Hasse diagram of part (a).
Note that graph Sr is not unique, since the representative edge of each equiv-
* alence class can be arbitrarily chosen. However, the number of the edges of any
choice of Sg is unique and equals the total number of EER classes of all regions.
As we will see shortly, all choices of Sg result in equivalent, minimal graphical
representations of R. All results in the remainder of this paper apply to every
choice of Sg.

Lemma 5. For every pair u,s € R such that s C u, there is a path in Sg between
s and u consisting only of nodes that contain s.

Proof. Clearly the Hasse diagram Gg has the claimed property; in fact if s C u,
then there is a directed path from u to s consisting only of nodes that contain s.

Also note that if the claim is true for all pairs s < u with d(s) < [, then it
is also true for all pairs s C u’ with d(s) < I; this is because s C v’ implies that
there exists a sequence of regions s = ug < u; < -+ < ux = o', with d(u;) <1
for i = 0,---k — 1. Then there is a path in Sg between each pair u; and u;
consisting only of nodes that contain u; and hence s.

Now to prove the claim for pairs s < u we proceed by induction. Suppose first
that s < v and d(s) = 1. Then the edge (v — s) of G remains in Sg, since edges
of depth 1 cannot be EER with other edges. Next assume inductively that we have
proven the claim for all pairs s’ < ¥/ with d(s') < [, and suppose s < u is a pair of
regions of R with d(s) = [ + 1. Then from the definition of Sg there remains an
edge (v — s) in Sg, a subset {to = u, %1, -+ ,t = v} of parents of s and a sequence
{wy,--- ,wx} of regions of R, s.t. w; € A(t;-1) NA(%;). Each ¢; has a depth of at
most I, so for each i = 1,--- ,k there are paths in Sg from w; to t;_; and to i;
consisting only of nodes that contain ¢;—; and ¢; respectively. But s C ¢; for all 4,
and hence there is a path (s,v, -+ , Wk, **+ ,Bee1y"** , W1, 7* 500 , W, ,U) in
Sr consisting only of nodes that contain s. This completes the proof. O

Now suppose Sy and S3 are two instances of Sg. As mentioned earlier, the
number of edges of Sk and S% are the same. Also by Lemma 5, the connected

24



components of any Sg correspond one-to-one to those in Gg. Therefore Sk is
loop-free iff S2 is loop-free, and in fact the number of loops of S} is equal to
that of S%. With this justification and based on the next proposition, we call Sg
the minimal graphical representation, or the minimal graph, of R, and freely talk
about existence of loops in Sg, as if Sgp were unique.

Lemma 6. Let T C R, and view F(T) as a sub-poset of R. Let Sg be a minimal
graphical representation of R, and let G denote the subgraph of Sg on F(T). Then
G is a minimal graphical representation of F(T). Furthermore, for eacht € F(T),
the overcounting factors of t w.r.t. posets R and F(T) are the same.

Proof. For each t € F(T), the EER classes of t in poset F(T') are identical to
those in R. Hence G by definition has one edge from each EER class, making it a
minimal graphical representation of F(T'), as claimed. Similarly, the overcounting
factor ¢, w.r.t. R depends only on the regions in F(t). These are all included in

F(T). Therefore a simple inductive argument shows that the overcounting factors
of t wr.t. R and F(T) are identical. a

Based on this result, in the rest of this paper, when talking about a specific
choice of Sg, we write Sr(t) to denote the subgraph of Sg on F(T'), as the choice
of the minimal graphical representation of F(T').

Proposition 7. Sp is indeed a ‘minimal’ graphical representation of AK, ie
a collection of pseudo-marginals {b,, € R} lies in A iff it satisfies all the
edge-constraints of Sgr, and further, removal of any of the edges of Sg results in
misrepresentation of AK.

Proof. To show that the collection of edge-constraints of Sg is a sufficient repre-
sentation of A¥, note that by Lemma 5, for each r C ¢ there is a path between r
and ¢ with only nodes that contain r. Then the collection of edge-constraints of
this path imply that le\r by(x;) = b(X,). Therefore any collection {b,, r € R}
of pseudo-marginals satisfying all the edge-constraints of Sk belongs to AX.

To prove minimality, let S; be a graph created from Sr by removing an edge
(ty — u) of Sg. Let {(t; — u),---, (tx — u)} be the corresponding EER class —
all of these edges are now removed in creating Sk. Define T := |5, U, ) T
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Let b(x) > € > 0 be a positive distribution, with marginals b.(x.),r C [N].
Then {b,(x;),” € R} € AX. Now define another collection {b,(x,)} as follows:

br(xg) + €+ (-1)Xie® ifz; € {0,1} Vi€ u

bip(xr) :=
br(xr) else

Extend this to define b/.(x,) for all the regions r € R as follows:

k
b.(x,) := Z b (x7) ifre U]—"(t,-)
XT\r i=1
bl.(xr) := bp(x,) else

We claim that (1) b. = b, for all 7 € R\(UL, F(t:)); (2) b, # b, for any
r € (UL, F(t:)), and (3) all the edge-constraints of Sy, are satisfied.

Part (1) is obvious from the definition of &' above.

Part (2) can be seen easily since for any r € Uf=1 F(t:), v C r and by definition,
marginalizations of b/ are different from those of br on the subsets that contain
u.

To see part (3), let (r; — 73) be any edge of Si. If both ry, 72 € R\(UL, 7))
or both 71,73 € U:;l F(t;), then by definition, b}, is consistent with & . If
T9 € Uf=1 F(t;), then its parent, 7; must also lie there. Therefore we need only
check the case when 7, lies in (Uf:1 F(t;)) and 7o does not. Note that in this
case, T, cannot contain u.Also from definition of bf.(xr), the marginals of b7 at
the level of any subset that does not contain u coincide with the marginals of br
since the € terms cancel out. Hence b, marginalizes to b, and since b;, = br,, the
edge-constraint in S, corresponding to (r; — 72) is also satisfied in this case.

“We have therefore shown explicitly that there exist collections {&,} of pseudo-
marginals that satisfy all the edge-constraints of S; but not the edge-constraint
corresponding to edge (¢; — u) of Sg (in particular, thl\u by, (xe,) # b, (%) =
bu(Xy).) Therefore {b.} & AX. O

As we have seen, to solve the constrained minimization problem one forms the
Lagrangian, introducing multipliers A (x,) for each edge (t — 7) of Sg. Since Sk
has fewer edges than any other graphical representation of R, algorithms based
on Sk require the fewest message updates per each iteration.
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4.1 Connection with Junction Trees

In this section we show that there is a close connection between the minimal
graphical representation of a collection R of Kikuchi regions, and the junction
trees on R.

