Copyright © 2004, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

LATENCY-INSENSITIVE DESIGN

by

Luca Carloni

Memorandum No. UCB/ERL M04/29

3 August 2004

LATENCY-INSENSITIVE DESIGN

by

Luca Carloni

Memorandum No. UCB/ERL M04/29

3 August 2004

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Latency-Insensitive Design

by

Luca Carloni

Laurea (Universita di Bologna, Italy) 1995
M. S. (University of California at Berkeley) 1997

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor of Philosophy

in
Engineering-Electrical Engineering and Computer Sciences
in the

GRADUATE DIVISION
of the
UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Alberto L. Sangiovanni-Vincentelli, Chair
Professor A. Richard Newton
Professor John H. Freeman

Fall 2004

The dissertation of Luca Carloni is approved:

Chair

Date

Date

University of California at Berkeley

Fall 2004

Date

Latency-Insensitive Design

Copyright 2004

by
"Luca Carloni

Abstract

Latency-Insensitive Design
by

Luca Carloni

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences
University of California at Berkeley

Professor Alberto L. Sangiovanni-Vincentelli, Chair

Nanometer process technologies make hundreds of millions of transistors available for the
design of an entire system on a single chip (system-on-chip). However, designs of this kind
expose problems that were barely visible at previous levels of integration.

First, despite the increase in number of metal layers and in aspect ratio, the resistance-
capacitance (RC) delay of an average metal line with constant length is getting worse with
each process generation. This fact, combined with the increases in operating frequency
and average interconnect length, cause on-chip interconnect delay to become the largest
fraction of the clock cycle time. To make things worse, it is increasingly difficult to es-
timate early in the design process the actual interconnect latency because it is affected
by several phenomena, like process variations and crosstalk, whose combined effect may
vary across chip regions and periods of operation. As a result, nanometer technologies are
forcing the semiconductor industry to experience a paradigm shift from computation- to
communication-bound design: the number of transistors that a signal can reach in a clock
cycle—not the number that designers can integrate on a chip—drives the design process.

Second, to manage the design complexity of a system-on-chip (SOC), the effective
reuse of existing intellectual-property (IP) components is essential. Originally, IP cores
were mostly functional blocks built for previous design generations within the same com-
pany. Frequently, today’s IP cores are optimized modules marketed as off-the-shelf compo-

nents by specialized vendors. The prerequisite for an easy trade, reuse and assembly of IP

cores is the ability to combine pre-designed components with little or no effort. The conse-
quent challenge is addressing the communication and synchronization issues that naturally
arise while assembling pre-designed components.

Currently available computer-aided design (CAD) tools struggle on handling the in-
creasingly dominant impact of interconnect delay and fall short on providing support for IP
reuse. With each process generation, the number of available transistors grows faster than
the ability to meaningfully design them (design productivity gap) and designers are forced
to iterate many times between circuit specification and layout implementation (timing-
closure problem). Ironically, it is the introduction of nanometer technologies that threatens
the outstanding pace of technological progress that has shaped the semiconductor industry.

The key to addressing these challenges is the development of methodologies based on
formal methods to enable modularity, flexibility, and reusability in system design. The sub-
ject of this dissertation—Latency-Insensitive Design—is a step in this direction. My thesis
is that “correct-by-construction methods combining the benefits of synchronous specifica-
tion with the efficiency of asynchronous implementation are the key to design moderately
distributed complex systems composed of tightly interacting concurrent processes.”

Major contributions are the theory of latency-insensitive protocol and the companion
latency-insensitive design methodology. Latency-insensitive systems are synchronous dis-
tributed systems composed by functional modules that exchange data on communication
channels according to an appropriate protocol. The protocol works on the assumption
that the modules are stallable (a weak condition to ask them to obey) and guaranteés that
systems made of functionally correct modules, behave correctly independently of channel
latencies. The theory of latency-insensitive protocols is the foundation of a correct-by-
construction methodology for integrated circuit design that handles latency’s increasing
impact on nanometer technologies and facilitates the assembly of IP cores for building
complex SOCs, thereby reducing the number of costly iterations during the design process.
Thanks to the generality of its principles, latency-insensitive design can be possibly applied
to other research areas like distributed deployment of embedded software.

Professor Alberto L. Sangiovanni-Vincentelli
Dissertation Committee Chair

-Alla mia cara Mé

Contents

Dedication
Contents

List of Figures

List of Tables
Acknowledgements

1 Intreduction
1.1 The Synchronous Paradigmo
1.1.1 Synchronous Paradigm and Hardware Design
1.12 Synchronous Paradigm and Embedded Software
1.1.3 The Crisis of the Synchronous Paradigm
1.2 Outlineofthe Dissertation

2 Background
2.1 The Complexity of System-on-Chip Design

2.1.1 The Design ProductivityGap.
2.1.2 Intellectual Property IP)Reuse
2.2 The Impact of Latency on Nanometer Design
2.2.1 From Computation- to Communication-Bound Design
2.2.2 The Role of Latency in the Design of the One Billion Transistor
MICIOPIOCESSOT .+ . & o v v v v v e e v e e e e e e e e e e
2.2.3 The Timing-Closure Problem
2.24 Coping with VolatileLatency
2.3 The Combination of Two Design Principles

3 Theory of Latency-Insensitive Protocols
3.1 AnlInformal Presentationt
3.2 Latency Imsensitivity o e

it

CONTENTS

3.2.1 The Tagged-SignalModel
3.2.2 Informative Events and StallingEvents
323 LatencyEquivalence
3.2.4 Ordering the Set of Informative Events
3.3 Composing Patient Systems
3.3.1 Compositionality of Patient Processes
332 ChannelsandBuffers.
3.3.3 Pipelining PatientChannels
334 RelayStations
3.4 Latency-Insensitive Design
34.1 StallableProcesses
3.4.2 Shell Encapsulation of Stallable Processes
3.43 Latency-Insensitive Design Methodology
3.4.4 Example: Latency-Insensitive Design Methodology for SOC
35 RelatedWork e
3.5.1 Latency Insensitive versus Asynchronous Design
3.5.2 Latency Insensitivity and Slack Elasticity
3.5.3 Latency-Insensitive Protocols and High-Level Synthesis
3.54 The Composition Principle
3.5.5 Latency-Insensitive Protocols and Theory of Desynchronization . .
3.6 ConcludingRemarks

Correct-by-Construction SOC Design Methodology

4.1 Latency-Insensitive Design Methodology for SOC.
4.1.1 Latency-Insensitive DesignFlow
4.1.2 The Stallability Requirement

4.2 Latency-Insensitive Communication Architecture

4.2.1 Channelsand Back-Pressure e :

422 ShellEncapsulation.
423 RelayStations
43 Impacton SystemPerformance
43.1 Nominal versus Effective Clock Frequency
432 Preserving Communication Throughput in DSM Design
4.4 Case Study: the PDLX Microprocessor
44.1 PDLX Architecture and InstructionFlow
4472 Latency-Insensitive Designof PDLX
443 Experimental ResultswithPDLX
45 RelatedWork e
45.1 DSM Design Methodologies
452 Wire Buffering and Wire Pipelining
4.5.3 Related Work in Integrated Circuits Design
46 ConcludingRemarks

iii

CONTENTS v

5 Performance Analysis 113
5.1 PetriNetsandMarkedGraphs 114
511 PetriNets v v i i e e e e e e e e e e 114
512 MarkedGraphs 118

5.2 Performance Analysis of Latency-Insensitive Systems 123
5.2.1 Constructive Modeling of Latency-Insensitive Systems 125

5.2.2 Maximum Sustainable Throughput 128

5.2.3 Performance Analysis with the Infinite-Queue Model 133

5.2.4 Performance Analysis with the Finite-Queue Model. 141

53 RelatedWork . . © i i e e e e 152
5.3.1 Maximum Profit-To-Time Ratio and Maximum Cycle Mean 152

5.3.2 AND/OR Causality in Modeling Discrete Event Systems 153

533 Performance Analysis of Asynchronous Systems Using Petri Nets . 154

5.3.4 Performance Analysis of Embedded Systems 154

5.3.5 Marked Graphs versus Data FlowModels 155

54 ConcludingRemarks 156
6 Performance Optimization 157
6.1 The Global Impact of Channel Pipelining 158
6.1.1 ChannelPipelining 158

6.12 TheRoleof System Topology 165

6.13 TheRoleofBack-Pressure 170

6.1.4 Throughput Equalization in the Absence of Back-Pressure 171

6.1.5 Case Study: an MPEG Video Encoder. PartOne 173

6.2 Recycling oo i it e 179
6.2.1 The Role of Shell Encapsulation 180

6.2.2 Recycling Transformations 185

6.2.3 The Cycle BalancingProblem 191

6.2.4 Case Study: an MPEG Video Encoder. Part Two 193

63 RelatedWork o v it e e e e e e 200
6.4 ConcludingRemarks, 201
7 Recycling Synchronous Circuitry 203
7.1 Retiming v v it i e e e e e e 204
7.1.1 TheBasicldeaofRetiming 204

7.1.2 Using Retiming to Pipeline Combinational Circuits 207

7.1.3 The Invariant Ruleof Retiming 208

7.2 Applying Recyclingatthe GateLevel 210
7.2.1 Differences between Recycling and Retiming 210

7.2.2 Combining Recycling AndRetiming 212

7.2.3 Benefit Analysis on the Combination of Recycling and Retiming . . 216
7.2.4 Recycling-Based Design Exploration 218

CONTENTS ' v

73 RelatedWork« . 222
7.3.1 Recyclingversus Slowdown 222

7.3.2 Recycling versus Timing Optimization via Software-Pipelining . . 223

7.3.3 Recycling versus Architectural Retiming 224

74 ConcludingRemarks 225

8 Conclusions and Future Directions 227
8.1 Contributions v v v vt e e e e e e e e 227

8.2 Influence of Latency-Insensitive Design 229

8.3 Avenuesof FutureResearch 232
Bibliography 235
A Rate Equalization and Cycle Balancing Problems 263
A.1 RateEqualizationProblems. 263
A.1.1 The 2-Pair Decreasing Rate Equalization Problem 264

A.1.2 The Decreasing Rate Equalization Problem 267

A.1.3 The Increasing Rate Equalization Problem 269

A.1.4 Solving the Rate Equalization Problem 272

A.2 Solving the Cycle Balancing Problem 273

Index 277

List of Figures

1.1 Diagram representing a sequential module at the register-transfer level. . . . 3
1.2 RTL block diagram ofa MACcircuit. 4
1.3 Schemes of synchronous execution [10]. 8
2.1 Transistors shipped peryear [173]. o 17
2.2 Local wires scale in length; global wiresdonot [112]. 21
3.1 The synchronous system of Example 3.2.1 and its behavior. 36
3.2 Astrictsignals) andastalledsignalsz.o 0o 40
3.3 Sequences of values of three latency-equivalent signals. 41
3.4 Behavior b' = stall (e5 (sl),b) is obtained stalling the fifth event of signal -

spofbehaviorb. e e 44
3.5 Sketch for the proof on the compositionality of latency equivalence. 47
3.6 Relationships between the notion of nextEvent and corresponding events

in pairs of latency-equivalent signals. oL 50
3.7 Comparing the behaviors of finite buffers B} | (s1,52) and B} | (s1,52). . . . 56
3.8 Example of a behavior of an equalizer E with / = {1,2,3} and O = {4,5,6}. 61
3.9 Encapsulation of a stallable process Pinto ashell W (P). 62
4.1 Shell encapsulation, relay station insertion and channel back-pressure. . . . 82
4.2 Shell encapsulation: making an IP core patient. 86
43 Shell encapsulation: experimental results with a third-party DCT core. . . . 89
44 Hardware implementation of a relay station (block diagram). 91
4.5 Hardware implementation of a relay station (control logic FSM). 92
4.6 Channels between Fetch Unit and Instruction Cache 93
4.7 Waveforms on Address Channel. 94
4.8 A simple cyclic latency-insensitive system. 98
4.9 PDLX microprocessor block diagram (conceptual view). 101
4.10 PDLX performance: throughput (bottom) and effective throughput (above) 103
4.11 Wire buffering versus wire pipelining. 108
5.1 Petri net examples taken from [176,194]. 115

LIST OF FIGURES vii

52
53
5.4
55
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14

5.15
5.16

5.17

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

6.10
6.11

6.12
6.13

6.14

6.15

6.16

6.17

Asymptotic behavior of average occurrence distances of transitions [179]. . 122
Procedure to build a marked-graph model for a latency-insensitive system. . 126
Example of latency-insensitive system with no back-pressure.. 127
Example of constructive modeling with marked graphs. 128
Primitive marked graphs from the infinite-queue model library L;o. 133
Channels in marked graphmodels. 134
The marked graph of Figure 5.5 after 45 timestamps. 138
A non-strongly connected latency-insensitive system without back-pressure. 139
Infinite-queue model for the latency-insensitive system of Figure 5.13. . . . 140
The marked graph of Figure 5.10 after 30 timestamps. 140
Primitive marked graphs from the 2-finite-queue model library Lprg. 142
Finite-queue model for the latency-insensitive system of Figure 5.9. 144
Finite-queue model for the latency-insensitive system of Figure 5.13 (queues

length=2). e 146
The marked graph of Figure 5.14 after 30 timestamps. 146
Finite-queue model for the latency-insensitive system of Figure 5.13 (queues

length=1). e 150
The marked graph of Figure 5.16 after 30 timestamps. 150
Marked-graphs for three implementations of the MAC circuit of Figure 1.2. 162

Sequence of events on the channels of marked graph M G, in Figure 6.4. . . 163
Sequence of events on the channels of marked graph M G, in Figure 6.4. . . 163
The marked graphs of Figure 6.1 after 100 timestamps. 164
Models of cyclic latency-insensitive system with relay station on acyclic path.166
The marked graphs of Figure 6.5 after 1 timestamp. 167
The marked graphs of Figure 6.5 after 30 timestamps. 168
MPEG-2 video encoder (functional block diagram). 174
Reference infinite-queue marked graph model for the MPEG-2 video en-
coderof Figure 6.8. 175
MPEG-2 encoder: analysis of throughput degradation (worst-case scenario). 177
Strict system specification of a pipelined data-path and two alternative
latency-insensitive implementations. oL 180
Examples of recycling transformations. 187
Un-balanced implementation of the MPEG-2 video encoder of Figure 6.8

with B(MGs) =0.50.. . . o ot 193
The marked graph of Figure 6.13 after 100 timestamps without equalized
ENVITOIMMENT. v v v e et v e e e et e e e e e e s 194
The marked graph of Figure 6.13 after 100 timestamps with equalized en-
VIFONMENL. e e e e e e e e e e e e e e e e e e e 194
Balanced implementation of the marked graph of Figure 6.13 with }(M G) =
0.57 obtained viarecycling. e 196
The marked graph of Figure 6.16 after 100 timestamps. 197

LIST OF FIGURES viii

6.18 Balanced implementation of the marked graph of Figure 6.13 with 3(M G) =

0.66 obtained viarecycling.o e 198

6.19 The marked graph of Figure 6.18 after 100 timestamps. 199

7.1

7.2

73
7.4
7.5

Al
A2
A3
A4
AS
A6

Retiming the correlator circuit [150]: the top graph has y(Gi) = 24 while
the bottom one has y(&>) = 13 (shading highlights critical paths). 205
Two recycled versions of the correlator circuit of of Figure 7.1 (shading
shows the shell wrapping; light rectangles are relay stations initialized to 7). 212
Case studies for recycling benefit analysis: N-1 FFs (top), 1 FF (bottom). . 218

Recycling-based design exploration of a pipelined data-path. 219
Experimental results from recycling the data-path of Figure 7.4. 220
Algorithm to solve the 2-Pair Decreasing Rate Equalization Problem. . . . 265
Algorithm to solve the Decreasing Rate Equalization Problem. 266
Algorithm to solve the Rate Equalization Problem. 270
Algorithm to find the candidate equalizationseeds. 271
Algorithm to solve the Cycle Balancing Problem 274
Recursive step inside algorithm CYCLEBALANCER of Figure A5 275

X

List of Tables

1.1
2.1
4.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7

7.1

Example of RTL behavior of the MAC circuit of Figure 1.2. 5
Comparing interconnect and transistor scaling properties [74]. 23
The periodic behavior of the latency-insensitive system of Figure 4.8. . . . 97
Cycles and cycle times for the marked graph of Figure 6.9. 176
Channels vs. cycles matrix for the marked graph of Figure 6.9. 176
The behavior of the strict system S; in Figure 6.11. 181
The behavior of the latency-insensitive system S, in Figure 6.11. 184
The behavior of the latency-insensitive system S3 in Figure 6.11. 184
Encoding of recycling transformations. 191
Cycles and cycle times for the marked graph of Figure 6.13. 195

Cycles, delay, weights and delay-to-register cycle ratios for the circuit graph
of Figure 7.1. e 210

Acknowledgements

“Blind hopes in them I made to dwell.”
AESCHYLUS. PROMETHEUS BOUND.

During a late winter afternoon, back in December 1994, I met for the first time pro-
fessor Alberto Sangiovanni-Vincentelli. I was a visiting undergraduate student from the
University of Bologna, who spoke broken English while trying to cope with the diverse
challenges of UC Berkeley Exchange Abroad Program. The meeting lasted less than ten
minutes and changed my life. Eighteen months later, I would be starting Graduate School
at Berkeley, thus guaranteeing to myself the luxury of working together with Alberto for
all these years and, hopefully, for many more to come.

I could fill pages writing about Alberto’s professional gifts. Gifts that, naturally, turn
out to be mainly presents for his students: the gift of understanding (predicting seems often
a more proper word) which research problems are the key ones to be addressed; the gift
of combining a rich scientific talent with uncommon business intuition; the gift of putting
the same careful attention to all the stages of a project, from involving the students in the
drafting of the research proposal to refining the slides (and the voice intonation!) for their
presentations; the (rare) gift of attacking each research problem with the same passion
as if it were the first one !; the (even rarer) gift of constantly surrounding himself with
brilliant collaborators, thus enabling the development of a unique work environment as the
Berkeley CAD Group has been for over twenty years. In the end, however, it is Alberto’s
personal gifts that make it invaluable for his students (and for many less fortunate students,
enviable) to work with him: Alberto’s genuine interest for the balance between the student’s
personal and professional development is certainly uncommon, and, in my opinion, likely
unmatched. That winter afternoon back in 1994 during our short conversation, I learned,
as Musil teaches, fo see a possible experience as a project, something yet to be invented.

Prof. Robert Brayton was my first teacher at UC Berkeley, when I attended his Logic
Synthesis course as an undergraduate student, and has been like a second advisor through-

out my master’s thesis. As Tiziano Villa once perfectly wrote, Bob remains “a model of

1 A personal memory should be recorded here, because I suspect that there are not too many advisors who
are ready to spend the night after Christmas supper exchanging the drafts of a theorem proof via transatlantic
e-mail with a young graduate student who is writing his first paper.

xi

dedication to scholarship and gentleman’s style” Since the beginning of graduate school
I looked at Prof. Richard Newton as a source of true enthusiasm and inspiring vision. I
thank him for his comments on my work and for being part of my Qualifying Commit-
tee. Similarly, I thank the other two committee members Prof. Jan Rabaey and Prof. John
Freeman. I also want to thank Prof. John Danner, who Socratically taught the Workshop
in Entrepreneurship at the Haas School of Business during Fall 1999: truly one of the best
teaching efforts I experienced at Berkeley.

Besides the professors, however, I believe that what makes graduate school special is
the opportunity to learn from senior students. I have been blessed to learn from many
of them and I have been trying, in return, to teach something to as many. In fact, I take
this occasion to offer my final advice to a first year graduate student: get a mentor, two is
not enough, three is not too many. During my first couple of years at Berkeley I had the
fortune to work with Tiziano Villa (who introduced me to the world of academic research),
Alex Saldanha (who introduced me to the world of industrial research), Evguenii Goldberg
(who gave me a brilliant idea to work on for my master’s thesis), Timothy Kam (whose
elegant software packages were the first I read, when I learned that reading good code is the
basis for writing good code), and Arlindo Oliveira (with whom I derived my first theorem
proof). 1 just said my final advice, but here I have another one: do summer internships and
collaborate with researchers at other institutions. I was lucky enough to have the possibility
of spending four consecutive summers at Cadence Berkeley Laboratories, working together
with such talented researchers as Alex Kondratyev, Luciano Lavagno, Ken McMillan, and
Yoshinori Watanabe; and I was very lucky to collaborate with other talented researchers
“across the ocean” who also influenced my research: Albert Benveniste, Benoit Caillaud,
and Paul Caspi. And here a final (really final, now) advice: do different things. 1 believe
that Graduate School is meant for engaging in many diverse projects and not for working
only on a single problem with the goal of accelerating the coming of that day when your
dissertation is ready for the famous three signatures. In my case, the time spent in 1999
attending classes at the Haas School of Business and working together with a team of MBA
students for the Business Plan Competition, helped me to broaden the perspectives of my
work and made me grow professionally.

When you are completing the following, traditional, mandatory, endless list of names

xii

of friends and colleagues, you finally suspect that you may have spent just a few too many
nights at Cory Hall. In any case, it is always a pleasure to recall fellow CAD Group stu-
dents together with other members of that unique community which is UC Berkeley: Arthur
Abnous, Joern Altmann, Felice Balarin, Alvise Bonivento, Eylon Caspi, Edoardo Charbon,
Max Chiodo, Philip Chong, Luca Daniel, Fernando De Bernardinis, Alberto Ferrari, Vargh-
ese George, Naji Ghazal, Wilsin Gosti, Heloise Hse, Joe Higgins, Harry Hsieh, Adrian
Isles, Sunil Khatri, Desmond Kirkpatrick, Christoforos Kozyrakis, Yuji Kukimoto, Freddy
Mang, Amit Merothra, Trevor Meyerowitz, Paolo Miliozzi, Fan Mo, Rajeev Murgai, Amit
Narayan, Alessandra Nardi, Georges Pappas, Roberto Passerone, Claudio Pinello, Alessan-
dro Pinto, Vandana Prabhu, Mukul Prasad, Shaz Quadeer, Jacques-Christophe (Chris)
Rudell, Marco Sabatini, Marco Sgroi, Niraj Shah, Farhana Sheikh, Narendra Shenoy,
Michael Shilman, Tom Shiple, Vigyan Singhal, Subarnarekha Sinha, Mark Spiller, Lixin
Su, Tason Vassiliou, Ken Yamaguchi, James Shin Young, and Stefano Zanella. Also, I
would like to thank Mary Bymes and Ruth Gjerde, whose kindness and professionalism
make a trip to the Office of Graduate Matters always a pleasure, Brad Krebs, whose skills
as system manager saved my work more than once, and, finally, Lorie Brofferio, Susan
Gardner, Flora Oviedo, and Jennifer Stone for their administrative assistance. Finally, I
am grateful to SRC, GSRC, and NSF which supported me for various research projects
throughout graduate school as well as to Cadence Design Systems and Intel Corporation.

Still, and not surprisingly for an Italian, I must say that my biggest gratitude goes to my
family, la famiglia! Without them, I simply wouldn’t be here. Hence, without further ado:

Un forte abbraccio va a mio padre, Giulio Cesare, a mia madre, Anna, ¢ ai miei cari
fratelli, Fabio e Marco.

Um abrago com carinho para minha querida familia no Brasil: Emilia Yoko, Max e
Denio.

My little princesses Kiara Taina and Maira Paloma, the sweetest pretexts to postpone
the completion of the present effort.

La mia cara Meika Alessandra, who paces the world around me in all directions, thus

rendering it its equilibrium and harmony.

