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The exponential-server timing channel (ESTC), as introduced by Anantharam and Verdi [1], is
one in which the sender chooses the arrival times of identical jobs to a single-server queue with
independent, exponentially distributed service times, while the receiver observes the resulting
departure times. Timing channels such as the ESTC have been studied in the context of covert
communication [2]; by modulating the times at which it performs routine tasks, the sender
can transmit information to the receiver in a way that makes it unclear to an observer that
communication has occurred. We assume that the service discipline is first-in-first-out, and
that the queue is initially empty. Neither of these assumptions is crucial; see Anantharam and
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Verdu [1] for a discussion of these assumptions and for a proof that the capacity of the channel
is pu/e nats per unit time, where 1/ is the mean service time. A

Arikan [3] proves the random-coding and sphere-packing bounds on the reliability func-
tion [4] of the ESTC. These are shown in Figure 1, and coincide at rates between (1/4) log 2
and capacity.! Although the motivation for proving these bounds was to determine the cutoff
rate of the channel, which is 1/4 [3), Arikan points out that they provide for an interesting
comparison between the ESTC and the Poisson channel without dark current but with a peak
power constraint of x. The latter channel models a direct-detection optical channel; the input
is a nonnegative waveform ), which is upper bounded by 4, while the output is a Poisson
process with intensity A;. The capacity of this channel is also 4/e nats per unit time [5, 6],
and its reliability function is known [7, 8] and coincides with the random-coding exponent of
the ESTC. Thus the ESTC is at least as reliable as the Poisson channel, and their reliability
functions coincide at rates between (1/4) log 2 and their common capacity. Arikan [3] poses
the problem of determining whether the two reliability functions are identical. We show that
they are not by proving that the zero-rate reliability of the ESTC, defined as the limit of the
reliability function as the rate approaches zero, equals x/2, which exceeds the zero-rate relia-
bility of the Poisson channel, which is 4/4 [7, 8]. We also provide an improved upper bound
on the reliability function of the ESTC at positive rates, and a bound on the zero-rate reliability
of timing channels with general service distributions, that is, -/G/1 queues. The proofs use
point-process techniques that could be of independent interest.

It is known that feedback increases the zero-rate reliability of the Poisson channel from
u/4 to p [9]. Sundaresan and Verdii [10] show how the ESTC can be emulated on the Poisson
channel with feedback by having the feedback encoder modulate the instantaneous intensity to
imitate a - /M/1 queue. Our results quantify, in the low-rate regime, the penalty associated with
using this restricted form of feedback: general feedback provides for a factor of four increase
in the reliability of the Poisson channel, whereas using the feedback to emulate a - /M/1 queue
provides for only a factor of two increase.

The covert communication scenario mentioned earlier provides another motivation, inde-
pendent of the comparison with the Poisson channel, for finding improved bounds on the relia-
bility function of the ESTC. When communicating covertly, the incentive for the sender to use
a code with a short blocklength surpasses the usual motivation of minimizing the coding delay:
a short blocklength decreases the likelihood of detection by the observer. Of course, a shorter
blocklength generally comes at the expense of a higher error probability. Since the reliability
function describes the tradeoff between the blocklength of a code and its error probability, it
also captures the tradeoff between the probability of error and the probability of detection by
the observer, assuming that the sender uses codes that are optimized for communication. More
generally, it would be of interest to study this tradeoff when the codes are optimized with both
goals in mind.

We return to the zero-rate reliability of the ESTC. It is instructive to begin a study of this
problem by considering the zero-rate reliability of the binary symmetric channel. This chan-
nel has a natural distance metric over its inputs, Hamming distance, such that the maximum-
likelihood (ML) error probability of a pair of codewords depends only on the Hamming dis-
tance between them. Furthermore, for low-rate codes, the error probability of a codeword is

"Throughout, log denotes the natural logarithm.



well-approximated by the probability that it is confused with one of its “nearest neighbors.”
The overall error probability of a low-rate code is then governed by its minimum distance. In
turn, the zero-rate reliability of the channel is governed by the largest achievable minimum
distance of low-rate codes. This max-min distance can be lower bounded via a random-coding
argument and upper bounded using the Plotkin bound [4].

The situation is similar for the Gaussian channel, with Euclidean distance replacing Ham-
ming distance [11]. Shannon, Gallager, and Berlekamp [12] extend the approach to a general
discrete memoryless channel (DMC) by devising an appropriate distance metric and by replac-
ing the Plotkin bound, which is insufficient in this case, with a more intricate converse.

We show that, despite the memory in the channel, this approach also works for the ESTC.
We introduce a distance metric over inputs to timing channels, which parallels Euclidean and
Hamming distance for conventional channels, and use it to bound the error probability of a
pair of codewords, when used over the ESTC, in terms of the distance between them. Bounds
are required here since the exact pairwise error probability under ML decoding is not easily
evaluated for this channel. These results are contained in Section 3. In Section 4, we reduce
the problem of determining the zero-rate reliability of the ESTC to a combinatorial sphere-
packing problem involving our metric: determining the max-min distance. This quantity is
lower bounded via a random-coding argument and upper bounded using a variation of the
Shannon, Gallager, and Berlekamp converse mentioned above. Our variation uses a inner-
product space lemma that can be used to elucidate their proof for discrete memoryless channels.
Section 4 also contains a bound on the zero-rate reliability of - /G/1 timing channels. The last
section contains a proof of the straight-line bound for the ESTC. First we give a mathematical
description of the channel.

2 Channel Construction

The blocklength of a block code for the ESTC can be defined in multiple ways, since the
transmission and reception time of a codeword can be quite different, and the reception time
depends on the channel realization. Two approaches have been used in the past: (i) defining
the blocklength to be the expected time of the last departure from the queue, averaged over the
codebook and the queueing process [1], and (i) restricting the decoder to observe the departure
process over a finite interval [0, T'], and defining the blocklength to be 7" [10]. We adopt the
latter approach here. Notice that if the decoder is required to decode based on the observation
of the departure process over [0, 7], then it is pointless for the encoder to submit jobs to the
queue after time 7. Thus we shall assume that the encoder submits all of its jobs to the queue
during [0, T]. For T > 0, let Q7 be the set of all counting functions over [0, T}, i.e. the set of
all right-continuous, nondecreasing, integer-valued functions w of [0, T] such that w(0) = 0.
When the blocklength is T', we view the input and output of the channel as elements of {21 by
viewing w, as the number of arrivals or departures that have occurred during (0, T'). We use the
following window code definition of Sundaresan and Verdu [10].

Definition 1 ([10]) An (n, M, T) encoder is a mapping f from a set of integers, A, to Qr, such
that |A| = M and for all i, fr(i) = n.2 An (n,M,T) code is an (n,M,T) encoder and a

2Throughout, we write f,(i) in place of the cumbersome (f(2))(t).
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decoder ¢ : Qr v A', where A’ is a superset of A. The data rate of the code is (1/T) log M.

We have followed precedent [1, 3, 10] and required that all codewords deliver the same
number of jobs to the queue. Since the decoder only observes the departure process during
[0, T, this is no real restriction, because any encoder can be made compliant by adding arrivals
at time T to some of the codewords, and this will not change the output law that they induce.

To construct the output law induced by sending an input z over the ESTC with service
rate 11, we use Girsanov’s Theorem applied to point processes [13, Section VI.2]. Let {F,}L,
be the filtration over 2 generated by the coordinate mappings w +— w;.3 Throughout, we
denote by F, the probability measure on (Qr, Fr) under which the outcomes are distributed as
a Poisson process with rate one.* The measure is not indexed by 7" since the measurable space
with which it is associated will be clear from the context.

On (Qr, Fr), define the random variable®

L =exp [/oTlog[ul(xt > w;)] dwy + /:[1 — pl(z > wy)) dt] .

By convention, we take L = 0 on the event that w; — w;_ > 0 for some ¢ such that z, < w,_.
We call an output w feasible for z if w; < x, forall 0 < ¢ < T. Evidently, L is positive on the
event that w is feasible for z. Now
LdRy=1
Qr

[13, Chapter VI, Theorem T4], and if we define P by dP/dP, = L, then under P, w is feasible
for z a.s. and w; has F-intensity p1(z; > w,_) [13, Chapter VI, Theorem T3]. So {w:}},
is distributed as the output of an initially-empty -/M/1 queue with input z, as desired [13,
Chapter III, Theorems T7 and T8]. In general, we denote by P, , the probability measure on
(Qr, Fr) under which the outcomes are distributed as the output of a -/M/1 queue with input
z and service rate .