Definition. Let {r,,--- ,7s} be a collection of subsets of the index set [N]. A
tree/forest G with vertices {r;,- -+, } is called a junction tree/forest if it satisfies
condition (A1) of Section 3.2, i.e. that for each 7 € [N], the subgraph consisting -
of all the vertices that contain i be connected.® a

Although junction trees are traditionally defined as undirected trees, in the
above definition we do not make distinction between directed and undirected
graphs; we call a directed graph a junction tree if replacing all the directed edges
with undirected ones yields a junction tree in the usual sense.

Let {r1,--- ,7am} be the maximal elements of R. For the rest of this paper we
assume that R is totally connected, i.e. it has property (An) foralln =1,---,N.
Then it is easy to see from the definition above that the following proposition
holds:

Proposition 8. If Si has no loops, then it is a junction forest and hence {ry,--- ,Trm}
can be put on a junction tree.

Proof. The Hasse graph G satisfies (A1l). Let (uo,us,--- ,u,) form a path in
Gr where i € u; for all j = 0,--- ,n. Then for all j = 1,--- ,n either u;_; < u;
or u; < uj—;. Then by Lemma 5 there is a path between u;_; and u; for all
j=1,---,n consisting only of nodes that contain 7. This proves that Sg satisfies
(A1). Therefore Sk is a junction forest on R.

Now starting with undirected version of Sg, successively absorb each node
r € R\{r1, -+ ,7m} together with all its connecting edges into one of its neigh-
bors. The resulting graph will be a junction forest on {ry,--- ,7y}, the maximal
elements of R. (]

Interestingly, the converse to this is also true:

SNote that given that G has no loops, condition (A1) implies (An) for all n.
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Proposition 9. If the mazimal elements {ry,--- ,7p} can be put on a junction
tree then Sp has no loops.

Proof. First note that the existence of a junction tree on the maximal elements of
R is equivalent to the existence of a junction tree on R. To prove the proposition
we will use some results from Section 4 of (Aji and McEliece, 2000). We define a
local domain graph G p as a weighted complete graph with vertices corresponding
to the regions r € R, with the weight of the edge (, s) defined as

W(r,s) = |7‘ N Sl

Then from Theorem 4.1 of (Aji and McEliece, 2000), any junction tree on R must
be a maximal-weight spanning tree of GLp. A maximal-weight spanning tree
can be obtained using a greedy algorithm such as Kruskal’s algorithm, see e.g.
(Cormen et al., 2001): Start with an empty graph, H. Identify an edge of Grp
with the largest weight whose addition does not create a cycle in graph H, and
add that edge to H. Repeat the preceding step until no more edges can be added.

Let G be the undirected version of the Hasse graph G, where each directed
edge (r — s) is replaced by an undirected edge (r,s). Notice that at each stage
of the above algorithm, one can choose an edge from the edge-set of G. To see
this, suppose (t,7) is an edge in Grp with maximal weight whose addition does
not create a cycle. Then, since G is totally connected, there is a path in G where
each vertex on the path contains £ N7; every edge in this path then has weight at
least |t N 7| > w;,. Now note that there must be an edge (¢',7’) in this path (in
G), such that ¢’ and r’ are not connected in H (otherwise ¢ and r would already
be connected in H and so the addition of the edge (¢,7) would create a cycle.)
Therefore at this stage of the algorithm we can choose the edge (t',7’) instead of
(t,r). This shows that there is a junction tree on R whose edge-set is a subset of
the edge-set of G.

Next note that the junction tree on R constructed in the preceding paragraph,
under the hypothesis that a junction tree exists on R, must include at least one
edge from each EER class of G. Specifically let up be a parent of r in R, and
let (uo,u1, 2, ,um = 7) be any path between up and 7 in G such that each u;
includes r. Then it is easy to see that (up — 7) and (um-1 — 7) must be in the
same EER class. This proves that any path between ug and 7 in G includes one
of the edges in the same EER class with (up — 7), and therefore any junction
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subtree of G must have at least one edge from each EER class. Now remember
that Sp was defined to be a graph with precisely one edge remaining from each
EER class, so we could have chosen Sk as a subgraph of the junction tree we
constructed. However, if Sg has a loop, it cannot be a subgraph of a tree. O

Recall that in Section 3.2 we originally defined the Kikuchi problem in terms
of a collection Ry of regions.

Definition. The original collection Ry of regions is called loop-free if there exists
a junction tree on its maximal elements, and is called loopy if no such junction
tree exists. O

Now as before, let R be any poset of regions with the same maximal regions as
Rp, which is totally connected. Then by Propositions 8 and 9 and the definition
above, Ry is called loopy iff Sp has a loop.

4.2 Necessary and Sufficient Conditions for Exactness of
the Kikuchi Method

It is well-known that the belief propagation algorithm converges to the exact
marginals,~ in finite time, — if the ‘underlying graph’ is loop-free, see e.g. (Pearl,
1988), (Cowell et al., 1999). Likewise, the message-passing algorithms of the type
discussed in Section 3.3, will converge to yield the exact marginals if the Hasse
diagram is loop-free, and in fact the value of the Kikuchi functional equals the
variational free energy. However this is a rather weak result, since only very rarely
will the Hasse diagram be loop-free. In fact many collections of regions that can
be put on a junction tree result in Hasse diagrams that have loops. For example
the poset R = {{123}, {234}, {345}, {23}, {34}, {3} } will have a loop in the Hasse
diagram as displayed in Figure 4(a), but can be easily handled as a junction tree
4(Db).

Also, in the example of Figure 3, even though the Hasse diagram has loops,
the solution to the Kikuchi approximation problem equals the exact marginals.
This is because not all the loops of G are ‘bad’ loops that cause trouble for the
message-passing algorithm. In fact these ‘bad’ loops are precisely the loops that
cannot be broken when one creates Sg. In the examples of both Figures 3 and
4, Sp is loop-free. One can therefore run a message passing algorithm on Sk,
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which converges to yield the solution for the Kikuchi approximation (12) which
is identical to the exact marginals. In fact in these examples, the Kikuchi free
energy functionalequals the variational free energy. The results in this subsection
are aimed at making these observations precise.

Let R be an arbitrary collection of regions. Note that the following lemma
does not assume that the poset R is totally connected.

Lemma 10. If Sg is a tree, then the overcounting factor for each regiont € R
satisfies
¢r =1 = |Psg(r)l,

where |Psg(r)| is the number of parents of v in Sg, as defined earlier in Section
4. Furthermore, the sum of the overcounting factors of all regions equals 1.

Proof. We will show this by induction on the maximum depth of regions of R.

If R has maximum depth of 0, and given that S is a tree, R must necessarily
consist only of one region. Then the claim then holds immediately for the single
region of R.