Xiii

To pass freely through open doors, it is necessary to respect the fact that they
have solid frames. This principle, by which the old professor had lived, is
simply a requisite of the sense of reality. But if there is a sense of reality,
and no one will doubt that it has its justifications for existing, then there
must also be something we can call a sense of possibility. Whoever has it
does not say, for instance: Here this or that has happened, will happen,
must happen; but he invents: Here this or that might, could, or ought to
happen. If he is told that something is the way it is, he will think: Well, it
could probably just as well be otherwise. So the sense of possibility could
be defined outright as the ability to conceive of everything there might be
Jjust as well, and to attach no more importance to what is than to what is
not. The consequences of so creative a disposition can be remarkable, and
may, regrettably, often make what people admire seem wrong, and what is
taboo permissible, or, also, make both a matter of indifference. Such possi-
bilists are said to inhabit a more delicate medium, a hazy medium of mist,
fantasy, daydreams, and the subjunctive mood. Children who show this
tendency are dealt with firmly and warned that such persons are cranks,
dreamers, weaklings, know-it-alls, or troublemakers. Such fools are also
called idealists by those who wish to praise them. But all this clearly ap-
plies only to their weak subspecies, those who cannot comprehend reality
or who, in their melancholic condition, avoid it. These are people in whom
the lack of a sense of reality is a real deficiency. But the possible includes
not only the fantasies of people with weak nerves but also the as yet unwak-
ened intentions of God. A possible experience or truth is not the same as
an actual experience or truth minus its "reality value” but has - according
to its partisans, at least - something quite divine about it, a fire, a soaring,
a readiness to build and a conscious utopianism that does not shrink from -
reality but sees it as a project, something yet to be invented. After all, the
earth is not that old, and was apparently never so ready as now to give
birth to its full potential.

R. MUSIL.

Chapter 1
Introduction |

In which what has been is not overlooked and what will follow is anticipated, at least partially.

ARADIGMS are “accepted examples of scientific practice—examples which include
law, theory, application, and instrumentation together—{that] provide models
from which spring particular coherent traditions of scientific research.” This at

least according to Kuhn in his classic, and influential, 1962 book [137]. The informal def-
inition, which has been sometimes criticized for being too fuzzy, is centered around the
English word that best translates the original Greek nopaderyuo. (paradeigma), ie. ex-
ample. Therefore, paradigms are examples. These examples gain their value, which is
ultimately a practical value (“to provide models”), from offering a combination of a di-
verse body of information (“law, theory, application, instrumentation™). As such, Kuhn’s
definition applies well to engineering design, particularly in the field of hardware and soft-
ware systems. In their work engineers naturally follow fundamental laws and theories, but,
as they strive to build their systems on time, they regularly find support in those practices,
methods and tools which have been applied repeatedly and successfully before.

The present dissertation is very much about the practical importance of a paradigm
in designing electronic systems, the paradigm of synchrony, and about the apparent cri-
sis that this paradigm is facing. Though aware that “all crises begin with the blurring
of a paradigm” and that “a crisis may end with the emergence of a new candidate Jor
paradigm” [137], I make an attempt at pfesenting the old candidate as still a valid one, at
least partially.

CHAPTER 1. INTRODUCTION 2

1.1 The Synchronous Paradigm

The synchronous paradigm is ubiquitous in electrical engineering and computer sci-
ence. It is the basis of digital integrated circuit design, it is used in building discrete-time
dynamical control systems, and it is the foundation of programming languages and design
environments for real-time embedded systems.

With the synchronous paradigm, a complex system is represented as a collection of
interacting concurrent components whose state is updated collectively in one instantaneous
step. The system consists of a composition of sequential functional processes and evolves
through a sequence of atomic reactions: at each reaction all processes, simultaneously,
read the values of their input variables and use them, together with the values of their
state variables, to compute new values for both their state and output variables; between
two successive reactions the communication of the computed values across the processes
occurs via instantaneous broadcasting.

The synchronous hypothesis is precisely the idea that at each reaction the computation
in the functional modules and the subsequent communication of the computed values across
modules do not overlap !. In the synchronous paradigm “time” progresses in lock-step,
one reaction after the other. The idea of measuring time is confined to the concept of a
virtual, or logical, clock, whose ticking indexes the totally ordered sequence of reactions
by associating a new timestamp to each reaction (i.e. the set of timestamps coincides with
the set of natural numbers).

The power of the synchronous paradigm lies essentially in its simplicity. It is an intu-

itive, but formal, model of computation [144] that offers many advantages:
e it simplifies the modeling of deterministic concurrent systems;

e it enables the incremental design of complex systems in a modular and hierarchical

fashion;

e it facilitates the design process by separating functionality from the notion of time;

1Some researchers talk of a zero-time step. This is misleading since it is not a matter of measuring
computation or communication time, but simply to order subsequent reactions and maintain separated com-
munication from computation.

CHAPTER 1. INTRODUCTION g

inputs
output
. Cl e registers

‘combinational

present

state state

clock

Figure 1.1: Diagram representing a sequential module at the register-transfer level.

e it encourages abstraction and reuse by leading to design specifications that are inde-

pendent from the details of the particular implementation technology;

e it eases the development of design-automation tools for specification, validation, and

synthesis;

1.1.1 Synchronous Paradigm and Hardware Design

In digital hardware design, methodologies and tools based on the synchronous paradigm
have made it possible, over the last three decades, to build integrated circuits (IC) that are
exponentially more complex and faster. Today’s chips are built assembling hundreds of
millions of transistors whose concurrent operations are tightly controlled by the beat of
a single clock signal (the physical, or real, clock). Transistors and logic gates, how-
ever, are abstracted away during most stages of the design process. The core of the design
effort occurs at the register-transfer level (RTL) where designers are assisted by hardware-

description languages (HDL).

CHAPTER 1. INTRODUCTION 4

s
e

X wegX
el REG -
ceg
REG
Y regy ”‘.
M REG »

REG

b B REG

i {24 3]

-

Figure 1.2: RTL block diagram of a MAC circuit.

Figure 1.1 illustrates a sequential module, the basic RTL building block and the ulti-
mate result of applying the synchronous paradigm to IC design. The acyclic combinational
logic implements the functionality of the module (an arbitrarily complex arithmetic or logic
function) while the registers (memory elements controlled by the clock) store the values of
the state and output variables over time [193, 216]. A sequential module is the direct imple-
mentation of a finite state machine (FSM) 2, which is the model of computation commonly
used to specify control blocks in IC design. Also, any pipelined data-path can be seen as
a cascade of sequential modules. Using HDL languages, designers write software pro-
grams to specify the functionality of each module as well as their (possibly hierarchical)
composition.

Example A multiplier-accumulator (MAC) is a very common digital circuit, because it

facilitates the implementation of an operation like ¥.x(r) - y(n — k), which is ubiquitous

2Strictly speaking the diagram of Figure 1.1 represents the basic implementation of a Moore machine.
Removing the output register gives the basic implementation of a Mealy machine [124, 240].

CHAPTER 1. INTRODUCTION 5

Input Internal Output

n | regD regB regY regX regS | regM regC regd | regZ
1 0 - 1 2 0 0 0 0 -
2 0 - 0 1 0 2 0 0 -
3 0 - 3 1 0 0 2 2 -
4 0 - 1 2 0 3 2 2 2

5 0 - 2 4 0 2 5 5 2
6 1 10 1 1 0 8 7 7 5

7 0 - 3 2 0 1 10 15 7
8 0 - 1 3 0 6 11 11 15
9 0 - 1 2 0 3 17 17 11
10| O - - - 0 2 20 20 17
11 0 - - - 0 - 22 22 20
121 0 - - - 0 - - - 22

Table 1.1: Example of RTL behavior of the MAC circuit of Figure 1.2.

in filters and vector arithmetic [110]. Fig. 1.2 illustrates a pipelined implementation of a
MAC circuit: inX and inY are the input values to be multiplied, inD forces the accumulator
register to be preset to the value of inB, inS controls the shift operation, and, finally, regZ
is the output representing the sequence of indexed partial sums. The block diagram of
the MAC can be decomposed in three sub-circuits and each of them can be designed as a
separate RTL module. The sequential behavior of this circuit is captured by the following
equations, written in “pseudo-HDL” with » € IN denoting the timestamp:

regMy+1 = regX,-regly
regAny1 = regCy+reghy,

regC, +regM, ifregD=0
regCpy1 = i
regBy ifregD=1
regZ,+1 = shift(regAn,regSn)
Table 1.1 illustrates a possible RTL behavior of the MAC circuit spanning 12 clock cycles.

The performance of the circuit is dictated by the delay of the combinational logic of its

slowest component, which, in this case, is likely to be the multiplier.]

CHAPTER 1. INTRODUCTION 6

The key point in RTL design is the separation of the design and validation of the func-
tional behavior of the system from the analysis and optimization of its performance. The
longest combinational path inside a module (critical path) dictates the minimum clock pe-
riod ; that makes it operate correctly. Therefore, given a target period y for the nominal
clock signal, the task of designing a large digital circuit can be decomposed in sub-tasks
aimed to design smaller RTL modules such that y; < y for each module i. The modules
can be specified, simulated, implemented, and verified independently from each other based
only on the desired input/output functionality and the expected value of y. The separation
of functional design from performance analysis consists of the following: a functionally
correct design is obtained by simply assembling all the modules, while its speed is given
by the slowest module. In other words, once all modules are composed, the overall circuit
works correctly as far as it is running with a clock signal having a period ¥ > max; {;}.
The effectiveness of this strategy is based on the assumption that the delay of any path con-
necting two modules (inter-module delay) is negligible, or at most comparable, to the delay
of the combinational paths inside the slowest module in the system (intra-module delay).
This has been the case for thirty years of progression of semiconductor process technolo-
gies as average interconnect inter-module delays have remained insignificant with respect
to logic gate delays. Each new process generation has challenged designers to integrate
twice the number of transistors running at twice the speed of the previous one, and design-
ers have successfully done so by relying on the simplicity of the synchronous paradigm to
build ever more powerful integrated circuits.

The other advantages of the synchronous paradigm mentioned above also translate in
the hardware design environment. In particular: the design of the circuit as a determinis-
tic concurrent system is simplified (different modules of the same system can be designed
independently and simultaneously by different designers); RTL design is inherently incre-
mental and hierarchical (e.g., portions of the circuit can be redesigned to improve their
performance without touching the rest of the system); the RTL design of a module is in-
dependent from the particular semiconductor technology used to build the circuits; pre-
designed RTL modules can be reused for different projects; and, finally, designers can take
advantage of a rich offering of commercial computer-aided design (CAD) tools, developed

over the last twenty years, for RTL specification, simulation, synthesis, and validation,

CHAPTER 1. INTRODUCTION 7

1.1.2 Synchronous Paradigm and Embedded Software

Synchronous programming languages [16, 17, 99, 100] like ESTEREL, LUSTRE, and
SIGNAL represent powerful instruments for the specification of complex real-time, safety-
critical, embedded control systems (e.g., flight-control systems in flight-by-wire avionics
and anti-skidding or anti-collision equipment in automotive electronics), which are becom-
ing pervasive in today’s society. Designers of such systems can rely on the solid mathemat-
ical foundation of synchronous languages to specify and formally validate their designs.
They can also use the compilers and code generators that have been developed over the
last thirteen years to compile these concurrent programs into embedded software code like
executable C or JAVA.

Synchronous languages combine the simplicity of the synchronous hypothesis with the
power of deterministic concurrency in functional specification. In doing so, they have their
foundation in the synchronous paradigm, which guarantees a common formal semantics.
Their shared synchronous programming model can be expressed by the following “pseudo-

mathematical” statements [13, 15] 3:

P = R®
Al = (R]/\Rz)m

where P, P, P> denote synchronous programs, R, R}, R denote the sets of all the possible
reactions of the corresponding programs, and the superscript @ indicates non-terminating
iterations. The first expression captures the essence of the synchronous paradigm: a syn-
chronous program P evolves according to an infinite sequence of atomic reactions. The
second expression denotes the parallel composition of two components as the conjunction
of the reactions for each component. In other words, components communicate via shared
variables, whose value they must agree upon at each reaction. Hence, parallel composition
via conjunction of reactions implies that communication among components is performed
via instantaneous broadcast.

Although they share a common mathematical semantics, synchronous languages inter-

pret the synchronous paradigm slightly differently as each language targets its own distinc-

3 In [15), Benveniste et. al discuss how this pseudo-mathematical formulation captures also the composi-
tion of block diagrams in control engineering as well as the synchronous product of automata.

CHAPTER 1. INTRODUCTION

initialize memory elements;
for each input event do
compute outputs;
update memory elements;

end;

initialize memory elements;
loop each clock tick

read inputs;

compute outputs,;

update memory elements;

end;

Figure 1.3: Schemes of synchronous execution [10].

tive application area: LUSTRE and ESTEREL follow a strictly synchronous approach in their
focus on computation-dominated and control-dominated systems, respectively; SIGNAL is
a multi-clock language targeting open systems, i.e. systems where each component must
be designed without knowing the details of its operational environment, including the ac-
tivity of the other components. In a strictly synchronous model, each variable in the system
presents a value at each reaction. This is, for instance, the model for synchronous hardware
discussed in the previous section. In a multi-clock synchronous model some variables may
be absent at certain reactions. This feature is useful when modeling open systems because
it allows us to represent the fact that some components are active while others are silent
and synchronization occurs only occasionally. Being a synchronous language, SIGNAL en-
codes the absence of a variable with the special symbol L, thereby providing designers with
the ability to write programs where decisions based on absence can also be made (another

distinctive feature of the synchronous paradigm).

Figure 1.3 shows two typical synchronous execution schemes: event-driven on the left
and sample-driven on the right [10]. The bodies of the two loops are examples of atomic
reactions: at each reaction, a program sequentially reads input variables, computes output
variables and updates its internal register. Moreover, all processes in the system do so
concurrently and simultaneously. The execution is then repeated for the next reaction.
Data computation (within a reaction) and data communication (across reactions) do not
overlap. Clearly, the model of computation of a synchronous program is equivalent to the

one of the RTL sequential module illustrated in Figure 1.1. Embedded-software engineers

CHAPTER 1. INTRODUCTION 9

write complex synchronous programs by composing simpler programs having the structure
of Figure 1.3 very much in the same way as digital-hardware engineers design complex
circuits by assembling simpler RTL modules 4,

The advantages of the synchronous paradigm naturally translate into synchronous pro-
gramming. In particular [10, 15, 100], the design of a real-time embedded system as a
deterministic concurrent system is simplified (synchronous programs are concurrent and
deterministic, differently from parallel languages which are based on asynchronous execu-
tion schemes where the competition of different processes for the same resource is resolved
nondeterministically); synchronous programming is inherently modular; time and function-
ality are separated (the compiler takes care of processing functional concurrency to derive
embedded code, thereby allowing critical applications to be deployed without the need for
any operating system scheduler); synchronous languages make formal verification of pro-
grams feasible (the synchronous parallel composition greatly reduces the state-explosion
problem, compared to the asynchronous interleaving approach to concurrency); and, fi-
nally, although synchronous languages have been around for only thirteen years, there is
already a substantial amount of industrial offering in terms of tools and design environ-
ments.

In summary, synchronous languages are further evidence of the success of the syn-
chronous paradigm. In the words of Benveniste et. al.: “the paradigm of synchrony has

emerged as an engineer-friendly design method based on mathematically sound tools” [15].

1.1.3 The Crisis of the Synchronous Paradigm

If the crisis of a paradigm begins with its blurring, the synchronous paradigm may
soon be facing one, paradoxically in application areas where it has been successful so far:
integrated circuit design and embedded software development.

In general, while the synchronous hypothesis strongly simplifies system specification,
the problem of deriving a correct and efficient physical implementation from it still remains.
The difficulty of this problem grows dramatically when the final implementation has a

4Synchronous parallel composition may suffer from the combinational cycle problem, i.e. the creation of
cyclic instantaneous dependency between variables. In hardware design this may occur during the composi-
tion of Mealy machines. A discussion of the various methods to handle this issue can be found in [15].

CHAPTER 1. INTRODUCTION 10

distributed nature that poorly matches the synchronous hypothesis due to large variance in
computation and communication times and to the challenge of maintaining a global notion
of time.

This is increasingly the case for many important classes of embedded software ap-
plications in avionics, automotive electronics, and industrial-plant control where multiple
processing elements operating at different clock frequencies are distributed on an extended
area and are connected via communication media such as busses (e.g., CAN for automo-
tive applications, ARINC for avionics, and Ethernet for industrial automation) or serial
links [10, 14].

And it is also the case for integrated circuit design since the advent of nanometer tech-
nologies: as hundreds of millions of transistors can be integrated on a single die, the elec-
tronic chip becomes a distributed system with interconnect delays that are not only up to
an order of magnitude larger than the switching delays of the logic gates but also extremely
difficult to estimate in advance [39].

Hence, the crisis of the synchronous paradigm starts as the consequence of a spreading
gap between the synchronous hypothesis of the specification and the distributed reality of
the implementation. On one side, to assume instantaneous communication via broadcasting
when it is more likely that the concurrent processes will be eventually implemented as
distributed components may lead to poor design specifications. On the other side, even
if it is still possible to take a synchronous specification and enforce a synchronous design
style on the distributed implementation, the final result may likely be a system that either
underperforms or performs wasting too many resources: in both cases a suboptimal design.

But has this crisis really started? After all, the large majority of today’s digital chips
are still synchronous circuits controlled by a single global clock. And the synchronous
paradigm continues to play a fundamental role in the development of embedded systems
not only through the adoption of synchronous languages but also with the increasing suc-
cess of design environments like SIMULINK® & STATEFLOW® [162, 170], which largely
benefit from the simplicity of the synchronous hypothesis. Nevertheless it is a fact that the
design of high-performance integrated circuits is becoming increasingly more expensive
and difficult, and that the demand for more formal methods in the design of distributed

embedded systems continues to grow.

CHAPTER 1. INTRODUCTION 11

It may be debatable whether the crisis of the synchronous paradigm started, but it is
clear that it has not ended. The proof is that a new candidate paradigm has not emerged
yet. The present dissertation is an attempt to end this apparent crisis with a compromise.
Being a compromise, it may eventually develop in either of the following directions: as a
confirmation of the synchronous paradigm or as a candidate for a new paradigm.

The thesis presented here is that “correct-by-construction methods combining the ben-
efits of synchronous specification with the efficiency of asynchronous implementation are
the key to design moderately distributed complex systems, i.e. systems composed of tightly
interacting distributed concurrent processes.”

The main motivation behind this thesis is the desire to leverage the traditional tools
and practices of synchronous design in the specification and optimization of these systems,
while targeting efficient final implementations that are distributed in nature. I argue that
the synchronous paradigm is still valid for designing systems whose functional correct-
ness depends on the continuous interaction of several concurrent processes that commu-
nicate data more slowly than they process them. These are “moderately distributed” as
opposed to “massively distributed”, or simply distributed, systems where multiple com-
ponents operate mostly in an autonomous fashion and their occasional, if any, interaction
occurs without stringent time constraints. For instance, a system like the World Wide Web
is certainly distributed, but its “correctness” does not depend on the tight interaction of all
its components. Actually, the more independently its components can operate, the higher
is its “performance” as measured by its offering of prompt and reliable services of various
natures.

Instead, the functional correctness and the performance of a one billion transistor system-
on-chip or of a drive-by-wire system continuously depends on the correct behavior of each
distributed component as well as on their interactions. Consequently, communication and
synchronization issues become paramount. Designers of these systems need a sound ap-
proach to handle the notion of global state and time, as well as efficient techniques to
implement robust distributed communication schemes.

While a solution to the first challenge is found in the synchronous paradigm, it is asyn-

chronous mechanisms such as handshake protocols that will provide answers to the second.

CHAPTER 1. INTRODUCTION 12

A third challenge is implicit: the need for design methods that can serve as a bridge
between these two worlds. These methods must be correct-by-construction due to the
high complexity of the systems being designed and the critical nature (business-critical,
safety-critical) of their applications. Correct-by-construction methods formally guarantee
the preservation of essential system properties during any successive refinement step of the
design, from the original specification to the final implementation.

The main contribution of this dissertation—Latency-Insensitive Design—includes both
a formalization of these ideas (the theory of latency-insensitive protocols) and an applica-
tion to the case of integrated circuit design with nanometer technologies (the correct-by-
construction latency-insensitive design methodology). In the future, thanks to the general-
ity of its principles, Latency-Insensitive Design can possibly be applied to other research
areas, like distributed deployment of embedded software.

1.2 Outline of the Dissertation

This dissertation is organized as follows:

In Chapter 2 I describe the background scenario that motivated my research work and
the principles that guided my endeavor. I explain how, as it enters the realm of nanome-
ter process technologies, the semiconductor industry is facing an exacerbation of two
problems—productivity gap and timing-closure—which dramatically increase the com-
plexity of designing high-performance integrated circuits. I argue that to manage the com-
plexity of system-on-chip design and to address the challenges of gigascale integration it is
necessary to develop new CAD tools in the context of innovative design methodologies that
have their foundation on the principle of orthogonalization of concerns and the principle
of correct-by-construction design.

The theory of latency-insensitive protocols is first introduced informally and then pre-
sented in formal detail in Chapter 3. Latency-insensitive designs are synchronous, dis-
tributed systems that are built by composing functional sequential modules that exchange
data on communication channels according to a latency-insensitive protocol. The goal of

the protocol is to guarantee that a system composed of functionally correct modules be-

CHAPTER 1. INTRODUCTION 13

haves correctly independently of the channel latencies. At the core of the theory lie the
notions of latency equivalence and patience, which are proved to be compositional prop-
erties. I also explain the relationship between patience and stallability, and introduce the
concepts of relay station and shell process, which are the building blocks used to transform
any synchronous system into a latency-insensitive one. The chapter concludes with a dis-
cussion of related work. Special emphésis is put in the comparison of latency-insensitive
design with asynchronous design as well as between the theory of latency-insensitive pro-
tocol and the theory of desynchronization of synchronous programs.

In Chapter 4 I present a correct-by-construction methodology for latency-insensitive
design of systems-on-chip (SOC) with nanometer technologies. The methodology handles
the increasing impact of global interconnect delays on integrated circuit design and it fa-
cilitates the reuse of intellectual-property (IP) cores for building complex systems-on-chip,
thereby reducing the number of costly iterations in the design process. Specifically, the
application of latency-insensitive design to integrated circuits presents two main advan-
tages towards the productivity-gap and the timing-closure problems: (1) it facilitates the
assembly of pre-designed components (IP cores), that, as long as they are stallable, can
be automatically encapsulated within a shell—which interfaces them with the communica-
tion protocol—without changing their internal structure; and (2) it enables the a-posteriori
automatic pipelining of long wires through the insertion of relay stations on the communi-
cation channels. I give an operational description of the main building blocks of a latency-
insensitive communication architecture (channels, relay stations, and shells) and provide a
reference RTL implementation based on the concept of back-pressure. As a case study, I
report on the RTL latency-insensitive design of PDLX, a microprocessor with out-of-order
and speculative execution.

Performance analysis of latency-insensitive systems is the subject of Chapter 5. I show
how latency-insensitive systems can be modeled using marked graphs, a subclass of Petri
nets, and I provide two constructive models that address different styles of implementa-
tion for the building blocks of a latency-insensitive protocol. Both models can be used
to compute exactly and efficiently the impact of the insertion of relay stations to pipeline
long communication channels between shell processes. Ultimately, the highest process-

ing throughput that can be sustained by a latency-insensitive system depends only on its

CHAPTER 1. INTRODUCTION 14

computation structure. I prove that the combination of the back-pressure mechanism and
the introduction of input queues of length two within the shells is sufficient to support the
maximum sustainable throughput in a system built under the singular assumption of the
stallability of its components.

