
Video Based Motion Synthesis by Splicing and
Morphing

Greg Mori, Alex Berg, Alyosha Efros, Ashley Eden,
and Jitendra Malik

University of California, Berkeley
Berkeley, CA 94720

June 2004

Abstract

In this paper we present a method for synthesizing videos of human motion by splicing
together clips of input video. There are two main contributions in this work. The first is
developing a method for “kinematically correct morphing” of images of human figure,
which is used to splice together the clips in input video in a manner that produces
smooth output sequences. The second contribution of this work is the application of
activity recognition algorithms to our input data in order to automatically extract action
labels, which allow us to control the synthesized video by issuing high-level action
commands. We present results of synthetic sequences on two domains: ballet and
tennis.

1 Introduction

In this paper we present a method for synthesizing videos of human motion. The
synthetic videos are produced by splicing together clips of input video. There are two
main challenges, allowing for high-level control of the figure (specifying actions to be
performed), and making the figure look realistic.

Synthesizing videos of human motion directly from existing clips is an alluring
goal. Ignoring the possible pitfalls, the prospect of controlling realistic looking charac-
ters performing accurately portrayed actions with properly deforming clothing is very
appealing. Facade [7] was instrumental in popularizing image-based rendering tech-
niques for stationary objects. The advantages of realistic appearance over that obtained
through 3d modeling were obvious. Previous work by Schodl et al. [19] has shown
impressive results in using image-based rendering to synthesize videos, particularly of
natural phenomena such as waterfalls and fire. Articulated human figures have struc-
ture, of a type that is not present in these natural phenomena, which must be preserved
in order to produce convincing animations. In this work we attempt to address this
more difficult image-based rendering problem.

1

The problem of synthesizing novel motions in the realm of 3d motion capture data
has been the focus of recent work [1, 12, 9]. These methods generate a motions given
constraints such as position, orientation, keyframes, or paths, and are used to render 3d
models of actors to produce novel videos. In this work we leverage these ideas as the
basis for controlling the motions we synthesize.

Our approach will use computer vision techniques to address the issues in video-
based motion synthesis. The first contribution of this work is developing a method
for “kinematically correct morphing” of images of human figure. The method relies
on a vision-based technique used to automatically extract the 2d skeleton in a frame,
which is used to deform the figure correctly. Another issue is the amount of video
data required in order to make the synthesis work. In order to allow for high-level
control, this data should be tagged with action labels. The second contribution of this
work is the application of activity recognition algorithms to our input data in order to
automatically extract these action labels.

The structure of the paper is as follows. We describe related work in Section 2.
Preprocessing of the input video to extract sprites is described in Section 3. Next, we
describe the details of our method: extracting the 2d skeletons (Section 4), the mor-
phing and splicing (Section 5), building the motion graph (Section 6). Experimental
results are provided in Section 7. We conclude in Section 8.

2 Related Work

There has been much previous work on motion synthesis using 3d models which can
broadly be divided into the realms of physically based and motion capture based meth-
ods. Physically based methods [10, 21, 14] can generate motion without the use of
motion data, but can’t generate very realistic motions. Of the techniques using motion
capture data, many of them (e.g. [1, 12, 17, 13]) generate a motion given constraints
such as position, orientation, frame, or path, but are unable to synthesize based on a
given sequence of actions. In order to trace a path of motions, one may follow a mo-
tion graph. Gleicher et al. [11, 9] make an explicit directed graph where each edge
is a motion clip annotated with an action, but their method does not scale well with
the number of different actions. Rose et al. [18] create a verb graph, interpolating be-
tween different adverb combinations of the same verb to create a new style of motion.
Because the graph is hand-created, it is difficult to encode a large database, and the
interpolation is not guarenteed to be realistic. Arikan et al. [2] did not create an explicit
graph, but instead employed dynamic programming techniques to find the optimal path
given possibly overlapping annotation constraints.