Now suppose the lemma holds for all posets R’ with maximum depth {. Sup-
pose a poset R has maximum depth I+1 and Sg is a tree. Let {(s} — 7),- -+, (s}, —
N}, {(s® = 7),---, (st — 7)} be all the EER classes of a given region
r€ R Let Ty := U sl,... T = Ufm s™ be the parents of r corresponding
to each EER class. Then F(Ty),--- ,F(Tm) must be disjoint or else two of the
EER classes could be merged into a bigger class. Then by induction hypothesis,

the sum of overcounting factors for each sub-poset F(T1),--- , F(T) is 1, and by
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Lemma 6 these are the same as the overcounting factors w.r.t. R. Then

m

m
(=1- Y am1-3 Y13 1=1- a0
s€A(r) i=1 ueT; i=1
since the number of parents of 7 in Sg is precisely the number of EER classes of
T.
Now consider the sum of the overcounting factors of all nodes:

o= (1-1IPsalr)])

TER TER
=>1- > 1
reR (s—r)eE(SRr)
= |V(Sr)| — |E(SR)|
=1

where the last equality follows from the fact that Sg is assumed to be a tree, so the
number of its vertices is one more than the number of its edges. This completes
the inductive step of the proof. O

The following theorem states sufficient conditions for the Kikuchi approximate
free energy and the consistency constraint set of pseudo-marginals to be exact:

Theorem 11. (Ezactness of Kikuchi approzimates, AK and FX)
A) AKX = Ar if Sg is loop-free.

B) Let b(x) be a distribution with marginals b.(x.). Then
FX({b,, T € R}) = F(b) if b(x) =[],erbr(x-)" Vx

Proof. Part A): Suppose S, is loop-free, and let {b,(x,), r € R} € AK. Since Sp is
a junction forest, there is a distribution b(x) := [T,cg br(%r)/ [T muyee(sp) bul*u)
that marginalizes to {b.(x,), 7 € R}; this is a well-known result on the junc-
tion trees, which can be verified by marginalizing b(x) in stages, from the leaves
(of the undirected version of Sg) towards an arbitrary region r as the root,
where at each step, by local consistency there will be cancellation. Therefore
{b.(x,), T € R} € Ag, and so AX C Ap. But clearly Agp C A¥ since the true
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marginals of any distribution are locally consistent. Therefore A¥ = Ag.

Part B): From discussion of Section 3.1, FX ({b,, r € R}) = F(b) if the entropy
approximation of equation (6) is exact. Now

b(x) = H b.(x,)°"

= KL (b(:)ﬁ llb,(x,)"') =0

= Zb(x)(k:ge(b(x)) —log(] ] br(x:))) = 0

= Zb x) (log(b(x)) — Z:Tog br(x:))) =

= Zb x) log(b(x)) = TZGRCT > b(x)log(br(xr))
= Xx: b(x)log(b(x)) = ‘S cr ‘i br (%) log(b- (xr))
= F:’f ({br(x:), 7 € R})riRF(ch))

(I

Corollary 12. If Ry is loop-free, then the constrained minimization problem (12)
has a unique solution. Further, the solutions {b}, r € R} is the ezact marginals
of the product function, and the minimum free energy equals the log-partition
function, i.e. b¥(x,) = By(x,) and F* = —log(Z). 7

Proof. From Theorem 11, if Sp has no loops then A¥ = Ap, and further for
each {b,} € A, the function [] cp b (%,) is a valid distribution on x which
marginalizes to the b,’s, and therefore Ff ({b;}) = F([],cgbc). On the other
hand, as stated in Section 3.1, the minimum of F(b) is achieved uniquely with
Boltzmann distribution, B(x) := % [[,cr@r(%;). Now clearly {B,, r € R} €
Agr = AKX, since {B,, r € R} is the set of R-marginals of a valid distribution
B(x). Therefore {B,, r € R} is a minimizer of (12), and the corresponding
minimum F* indeed equals the minimum Fy of F(b), which in turn is equal to
—log(2).

"In fact in the case when Ry is loop-free, iterative algorithms such as GBP, which we will
discuss in Section 5, converge in finite time to the unique solutions b;.
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To see the uniqueness, note that if {b}, r € R} € AX is any minimizer of (12),
then the corresponding distribution *(x) := [, b (x,) is a distribution, with
marginals {b?}, which minimizes the variational free energy F'(b); but B(x) is the
unique minimizer of F(b). Therefore b*(x) must be equal to B(x), and accordingly

) = {(B,}. O

The above results show that a sufficient condition for the exactness of the
solutions of Kikuchi approximation method of (12) is that Sk be loop-free. In the
sequel we address the necessary conditions for exactness.

We first pose the following, more abstract question about entropy approxima-
tions: Under what conditions is an entropy approzimation in the form of equation
(6) exact for all R-decomposable distributions? The following theorem, answers
this question.

Theorem 13. Let R be a totally connected poset of subsets of [N], and let
{k,, T € R} be a collection of constants. Then the following are equivalent:

(1) HB) =Y, .pk- H.(B;) for all R-decomposable distributions B(x).
(2) revie,riy or =1 for all s C [N] such that Ues P (2) is connected in Sg.
(3) Xorev,esFis) kr =1 forallS C 2Nl such that UgesF(s) is connected in Sg.

Further, given the poset R, there exists a collection {k., r € R} satisfying (1),
(2) and (3) above, iff Sr, the minimal graph of R, is loop-free. If such collection
{k., T € R} exists, then it is unique and equals the (Mébius) overcounting factors
{c¢-, T € R}.

Proof. Suppose (2) does not hold, so for some s C [N] such that Uje; F(2) is
connected, Ereu,-e, F) kr # 1. We will choose kernels {a,, 7 € R} so that (1) will
be violated.

Specifically, for each  we choose a,(x,) = [[;ep, 1(z5 = 0)([Ticpns 1(z: = 0) +
[Ticrns 1(zi = 1)). Under the product distribution B(x) = 2 [1rer or (), for
each j € [N]\s, z; will have zero probability of taking a value other than 0, i.e.
random variable z; is deterministic and will have zero entropy. On the other hand,
since Uje,F(7) is connected, for each pair 7,5 € s the probability that z; # z; is
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zero; in fact there is exactly a probability of 0.5 that x, = (0,0,---,0) and a
probability of 0.5 that x, = (1,1,---,1). Therefore random variables z; for 7 € s
are redundant, and for all ¢ C [N] s.t. sNt # 0, Hy(B;) = 1(bit). Now by
independence of x, and x{y)\s we have

H(B) = Hy(B;) + Hnpns(Biapns) = Hs(Bs) = 1

On the other hand,

S kH(B)= Y. kH(B)+ Y, kH(B)= ) k-1+0#1

TER r€V;es F (i) T€R\Uies F(i) T€U;gs F (i)

so that H(B) # Y_,cg kr Hr(B;). Therefore we have shown that (1) implies (2).