In Chapter 6 I discuss techniques to optimize the performance of a latency-insensitive
system. Building on the modeling results of the previous chapter, I clarify how the local
insertion of a relay station on any given channel can have a global impact on the overall
system performance. I then describe simple criteria to optimize channel pipelining based
on the analysis of the system topology. To explore alternative design implementations, I de-
fine the concept of recycling, i.e. the combined application of three design transformations:
inserting relay stations, moving them across shell-core pairs, and redrawing the boundaries
of the shells around the cores. To optimize the application of recycling and find the right
balance between communication and computation latencies, I define the cycle balancing
problem and present, in the appendix, an algorithm to solve it. This is the basis for devel-
oping an interactive design framework for SOCs that is centered on the optimization of the
average-case performance of the system, driven by global throughput metrics, as opposed
to the worst-case, driven by the minimization of local critical-path timing violations.

Recycling can be seen also as an extension to system-level design of retiming, a classic
gate-level optimization techniques. In Chapter 7 I discuss the combination of retiming (a
sequential circuit) and recycling (a network of sequential circuits). I provide an analytical
model to guide the simultaneous application of these two techniques. This model identifies
the conditions under which an optimally retimed synchronous circuit can be further acceler-
ated and estimates the amount of the additional performance gain. Furthermore, I present a
simple case study to illustrate how recycling enables high-level design exploration through
the reuse of components from a library of pre-designed IP cores.

I conclude with Chapter 8 by summarizing the main contributions of the present work
and by outlining the most promising avenues for future research. In particular I suggest
that the ideas presented in this dissertation, as well as the general principles behind them,
can be used to guide research efforts in other important areas such as: the deployment of
synchronous embedded software on heterogeneous distributed architectures and the design
of distributed systems that are globally robust and locally flexible.

15

Chapter 2
Background

In which two definitive principles are ultimately given, others will follow.

LECTRONIC system design is undergoing a revolution that is forcing us to change
the traditional engineering practices in order to sustain the outstanding pace of
progress of the information technology industry. The advent of nanometer pro-

cess technologies makes available hundreds of millions of transistors for the design of an
entire system on a single chip (system-on-chip). However, designs at this level of so-
phistication expose issues that were barely visible at previous levels of integration, thus
exacerbating both the design productivity gap and the timing closure problem.

In the present chapter, I describe the background of the dissertation and highlight the
motivations that prompted this research effort and the principles that guided me throughout
my research. The chapter has a threefold structure. In the first two sections I analyze two
critical challenges that the designers of electronic systems are facing today: the complexity
of system-on-chip design and the impact of latency on nanometer technologies. In the third
and final section I argue that the development of design methodologies aimed at assisting
designers to address these challenges must be based on the combined application of two
principles: the principle of orthogonalization of concerns and the principle of correct-by-
construction design.

CHAPTER 2. BACKGROUND 16
2.1 The Complexity of System-on-Chip Design

“I tried to illustrate this number, ten to the eighteenth, and I've used raindrops falling
on California. E.O. Wilson, a noted Harvard biologist and expert on ants, estimates that
the number of ants in the world is between ten 1o the sixteenth and ten to the seventeenth.
So for years I used that. Now each ant has to carry ten to a hundred transistors.” These are
the words used by INTEL® co-founder, Gordon Moore, during his keynote address at the
50th anniversary of the International Solid-State Circuits Conference while commenting on
the estimated number of transistors produced during the year 2002 by the semiconductor
industry [174].

Figure 2.1, taken from [173], shows the growth in the estimated number of transistors
shipped each year, a growth by the factor of nearly eight orders of magnitude over the last
thirty years. This translates into an average compound annual growth of 78%, including
several years during the 1970s and 1980s when it exceeded 100%. Fueling this amazing
growth is the exponential growth in the number of transistors per integrated circuit, which
has been doubling roughly every two years. This phenomenon is now widely known as
Moore’s law, from a 1965 paper [172] in which Moore made the empirical observation
that the number of components on semiconductor chips with lowest per-component cost
doubles roughly every twelve months, and he predicted that the trend would continue for
at least another ten years. In truth, the trend has lasted up to the present and it is now
expected to last for at least another decade, thus enabling the integration of more than one
billion transistors on a single die before the end of this decade [117]. In the meantime, the
semiconductor industry has gone from nothing to become an industry with $200 billion in
annual revenue and supporting a trillion-dollar electronics industry [173].

Ironically, however, as it enters the realm of nanometer technology processes 1, this
industry is in serious risk of “hurting itself” even before it reaches the physical barrier
of atomic dimension. As discussed in the following pages, major challenges such as
the complexity of designing a system-on-chip with a billion transistors and the impact of

interconnect delay threaten the outstanding pace of technology progress that has shaped the

INanometer technologies refer to processes at the 90nm technology node and below [117]. These are also
referred to as deep sub-micron (DSM) technology processes.

CHAPTER 2. BACKGROUND 17

Units
1018 —

1077
1013
1015

104 f
10'3 /

1012 /

10" /

109

g

10° T T R I I I T R R B R R T T T TR T B

'68 ‘70 '72 74 "76 78 80 '82 '84 '86 ‘88 '90 '92 '94 ‘96 '98 "00°02F

Source: Dataquest/Intel

Figure 2.1: Transistors shipped per year [173].

semiconductor industry as no other before.

2.1.1 The Design Productivity Gap

Time-to-market pressure, design complexity and cost of ownership for masks are driv-
ing the electronics industry towards more disciplined design styles that favor design re-use
and correct-the-first-time implementations. However, traditional computer-aided design
(CAD) tool flows are still inadequate to provide support to reach these goals. In [219],
Spirakis uses data collected at INTEL® overa period of seven years (1996-2003) to draw
the following picture:

e design complexity has grown by a factor of ten: the number of transistors integrated

on a single chip have increased from ten million to one hundred million;

o the number of lines of register-transfer level (RTL) specification has grown from 400

thousand to one million;

CHAPTER 2. BACKGROUND 18

e the number of pre-silicon design bugs has grown from 500 to eight thousand,;
e the team of engineers working on the design validation has doubled in size;

e the slowness of the signal integrity convergence is indicated by the many project
months it takes, while more than a thousand RTL lines are modified to enable design

progress.

Spirakis’ conclusion is clear: “all of the above clearly indicate that the design tools and
methodologies have not progressed in their capacity and efficiency as fast as the design
complexity has—and thus have become the bottleneck to the growth of the VLSI market”.

The phenomenon of CAD tools and methodologies lagging behind the capabilities of-
fered by the continuous progress of Moore’s law is commonly referred to as the design
productivity gap. The 2001 Technology Roadmap for Semiconductors confirmed the grav-
ity of the situation reporting that the available raw transistor count increases by 58% per
year, while the designers’ capability to design them grows by only 21% per year [210].
Consequently, “the cost of designing a transistor increases exponentially relative to the
cost of the raw transistor” [123].

The main cause of this problem is that CAD tool flows are built as a juxtaposition of in-
dependently conceived stages. Each stage manipulates a representation of the final design,
applying certain transformations to it before it goes through the next stage. The exchange
of information between stages is based on standard data formats where functional specifica-
tion, structural information and performance-related annotation are intertwined. These data
formats are autonomously interpreted by the tools at each stage. The tools have different
purposes (functional manipulation, structural transformation, performance optimization)
and, based on their interpretation of the current status of the design, make decisions with
global effects that can be difficult to reverse. As a consequence, numerous time-consuming
iterations between subsequent stages of the design flow are often necessary. For instance,
due to the increasing impact of second-order physical effects in nanometer technologies,
designers are forced to iterate many times between HDL specification and layout, since
logic synthesis uses statistical delay models that badly estimate the impact of post-layout

wire load capacitance and since the netlist lack of structure prevents manual intervention

CHAPTER 2. BACKGROUND 19

on the layout (see Section 2.2.3).

The general problem is that the design flow does not include formal methods to propa-
gate (and refine) design constraints from the early stages of the process, where the specifi-
cations are set, down to the last stages where the final implementation is derived. Similarly,
there is a lack of formal methods to uniformly supply the early stages with those tech-
nology and performance parameters that are imposed by the adoption of a given process
technology and the choice of a specific library of pre-design components. The ultimate

consequence is that designers struggle to:
e orient themselves among the various design representations,
o understand the tools’ combined behavior, and

e track the evolution of their design.

2.1.2 Intellectual Property (IP) Reuse

As the consumer demand for ever more sophisticated electronic products continues to
grow, the effective reuse of existing intellectual property design modules (aka IP cores) is
commonly perceived as essential to bridge the design productivity gap and allow the com-
pletion of a reliable design within the tight constraints of time-to-market. Originally, IP
cores were mostly functional blocks built during previous design generations within the
same company. Today, more and more frequently IPs are optimized modules marketed as
off-the-shelf components by specialized vendors. System-on-chip (SOC) and system-in-
package (SIP) designs that incorporate building blocks from multiple sources are supplant-
ing in-house, single-source chip designs [81].

According to the 2003 International Technology Roadmap for Semiconductors (ITRS),
reusable, high-level, functional IP blocks offer the potential for productivity gains estimated
to be at least of 200% [117]. Hence, it is not surprising that many semiconductor compa-
nies share the desire to broaden IP reuse and openly complain about the poor performance
of the electronic design automation (EDA) companies in meeting this challenge [189]. In
fact, event though design reuse has been set as a requirement in the last several editions

of the ITRS, it has yet to permeate the system design process. It is perceived, however, to

CHAPTER 2. BACKGROUND 20

be a critical requirement for the successful transition from the 90nm to the 65nm technol-
ogy [117].

An IP core must be both flexible to collaborate with other modules within different
environments, and independent from the particular details of one among many possible
implementations. The prerequisite for an easy trade, reuse, and assembly of IP cores is the
capability of assembling pre-designed components with little or no effort. The consequent
challenge is the ability of addressing the communication and synchronization issues that

naturally arise while assembling pre-designed components.

2.2 The Impact of Latency on Nanometer Design

This section looks at the reverse side of the coin, namely how nanometer technologies
are forcing the semiconductor industry to experience a paradigm shift from computation-
to communication-bound design, where the number of transistors that a signal can reach
in a clock cycle—not the number that designers can integrate on a chip—drives the design
process. In particular, it is the impact of interconnect delay, which grows with each process
generation, that challenges both well-established chip architectures and commonly adopted

design methodologies.

2.2.1 From Computation- to Communication-Bound Design

According to the 2001 Technology Roadmap for Semiconductors, the historical half-
pitch technology gap between microprocessors/ASIC chips and DRAM will disappear by
the year 2005 [4]. As the semiconductor industry proceeds into nanometer technolo-
gies, the 2002 130nm microprocessor half-pitch will shrink to the projected 32nm in 2013,
thus allowing the integration of more than one billion transistors on a single die. At the
same time, the on-chip local clock frequency is predicted to rise from today’s 1 — 2Ghz to
19— 20Ghz. The “interconnect problem”, however, threatens to become an impassable
roadblock.

Meind! has explained how, during the past decade, interconnects have replaced tran-

sistors as the dominant determiner of chip performance by imposing primary limits on

CHAPTER 2. BACKGROUND 21

]| BAt

(1)

Figure 2.2: Local wires scale in length; global wires do not [112].

latency, energy dissipation, signal integrity and design productivity for gigascale integra-
tion (GSI) [167]. Despite the increase in number of metal layers and in aspect ratio, the
resistance-capacitance (RC) delay of an average metal line with constant length is get-
ting worse with each process generation [20, 74]. The current migration from aluminum
to copper metallization is compensating this trend by reducing the interconnect resistiv-
ity. The introduction of low-k dielectric insulators may also alleviate the problem, but
these one-time improvements will not suffice in the long run as feature size continues to
shrink [19, 87]. The increasing RC delays, combined with the increases in operating fre-
quency, die size, and average interconnect length, cause interconnect delay to become the
largest fraction of the clock cycle time [19].

In 1997 COMPUTER magazine published a study by Matzke containing a gloomy fore-
cast of how on-chip interconnect latency (predicted to soon measure in the tens of clock
cycles) will hamper Moore’s Law [163]. Since then, researchers have been fiercely debat-
ing about the real magnitude of the wire delay impact and about the consequent need of
revolutionizing established design methodologies already challenged by the timing-closure
problem. The core of the debate has been on the scaling properties of interconnect wires

relative to gate scaling [183]. On one side, some researchers share an optimistic view based

CHAPTER 2. BACKGROUND 22

on the fact that wires that scale in length together with gate lengths offer approximately a
constant resistance and a falling capacitance. Hence, as long as a modular design approach
is adopted and functional modules of up to 50,000 gates are treated as the main compo-
nents, these researchers’ position is that the current design flows are capable of sustaining
the challenges of nanometer design [223, 224, 225, 226]. On the other side of the debate,
researchers argue that the previous argument does not account for the presence in SOCs
of many “global” wires that cannot scale in length because they need to span across mul-
tiple modules to connect distant gates [112]. As illustrated in Figure 2.2, which is taken
from [112], the impact of technology scaling on devices, local wires and global wires is
not the same: a newer technology process enables an higher level of integration as more
(and smaller) devices and modules are accommodated on the chip. Similarly, local wires
connecting devices within a module shrink nicely with the module. However, global wires
connect devices located in different modules do not shrink because they need to span sig-
nificant portions of the die. In an updated study [113] the same authors report that local and
global wires are degrading relative to gates, by one and three orders of magnitude respec-
tively, although they argue that a careful use of simple buffering circuits (a single inverter
or two back-to-back inverters) can reduce these degradations to a factor of 40x and 2 — 3x
(over nine generations) respectively. The key observation behind these numbers is that the
increase of wire aspect ratios caps at 2.2 while their resistance continues to grow quickly
under scaling. The need for extensive buffering is confirmed in another study [206, 207],
where projections of historical scaling trends lead to the disturbing prediction that within a
few process generations functional modules will have even 70% percent of their cell count
dedicated to interconnect buffering.

As Table 2.1 illustrates, the intrinsic interconnect delay of a 1-mm length wire for a
35-nm technology will be longer than the transistor delay by two orders of magnitude [74].
Similar results have been presented in [167]. Matzke’s prediction is that with nanome-
ter technologies a signal will need more than ten clock cycles to traverse the entire chip
area [163]. Agarwal et al. argue that, even under the best conditions, the latency to trans-
mit a signal across the chip in a top-level metal wire will vary between 12 and 32 cycles,
depending on the clock rate, while only a fraction of the chip area between 0.4% and 1.4%

will be reachable in one clock cycle [3]. In fact, while the number of gates reachable in

CHAPTER 2. BACKGROUND 23

Technology MOSFET | Min. scaled, | Reverse scaled, | Ratio of wire
switching | 1mm wire 1mm wire size to minimum
delay intrinsic delay | intrinsic delay | lithographic size

10an(A1,Si0>) ~20ps | ~5ps ~ 5ps 1

0.1um(41,8i0,) ~ 5ps ~ 30ps ~ 5ps 1.5

35nm(Cu,low—x) | ~2.5ps | ~250ps ~ 5ps 4.5

Table 2.1: Comparing interconnect and transistor scaling properties [74].

a cycle will not change significantly and the on-chip bandwidth will continue to grow, the
percentage of the die reachable within one clock cycle is inexorably and dramatically de-
creasing: “we are reaching or have reached a point where more gates can fit on a chip than
can communicate in one cycle” [112]. Hence, instead of being traditionally bound by the
number of transistors that can be integrated on a single die (computation bound), designs
will be bound by the amount of state and logic that can be reached within the required
number of clock cycles (communication bound). The impact of these trends on system

architectures and design methodologies are the subject of the next sections.

2.2.2 The Role of Latency in the Design of the One Billion Transistor

Microprocessor

In the case of microprocessors, the evolution towards communication-bound designs
implies that the amount of state reachable in a clock cycle, and not the number of transis-
tors, becomes the major factor limiting the growth of instruction throughput (IPC). Further-
more, the increasing interconnect latency will particular penalize current memory-oriented
microprocessor architectures that strongly rely on the assumption of low-latency commu-
nication with structures such as caches, register files and rename/reorder tables. Recent
studies employing cache delay analysis tools (that account for cache parameters as well as
technology generation figures) predict that in a 35#m design running at 10Ghz, accessing
even a 4K B level-one cache will require 3 clock cycles [3]. In fact, this trend is already

CHAPTER 2. BACKGROUND 24

started, as the architects of the ALPHA 21264 adopted clustered functional units (with a
one-cycle penalty for communicating results between them) and a partitioned register file
to keep offering high computational bandwidth despite larger wire delays [233]. Similarly,
in its hyper-pipelined NerBurst® micro-architecture, the INTEL® PENTIUM®4 mi-
croprocessor presents two so-called drive stages that are purely dedicated to instruction
distribution and data movement [91, 111, 201].

Exposing interconnect latency to the micro-architecture and possibly to the instruction-
set architecture (ISA) level will be key to control the system performance. Several research
teams have already started investigating this idea [112, 130, 135, 157, 178, 241]. A gen-
eral trend is the move towards more parallel architecture. Indeed, is likely that the one-
billion transistor microprocessor will be a multi-computer. In [69] Dally and Lacy sketch
the architecture of a “multi-computer chip” to be built using an hypothetical 2009 CMOS
processor-DRAM technology. About 20% of the area of this fine-grain machine is devoted
to a number of simple, powerful processors. The multiprocessor is divided in 64 tiles (each
containing a processor and a memory), where the round-trip memory-processor intra-tile
communication latency is 2 cycles (1ns) while the worst case latency for a communication
corner-to-corner with the most distant memory is 56 cycles. In particular, Dally and Lacy

point out that:
1. on-chip communication bandwidth is not an issue due to the many wiring tracks;

2. unlike modern multiprocessors with their all-or-nothing locality, latency varies con-

tinuously with distance;

3. latency is controlled by placing data near their point of use, not just at their point of

use.

2.2.3 The Timing-Closure Problem

The traditional design flow for digital integrated circuits design is centered around two
independent steps that are performed with different kinds of computer-aided design (CAD)

CHAPTER 2. BACKGROUND 25

tools 2:

1. logic synthesis [25, 24, 168] tools automatically derive a netlist of standard cells from
a functional specification written in a hardware-description language (HDL), such as
VERILOG [234] or VHDL [5] (RTL design);

2. place & route tools [202, 214] automatically produce the final layout by processing
the standard-cell netlist (physical design).

As technology scaling proceeds in the DSM realm, the effectiveness of this well-established
design flow continues to decrease due to the exacerbation of the timing-closure problem:

the designers of semi-custom integrated circuits are forced to iterate many times between
HDL and layout, because (1) the two steps are performed independently, (2) logic syn-
thesis uses statistical delay models that badly estimate the impact of post-layout wire load
capacitance, and (3) the netlist’s lack of structure prevents manual intervention on the lay-
out [58, 68, 126, 188]. Furthermore, HDLs allow poor control on physical design and the
output of logic synthesis is not robust with respect to small variations in the HDL specifi-
cation. Consequently, it is very hard to develop new CAD tools that are able to make the

two steps interact effectively and converge quickly to an optimal solution.

2.2.4 Coping with Volatile Latency

High-end microprocessor designers have traditionally anticipated the challenges that
ASIC [51, 216] designers will face with the next process generation. As discussed in Sec-
tion 2.2.2, latency is increasingly affecting the design of state-of-the-art microprocessors
and will be among the main forces shaping the billion-transistor computer architecture [29]
expected before the end of this decade. Hence, it is not hard to predict that interconnect
latency is destined to have a significant impact also on the design of the communication
architecture among the modules of a systems-on-chip. This impact translates into a major
repercussion on the effectiveness of the current design methodologies and CAD tools. In

fact, it is very difficult to estimate the actual interconnect latency at the early stages of

2For an industrial perspective on the current IC design flow, including a more detailed discussion on the
various steps and the future challenges for the EDA industry see [46]

CHAPTER 2. BACKGROUND 26

the design process because it is affected by several phenomena such as process variations,
cross-talk, and power-supply drop variations. Furthermore, their combined effect may vary
on different chip regions and across different periods during chip operation. Hence, to find
the exact delay value for a global wire may often be impossible and to rely on conservative
estimations to establish value intervals may likely lead to sub-optimal designs.

Recently proposed design flows ad\}ocating new CAD tools that couple logic synthesis
and physical design will suffer from the impracticality of accurately estimating latency of
global wires [39]. Indeed, logic synthesis tools are presently suffering from a number of
drawbacks:

e logic synthesis tools are inherently unstable: small variations on the HDL input spec-
ification (that the designers may have to make to fix a slow path) lead to major vari-

ations on the output netlist and, consequently, on the final layout;

e logic synthesis tools are based on the synchronous design methodology: this method-
ology is the foundation of the design flows for the majority of commercial chips to-
day, but, if left unchanged, will lead to an exacerbation of the timing closure problem

for tomorrow’s design flows.

The main assumption in synchronous design is that the delay of each combinational path
(i.e. each signal path leaving a latch and traversing only combinational logic and wires to
reach another latch) is smaller than the clock period of the system. Hence, the slowest
combinational path (critical path) dictates the maximum operating frequency for the sys-
tem. However, it is often the case that the desired operating frequency is fixed as a design
constraint. Then, once the final layout is derived, every path having a delay longer than the
desired clock period simply represents a design exception that needs to be fixed. There
are different ways to fix all these exceptions: from wire buffering and transistor re-sizing to
re-routing wires, re-placing modules and even re-designing entire portions of the system.
Re-placing, re-routing and re-designing clearly do not help alleviating the timing closure
problem. Buffering is an efficient technique, but it carries precise limitations because there
is a maximum number of buffers that can be inserted on a given wire in order to reduce

its delay [7, 192]. Then, as last resort, designers are often forced to break long wires by

CHAPTER 2. BACKGROUND 27

inserting storage elements (latches, flip-flops, ...) [132, 193], similarly to the insertion of
new stages in a pipeline. This operation trades off fixing a wire exception with increasing
its latency by one or more clock cycles and will become pervasive in nanometer designs,
where most global wires will be heavily pipelined to begin with (wire pipelining). Again,
confirmation of this fact can be found in some recent high-performance microprocessor

designs:

e in [164], McInemney ef al. report that about 85% of the 13,000 top-level nets of the
INTEL® 1TANUM® microprocessor require one or more repeaters of some type
to meet the frequency goal for the chip tape out and that many of the nets “require

solutions that involve clocked and enabled elements such as latches and flip-flops”;

e in [220], Sprangle and Carmean report a personal communication with Sager on
wire pipelining saying that “there are plenty of places in the InTEL® PenTiUM®4

where the wires were pipelined”.

Latency, measured in clock cycles, between the various components of a SOC varies
considerably based on their reciprocal distances, even without considering the need of in-
creasing it to further pipeline long global wires. Inserting storage elements (stateful re-
peaters) has generally a different impact on the surrounding control logic in comparison to
inserting transistor buffers (stateless repeater). If the interface logic of two communication
components has been designed assuming a certain latency, then it needs to be redesigned
to account for additional pipeline stages, with serious consequences on design productiv-
ity. In [209], Scheffer list a series of important issues raised by the insertion of stateful
repeaters:

e inserting, moving and removing stateful repeaters are delicate actions that engineers
must perform manually at the layout level; further they have to track these changes at
RTL level (by modifying the HDL code) to be able to continue to validate the design;

e each insertion/removal of stateful repeaters invalidates the existing simulation vectors
(and expected results);

CHAPTER 2. BACKGROUND 28

e proving that the design remains correct after performing interconnect pipelining is
difficult also because tools for functional equivalence checking cannot be applied

across this design transformation;

e designing RTL and deriving the layout are no longer independent stages of the design

flow.