The error probability of a code (f, ©), when used over the ESTC with service rate u, is
defined as

P(f, ) = max(l — Py (97" (3))]-

3 Error Probability Bounds

Given an encoder f and an output w, a ML decoder for the ESTC chooses a message 4 for
which w is feasible and that maximizes

de(:),p / log[pl(fi(3) > ws-)] dw; + / [1 = pl(fe(3) > wy)] dt.

3The o-field fT is the restriction of the o-field generated by the Skorohod topology on D[0, 1] to Qr [14,
Theorem 14.5), but this fact is not needed here.

“When working with point-process martingales, one typically assumes that the underlying probability space
and filtration satisfy the usual conditions: (Q,Fr, Po) is complete, F is right-continuous, and Fy contains all
of the Py-null sets of Fp. Brémaud [13, pp. 309-310] shows how to modify F and Py to comply with these
requirements; in the sequel, we assume this has been done.

3Throughout, | : should be interpreted as f(a’b]. Also, we write indicator functions as 1(-) instead of 1.

log ———
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Now for any message ¢ for which w is feasible,

T
| Toelu1 (i) > )] dun = o log .

Therefore, a ML decoder chooses a message in

A4 (0 : /T .
arg i:wn}tggi(ble dPo =g i:wl?elagble 0 l(ft (’&) > wt) dt.

This motivates the following definition.

Definition 2 Given two elements of Qdr, u and v, we say that u leads v by

L(u,v) := /T 1(ue > ) dt.
Also let
L(u,v) := max[L(u,v), L(v,u)].

Define the minimum distance of an encoder f by
L(f) = mI T(F(6), F5))-

The £ function is the distance mentioned in the introduction. It is not a metric on
because two elements of ), u and v, that differ only at time T will have L(u, v) =0 It
is, however, a pseudo-metric [15], and a metric if we identify elements of Q7 that differ only
at T. Two other properties of L that will be used later are given in the first Lemma, whose
straightforward proof is omitted.

Lemma 1

(a) If u and v are elements of Qr and x = min(u, v), then

L(u,z) = L(u,z) = L(u,v)

L(v,z) = L(v,z) = L(v,u).
(b) Ifi # j and w is feasible for f(i) and f(j), then
max[L(f(3),w), L(f(5),w)] = L(f(), £(5)) 2 L(f)-

Evidently, ML decoding for the ESTC can be described as finding, among those codewords
for which the output is feasible, one that leads the output by the smallest amount. Thus £ is
similar to Euclidean distance over R™ and Hamming distance over {0, 1}" in that each governs
ML decoding for the channel with the lowest capacity in its class: ML decoding for the ESTC
is governed by £ distance and the ESTC has the lowest capacity of all timing channels with

5



fixed service rate [1, 10], ML decoding for the Gaussian channel is governed by Euclidean
distance and the Gaussian channel has the lowest capacity of all additive noise channels with
fixed SNR [4, Theorem 7.4.3], and ML decoding for the binary symmetric channel is governed
by Hamming distance and the binary symmetric channel has the lowest capacity of all binary
memoryless channels with the sum of the crossover probabilities of the two inputs held fixed.
Unlike the Gaussian and binary symmetric channels, though, for the ESTC the ML error prob-
ability is difficult to evaluate even for just two messages, except in special cases. To proceed,
we use a suboptimal decoder that approximates ML decoding. Part (b) of Lemma 1 proves that
the decoding rule is well defined.

Definition 3 Given an encoder f and an output w, the bounded-distance decoder @pg declares
that message i was sent if w is feasible for f(i) and L(f(3),w) < L(f). If no message satisfies
this property, then it declares an error (i.e., it chooses an integer outside the message set).

This decoder is similar to a ML decoder, except that it quits and declares an error if the
channel output is farther than £(f) from all codewords for which it is feasible.

Lemma 2 For any (n, M, T) encoder f, the error probability under bounded-distance decod-
ing satisfies

P.(f,¢5) < Pr [Z 8> Z(f)] , )
i=1

where Sy, ..., Sy, are the i.i.d. service times, each exponentially distﬁbuted with mean 1/p. If
L(f)/T > A/ p, where X\ = n/T is the arrival rate of the code, this yields

Pision) s o [T (L -3 - viog ()]

Proof. If message i is sent, then an error occurs only if £L(f(3),w) > L(f), where w is the
output of the queue. By viewing S, ..., S, as the service times of the n jobs, we can couple
them to w such that

L(f@E),w) <> S as.
i=1

This proves the first conclusion. The second conclusion follows from the first by applying the
Chernoff bound. O

Observe that the bounded-distance decoder corrects errors up to the minimum distance of
the encoder, compared to half the minimum distance, which one might expect. Even so, the
bounded-distance decoder is strictly suboptimal compared to a ML decoder. This result and
the next one, however, together imply that there is little loss in using the bounded-distance
decoder when the arrival rate is very low. We shall see in the next section that the zero-rate
reliability of the ESTC is achieved by codes with vanishing arrival rates. Consequently, the
bounded-distance decoder will be sufficient for our purposes.

Lemma 3 Let f be an (n, M, T) encoder. Then for any decoder o, the error probability satis-

fies )
P.(f,¢) = s exp [-pL(f)]

where 1/ is the mean service time.



Proof. There exists a pair of messages 3 # j such that £(f(3), f(5)) = L(f). Let p; and p; be
their error probabilities, and define z by z; = min[f;(¢), fs(j)]. Let D; € Fr be the decision
region for 7 and let D; € Fr be the decision region for j. Also let

Y = {w € Qr : w is feasible for f(i)},

and define Y}(;) and Y similarly. Then

T
pi = /D O [ /o log[ul(fu(i) > we_)] dwe + T — pL( f(z),w)] dP,.

But on Yy(;),
T
/ loglul(fu(d) > wr-)] duw, = wrlog s,
0

)
p= [ explurlogu+T - pl(f@)w)] dPy
DYy
> / exp [wrlogu + T — u(L(f(7),z) + L(z,w))] dPo
A
> expl-uL(f).SG)) [ explorlogs+T - wl(aw)] dPy
¢nYe
where we have used the triangle inequality for £ and part (a) of Lemma 1. Similarly,
p; > exp[—pL(f(3), F(5))] /D y exp wrlogp + T — pL(z,w)] dPo.
L

But
dFP;,

v, AP

/ exp [wrlogp + T — pl(z,w)] dPy = dPy=1.
Yz

So since D; and D are disjoint,
/ exp [wrlogp + T — puL(z,w)] dPo +
DfﬁY:
/ exp lwrlogu + T — pLl(z,w)] dP > 1.
DNy
Therefore at least one of these integrals must exceed 1/2. O

4 Zero-Rate Reliability

Let
P.(n, M,T) :=inf{P.(f, ) : (f,¢)isan (n, M, T) code}

7



and
P.(:,M,T) := inf P.(n, M, T).

Then the reliability function (or error exponent) of the channel at rate R > 0 is defined by
1
E(R) := limsup — log P.(, [exp(RT)],T).
T—oo T

The zero-rate reliability or zero-rate error exponent is defined by

E(0) := }lg_% E(R) = ?zlipo E(R).

We have followed precedent [3, 8, 4, 11, 9, 16] and defined the reliability function using the
limit supremum. Our lower bounds on the reliability function, however, continue to hold if
the reliability function is defined using the limit infimum instead. For the ESTC, there is little
reason to believe that the limit fails to exist, although this has not been proven, even for discrete
memoryless channels. For a timing channel with a general service distribution, however, the
limit can fail to exist, as the following example shows. Consider any service distribution that
places all of its mass on the points of a lattice in R. Then for any M > 2, the infimum of the
error probability over all (-, M, T) codes is Pr(S; > T). If one uses our reliability function
definition, this gives

E(R) = limsup 1 log Pr(S; > T)
T—o0 T

for all R. One can create a lattice distribution, however, for which the limit infimum is strictly
smaller.

We return to the ESTC. Arikan [3] proves the following random-coding and sphere-packing
bounds [17] on its reliability function.

Theorem 1 ({[31) Let E,,(R) be defined parametrically for 0 < R < pfe by

Ex(R) = H:W[P —log(1 + p)),

_ H
&= o+ oy

where p ranges over (0,00), and let E,(0) = p. For R, := (p/4)log2 < R < pfe, let
E.(R) = E;(R), while for 0 < R < R,, let E.(R) = p1/4 — R. Then the reliability function
of the ESTC with mean service time 1/ satisfies

log(1 + p),

E.(R) < B(R) < En(R)
Jorall0 < R < pfe.