Now suppose that (2) holds. We will show that (3) must hold, using induction
on the lezicographical order on the strings of the decreasingly-sorted cardinalities
of elements of S defined on all S C 2IV); we clarify this ordering using an example:

Suppose N = 12, and S = {{10,11,0}, {1,---,10}},
S, = {{1,2,3,4,5},{3,4,5,6},{6,7,8,9,10}}, S; = {{1},---,{7}} and
Ss = {{6},{7},{8}}. Then the ‘sorted strings of the cardinalities’ are str(S)) =
[10.3]), str(S;) = [6.5.4], str(Ss) = [1.1.1.1.1.1.1] and str(Ss) = [1.1.1], so that
str(S1) >iex Str(S2) Siex Str(S3) >iex 8tr(Ss).

It is clear that if all s € S were singletons, so that str(S) = [1.--- .1], then
(3) is equivalent to (2). Now suppose S = {s1,---,s,}, and [s,| > 2. We
split s, as the disjoint union of ¢; and t,, i.e. s, = t; Uty and ¢; Nty = 0, so
that 0 < |t1], |ta] < |sn|- Define Ty := {s1, -+ ,8a—1,t1}, T2 := {51, -+ , Sa—1, %2}
and Ty; := {s1,*,Sn-1,t1,t2}. Clearly now, with the above lexicographical
order, str(T}),str(T,) and str(Ty2) each are smaller than str(S). Furthermore,
User, F(8), User, F(8) and Usery, F(s) are each connected, since they all contain
UsesF(s) as an up-set. But

> k=Y k+ > k, + > E, =1

T€UseTy, F(5) T€UsesF(s)  TEF(11)\UsesF(s) r€F(t2)\UsesF(s)

> ke ¥ kv Xk
r€UseT, F(s) r€UsesF(s) T€F(t1)\Uses F(8)

> ke X ke S ok
T€UseT, F(9) TE€Use5F(s) r€F(t2)\Uses F(s)
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where we have used induction hypothesis to conclude that each sum must be equal
to 1. Using the above three equations we get Zreuses F(s) k., = 1. This completes
the inductive proof.

Next suppose that (3) holds for a choice of factors {k,, € R}. First note that
choosing S = {r} for each 7 € R we get equations (7), implying that {k.,r € R}
must in fact be the same as the (Mébius) overcounting factors, {¢,,r € R}.
Suppose now that Sg, the minimal graph of R has a loop. Let L C R be a loop
of Sk, and let Ly C R be the collection of minimal regions of L, i.e. every r € L
contains some 7y €. L, and that no region in Lo properly contains another region
in Ly. Therefore F(Lg) contains loop L of Sg. We now claim that one can find a
loop L with minimal regions Lg such that for any proper subset Ly C Lo, F(Lg)
is loop-free. This is because if F(Ly) contains a loop L’ for a proper subset Ly
of Ly, then we can choose L} in place of Lo, and F(Lg) still has a loop L'. But
|Lo| is finite and |Lj| < |Lo|, so this process must end, yielding a loop L with
collection Ly of minimal regions, with the desired property. Further note that Lo
cannot have cardinality 1, since if Ly = {ro} for some o € R, then all the edges
of the Hasse diagram that terminate in ro and participate in the loop L would be
EER; all but one of these edges would be removed in Sg, therefore 7o cannot be
part of a loop.

Therefore for each region r € F(Ly), Sx(r) is loop-free. Noting that the over-
counting factor ¢, only depends on F(r), and using Lemma 10, ¢, = 1 — |Psg(7)|.
Then, as before, the sum ZTE}-( Lo) Cr can be rewritten as the difference between
the number of vertices and the number of edges of Srz,). But Sr(r,) has at
least one loop, therefore it has at least as many edges as vertices. Therefore
> reF(Lo) & < 0 and cannot be equal to 1. This would contradict (3), and hence
Skr must be loop-free.

Now suppose that Sg is loop-free. Then by Proposition 8, Sg is a junction
tree. Choose then {k.} to be equal to the overcounting factors {c }, so that
k. = 1—|Psg(r)|. Then by standard results on the junction trees, any distribution
B(x) that decomposes on the junction tree Sg, factors as [],cp B.(x,)* (see
(Cowell et al., 1999)). From this (1) follows immediately. This completes the
proof of the theorem. (]
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From this theorem, proof of Proposition 1 of Section 3.1 follows:

Proof of Proposition 1: Note that although the statement of Theorem 13 assumes
that R is totally connected, that assumption is only needed to show that (3) im-
plies (1). From the proof of Theorem 13, for an arbitrary collection of regions R,
any collection of factors {k,,7 € R} satisfying condition (1) of Theorem 13 must
be the Mobius overcounting factors. O

As mentioned in Section 3.2, given a product distribution with kernels
{a®(x,), 7 € Ro}, where the regions in Ry cannot be put on a junction tree,
it is expected that expanding the collection Ry by adding subsets of 7 € Rop as
further regions would improve the quality of approximation obtained by the it-
erative algorithms such as GBP. The following result, however, shows that it is
improbable that ezact solutions will be obtained.

Theorem 14. If Ry is loopy, then except on a set of measure zero of choices of
kernels {a®(x;), 7 € Ro}, the Kikuchi approzimation method of equations (12)
will not produce ezact results for both Fy and {B,}.

Proof. Let T denote the set of Ro-kernéls {a?(x,)} for which the Kikuchi entropy
approximation of equation (6) is exact for the Boltzmann distribution. Specifi-
cally, define

T := {{al(x:), 7 € Ro} : EB(x) log(B(x)) = ) ¢ ) Br(%:) log(Br(x,)) }

re€R Xy (19)
where, as in Section 3.2, B(x) = % [],cg, @2(x-) and B,’s are its marginals. For
each region © € Ry define ¢, := [];c, ¢: to be the cardinality of the range of x,
and let [ :== 3 .o gr. Let f: R} — R be the error function in approximating
entropy as in (6), i.e.

f{al(x,)}) := ZB x) log(B(x)) — ZCTZB (x,) log(Br(x-))

TER X5

sER a Xs) HseR ao(xs) _
B Z > o Ler 80 5, [Ler 6
Ex[Nl\r HsER @ ( ) le”l\r H.seR a, (Xs
2 S et NS Tan el

TER Xr

36



Then T = f~!(0). Function f(-) above is clearly analytic on its domain, RL.
Then, as demonstrated in (Federer, 1969) §3.1.24, either T = Rﬂ_ or u(T) = 0,
where p(-) is the Lebesgue measure. The first alternative requires that f be
identically zero on Rf,_. But from Theorem 13 it is evident that if Ry is loopy,
then the entropy approximation cannot be exact. This completes the proof. O

A stronger version of this result can be derived. Although we have so far
focused on positive distributions B(x) > 0, in many applications one is interested
in distributions that can be zero at certain points of the state space. As mentioned
above, using its continuity, the function zlog(z) can be extended conveniently
at the point z = 0. This means that we can handle arbitrary (not necessarily
positive) distributions in the above framework.