According to Saxena et al., the scenario can only get worse in the future as “repeaters,
which are already a problem at the full-chip level, will become critical at the block level
also” [207]. Still, they point out that mispredicted cycle latency of global interconnects
is more damaging than such mispredictions within blocks due to the major impact on the
overall chip assembly. Although improved estimation techniques may be developed in the
future, the designers of the microarchitecture will have to deal with multi-cycle estimation
errors for global communication paths. They will certainly dedicate the best resources
(top metal layers, repeaters) to the most critical paths, but routing constraints will prevent
them from guaranteeing a certain cycle-latency for all the global paths. Therefore, there
is a need to develop new design methodologies that (1) guarantee the functional correct-
ness of the micro-architecture design while supporting cycle latency ranges for interde-
pendent sets of global interconnects and (2) help analyze the sensitivity of its performance
to variations within these ranges. In the words of Saxena et al. “this will allow intel-
ligent late stage correct-by-construction cycle-latency optimizations for improved perfor-
mance without invalidating earlier microarchitectural performance simulations or machine
correctness, thus avoiding downstream surprises because of infeasible cycle latency con-
straints” [207]. ‘

2.3 The Combination of Two Design Principles

To manage the complexity of system-level design and to address the challenges of gi-
gascale integration it is necessary to develop new CAD tools in the context of innovative
design methodologies. The principle of orthogonalization of concerns and the principle of

correct-by-construction design will guide us in this process.

CHAPTER 2. BACKGROUND 29

The principle of orthogonalization of concerns advocates the separation/decomposition
of the various aspects of design along orthogonal axes to allow a more effective exploration
of alternative solutions. This can be naturally applied at different stages of the design

process as well as at different levels of granularity. Examples of orthogonal axes are:

e specification vs. implementation: the definition of the design specification versus the

derivation of a particular implementation (among the many possible ones);

e computation vs. communication: the specification of the computational features of
the design components versus the specification of the communication architecture

among the components;

e functionality vs. performance: the design and validation of the functional behavior of

a possible implementation versus the analysis and tuning of its performance metrics.

The principle of correct-by-construction design states that a complex system is built
through a (possibly hierarchical) sequence of precise steps during which simpler compo-
nents are assembled to derive more complex ones whose key properties are guaranteed to
be correct by the very nature of the assembling step. The process of deriving the final im-
plementation from the original specification becomes a sequence of refinement steps from
higher levels of abstraction to more and more detailed ones. The design representation
grows at each level of the design process as alternative implementation solutions are con-
sidered and decisions are made. The difference from common top-down design flows is
that each refinement step is performed according to formal guidelines that guarantee the
preservation of key properties of the design, while designers are free to explore alternative
solutions to optimize it under other criteria. Naturally, to continuously preserve certain
key properties may restrict the searchable solution space. But this is precisely the point as
correct-by-construction design means trading off optimality for robustness for those vari-
ables that have a dimension that is impractical, if not impossible, to explore.

Observe that the formalization of the refinement steps is made feasible by the possi-
bility of focusing on each design property separately. The importance of combining the
application of the two principles naturally follows. A testimony for the effectiveness of this

approach is the theory of latency-insensitive protocols, which is the subject of Chapter 3.

CHAPTER 2. BACKGROUND

30

31

Chapter 3
Theory of Latency-Insensitive Protocols

In which patience, once again, manifests itself as the most precious virtue.

HE theory of latency-insensitive protocols represents the foundation of a correct-
by-construction methodology to design complex systems by assembling pre-
designed components. Latency-insensitive designs are synchronous, distributed

systems and are built by composing functional modules that exchange data on commu-
nication channels according to a latency-insensitive protocol. The protocol works on the
assumption that the modules are stallable, a weak condition to ask them to obey. The
goal of the protocol is to guarantee that a system composed of functionally correct mod-
ules behaves correctly independently of the channel latencies. This allows increasing the
robustness of a design implementation, because any delay variations of a channel can be
“recovered” by changing the channel latency while the overall system functionality re-
mains unaffected. As a consequence, an important application of the proposed theory is
the latency-insensitive design methodology to build systems-on-chip with nanometer tech-
nologies. This application is the subject of Chapter 4.

I presented the first results of the theory of latency-insensitive protocols at the 11th
International Conference on Computer-Aided Verification in July 1999 [36]. A more com-
plete exposition of the theory was published on the September 2001 issue of the IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems [37].

CHAPTER 3. THEORY OF LATENCY-INSENSITIVE PROTOCOLS 32

3.1 An Informal Presentation

The principle of correct-by-construction design and the principle of orthogonalization
of concerns are the two pillars of the theory of latency-insensitive protocols. Section 2.3
anticipates the critical importance of applying the two principles in a combined effort. The
theoretical results presented in this chapter are a confirmation of this point.

Latency-insensitive protocols are a mechanism to formally separate communication
from computation by specifying a system as a collection of computational processes that
exchange data by means of communication channels. The communication is governed by
an abstract protocol, whose main characteristic is to be insensitive to the latencies of the
channels. The theory may be applied as a rigorous basis to design complex systems by
simply composing pre-designed and verified components so that the composition satisfies,
formally and by construction, the required properties of synchronization and communica-
tion. Also, the theory naturally enables the orthogonalization of the system specification
from the derivation of one among many possible implementations. The designers of a
latency-insensitive system can focus first on specifying the overall system and then on
choosing the best components for the implementation. While doing so they do not need to
worry about communication details such as data synchronization and transmission latency.
The latency-insensitive protocol takes care of these. Further, as the designers explore the
design space and consider alternative implementations for the various parts of the system,
they can rely on the fact that the specific implementation of the latency-insensitive protocol
is automatically generated.

The following sections contain a formal presentation of the theory of latency-insensitive
protocols and the concept of latency-insensitive design. Here, I give an informal summary
of the content of this chapter.

Section 3.2 contains the definitions of latency equivalence and patient processes that lie
at the core of the theory. A latency-insensitive protocol controls the communication among
the components of a patient system, i.e. a system of patient processes. Two systems are
latency equivalent if on every channel they present the same data streams, i.e. the same
ordered sequence of data, but, possibly, with different timing. A synchronous system can

be modeled as a set of processes communicating by exchanging signals on a set of point-

CHAPTER 3. THEORY OF LATENCY-INSENSITIVE PROTOCOLS 33

to-point channels. A patient system is a synchronous system whose functionality depends
only on the order of the events of each signal and not on their exact timing. A latency-
insensitive protocol guarantees that a patient system, if composed of functionally correct
modules, behaves correctly independently from the delays of the channels connecting the
modules.

In Section 3.3 I show that the notions of patience and latency equivalence are composi-

tional by proving the following theorems:
1. the intersection of two patient processes is a patient process (Theorem 3.2);

2. given two pairs of latency-equivalent patient processes, their pairwise intersections

are also latency equivalent (Theorem 3.3);

3. for all pairs of strict processes P;, P» and patient processes Q1, O, if P, is latency
equivalent to Q) and P is latency equivalent to Q> then their pairwise intersections

are latency equivalent (Theorem 3.4).

As a consequence, I derive the major result of the theory: if all processes in a strict sys-
tem are replaced by corresponding latency-equivalent patient processes then the resulting
system is patient and latency equivalent to the original one. Then, I define the notion of
relay station, illustrate its main properties, and I show how the latencies of the communica-
tion channels in a system of patient processes can be adapted through the insertion of relay
stations. A relay station, being a buffer process of unit latency and twofold storage capac-
ity, represents the optimal building block for the construction of patient channels. Patient
channels are the abstraction to model communication media between patient processes.
In particular, they can be used to formalize the design practice of wire pipelining whose
increasing importance is discussed in Section 2.2.4.

In Section 3.4 I discuss first the condition under which a generic strict system can be
transformed into a patient one, i.e. its components must be stallable. Stallability is instru-
mental in order to enable latency-insensitive design because to require the direct design of
patient processes would be too demanding from a practical viewpoint, while stallability is
a weaker condition to ask from functional processes. I also prove that every stallable pro-

cess can be encapsulated into a so-called shell process, which acts as an interface towards

CHAPTER 3. THEORY OF LATENCY-INSENSITIVE PROTOCOLS 34

a latency-insensitive protocol. Then, I delineate how the present theory leads to the notion
of latency-insensitive design methodology, which provides a formal way to orthogonalize
computation and communication. In fact, I can build systems by assembling functional
core processes (which can be arbitrarily complex as far as they satisfy the stalling assump-
tion) and shell processes (which interface the cores with the channels by “speaking” the
latency-insensitive protocol), while knowing that the latency of the communication among
them may vary arbitrarily without affecting the functionality of the system. In other words,
regardless of the number and the complexity of the components, the functionality of the
system is guaranteed in a correct-by-construction fashion. As a specific application, I out-
line the structure of a latency-insensitive design methodology for SOC design, which is the
subject of Chapter 4.

Finally, in Section 3.5 I comment on the relationships between the theory of latency-
insensitive protocols and the work of other researchers in the fields of asynchronous design,
high-level synthesis and theory of desynchronization. The relationships between latency-

insensitive design and retiming are left as the subject of Chapter 7.

3.2 Latency Insensitivity

To develop the theory formally I adopt the tagged-signal model, a denotational frame-
work that was proposed by Lee and Sangiovanni-Vincentelli to represent complex systems

as collections of signals and processes [144].

3.2.1 The Tagged-Signal Model

Given a set of values 1V and a set of tags T, an event is a member of V x 7. A signal
s is a set of events. The set of all N-tuples of signals is denoted SV. A process P is a subset
of SV. A particular N-tuple s € SV satisfies the process if s € P. A N-tuple s that satisfies a
process is called a behavior of the process. Thus, a process is a set of possible behaviors L
A composition of processes (also called a system) {Py,..., Py}, is a new process defined

as the intersection of their behaviors P = NY_, B,. Since processes can be defined over

IFor N > 2, processes may also be viewed as a relation between the N signals ins = (s1,...,5¥).

CHAPTER 3. THEORY OF LATENCY-INSENSITIVE PROTOCOLS 35

different sets of signals, to form the composition it is necessary to extend the set of signals
over which each process is defined to contain all the signals of all processes. Note that the

extension changes the behavior of the processes only formally.

Let J = (j1,-..,/») be an ordered set of integers in the range [1,N]. The projection
of a behavior b = (s1,...,5n) € SV onto S* is proj;(b) = (sj,,-..,sj,). The projection
of a process P C SN onto S* is projs(P) = (s' | 3s € PA projs(s) =§'). A connection
C is a particularly simple process where two (or more) of the signals in the N-tuple are
constrained to be identical: for instance, C(i, j,k) C SN : (s1,...,5n) € C(i, j k) & si =
sj =Sk, with i, j,k € [1,N].

An input to a process P C SV is an externally imposed constraint P; C SV such that
PrN P is the total set of acceptable behaviors. The set of all possible inputs 7 C 5" is
a further characterization of a process. Given a process P, if I = {$"} then the set of
acceptable behaviors is { SV} NP = P and the process does not have input constraints (the
process is closed). Commonly, one considers processes having input signals and output
signals. In this case, given process P, the set of signals can be partitioned into three disjoint
subsets by partitioning the index set as {1,...,N} = JUOUR, where [is the ordered set
of indexes for the input signals of P, O is the ordered set of indexes for the output signals
and R is the ordered set of indexes for the remaining signals (also called irrelevant signals
with respect to P). A process is_functional with respect to (1, O) if for all behaviors b € P
and &’ € P, proji(b) = proji(b’) implies projo(b) = projo(b'). Hence, given a function
F : 8" — 50 a functional process P is completely characterized by the tuple (F,7,0).
A process P is determinate if for any input I’ € I then either |[I'NP| =1 or |[I'NP| =0.

Otherwise, it is non-determinate.

Two events e}, e; are synchronous (e;~e;) when they have the same tag, i.c. ey~e; <
tag(e)) = tag(ez). Two signals s),s2 are synchronous (s1=~s2) when for each event of s;

there is a synchronous event in s, and vice versa, i.e.:
SISy & (‘v’e,- € 51,3e; € 52, e,-zej) A (Vek € 52,3e; € 51, ekzeI)

Therefore, synchronous signals share the tag set. The definitions of two synchronous be-

CHAPTER 3. THEORY OF LATENCY-INSENSITIVE PROTOCOLS 36

tag fo 1 1] 153 1 I5 16 17
w 11011101 0 1 0
P y 0| 22|66]10]10] 14
z o|jo0 (4|0 [8] 4 [12]38
w 1{oj1jojy11]0 1 0
0: x 1|3)s|7|9]mnj13]1s
y 0|2j2]|6|6)10]|10] 14
w 110 11041 0 1 0
R: x 1135|791 |13]15
z o(o|4|0|8]4|[12]38

Figure 3.1: The synchronous system of Example 3.2.1 and its behavior.

haviors b1, b, and two synchronous processes Py, P; naturally follow:

bi=by & Vsi€b1,Vs;€by,si#s), (si=sj)
Pi=P, & VbjeP,Vbjeh, (b;"&:bj)

A stand-alone behavior b is synchronous when b~b. A stand-alone process P is syn-
chronous when P~P. In any behavior of a synchronous system, every signal is synchronous
with every other signal and, equivalently, for each tag a signal has exactly one correspond-
ing event: Vs € b,V € T, (EI!e € s tag(e) = t).
Example The diagram of Figure 3.1 represents the unique behavior of a synchronous
system that is the result of the composition of three processes P,Q, and R. Signal w, a
binary, is shared by all processes, while the remaining signals, integers x,y, and z, are
shared in pairwise manner. In Figure 3.1, the signals are purposely represented by simple
lines and not arrows. In fact, by observing only the event sequences we can not say which
input/output relations exist among the system processes. L]
The definition of asynchrony as used in the literature is vague: some use the term to
indicate any systems that is not synchronous, others are more restrictive. In the tagged-
signal mode, two events e}, e; are asynchronous (e) = ey) if they have different tags, ie.

e1~e, & tag(e)) # tag(es). Two signals 51,52 are asynchronous (s)~=s2) when:

S1285 & (Veiesl Aej € 52 e,-zej)

CHAPTER 3. THEORY OF LATENCY-INSENSITIVE PROTOCOLS 37

tag: |l ||l |ts|ts)r || |ho|m |h2|03]nha|tis] ie| iz]| s

Py Ya: 0 2 2 6 6
Zy: 0 0 4 0
wg: |1 0)| 0 1
Qa: Xa: 1 3 5 7 9

wa: |1 0 1 0 1

Asynchronous signals have disjoint tag sets. The definitions of asynchronous behaviors
by, by and asynchronous processes P, P> follow:

bi~by <& Vs;€b,Vs; € by, s5i~s;

P~P & Vb,-ePl,VbjePz, bizbj

A stand-alone behavior b is asynchronous when b~b. A stand-alone process P is asyn-
chronous when P~P. In a behavior of an asynchronous system, every signal is asyn-
chronous with every other signal and, equivalently, for each tag there is one and only one
event across all signals: V €, ((B!e € U;sitag(e) = t) .
Example The following diagram represents the unique behavior of the asynchronous sys-
tem S, = P,NQ,NR,. Processes P,,0,, and R, communicate by sharing signals (as it is
the case for synchronous systems), but signals do not share tags. L]
In a timed system the set T of tags, also called timestamps, is a totally ordered set. The
ordering among the timestamps of a signal s induces a natural order on the set of events of
s. A functional process is (strictly) causal if two outputs can only differ at timestamps that
(strictly) follow the timestamps when the inputs producing these outputs show a difference.
More formally, if d is a metric on the set SV of N-tuples of signals 2, then a functional
process P = (F,I,O) is causal when

Vsi,sj € sl (d(F(s;),F(s;)) < d(si,s;))

2For instance, in [144] it is considered the Cantor metric d(s;,s;) = sup{%, | si(r) # s;(1),t € T}.

CHAPTER 3. THEORY OF LATENCY-INSENSITIVE PROTOCOLS 38

A functional process P = (F,, O) is strictly causal when

Vs;,s; € SV (d(F(s,-),F(sj)) < d(si,s;))

3.2.2 Informative Events and Stalling Events

A latency-insensitive system is a synchronous timed system whose set of values ¥ is
equal to ZU {1}, where X is the set of informative symbols which are exchanged among
modules and T & X is a special symbol, representing the absence of an informative symbol.
The absence of an informative symbol may result from either lack of valid data to transmit
or back-pressure, i.e. a request to delay a transmission coming back from a down-link
process. From now on, all signals are assumed to be synchronous. The set of timestamps is
assumed to be in one-to-one correspondence with the set IN of natural numbers. An event
is called informative if it has an informative symbol v; as value 3. An event whose value is

a T symbol is said to be a stalling event (or T event) 4.

Definition 3.1 E(s) denotes the set of events of signal s while E,(s) and Eq(s) are respec-
tively the set of informative events and the set of stalling events of s. The k-th event (v, 1)
of a signal s is denoted e(s). I (s) denotes the set of timestamps in signal s, while T,(s) is

the set of timestamps corresponding to informative events.

Processes exchange “useful” data by sending and receiving informative events. Ideally
only informative events should be communicated among processes. However, in a latency-
insensitive system, a process may not have data to output at a given timestamp, thus re-
quiring the output of a stalling event at that timestamp. Alternatively, it may happen that
a down-link process that is not ready to receive new data requests the up-link process to
avoid sending them and, as a consequences, the latter reacts by emitting a stalling event

(back-pressure).

31 use subscripts to distinguish among the different informative symbols of = : 11,12, 13,...
4The role of the T event is similar to the one played by the absence symbol L in the synchronous language
SIGNAL [16]. See also Section 3.5.5

CHAPTER 3. THEORY OF LATENCY-INSENSITIVE PROTOCOLS 39

Definition 3.2 The set of all sequences of elements in £ U {t} is denoted by Zja. The
length of a sequence G is |0 if it is finite, otherwise it is infinity. The empty sequence is

denoted as € and, by definition, |&| = 0. The i-th term of a sequence G is denoted G;.

‘Definition 3.3 Function 6 : S x T? — %4 takes a signal s = {(vo,10),(v1,11),..} and an
ordered pair of timestamps (ti,1}), i < j, and returns a sequence G, ;) € X, Such that (s.t.)
O} (S) = VisVit1s- -1 V) 5. The sequence of values of a signal is denoted ©(s). The infinite
subsequence of values corresponding to an infinite sequence of events, starting from t; is

denoted Oy, . ($)-

Example Ifs= {(thtl)’ (1'2)12)1 (T:t3)’ (12,t4)a (11,t5), (1’16)} then 6:

os) = untuyur
Opuls) = T
Opss)(s) = U
and respectively, |6(s)| = 6, |G ()| = 3, |Ors s)| =1. n

The following filtering operators are defined to manipulate sequences of values.

Definition 3.4 7, : 3 — X* returns a sequence ' = R [0] s.1.

€ otherwise

o = { Olr; 1) () #f Oft; 1) (s)eZ

Definition 3.5 ¥ : X — {1}* returns a sequence ¢’ = F[0] s.1.

= { e (s) O (s)=1

e otherwise

Example Ifo(s)=yutnurT, then Flo(s)) =u 12y and F[o(s)] =11 n
Obviously, |6(s)| = | K [0(s)]| +| Fz[o(s)]|. Latency-insensitive systems are assumed to
have a finite horizon over which informative events appear, i.e., for each signal s there is a

greatest timestamp T € T;(s) which corresponds to the “last” informative event. However,

SNotice that Oy, (s) denotes the value of the event at 7;.
61n this chapter it is assumed: Vs; € T(s),Vt; € T(s), (6 <t; & i < j).

CHAPTER 3. THEORY OF LATENCY-INSENSITIVE PROTOCOLS 40

o(s1)) = uLLBLLHLLWLLHLLRYBTTTTT...
o(52) = YUTLTLTBTTUTLTLTBTTLUTKYTTTTT...

Figure 3.2: A strict signal s; and a stalled signal s;.

to build the present theory, the set of signals of a latency-insensitive system is extended
over an infinite horizon by adding a set of timestamps such that all events with timestamp

greater than T have T values.

Definition 3.6 A signal s is strict if and only if (iff) all informative events precede all
stalling events, i.e., iff there exists ak € N s.t. |Fz[Oyy, 1,1 (5))| = 0 and | F[oy, 1.1 (5)]| = 0.
A signal which is not strict is said to be delayed (or stalled).

Example Figure 3.2 illustrates the sequences associated to two signals presenting 10 in-
formative events each: s; is a strict signal with greatest timestamp equal to 10, while s; is

a stalled signal with greatest timestamp equal to 21.]

3.2.3 Latency Equivalence

Two signals are latency equivalent if they present the same sequence of informative
events, i.e., they are identical except for different delays between two successive informa-

tive events. Formally:

Definition 3.7 Two signals s), s3 are latency equivalent s\ =< 52 iff F[6(s1)] = Fi[0(s2)].

The reference signal s, s of a class of latency-equivalent signals is a strict signal obtained
by assigning the sequence of informative values that characterizes the equivalence class to
the first | % [0(s))]| timestamps.
Example Figure 3.3 reports the sequences associated to three signals that belong to the
same latency-equivalent class: signal s; is also the reference signal of the class.]
Latency-equivalent signals contain the same sequences of informative values, but with
different timestamps. Hence, it is useful to identify their informative events with respect
to the common reference signal: the ordinal of an informative event coincides with its

position in the reference signal.

CHAPTER 3. THEORY OF LATENCY-INSENSITIVE PROTOCOLS 41

os)) = uLuLLBULTTT ...
6() = ULITTUTLLBTYTL T...

6(s3) = uULITULBTULTTT ...

Figure 3.3: Sequences of values of three latency-equivalent signals.

Definition 3.8 The ordinal of an informative event ex = (i, %) € E(s) is defined as
ord(er) = | FilOp4) ()] — 1

Let 5, and s3 be two latency-equivalent signals: two informative events ex(s1) € Ei(s1)
and e)(s2) € E,(s2) are said to be corresponding events iff ord(ex(s1)) = ord(ei(s2)). The
slack between two corresponding events is defined as slack(ex(s1),ei(s2)) = [k—1I.

Hence, if s is strict the ordinal of an informative event coincides with its position on c(s).

Observe that if s, and s, are latency-equivalent signals, then corresponding informative

events in s; and s, have the same ordinals (while they may have different timestamps).
The notion of latency equivalence is extended to behaviors in a component-wise man-

ner.

Definition 3.9 Two behaviors (s1,...,sn) and (s},.. ., sy) are latency equivalent iff Vi (si=
s}). A behavior b= (s1,...,sn) is strict iff every signal s; € b is strict. Every class of
latency-equivalent behaviors contains only one strict behavior: this is called the reference

behavior.

Definition 3.10 Two processes P and P, are latency equivalent, P) = P,, if every behavior
of one is latency equivalent to some behavior of the other. A process P is strict iff every
behavior b € P is strict. Every class of latency-equivalent processes contains only one strict

process: the reference process.

Definition 3.11 4 signal s; is latency dominated by another signal s, sy <t 52, iff 51 =1 52
and Ty < T, with T, =max {¢ |t € T(sx) },k=1,2.

CHAPTER 3. THEORY OF LATENCY-INSENSITIVE PROTOCOLS 42

Example In the example of Figure 3.3, signal s3 is dominated by signal s since 73 = 9
while I; = 12.

Notice that a reference signal is latency dominated by every signal belonging to its
equivalence class. Latency dominance is extended to behaviors and processes as in the

case of latency equivalence.

3.2.4 Ordering the Set of Informative Events

To develop the present theory it is necessary to define a total order among the events of a
behavior. In particular, I introduce an ordering among events that is motivated by causality:
events that have a smaller ordinal are ordered before the ones with larger ordinals 7. In
addition, to avoid combinational cycles that may be created by processing events with
the same ordinal, I rely on a well-founded order over the set of signals. This order in
real-life designs corresponds to input-output combinational dependencies as they can be
found, for instance, in the implementation of Mealy finite state machine. The following
definition casts this consideration in the most general form possible to extend maximally
the applicability of the theory.

Definition 3.12 Given a behavior b = (s1,...,5n), symbol <. denotes a well-founded or-
der on its set of signals. The well-founded order induces a lexicographic order <;, over
the set of informative events of b, s.t. for all pairs of events (e),ez) with e| € E(si) and
e2 € E(s)): ’

e1<iper & | (ord(e)) <ord(er)) Vv ((ord(e1) = ord(e2)) A (si <c's;))]

The following function returns the first informative event (in signal s; of behavior b)

following an event e € b with respect to the lexicographic order <y,.