We call E,(R) the random-coding exponent and E,,(R) the sphere-packing exponent for
the channel. These functions are shown in Figure 1. Recall that the reliability function of the
Poisson channel without dark current but with a peak power constraint of u equals E.(R) [7,
8]. Thus determining whether this channel and the ESTC have identical reliability functions
amounts to determining whether E(R) = E,(R) for all R. Theorem 1 shows that this holds

8



for R in [R,., /€], so we focus on rates in [0, R.), and in particular on rate zero, since the
random coding bound is rarely tight in the low-rate regime. In particular, Gallager’s expurgated
bound [4] shows that the random-coding bound lies strictly below the reliability function at
sufficiently low rates for any DMC with nonzero capacity. Indeed, it turns out that E(0) >
E.(0) for the ESTC, although a direct application of the expurgated bound fails because the
pairwise error probability bound on which it is based is not easily evaluated. One can replace
this bound with (1), however, then mimic the derivation of the expurgated bound using results
on the L-distance between two randomly chosen codewords (e.g. Corollary 1 to follow). Using
this approach one can obtain a lower bound on the reliability function at all rates that, in
particular, proves that £(0) > /2 > E.(R).

This bound, while valid at all rates, improves upon the random-coding bound only at very
low rates, however. Therefore we discard this approach in favor of one that only yields the
zero-rate bound, E(0) > p/2, but that better illustrates the vital role of the max-min distance.

A Max-Min Distance
Definition 4 For nin N andtin [0,1), let

M(n,t) = sup {M : there exists an (n, M, 1) encoder f with L(f) >t} .

Define

Lo = sup {t €1[0,1): limsup%logM(n,t) > 0} .
n—oo
One can verify that M(n,t) | n+ 1ast T 1 for all n and that
M(n,t) < ocoforallmandt > 0. (2)

We call Ly the max-min distance of the channel. Later we show that it satisfies Ly = 1/2. First
we link it to the zero-rate reliability.

Proposition 1 The zero-rate reliability of the ESTC with mean service time 1/ i satisfies E(0) =
uLo.

Proof. We first show that E(0) < pLo. Let 0 < § < E(0) and let {(f®,¢®)} be a
sequence of codes such that ) is (ny, My, T}) for each k and

Tk T 00, 3)
.1
klingo T log M;, =: R> 0, “)
and
lim —=log P. (f®, o®) = E(R) > E(0) - 4. 5)
k—o0 Tk



If sup;, nx /T = o0, then we can remedy this by choosing K > 1suchthat 1+ Klog K — K >
2E(R)/u, then discarding any points beyond the first [ K uT}] =: N in each codeword of f*).
If g®) is the new encoder then a straightforward coupling argument gives

i=1

Nj
[P (6, 6%) — P, (), 6®)| < Pr [Z 5 < Tk} ,

where Sy, ..., S, are i.i.d. exponential with mean 1/p. Invoking the Chernoff bound gives

|P. (9%, ™) — P. (£f®, M) | < exp[-Ni(1/K — 1 - log(1/K))]
< exp[—2E(R)Ty],

so that (5) above holds with g*) in place of f*). Therefore we shall assume that

ng
sup T < 00.
By Lemma 3,
P (£9,6%) 2 5 exp [-uL (1¥)].
Thus

(f‘k))

Observe that £ (f*)) /T;. is the minimum distance of the encoder obtained by time-scaling
F%) to have blocklength one. Then since M; — oo by (3) and (4), and

0<EW0)—-6<p- hmmf

liminf Z (f*) /Ti. > 0,

it must be that n; — oo by (2). This combined with the observation

T
lim inf log Mi > nf—ﬁ hm —long >0
k—oo Nk N k—oo Tk
impli
implies (5®)
lim sup < Lg.
k—o0 Tk

Thus E(0) — 6 < pLe. Since § > 0 was arbitrary, we conclude E(0) < pLo.
Now let 0 < € < Ly. By the definition of Ly, there exists a sequence of encoders { f*)}
such that f®) is (ng, My, 1) and L(f*) > Lo — € for each k, and

lim ——long = R>0.
k—oo N

Let 0 < A < u, and for each k, redefine f*) to be the (ny, Mx, ni/A) encoder obtained by
dilating time by a factor of n;/\. Consider decoding f*) using the bounded-distance decoder.

10



__ By choosing X sufficiently small, we may assume that Lo — € > A/p, which implies that
L(f®)/(nx/)) > A/ p for each k. Then by Lemma 2,

P (1%, ¢B)<exp[ (f‘—ﬁi—’;? A-Alog(Ml))]

Nk

< exp [_T (u(Lo =€) —A—Alog (MLO)\ 6)))]

Since

klgg nk/)‘ log M, = AR >0,
we have

E(0) > limsup — /)\ log P. (f®, ¢3)
k—o0
L
> Lo — 9 = A = Alog [ =9)].

Taking A — 0 and ¢ — 0 establishes that £(0) > uLo and completes the proof. O

The problem of determining E(0) for the ESTC is thus reduced to the combinatorial prob-
lem of determining Ly. In the next subsection, we lower bound L, via a random-coding argu-
ment. In the subsequent subsection, we prove a coincident upper bound.

B Direct Result

We define an n-point Poisson process over [0, T'] to be a Poisson process over this interval con-
ditioned on having exactly n points. We will construct a random (n, M, 1) encoder by choosing
the codewords as independent n-point Poisson processes over [0, 1]. First we examine the £-
distance between a pair of n-point Poisson processes, as a prelude to bounding the minimum
distance of such an encoder.

If {Ft(")} is the empirical distribution function of n i.i.d. random variables that are

uniformly distributed over [0, 1], then n.F(™ is an n-point Poisson process over [0, 1]. As such,
(nFt(") - nt) /+/n converges weakly in D[0, 1] to a Brownian bridge as n tends to infinity,

and if G™ is an independent copy of F™, then

nF™ — pGM
van

also converges weakly in D[0, 1] to a Brownian bridge [18, Theorem 14.15]. The amount of
time that a Brownian bridge over [0, 1] spends strictly positive is uniformly distributed over
[0,1], as is, of course, the amount of time that it spends strictly negative [18, Theorem 13.17].
But the amount of time that X (™ spends strictly positive is precisely the amount by which
nF™ leads nG™. It follows that £ (nF™,nG™) converges weakly to the uniform distribu-
tion over [0, 1], as does £ (nG™,nF™), and L (nF™,nG™) converges weakly to the uni-
form distribution over [1/2,1] [18, Lemma 14.10]. From these observations one might guess

X" =
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that Lo = 1/2. This is true, although the proof does not use any of these weak convergence
facts explicitly. We do, however, need the following large deviations result. :

1 1
Lemma 4 Let {Xt(n)}t . and {Yt(")}t . be independent n-point Poisson processes over [0, 1).
Let - R
= [ (XM =v") dt.
/0 (X =¥
Then forall § in [0,1),
lim —-lelog Pr(7, > 8) = —log(1 — 62).
Proof. Let {S,}2, be a simple random walk on Z, with Sp = 0, andlet A = {i : S; =

0}. Also let Z;,..., Z,, be the order statistics of 2n i.i.d. uniform [0, 1] random variables,
independent of .S, and write Zg = 0 and Z3,4; = 1. Then

Pr(rn > 5) = Pr [Z(ZH'I - Z,) >0
i€cA

o= 0] .

Since {Z;y1 — Z;}?", are exchangeable and independent of S, this implies

- o}
The conditional distribution of | A| can be calculated explicitly,

Pr(|A] = m | Son = 0) = 2o m = 1) (zﬁ —(m~ 1)) (2:)1

2n — (m—1) n

|A]-1
Pr(r, > 0)=Pr [Z (Zig1—-2Z;) >4

=0

= Pr(Z|A| > 6| Sop = 0).

[19, Section I11.4], so

n+1
Pr(n > 8) = Y Pr(Zpn > §) Pr(|A| =m | Spn =0)

m=2

5% (2")6‘(1 gyt 2m—1((2:11)) <2n— (m~ 1)) (n)-l

m=2 =0
n m 2 _ -1
_ Z Z (271) §i(1 = gym—i_2m_ m (2’n m) (Zn) ' ©)
2n—m n n
m=1 i=0
For z and y in [0, 1], let

fs(z,y) =2H (%) +ylogd+ (2—-y)log(l —9d)+zlog2+ (2—z)H (é—i;) — 2log 2,

12



where, here and throughout, H is the binary entropy function with natural logarithms. From

the combinatorial bound

oo (2) < (7) <o ()]

[20, Example 12.1.3], it follows that the summand in (6) is upper bounded by
(2n+1)m exp [nfa (%z_, 1)] .