Suppose then we condition on the collections of kernels {a2(x;),r € Ro} which
are zero at predetermined values. Specifically, for each r € Ry, let Z, C [[;c, ai
be a subset of the range of values of x,, on which a? is zero. We say a collection
of kernels {al(x,),r € Ro} is consistent with {Z,,7 € Ro} if for each r € Ry,
ad(x,) = 0 for all x, € Z,.

Theorem 15. Suppose Ry is loopy, and let {Z,,r € R} be a collection of zeros
of the kernels as defined above, chosen such that the following holds:
Vs C [N], 3%}, %2, %w\s such that I} # Z? Vi€ s, and that B(X;, Xv)\s)
and B(X2,%(n)\s) can both be nonzero under the restrictions imposed by {Z;}.
(20)

Then the conditional measure of the set of kernels {a2(x,),r € Ro} conditioned
to be consistent with {Z.,v € Ry}, for which Kikuchi approzimation method of
(12) is ezact is zero.

Proof. We define the set T and error function f(-) similar to the proof of Theorem
14, with the convention that 0log(0) = 0. Here, however, f is a function on RY,
with I =3,z (g — |Z:]). Once again, f(-) is seen to be analytic on R,

The argument to show that f is not identically zero proceeds exactly as be-
fore. It only remains to show that Theorem 13 still holds for the restricted case
imposed by {Z,}. The proof of Theorem 13 remains unchanged with the following
exception: in the first part, to prove that “not (2) implies not (1)”, for each r we
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choose ar(xr) = [Lienns) 13 = Ei)(Tierns 1(zi = 21) + [ligons 1z = ),
where %}, %2 and X{v)\s are chosen according to (20). The fact that these o’s are
consistent with {Z,} is then guaranteed by (20).

Therefore f is not identically zero on its domain R/, of kernels consistent with
{Z.}, and hence the Lebesgue measure of the set T is zero. (

We conclude this section with a generalization of Corollary 4 on sufficient
conditions for convexity of the Kikuchi free energy. In particular we make a
(purely set-theoretic) connection between the number of loops of Sr and the
sufficient conditions of Theorem 17 for convexity of Kikuchi free energy.

Definition. We call a collection R of Kikuchi regions normal, if for all S C R,
there exist a largest region (w.r.t. set-inclusion) mg € ()gD(s), possibly the
empty set, that contains any other region u € (g D(s). O

Lemma 16. If R is normal and Sg is connected and has ezactly one loop, then
zreRc" € {0’ 1} .

Proof. Let L C R be the set of nodes in the single loop of Sg, and let L=
F(L). Note that L cannot have a single minimum region, i.e. a region that is
contained in all other regions of L; to see this, suppose to the contrary that rp is
the minimum region of L. Then all the edges of the Hasse diagram that terminate
in 7o and participate in the loop L would be EER; all but one of these edges
would be removed in Sg, therefore 79 could not be part of the loop L, which is a
contradiction. '

It follows from this that for each r € L, the sub-poset F(r) does not contain the
loop L, and is hence loop-free. Then by Lemmas 10 and 6, ¢, = 1 — |Ps,,(7)| =
1 — |Ps,(r)|- Then, as argued in the proof of Lemma 10, there is a contribution
of +1 for each vertex and —1 for each edge of Sy for the sum ) 7 c;. Now Sz is
connected and has one loop, so the number of its vertices equal the number of its
edges and so ) ;s = 0.

Now for each r € R\L such that Stur( 1s connected, we calculate the contri-
bution of the overcounting factors of regions in F(r)\L to the overall sum. After
each stage, we will inductively append F(r) to L.

First suppose that F(r) does not contain the loop L of R; then

Z cs=ch+ Z Cs (21)

seLUF(r) seL seF(r)\L
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We will argue that the second term must equal 0. Remember that from the
definition of the overcounting factors,

1= Y = Y. ca+ >, G (22)

SEF(r) sEF(r)nL seF(r\L

But Sy (,)nz must be a tree, since firstly it does not contain the loop L, and sec-
ondly 7 can have only one parent in Sy, or else Sg would have a loop containing
r. Therefore by Lemma 10, Zse}'(r)ni ¢s = 1. Then from (22), zsef(r)\f, cs=0
and hence by (21), Esezuf(r) Cs = . Cs» i-6. the sum is preserved after ap-
pending F(r).

Next suppose that F(r) contains the loop L of R. Then since R is normal,
there is a largest m € R such that F(m) contains the loop. Again we break
up the new sum of overcounting factors as in equation (21). If r is equal to
M, Y eermnL Cs i (22) equals 0 since Sg)7 has one loop and has no region
v’ such that F(r') contains the loop and hence by what we have shown so far,
Zses}'(r)nl ¢s = 0. Therefore by (22), > cre)g¢ = 1, and hence from (21),

s€LUF(m) Cs = Zsez s+ 1=1

On the other hand, whenever F(r) contains the loop but r # m, then m C R
and hence F(m) C LNF(r). Then by what has been shown so far, Y scinF(r) Cs =
1. Then the additional term . z¢y\f ¢s in (21) is 0 and hence >, 7 ,5(y Cs =
Zsez cs= 1.

Therefore we have shown that, depending on whether (,c; D(s) is empty or
not, the sum ) ¢ isOor 1. O

Theorem 17. Let R be a normal collection of Kikuchi regions. Then the Kikuchi
free energy functional FE({b.}) is strictly convez if Sg has zero or one loop. In
particular, the Kikuchi free energy for the Cluster Variational Method of (Yedidia
et al., 2001) is strictly convez if Sg has zero or one loop.

Proof. For each S C R, F(S) contains zero or one loop. Then by Lemmas 10 and
16, 3 e r(s)¢s = 0 and hence, from Theorem 3 the Kikuchi functional is strictly
convex. O
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5 Generalized Belief Propagation Algorithm

We are now in position to describe a class of iterative message-passing algo-
rithms that try to solve the constrained minimization problem (12). Previously
described algorithms such as the generalized belief propagation (GBP) algorithms
of (Yedidia et al., 2001) and (Yedidia et al., 2002), and Poset-BP algorithm of
(McEliece and Yildrim, 2003) are special cases of the class of algorithms we de-
scribe. The algorithms proposed earlier work on the full Hasse diagram. The
results derived in the earlier sections of this paper on the minimal graphs allow
us to propose algorithms for solving (12) which are often substantially less com-
plex than the ones proposed in (Yedidia et al., 2002) and (McEliece and Yildrim,
2003), and which appear to have comparable convergence performance in some
examples we have investigated and reported on Section 6.