Definition 3.13 Given a behavior b = (s1,...,5n) and an informative event e(s;) € E(s;),

the function nextEvent is defined as:

nextEvent (sj,e(si)) = ek(sjg'r‘lsinﬁ o) {e(s,-) <lo ek(s_,’)}

7In a strict process the ordinal is related to the timestamp; it implies that past events do not depend on
future events.

CHAPTER 3. THEORY OF LATENCY-INSENSITIVE PROTOCOLS 43

A stall move postpones an informative event of a signal of a given behavior by one
timestamp. The stall move is used to account for long delays along communication chan-
nels (i.e. wires on the chip) and to add delays where needed to guarantee functional cor-
rectness of the design.

Definition 3.14 Given a behavior b= (s1,...,S},...,SnN) and an informative event e(s;) =
(Viot), a stall move returns a behavior b' = stall(ex(s;),b) = (s1,... ,s}, .+ySN), 5.1 for
alll € IN:

Olto.te-1) (S;) = Olto,te-1) (s5),
Oltg.te] (s;) =1,
/
Oltwti1 fhri+1) (SJ') = Oltes1itr] (s5)-

A procrastination effect represents the “effect” of a stall move stall (ek (s;),b) on other
signals of behavior b in correspondence of events following ex(s;) in the lexicographic
order. The processes will “respond” to the insertion of stalls in some of their signals by
“delaying” other signals that are causally related to the stalled signals. Given a behavior b
for each stall move on events of b there is a corresponding set of behaviors (the procrasti-

nation effect set).

Definition 3.15 4 procrastination effect is a point-to-set map which takes a behavior b’ =
(s,---,Sy) = stall(ex(s;), b) resulting from the application of a stall move on event e;(s;)
of behavior b = (sy,...,sN) and returns a set of behaviors PE [stall (ex(s j),b)] st b=
(s1,...,5x) € PE[Y'] iff the following three conditions hold:

o Vi€ [1,N],i# j, 5] =15;and Oyyy_\(s]) = Oy} (57), where 1, is the timestamp of

event e/(s;) = nextEvent (s, ex(s;));
o 3K finite s.t. Vi € [L,N],i# j, 3 < K, O, «(s7) = Ofy) (57)-

Each behavior in PE[b’] is obtained from &' by possibly inserting other stalling events in

any signal of b, but only at “later” timestamps, i.e. to postpone informative event that

CHAPTER 3. THEORY OF LATENCY-INSENSITIVE PROTOCOLS 44

b={ ofs1)) = UTLTBTUTTTILTUIBTHUTLTTT.
6(52) = TLTUTLTUTTTILSTLTWTIGTITTYT ...
Stall J Move
b’={ o(s]) = UTLITBTUTTTLRLTWTIBTIHUTLTTT ...
o) = TLTUTLTUTTTLTLTYTBRTITTYT ...

Figure 3.4: Behavior &' = stall(es(s)), b) is obtained stalling the fifth event of signal s of
behavior b.

follows ex(s;) with respect to the lexicographic order <;,. Observe that a procrastination
effect returns a behavior that latency dominates the original behavior.

At the core of the theory of latency-insensitive protocols lies the notion of patient pro-
cess. A patient process can take stall moves on any signal of its behaviors by reacting with

the appropriate procrastination effects .

Definition 3.16 A4 process P is patient iff
Vb = (s1,...,5N) € P, Vj € [1,N], Ver(s;) € E(s)), (fE [stall(ek(sj),b)] NP# 0)

Hence, the result of a stall move on one of the events of a patient process may not satisfy
the process, but one of the behaviors of the procrastination effect corresponding to the stall

move does satisfy the process.

3.3 Composing Patient Systems

Patience is the key condition for the system components to be combinable according
to the present approach. In Section 3.4 I discuss how to make a process patient and how
to build complex latency-insensitive systems by composing patient processes. The founda-
tions of these results lie in the following three theorems. These theorems together guarantee

that the notions of patience and latency equivalence are compositional.

8For instance, if an input event of P is stalled, then some output events of P will be delayed if a down-link
process Q requests to delay an output event of P (back-pressure) then future input events of P will be delayed.

CHAPTER 3. THEORY OF LATENCY-INSENSITIVE PROTOCOLS 45

3.3.1 Compositionality of Patient Processes

Lemma 3.1 Let P, and P, be two patient processes. Let by € Py, by € P, be two behaviors
with the same lexicographic order s.t. by =< by. Then, there exists a behavior v e(PNP),
b] ET b’ ET bz.

Proof (conmstructive). Let b = (rl,..'.,rN) € P, and by = (q1,-..,9N) € P, be the two
behaviors with the same lexicographic order. Since 5, and b, are latency equivalent, each
event in b has a corresponding event in b, and vice versa (see Definition 3.8). Let) =
Qi N =cgn. Let W={w|3k €N, A €N (k#! A ord(e(r;)) = ord(ei(g;)) =
w)} be the set of ordinals associated to pairs of corresponding events of b; and b; whose
timestamps differ. Define the distance between behaviors b, b2 as
. { max{% (weW} ifW+0
0

otherwise

This distance is reminiscent of the Cantor metric. Thus, b; and b, have distance equal
to zero if all pairs of corresponding events are aligned 9. In this case, b; and b, are identi-
cal, i.e. they are the same behavior that belongs to (P; N P2). Now suppose that d(b),b2) =
2% # 0: in this case, w; is the smallest ordinal among those which are associated to un-
aligned pairs of corresponding events. Without loss of generality, let py = (ex(r;). e1(q;))
be the pair of corresponding events whose ordinal is equal to wy and let / > k. Apply a
stall move to e(r;) to obtain a new behavior & = (s1,...,sy) = stall (ek(rj),bl) = b.
Obviously, slack(ek_,.](s;-),el(q ;7)) = slack(ex(r;),ei(q;)) — 1. Note that b} is not neces-
sarily a behavior of P,. However, since P is patient, there exists 5] = (s, ...,s¥) =1 b1
s.t. b € PE [stall (ek(rj),bl)] NPy. Since, by definition of procrastination effect, s = 57,
then also slack(ex+1(s}), ei(g))) = slack(ex(r;),e1(g;)) — 1. Since the procrastination ef-
fect may postpone only events following e (r;) in the lexicographic order <;,, then all the
pairs of corresponding events of 5] and b, with ordinal smaller than w are still aligned.
Now, there are two possibilities: if slack(ex+1(s}),ei(g;)) = 0, then one more pair has
been aligned and d(b7,b2) < d(b1,b2); otherwise, this slack can be reduce by 1 through a

%A pair of corresponding events is said aligned if the events are synchronous, or, according to Defini-
tion 3.8, if their slack is 0.

CHAPTER 3. THEORY OF LATENCY-INSENSITIVE PROTOCOLS 46

repetition of the same procedure starting from behavior 5Y. In any case, after / — k steps
of the procedure outlined above, the result is a behavior b7 =1 b; that satisfies P and s.t.
d(b},b2) < d(b1,b3), because one more pair of corresponding events has been aligned. An
alignment step has been completed.

Now, if d(b},2) = 0 then there are no more unaligned pairs, the two behaviors are
identical and the lemma is proven since b} =¢ b). Instead, if d(b7,b2) = 7;% # 0 then the
next unaligned pair p; of corresponding events must be considered and a second alignment
step must be performed. Note that at the m-th step, after aligning pair p,, with ordinal wp,
the slack of some of the pairs following p,, in the lexicographic order may increase, but
all the pairs preceding p,, remain aligned. This sequence of alignment steps produces two
sequences of behaviors (one of behaviors in P; latency equivalent to b and one of behaviors
in P, latency equivalent to b2), whose distance is decreasing monotonically. Since both
b; and b, contain the same finite number of informative events 10 the set U of pairs of
unaligned corresponding events is also finite. The slack of each of these pair is also a finite
number. At the m-th step, there are at most 4,, sub-steps that need to be performed to align
Dm, Where hy, is the starting slack for p,,. In the worst case, each behavior 5* obtained
during the sub-steps of the alignment step may have slacks of all the remaining unaligned
pairs increased by at most K (see Definition 3.15). Hence, at the end of the m-th step,
|U| has been decreased by one, while all the slacks of its remaining elements have been
increased by at most A, - K, a finite number. Thus for |U| >/ > m, the new slacks for the
remaining unaligned pairs is 4; < #; + hn, - K. Globally, the worst case requires to perform
|U| alignment steps and for each of them a finite number of sub-steps. Hence, the two
sequences of behaviors are also finite and the last elements of these sequences do not have

unaligned pairs, and, therefore, have distance equal to zero. |

Theorem 3.2 If P| and P, are patient processes then (Py N\ P;) is a patient process.

Proof. Let b= (s1,...,5n) be a behavior in P; N P,. Consider behaviors b; = (ry, ... JIN) €
Py and by = (q1,...,9n) € Py, s.t. by =by = b. Forall j € {1,N] and for all k € IN, let
ex(sj) € Eu(s;). Since by = by = b, then e;(r;) € E(r;) and ex(g;) € E(g)). Let &' =

10Recall that the number of informative events for every behavior considered in latency-insensitive designs
is finite.

CHAPTER 3. THEORY OF LATENCY-INSENSITIVE PROTOCOLS 47

Pr=yyTuuTTBTuyutTisTT...

/ AN
bI=yuTLVBTWYTTISTT... b=, LTTWBUYTLTT ...
AN /

bef=u2 3B LTT ...

Figure 3.5: Sketch for the proof on the compositionality of latency equivalence.

stall (ex(s;),b) =< b. Similarly, | = stall(ex(r;),b1) =1 b1 and b} = stall (ex(s;), b2) =¢
b,. Since P, is patient there exists a behavior b} =¢ b; s.t. b} € PE[b}] NP and since P, is
patient there exists a behavior b5 =; by s.t. b5 € PE[b5] NP,. Notice that b; = b, implies
that b = b, however, it is not necessarily the case that 5] = b3. In fact, procrastination
effects may have misaligned pairs of corresponding informative signals which come after
(ex(r;), ex(s;)) with respect to lexicographic order <j,. Since by = by share the same
lexicographic order, by Lemma 3.1, there exists a behavior 5" =, b} =; b} s.t. b € PINP;.
The construction of " given in the proof of Lemma 3.1 involves only unaligned pairs
of corresponding events between b and b} and all these unaligned pairs correspond to
informative events which come after ex(s ;) with respect to lexicographic order <,,. Further,
since the number of informative events is finite, the number of unaligned pairs is also finite.
Hence, each signal s/ of b” is obtained by inserting a finite number of stalling events not
earlier than timestamp #, with ¢;(s;) = nextEvent (s;, ex(s;)) . Therefore, by Definition 3.15,
V' € PE [stall (ex(s j),b)] . Since b” € P, N P, then (P, N P,) is a patient process. (m]
Figure 3.5 illustrates the above proof for the case when the two behaviors are just 1-tuple
signals.

Theorem 3.3 For all patient processes Py, Ps, P|,P;:
(PL=P)A (P = P3) = (PINP) = (P NF)

Proof. Let b = (s1,...,5n5) be a behavior in P N P,. Latency equivalence implies that there
must be behaviors by = (r1,...,ry) € P{ and by = (q1,...,qn) € P such that by =¢ b =1 bs.

Since b; and b, are latency equivalent and P| and P; are patient, Lemma 3.1 guarantees that

CHAPTER 3. THEORY OF LATENCY-INSENSITIVE PROTOCOLS 48

there must be a latency-equivalent behavior 4’ € (P| N P;). The other direction of the proof

is symmetric. O
Therefore, one can replace any process in a system of patient processes by a latency-

equivalent process, and the resulting system will be latency equivalent. A similar theorem

holds for replacing strict processes with patient processes.

Theorem 3.4 For all strict processes Py, P, and all patient processes P{ ,Pz’:
(P =cP)A (P = P3) = (AINP) = (PNP)

Proof. The argument that every behavior in (P; N P,) has an equivalent in (P| N P;) is as in
Theorem 3.3. For the other direction, let &’ be a behavior in P; N P,. Latency equivalence
implies that there must be behaviors b, € Pj and b, € P such that b =¢ b’ = b,. Since P
and P, are strict, b1 and b, are also strict. Being latency equivalent, they must therefore be
equal. Thus b; € (P NP). m
This means that it is possible to replace all processes in a system of strict processes by
corresponding patient processes, and the resulting system will be latency equivalent to the
original one. This is the core of latency-insensitive design: take a design based on the as-
sumption that computation in each functional module and communication among modules
“take no time” (synchronous hypothesis) !! and replace it with a design where communica-
tion does take time (more than one virtual clock cycle) and, as a result, signals are delayed,
but without changing the sequence of informative events observed at the system level. In
other words, take a design obtained through strictly synchronous composition of functional
modules and replace it with a design made of patient processes (a latency-equivalent pro-

cess for each module) communicating by means of patient channels.

3.3.2 Channels and Buffers

The tagged-signal model provides the notion of channel to formalize the composition

2

of processes [144]. A channel is a connection !2 constraining two signals to be identical.

HQr the equivalent assumption that communication and computation are completed in exactly one clock
cycle.
12Gee Section 3.2.1 for the definition of connection.

CHAPTER 3. THEORY OF LATENCY-INSENSITIVE PROTOCOLS 49

Definition 3.17 A channel C(i,j) C SV,i,j € [1,N] is a process s.t.
b= (s1,...,5N) €C(i,) & si=s;

As the following lemma formally proves, a channel is not a patient process because it
lacks the capacity of storing an event and delaying its communication between two pro-

cesses.

Lemma 3.5 A channel C(i, j) C SV is not a patient process.

Proof: Let b = (s1,...,5x) be a behavior of a channel C(4, j) and, without loss of gen-
erality, suppose that s; <. s;. Consider a pair of corresponding informative events in s;
and s;: ex(si) = (v1,%4) and ex(s;) = (v2,%). Since b € C(i, j) then s; = s; and, therefore,
VI = vy # T. Moreover, s; = s; implies that ord(ex(s;)) = ord (ex(s;)) and, since 5; < s,
ex(s;) = nextEvent (s, ex(s:)) . Without loss of generality, suppose that ex(s;) and ex(s;) are
followed by (I — 1) > 0 stalling events, i.e., formally, that for / > 1, | %[Oz,] (8] =
| ﬁ[c[,k,,k+(1_l)](s 7))l = 0. Then, consider informative event eg.;(s;) = (Vet1s te+1)- By Def-
inition 3.13, ey.i(s;) = nextEvent (s, ex(s;)). Now, let b’ = (s},...,sy) = stall (ex(s;),b)
be the behavior obtained by applying a stall move on ex(s;). At timestamp #, s} presents a
stalling event, while the event of .s/j corresponding to ex(s;) is ex+1 (s;-) = (v2,%+1), Which
oceurs at timestamp #+ ;. Then, consider any behavior b” = (s, ...,sx) € PE[}']. By Defi-
nition 3.15, since ey4/(s;) = nextEvent (si,ex(s;)), then Gy 1(57) = O, (51) = Oy, (5:)-
In particular, G ;,1(s{) = Oy (si) # T and therefore, Gy, 4 (5) # Oy (s7), which, fi-
nally, implies that s} # 5. Hence, Vb" € PE[V'] (b" & C(i, j)) and, by Definition 3.16,
C(i,) is not patient. 0

Hence, to formally model communication delays as well as pipeline stages it is neces-
sary to introduce the notion of buffer. A buffer is a process relating two signals s;,s; of a
behavior b and is defined by means of 3 parameters: capacity ¢, minimum forward latency
I and minimum backward latency . A buffer forces signals s;,s; to be latency equivalent

and to satisfy the following relationships for all natural numbers :

1. the difference between the amount of information events seen at s; from timestamp
zero to timestamp k — I and the amount of informative events seen at s; from times-
tamp zero to timestamp k is greater or equal than zero;

CHAPTER 3. THEORY OF LATENCY-INSENSITIVE PROTOCOLS 50

o(si) = |k~ 1 informative events and (g —k — 1) T events

~
- <10 en(s;) en(s;) <io*

o(s;) = |k—1 informative events and (h—k— 1) Tevents, h > g

-

- S1o eg(si) eg(si) <to-

Figure 3.6: Relationships between the notion of nextEvent and corresponding events in
pairs of latency-equivalent signals.

2. the difference between the amount of information events seen at s; from timestamp
zero to timestamp & and the amount of informative events seen at s; from timestamp

zero to timestamp k — /,, is at most c.

Definition 3.18 4 buffer Bff,,b(i, J) with capacity ¢ > 0, minimum forward latency Ir > 0
and minimum backward latency I, > 0 is a process s.t. Vi, j € [1,N]: b= (s1,...,5n) €
Bf/',b(i,j) iff (s; = s5j) andVk € N

IA

0 | ﬁ[olto,t(k_lf)](si)] I - I ﬁ[oilo,tk](sj)] I (31)
¢ 2 | Rlouu (sl | = | RO,y (]| (3.2)

By definition, given a pair of indexes i, j € [1,N), forall I, I, c > 0, all buffers Bf 0y (i,7)
are latency equivalent. Observe also that buffer Bg’o(z‘, Jj) coincides with channel C(i, j)
and, therefore, is not a patient process. Since buffers having unit latencies are particularly

interesting, it is important to establish under which conditions they are patient processes 13,

Lemma 3.6 If's;,s; are two signals s.t. s; =1 sj and s; <. s;, then

1. Vg € INs.t. eg(s;) € E(si), nextEvent (sj,eqy(s:)) is the corresponding event of eg(s:)

ins;.

2. Yh € N s.t. en(s;) € Ei(s;), nextEvent(s;,en(s;)) = nextEvent(si,eg(s:)), where

eg(si) is the corresponding event of ep(s;) in s;.

13Recalling the discussion of Section 2.2.4, a nonpatient buffer BY (i. j) corresponds to a stateless repeater,
while any patient buffer Bff.,b (#,7) corresponds to a stateful repeater.

CHAPTER 3. THEORY OF LATENCY-INSENSITIVE PROTOCOLS 51

Proof.: Let e;(s;) be the corresponding event of eg(s;). By Definition 3.8, ord (eg(si)) =
ord(en(s;)) = k. By Definition 3.12, since s; <c s, then eg(si) <io en(s;). For all informa-
tive events ¢'(s;) with ord(€'(s;)) < k it is clearly the case that eg(si) £io €' (s). Instead,
eg(si) <1 €"(s;) for all informative events €”(s;) with ord(e" (s 7)) > k. However, ex(s;)
is clearly the minimum ordinal informative event of s; that follows eg(s;) with respect
to the lexicographic order <y, and, therefore, by Definition 3.13, nextEvent (sj,eg(si)) =
en(sj). The second relation can be easily proven using the previous relation. Consider
nextEvent (sj,eg(si)) = en(s;) where eg(s;) and ex(s;) are corresponding events. Let ey (s:)
be nextEvent (s;, eg(si)). Then, necessarily, ord(ej(s;)) = ord(eg(si)) +1=k+1. Since
ord(ex(s;)) = ord(eg(ss)) =k, then, by Definition 3.12, ex(s;) <io €y(s;). Furthermore,
e,

g
icographic order <, and, therefore, by Definition 3.13, nextEvent (sien(s 1) = e"g(s,-) =

(s;) is also the minimum ordinal event of s; which comes after e;(s;) according to lex-

nextEvent (s;, eg(si)) o]
Figure 3.6 illustrates the previous lemma. The following theorem guarantees that a

buffer with unit latencies is a patient process as long as its capacity is greater than zero.

Theorem 3.7 Letly =1;=1. Forallc 2 1, By, (i,)) is patient iff s; <. 5.

Proof.: First, if [, = I; = 1 then inequalities (3.1) and (3.2) become:

0 < Aoy)]l = |RlOua ()]l (3.3)
¢ =[RSy ()1 = |RIOpq-r) 5] (3.4)

[“only if” part]: Prove by contradiction that if s; . s; then BS | (4, /) is not a patient
process. Suppose s; £ s;. For all ¢ > 1, let b= (s1,...,5v) be a behavior of B{ ; (i, /) s.t.
6(s)) =1uTTT...and 6(s;) =T U TTT.... Let &' = (s,...,5y) = stall(eg(s:), b),
with eg(s;) = (w,%). Clearly, ' & Bf (i, /), because inequality (3.3) does not hold for
k=1 since s; = s;. Further, for all b" = (s},...,s%) € PE [stall(eo(s,-),b)] it can be
proven that b” & B (i, /). In fact, since si = s, b" € BS 1(i,)) iff Oy (s;) =T But,
consider that ord(eo(s;)) = ord(e)(s;)) and, since s; . s;, then eo(s;) £io e1(s;). Further,
ord(e(s:)) = ord(ez(s;)) — 1. Therefore, e(s;) = nextEvent (s;,eo(s;)). Recall that, by
Definition 3.15 of procrastination effect, Gy, ;,_,)(s}) = Oip,4_,)(5}), where 7 is the times-

tamp of event nextEvent (s}, eo(s;)). Hence, in this case, #; = £2 and Gy, 1) (57) = Oj)(s)-

CHAPTER 3. THEORY OF LATENCY-INSENSITIVE PROTOCOLS 52

Since s} =5/, 00, ,,l](sjf) =GO 1] (s}) = Of, 4,](5;) =10 # 7. This implies that b” ¢ B 1(5,7)-
Hence, PE [stall (eo(s,-),b)] NB{ 1 (i,j) = 0 and B{ | (i, /) is not patient.

[“if” part]: Prove that if 5; <. s; then B (i) is patient. Forallc > 1, let b=
(s1,...,5n) be a behavior of Bf |(7,7). It is necessary to analyze three distinct cases in

order to stall respectively an informative signal of s;, s; and s, with » € ([1,N]/{i,j}).

1. For all g € IN, such that eg(s;) € Eu(s:), let b = (s}....,sly) = stall(eg(s:),b) = b.
Since s, =5, b’ € Bf | (i, j) iff inequality (3.3) does not hold for some & € IN. In fact,
b’ satisfies the other two conditions of Definition 3.18, because &’ =+ b and to insert a
stalling event on 5; (While s; remains the same) cannot induce a violation of inequal-
ity (3.4). Now, suppose first that &’ satisfies also inequality (3.3) for all £ € IN: then,
there exists at least a behavior which belongs to PE [stall (eg(si), b)] NBS,(i,j) and
this behavior is ', because, VgVi,stall(eg(s;),b) € PE [stall (eg(s,-),b)]. A more
interesting case is when inequality (3.3) does not hold: in this case &’ ¢ nyl(i, J)-
Then, consider a behavior " = (s,...,s§) s.t. Va € [1,N],n# j, (s, =s,), while
s; is obtained from s; by inserting a stalling event at timestamp z,, where #, is
also the timestamp of event e;(s;) = nextEvent(sj,eg(si)). Clearly, this construc-
tion guarantees that b” € PE [stall (eg(s;),b)]. It remains to be proven that b" €

{ 1(3, /). First, by construction, b" =1 b. Then, check whether s}, s satisfy inequal-
ities (3.3) and (3.4) for all k € IN. First, since s; =¢ 5; and 5; <. 5, by Lemma 3.6,
en(s;) = nextEvent(s jseg(si)) is the corresponding event of eg(s;) in s;. Hence
ord(eg(s;)) = ord(en(s;)) = ord(eg(s{)) = ord(en(s})) and, recalling Definition 3.8,
| F[Oltpug) (5] = | Fi[Os,00) (S 7). Since, by hypothesis, s;,s; satisfy inequality (3.3)
for all £ € IN. then g < 4. Compare 57 and s respectively with s; and s;: s! has
been derived by s; inserting a 7T at #;, while s has been derived by s; inserting a 1
at 7. Hence, the following 4 equations can be derived. Further, each term in these
equations can be bounded using the fact that s;,s; satisfy inequalities (3.3) and (3.4)
for all £ € IN:

CHAPTER 3. THEORY OF LATENCY-INSENSITIVE PROTOCOLS 53

Vke[0,g-1], |9:l[0[to,tk]('g:")| = | RlOuu) () £ 1RO a1 (s)l+c B.5)
Vk € [g,%], | i[O 5] = | RO 1) 5 S 1RO o) () ¢ (3.6)
Vk€[0,h—1], |AlOuu) 5D = | RO 51 £ ROl GB.7)
Vk € [h,oo], | RO ()| = | ROu () S |RORas))l G.8)

Now, keeping in mind that g < 4, it is easy to prove that:

¢ using inequality (3.7) and equation (3.5), s, s} satisfy inequality (3.3), Vk €
[0,g—1].

o using ' inequality (3.7) and equation (3.6), 57,5} satisfy inequality (3.3), Vk €
[g,h—1].

o using inequality (3.8) and equation (3.6), 5;,s} satisfy inequality (3.3), Vk €
[A,oe].

e using inequality (3.5) and equation (3.7), s, s} satisfy inequality (3.4), Vk €
[0,g—1].

e using inequality (3.6) and equation (3.8), 57, s satisfy inequality (3.4), Vk €
[g,h—1].

e using inequality (3.6) and equation (3.8), 5,7 satisfy inequality (3.4), Vk €

[#,o0].