Our work is similar in style to the Video Rewrite system [5]. In that work Bregler
et al. use existing footage to create new footage of person moving their mouth to words
not in the original video. The system automatically labels phonemes in training video
using an HMM. Given a new speech track, it is labeled, and the triphone videos (sets of
3 phonemes plus their corresponding frames) from the training video that best match
the new speech are stitched together.

2

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 1: Background subtraction: (a) input frame, (b) background image, (c) resid-
ual image, (d) matting using a threshold on (c), (e) blurring residual with an isotropic
Gaussian, (f,g) residual gradient images (x and y) obtained by background subtraction
in gradient domain, (h) residual image smoothes with anisotropic diffusion using resid-
ual gradients for conduction, (i) matting using improved residual followed by simple
alpha estimation, (j) compositing into a novel background.

3 Matting and Stabilization

The first step in any image-based motion synthesis approach is extracting the desired
object (human figure in our case) from the input video. For each frame we must com-
pute an α matte indicating which pixels belong to the object and which to the back-
ground (α ∈ [0, 1]). This process, known variously as digital matting, layer extrac-
tion or motion segmentation, is underconstrained and very difficult in the general case.
Even with various simplifying assumptions (e.g. stationary camera, rigid objects, non-
opaqueness, parametric motion model, etc.) the problem is still generally unsolved. In
practice, people either make use of a very controlled environment (“blue screen” tech-
niques), or user input (e.g. the trimap matte approaches such as Video Matting [6]).
Our goal, however, is to be able to process large amounts of video automatically, and in
a variety of different environments, therefore neither approach would be feasible. On
the other hand, we are mostly interested in videos taken from stationary cameras (such
as webcams), so we can estimate the background image and reduce the problem to that
of background subtraction.

3.1 Background Subtraction

The idea behind classic background subtraction is simple: first estimate the background
(typically by taking a temporal median of all frames in the video), and then subtract
it from each frame. Thresholding the residual will produce a binary matte, classifying
each pixel as either foreground or background. However, in practice things aren’t so
rosy, as the thresholding step will inevitably produce mistakes. There are many sources
of potential error, including shadows, temporal variations in background, transparency,
motion blur, camera ringing, etc. However, the main problem with background sub-
traction is much more prosaic – it is simply that, in all real situations, there will always
be some foreground pixels that just look like the background. In other words, the seg-

3

mentation problem cannot be solved locally, just at the pixel level, without considering
more global information. One such source of information can be found by consider-
ing the input video in the gradient domain, where the information is carried not by
pixel intensities, but by the strength of edges between image regions. Weiss [20] has
demonstrated that background subtraction in the gradient domain can be used to re-
move shadows. Here we propose to perform background subtraction in em both image
and gradient domains, as these two sources of information are complimentary. We then
combine the results of the two using a process similar to anisotropic diffusion.

Figure 1 illustrates our algorithm. Given an input frame (a) and the precomputed
background image (b), the classic background subtraction is to compute the residual
image (c) which is then thresholded to produce a matte (d). Note that (d) has many
holes where the foreground and the background are too similar. One can attempt to
“fix up” these holes by performing morphological operations on the binary matte or by
blurring the residual image (as in (e)). Unfortunately, these ad hoc methods will in-
troduce other problems, producing blurry boundaries and merging regions. Now let us
look at background subtraction in the gradient domain. The background x and y gradi-
ent images Îx and Îy are computed by taking the median in time of the gradients Ix and
Iy in each frame. Then, for a given frame i, we subtract out the background gradients:
I ′x,y = I i

x,y−Îx,y, provided that we don’t introduce any new edges (|I i
x,y|−|Îx,y| > 0).