Let R be the collection of regions for a Kikuchi approximation problem. In
Section 3.3 we described how the Lagrange multipliers method can be used to
obtain an iterative, message-passing algorithm with fixed points that coincide
with the stationary points of (12).

Now let G be any graphical representation of AX as defined in Section 4. Then
the Lagrangian of equation (13) can be rewritten in terms of the edge-constraints
of G, in which case the ‘messages’ of the resulting iterative algorithm can be
identified precisely with the edges of G. This means that, for each graphical rep-
resentation of AX there is a distinct message-passing algorithm along the edges of
that graph. Clearly all such algorithms have the same set of fixed points, although
the dynamics of each algorithm may be different.

So far we have represented the constraint set A¥ using the edge-constraints
defined in Section 4. Motivated by an observation made by Yedidia, Freeman and
Weiss in (Yedidia et al., 2001; Yedidia et al., 2002), we introduce an alternative
but essentially equivalent set of edge-constraints; we will then be able to use
this alternative representation of the constraint set AX to derive an alternative
message-passing algorithm to solve (12).

Definition. The YFW edge-constraint® for an edge (s — t) of G is defined as the

8We call these constraints YFW after Yedidia, Freeman and Weiss.
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following functional of the pseudo-marginals {b,, r € R'}:
ECioy({br, T € R = > cud bulxu) (23)
u€F(t)\F(s) Xyu\t

where R’ := {r € R, ¢, # 0} is the collection of regions with non-zero overcounting
factors. Note that, since ¢, = 0 for u € R, EC'(S_,t) is a function of only {b,,7 €
R’} as claimed in (23). When the arguments are clear from the context, we
abbreviate these edge-constraints as EC{,_,. O

Proposition 18. The collection of pseudo-marginals represented by the YFW
edge-constraints is equal to the restriction of AX to R'. Namely, if we define

b= {{b,(x), T € B} : V(s — 1) € £(G), ECly_y({br7 € R}) =0
and Vr € R/, Zbr(x,) =1}, (24)

Xr

then A = AK

o Where
AR\ = {{b:(x:),7 € R} : {b.(x;),7 € R'} has an extension {b.(x;),7 € R} € AR}
is the restriction of AX to R'.

Proof. Given t € R, s € Pg(t), by definition of the overcounting factors

Y =1 and Y e=1

u€F(t) u€F(s)

Therefore Z ¢, =0 (25)
wEF()\F(s)

Now if {b,, 7 € R} € Af, then Vu € F(t), 3, bu(xu) = be(x¢). Therefore
ECy({br,T€RY = D> bu(x)

ueF(EN\F(s) Xu\t

= Z Cy bt(xt)

wEF(t)\F(s)

= bt(xt) Z Cu

ueF()\F(s)
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Hence {b,, 7 € R’} € A%, and we have proven that AK|,, C Af.

Now conversely suppose that {b,, 7 € R'} € A%,. We will show by induction
on depth function d(t) of region t € R (w.r.t. poset R, and not graph G) that
for all s € A(t), Zx,\e bs(xs) = by(x¢). The statement holds vacuously for the
maximal regions, since these regions cannot have parents. Now let ¢ be a region
with depth d(t) = [ > 0 and let Pg(t) = {s1,--- ,Sm}. For each pair s; and s; of
parents of t in G, consider the following cases on A(s;) N A(s;):

e Suppose A(s;) N .A(s;) = 0. Then, because {b,,7 € R'} € A}, we have

Z Cy Z by(xy) =0

ueF(E\F(si) Xu\t

Z cuZ:bu(xu) =0

ue]—'(t)\'r"(s,-) Xu\t

Subtracting one from another we obtain the following equality:

Yo e bux)= Y ) bulxw) (26)

UEF(s;)  Xunt uEF(s;)  Xune

Since d(s;) and d(s;) are each no larger than ! — 1, by induction hypothesis
we have

Vu € F(si), Z bu(Xy) = bs;(xs,-)

Xu\s;

Vu € F(sj), Zb xu)—bs,(xs_.,)

xu\.s]
Replacing these in (26) we obtain
Z bs, () E Cu = Z bs: X*’J Z Cu
X5\t u€F(s:) X5\t u€F(s;5)
But by definition of the overcounting factors, > . Flsi) Cu = D e F(s;) Cu = 1,
so that Zx,i\, bs,(xs,) = Zx,}.\‘ bs; (Xs;)-

e Supposeu € .A(s,)ﬂ.A(sj) Then again by induction hypothesis, Exu\,. bu(Xs) =
bs,(xs,) and Z bu(xu) = by, (Xs;)- Therefore sz.\t bs, (Xs,) = qu\t by (xy) =
Sy b))
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We can therefore show that for all pairs s; and s; of parents of ¢t in G,
Zx,,.\t bsi(xs;) = 3y, |, bs;(%s;) = bi(x¢) for a unique function bj(x;). Now if
t € R/, we define bt(xtj := bj(x;). If t € R', using the fact that {b,, r € R’} € A},
we have

Z Cu Zbu(xu) =0

ueF(E\F(8:i)  Xunt
0 Ctbt(xt) + Z Cub;(xt) =0
u€A(ENF(s:)
= bt(Xg) = b;(xt)

since by (25), ¢t + > yc a@\F(s:) Cu = 0> and ¢; # 0.

So we have shown that Zx,,.\g b, (Xs,) = bi(x:) for all s; € Pg(t). But G
is a graphical representation of AX, therefore by argument similar to those of
Proposition 7 for each (s — t) € £(Gr)\E(G), the edge-constraint 3, bs(xs) =
b.(x;) is implied by the edge-constraints of those edges of G at the same, or at a
lower, depth. Specifically, there must be a path in G between u and t for each
u € A(t), consisting only of vertices that contain ¢, or else consistency between
b, and b, could not be implied by the edge-constraints of G. But any vertex that
contains ¢ must have a depth less than ¢ (remember that we are using the depth
function on R, and not on G: a region containing ¢ could have a G-depth higher
than that of ¢.) Therefore all the G-edges in this path have depths no more than
| = d(t) and can be used in our inductive argument. Together, they imply the
consistency between u and {, i.e. Exu\t by (%) = be(xe).