2n—m n
Since 7 < m, this is further bounded by

(2n+1)m

oy P [n sup fa(x,y)]-

0<y<z<1

Applying this bound to each term in (6) shows
lim inf L logPr(m, >90) > — sup fs(z,y).
oo 0<y<z<1

Using (7) and the continuity of f5, one can show that in fact

lim _L logPr(m, > d8) =— sup fs(z,y).
n—co 7 0<y<z<1

And an elementary calculation shows that

sup fs(z,y) = log (1 - 6%).

0<y<z<1

Corollary 1 In the context of the previous lemma, forall 0 < § < 1/2,

liminf—%log Pr [Z (Xx®,y™) < % — 5] > —log(1 — 46%).

Proof. Observe that

1
{Z (X™,y®™) < £ - 5} c {/ (X" =v") at > 25}.
2 0

Now take probabilities and invoke the previous result.

Proposition 2 The max-min distance of the ESTC satisfies Lo > 1/2.

13
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Proof. Let0 < § < 1/2, and choose 7 such that 0 < v < —(1/2)log(1 — 46°). Fix
n, and consider selecting the codewords of an (n, [exp(yn)], 1) encoder f™ independently
as n-point Poisson processes over [0, 1]. Then using the notation of Lemma 4 and the union
bound,

Pr (Z (f™) < 1/2-6) < (exp(n) + 1)*Pr (L (X™,Y™) < 1/2-6) .

Letting n tend to infinity and invoking Corollary 1 shows that Pr(£(f™) < 1/2 — §) tends
to zero. This proves that for all sufficiently large n, an (n, [exp(yn)], 1) encoder exists with a
minimum distance of at least 1/2 — §. But § was arbitrary. O

Before tumning to the converse, we note that there is another, entirely different, method
of randomly choosing codewords to construct E(0)-achieving codes. Let J and K be nat-
ural numbers, and let N;, N,, ..., Ng be i.i.d. random variables uniformly distributed over
{0,...,J}. Construct a codeword with blocklength one by first placing /NV; points at time
1/(K + 1) and J — N; points at time 2/(K + 1). Then place N, additional points at time
2/(K +1) and J — N, points at time 3/(K + 1), etc. Two independent codewords constructed
in this fashion will have a £-distance that is close to 1/2 with high probability if K and J are
large. In fact, these codewords can replace the Poisson-distributed codewords in the proof of
Proposition 2. This construction is inspired by a comment in Section IV of Arikan [3], and
is related to the constrained encoders defined later and to the discrete-time models studied by
Bedekar and Azizoglu [21].

C Converse

One approach to showing that the max-min distance is upper bounded by 1/2 is to bound the
minimum distance of an encoder by the average,

20 < =D o ) ZZﬁ(f(z) HO)

i=1 j#i

and then show that the average is asymptotically upper bounded by 1/2. This technique of
bounding the minimum distance of an encoder by the average yields a tight upper bound on
the max-min distance of the binary-symmetric channel [4], the Gaussian channel [11], and
“pairwise reversible” discrete memoryless channels [12], but not the ESTC. Indeed, although
we shall see that Ly = 1/2, for arbitrarily large n and M there exists an (n, M, 1) encoder
with an average L£-distance near one: let 0 < § < 1 and consider the (n,n + 1, 1) encoder f in
which, foreachmin {1,...,n + 1}, ’

ifo<t<é
f‘(m)_{m—1 ifo<t<l

This encoder has £(f) = 1 — 4, and by replicating all n + 1 codewords k times, we obtain an
(n, (k 4+ 1)(n + 1), 1) encoder whose minimum distance is zero but whose average distance is
n(k +1)(1 - 9)

kn+1)+n’

14



which is close to one if n and k& are large and 4 is small.

Thus this approach fails for the ESTC, as it does for a general DMC [12]. Shannon, Gal-
lager, and Berlekamp [12] approach the problem for discrete memoryless channels by focusing
on a class of encoders they call ordered. For the ESTC, the analogue of this class is the follow-
ing.

Definition 5 If u and v are elements of Qir, then u leads v if L(u,v) > L(v,u). An encoder f
is ordered if f(i) leads f(j) foralli < j.

Shannon, Gallager, and Berlekamp [12] bound the minimum distance of an ordered code using
a rather abstruse procedure of manipulating codes that involves transforming the original code
into several smaller codes with increasing blocklengths. A simple bound on the size of the
largest ordered subcode within a given code, which is reproduced below, then suffices to upper
bound the max-min distance of the channel.

We follow this approach, except that we have replaced the code manipulation procedure and
some of the surrounding analysis with a simple result about inner-product spaces, Lemma 5.
Evidently this replacement is a natural one, since it can also be made in the original proof for
discrete memoryless channels, making the proof somewhat more transparent.

The ESTC presents another obstacle that a DMC does not, however. Due to the memory in
the channel, the contribution to £(u, v) made by a small time interval [t,t + dt], 1(u; > v;) dt,
depends not only on the arrivals during [¢, ¢ + dt] but on all previous arrivals. In fact, the effect
of an arrival does not diminish with time at all: an arrival near zero has the same effect on
1(u; > v;) as one just prior to t. Our solution is again to reduce to a class of encoders that
mitigate the problem. These encoders have the property that all codewords “agree” at certain
times meaning they have all delivered the same number of jobs to the queue at those times.
This limits the encoder’s use of the long-term memory of the channel.

Definition 6 An (n, M, T) encoder f is L-constrained if for all i and j,'
Jirye (i) = ferye(4)
forallkin{0,...,L —1}.

We shall bound the minimum distance of ordered, constrained encoders using the following
lemma about inner-product spaces.

Lemma 5 Let H be a real inner-product space. Let ,...,zor be elements of H such that
||z:|| < 1foralli. For a nonempty subset A of {1,...,27}, let

1
TaA= 1T Z;.
A |A|§

Then there exist nonempty, contiguous, and disjoint subsets of {1,...,2"}, A and B, such that

lza — z8ll < 2/V/r.

15



Proof. Suppose ||z4 — zg|| > 2/+/r for all nonempty, contiguous, and disjoint A and B.
Then by the parallelogram law for inner-product spaces [22]

1 1 1 1
llz2ll® = Sllza]l* + Sllwall® — Zllor — 2l < 1 - =
Similarly, 1
max(||zs4]|? [|zs56l[% - - - ||Z2r—10r|[?) < 1 — =
Then
1 1 1 2
lleragall® = 5llerall® + Sllzaall* — Zllors — zsall* < 1 - p
Continuing, .
0< ”-'131,...,2"”2 <1- ; =0.
This contradiction proves the result. 0O

We shall also use the following fact about L! distance, whose straightforward proof is
omitted.

Lemma 6 Let X and ) be finite alphabets. Let p, and p, be probability distributions on X,
and let g, and q be probability distributions on ). Let || - ||, denote the usual vector 1-norm,

so that
llpy = palls = D Ip1(z) — pa(3))|
z€X

is the L! distance between p, and ps. Then

[I;ar = pagellr < |lp1 — w2l + @1 — @21,

where p1q) and p,qs denote product measures on X x ).

Lemma 7 For any ordered, L-constrained (n,2",1) encoder f,

_ 1 2y/1+n/L
£(f)S§+__\/T—'

Proof. We may assume that the message set is {1,...,2"}. For a subset I of messages, a
time ¢ in [0, 1], and an integer ! in {0,...,n}, let

Y = ﬁzl(ft(z') = 1).

iel

For fixed I, we view v/ as describing the empirical distribution of the codewords in I as a
function of time. Thus we view it as a trajectory through the probability simplex,

A1 [0,1] {x € R}t such that in = 1}.

=0

16



The set of all such trajectories can be embedded in the real linear space

1
{a: [0,1] - R™+1 . / a5 dt < oo} ,
0

where ||- ||2 denotes the usual vector 2-norm. We endow this linear space with the inner product

1
<a,fB>= /0 (a2)T (B) dt,

where T denotes vector transpose. Observe that for every message 4,

1
<yhyi> = / A1 dt = 1.