The resulting I ′

x and I ′y for frame in (a) are shown on (f) and (g). These are only the
gradients belonging to the figure, all other gradients in the image are irrelevant for our
task. Note that the holes in (d) don’t have all of their edges lie along the figure gradi-
ents, meaning that they have been influenced by the gradients in the background. Our
goal is to remove this influence in the image domain using the foreground informa-
tion we obtained in the gradient domain. We can do this by smoothing the original
residual image in a way that preserves only the foreground edges. Anisotropic diffu-
sion [16], a popular method for smoothing images along, but not across, boundaries,
can be modified for our purposes: the smoothing proceeds on the residual image, while
the gradients (conduction coefficients) are taken from the foreground gradients. The
resulting residual (h) can be cleanly thresholded to produce a much better matte (i). In
fact, thresholding at two different different values will automatically generate a trimap
which one can use to statistically estimate very accurate values for opacity α allowing
for compositing such as in (j).

Of course, this approach does not completely solve the background subtraction
problem. We have only dealt with background edges but did nothing about the internal
foreground edges. In a way, we have reduced an arbitrary stationary background prob-
lem to a constant-value background problem. Our method performs well when there
are more edges in the background than in the foreground. In particular, all sequences
in this work showed quite substantial improvement in performance.

3.2 Figure Centering

After finding the figure in each frame, we still need to extract it for further processing.
The extracted sequence should have the figure always in the center. We do this by
convolving the α matte with a vertically-elongated Gaussian (roughly at the scale of a
person) and finding the maximum response whose coordinates become the new center.

4

stabilize
compute matte/

motion features
compute shape &

motion & shape
features

make
graph

constraints
user−specified

dynamic
programming

video
final

hand label
exemplars

hand label
example
actions

extract nodes

shape features

Precompute Run−Time

find transitions

skeletonsraw data

morph

find exemplars to all frames
transfer skeletons

sprites

Figure 2: Flowchart

4 Finding Skeletons

In order to properly morph between similar images of the actor we need to know ap-
proximate locations for the body joints. The process we use for determining these
locations is based on matching to exemplars. Given a large set of frames showing the
actor in various poses a small set of exemplar frames is automatically extracted. The
joints are then hand labeled in the exemplar frames. In order to find the locations of
the joints in an input frame, the closest exemplar frame is found. The joints are then
localized by finding the best matching locations for the closest exemplar’s joints in the
input frame.

The closest exemplar frame is found using a global description of the shape of the
human figure in the entire frame, while the joints are localized using similar shape
information which has been blurred in a novel manner. This procedure is similar in
vein to our previous work on exemplars [15]. The main differences are that the shape
feature used is more accurate (with an increased computational expense for matching)
but only computed at the exemplar joint locations, no deformable model is used, and a
single exemplar is chosen in advance of joint localization (to offset the increase in cost
of matching).

In the following sections we first describe the shape descriptors used in selecting
the closest exemplar and localizing the joint positions, and then develop a method for
selecting a good set of exemplars that can be used to localize joint positions for a large
collection of frames.

4.1 Shape Features

Finding feature correspondances between two images of an articulated object is a dif-
ficult task. Unless the two images are very similar, simple apperance-based methods
such as corner features or optical flow (used in [19]) will not be effective, since apper-
ance often changes dramatically over a small change in pose. Generally, it is the global
shape, rather than local appearance, that can help us find correspondances between

5

limb joints.
This global shape can be characterized with half-wave rectified, oriented filter re-

sponses. An example of these oriented filter responses is shown in Figure 3. An image
is filtered with 3 oriented filters (horizontal, vertical, and 45 degrees). The outputs of
these filters are split into positive only and negative only channels, resulting in 6 filter
response images which will be used to construct our shape features.

The first, “whole body”, shape feature, which is used in selecting the closest match-
ing exemplar to a given input frame, is simply these 6 filter response images, blurred
with a Gaussian. The exemplar frame with the highest correlation with the input frame
in terms of this “whole body” shape feature is chosen.

