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Abstract. In wireless ad-hoc sensor networks, many inexpensive and
small sensor-rich devices are deployed to monitor and control our envi-
ronment. Each device, called a sensor node, is capable of sensing, compu-
tation and communication. Sensor nodes form a wireless ad-hoc network
for communication. The limited supply of power and other constraints
limit the capabilities of each sensor node. For example, a typical sensor
node has short communication and sensing ranges, a limited computa-
tional power and a limited amount of memory. However, the abundant
number of spatially spread sensors will enable us to monitor changes
in our environment accurately despite of inaccuracy of each sensor node.
The constraints on a sensor node demand a new set of applications which
is different from the traditional applications designed for centralized com-
putations. An application for sensor networks needs to be scalable, flexi-
ble, and autonomous. With these requirements in mind, in this paper, we
develop a scalable hierarchical multiple target tracking algorithm that is
capable of initiating and terminating tracks and robust against trans-
mission failures and communication delays.

1 Introduction

In wireless ad-hoc sensor networks, many inexpensive and small sensor-rich de-
vices are deployed to monitor and control our environment. It is envisioned that
the sensor networks will connect us to the physical world in a pervasive manner
[1]. Each device, called a sensor node, is capable of sensing, computation and
communication. Sensor nodes form a wireless ad-hoc network for communication.
The limited supply of power and other constraints, such as manufacturing costs
and limited package sizes, limit the capabilities of each sensor node. For exam-
ple, a typical sensor node has short communication and sensing ranges, a limited
computational power and a limited amount of memory. However, the abundant
number of spatially spread sensors will enable us to monitor changes in our en-
vironment accurately despite of inaccuracy of each sensor node. The constraints
on a sensor node demand a new set of applications which is different from the
traditional applications designed for centralized computations. An application
for sensor networks needs to be scalable, flexible, and autonomous. With these
requirements in mind, in this paper, we develop a hierarchical multiple target
tracking algorithm for sensor networks.



1.1 Multiple Target Tracking Algorithms

The multiple target tracking plays an important role in many areas of engineer-
ing such as surveillance, computer vision, and signal processing (2, 3]. Under the
most general setup, a varying number of targets are moving around in a region
with continuous motions and the positions of moving targets are sampled at ran-
dom intervals. The measurements about the positions are noisy, with detection
probability less than one, and there is a noise background of spurious position
reports (false alarms). Targets arise at random in space and time. Each target
persists independently for a random length of time and ceases to exist. A track
of a target is defined as a path in space-time traveled by the target. The seminal
paper by Sittler 4] introduced the major concepts about multiple target track-
ing and a method to evaluate tracks. He pointed out two major problems in
multiple target tracking: data association and state estimation. The essence of
the multiple target tracking problem is to find tracks from the noisy observations
and it requires solutions to both data association and state estimation problems.
In [4], the data association problem in multiple target tracking is described
as a problem of finding a partition of observations such that each element of a
partition is a collection of observations generated by a single target or clutter.
However, due to the noises in state transition and observation, we cannot expect
to find the exact solution. Hence, Sittler developed a probabilistic surveillance
model and searched for a partition of observations on which the likelihood func-
tion defined by the surveillance model is maximized. This data-oriented view of
data association has been applied and extended by many authors [5-10]. The
most successful multiple target tracking algorithm based on this view is the
multiple hypothesis tracker (MHT) [7]. In MHT, each hypothesis associates past
observations with a target such that an observation is not shared by more than
one target. As a new set of observations arrives, a new set of hypotheses is formed
from the previous hypotheses. The construction of new hypotheses requires the
enumeration of all possibilities and the size of hypotheses grows exponentially.
At each time step, each hypothesis is scored by the probability of having the
hypothesis given the observations, i.e., the posterior of the hypothesis. The al-
gorithm returns the hypothesis with the highest score as a solution. MHT is
categorized as a deferred logic [10] in which the decision about forming a new
track or removing an existing track is delayed until enough observations are col-
lected. Hence, MHT is capable of initiating and terminating a varying number of
targets and suitable for surveillance applications in which the tracker is required
to initiate and terminate a varying number of tracks autonomously. However, the
size of the hypotheses grows exponentially and the enumeration of all hypotheses
is not practical. The initial implementation and later extensions proposed several
heuristics, such as pruning, gating, clustering and N-scan-back logic, to reduce
the complexity of the problem [7,8]. However, the hueristics are used at the ex-
pense of the optimality and the algorithm can still suffer in a dense environment.
Furthermore, the running time at each step of the algorithm cannot be bounded
easily, making it difficult to be deployed in a real-time surveillance. As a method
of pruning, an efficient method of finding k-best hypothesis is developed in [9].