Therefore we have found the desired extension {b,, 7 € R} € Ag, and so Ag C
AK| ... This proves that A = A¥| ., as claimed. a

Remark. Note from (9) and (11) that Kikuchi free energy can be rewritten as
follows:

FE{b-()}) = D37 (= e br(x,) 1og(Br(xr)) + ¢ br(%:) log(br(%r)))  (27)

reR Xr

From (27) it is apparent that FX ({b,,7 € R}) only depends on {b,,7 € R'},
since the terms involving the pseudo-marginals corresponding to the regions with
zero overcounting factors are multiplied by zero. Therefore (12) can be rewritten
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as follows

. FK b,'I‘ER = min FK b,'I'GR')
{o,,r?é?@g r ({0 3] (e, R ({or }

( {b1 y GR}GAKR R ({ })) IR' g{b1 "ER }GA!I R ({ T })

In other words, the central constrained minimization problem (12) is reduced
to the following: ming, reryear, Fif ({0r,7 € R'}). O

We will now write the Lagrangian for (28) using the YFW edge-constraints:

L= Zc,.b x,) log (——— r(x,))

Br(x7)
reR
+ 03 Y ) Y e bulx)+ Dk Zb (x,)—1) (29)
(r—ot)eE(G) x: w€F(NF(r)  Xune r€ER

Setting partial derivative dL/db,(x,) = 0 for each region r and each value of
x,, and identifying ‘messages,” for each edge (p — ), as My (X;) := e~ () we
obtain:

b)) =kB0)( I melx)) (TT T1 mwalxa))  (30)

PEPG(r) d€D(r) p'€Pc(d)\({r}uD(r))

where constant k is chosen to normalize b, so it will sum to 1, and message m,,
is updated to satisfy the original edge-constraint pr\r bp(xp) — by (x,) = O:
Loy, Bo(%p) ( | J m,.,,,(xp)) ( ieo) Hserc@nippe) Msd (xd))

Br(x-) ( [L epoirnimy Msr (xr)) ( aene) Hpercanirivnm) mp'd(xd))
(31)

Mpr(Xr) = k

where k' is any convenient constant. Note that the common terms from the
numerator and denominator of (31) can be cancelled, but to avoid even longer
formulas we will not write the explicit form here.

The fixed points of equations (30) and (31) set all the derivatives of the La-
grangian equal to zero, and hence are precisely the stationary points of the Kikuchi
free energy FX subject to constraint set AK.
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The algorithm of equations (30) and (31) is defined on any graphical repre-
sentation of AX, and has as many messages as the edges of the underlying graph.
From results of Section 4 then, using Sg, the minimal graphical representation,
yields the least complex such algorithm in this sense. In fact in most cases the
algorithm on Sp is substantially less complex than the full version implemented
on the Hasse diagram Gp.

Remark. A version of this algorithm was originally labeled GBP in (Yedidia et al.,
2001). In (McEliece and Yildrim, 2003) also the authors described an algorithm
called ‘Poset-BP’ which is equivalent to the restriction of our results when G
is the Hasse diagram. Our result shows that in general there are algorithms
with strictly fewer messages, that have the same fixed points. In particular, the
messages corresponding to the edges of the Hasse diagram that are removed in
forming a more compact graphical representation, can be set to 1 in the entire
algorithm. Not only the messages corresponding to the removed edges need not
be updated at each iteration of the algorithm, the update rules for the remaining
messages are also less complex, since they depend on fewer edges.

It is also noteworthy that the proofs given in (Yedidia et al., 2002) and
(McEliece and Yildrim, 2003) both presume that the poset is first simplified by
removing the regions with zero overcounting factors. We note however that remov-
ing the regions with zero overcounting factors can in general alter the problem.
This is because a region with zero overcounting factor may still serve to ensure
consistency between the pseudo-marginals at other regions (see e.g. the poset in
Figure 5). We have avoided this restriction, by proving the results for a general
poset. O

@D G @
BB

Figure 5: Region ‘1’ has zero overcounting, but cannot be removed.

Consider now the restriction of the above algorithm in the Bethe case, i.e.
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each region in R is either maximal or minimal w.r.t. inclusion. Then P(r) =
for a maximal region r, and D(s) = 0 for a minimal region s. To demonstrate
the connection with the belief propagation algorithm, in addition to the messages
mpr(%,) for T C p, we also define messages from a child to parent as follows:

Brx) [ merlxr)
s€P(r)\{p}
Then, by equation (30), for a maximal region p € R,
bo(xp) = kBp(%) ][] mpalxa)

deD(p)

Pep(Xr) 1= (32)

(33)

Similarly, for a minimal region r € R,

br(%r) = k Br(xr) H Mar (%r)

deP(r)

(34)

The update equation (31) for messages m,, can then be rewritten as

pr\, Bo(xp) HdGD(p) Tgp(Xa)
Br(%r) nrp(%r)

=K Z ﬂp(Xp) H Nap(Xa)

Xp\r deD(p)\{r}

It is now easy to see that equations (32)—(35) precisely define the conventional

Mipr (Xr) = K

(35)

belief propagation algorithm of (Pearl, 1988) applied on Gr.

Example 4. Consider a poset R = {r,s,t,u,v, w} with the Hasse diagram Gg
given in Figure 6(a). We will write the explicit form the GBP algorithm on both
GR and S R-

GBP on Gg:
) _ Zxr\u Br(xr) _ th\v Be(x:)
Messages: Mpyu(Xy) = —m—, Mgy (Xy) = _ﬂT(;:)_—
) _ zxa\u ﬂs(xs) mtv(xv) ( ) _ sz\” ﬂs(xs) mru(xu)
() = Bu(Xu) Mo (Xw) ’ Mhevi¥e) = B (Xy) Meuw (Xw)
_ qu\w 1311 Myy Mgy _ va\w ﬂv Mty Mgy
mu’w(xw) = B (xw) ) Myw (xw) = Gu (xw)
Beliefs: br(x;) = G- (xr) Mgy (Xu) Mow(Xw), be(x:) = B (x¢) Mgy(Xy) Meyw(Xw)

bs (xs) = ,Bs (xs ) Mry (xu) Mty (xv ) )

bw(xw) = Bw (xw) Myw (xw) mvw(xw)a
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bu(xu) = /Bu(xu) mru(xu) Mgy (xu) Myw (xw)

bv(xv) = ﬁv(xv) msv(xv) Mty (xv) muw(xw)



(a) (®)-

Figure 6: (a) Hasse diagram Gp, and (b) a minimal graphical representation Sg
of the problem in Example 4

Note that this algorithm contains a ‘loop’: ms, depends on my,,, which de-
pends on mg,, which depends on m,,,, which in turn depends on m,,. This means
that the above messages will not converge in finite time, even though, as is ap-
parent from Figure 6(b), a junction tree does exist.