So by Lemma 5, there exist disjoint and contiguous sets of messages, A and B, such that

1
4 _
/0 It = 22113 dt < . ®

We may assume without loss of generality that all elements of A are strictly less than all
elements of B. Consider averaging the L-distance between the messages in A and B. Since
L(f) cannot exceed this average and f is ordered, we have

L) < 7 A|| IZZc(f(z) ) = 7 B = S £(F6), £6)

i€A jeB zeA jeB

- EELT / 1(4:6) > £i4)) dt

zGA jeB
= [ S S P> m a
=0 m=0

If v4 and v were equal, then this last integral would be upper bounded by 1/2. Since they are
“close” by (8), the integral cannot exceed 1/2 by much. To quantify this, we compare ¥4 and
~B to yAYE:

n

> RO M) > m)

=0 m=0
= 35 BB m) + A (DB (m) = BB (m)] 1(1 > m).
=0 m=0

Now

Z Z B WP (m)1(l > m) < 1/2,

=0 m=0
and

ZZ[% YB(m) = BB (m)] 1 > m) < |48 — VBB L.

1=0 m=0

17



Lemma 6 shows that

I8 = 4 ByAYB < |1 = Bl + 11vE = 45,

and ‘
I = 4Bl + 12 — ¥ Bllh = |l — 211

is easily verified by direct calculation. Using these facts and integrating over ¢, we obtain

1
Z) < V2 [ It = ol ©
'We proceed by using (8) to bound the integral. This can be accomplished by defining
71, = sup fi(4)

and
n, = iI.lf ft(i)»

so that all codewords have delivered between n, and 7; jobs to the queue by time £. Then we
apply Schwarz’s inequality twice to obtain

1 1 7t
/0 It = 22|l dt = / S i) — 4B ()] dt
l=.'“.t

< /01 V1+m, - Qz\' En:[%"(l) -2 dt

=0

1 1
< \// 1+ﬁt—n.tdt\// v — 42|12 dt. (10)
0 0

Butﬁt < ﬁ([tL_]-!—l)/L and n, > ﬂ[tLJ/L forall £ in [0, 1), SO

1 1
/ 1+m —n, dt <1+ /0 (eLj+1)/L ~ Byer)/r 4
0
1 L-1
=1+ I Zﬁ(i+l)/L — By

i=0

Since the encoder is L-constrained, 7;/;, = n;;, for all 4. Thus the summation is telescoping,
and

L-1
1 _ L+m —ng
+ I .-E=o N(i+1)/L — By I

Thus

1
L
/ 147 —n dt < =7
0 L

18



Combining this inequality with (8) and (10) gives
a4 B 2y/1+n/L
A e =y lhdt < — 7z
Combining this with (9) proves the result. O

Lemma 8 For any (n, M, 1) encoder f and any L, there is a subset of messages, A, such that
f restricted to A is L-constrained and

14| >M(L+n—1)"1

L-1
Proof. Let

L
B={x€{0,...,n}L:Zx,~=n}.

The cardinality of B can be calculated explicitly,

L+n-1
[19, Section I1.5]. For z in B, let

Az = {i: fiL(d) — fy—nyp(i) = zj forallj € {1,..., L}}.

Then f restricted to any A, is L-constrained, and the largest of these sets must have at least

L+n—-1\""
u('22)
messages. O

The next lemma is Lemma 4.2 in Shannon, Gallager, and Berlekamp [12]. We include a
proof for completeness.

Lemma 9 ([12]) For any (n, M, 1) encoder f, there exists a subset of messages, B, and a
bijection « : {1,...,|B|} ~ B such that |B| > logo M and g := f o« is an ordered
(n,|B|, 1) encoder.

Proof, Call the original message set A and initialize B = (). Observe that every encoder
has at least one message that leads at least half of the other messages. Find such a message %,
in A, move it from A to B, set 7(1) = i, and delete from A all messages that ¢; does not lead.
Then repeat the procedure, setting 7(2) equal to the chosen message 7. Continue repeating
this procedure until A is empty. It follows by induction that after the kth iteration, there are at
least (M + 1)/2* — 1 messages remaining in A. Thus there is at least one message remaining
after |log, M | iterations, so at least |log, M | + 1 iterations are possible. O

Proposition 3 The max-min distance of the ESTC satisfies Ly < 1/2.
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Proof. Let { f®¥)}}° _ be a sequence of encoders such that f®) is (ng, Mk, 1), i T 00, and

lim ilong =R>0.
k—o0 N

It suffices to show that _
limsup Z (f®) < 1/2.
k—o0

For this, choose a > 0 sufficiently small so that

«Q

(a+1)H (?) < R/2,

(81

set Ly = [any], and for each k let f*) be an Ly-constrained (ny, My, 1) encoder with

obtained by restricting f*) to a subset of messages as in Lemma 8. Since Z (f®)) < T ( f (“)) ,

it suffices to show that .
limsup £ (f(")) <1/2.

k—o0
Now 1 1 1 L 1
-~ +nk_
— log My > — log M — —1 k .
T og k_nk 0g Mk e og( L —1 )

Using (6), this gives

1 ~ 1
— log M), > — log M, —
N ng

Lk+nk—lH Ly—-1
Nk Lpy+n,—1]°

The second term converges to (a + 1)H(a/(a + 1)) as k tends to infinity, thus
lim inf—l— log M, > R/2 > 0.
k—oco Ny

This implies that /7, — oo. Let 1, = [log, log, M,|. By Lemma 9, we can find an (m, 27, 1)
ordered, Li-constrained encoder, g*), such that £ () > L ( f (")). Applying Lemma 7 to

g® shows that
1 2¢/14+mn / Ly
—_ + —_—
2 N
Since 7, — oo and ni /L, — 1/a, the proof is complete. a
Theorem 2 follows immediately from Propositions 1 through 3.

T (g(k)) <

Theorem 2 The zero-rate reliability of the ESTC satisfies E(0) = p/2, where 1/ is the mean
service time.

20



D General Service Distributions

The lower bound on E(0) can be generalized to -/G/1 queues with little additional effort.
An examination shows that the hypothesis that the service distribution is exponential is used
only in Lemma 2 to estimate large deviation probabilities involving the service times. Thus
generalizing the lower bound is only a matter of replacing the exponential distribution’s large
deviations rate function with the rate function of an arbitrary service distribution. We give the
details of this procedure, along with a simple upper bound on E(0) for -/G/1 timing channels,
in this subsection.

Consider a -/G/1 queue with i.i.d. service times S;, Ss,. ... Let E[S;] = 1/u, which we
permit to be zero or infinity. Let A be the logarithmic moment generating function of .S;,

A(6) = log Elexp(651)],
and let A* be its Fenchel-Legendre transform [23],
A*(z) = sup[fz — A(6)).
geR

Lemma 10 The error probability of an (n, M,T) encoder f and the bounded-distance de-
coder pp used over a -/G /1 timing channel satisfies

P(f,p5) < Pr [Z s> 'E'(f)] .
i=1

IfL(f)/T > M/, where A = n/T, this yields

P.(f,05) < exp [—ATA* (Zg;)] |

Proof. The first conclusion can be proven using the coupling argument used in the proof of
Lemma 2. The second conclusion follows from the first by applying the Chernoff bound and

using the fact that
A*(z) = sup[fz — A(0)] (11)
020

forall z > 1/4 [23, Lemma 2.2.5]. O

Theorem 3 For a -/G/1 timing channel, the zero-rate reliability satisfies

1
—;-li{ninf —% log Pr(S; > t) < E(0) < limsup —3 log Pr(S) > t).
o0 t—o0

There exists a channel for which the lower bound holds with equality while the upper bound is
strict, and another channel for which the opposite is true.

Proof. We shall first show that

%zim < E(0). (12)



1t follows from standard results in convex analysis [24, Theorems 8.5 and 13.3] that

lim A*ix) = sup{f € R : A(d) < o0}. (13)

=00

If

o M)

=00 T
then (12) is obvious. If the limit is positive, then by (13), there exists a positive 6 such that
A(#) < oo, which implies that u > 0. Let 0 < ¢ < 1/2, and choose A such that 0 < \ <
©(1/2 — €). By Proposition 2, there exists a sequence of encoders {f*)} such that f®) is
(nk, My, 1) and £(f*)) > 1/2 — € for each k, and

=0,

lim -—-long =R>0.

k—oo T

For each k, redefine f*) to be the (nk, My, ni/\) encoder obtained by dilating time by a factor
of ni /. We decode using the bounded-distance decoder. By Lemma 10,

P. (f®,pp) < exp [—nkA* (Z(—ik—)z)] :

By (11), A* is nondecreasing on [1/p, 00), so since L(f®)/ny, > (1/2 — €)/A > 1/p,
P. (f®, pp) < exp [—nkA* ( 1/ 2/\_ E)] :

This yields a lower bound on E(0),

E(0) > A (%) .