As opposed to finding the optimal association, JPDAF computes the weights
of all the possible associations from the latest set of observations to the known
tracks and clutter [2]. Given an association, the state of a target is estimated
by a filtering algorithm and this conditional expectation of state is weighted by
the association weight. Then the state of a target is estimated by summing over
the weighted conditional expectations. JPDAF is a sequential tracker in which
the associations between the known targets and the latest observations are made
sequentially and the associations made in the past are not reversible [10]). The
sequential trackers are more efficient than deferred logic trackers such as MHT
but they are prone to make erroneous associations [10]. At each stage, the associ-
ation between previously estimated states of targets and the latest observations
is optimal from the Bayesian point of view. But the algorithm is suboptimal since
the states estimated at each step of algorithm can be different from the states
estimated from all observations from the initial to current time. In addition, it
is inferred that the exact calculation at each stage is NP-hard [11] since the
related problem of finding the permanent of a 0-1 maxtix is #P-complete [12].
Since only the current set of observations are considered in JPDAF, it cannot
initiate or terminate tracks. Also JPDAF assumes a fixed number of targets and
requires a good initial state for each target. There are restricted extensions to
JPDAF to allow the formation of a new track. See [3] for references. Instead of
keeping a single Gaussian component for each target, the multisensor multitarget
mixture reduction (MTMR) maintains a fixed number of Gaussian components
for each target to prevent the loss of information when there are several signifi-
cant and well spaced componenets [13]. It has been shown that MTMR performs
better than JPDAF but at the expense of computation [13]. But MTMR also
assumes a fixed number of targets and requires a good set of initial states. The
probabilistic multi-hypothesis tracking (PMHT') uses probabilistic associations
between observations and targets to avoid the maintenance of a hypothesis tree
and the enumeration over all possible associations [14]. PMHT allows an asso-
ciation between a single track and an arbitrary number of observations. This
assumption may not represent the physical reality in many cases but reduces
the complexity of the problem [15]. However, a fixed known number of targets
is assumed and the track initiation and termination are difficult under PMHT.
A hypothesis test is presented in [15] as a method to allow a varying number
of tracks but the paper also addresses the difficulty with estimating the initial
states of new targets.

The data association problem of multiple target tracking formulated under
the data-oriented view is also known to be NP-hard [10]. It is a multidimensional
assignment problem [10] and the multidimensional assignment problem is NP-
hard since its special case 3-dimensional matching is NP-hard [16}. The multiple
target tracking problem was first formulated as a combinatorial optimization
problem in [4]. Later, heuristics are added to speed up the algorithm [7-9]. An
optimization approach to the data association has been applied as a 0-1 integer
programming problem [5] and as a multidimensional assignment problem [10].
In both cases one needs to find a feasible set of tracks from all possible tracks,



i.e., all possible partitions of observations, to prevent the exponential explosion
and compute the cost of each feasible track, such as the negative log likelihood.
Then the optimization routine finds a subset from the feasible tracks such that
the combined costs are minimized while satisfying the constraints, i.e., each track
has at most one observation at each time and no two tracks share the same ob-
servation. The gating method similar to the ones described in [6, 7] is used to
find a feasible set of tracks. However, in a dense environment, the size of the
feasible tracks can be very large and the complexity of the optimization rou-
tine increases dramatically, since the number of parameters in the optimization
routine depends on the number of feasible tracks.

1.2 Multiple Target Tracking in Sensor Networks

The surveillance and multiple target tracking is a canonical application of sen-
sor networks as it exhibits different aspects of sensor networks such as event
detection, sensor information fusion, communication, sensor management, and
decision making. In sensor networks, we seek an autonomous tracking algorithm
which does not require a continuous monitoring by a human operator. This re-
quirement excludes the algorithms such as JPDAF, MTMR and PMHT since
they are not capable of initiating and terminating tracks. But the large computa-
tional cost and memory requirement also prevent us from using MHT on sensor
networks. We also need to consider the following constraints on sensor networks.
Due to the limited supply of power and a short communication range, the multi-
hop wireless ad-hoc communication is used in sensor networks. In many cases,
the communication bandwidth is low and the communication links are not reli-
able, causing transmission failures. In addition, due to the low communication
bandwidth and limited amount of memory, communication delays can occur fre-
quently when the communication load on the network is heavy. It is well known
that the communication is costlier than computation in sensor networks in terms
of power usage [17). Hence it is essential to fuse local observations before the
transmission. Since the data association problem is NP-hard, we cannot solve
it only with local information. But, at the same time, we cannot afford to have
a centralized algorithm since such solution cannot be scalable. In summary, we
need a simple and efficient tracking algorithm that is capable of initiating and
terminating tracks, uses less memory, combines local information to reduce the
communication load, and scalable. Also it must be robust against transmission
failures and communication delays. But at the same time we want an algorithm
that can provide a good solution and improve its solution toward the optimal
solution given enough computation time.