For localizing the joints, we describe the shape at and around each of the chosen ex-
emplar’s joints and then search the input frame for the location where this shape feature
matches best. Our second shape feature, which is used for this localization, is based on
the description of Berg and Malik [3]. It takes these same 6 filter responses described
above, crops them to fairly large area (about 1/3 of the image size) centered around
the joint and applies a non-uniform geometric blur, a spatially varying smoothing fil-
ter that blurs the central region less than the periphery, producing a type of fish-eye
lense effect. This descriptor is quite effective at finding approximate shape correspon-
dances while ignoring local apperance changes, providing a rough idea of the overall
body configuration. An example of the localization of body joints using this matching
process is shown in Figure 4.

(a) (b)

Figure 3: (a) Exemplar frame with (b) the half-wave rectified filter responses used in
constructing shape feature. The filter responses show 3 orientations of filter (horizontal,
vertical, 45 degrees), with 2 images for each: half-wave rectified to contain positive
only or negative only signal.

4.2 Selecting a Set of Exemplars

The exemplars should be a set of frames such that any frame for which a skeleton is
required is similar enough to one of the exemplars, so that the exemplar can be warped
to that frame. We would also like to ensure that the number of exemplars used is small,
as user-interaction to supply the joint locations is required for each one.

We automatically select exemplars with a simple greedy algorithm. Each input
frame of video is compared to the current set of exemplars using the “whole body”
shape feature. If the frame is further than a fixed minimum distance from all of the

6

(a) (b)

Figure 4: (a) Closest matching exemplar image, with labeled joint locations. (b) Novel
image, with each joint position localized using geometric blur of shape feature around
joint from exemplar image.

exemplars, then it is added as an exemplar. With the minimum distance used in ex-
periments a relatively small set of exemplars is selected. As a point of reference, in
each of the genres we consider in this work we use fewer than 100 exemplars for ap-
proximately 20000 or 30000 frames. The exemplars extracted for the ballet dataset are
shown in Figure 5.

5 Splicing and Morphing

The final synthesized videos that we produce will be obtained by splicing together
clips of the original video. In order to make the transitions between the spliced clips
appear natural we ensure that the trajectories of the actor’s joints are smooth across the
splice points. This requires procedures for: (i) locating the actor’s joints, (ii) defining
smoothly varying joint positions across the splice points, (iii) morphing the images of
an actor to conform to target joint positions.

Simple procedures for splicing, such as a cross-fade of frames around the splice
points, would lead to noticeable artifacts. The goal is to infuse the splicing procedure
with knowledge about human figures to avoid the unnatural effects of naive techniques.

5.1 Morphing Articulated Figures

In this section we develop the notion of a “kinematically correct” morph of an image of
a human figure. Given joint positions on a human figure in the image plane and a set of
target joint positions, we morph the image such that the joint positions are moved to the
desired taget positions. Figure 6 shows an example of this morphing, and a comparison
to other naive techniques.

7

Figure 5: Exemplars for ballet dataset. These 96 exemplar frames were automatically
extracted from the input video sequence. Human body joint locations were manually
marked on these exemplar frames, and then used to automatically detect joint locations
in the rest of the video sequence.

We perform this morphing in the 2d image plane. The model we use is a “cardboard
person” model (Figure 7) consisting of a torso region and eight half-limbs (upper and
lower arms and legs). Each half-limb has 2 degrees of freedom. Joints are allowed to
rotate in 2d, and each half-limb may be scaled in length. Joint angles for elbows and
knees are measured with respect to the adjacent hands/feet and shoulders/hips. Joint
angles for shoulders and hips are measured with respect to the adjacent elbow/knee, and
the shoulder/hip on the same side of the body. Note that there are singularities in this
representation, for example when a standing human is viewed from above, however,
they do not appear in the sequences we are interested in.

8

(a) (b) (c)

(d) (e) (f)

(g)

Figure 6: Morphing articulated figures. (a,c) Original frames. (b) Synthetic morphed
frame halfway (in body parameters) between original frames. (d,f) Skeletons from
original frames. (e) Target skeleton for morphed frame (b). (g) Cross-fade between
original frames.