Therefore, b € B | (i, /).

2. Consider now &' = (s},...,sy) = stall(ex(s;),b) =1 b, where for all h € IN, ex(s;) €
E.(s;). Let eg(si) = nextEvent (si,en(s;)) and ep(s;) be the corresponding event of
ex(s;) ins;: then, since s; =< 5 and s5; < 5, by Lemma 3.6, e, (s;) = nextEvent (si, ep(si))-
Now, construct b” = (s7,...,s%) in such a way that Vn € [1,N],n # i,(s; = s,),
while s/ is obtained from s/ by inserting a stalling event at timestamp Zg, where g =
minge 1,0 {k | €x(si) € Ei(si)}. Hence, if g > A then eg(s;) = eq(s;) else eq(si) <io

1Recall that oy,) (s:) = T.

CHAPTER 3. THEORY OF LATENCY-INSENSITIVE PROTOCOLS 54

eg(si). In both cases, this construction guarantees that 4" € PE [stall (en(s;), b)] LIt
remains to be proven that " € Bj (i,). First, by construction, 4” = b. Then, check

whether 57,57 satisfy inequalities (3.3) and (3.4) for all k¥ € IN. Compare s; and s}

respectively with s; and s;: 57 has been derived by s; inserting a T at £, while s; has
been derived by s; inserting a 7 at 7. Hence, previous relations (3.5-3.8) hold also in

this case. Now, keeping in mind that here # < g, it is easy to prove that:
e using inequality (3.7) and equation (3.5), s§’,s}’ satisfy inequality (3.3), Vk €
[0,~A—1].

e using inequality (3.8) and equation (3.5), s7,s/ satisfy inequality (3.3), Vk €
[h,g—1].

o using inequality (3.8) and equation (3.6), s7,s; satisfy inequality (3.3), Vk €
[g,>l.

o using inequality (3.5) and equation (3.7), 57,57 satisfy inequality (3.4), Vk €
[0,A—1].

e using 13 inequality (3.5) and equation (3.7), s, s'; satisfy inequality (3.4), Vk €
[h & 1 [

e using inequality (3.6) and equation (3.8), s7,s satisfy inequality (3.4), Vk €
(g, ==[.

Therefore, 4" € Bf | (i,) in this case too.

3. Finally, for all n € ([1,N]/{i.j}) let &’ = (s},...,sy) = stall(en(sn), b) =z b, where
forall h € N, ey(s,) € Ei(sn). Then, trivially, ¥’ € PE [stall(e;, (5n), b)] NEBS 1 (i,)).

In conclusion, combining all three cases gives the following result:
Vb= (51, ,5w) € B, (1,)), ¥ € [1,N], Vei(sn) € Fulsn), (E [stall (ex(sn),b) | NBF 1 () #0)

Hence, B (i, /) is patient. o

'SRecall that oy, 4, (s;) = T.

CHAPTER 3. THEORY OF LATENCY-INSENSITIVE PROTOCOLS 55
3.3.3 Pipelining Patient Channels

As anticipated in Section 3.1, one of the goals of the latency-insensitive design method-
ology is to be able to pipeline a communication channel by inserting an arbitrary amount
of storage elements. In the framework of the present theory, this operation corresponds to
adding patient buffers on the channels between patient processes. Here I sketch how this
can be done. Then, in the next section, I introduce a particular class of patient buffers,

called relay stations, that presents some optimal characteristics.

Consider a strict system Pypjer = ng=, P, with N strict signals s),...,sy. As explained
in Section 3.2.1, processes can be defined over different signal sets and to compose them
it may be necessary to formally extend the set of signals of each process to contain all the
signals of all processes. However, without loss of generality, consider the particular case of
composing M processes that are already defined on the same N signals. Hence, any generic
behavior by, = (Sm,,--.,Smy) Of Py is also a behavior of Py iff for all / € [1,M,l #m
process P; contains a behavior b; = (sy,,. . .,51y) 8.t. V1 € [1,N] (51, = Sm,). In fact, system
Pytyies may be derived through the connection of the M processes via (M — 1) - N channel
processes C(ln, (I + 1)), where € [1,(M—1)] and n € [1,N]. Further, assume to “de-
compose” any channel process C(my, I,) with an arbitrary number X of channel processes
C(mp,x1),C(x1,%2),...,C(xx-1,1), by adding X — 1 auxiliary signals, each of them forced
to be equal to m, = I,,. The theory developed in Section 3.2 guarantees that if each process
Py € Pyrict is replaced with a latency-equivalent patient process and each channel C(i, j)
with a patient buffer B}’l (1, /) of unit latency, then the resulting system Pparien 1S patient and
latency equivalent to Py,.ier. In fact, having a patient buffer in a patient system is equivalent
10 having a channel in a strict system. Furthermore, “decomposing” a channel C(7, /) has no
observable effect on a strict system and, therefore, it is possible to add an arbitrary number
of these patient buffers into the corresponding patient system to replace this channel. Using
patient buffers with unit latencies makes it possible to vary arbitrarily the communication
latency of a channel. This action represents the theoretical equivalent of wire pipelining,
the method discussed in Section 2.2.4 to deal with long wires while building SOCs with
nanometer technologies. The essence of wire pipelining is the distribution of several in-

stances of these buffers along the long wires (which implement the inter-module on-chip

CHAPTER 3. THEORY OF LATENCY-INSENSITIVE PROTOCOLS 56

i o(51)) = UTLTBTYTTTILTILTLTIIBTWTTTLUNT .
G(Sz) = THUTLTVBTYTTTILTETLLTIITTTLT T .

B o(51)) = ULBTTUWULLETTTYLTIREWLQ -..
G(Sz) = THULBTTYTT T T 189y ..

Figure 3.7: Comparing the behaviors of finite buffers B} | (s1,52) and B} (s1,52).

communication channels) in such a way that the wires get decomposed in segments whose

physical lengths can be spanned in a single cycle of the system clock (the real clock).

3.3.4 Relay Stations

The following Lemma 3.8 proves that no behaviors in B},, (i, /) may contain two in-
formative events of s;,s; which are synchronous, i.e. there cannot be any timestamp for
which both s; and s; present an informative event. This implies that the maximum achiev-
able throughput across such a buffer is 0.5, which may be considered suboptimal. Instead,
buffer B%,l (i,7) is the minimum capacity buffer which is able to “transfer” one informa-
tive unit per timestamp, thus allowing, in the best case, to communicate with maximum

throughput equal to 1. Figure 3.7 compares two possible behaviors of these buffers.

Lemma 3.8 B (i,) is the minimum capacity buffer with Iy =l = 1 s.t. for all K, closed

intervals of N, :
3K = (.....K) € B 1 (1)) A Yk K, (alsF) € B(sF) A el e B()) 39)

Proof.: Relation (3.9) says that B} | (i, /) is the minimum capacity buffer with Iy =/, = 1
containing a behavior bX where s; and s; present |K| consecutive pairs of synchronous
informative events (i.e., the two informative events of each a pair have the same timestamp
1) for all K, closed intervals of IN. Notice that the only buffer with /s = J; = 1 having
capacity less than B2 | (i,) is B} (i,). First I show that B (i, /) contains at least one
behavior #X satisfying relation (3.9) and then I prove that the same is not true for any

behavior of B},I(z‘, j). Tt is easy to construct an example of such a behavior for any K.

CHAPTER 3. THEORY OF LATENCY-INSENSITIVE PROTOCOLS 57

For instance, consider a behavior b = (s1,...,55) s.t. 6(sX) =y 12 ... 1, T T 7... and that
o(s¥)=1utn ... kT 1 7... Clearly, sK =, sX and inequalities (3.3) and (3.4) (with ¢ = 2)
are satisfied for any k£ € K. Hence, b € Bil (i, 7). Moreover, at all timestamps /1,2, ...,/
both sX and sf present an informative event.
Now, consider 31,1 (i, /). If c = 1, the combination of inequalities (3.3) and (3.4) gives
that Vk € IN:
l}.l[o[lo,t(k_l)](sf)] [+1 | F[Oro,) (sa)ll |7;[°lto,t(k+1)] ()

2> 2
| A o.11y) (501 > RO Al 2 1RO,) — 1
Hence, for all behaviors b = (s1,...,5n) € B},l (i,7), signals s;,s; are not only latency

equivalent but also correlated according to a very regular pattern (see Figure 3.7) which
can be summarized in two properties:

there are no two synchronous informative events in s;,5;;

for all timestamps, informative events appear alternately on s; and on s; (possibly, at not
consecutive timestamps). The first property is a negation of relation (3.9).]

Definition 3.19 The buffer B2 | is called a relay station.

Hence, a relay station is a particular instance of the buffer process that has the property to
be the minimum capacity patient buffer which is able to sustain a communication through-
put of one informative unit per timestamp. Observe that the formal specification of a buffer
provided by Definition 3.18 is powerful because it is extremely abstract: it does not even
specify whether s; or s; are input or output signals. In Chapter 4 I present an RTL imple-
mentation of a relay station, based on a simple latency-insensitive protocol, which uses two
signals (a stop signal and a void signal) to control the flow of data on a channel. Using
model checking it is possible to formally verify that this RTL implementation is a refine-
ment of the above formal specification.

3.4 Latency-Insensitive Design

In this section, I formally present the notion of latency-insensitive design as an appli-
cation of the concepts previously introduced. To do so, I assume that:

CHAPTER 3. THEORY OF LATENCY-INSENSITIVE PROTOCOLS 58

o the pre-designed functional modules are synchronous functional processes, which

are called core processes, or pearl! processes
e the core processes are strictly causal;
e the core processes belong to a particular class of processes called stallable.

Composing a set of pre-designed, synchronous, functional modules in the most efficient
way is fairly straightforward under the assumption that the synchronous hypothesis holds.
This composition corresponds to a composition of strict processes since there is a priori no
need for inserting stalling events. However, as I argued in Chapter 1, it is very likely that the
synchronous hypothesis will not be valid for many implementations due to their distributed
nature. If indeed the processes to be composed are patient, then adding an appropriate
number of relay stations yields a process that is latency equivalent to the strict composi-
tion. In fact, since relay stations are patient processes, their insertion in a patient system
guarantees that the system remains patient. Further, since they have minimum latencies
equal to one, they can be repetitively inserted on a channel to pipeline it while increasing
its latency. Finally, since a relay station forces its two signals to be latency equivalent, the
resulting system remains latency-equivalent to the original one. Therefore, if the definition
of correct behavior is that the sequences of informative events do not change, then inserting
relay stations solves the distributed communication problem without affecting the system
functionality.

However, requiring core processes to be patient at the onset is definitely too demanding
from a practical point of view. Still, in practice, a patient system can be derived from a
strict one as follows: first, take each strict process P,, and compose it with a set of auxiliary
processes to obtain an equivalent patient process P,,. To be able to do so, all processes Py,
must satisfy the simple condition that the processes be stallable, which is formally specified
in the next section. Then, put together all patient processes by connecting them with relay
stations. The set of auxiliary processes implements a “queuing mechanism” across the
signal of P, in such a way that informative events are buffered and reordered before being

passed to P,: informative events having the same ordinal are passed to P, synchronously.

CHAPTER 3. THEORY OF LATENCY-INSENSITIVE PROTOCOLS 59

In the next section, I present the notion of stallable processes and prove that every
stallable process can be encapsulated into a shell process which acts as an interface towards

a latency-insensitive protocol.

3.4.1 Stallable Processes

In the sequel I consider only strictly causal processes and assume that for each of them
the well founded order <. of Definition 3.12 subsumes the causality relations among its
signals, i.e. formally: Vi € I,Vj € O, (si <c $j)-

The following definition of synchronous stalling captures a particular application of a

set of stall moves on a behavior of a causal process.

Definition 3.20 The application of synchronous stalling at timestamp h on a behavior b =
(S1y---+50,50+1,---,5N) € P of a process P with I = {1,...,0} and O = {Q0+1,...,N}
returns a behavior by = synchStall(h,b) such that

by = stall (eh.,.l (sn),stall (e;,H (sn-1),stall (.

.. eps1(So+1),stall (eh (sp),stall (eh (sg-1),stall (..

oo en(s3),stall (e;,(sz),stall (eh(s1), b)) .))) .)))

Obviously, b; = synchStall(h,b) =- b. Behavior by is not necessarily a behavior of P. But

this is always the case when P is a stallable process.

Definition 3.21 A process PwithI ={1,...,0} and O = {Q+1,...,N} is stallable when
for all its behaviors b= (sy,...,50,50+1,---,5N) € Pand for all k € N :

Viel (Gllka](Si) = ’t) < VjeOo (G[ik+h1k+1](sf) = ‘C)
and for all h € N behavior by = synchStall(h,b) is also a behavior of P, i.e. by € P.

Hence, while a patient process tolerates arbitrary distributions of stalling events among
its signals (as long as causality is preserved), a stallable process demands more regular
patterns: T symbols can only be inserted synchronously (i.e., with the same timestamp) on

all input signals and this insertion implies the synchronous insertion of T symbols on all

CHAPTER 3. THEORY OF LATENCY-INSENSITIVE PROTOCOLS 60

output signals at the following timestamp. To assume that a functional process is stallable
is quite reasonable with respect to a practical implementation: for instance, most hardware
systems can be stalled (see Section 4.1). At the same time, the most popular models of
computation can easily represent stallability: for instance, consider an extension of finite
state machines (FSM) [124, 240] such that each machine M has an extra input, that, if equal
to T, forces M to stay in the current state and to emit 7 at the next cycle.

Generally, a stallable process P is not a patient process.

Lemma 3.9 A generic stallable process P is not patient.

Proof.: Recalling Definitions 3.16 and 3.12, it is sufficient to assume that P has at least two
input signals s;,s; with 5; <. s; and that a stall move is applied to an event e;(s;) of a strict
behavior b of P. Then, recalling Definition 3.15, no procrastination effect can be applied
to the stalled behavior 4’ in order to have a stall move for ¢;(s;) with ord(e;) = ord(ey) that

is synchronous with the previous stall move. Hence, PE [stall (ex(s). b)] NP=0. O

3.4.2 Shell Encapsulation of Stallable Processes

The goal of this section is to define a group of functional processes that can be com-
posed with a stallable process P to derive a patient process which is latency equivalent to
P. The first step is to consider a process that aligns all the informative events across a set

of channels.

Definition 3.22 An equalizer E is aprocess, withI={1,...,Q} and O={Q+1,...,2-0},
such that for all behaviors b = (s1,...,50:50+1,--.,52.0) € E, Vi€ l,(si =150+i) and
Vk € IN:

e Vi,jeO ((o[,k,,k] (5:) =1) = (O (55) = T))
o mines {| [0y (5]l } ~ maxjeo { | lopua (sl } =0

The first relation forces the output signals to have stalling events only synchronously, while

the second guarantees that at every timestamp the number of informative events occurred

CHAPTER 3. THEORY OF LATENCY-INSENSITIVE PROTOCOLS 61

ofs1)) =... LTUBLHTBTT ... o(s4) =... TLTUTBLT ...
o(s2) =... TRT YT T g ... — ofss) =... TBRTUTLHKTIE ...
o(s3) =-.. TLTILSTOT G- o(sg) =..- TTITHT L -

Figure 3.8: Example of a behavior of an equalizer £ with I = {1,2,3} and O = {4,5,6}.

at any output is always equal to the least number of informative events seen by any input
signal up to that timestamp.

Example Figure 3.8 illustrates a possible behavior of an equalizer. Notice how the pres-
ence of a stalling event at a certain input at a given timestamp does not necessarily force
the presence of a stalling event on all outputs at the same timestamp. For instance, while
the two stalling events on s, and s3 at timestamp #; do force stalling events on all output
signals at 7}, instead the stalling event present on s; at does not result in any timestamp
on the output signals: this is due to the fact that at timestamp 2, all input signals have seen
at least one informative event while no output event have occurred on the output signal up

to1. |

Definition 3.23 An extended relay station ER.S is a process with I = {i} and O = {j,1},
i# j#1s.t signals s;,s; are related by inequalities (3.1) and (3.2) of Definition 3.18 (with
I=Iy=1andc=2)andVk € N:

Ot (S1) = { 1 éflﬂ[GFlo’lk] (sl = Ig:l[o-['o”k—l](sj)]l =2

0 otherwise
Definition 3.24 A stalling signal generator SSG is a process withI = {1,...,0} and O =
{Q+1}s.t.Yb=(s1,... ,S0+1),Vke IN,Vie (1,01, (cllk»’kl(si) € [0, 1]) and

t if 3je(1,Q) (G[’kv‘k](sj) - 1)

0 otherwise

Ol] (501 1)= {

As illustrated in Figure 3.9, any stallable process P can be composed with an equalizer,
a stalling signal generator and some extended relay stations to derive a patient process

which is latency equivalent to P.

CHAPTER 3. THEORY OF LATENCY-INSENSITIVE PROTOCOLS 62

B com mom oowm eew men roe o mew e o men o mew o mow mew o nom o

Figure 3.9: Encapsulation of a stallable process P into a shell W (P).

e N extended relay stations RS, ERS,..., ERSy s.t. I; ={q;} and O; = {g;,7;},
with j € [1,N]

e g stalling signal generator SSG with Ig = {ry,....rx} and Og = {pm+1}-
Theorem 3.10 Ler W (P) be the shell process of Definition 3.25. Process
W = projryuoy (W (P))

is a patient process that is latency equivalent to P.

Proof: Throughout the proof I follow the index notation of Definition 3.25.

CHAPTER 3. THEORY OF LATENCY-INSENSITIVE PROTOCOLS 63

[“W =, P” part]: Let b’ = (sp'x””’SPMSq'l"“’sqh) be a behavior of P and b =
(Spys--+2SpaersSqus- - 1Squs SP':"”’SP'mn’s‘J'l”’"Sq'~’s’l”"’s'~) one of W(P). Let by =
Pr0jiyu0w (D) = (Spys---+SpasSqrs--1Sqy) be the corresponding behavior of W. Then,
by Definition 3.22 of equalizer, Vi € Ig, (Spi =1 sp;), and, by definition of relay station,
Vi € [1,N], (sg; =« sq;). Therefore, by =< b.

[“W patient” part]: Recalling Definition 3.16, the goal is to prove that

Vb = (Spys---»SpapSq1s-+-1Sqn) EW, Vj € Iy UOw, Ver(s;) € E(s)),
(fPE [stall(ek(sj),b)] NW # 0)

Consider first stalling any input signal of W: for all sp,,i € [1, M) and all eg(sp,) € Ea(sp,);

J / /
letd = (sm,...,spM,s'

e ee2Spy) = stall(eg(sp,), b). Two cases may happen:

1. there exists a signal s,k € [1,M], k1, s.t. | R[04, Sp))| < | FilOiro,15) (5p)]]- Con-
sequently, by Definition 3.22, no additional stalling events are added at the output
of E nor, ultimately, on the output signals of . Hence, even though stall move
stall(eg(sp,),b) affects only signal sp,, still 5’ € ¥ and PE [stall (ek(sp‘.),b)] Y
(the stall move is “absorbed” by the equalizer). Therefore, PE [stall (ex(sp;), b)] n
W # 0.

2. sp, is a signal of b s.t. | ROy (sp)]l = minier{| Fi[Oyq) (sp)]|}- In this case,
the insertion of a stalling event on s, at #, implies that all the output signals of
equalizer £ have a stalling event at #;. Then, by analyzing the interrelationships
among the components of W, it is easy to verify that ' € W. In fact, all the output
signals of P are forced to have a stalling event at 1, and, similarly, all the output
signals sq,,...,5gy to have it at 4;>. Hence, Vj €N, eg+2(8q j) € Ei(sq j) must be also
stalled. Then, since move stall(eg(sp;),b) does not affect any other signal but 55,
b’ ¢ W. However, since ord(eg+2(sg;)) = nextEvent ((sg;),g(sp;)), the insertion of
one stalling event on each of the shell outputs at 7. is compatible with the definition
of procrastination effect and, therefore, PE [staII (ex(sp,), b)] NwW#0.

Next, consider stalling any output signal of : for all s, € [1,N] and all ej(sq;) €

F(5q;)s 1ot B = (S5 +18pys S0+ 1Sgy) = stall (ex(sg;),b). By definition of stall move,

CHAPTER 3. THEORY OF LATENCY-INSENSITIVE PROTOCOLS 64

Vm € (1, M), (s),, = Sp,,) and Vn € [1,N],n # j, (sy, = s4,). Hence, again, &' W. In fact,
the insertion of a stalling event on signal s, at 7, has an impact on signal Sq, of ERS; that
is constrained to stall the input event ej1/(sy;) € Ei(sy,) occurring / timestamps later 16,
As a consequence, all the outputs of the stallable process P must have a stalling event at
th+1. While no other stalling events are forced on s,; of ZRS; at #/+1, all the remaining
relay stations ERS;, 7 € [1,N]/{;} must stall their ey ;,1(s,,) € Ea(sq,). Hence, b’ & W be-
cause stall (en(sq;),b) does not affect any other signal but s;,. However, ¥r € ([1,N]/{/}),
since ep/+1(Sg,) = nextEvent (sq,,5(s4:)), Where eg(sq) = nextEvent (sq1,en(sg;)), then
en(sg;) <io en+i+1(sq,). Hence, the insertion of one stalling event on each shell output
Sg» ¥ € ([1,N]/{j}) at tn4141 is compatible with the definition of procrastination effect.
Therefore, E [stall (ex(sq,),b) | 0 W 7. O

3.4.3 Latency-Insensitive Design Methodology

By putting together the ideas discussed in the previous sections, I can derive the fol-

lowing guidelines for the definition of a generic latency-insensitive design methodology:
1. begin with a system of stallable processes and channels;

2. encapsulate each stallable process to yield a corresponding shell process that is pa-

tient and latency equivalent to the original one;

3. by inserting the required amount of relay stations on each channel, the latency of
the communication among any pair of processes can be arbitrarily varied without

affecting the overall system functionality.

This approach clearly orthogonalizes computation and communication: in fact, one
can build systems by assembling functional core processes (which can be arbitrarily com-
plex as far as they satisfy the stalling assumption) and shell processes (which interface
the cores with the channels, by “speaking” the latency-insensitive protocol). While the

specific functionality of the system is distributed in the cores, the shell can be automat-

16By Definition 3.19, e;,+,(sq5.) must be stalled even though Vk € [h+ 1,2 +1—1],(C(4 (sq;,) =1).