Taking ) to zero then € to zero proves (12). Using the formula

E[T] = / Pr(T > £) dt,
0
for nonnegative random variables T', we have for all § > 0,
Elexp(05;)] =1 +/ 0 Pr(S, > t) exp(6t) dt.
0

From this and (13) it follows that®

hm 1nf 1 log Pr(S; > t) < lim A (x)

—00

6In fact, equality holds in (14), although this fact is not needed.

(14)
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which proves the lower bound, by (12). The upper bound follows by observing that for any
(n, M, T) code (f,p) with M > 2,

Pe(fa ‘P) > PI‘(Sl > T)1 (15)

which implies
FE(0) < limsup _1 log Pr(S; > 7).
T—o0 T

By Theorem 2, for the ESTC, the lower bound holds with equality while the upper bound is
strict. For the lattice example mentioned at the beginning of this section, on the other hand, the
opposite is true. (]

If the reliability function is defined using the limit infimum instead of the limit supremum,
Theorem 3 can be strengthened to

| 1 . 1
3 I%{}.}f—ﬁ; logPr(S; >T) < E(0) < hTI'ILl;}f—T log Pr(S, > T),

and equality is achieved by the same channels as before. Evidently, Theorem 3 determines
E(0) only when both bounds are infinity or zero. Both bounds are infinity, which implies that
E(0) = oo, if the service distribution has bounded support or, for example, if it is a one-
sided Gaussian distribution. This latter example is somewhat surprising since the zero-error
capacity [4] of the Gaussian service distribution is zero, by (15).

A heavy-tailed service distribution is an example for which both bounds are zero, which
implies that £(0) = 0. A -/G/1 timing channel with a heavy-tailed service distribution with
finite mean therefore has the unusual property that its reliability function is zero everywhere,
even though its capacity is positive [10]. A consequence is that although the -/M/1 queue has
the lowest capacity of all -/G/1 queues with fixed mean [1, 10], it does not have the lowest
reliability at any rate below its capacity.

5 Straight-line Bound

In this section we prove that for the ESTC, any line connecting the point (0, £(0)) and a point
on the sphere-packing exponent upper bounds the reliability function. That is,

E(6R) < 0E,(R) + (1 - e)g, (16)

for all R and all 8 in [0, 1]. The best such bound, called the straight-line exponent, is tangent to
the sphere-packing exponent and is shown in Figure 1.

It would be obvious that the straight-line exponent upper bounds the reliability function if
it was known that the reliability function of the ESTC is a convex function of the rate. But
the reliability function is not known to be convex, even for discrete memoryless channels.
Nevertheless, it is possible to prove (16) using an approach developed by Shannon, Gallager,
and Berlekamp [16] for discrete memoryless channels that is based on list codes. We shall
extend their approach to the ESTC here. First we define list codes.
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Definition 7 An (n, M, L, T) list code is an (n, M,T) encoder f : A — Qr and a decoder
@ : Qp — 24, where A’ is a superset of A, such that for all w in Qr, |p(w)| < L. The
discrimination of the code is (1/T) log(M/ L), and the error probability is

Pu(f,0) = max Py ule i ¢ ().

Let
P.(n,M,L,T) := inf{P.(f,¥) : (f,¢)isan (n, M, L,T) list code}

and
P.(\M,L,T) := ixf}f P.(n,M,L,T).

In Appendix A, we show that for all Ry > R; > 0,
1
ligl Sup ~ log P.(-, [exp(R2T)], [exp(R1T)],T) < Esp(Re — Ry). 17)

The proof extends a previously published proof for the case R; = 0 [3] and corrects a minor
omission in it.

Consider now an (n, M,1,T) code. Temporarily, let us make the unjustified assumption
that departures during (0, 7] and (T3, T are conditionally independent given the transmitted
codeword. Then for any L > 1, if L codewords are more likely than the transmitted codeword
to cause the observed departures during (0, 73], and if at least one of those L codewords is more
likely than the transmitted codeword to cause the observed departures during (73,7, then a
ML decoding error will occur. Thus, given our assumption, one is lead to conjecture that [16]

P(-,M,1,T) > P(-,M,L,T))P.(-,L +1,1,T - T1). (18)
This next result shows that, even without the assumption, (18) is essentially valid.
Lemma 11 ForanyT =T, + Ty and any M, L, and n,
P.(n,M,1,T) > P.(-,[M/(n+1)],L,T))P.(-, L + 1,1, T).

Proof. Let (f,¢) be an (n, M,1,T) code. Find a subset A of messages such that |4| =
[M/(n + 1)] and such that for all z and j in A,

(@) = fn() =&
Let f denote f restricted to A. Then (f, ) is an (n, [M/(n +1)],1,T) code and
| Pe(fv‘P) > P, (f"P) )
so it suffices to show

P.(f.¢) 2 P, IM/(n+ 1), L, )R, L+ 1,1, T3).
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Foriin A let D; = ¢~1(2). Then for all i in A,

Py, (D5) = /,, Tl(D,?) exp /0 Tlog [,u (ﬂ(i) >wt_)] duw, +

/: :1 —ul (ft(z) > wt)] dt] dP,

= /s;r 1(D5) exp :/OTI log [p,l (ﬂ(i) > wt_)] dw, +
T

[ 108 [t (Ft9) > )] o+

Ty

/oTl [1 —ul (f}(z‘) > wt): dt +

/: [1 -upl (ft(z) > w,): dt] dPs.

If w® is a counting function in Q, and w!® is a counting function in Qr,, we construct the
counting function (w™®,w®) in Qr by setting

(1) ;
(W, u®), = {w, for t in [0, T})

W) + WP fortin (T1,T]
This construction defines an isomorphism between (Qr, Fr, Po) and the product space
(QTnan PO) X (QTzrszi PO):

endowed with the product o-field and measure [22]. Applying this isomorphism to the integral
and using Tonelli’s Theorem [22] gives

Pi),u(D5) = / o, [ / log [ul (ft('t) > w“’)] dw® +

/0 [1—#1 (ft('t) >w(1))] dt] /S; 1 ((wW,w®) e D)

T2 (19)
(2) (‘2)
exp [Ll log [,u.l (ft(z) > w + W(soTy)— ] dw,

/TT [1 -pl (ﬁ(z‘) > w%) + “’g)n)] dt} 4P, dPy.
1

For a moment let us view the mapping

i€EA— {ft(z) k}

t=T

as an (n — k, [M/(n + 1)],T3) encoder. For a given w(® in Qg,, this encoder has a natural
decoder,
02 (W?) = (WD, w®).
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The integral over Qr, in (19) can be viewed as the error probability of message i in this code,
when the queue initially contains k£ — w(Tll) jobs whose departure times are unknown to the
transmitter. A straightforward argument involving genies shows that the presence of the initial
jobs can only raise the minimum achievable error probability. Thus there must exist at least
one i in A such that

T
/ 1 ((w®,w?) € D) exp [/ log [ul (ft(z) > w%) + w((flT‘)_)] dw® +

Ty T

/T ' [t - w1 (£6) > of) + )] dt] dPy
’ > P(n— k, [M/(n+1)],1,T).

Similarly, in any subset of A of size L + 1 there must exist an ¢ such that

T
/ 1 ((w®,w?) € D) exp [/ log [ul (ft(z) > w%) + “’&Tl)—)] dw® +

Ty T

T r3 (1) 2
/ [1 = 1 (fuld) > +w§_)T1)] dt] dPy
T
2> Pe(n - kaL + 1) 11 T2)' (20)

Let I(w™M) be the set of i in A such that (20) holds, and note that this set must contain at least
|A| — L messages. Then for all 7 in A,

" z ) .
Piayu(DF) 2 /9 exp [ /0 log [ul (ft(i) >w_)] dw? +

T -
/0 11— w1 (£:6) > )] dt] 1€ I(w?))P(n—k L+1,1,T) dP,

T

SO

P, (f,tp) > P(n—k,L+1,1,Tp)

ops [ o[ [ i (10> o12)] af? +

1

T ~
/ [1- w1 (76 > w)] dtJ 16 eIw®) dR. @1)
0

If we now view

ean (R0}

’ ¢ t=0
as a (k, [M/(n + 1)], T1) encoder, then the maximum over i in (21) is the error probability
under the list decoder w) — A\I(w ). From this we can conclude

2

e oo [P )]
/OTI [1 —pl (ﬁ(i) > w,“))] dtJ 1(i € I (")) dPy > Pu(k, [M/(n+1)],L,T).
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Thus

P.(f.¢) 2 P(n =k, L+1,1, Ty)Pu(k, [M/(n+1)],L,T)
> P.(,L+1,1,T5)P.(-,[M/(n+1)],L,Th).

Theorem 4 is the main result of this section.