Given an image I of a human figure with joint positions φ(I), and target joint
positions φ(T), we construct a morphed image with the human in I in configuration
specified by φ(T). We start by assigning foreground pixels in I as belonging to a
particular half-limb or the torso. This is accomplished by measuring shortest distance
to bone-line of limbs. The torso warp is then modeled as a thin plate spline [4] de-
formation using the shoulders and hips as control points. This warp is applied to all
foreground pixels belonging to the torso. Next, each limb is deformed to match the
parameters in φ(T). The translation of the shoulder joint under the thin plate spline
torso warp is applied to all pixels on the limb. Then, the correct rotation and scaling is
applied to all foreground pixels in the upper half-limb. Lower half-limbs are deformed
in first by the transformation of the upper limb, and then their own rotation and scaling.

After all foreground pixels have been deformed, interpolation is used to get values
of pixels in the morphed image.

9

θ1
2θ2l

l 1

Figure 7: Torso and one limb of the cardboard person model. A human figure is mod-
elled as a torso region along with 8 half-limbs (upper and lower arms and legs). Each
half-limb has 2 degrees of freedom, allowing for variation in 2d angle and in length.

5.2 Sequence Splicing

With the procedure for kinematically correct warping in place, all that remains is to
define the target joint positions for morphed frames that will give rise to a smooth
change in the actor’s joints. Skeletons are extracted for the frames on either side of the
splice point. We then perform a linear blend of the parameters of our cardboard person
model across the splice point. These blended parameter values become the target joint
positions for use in the morphing procedure.

In concrete terms, suppose sequences of frames S = {s1, s2, ..., sn} and R =
{r1, r2, ..., rk}, with sn and r1 determined to corresponding frames, are to be spliced
together. Then a new sequence Q will be created, consisting of frames:

Q = {s1, s2, ..., sn−w−1, m−w, ..., mw, rw+1, ..., rk}

The mi are the morphed frames created using the procedure described above. For
values of i less than or equal to zero, a frame from S is used as the source of the
morphing, otherwise, a frame from R. The target parameters φ(mi) for the morphed
frames are given by the linear blending:

φ(mi) = φ(q) − sgn(i) ·
w − |i|

2w
· (φ(r1) − φ(sn))

where q =

{

sn+i if i ≤ 0
ri otherwise

The parameter w controls the width of the morphing window. In our experiments
w was set to 2. The linear blending process is illustrated in Figure 8.

6 Motion Graph

We organize frames in a motion graph similar to that used by Arikan and Forsyth.
In our graph, a node ni is a contiguous sequence of frames from the original video
consisting largely of a single action ai. There is a directed edge e =< fi, fj , cij >

10

Figure 8: Linear interpolation of limb parameters. Blue curves denote single joint
parameter values over time for two sequences to be spliced together. Dashed red curve
shows linearly blended values used as target parameters for morphing.

between nodes ni and nj if it is possible to splice together the two sequences. Each
edge stores fi and fj , the frames at which the splicing occurs, and cij , the cost of
making this transition. The following sections describe how we construct this motion
graph.

Before delving further into the details of constructing the graph, it is worth noting
a couple of high level points. First is that the graphs we construct will be sparsely con-
nected. Unlike motion capture, we do not have access to 3d joint positions. Realistic
morphing of 2d images is more difficult and requires a pair of images to be rather simi-
lar in order to succeed. Transitions are rarer, and as such the graph representation with
blocks of frames connected by an explicit set of transition points is a useful abstraction.

Second, empirically we found defining a “single action” ai as a conjunction of
“half-actions”, such as “move left - to - begin forehand” in tennis, to be advantageous.
At first glance this distinction appears rather arbitrary, but there is an intuitive explana-
tion why this yields better results.

Consider two possibilities for the action following “move left”: “forehand” and
“move right”. The portion of motion at the end of the “move left” will be rather differ-
ent in the two cases. In the former, the player will likely be turning his upper body and
releasing the grip of his left hand on the racket in preparation for the coming forehand.
In the latter, the player’s final step to the left will be quite different as he gathers his
weight onto his right foot and prepares to push himself in the opposite direction.