The multiple tracking algorithms have been applied to sensor networks. In
(18], a distributed tracking algorithm based on MHT is developed for multiple
sensors with wide sensing range and large computational power and memory. A
method of fusing observations on a fixed network is described and a hierarchical
approach to combine tracks is explored. But the approach is not suitable for
sensor networks since it demands large computational power and large amount
of memory on each sensor. However, if the sensing range of each sensor node



is large, we can apply the algorithm presented in this paper, instead of MHT,
to the fusion techniques developed in [18] to achieve an efficient and accurate
tracking algorithm. A geometric approach to track a half-plane shadow using
sensor networks is developed in [19). In [20], the distributed track initiation and
maintenance methods are described. By electing a leader among the sensors
by which a target is detected, unnecessary communications are reduced. But
considering the complexity of the data association problem, the approach may
suffer from incorrect associations when the false alarm rate is high or when there
are many targets moving close to each other. We have adapted their simple local
information fusion strategy in our work.

In [21], an efficient sampling-based data association algorithm, Markov chain
Monte Carlo (MCMC) data association, is presented. It has been shown that
the algorithm is computationally efficient compared to MHT and performs much
better than MHT or greedy algorithm when the target detection probability is
low [21]. It also performs well in a dense environment, i.e. when there are many
targets moving close to each other, and when the false alarm rate is high. The
algorithm performs the data association based the current and past observations,
hence, it can easily adapt the delayed observations to improve the accuracy of
the estimation. The algorithm seeks a maximuin a posteriori solution to the
data association problem and is capable of initiating and terminating tracks.
Furthermore, the algorithm requires less memory as it only maintains the current
hypothesis and the hypothesis with the highest posterior. So the enumeration
and maintenance of all or some reduced number of hypothesis as in [7-9] are
not required. In this paper, we extend the MCMC data association algorithm to
sensor networks in a hierarchical manner so that the algorithm becomes scalable.

We consider a simple shortest-path routing scheme on a sensor network. The
transmission failures and communication delays of the network are characterized
probabilistically. We assume the availability of a small number of special nodes
(“supernodes”) that are more capable than the other nodes in terms of the
computational power and communication range. Each node is assigned to the
nearest supernode and nodes are grouped by supernodes. We call the group of
sensor nodes formed around a supernode as a tracking group. When a node
detects a possible target, it communicates with its neighbors and observations
from the neighboring sensors are fused and sent to its supernode. Each supernode
receives the fused observations from its tracking group and executes the tracking
algorithm. Each supernode communicates with neighboring supernodes when a
target moves away from its range. The performance of the algorithm is evaluated
in simulations.

The remainder of this paper is structured as follows. The multiple target
tracking problem is described in Section 2 and the MCMC data association al-
gorithm for multiple target tracking is presented in Section 3. The sensor network
model and the hierarchical tracking method is given in Section 4. The simulation
results are shown in Section 5.



2 Multiple Target Tracking Problem

Let T € Z* be the duration of surveillance. Let K be the unknown number
of objects moving around the surveillance region R for some duration [t¥, 5] C
[(1,T]fork=1,...,K. Let V be the volume of R. Each object arises at a random
position in R at tf, moves independently around R until £§ and disappears. The
number of objects arising at each time over R has a Poisson distribution with
a parameter (A,V) where A, is the birth rate of new objects per unit volume
for the duration of surveillance. The initial position of a new object is uniformly
distributed over R.