Theorem 4 For the ESTC with service rate , for any 8 in [0, 1] and any R > 0,
E(6R) < 0E,,(R) + (1 — o)g.

Proof. We may assume that 0 is in (0, 1). Let {(f®,®)}°  be a sequence of codes such.
that f® is (ng, My, T;.) and

Ti 1 o0, . (22)
.1 _
kll.rfalo T log M, = R, (23)
and
i -Tl log P. (f®,o®) = E(6R). (24)
— OO0 k

If sup, nx /T = oo, then we can use the technique described in the proof of Proposition 1 to
modify the code such that sup, nx/Ti < oo, without violating (22) - (24). Therefore we shall
assume that supy, nx /Tx = a < co. Let € > 0. Then by Lemma 11,

P. (f®,0®) > P, (-, [Mi/ (e + 1)1, [exp(eTi)], 0Tk) Pe (-, [exp(eTi)] + 1,1, (1 — 6)T)
> P, (-, [Mx/(1 + aT)], [exp(eTk)], 0Tk) Pe(-, [exp(eTi)] + 1,1, (1-6)Ty).

So by (17) and Theorem 2,
1
E(6R) < limsup -7 log P. (-, [Mi/(1 + oTk)1, [exp(eTk)], 6Tk)
k—o0 k
+ lim sup —%— log P. (-, [exp(eT%)] + 1,1, (1 — 0)T)
k—o00 k

< OE,,(R—€/0) + (1 — o)g.

But ¢ was arbitrary and Ep(-) is continuous. a

A Sphere-Packing Bound with List Decoding

Arikan [3] proves the sphere-packing bound for the ESTC without list decoding,

limsup = 0g P.(-, [exp(RT)], T) < E(R). 25)
T—oo
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The proof is a change of measure or “alternate channel” argument [17, Theorem 2.5.3], where
the alternate channel in this case is an ESTC with a reduced service rate. That is, the proof
bootstraps a converse coding theorem for the ESTC to obtain the exponential error probability
bound (25). An examination of the proof reveals that extending this result to list codes (17)
requires generalizing the converse coding theorem to list codes (c.f. [17, p. 196]); the remainder
of the argument is the same.

The converse coding theorem used by Arikan, Theorem 4 of Anantharam and Verdu [1],
must be replaced on other grounds, however, because Arikan uses the window code definition
of Sundaresan and Verdi [10], while Anantharam and Verdi use a different block code defi-
nition. In Anantharam and Verdii [1], the receiver observes the entire departure process, and
the blocklength of a code is governed by the expected time of the last departure, compared to
Definition 1 for window codes. This distinction, while minor, prevents one from easily apply-
ing coding theorems for one definition to the other. Sundaresan and Verdii [10] prove a coding
theorem for window codes, but they only prove that the overall capacity is 1/e nats per unit
time. For the sphere-packing bound, one requires the result that the capacity achievable with
codes with average departure rate A does not exceed A log 1/ nats per unit time [3].

Thus a converse coding theorem for window codes with a particular average departure rate
is required to properly prove (25) and its extension to list codes (17). Even though this converse
is all that is needed, we provide a complete proof of (17) because combining the converse with
the change of measure argument shortens the overall proof. Note that this will also prove (25).
We begin with two Lemmas about the -/M/1 queue, both of which are proved in Appendix B.

Lemma 12 Let {D,}T., be the departure process of an initially empty - /M /1 queue with ser-
vice rate v and arrival process { A} Then

E [ /0 "4 > D) dt] — E[Dq]

E [(DT - /0 14> Dy dt) 2] — E[Dy].

Lemma 13 Let {D,;}_, be the departure process of an initially-empty -/ M1 queue with de-
terministic arrival process {A;}1—o. Then Var(Dr) < E[Dy).

and

Definition 8 For z in Qdr, define the average departure rate of a - /M /1 queue with input x and
service rate v as 1
AMz,v) = = wr dPy,.
T Jo,
For an (n, M,T) encoder f, let

1 M
M) = 37 2 MfG@)w)

i=1

and
v

C’(f,v)=/\(f,u)logm)-

with the convention C(f,0) = 0.
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The next Lemma lower bounds the error probability of a list code subject to some technical
conditions. The bound is a composite of the sphere-packing bound for constant-composition
codes [17, Theorem 2.5.3] and the Wolfowitz converse [4, Theorem 5.8.5]. For the remainder
of this appendix, we shall abbreviate

a= sup z|l1+logz|
z€(0,1)

and

B = sup z(1+ log:r:)2
z€(0,1]

both of which are finite.

Lemma 14 Let (f, p) be an (n, M, L, T) list code with discrimination A > 0. Suppose that
0<p<v<uand0 < e < A are such that

v
plog— < A—¢
p

- and at least one of the following holds:

() p = Mf,v) and sup |\(f(3), ¥) = ol < 7=, or

dav’
(ii) sup M(f(6),) S p < =

Then the error probability of (f, ¢) when used over the ESTC with service rate p. satisfies

Fe(f, ) 2 exp [— (sgp A(f @), v) - DW||p) + 5) T] :
[1 _ WD+ Q-] 160(BHD) (-f)]

82T eT 4
forall § > 0, where v
DWv||p) = log; + i 1.

Proof. If p = 0 then, under both (i) and (i), sup; A(f(z), ) = 0. This implies sup; A(f (), u) =
0, which implies P.(f, ) = 1since A > 0. Thus the conclusion holds in this case, so suppose
that p > 0. On (2, Fr), define the random variable

L = exp(wrlogp + (1 — p)T),

so that under Q, defined by dQ/dPy = L, {w:}1, is distributed as a Poisson process with rate
p- Let

= {10 S22 > —(\(1), 1) D) + 5T |
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and

B,-—{logTQ—S (A— )T}
Let D; = {w € Q7 : % € p(w)}, so that
Pe(f, ) = max Py(y,u(D;)-

We will lower bound the average error probability,

1 M
i > Praw(D5),

=1
which of course will also lower bound P,.(f, ¢). Now
Pra),u(D§) 2 Pygiy,u(D§, Ai, Bi)

dPy (i),
/;an'nB‘ d'Pf(%'),y f('),u

> / exp [~ (\(f(3), ¥) D(vl|) + 8) T] Py,
D§NANB;
= exp [~ (A(f(2), v)D(v||1) + 8) T] Py, (Ai, Bi) — Pyiiyu(Ds, A, B)).
Thus

LS pyg(D9) 2 exp - (s 2@, DOl +5) 7]

i=1
1 M
M Z[Pf(i).u(Air Bi) - Pf(i),u(Dis Ai, Bi)]
i=1
> exp |- (sup Mf0)0) - DIl +6) 7]
1 M
u > 11— Prau(45) — Priy(BE) — Pryu(Dis Aiy BY)). (26)
i=1

Next we bound the summation. Addressing the terms in reverse order,

dPsiy
Pf(i):V(DiiAiy Bg) = / _dj_g dQ
DinAinB,'

< oo (29 7] 40
< exp [(A - 2) T] Q(D;).
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Thensince ), 1(D;) < L,

LS Prtgul(Du 4 B) < exp (8- £) 7] Ja /. 510y 4
i=1 Qr i=1
L
< - —_
< e (4 4) 7] M
T
— exp (—%) . @7
Next,
dPray, [T, vI(fi(i) > wi— T
log—-i(i— =/ logu (£(8) > @) dwt+/ [o — v1(£i(3) > w)] dt.
aQ (i} p 0
But T v1(fi(3) > we-) v
/ log dw; = wrlog — Py, —as.,
0 P P
SO

v T ) €
Priyo(B5) = Prgiyw [wT log P + pT — / v1(fi(3) > w) dt > (A - Z) T] .
0
Since plog(v/p) + € < A by assumption, this implies
c 4 T . 14 3e
Psy o (B§) < Pyiiy, |wrlog ; + T — V1(fi(3) > wi) dt > | plog ; + T T
0
. . v
= Fyow (0 = M@ IIT + M@, 0T = o) (10g% - 1)

- (/oTul(ft(i) > wy) dt—wT) S izf_] .

If (i) holds, then

. v ) v
6T - 1) (1082 = 1) < M@ - o o8 % ~
eoT P

<L— -.
“4av Il +log ul

Thus by the definition of @, we can conclude that

T

T

((£(), V)T — oT) (1og§ - 1) < 28)
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If (ii) holds, then the left-hand side of (28) is nonpositive. So either way, (28) holds and

+

_ ' v
Priyw(B7) £ Prayw [|WT = A(f(@),»)T| - log =~ —1

/‘;Tul(ft(i) > wy) dt—wT’ > 522]

v eT
log;—l' > —;1—] +

eT]
> —1.