However, the “middle” of actions, such as forehand strokes, are more likely to be
similar irrespective of the preceeding action. Defining our nodes to explicitly contain
the transitional periods between semantic actions, and searching for splice points in
the middle of actions leads to more realistic synthetic videos. Note that with A unary
action labels, taking conjunctions of actions leads to at worst A2 different node types
in our graph. However, in practice there will not be that many since the majority of
these conjunctions are not possible.

6.1 Finding nodes

We find nodes for the motion graph by searching our footage for clips corresponding
to a single action. Initially, the user specifies a set of actions that he is interested

11

in modeling by providing example clips for each. The clips need not be of the same
person and the labelling is very easy: one only needs to specify the start and end frames
of the clip and the action label. Now, we need to automatically find similar actions in
the novel footage. This is an action recognition problem and here we use the method
of [8] for describing and comparing actions based on motion features. These motion
features describe the coarse motion over a given spatio-temporal extent and is, in fact,
very similar to the shape feature used earlier, except that frame-to-frame optical flow
is used as the basic measurement instead of image gradients.

Figure 9 illustrates the search process. We start by computing a frame-to-frame
similarity matrix between each of our hand labeled sequences and the block of the
footage we wish to search for clips. Entry (i, j) in each similarity matrix Wk contains
the correlation of motion features computed on frame i of the hand labeled sequence
and frame j of the unclassified footage. This similarity matrix is blurred by filtering
with the blurry I (see [8] for details). Next, we perform a version of a Hough transform.
We tranform the matrix Wk into a vector Hk:

Hk(j) = max
i=−N

2
,..., N

2

Wk(N/2 + i, i + j)

Each Hk(j) represents the maximum value on the line of slope −1 passing through
(N

2
, j), where N is the length of the labeled sequence. Intuitively, the entries in Wk

“vote” for the center of the labeled sequence in the novel sequence.
We perform this voting procedure comparing all of the labeled sequences against

the novel sequence to obtain a collection of vectors Hk. Nodes are extracted in a
greedy fashion using these vectors. At each step we construct a node centered around
the position of maximum value in the set of vectors. The node inherits the action label
and temporal extent of the matched sequence – i.e. whose Hk contained that maximal
value. New nodes must not overlap more than 30% with previous nodes, and must have
motion similarity above a fixed threshold.

6.2 Finding Edges

In order to obtain smooth synthesized sequences, we must only place edges in our
graph between very similar frames. In addition, we only allow incoming edges to go to
the first third, and outgoing edges to leave the latter third of the frames in a node. This
restriction ensures that a simple query procedure will allow for reasonable control over
the animation.

We use the motion and shape descriptors to determine whether a transition exists
between a pair of frames. Since shape and motion need only be consistent locally when
splicing together clips, we use a small 5-by-5 identity matrix for the filtering kernel.
If thresholds (0.93 for shape, 0.4 for motion in both experiments) for similarity are
exceeded, an edge is added between a pair of nodes. The cost on an edge is set as the
negative of the shape similarity between the two frames it connects.

12

(a) (b)

(c) (d)

Figure 9: Classification of sequences. (a) Frame-to-frame similarity between novel se-
quence (horizontal axis) and one labeled sequence (vertical axis). Red values denote
high similarity. (b) Blurred similarity matrix. (c) Hough transform of single similar-
ity matrix, plot of j vs. Hk(j). Hk(j) is maximum values along lines with slope -1
through center row of similarity matrix, “votes” for center of labeled sequence in novel
sequence. (d) Hough transforms of comparisons to collection of labeled sequences.
Classification scheme chooses set of nodes from this collection via non-maximum sup-
pression.

6.3 Querying the Motion Graph

We have constructed a motion graph where the nodes are single action clips, and the
edges are transitions between them. Now, we can create a novel video corresponding to
a particular sequence of actions (such as “backhand stroke”, “move left”, “lob stroke”
in a graph of tennis actions) by finding a path in the graph passing through the correct
types of nodes1.