Let F* : RY — R? be the discrete-time dynamics of the object k, where d is
the dimension of the state variable, and let zf € R? be the state of the object k
at time ¢ for k =1,2,..., K. The object k moves according to

Ty = F5@ab) +wf  fort=1f,. .tk -1, (1)

where w§ € R? are white noise processes. Note that F* can be the same for
all or some of the objects. The noisy observation about the state of the object
is measured with the detection probability py which is less than unity. There
are also false alarms and the number of false alarms has a Poisson distribution
with a parameter (A\;V) where A is the false alarm rate per unit time, per unit
volume. Let n; be the number of observations at time ¢ which includes both noisy
observations and false alarms. Let ] € R™ be the j-th observation at time ¢ for
J =1,...,n;, where m is the dimensionality of each observation vector. Each
object generates a unique observation at each sampling time if it is detected. Let
H7 : R? — R™ be the observation model. Then the observations are generated
as follows:

= H3(zf) + ] if j-th observation is from z¥ @)
t U otherwise,

where v/ € R™ are white noise processes and u, ~ Unif(R) is a noise process for
false alarms. Notice the with probability 1 — pq the object is not detected and
we call this a missing observation.

Under the data-oriented approach, the muitiple target tracking problem is to
partition the observations such that the posterior is maximized. The posterior
function is described in (6).

3 MCMC Data Association Algorithm

Let us first specify the dynamic and measurement models. Here we use the
usual linear system model but the method can be easily extended to non-linear
models coupled with a non-linear regression. If an object is observed % times at
t1,%2,..., 1k, its dynamic and measurement models can be expressed as:

Ltipy = A(ti+l - ti)xtf + G(ti+1 - ti)wti fori= 1,...,k-1
Y, = Cxy, + vy, fori=1,...,k, 3)



where w,, and v;, are white Gaussian noises with zero mean and covariance
Q and R, respectively. A(-), G(-), and C are matrices with appropriate sizes.
The entries of the matrix A(¢;41 — ¢;) and G(¢;4; — t;) are determined by the
sampling interval t;; —¢; for each i. For clarity, the subsequence notation for the
time index is suppressed for now. Then applying the Kalman filter, the update
equations are

Ty = Ady
Pry1 = APAT + GQGT (4)

and the measurement update equations are

=T + Ki(ye — Cx¢)
P, =P - PCTB;'CP, (5)

where K, = 13¢C.,""~1~1"1 is the Kalman gain matrix and B; = CP,CT + R.
Letyo = {37 : 5 =L...,ne} and Y = ey, 7} Y- Let £2 be a collection
of partitions of Y such that, for w € §2,

l. w= {79,715+, TK };

UKo =Y and 07y =0 for i # j;

7o is a set of false alarms;

DNy <lfork=1,...,Kandt=1,...,T; and
el >1fork=1,...,K.

L RN

Here K is the number of tracks for the given partition w € (2. We call 74 a
track when there is no confusion although the actual track is the set of esti-
mated states from observations 7. However, we assume there is a deterministic
function that returns a set of estimated states given the set of observation, so
no distinction is required. We denote by 7x(t) the observation at time ¢ that
is assigned to the track 7;. Notice that 7x(t) can be empty if it is a missing
observation or if ¢ is before the appearance time or after the disappearance time
of the associated target. The fourth requirement says that a track can have at
most one observation at each time, but, in the case of multiple sensors, we can
easily relax this requirement to allow multiple observations per track. A track is
assumed to contain at least two observations since we cannot distinguish a track
with a single observation from a false alarm. Let ngq(t) be the number of detected
objects at time £, i.e., nq(t) = [{7x(t) : 1 <k < K}|, and let nqg = ZZ;I na(t) be
the total number of detections. Similarly, let n¢(t) be the number of false alarms
at time ¢, i.e., n¢(t) = |7o(t)|, and let n¢ = Z:T=1 ne(t) be the total number of
false alarms.

In [22], the exchangeability of w € §2 is assumed and a uniform prior on w is
used. However, it is no longer-true when there are a varying number of objects
with false alarms and missing observations. We instead assume the exchange-
ability among w’s with the same number of tracks, false alarms and missing ob-
servations. Once a partition w € {2 is chosen, the tracks 7,...,7x € w and a set
of false alarms 79 € w are completely determined. Hence, for each track, we can



estimate the state of the object independently since each object moves indepen-
dently from other objects. For each track 7 € w, we apply the Kalman filter (4,5)
to estimate the states £,(7) and covariances B;(7). Let n, = Zt,, K —nq(t) and
N(p, Z) be the Gaussian density function with mean g and covariance matrix
X It can be shown that the posterior of w is {21]:

1

Puw|Y) = ——pd"(l - pa)™ AT
jri=1
x [ TI NC(tier) = Atiss — )3, (7), Bayy (7)), (6)
TE€EwW! i=1

where Z is a normalizing constant and ,,(7) denotes the estimated state of the
track 7 at time t; and By, () = CP,,(7)CT + R for the track 7. Now the goal is
to find a partition of observations such that P(w|Y’) is maximized.