CHAPTER 3. THEORY OF LATENCY-INSENSITIVE PROTOCOLS 65

ically generated around them !7. Furthermore, the validation of the system now can be
efficiently decomposed based on assume-guarantee reasoning and compositional model
checking [2, 54, 109, 165, 166]: each shell is verified assuming a given protocol while the
protocol is verified separately.

3.4.4 Example: Latency-Insénsitive Design Methodology for SOC

With regard to the design of digital integrated circuits, the generic framework of the
latency-insensitive design methodology can be used as the formal basis for defining a

methodology centered around the following, simple, non-iterative design flow:

1. the designers design and validate the chip as a collection of synchronous modules
which can be specified with usual hardware-description languages such as VER-
ILOG [234] or VHDL [5] (RTL specification);

2. each module is automatically encapsulated within a block of control logic (the shell)

to make it latency-insensitive;
3. traditional logic synthesis and place&route steps are applied;

4. if the presence of unexpectedly large wire delays makes it necessary, the resulting
layout is corrected by simply inserting the right amount of relay stations to meet the

clock cycle constraints everywhere.

Notice that the design, layout and routing of individual modules would not need to be
changed to reflect any necessary changes in wire latencies during the chip-level layout and
wiring process. This clearly represents a significant advantage for future SOC designs,
where the designers completing the chip-level integration most likely will not work at the
same company as the designers of the individual modules. Furthermore, since it is based
on the synchronous hypothesis, the approach facilitates the adoption of state-of-the art
formal verification techniques within a new design flow that, for the rest, can be built using
traditional and widely-available layout and synthesis CAD tools. The application of the
latency-insensitive design methodology to SOC design is discussed in detail in Chapter 4.

17This is the reason of the term shells: a shell just “protect” the intellectual property (the pearl) it contains
from the “troubles” of the external communication architecture.

CHAPTER 3. THEORY OF LATENCY-INSENSITIVE PROTOCOLS 66

3.5 Related Work

This section briefly discusses the relationships between the theory of latency-insensitive
protocols and the work of other researchers in the fields of asynchronous design, high-level
synthesis, and synchronous reactive programming languages. The relationships between

latency-insensitive design and retiming are discussed in Chapter 7.

3.5.1 Latency Insensitive versus Asynchronous Design

The theory of latency-insensitive protocols is reminiscent of several ideas that have been
proposed in the asynchronous design community during the past three decades [73, 106].
In particular, the idea of a design methodology which is inherently modular is already
present in the work on Macromodular Computer Systems by Clark and Molnar [52, 53].
To separate the design of these modules from the design of the system and make the entire
process amenable to automation, the modules must be implemented as delay-insensitive
circuits [171, 200]. A delay-insensitive circuit is designed to operate correctly regard-
less of the delays on its gates and wires (unbounded delay model) [237]. However, it
has been proven that almost no useful delay-insensitive circuit can be built if one is re-
stricted to a class of simple logic gates [27, 159]. To be able to build complex systems
one must use more complex components, which are “externally” delay insensitive, while
“internally” are designed by carefully verifying their timing and avoiding or tolerating
meta-stability [79, 121, 200]. By slightly relaxing the unbounded delay model and al-

» 18 practical quasi-delay-insensitive circuits can be built using

lowing “isochronic forks
simple logic gates [32]. A further relaxation leads to speed-independent circuits, which
operate correctly regardless of gate delays, while wire delays are assumed to be negligi-
ble [8, 77, 134].

Sutherland’s 1989 Turing Award lecture on micropipelines [222] contains several ideas
that have influenced the work on latency-insensitive protocols. Micropipelines are asyn-
chronous elastic pipelines based on the concepts of transition-signalling and two-phase

bundled data interface. They have been used in several projects, including the design of an

18 A bounded skew is allowed between the different branches of a net.

CHAPTER 3. THEORY OF LATENCY-INSENSITIVE PROTOCOLS 67

asynchronous microprocessor [221]. The implementation of latency-insensitive protocols
discussed in Section 4.2 uses two control signals for each data channel and shares similar-
ity with the bundled data interface. At the methodological level, common is the focus on
composability, i.e. in in defining a design framework to build complex systems by means
of simple building blocks. Naturally, the main difference lies in the judgement on the ben-
efits of making the synchronous hypothesis during the early stage of the design process for
deriving the specification of such complex systems.

Back in 1985, Van de Sneupschet observed that the decreasing feature size of VLSI
devices would have lead to “a decrease of the propagation speed of electrical signals rela-
tive to the switching speed”, and proposed the use of suitable communication protocols to
obtain chip designs whose correct operation is independent of the propagation speed [239].
Van de Sneupschet’s theory of trace structures and composition functions has more than
one contact point with the present work, but differs on the basic fact that leads to the choice
of speed-independent circuits over synchronous circuits. Dill has also proposed a trace
theory for modeling and specifying speed-independent circuits that is the basis for a hier-
archical verification approach [77].

Both quasi-delay-insensitive and speed-independent circuits assume that the designers
are able to control wire delays, and, therefore, do not appear as interesting alternatives as
we move towards nanometer design. Instead, a methodology based on assembling complex
modules which are “externally” delay-insensitive seems the right solution, on condition
that the synthesis of such modules is not too cumbersome. However, it should be noted that
asynchronous approaches do not address the fundamental problem of latency, because an
asynchronous design simply slows down to accommodate the slowest component, e.g. the
wires.

As we head towards the design of integrated circuits to be fabricated with nanometer
technologies, the delays of long intermodule wires are becoming dominant with respect to
both the delays of the intra-module wires and those of the logic gates. More importantly,
intermodule delays are difficult to predict or to control during the different phases of the de-
sign of a chip, leading to an exacerbation of the timing closure problem. Delay-insensitive
approaches as well as the latency-insensitive methodology allow the designer to specify

and implement the system while assuming that intermodule wire delays may vary arbitrar-

CHAPTER 3. THEORY OF LATENCY-INSENSITIVE PROTOCOLS 68

ily. However, while a delay-insensitive system is based on the assumption that the delay
between two subsequent events on a communication channel is completely arbitrary, in a
latency-insensitive system this arbitrary delay is forced to be a multiple of the clock period.
The key point is that this kind of discretization enables the leveraging of well-accepted
design methodologies for the design and validation of synchronous systems. In fact, the
important distinction between any of the previous asynchronous design methodologies and
the latency-insensitive approach is, essentially, that a latency-insensitive system is specified
as a synchronous system. Notice that I write “specified” because from an implementation
viewpoint a latency-insensitive communication protocol can also be designed using hand-
shaking signaling techniques (such as request/acknowledge protocols), which are typically
asynchronous 1°. However, from a specification viewpoint, each module (as well as the
overall system) is viewed as a synchronous system relying on the synchronous hypothe-
sis. Now, to specify a complex system as a collection of modules whose state is updated
collectively in one instantaneous step is naturally simpler than specifying the same system
as the interaction of many components whose state is updated following an intricate set of
interdependency relations. Furthermore, the synchronous specification makes it possible
to slightly modify the traditional semi-custom design flow by simply inserting a step to
encapsulate each synchronous module within a so-called shell process. The impact is very
different also from a validation point of view because simulation is naturally a less com-
plex task for a synchronous system than for an equivalent asynchronous one. Furthermore,
while the performance of a synchronous design can be immediately determined from its
clock frequency, to evaluate exactly the performance of an asynchronous one can be chal-
lenging because it depends on various factors [247]. As a consequence, asynchronous
designers are typically forced to use ad hoc approaches at different levels of the design
hierarchy [248].

In conclusion, the theory of latency-insensitive design leads to a methodology that
can be implemented on top of a commonly adopted design flow, while asynchronous ap-
proaches typically forces the designers to use new tools and, more importantly, to think of

the digital system in a completely different way.

19Here the communication bandwidth would be limited by the inverse of the longest of the round trip times
between pairs of communicating relay stations.

CHAPTER 3. THEORY OF LATENCY-INSENSITIVE PROTOCOLS 69

3.5.2 Latency Insensitivity and Slack Elasticity

The slack of a communication channel in an asynchronous system refers to the amount
of buffering present in the channel and it is implemented with buffers that are pipeline
stages [160]. The process of adjusting the slack on channels to optimize the system through-
put is called slack matching [66]. Slack matching is similar to the insertion of relay stations
in a latency-insensitive system 20. An important difference is that increasing the channel
slack can modify the synchronization among the components of the asynchronous system
and lead to incorrect behaviors. This problem, which was studied by Manohar [158], is due
to the presence of non-determinism in the system. A decision point is a place where the
system makes a non-deterministic choice. This corresponds to the case of processes that
probe a channel to determine whether a communication on the channel can complete, and
then perform different computations depending on the result of the probe [160]. Decision
points require the introduction of arbiters. The main result by Manohar [158] is that: in-
creasing the slack of a channel by one does not affect the correctness of the computation
if (and only if) it does not introduce additional decision points in the system. A channel is
slack elastic if its slack can be incremented without affecting the correctness of the system.
A system is slack elastic when every channel in the system is slack elastic. The highly
modular design of the MiniMIPS asynchronous microprocessor was obtained exploiting
its slack elasticity [160). Based on the above definition, latency-insensitive systems can

always be considered slack elastic because they are deterministic systems.

3.5.3 Latency-Insensitive Protocols and High-Level Synthesis

Parallels with latency-insensitive design can also be found in some of the ideas that
have been proposed in the field of high-level synthesis to schedule the sequential execu-
tion of interacting processes under unbounded timing constraints [85, 136]. However, the
hardware model used in these works, a polar hierarchical acyclic graph, does not handle
efficiently circuits with feedback loops. Furthermore, the authors admit that the appli-
cation of their technique is restricted to non-pipelined synchronous design. Instead, the

theory of latency-insensitive design permits the specification of systems that can be im-

20How to optimize the system throughput through relay station insertion is the subject of Chapter 6.

CHAPTER 3. THEORY OF LATENCY-INSENSITIVE PROTOCOLS 70

plemented using both synchronous and asynchronous circuits and is aimed to optimize
latency/throughput trade-offs by exploiting those pipelining techniques typically used in

the design of high-end microprocessors.

3.5.4 The Composition Principle

In [1] Abadi and Lamport discuss the “fundamental problem of composing specifica-
tions”, i.e. proving that a composite system satisfies its specification if all its components
satisfy their specifications. They state the Composition Principle informally as follows: let

a system S be the composition of systems Sy, ...,S, and let the following conditions hold:
1. S guarantees a property P if each component S; guarantees a property P;;

2. the environment of each component S; satisfies an assumption E; if the environment

of S satisfies an assumption E and every S; satisfies P;;
3. every component S; guarantees P; under the environment assumption E;;

then S guarantees P under environment assumption E. They also prove a theorem that
provides a formal statement of this composition principle and show that if the environment
assumptions are safety properties, the properties guaranteed by the system and its compo-
nents need not be only safety properties, but can include liveness.

In [139] Lamport provides an interesting perspective on the role of compositionality
in specifying and validating complex systems. Lamport’s main point is that compositional
reasoning is just one particular, highly constrained and not particularly “natural” way of
decomposing a mathematical proof. And since often it requires extra work, it can be ad-
vantageous only when the latter is performed by a computer, for instance with model check-
ing [55]. Lamport does point out, however, that compositional reasoning cannot be avoided
when it is necessary to reason about a component that may be utilized in several different
systems. In this case an open-system specification—one that specifies the component itself,
not the complete system—is necessary. Informally, such specification is of the type E = S,
i.e. the component satisfies S if the environment in which it operates satisfies E. Therefore,

it admits that the component misbehaves if the environment does so. A formal study of

CHAPTER 3. THEORY OF LATENCY-INSENSITIVE PROTOCOLS 71

such open-system specifications is given in [2]. In [139], Lamport recognizes that “com-
position of open-system specifications is an attractive problem, having obvious application
to reusable software and other trendy concerns, while he is still skeptical of its practical
applications. He writes: “but in 1997, the unfortunate reality is that engineers rarely spec-
ify and reason formally about the systems they build. It is naive to expect them to go to
the extra effort of proving properties of open-system component specifications because they

might re-use those components in other systems.”

3.5.5 Latency-Insensitive Protocols and Theory of Desynchronization

Benveniste et. al. developed the theory of desynchronization 21 in the context of em-
bedded system applications [12, 13]. The main motivation behind this theory is to address
the issue of compositionality of synchronous programming languages [16, 17, 99, 100]
and thereby to enable modular code generation for distributed architectures. Benveniste
et. al. advocate a methodology centered on the use of the synchronous paradigm for
system specification and validation, which are then followed by a provably correct desyn-
chronization step to derive a distributed implementation. The practical goal of the the-
ory of desynchronization is the development of formal techniques for the synthesis of
the protocols necessary to preserve the program semantics when a distributed implemen-
tation is performed on asynchronous distributed real-time architectures 2. In particu-
lar, programs written with synchronous languages can be deployed on those globally-
asynchronous locally-synchronous (GALS) architectures [48] that satisfy the following
assumption: “the architecture obeys the model of a network of synchronous modules in-
terconnected by point-to-point wires, one per each communicated signal; each individual
wire is lossless and preserves the ordering of messages, but the different wires are not
mutually synchronized.” [15]. Clearly this assumption, whose importance for the theory
of desynchronization is explained in detail in [228], is also at the core of the theory of

latency-insensitive protocols. This is not the only commonality between the two theories,

2'More recently, a desynchronization approach for IC design has been proposed [63, 64]. I discuss it
briefly in Section 8.2.

22 A general analysis of the distributed implementation problem can be found in two recent papers [11, 14],
which formalize the notion of heterogeneous parallel composition and provide a comprehensive study of
correct-by-construction deployment on heterogenous distributed systems.

CHAPTER 3. THEORY OF LATENCY-INSENSITIVE PROTOCOLS 72

which have been developed completely independently. In October 2001, Benveniste pre-
sented the paper “Some synchronization issues when designing embedded systems from
components” [9] at the First International Workshop on Embedded Software (EMSOFT).
The paper presents both theories in the context of a general reflection on the role of syn-
chronization and compositionality in embedded system design.

The central result of the theory of desynchronization is that the properties of endochrony
and isochrony are sufficient to derive robust mechanisms for the synthesis of the proto-
cols necessary for distributed code generation. Benveniste ez al. distinguish between en-
dochronous (or proactive) and exochronous (or reactive) processes 2. Informally, a syn-
chronous process is endochronous when the presence or absence of each signal at each
reaction can be inferred incrementally from its current internal state and the presence of
other input signals. The immersion of an endochronous process in an asynchronous en-
vironment does not change its semantic properties. In other works, endochrony enables
desynchronization, i.e. it allows the relaxation of the synchronization barrier of the process
by making it part of an asynchronous system. However endochrony is not a compositional
property and, therefore, by itself it not sufficient in the effort to reach the goal of the the-
ory of desynchronization, the preservation of the semantics of synchronous composition
when the components interact in an asynchronous environment. The property of isochrony
must be considered too. Informally, two processes are isochronous when, at each reaction,
if there is a pair of shared signals that are present and agree on the event value, then for
each other pair of shared signals, either they are present and agree on their value or they
are absent. Both endochrony and isochrony can be model-checked and synthesized [13].
The main result of the theory of desynchronization is that for any pair of endo-isochronous
processes, P and Q, the desynchronization of the composition of synchronous processes is
equal to the desynchronized composition of the corresponding desynchronized processes,

or formally [13]:
Pl =F ")
In practice, the theory is the foundation of a correct-by-construction design methodology

based on the following steps:

23The concepts of endochrony, exochrony and isochrony are formally defined in [13] using the synchronous
transition systems (STS) formalism.

CHAPTER 3. THEORY OF LATENCY-INSENSITIVE PROTOCOLS 73

1. specify the system as a composition of synchronous programs;

2. synthesize a communication protocol that makes each program endochronous and

pairs of interacting programs isochronous;

3. derive a distributed implementation of the system on an asynchronous communica-

tion architecture.

In 2003, however, Potop-Butucaru, Caillaud and Benveniste discovered a flaw in the
original paper [190]. Although it does not affect the main result of the theory, the flaw
prevents efficient handling of GALS architectures with more than two components. In
their effort to correct this problem, they have extended classical trace theory [76] to a
synchronous setting and used it to formalize the concepts of weak endochrony and weak
isochrony [191]. Weak endochrony is a compositional property while weak isochrony is
able to exploit concurrency in order to provide lighter communication schemes. Together
they form a correct desynchronization criterion that is decidable on finite synchronous sys-
tems and make it possible to handle the desynchronization problem for arbitrary GALS
architectures. Transforming a general synchronous system to satisfy these properties is
easy, “although making it in an efficient way is a difficult, yet unsolved problem” [191].

In summary, the following similarities exist between the theory of latency-insensitive

design and the theory of desynchronization:
e both follow the principle of correct-by-construction design;

o the role of the 1 event in latency-insensitive protocols (denoting lack of an informa-
tive signal and the need for stalling) is similar to the role played by the absence sym-
bol L in the theory of desynchronization; also, the importance of identifying absence
of events was already recognized during the early development of the synchronous
programming language SIGNAL [16, 94];

e the notion of stallable process in latency-insensitive design is similar to the notion
of stuttering-invariant process, an underlying assumption of the theory of desynchro-
nization [9, 13]; stuttering invariance, which was first introduced by Lamport as a

key attribute of a specification logic [138], means that in each state a process can

CHAPTER 3. THEORY OF LATENCY-INSENSITIVE PROTOCOLS 74

always remain “silent” by not changing the state and not emitting any event (i.e.
emitting the absence symbol L on each output signal); latency equivalence is similar
to the notion of stuttering equivalence on Kripke structures introduced by Browne et.
al. [26].

o the stalling mechanism and the desynchronization mechanism are similar in that both

involve delaying the next reaction until all necessary data become available [9];
Alternatively, the main differences follow:

o the assumption on the global specification of the system is different: the theory of
latency-insensitive protocols assumes a strictly synchronous specification with a sin-
gle common clock: each process reads each input signal and writes every output sig-
nal at each tick of this clock 24; this assumption, which is generally stronger, applies
well to hardware design; the theory of desynchronization assumes a synchronous re-
active specification where multiple clocks are present; this weaker assumption makes
it possible to model multi-rate computation and, potentially, to “support lighter com-

munication protocols that minimize communication and power consumption” [191].

e the assumption on the local specification of each system component is also different:
the theory of latency-insensitive protocols simply requires stallability (knowledge
about the inner logic structure of each core module is not necessary and all cores are
treated uniformly as black-box modules); the theory of desynchronization requires
the analysis of the inner logic structure of each component, even if it is clever in

exploiting the information resulting from this analysis [41].
¢ patience and weak endochrony are compositional properties, but endochrony is not;

e latency-insensitive protocols can easily handle causality and enable the development
of simple synthesis algorithms; instead, “neither endochrony, nor weak endochrony
take into account causality in the computation of reactions, and efficient synthesis

algorithms have yet to be defined for both of them” [191].

24 In other words, in the strict system S signals are always present; absence is introduced in an encoded
form via stalling events as relay stations are inserted in the patient system S’ which is latency-equivalent to S.

CHAPTER 3. THEORY OF LATENCY-INSENSITIVE PROTOCOLS 75

I conclude this comparison reporting Benveniste’s closing remark: * think synchronously
- act asynchronously’ emerges as a common paradigm for the design of embedded systems

from components” [9].

3.6 Concluding Remarks

Latency-insensitive designs are synchronous distributed systems composed by func-
tional modules that exchange; data on communication channels according to a latency-
insensitive protocol. The protocol guarantees that latency-insensitive systems, composed
of functionally correct modules, behave correctly independently of the channel latencies.
This allows for the increase in the robustness of a design implementation since any delay
variation of a channel can be “recovered” by changing its latency while the overall sys-
tem functionality remains unaffected. The protocol works on the weak assumption that the
functional modules are stallable. An important application of the proposed theory is rep-
resented by the latency-insensitive methodology to design large digital integrated circuits

with nanometer technologies. This methodology is the subject of Chapter 4.

CHAPTER 3. THEORY OF LATENCY-INSENSITIVE PROTOCOLS

76

77

Chapter 4

Correct-by-Construction SOC Design
Methodology

In which a solid stone goes a long way chasing two elusive birds.

OBUST techniques to design systems-on-chip with nanometer technologies are
the subject of this chapter. Building on the theory of latency-insensitive pro-
tocols presented in Chapter 3, I define a correct-by-construction methodology

that makes SOC design functionally insensitive to the latency of long wires. Thanks to the
compositionality of the notion of latency equivalence, this methodology makes it possible
to orthogonalize communication and computation, while the timing requirements imposed
by the clock are met by construction. This facilitates the solution of the communication
and synchronization issues that naturally arise while assembling pre-designed components,
thereby opening the way to IP core reuse in SOC design. Hence, the latency-insensitive
design methodology addresses at once the two hard challenges in integrated circuit design
discussed in Chapter 2: design productivity and timing closure. Furthermore, it does so
without requiring designers to undertake a revolution in their practices: since it is based on
the synchronous assumption, it represents a theoretically sound framework from which to
develop a new class of design flows for nanometer design through the use of traditional and
popular CAD tools.

CHAPTER 4. CORRECT-BY-CONSTRUCTION SOC DESIGN METHODOLOGY 78

4.1 Latency-Insensitive Design Methodology for SOC

The theory of latency-insensitive protocols provides the theoretical foundation for a
methodology that maintains the inherent simplicity of synchronous design and yet does
not suffer from the “interconnect-delay problem”. The proposed methodology is centered
around the automatic synthesis of a communication architecture that implements a latency-
insensitive communication protocol.

The starting point is already familiar to the designer of digital integrated circuits (IC): a
synchronous specification of the design, based on the assumption that the operation of the
final chip will be controlled by a single clock signal. Hence, the system can be thought of
as completely synchronous, a collection of functional modules that communicate by means
of point-to-point channels having “zero-delay”, i.e. a delay negligible with respect to the
period of the common clock signal (synchronous hypothesis) !. 1 refer to this clock as the
virtual clock and 1 call strict a system whose specification starts from this assumption. Once
the final implementation of the system is derived, its operation is controlled by a physical
clock that has a precise frequency value. Unfortunately, due to the impact of interconnect
delay (discussed in Section 2.2), some of the wires implementing these channels on the
final layout may require a delay longer than one real clock cycle to transmit the appropriate
signals. Nevertheless, the theory of latency-insensitive protocols guarantees that it is not
necessary to complete costly re-design iterations or to slow down the real clock. The basic
idea is borrowed from pipelining [108, 133]: partition the long wires into segments by
inserting logic blocks called relay stations, which have a function similar to the one of
registers on a pipelined data-path. The resulting shorter wire segments satisfy the timing
requirements imposed by the real clock. While the timing constraints are now met by
construction, the latency of these channels becomes two or more clock cycles. Still, since
the functionality of the design is based on the sequencing of the signals on each channel
and not on their exact timing, this modification does not change its functional correctness
provided that all its components are patient processes.

As discussed in Chapter 3, a module is a patient process if its behavior does not de-

!See Section 3.5.1 for a discussion on how the synchronous assumption distinguishes the present design
methodology from similar approaches proposed in the realm of asynchronous design during the past three
decades.

CHAPTER 4. CORRECT-BY-CONSTRUCTION SOC DESIGN METHODOLOGY 79

pend on the latency of the communication channels because it is compliant with a latency-
insensitive communication protocol. Locally, the protocol allows a channel to run a number
of clock cycles ahead of or behind other channels. Globally, it guarantees that a system,
if composed of functionally correct modules, behaves correctly independently from the
delays of the channels connecting the modules. As a result, it is possible to synthesize
automatically a hardware implementation of the system such that its functional behavior is
robust with respect to large variations in communication latency.