Compare the above algorithm with the following;:

GBP on Sg: '
Messages: Myy(Xy) = ‘Z_’;:L(g({(r_)’ e (o) = E’;:"(f:()x‘)
ey o S B I)  Fo, B )
sulXy Bu(x4) ’ svATY Bo(%v) Muw(Xw)
Myw(Xw) = Loy B Mru M
wwAw B (%)
Beliefs: br(xr) — ﬁr(xr) msu(xu), be(x:) = ﬂt(xt) msu(x‘v) muw(xw)
By(%s) = Bs(Xs) Mra(Xa) Men (%),  bu(Xu) = Bu(Xu) M (Xu) Mou(Xu)
bu(Xw) = Bu(w) Mun(w),  BulXa) = Bol3s) Man(360) M (3X0) Mo (Xr)

Notice that the above-mentioned loop is now broken, since m,,, does not exist
anymore. This means that the messages in the above algorithm will converge
after just one round of updates (performed in the correct order). This of course
is not surprising; based on the discussion above, this algorithm is no more than
the belief propagation algorithm on the junction tree of Figure 6(b). O
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6 Experimental Results

In the previous section we proved that the fixed points of GBP algorithms on any
graphical representation for a poset R coincide with the solutions to the Kikuchi
approximation problem of Section 3.2. We further argued that the algorithm
on the minimal graph Sg has the smallest complexity per each iteration. Two
important questions are not addressed in this paper so far: 1) how close are the
Kikuchi approzimations to the true marginals? And 2) how does the convergence
behavior of the GBP algorithm on the minimal graph Sg compare to that on the full
Hasse graph Gr? In this section we address these questions with some simulation
results. ' .

We considered three simple loopy posets below. In each case, all the variables
were binary. For each run of the experiment for a given poset, first we generated
a random collection of potential functions {a,(x,)}, where each value o, (x,) was
chosen independently and uniformly in the interval [0,1]. Next we calculated the
product distribution B(x) = [],¢g @r(x-) together with its true marginals B, (x;).
The GBP algorithm of Section 5 then was run on each of the two graphs Gr and
Sgr for that poset. Further, two different schedules were incorporated to update
the messages for each algorithm: parallel and serial. With the parallel schedule,
all messages were updated together at each iteration. For the serial schedule,
we update the messages one after another, in an order chosen so as to minimize
the number of edges which are updated before their requisite set of edges have
been updated. Each messége is updated exactly once during each iteration. To
ensure convergence of some algorithms we used damping in the update rule for
the messages. The quantity w reported for each algorithm is the damping factor.
In particular, we used ma*!(x,) = w F({m"}) + (1 —w) m}.(x,), where mj, is the
message at iteration n, and F({m"}) is the ‘pure’ update rule of equation (31).
The value of w is always between 0 and 1, with w = 1 corresponding to (31). For
each case, we decreased w gradually to ensure that the algorithm converged.

For each poset, we report the savings in complexity per each iteration of GBP
on the minimal graph compared to that on the Hasse graph. To compute these
savings, we calculated the total arithmetic complexity, i.e. the number of ad-
ditions, multiplications and divisions involved in update rules of (31), for both
algorithms. Note that this is not simply the fraction of edges that are removed in
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forming the minimal graph, since the update rules for the messages that remain
in the minimal graph are less complex than the ones on the Hasse graph.

To summarize the performance of each algorithm, at each iteration we calcu-
lated a special measure of distance between the beliefs {b,} and the true marginals
{B,}. We define a distance function D(b,, B,) := 2&xclbrler)=B ')("')J as the mea-

maxx, Br(xr
sure of distance from the belief b, to the marginal B,; this is a normalized max-

imum point-wise difference between the two distributions. The closer D is to 0,
the closer the belief b,(x,) is to the true marginal B,(x,) at all configurations of
x,. At each iteration we then calculate the mazimum distance max,egr D(br, B),
and the mean distance ﬁ > rer D(br, B;). For each poset, the averages of these
quantities over 200 runs are reported for each algorithm. The results are reported
below:

Poset 1: The Hasse diagram of this poset has one loop, but the minimal graph
is loop-free. There is a saving of 35.7% per each iteration of GBP on the minimal
graph compared to that on the Hasse graph. As expected, the Kikuchi approxima-
tions coincide with the true marginals in this loop-free case. The serial algorithms
converge to the fixed-points after one iteration, because we use an optimal sched-
ule for activating the messages. The parallel algorithm on the minimal graph
takes four iteration (equal to the girth of the graph). The parallel algorithm on
the Hasse graph requires damping, and converges much more slowly. Note that
in this case, the algorithm on the minimal graph both gives better performance
iteration by iteration and has less complexity per iteration.

29 (28 (29 iz (2D (39

() (b)
Figure 7: Posets 1. (a) The Hasse graph Gg, and (b) the minimal graph Sg

Poset 2: The Hasse diagram of this poset has five loops. All but one of these
loops are broken in the minimal graph. There is a saving of 46.2% per each
iteration of GBP on the minimal graph compared to that on the Hasse graph.
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Figure 8: Simulation Results on Poset 1.

The Kikuchi approximations are at an average distance of about 0.05 from the
true marginals, while the worst estimates have distance of about 0.13. Again
the serial algorithms converge very quickly, although the one on the Hasse graph
requires a slight damping. Comparing the parallel algorithms, the one on the
minimal graph clearly outperforms the one on the full Hasse graph, even with
equal damping factors. '

(a) (b)
Figure 9: Posets 2. (a) The Hasse graph Gg, and (b) the minimal graph Sg

Poset 3: The Hasse diagram of this poset has five loops, whereas the minimal
graph has only two loops. There is a saving of 28.5% per each iteration of GBP
on the minimal graph compared to that on the Hasse graph. The Kikuchi approx-
imations are at an average distance of about 0.05 from the true marginals, while
the worst estimates have distance of about 0.14. Once again the serial algorithms
converge very quickly, without the need for damping. The parallel algorithm on

50



Pos012, Mean Distanco D Posot 2, Maximusn Distanco D

1
— Senal. Gy we1 00 — Sedal. O w0 90
o) o~ Seal. S we1 00 os —o- Senst. 3 wa1 00
= Paradel, G ws0.80 4= Pantel, G w2078
o & Paate, 8, wet 0 g Panlel. S, wed 75

Distanco
°
@

Figure 10: Simulation Results on Poset 2.

the minimal graph again outperforms that on the full Hasse graph, the latter
requiring a damping factor w = 0.70 to avoid oscillations.

(a) (b)

Figure 11: Posets 3. (a) The Hasse graph G, and (b) the minimal graph Sgr

At least for the simple posets considered here, the less complex GBP algorithm
on the minimal graph, developed in this paper, seems to perform better than
the full GBP on the Hasse graph, especially with the parallel versions of the
algorithm. Considering that each iteration of the algorithm on the minimal graph
is less complex than that on the full Hasse graph, this suggests that there is
considerable saving in the complexity to be gained by using the algorithm on the
minimal graph.
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Figure 12: Simulation Results on Poset 3.
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