Now we describe the Markov chain Monte Carlo (MCMC) data association
algorithm. The set £2 becomes a state space of the MCMC sampler and we
sample from 2 such that its stationary distribution is the posterior P(w|Y). If
we are at state w € £2, we propose w’ € 2 following the proposal distribution
g(w,w’). The move is accepted with an acceptance probability A(w,w’) where

N — min (1. 2@ e, w)
A(w,w’) = min (l, W) ) (M

otherwise the sampler stays at w, so.that the detail balance is satisfied. If we make
sure that the chain is irreducible and aperiodic, then the chain converges to its
stationary distribution (23]. For more information about MCMC, see [23,24]. In
order to make the algorithm more efficient, we make two additional assumptions:
(1) the directional spead of any target in R is less than #; and (2) the number of
consecutive missing observations of any track is less than d. The first assumption
is reasonable in a surveillance scenario since, in many cases, the maximal speed
of a vehicle is generally known based on the vehicle type and terrain conditions.
The second assumption is a user defined parameter and it can be used as one of
the criteria to distinguish an event of a new object’s appearance from an event
of a continuation of an existing object. We will now assume that these two new
conditions are added to the definition of §2 so that each element w € {2 satisfies
two assumptions above as well as the five conditions described earlier.

The sampler consists of five types of moves. They are (1) a birth/death move
pair; (2) a split/merge move pair; (3) an extension/reduction move pair; (4) a
track update move; and (5) a track switch move. So there are a total of 8 moves.
The paired move types are used to guarantee the reversibility of the chain. Let
m be the move and it is chosen randomly from the distribution £x(m) where K
is the number of tracks of the current partition w. Assume that we index each
move by an integer such that m = 1 for a birth move, m = 2 for a death move
and so on. When there is no track, we can only propose a birth move, so we set
éo(m = 1) =1 and O for all other moves. When there is only a single target, we
cannot propose a merge or track switch move, so §;(m =4) =& (m=7) = 0. If



it is desired, although not required, we can limit K and assign zero probability
of proposing a birth or split move when we are at the limit of K. The algorithm
is shown in Figure 1 and the details of each move are given in [21].

Algorithm 1 (MCMC Data Association) :
Input: Y, 7mc,Winit
Output: @ = arg max,=5 p(w(n){Y)

W &= Winit
for n=1 to ngc
choose a move m according to the distribution £x
propose w' based on the move m and current state w
sample U from Unif[0,1]
if U < A(w,w'")
we— o'
end
wn) —w
end

Fig. 1. MCMC Data Association Algorithm

In Algorithm 1, the acceptance probability is defined in (7) in which the
posterior (6) is used. Since, in the track update move, there is always a positive
probability of staying at the current state, the chain is aperiodic. The chain is
also irreducible since it has a positive probability of visiting every element of £2.
Since the transitions described in Algorithm 1 satisfy the detailed balance, by
the ergodic theorem, the chain converges to its stationary distribution.

The extension of the MCMC tracker to an online, real-time tracking is a
trivial task. It has been shown that the MCMC tracker works well even when T
is small [21]. Hence we implement a sliding window of size ws using Algorithm 1.
Suppose that we are at time t and receiving new observations, we use the pre-
vious estimate to initialize the MCMC tracker and run the MCMC tracker on
the observations from ¢ -~ ws + 1 to t, which combines both previous and new
observations. This approach makes it easier to incorporate delayed observations
in sensor networks.

4 Sensor Network Model

In this section, we describe the sensor network and sensor model used for sim-
ulations in Section 5. Let Ng be the number of sensor nodes, including both
supernodes and regular nodes, deployed over the surveillance region R C R2.



We assume that supernodes have more computational power and its communi-
cation range is long enough so it can communicate with neighboring supernodes.
Let s; € R be the location of the i-th sensor node and let S = {s; : 1 <i < N;}.
Let R; € R be the transmission range of regular sensors. A pair of sensor nodes
i'and j can communicate to each other if the Euclidean distance ||s; — s;]| < Ry.
Let G = (S, E) be a communication graph such that (si,s;) € E if and only
if ls; — s;|l < R:. Note that the communication links between supernodes and
(possible) communication links from supernodes to regular nodes are not repre-
sented in this communication graph G. Let Ny, < N be the number of supern-
odes and let s7 € S be the position of the j-th supernode, for j = 1,..., Ni. Let
g:{1,...,Ns} — {1,..., Ny} be the assignment of each sensor to its nearest
supernode such that g(i) = j if ||s; — s§|| = Ming=y,...,Ngs [|5i — si||. For a node
i, if g(¢) = 7, then the shortest path from s; to s} in G is denoted by sp(i).