Given a user-specified sequence of actions to perform, we find the sequence with
minimum cost transtions satisfying the desired sequence of actions. Since all con-
straints are local, we can find this best sequence using dynamic programming. The
search takes O(n2m) time, where n is the number of nodes in the graph and m is the
length (in number of actions) of the desired sequence.

This motion graph allows for intuitive synthesis of new sequences, but lacks some
control over the resulting sequence. Previous work [1, 11] has shown how, given suffi-
cient annotations, one could perform more complicated queries in such a graph.

1Defining nodes to be pairs of half-actions does not add any complexity to this process.

13

5th position
changement
glissade right
glissade left
pas de chat right
pas de chat left
pas de bouree
right
pas de bouree left
pique right
pique left
jete

stand
left
right
forehand
backhand
slice
lob
serve

(a) (b)

Figure 10: Action labels for (a) ballet and (b) tennis datasets.

7 Experiments

We applied our method to two domains, ballet and tennis. For each domain we filmed
an amateur performing a few repetitions of loosely scripted actions. Figure 10 gives the
list of the unary action types. In the ballet dataset we chose 11 actions (leading to 47
half-action pairs), each of which was performed 5-10 times. A total of 27148 frames
of ballet video were recorded. For the tennis dataset we chose 8 actions (leading to 19
half-action pairs). Each of these actions was performed numerous times, particularly
the forehand/backhand swings, and the movement actions. A total of 18845 frames of
tennis video were recorded.

In the ballet dataset 453 nodes and 8022 edges between them were extracted using
the algorithms in Section 6. In the tennis dataset 347 nodes and 1111 edges between
them were extracted.

Synthetic sequences were generated by performing action-level queries on the mo-
tion graph. Sample frames from these synthetic sequences can be seen in Figures 11
and 12.

8 Conclusion

In this paper we have presented a method for creating synthetic videos of human motion
by splicing together clips of existing footage. The key components of our method
are using activity recognition to select appropriate clips of motion to render and an
algorithm for kinematically correct morphing of human figures which is used to splice
the clips together.

Our method produces reasonable quality videos, but noticeable artifacts do remain.
The background subtraction algorithm has limitations. These could be remedied with
user interaction, or the use of a “blue screen” in a studio environment. The largest
problem is that the goal of smooth transitions between clips of original footage across

14

Figure 11: Example frames from synthetic ballet video. Frames 1,2 and 8 contain
unmorphed actor from original video, simply translated across the frame. The next 5
frames show an example of a transition. These morphed frames smoothly vary across
the the splice point, frame 5.

Figure 12: Example frames from synthetic tennis video. As before, frames 1,2 and 8
contain unmorphed actor from original video, simply translated across the frame. The
next 5 frames show an example of a transition. These morphed frames smoothly vary
across the the splice point, frame 5.

15

splice points remains elusive. A number of poor quality transitions exist in the video
results, particularly in the ballet sequence when the figure is stationary. Transition
points (edges in the motion graph) are placed at locations where the human figures are
similar in terms of shape and motion. However, these are not necessarily the locations
at which the splicing and morphing algorithms will produce a convincing output video.
In particular, if the human figure is stationary the viewer is much less forgiving of small
artifacts and jumps in the video. Moreover, the morphing algorithm is much more
successful when the human figure is in certain body configurations. When the limbs
are crossed or otherwise occluding each other, the morphing is much more difficult.
The current measure used to determine transition points should be improved in future
work. Actual information about the body joint locations and overall motion of the
human figure should be used in more elaborate manner.

References

[1] Okan Arikan and D. A. Forsyth. Interactive motion generation from examples. In
Proceedings of SIGGRAPH 2002, pages 483–490. ACM Press, 2002.

[2] Okan Arikan, David A. Forsyth, and James F. O’Brien. Motion synthesis from
annotations. ACM Trans. Graph., 22(3):402–408, 2003.