< P [w ~ (@), )T

T
/ V() > w) di —wr| > G
0

Py [

Using Chebyshev’s inequality and Lemmas 12 and 13, this gives

2
16A(f(3),v) (log% -1 )
NPl el W NI CY)

e2T 2T
Thus
. 2
L M 16p((log%—l) +1)
— . ) <
M ; Fro.(Bi) < T
16v(B+1
< —% (29)

Using Chebyshev’s inequality and Lemmas 12 and 13 in a similar way, one can show that

M
1 oy « WDW||p) + (1 = p/v)?Y
M Z Py (A7) < 82T ’ (30)
i=1
Substituting (27), (29), and (30) into (26) completes the proof. O

Proof of (17) (c.f. [3, Proposition 3]). It suffices to show that every sequence of list codes
{(F®,®)}* such that (f®),o®)) is (ng, My, Ly, Ty) with Ty, — oo and

.1 M;
leIEoTklogL_k = A > O
satisfies 1
lim inf — - log F (f®, W) < E(A). (31)
00 k

Let F be the set of all nondecreasing functions g mapping [0, 4] into itself such that g(0) =
0 and

Sup lg(u) — g(v)| <t

fu—vl<

for all £ > 0. To see that the average departure rate A(z, ) of any input z to the ESTC must
be an element of F', observe that A(z, )T/ p is the expected amount of time during [0, 7] that
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the rate-y server is busy when servicing z, by Lemma 12. Then if v < u, a simple coupling
argument shows that

Mz, V)T > Az, )T
v T o

) (32)

which implies
0< Az, p) = Mz,v) < (n— U)&JZL) <p-v

Now let K be a natural number, and to each g in F associate the K-dimensional vector of

integers y defined by
- lg(in/K)K J
' [

for i in {1,...,K}. One can verify that the number of possible vectors is 2%, and that two
functions g and h that map to the same vector must satisfy

sup |g(v) — h(v)| < %
ve[0,4]

Choose K = [u+/Ts]. Let A% be the set of messages i such that A (f*)(3), -) is mapped to
the vector y, and observe that {Ag’)} is a partition of the message set of f*). Let f®) be an

(nk, My, Ti) encoder obtained by restricting f*) to an A containing the maximum number
of messages. Then P, ( f® tp(k)) < P, (f®), %) so it suffices to show

1 -
s inf — —— ) k)Y <
lim inf 7 log P, (f P )_ Ey(A). (33)
Note that .
1. My
ST BT, =

and by omitting finitely many codes in the sequence, if necessary, we may assume that M >
Ly for all k.

First suppose that lim infy A ( o, u) = 0. Fix any 0 < p < u/e such that plog(u/p) <
A. Then

- < 1
sup A (FB(0), ) < A (F®,0) + —= <
1p (f ()u) (f u) TSP
for infinitely many k. For these k, applying Lemma 14 with v = p gives

16p(68 + 1) (A = plog(u/p))Ti
T A= plogle/p)VTe ¥ (' 4 )]

P, (f(k)’(p(k)) > exp(—0T%) - [1
for all § > 0. This implies
1 -
im inf —— (k) (k)
liminf —=-log P, (f o ) <8
Taking ¢ to zero proves (33) in this case since E,, is nonnegative.
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Next suppose that lim inf; A ( f® /J) > 0. Let 0 < € < A. Because we are proving an
asymptotic assertion we can focus on those & for which

1

M,
log 2k
Tl >

Ak = Lk

since this holds eventually. For these k& let
Vi =sup{0 <u§u:C(f('°),u) < Ak—e}.

Observe that C ( f®), V) is continuous’ in v so for each &

c (f(k),l/k) <A —g

with equality if v < . It follows that lim infy, v > 0. It also follows that if lim inf, A ( F®) u,,) =
0, there is a subsequence of codes along which A ( f®) uk) — 0, and along this subse-
quence, we have C ( f®, uk) — 0 and thus v = p eventually. Since this would imply
that lim inf, A ( F®, u) = 0, we must have lim inf; A ( 7o, uk) > 0. This implies that for all
sufficiently large k,

1 < €A (f(k)7yk)
\/T - 40tl/k ’

By applying Lemma 14 withv = v and p = A ( f®, Vk) we have, for all sufficiently large ,

P (79,9%) 2 exp |~ (3 (7%) + 7= ) Dall) +8) ] -

4y, [D 2+(1- 2l 16 1 T
[1_ 2 (Vkllu)gz;k( plve)?] v:;gl;: )—exp(-%ﬁ)].

A (0~ (m)

sup
i

for all 4. This gives
1 = = 1
iminf — — k) (R im i (k) —
imint — g P, (7,0%) < imint | (3 (79,0) + 1) Dloullid +9
= liminf [,\ ( HOS Vk) D(wil|p) + 6] .
We can now take 4 to zero. Arikan [3] shows that forany A < v < p,

AD(v||u) < Exp (Alog 5 )

"It is a consequence of (32) that C ( o, u) is also nondecreasing in v, although this fact is not needed.
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If v < p, then C ( f® Vk) = Ay — ¢, in which case

A(F9, ) D) < BB - ©)
This inequality also holds when v, =  since in this case D(v||p) = 0. Thus
lim inf — — log P, (f"‘) (p(k)) < liminf Eg,(Ax — €)
s GO Tk e ’ = ko0 sp\ &k
= Egp(A —¢).

since E,y, is continuous. Letting € tend to zero and again invoking the continuity of E, estab-
lishes (33) in this case and completes the proof. 0

B Proof of Lemmas 12 and 13

Proof of Lemma 12. If {X,}T_, is a rate-v Poisson process, we can construct { D;}7_ to satisfy
Do = (0 and

t
D, = / 1(4, > D,_) dX, 34)
A |

for all ¢ in (0, T). Then

E [(DT - /0 T V1(A; > DY) dt)2] =E [( /0 Tl(At > D,_) (dX, - th)) 2] . (35

By the martingale calculus [25, Chapter 6, Proposition 4.1],

T 2 T
E (/ 1(A; > D) (dX; — udt)) ] =F [/ v1(A; > D) dt] (36)
0 0
and T
E [ / 1(A: > D) (dX; — udt)] = 0. 37
0
The conclusion follows by combining these four equations. O

Proof of Lemma 13. As in the previous proof, we construct {D,}L, to satisfy Do = 0, and
i
Dy = / 1(A, > D,_) dX.
0

for all ¢ in (0, T, where X, is a Poisson process with rate ». Let D, = E[D;] and V; = Var[D,].
Thenif 0 <s<t<T,

V;= E[(D.— D.)’]
— E[(D:~ D, + D, ~D.+D,- D).
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Expanding this,
‘/t - ‘/s =F [(Dt - Ds)2] - (ﬁt - _D--s)2 + 2F [(Dt - Ds)(Ds - Es)]
< E[(D, - D,)?] + 2E [(D; — D,)(Ds — Dy)]

_E l(/:l(Au > D,.) dxu)z} +

2F [ / "1(Ay > Do) dXu(D, - E)] .

We shall show that the second expectation is nonpositive. For any integer-valued random
variable A < A, as., let YA = 0 and

v

YA = f 1(A, > Y2 + A) dX,,
for v in (s, t]. Then

E [ / t 1(A, > D, ) dX, (D, — Es)] = E[Y,”(D; —D,)] .

8
Let D, be an independent copy of D,. Then since Y, is nonincreasing a.s. as a function of its
superscript, )
[Y,Ds - ytDa] [(Ds -D.) - (f)s . 58)] <0 as.
By taking expectations, multiplying out the factors, and combining like terms we obtain
E YD, -D,)] < E[¥ (D, - B,)].

But YtD’ and D, are independent, so the right side is zero. This proves

t 2
‘/t'-V;SE (/ I(Au>Du—)qu):|

- .
<E </ 1(A3>DsorAt>As)qu)}

< Pr(4, > Dyor A > A,) [(t = s)v + ((t = s))?] . (38)

One could now bound Vr by proving that V' is the indefinite integral of its derivative, and then
using (38) to bound the derivative. Instead, we use a direct approximation argument. For any

n,
n—1

Vr = Z Vie+1yr/n — Vir/n.

k=0
If we apply (38) to each summand and then let n — oo, the dominated convergence theorem
implies

T
Vo < E [/ v1(A, > Dy) dt] ,
0
which implies Vr < E[Dr] by Lemma 12. O
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Data Rate R (nats per unit time)

Figure 1: Sphere-packing, straight-line, and random-coding exponents.
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