Let Rs € R be the sensing range. If there is an object at z € R, each sensor
within radius R from z detects the presence of the object with the detection
probability pq. The detection of an object by the sensor ¢ is recorded by the
sensor sensibility z; such that

= B 1+ 1e), (®)

where 3 and « are constants specific to the sensor type and e; is a Gaussian
noise with zero mean and variance of 1. This sensor model is based on the
general sensibility model used in [25] but we have added a Gaussian noise that
is proportional to the signal strength. If z; < 0, we assume there is no detection.
For each ¢, if z; is positive, the node transmits z; to its neighboring nodes, which
are at most 2R away from s;, and listens to incoming transmissions from its 2R,
neighborhood. Note that this approach is similar to the leader election scheme
in [20]. However, this approach may cause some missing observations if there is
more than one object in this disk of radius 2R,. A better approach to fuse local
data is required and we will address this issue in our future work. For the node

i, if 2; is the larger than all incoming transmissions, Ziys- ooy Zig_y, and 25, = 2;,
then the position of the object is estimated as
k
" z j= Z‘ i S5
f= S 9)

Zj:l Zi;

Then Z; is transmitted to the supernode g(i) via the shortest path sp(e). If z; is
not the largest compared to the incoming transmissions, the node i does nothing
and goes back to the sensing mode.

A transmission along the edge (s;, 5;) fails independently with probability pt,
and the message never reaches a supernode. So we can consider the transmission
failure as another form of the detection failure. Let ky,, = maxi <i< N, [sp(3)],
where |sp(?)| is the number of edges between s; and Sgiy» and my = #{i :
|sp(3)] = k,21 < 4 < N,}. Assume the sensors are uniformly distributed and let

no= Nslg&, the average number of sensors in a disk of radius R,. Then the



effective probability of detection becomes

kmax
P =paa | D (1-p3E ), (10)
k=0 Ns

where pgs = 1 — (1 — pg)? is the probability that at least one of the sensors in
a disk of radius R; detects an object when the object is placed at the center of
the disk.

The communication delay is modeled by the negative binomial distribution.
We assume each node has the same probability pd of delaying a message. If d;
is the number of delays occurred on the message originating from the sensor 7,
d; is distributed as

ods =)= (P37 -yl iy 1)

If the network is heavily loaded, the independence assumptions on the transmis-
sion failure and communication delay may not hold. Also the described model
uses the shorted path routing and it does not capture the possible benefits from
using the multipath routing such as the directed diffusion [26]. However, the
model is realistic under the moderate conditions and we have chosen it for its
simplicity. T

The supernodes maintains a set of observations Y = {y] : teurr — ws < t <
teurr; 1 < j < ny}, where ey, is the current time and wy is the window size. Each
] is a fused observation 2; for some sensor i. At time ¢ + 1, the observations at
time ey — Wws are removed from Y and a new set of observations is appended
to Y. Any delayed observations are appended to appropriate slots. Then each
supernode initialize the Markov chain with the previously estimated tracks and
executes Algorithm 1 on Y. Once tracks are found, the next state of each track is
predicted. If the predicted next state belongs to the surveillance area of another
supernode, the track information is passed to the corresponding supernode. The
newly received tracks are incorporated into the initial state of the Markov chain
for the next time step.

5 Simulation Results

For simulations below, we consider the surveillance over a rectangular region
on a plane, R = [0,200]. The state vector is = = [z,y,%,3]T where (z,y) isa
position in R along the usual z and y axes and (%, ¥) is the velocity vector. The
linear system model (3) is used [27] where § is an interval between observations
and '

1060 £o
_|o1o0¢ lo& _[1000
A(d) = 00101° G(d) = 6(2) and C_[OIOOJ'
0001 )



The covariance matrices are

10 N
Q=[01] and R= 205%

In simulations, 1600 sensor nodes are distributed uniformly over R (see Fig-
ure 2). There are four supernodes. Imagine that R is divided into four equal size
quadrants. We place each supernode close to the center of each quadrant of R.
Roughly 400 sensor nodes form a tracking group around each supernode. The
transmission and sensing ranges are Ry = 10 and R, = 5, respectively. For the
sensor model, we use @ = 3 and 8 = 1 and the sensor readings are bounded
above by 125. The exponent & = 3 is a reasonable assumption for a magnetome-
ter. The maximal directional speed is set to # = 20. The maximal number of
consecutive missing observations is set to d = 3 for simulations in Section 5.1 and
5.2 and d = 5 in Section 5.3. Observations with delay longer than 4 are treated
as missing observations. We first study the effects of the transmission failures
and communication delays on the performance of the tracking algorithm. Then
an example of surveillance using sensor networks is demonstrated in Section 5.3.