[3] A. Berg and J. Malik. Geometric blur for template matching. In Proc. IEEE
Comput. Soc. Conf. Comput. Vision and Pattern Recogn., pages 607–614, 2001.

[4] F. L. Bookstein. Principal warps: thin-plate splines and decomposition of defor-
mations. IEEE Trans. PAMI, 11(6):567–585, June 1989.

[5] Christoph Bregler, Michele Covell, and Malcolm Slaney. Video rewrite: driving
visual speech with audio. In Proceedings of SIGGRAPH ’97, pages 353–360.
ACM Press/Addison-Wesley Publishing Co., 1997.

[6] Yung-Yu Chuang, Aseem Agarwala, Brian Curless, David H. Salesin, and
Richard Szeliski. Video matting of complex scenes. In Proceedings of SIG-
GRAPH 2002, pages 243–248. ACM Press, 2002.

[7] Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik. Modeling and rendering
architecture from photographs: A hybrid geometry- and image-based approach.
Proceedings of SIGGRAPH 96, pages 11–20, 1996.

[8] A.A. Efros, A.C. Berg, G. Mori, and J. Malik. Recognizing action at a distance.
In Proc. 9th Int. Conf. Computer Vision, volume 2, pages 726–733, 2003.

[9] Michael Gleicher, Hyun Joon Shin, Lucas Kovar, and Andrew Jepsen. Snap-
together motion: assembling run-time animations. In Proceedings of the 2003
symposium on Interactive 3D graphics, pages 181–188. ACM Press, 2003.

[10] Jessica K. Hodgins, Wayne L. Wooten, David C. Brogan, and James F. O’Brien.
Animating human athletics. In Proceedings of SIGGRAPH ’95, pages 71–78.
ACM Press, 1995.

16

[11] Lucas Kovar, Michael Gleicher, and Frederic Pighin. Motion graphs. In Proceed-
ings of SIGGRAPH 2002, pages 473–482. ACM Press, 2002.

[12] Jehee Lee, Jinxiang Chai, Paul S. A. Reitsma, Jessica K. Hodgins, and Nancy S.
Pollard. Interactive control of avatars animated with human motion data. In
Proceedings of SIGGRAPH 2002, pages 491–500. ACM Press, 2002.

[13] Yan Li, Tianshu Wang, and Heung-Yeung Shum. Motion texture: a two-level
statistical model for character motion synthesis. In Proceedings of SIGGRAPH
2002, pages 465–472. ACM Press, 2002.

[14] C. Karen Liu and Zoran Popović. Synthesis of complex dynamic character
motion from simple animations. In Proceedings of SIGGRAPH 2002, pages 408–
416. ACM Press, 2002.

[15] G. Mori and J. Malik. Estimating human body configurations using shape context
matching. In European Conference on Computer Vision LNCS 2352, volume 3,
pages 666–680, 2002.

[16] P. Perona and J. Malik. Detecting and localizing edges composed of steps, peaks
and roofs. In Proc. Int. Conf. Computer Vision, pages 52–7, Osaka, Japan, Dec
1990.

[17] Katherine Pullen and Christoph Bregler. Motion capture assisted animation: tex-
turing and synthesis. In Proceedings of SIGGRAPH 2002, pages 501–508. ACM
Press, 2002.

[18] Charles Rose, Michael F. Cohen, and Bobby Bodenheimer. Verbs and adverbs:
Multidimensional motion interpolation. IEEE Comput. Graph. Appl., 18(5):32–
40, 1998.

[19] Arno Schodl, Richard Szeliski, David H. Salesin, and Irfan Essa. Video textures.
In Proceedings of SIGGRAPH ’00, pages 489–498, 2000.

[20] Yair Weiss. Deriving intrinsic images from image sequences. In Proc. 8th Int.
Conf. Computer Vision, pages 68–75, 2001.

[21] Andrew Witkin and Michael Kass. Spacetime constraints. In Proceedings of
SIGGRAPH ’88, pages 159–168. ACM Press, 1988.

17