g
9
N 4
] 20 40 60 80 100 120 140 160 180 200

Fig. 2. Uniformly Distributed Sensor Network: regular sensor nodes (small squares and
diamonds) and supernodes (large circles)

In all simulations, the online version of Algorithm 1 is used with w; = 10
and the window is forward by a single step. Since we are working in a simula-
tion environment, we measure the performance of the algorithm by comparing
the tracks estimated by the algorithm against the tracks constructed from true
associations for the corresponding window. The true associations are based on



the actual tracks of targets from which simulations are generated. We will call
those tracks constructed from true associations as “best” tracks. Our experience
shows that it requires at least three or four observations from a single target
before a track is initiated. So when constructing the best tracks, we only con-
sider tracks with more than three observations. The tracks are compared by the
average estimation error, average number of tracks, and average log posterior
and they are computed at each time on the window of size ws. The compu-
tations of the average number of tracks and average log posterior are trivial.
So we only describe how the average estimation error is computed. Since the
number of tracks are not fixed and they have variable lengths, a direct com-
putation of the estimation error is not possible. So we propose a different way
to compute the estimation error. Suppose we are given a set of observations
Y = {y] : teurr = ws < t < teurr, 1 < j < ne}. Let w* be the true tracks from
which simulations are generated. Let w be either the tracks estimated by the al-
gorithm or tracks constructed from true associations. For each track 7 € (w\ 7o),
let €(7) be the estimation error of the track v and let f = |7|. Let s;() be the
position, i.e., the first two componenets of the state parameter, of the track 7 at
time £. For s¢,(7), find 7" € (w™ \ 7§) such that |[|s;, (7*) — s¢,(7)|| is minimized.
If such 7* is not found, i.e., when there is no track in w+* at time ¢;, €(7) = c.f,
where ¢, is a constant. Otherwise, the estimation error of track 7 is computed
as

otherwise.

j=1

Then the estimation error is defined as

e=% Z (1),

7€(w\ 7o)

where Z = Zre(w\m) |7]. We used ¢ = 10 in simulations below.

5.1 Transmission Failures

In order to study the effects of transmission failures alone, we assume that there
are no delayed observations, no false alarms, and no missing detections. How-
ever, we use As = 1 and, for each sensor, pq = .99 for log posterior calculations.
We first generated a random scenario with eight targets and the surveillance du-
ration of T = 20. Then we applied different values of transmission failure rates,
0,.01,.02,.03,.04,.05,.1,.15, and .2, and generated a total of nine test cases.
The average effective detection proabilities at different values of transmission
rates are shown in Figure 3, where py = 1 is assumed. The effective detection
probability decays fast for a small increase in the transmission failure rate. For
example, for pt = .15, less than a half of observations are delivered to a supern-
ode, making the tracking task very challenging. We ran Algorithm 1 with two
different sample sizes, 1,000 and 5,000. For each sample size and test case, ten
repeated runs are used for computing the average values. An example of a test



case is shown in Figure 4. The accumulated best tracks and tracks estimated
from the algorithm are shown Figure 5. Figure 6 shows the average estimation
error and the average number of detected targets at different values of transmis-
sion failure rates. The average number of targets is larger than 8 since a single
track can be shared by more than one supernode. The average log posteriors at
different values of transmission failure rates are shown in Figure 7. Figure 6(a)
shows that the estimation error of the algorithm is close to the estimation error
of the best tracks. Figure 7 shows that the log posteriors of the estimated tracks
are very close to that of the best tracks. However, Figure 6(b) shows the number
of targets decreases dramatically for p} > .1 and even the best tracks perform
badly. This is due to the low effective detection rate. But the average number of
estimated tracks is very close to that of the best tracks. This simulation result
indicates that tracking is not possible if the transmisstion rate is larger than
.1. We can overcome this problem by transmitting redundant observations to a
supernode where the number of redundant observations are based on the length
of links from the sensing node to its supernode. However, we need to make sure
that the redundancy does not overflow the communication load of the network.
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Fig. 3. Average effective detection probability vs. transmission failure rate (pq = 1)

5.2 Communication Delays

To assess the effects of communication delays, we assume that there are no
transmission failures, no false alarms, and no missing observations. We use A\; =
1 and, for each sensor, pq = .99 for log posterior calculations. Based on the
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Fig. 4. A test case with pt = .05, pd = 0 with accumulated observations (dots), true
tracks (solid line), sensor nodes (small circles)
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Fig. 5. A test case with p, = .05, pd=0: (a) accumulated best tracks; (b) accumulated
estimated tracks

same scenario used in Section 5.1, we applied different values of communication
delay rates, 0,.05,.1,.15,.2,.25, and .3, and generated a total of seven test cases.
Table 1 shows the distribution of delays at different communication delay rates.
Note the number of delays are counted from observations after ¢ = 11. Also notice
that as we increase the delay rate, we lose some observations since observations
with delays larger than 4 are treated as missing observations. We ran Algorithm 1
with two different sample sizes, 1,000 and 5,000. For each sample size and test
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Fig. 6. Transmission failure rates vs. (a) average estimation error; (b) average number
of targets
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Fig. 7. Transmission failure rates vs. average log posterior

case, ten repeated runs are used for computing the average values. An example
of a test case is shown in Figure 8. The accumulated best tracks and tracks
estimated from the algorithm are shown Figure 9. Figure 10 shows the average
estimation error and the average number of detected targets at different values
of communication delay rates. The average log posteriors at different values of
communication delay rates are shown in Figure 11. Due to the communication
delay, the average number of estimated tracks is lower than the average number
of the best tracks. However, the estimation error of the estimated tracks is close
to that of the best tracks. It also shows more samples increase the average number
of estimated tracks.



Table 1. Delay counts at different values of e

Delay rate Number of observations with delay(s)
e 1 3
0.00
0.05
0.10
0.15
0.20
0.25
0.30
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Fig. 8. A test case with p} = 0, pg = .2 with accumulated observations (dots), true
tracks (solid line), sensor nodes (small circles)

5.3 An Example of Surveillance with Sensor Networks

The same sensor network as in Section 5.1 and 5.2 is used, except p = .05, pg =
.1, X\ = 5, and, for each sensor, pg = .9. The surveillance duration is increased
to T = 100. We ran Algorithm 1 with three different sample sizes, 1,000, 5,000,
and 10,000. For each sample size, ten repeated runs are used for computing
the average values. The accumulated best tracks and tracks estimated from the
algorithm are shown in Figure 12. Figure 13 shows the average estimation error
and the average number of detected targets at each time step. The average log
posteriors at each time step are shown in Figure 14. The average number of
tracks estimated from the algorithm is very close to the average number of the
best tracks. It shows that the log posteriors of the estimated tracks and the best
tracks are almost identical. The algorithm is written in Matlab and run on PC
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Fig. 9. A test case with pt =0, pd = .2: (a) accumulated best track; (b) accumulated
estimated track
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Fig. 10. Communication delay rate vs. (a) average estimation error; (b) average num-
ber of targets

with a 2-GHz Intel Pentium 4 processor. It took 1.21 seconds per supernode,
per simulation step for 1,000 samples, 6.00 seconds for 5,000 samples, and 12.01
seconds for 10,000 samples.

6 Conclusions

In this paper, a scalable hierarchical multiple target tracking algorithm for sen-
sor networks is presented. The algorithm is based on the efficient MCMC data
association algorithm and it is suitable for autonomous surveillance in sensor
networks since the algorithm can initiate and terminate tracks, handle delayed
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Fig. 11. Communication delay rate vs. average log posterior
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Fig. 12. The accumulated best and estimated tracks: (a) accumulated best track; (b)
accumulated estimated track

observations, and require a small amount of memory. The algorithm is also robust
against transmission failures. We consider a simple shortest-path routing scheme
on a sensor network. The transmission failures and communication delays of the
network are characterized probabilistically. A number of sensors form a tracking
group around a supernode and tracking is performed on the observation received
from the same tracking group or passed from neighboring supernodes. In order
to reduce the communication overhead, the observations are first locally fused
and then transmitted to its supernode. This hierarchical approach allows us to
solve the global data association problem while keeping the approach scalable
for a larger sensor network. It has been shown that tracking is not possible for
the naive setting used in out simulations if the transmission failure rate is larger
than .1. The transmission failure poses a more challenging problem than the
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Fig. 13. (a) Average estimation error; (b) average number of targets
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communication delay. However, this difficulty with transmission failures can be
overcomed by transmitting redundant observations. But we need to make sure
that such strategy does not exceed the capacity of the network.
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