The central idea behind this methodology is to relax time constraints during the early
phases of the design when correct measures of the communication delay among modules
are not yet available 2. Instead, the specification of a complex system is significantly sim-
plified if performed under the synchronous assumption. Once the corresponding physical
implementation is completed, if there are mismatches between the time constraints and the
interconnect delays among the system modules, they can be easily corrected by inserting

the necessary number of relay stations.

4.1.1 Latency-Insensitive Design Flow

A latency-insensitive design flow for integrated circuits consists of a sequence of five
basic steps:

1. Synchronous specification. The designer starts with a completely synchronous spec-
ification of the system as a collection of interacting functional modules. These can
be either acquired as intellectual property (IP) cores from an (intemal or external)
third-party or can be specified as “synthesizable” code at behavioral or RTL level
using a hardware description language such as VERILOG or VHDL 3, Atthis stage,
designers do not make any attempt to model accurately the latency of the wires con-

necting the modules. Instead, they rely on the synchronous hypothesis and assume

2 As discussed in Sections 2.2.3 and 2.2.4, it is very difficult to estimate accurately the on-chip interconnect
latency at the early stages of the design process, and poor estimations exacerbate the timing-closure problem.

3Naturally, if system-level design languages such as SYSTEMC [182] and SYSTEMVERILOG [116] are
broadly adopted in the future, nothing should prevent this methodology from being extended to embrace
them. In fact, latency-insensitive protocols are a promising approach for communication-based design at the
system level.

CHAPTER 4. CORRECT-BY-CONSTRUCTION SOC DESIGN METHODOLOGY 80

that the communication takes one clock cycle on every wire (see Section 1.1 and the

comment at the end of Section 3.3.1).

2. Shell encapsulation. Each module is encapsulated within a shell logic block. A
shell is simply a collection of buffering queues (one for each input port) plus the
control logic that serves as an interface between the module and the communication
architecture. Hence, the pair module/shell becomes a patient process as defined in
Section 3.2.4. This encapsulation step, which is performed automatically, depends
only on the input/output (I/O) interface of each module and is independent from the
module’s specific internal logic structure. The only requirement, discussed below in
Section 4.1.2, is that the module be stallable.

3. Channeling. The wires connecting the modules are grouped in point-to-point 4 chan-
nels. Thanks to the interface role played by the shell, each channel operates accord-
ing to a latency-insensitive communication protocol and is made up of wires and,
possibly, relay stations. The wires in a channel are laid out together and share phys-
ical characteristics. The hardware implementation of a relay station is obtained by
composing storage elements like latches or flip-flops > together with the control logic
necessary to implement the functionality related to the latency-insensitive protocol.
In the context of the discussion of Section 2.2.4, relay stations are stateful repeaters,
similar to regular pipeline latches, and, therefore, inherently different from stateless

repeaters like traditional combinational buffers.

4. Synthesis and layout generation. A standard cell netlist and its corresponding final
layout are obtained automatically by following the traditional steps of logic synthesis

and place & route.

5. Channel pipelining. A post-layout optimization is performed to fix those design

exceptions resulting from long (and slow) wires and to ensure that the timing con-

4Working with point-to-point channels is both “natural”, given the synchronous specification, and practi-
cal. However, the final implementation of the channels does not necessarily have to follow the point-to-point
structure.

5For a distinction between the various kinds of sequential circuits offering storage capabilities see [70,
132, 193].

CHAPTER 4. CORRECT-BY-CONSTRUCTION SOC DESIGN METHODOLOGY 81

straints imposed by the chip clock are met everywhere. Each channel whose delay
is greater than the nominal clock period is critical, and, therefore, is segmented
by distributing the necessary number of relay stations (channel pipelining). Some
iterations may be required, but they are limited to each channel separately, while the

logic and layout of every module remain untouched.

Figure 4.1 illustrates a typical latency-insensitive system with core modules, shells, chan-
nels, and relay stations.

This design methodology is a direct application of the principle of orthogonalization of
concerns, discussed in Section 2.3, since it separates computation and communication, i.e.
the design of the functional modules from the design of the communication architecture

and protocol. As a result:

e module design is simplified because it is performed assuming that inter-module com-

munication occurs according to the synchronous hypothesis;

e trade-offs in deriving the communication architecture can be explored up to late
stages in the design process because the protocol guarantees that arbitrary latency

variations can be easily absorbed by the interface logic;

e since the communication mechanism is automatically synthesized (as described later
in this chapter both relay stations and shells can be built with no intervention of the
designer, based solely on the theory of latency-insensitive protocols), the designer
can focus on the choice of the modules that make up the functionality of the imple-

mentation without worrying about synchronization and latency of the overall design.

In fact, the latency-insensitive design methodology facilitates the reuse and assembly of
pre-designed and pre-validated IP cores because the control logic necessary for their syn-
chronization and communication is implicitly provided by the shells implementing the
latency-insensitive protocol.

At the same time, this design methodology is a direct application of the principle of
correct-by-construction design, discussed also in Section 2.3, since it guarantees the ro-
bustness of the system functionality regardless of arbitrary latency variations. This property

CHAPTER 4. CORRECT-BY-CONSTRUCTION SOC DESIGN METHODOLOGY 82

Relay Relay |
<] A N N _
IPearl 1 | station station :
. Shell 1 fegg------------ '
A A ! .

E 5 Ly Foar3)
Relay Relay - ----mccmme - -Shell 3
station | | station 1
- : Shell 2 !
: : [:
Y A ; Relay
: station
e LLLTTEETRTP TS .
[Pearl 4] Relay - [Pears] | |
Shell 4 [-----m-ccov-c-nco- station |------ Shell 5

Figure 4.1: Shell encapsulation, relay station insertion and channel back-pressure.

of the system in fact is formally ensured throughout the design process, from the original
synchronous specification to the final latency-insensitive implementation. Regardless of
the number of relay stations inserted on any channel, the resulting system is guaranteed
by construction to be functionally equivalent to the original one (without the need of any
modification in the logic structure of the individual modules). Naturally, the focus on the
by-construction preservation of this particular timing property is motivated by the desire to
avoid those multiple costly iterations within the design flow that otherwise result from the
inaccurate estimation of wire delays (see Section 2.2.3). It is precisely the lack of this infor-
mation that leads us away from searching through the “solution space” to find an optimum
design (an impracticable task) toward a correct-by-construction approach which trades off

optimality for robustness.

Finally, so far I focused on “the robustness of the system functionality”, and haven’t
discussed about its performance. Naturally, a latency-insensitive design is satisfactory only
to the extent that a sufficient throughput can be maintained after increasing channel laten-
cies. How to analyze and optimize system performance is an important issue that is broadly

discussed in Section 4.3 and then, in detail, in Chapters 5 and 6.

CHAPTER 4. CORRECT-BY-CONSTRUCTION SOC DESIGN METHODOLOGY 83

4.1.2 The Stallability Requirement

Communication design does not have any impact on the design and implementation of
the modules provided that they share a fundamental property: patience (see Section 3.3). To
require that a module be patient at the onset is very demanding. For this reason each module
is encapsulated within an appropriate shell which has the task of making it “look patient”.

Such shells can be automatically generated for all modules as long as each module is
a sequential stallable functional process. As discussed in Section 3.4.1, stallability is a
characteristic whereby a module can stall for any number of clock cycles without losing its
internal state (and the overall state of the system). This translates into the assumption that
the functionality of the overall system only depends on the relative ordering of the signals
and not on their exact timing.

Stallability is a requirement much easier to satisfy than patience. Consequently, it is
a property that is both easier to specify and implement in digital hardware design. For
instance, at the specification level digital designers commonly use the finite state machine
(FSM) model of computation to design the control blocks. As explained in Section 3.4.1, it
is quite simple to make any FSM specification stallable. Also, working at the implemen-
tation level, most hardware systems can be easily made stallable: for instance, consider the
addition of a clock gating mechanism [180] to any sequential logic block, a practice that
has already become standard for most applications because it helps achieving a low power
design [44, 45 .

4.2 Latency-Insensitive Communication Architecture

In this section I show how to develop a latency-insensitive communication architecture
for SOC based on the proposed methodology. The basic building blocks of this architecture
are channels, relay stations, and shells. I provide here an operational description of these
blocks, whose abstract definitions were given ina denotational fashion in Chapter 3. Taken

together, these descriptions represent a reference hardware implementation of a latency-

6Tn fact, latency-insensitive protocols could also be used to develop design automation techniques that
make it possible to implement clock-gating for low power design at a fine level of granularity.

CHAPTER 4. CORRECT-BY-CONSTRUCTION SOC DESIGN METHODOLOGY 84

insensitive protocol that uses the concept of back-pressure. This is by no means the only
possible hardware implementation. Still, it is relatively simple, very modular and, as proven
in Chapter 5, guarantees optimal performance.

As discussed in Chapter 1, the goal of latency-insensitive design is to preserve the ben-
efits of the synchronous paradigm at the specification level, while introducing at the im-
plementation level those elements of asynchrony that are necessary for the effectiveness of
distributed design. This does not mean that the implementation must use asynchronous cir-
cuitry. In fact, the building blocks that I describe in the next sections refer to a single-clock
synchronous implementation 7. It means instead that at any clock cycle some modules in
the chip are free to stall (because they are waiting for some incoming data) while others are
active processing data. Meanwhile, the latency-insensitive protocol ensures that the system

progresses without errors or deadlocks.

4.2.1 Channels and Back-Pressure

Channels are point-to-point unidirectional links between a source module and a sink
module. Each module is a computational component of the system and, using the termi-
nology of Section 3.4, corresponds to a core functional process and its associated shell
process, which acts as an interface towards the latency-insensitive protocol.

Data are transmitted on a channel by means of packets: a packet consists of a variable
number of fields. In this implementation there are only two basic fields: payload, which
contains the transmitted data, and void flag, which is a one-bit signal that, if set to 1, denotes
that no data are present in the packet (void packet). If a packet does contain “meaningful”
payload data (i.e., void is set to 0) it is called a true packet. Clearly each true (void) packet
corresponds to an informative (stalling) event as described in Section 3.2.2. A channel is
made of wires and relay stations. The number of relay stations in a channel is finite and
limits the buffering capability of the channel.

At each clock cycle, the source module may either put a new true packet on the channel

"In practice, a latency-insensitive system can be implemented using different circuit design styles: syn-
chronous, asynchronous, globally-asynchronous locally-synchronous (GALS) [48]. Furthermore, in the
case of synchronous circuit design, the final chip can have a single-clock domain as well as multiple clock
domains.

CHAPTER 4. CORRECT-BY-CONSTRUCTION SOC DESIGN METHODOLOGY 85

or, in case no output data are available to be sent, put a void packet on it; meanwhile, at the
other side of the channel the sink module retrieves the incoming packet and, based on the
value of the void flag, it decides whether to discard it or to store it on its input channel queue
for later use. Just as a source module may not be ready to send a true packet, so may a sink
module not be ready to receive it. A possible reason could be that the corresponding input
queue in the shell of the sink module is full (as explained in the next section). However, as
discussed in Chapter 3, the latency-insensitive protocol demands a fully reliable communi-
cation among the modules. In other words, no lossy communication link is allowed and all
packets must be properly delivered. Consequently, the sink module must be able to interact
with the channel (and ultimately with the corresponding source module) to slow down the
communication flow and, therefore, avoid the loss of any packet. For this reason, I slightly
relax the definition of a channel as a unidirectional communication medium and allow one
bit of information, called a stop flag, to move in the opposite direction. This signal, which
is similar to the nack signal in request/acknowledge protocols of asynchronous design, is
represented by a dashed line in Figure 4.1. Conceptually, the stop flag can be interpreted as
a stalling event moving in the reverse direction. By setting the stop flag equal to one during
a certain clock cycle, the sink module informs the channel that the next packet cannot be
received and that it must be held until the stop flag is reset. Similar to the sink module, the
channel has a limited amount of buffering resources: a channel dealing with a sink module
that requires a long stall period may eventually fill up all its relay stations and be forced
to send a stop flag to the source module so that the latter will put its packet production on
stall. This mechanism to control the flow of information on a channel while guaranteeing

that no packet is lost is called back-pressure.

4.2.2 Shell Encapsulation

Given a particular core module M, an instance of a shell module can be automatically
synthesized as a wrapper to encapsulate M and interface it with the channels so that their
combination becomes a patient system. Section 3.4 explains that the only necessary
precondition is that M be stallable. At each clock cycle the internal computation of the core

must be fired only if all inputs have arrived. In other words, the computation of M can start

CHAPTER 4. CORRECT-BY-CONSTRUCTION SOC DESIGN METHODOLOGY 86

din] TR :& | dOut

channel 1
¢ |auueyo

<
e

sin

sQut

dOut

A4

<
o
L 2=
¥ |auueyo

sin

channel 2

clock

Figure 4.2: Shell encapsulation: making an IP core patient.

for the virtual clock cycle 7 only when each input channel has produced the corresponding
true packet associated to timestamp 7. The absence of a true packet is explicitly expressed
by the arrival of a void packet, i.e. a packet with the void flag set to 1. Guaranteeing this
input synchronization is the first task of the shell of a core module. The second task, input
buffering, is performed whenever an input channel is late with respect to the other channels
in producing the next true packet awaited by the core. To avoid losing those true packets
that have regularly arrived (and that cannot yet be processed by the core), the shell must
store them in a dedicated queue. The third and final task of the shell is called output
propagation: at each clock cycle, if module M has produced new output data and no output

channel has raised a stop flag, then these output data can be transmitted as a new true

CHAPTER 4. CORRECT-BY-CONSTRUCTION SOC DESIGN METHODOLOGY 87

packet; instead, if any of these two conditions is not verified, then the packet transmitted
in the previous cycle is re-transmitted, however as a void packet. In summary, a shell for

module M performs the following functions cyclically:

1. it gets the incoming packets from the input channels, filters away the void packets,
extracts the input values for M from the payload fields of the true packets, and stores

them in its queues;

2. when the input values from all incoming channels are available for the next computa-
tion (and, if no output channel has raised a stop flag during the current clock cycle) it
passes them to M and fires the computation; also, whenever this is actually fired, the
shell forwards directly to M those true packets that are arriving on channels whose
corresponding queues are empty (i.e. the queues are by-passed to avoid wasting a

clock cycle);

3. it gets the results of the computation from M and, if no output channel has raised a

stop flag during the current clock cycle , it routes the results into the output channels.

As it implements the protocol outlined above, the combination shell-core operates ac-
cording to an AND-causality semantics [96], like a transition of an ordinary marked graph
or an actor of a homogeneous synchronous data flow. These models of computation present
several useful properties, including the possibility of computing efficiently and exactly the
performance of the overall system. These properties are discussed in Chapter 5.

Example Figure 4.2 shows the conceptual diagram of a RTL implementation of a shell
encapsulating a core module with two input channels and two output channels. Notice the
presence of the input channel queues and the control logic implementing the tasks described
above. With respect to the abstract definition of shell encapsulation given in Section 3.4.2,
the functionality of the equalizer is performed by the input channel queues, while no ex-
tended relay stations are necessary since the incoming stop flags are directly used for the
controlling of the queue and the stalling of the core. The stalling/firing mechanism is sim-
ply obtained by gating the clock signal, which controls the register of the core (as discussed
in Section 4.1.2). This implementation guarantees that if a new set of incoming true pack-

ets is available and no output channel has raised a stop flag then a new set of outgoing

CHAPTER 4. CORRECT-BY-CONSTRUCTION SOC DESIGN METHODOLOGY 88

true packets is produced in one clock cycle. The core module of Figure 4.2 is a Moore
finite state machine, but it could be replaced by any stallable sequential module as long as
it does not have any direct combinational path from its inputs to its outputs. Hence, also
any pipelined module can be encapsulated within a shell as illustrated in Figure 6.11. In
Section 6.2.1, I will discuss the trade-offs in choosing where to draw the shell boundaries
in a pipelined data-path.

The bar charts of Figure 4.3 illustrate the experimental results obtained performing shell
encapsulation of a third-party designed IP core (a module computing the discrete cosine
transform [181]). In this experiment the shell was designed at the RTL level using the
VERILOG HDL and was synthesized using commercial logic synthesis tools and standard-
cell technology libraries. The queues of the shell were designed having length equal to
two 8. Logic synthesis was performed twice following the same procedure with two distinct
technology process: 130nm and 90nm. The experimental results, however, show that the
migration of technology does not have any relevant impact for this particular design. The
shell does not add any delay penalty (i.e. the critical path of the core has delay larger
than the critical path of the shell). The static power overhead is also minimal. The area
occupation of the shell-core pair is about 5% larger than the area occupation of the stand-

alone core. .

The design overhead due to shell encapsulation generally depends on the size of the
core. Naturally, the larger is the core, the smaller is the impact of shell encapsulation.
Further, to develop a library of optimized shells is a feasible task because they can generally
be reused across many different core modules. In fact, the control logic of the shell remains
the same regardless of the internal complexity of the core and the number of shell queues
only depends on the core I/O interface. This important advantage of the proposed latency-
insensitive protocol not only simplifies the design of the shell but it also guarantees its broad
applicability: as long as the core module is a stallable sequential circuit it is not necessary
to know its internal structure or behavior. In other words, latency-insensitive design can

take advantage of any stallable “black-box” IP core.

8The problem of sizing the shell queues is discussed in Chapter 5, where the benefits of having queues of
length two for implementations based on back-pressure are described in detail.

CHAPTER 4. CORRECT-BY-CONSTRUCTION SOC DESIGN METHODOLOGY 89

CIP Core MIP Core + LID Sheu_}

| IZJT
| 130nm | 90nm

0.8

0.64

0.4

comb oreo 3eq orea ftot ares dilay poney comb area s@q area tot area delay power

Figure 4.3: Shell encapsulation: experimental results with a third-party DCT core.

4.2.3 Relay Stations

In the context of hardware design, a relay station is a patient process interacting with
two channels ¢; and ¢, such that if s; and s, are the signals associated to the channels and
I(1.k,s;),l < k denotes the sequence of true packets of s; between the [-th and the A-th

clock cycle, then s; and s, are latency equivalent and for all &:

I, (k=1),s:) — I(1,k;s5) = O (4.1)
I(1,k,s;)) — I(1,(k=1),s0) (4.2)

IA
(89]

The following is an example of relay station behavior, where T may denote either a void

flag or a stop flag and 1; denotes a generic true packet:

Si = LB TTWLLLTTTILTIgEL

Se = TLHULBTTWBTTTlsEL T ---

No further specification is given on the signals s; and s,, (for instance to say that s; is the
input and s, is the output). The definition of relay station involves simply a set of relations,
i.e. a protocol, between s; and s, without any implementation detail. Still, it is clear that
each true packet received on channel ¢; is later emitted on ¢, while the presence of a void
packet on ¢, may translate into the emission of a void packet on ¢; in a later cycle. In fact,

any true packet takes at least one clock cycle to pass through a relay station (minimum

CHAPTER 4. CORRECT-BY-CONSTRUCTION SOC DESIGN METHODOLOGY 90

forward latency = 1), no more than two true packets can arrive on ¢; while no true packets
are emitted on c, (internal storage capacity = 2), and, finally, one extra stop flag on ¢,
will “move” into ¢; in at least one cycle (minimum backward latency = 1). As explained
in Section 3.3.4, the double storage capacity of a relay station allows, in the best case, to
communicate with maximum throughput (equal to one). A practical confirmation of this is
given in the sequel. '

Figure 4.4 illustrates the register-transfer level (RTL) implementation of a relay station
for a single-clock synchronous integrated circuit. This implementation is based on the
following specification, which refines the abstract definition given above.

At each clock cycle 7 a relay station takes a packet packetIn’ and a stop flag stopln’ as
inputs and it emits a packet packetOut'+! and a stop flag stopOut'*! as outputs. Packet
packetIn' contains the payload dataln’ and the void flag voidIn'. Packet packet Out’ +1 has
the same structure. The value of stopOut’*! is always equal to the value of stopln’, unless
the relay station is in the Processing state and voidIn' = 1: in this case stopOut’ +1 is set
equal to 0. The value of packetOut'*! depends on packetIn' as well as the current internal
state of the relay station, which, at each clock cycle, can be in one of four possible states.
A finite state machine (FSM) capturing the control logic of the relay station of Figure 4.4
is described in Figure 4.5. Basically, the relay station switches between two main states:
Processing, when it is traversed by a flow of true packets (and packetOut' +1 s continu-
ously set equal to packetIn') and Stalling, when the communication is interrupted and both
registers in the relay station are occupied by true packets (while the up-link module keeps
the value of packetIn’ constant). The transition between these two states is governed by
switching through states WriteAux and ReadAux, which make sure that the auxiliary regis-
ter is properly controlled in order to avoid losing a packet while the stop flag takes a cycle to
propagate backwards through the relay station. Specifically, if stopIr’ = 1 and voidI =0
the relay station enters state writedux, where it only remains for one cycle. From this state
it goes back to Processing without actually writing the auxiliary register if stopIn’ = 0 (i.e.
it has stayed high for only a cycle). Instead, if stoplr’ = 1 then it does write the value of
packetIn’ into the auxiliary register and it goes into the Stalling state. The relay station
leaves the Stalling state to go into the Readdux only when stopIn’ = 0. This means that

the down-link module is reading the data stored in the main register at this clock cycle and

CHAPTER 4. CORRECT-BY-CONSTRUCTION SOC DESIGN METHODOLOGY 91

Main _
/ ~ | register o :\
‘ AN

= dataOut

datain ==

voidin — —- voidout

_ |Auxiliary o
\’\ > | register v /

TET
Y

N

Control logic
Clock JA
©-
4—{5—\
stopOut -a— l [stopin

Figure 4.4: Hardware implementation of a relay station (block diagram).

will read (through packetOut'*!) the data stored in the auxiliary register at the next cycle.
Hence, as for state wrifedux, the relay station remains only one cycle in state ReadAux.
From this state it goes into processing if stoplr’ = 0. Instead, if stopIn’ = 1 it goes back

into writeAux.

Example Figure 4.6 illustrates two modules, Fetch Unit and Instruction Cache, which
communicate using two channels Address Channel and Data Channel. Both channels have
been partitioned into four segments by the insertion of three relay stations. As a conse-
quence, the lower bound on the latency of each channel has become four clock cycles.
Figure 4.7 shows a snapshot of the waveforms obtained by simulating a VERILOG RTL
description of the Address Channel: here, the source module is the Fetch Unit producing
a sequence of addresses for a Memory Block which represents the sink module. The ad-

dresses are reported as hexadecimal numbers. The nominal clock of the system has period

CHAPTER 4. CORRECT-BY-CONSTRUCTION SOC DESIGN METHODOLOGY 92

stopin + voidin stopin
Processing stopin Stalling
A A
stopin * voidin
stopln stopin
ReadAux stopin - WriteAux

Figure 4.5: Hardware implementation of a relay station (control logic FSM).

y equal to 10ns. Going from top to bottom, the eight waveforms correspond respectively to
the following signals of Figure 4.6: R2.packetOut, R2.stopIn, R1.packetOut, R1.stopln,
RO.packetOut, R0.stopln, FU .packetOut, FU stopln.

At time ¢ = 75ns the sink module sets R2.stopln equal to one and keeps it equal
to one for three clock cycles. As a consequence, R2 stalls two cycles as it maintains
R2.packetOut = h'44 for the next three cycles while storing R1.packetOut = h'45 on a
auxiliary set of registers. In the meantime, the stop signal is propagated to R1.stopln.
When, after three clock cycles, at time ¢ = 105#s, the sink module can finally receive
R2.packetOut = h'44, it resets R2.stopIn such that at the following clock cycle R2 may set
R2.packetOut = h'45. In the meantime, the three consecutive high values of the stop signal
propagate back through the channel, provoking a stall of two cycles for each station while
guaranteeing that no packets are lost. An important characteristic of this implementation
of the protocol is that when a stopln signal is kept high for only one cycle, the relay station
does not really stall: Figure 4.7 illustrates this fact for the sequence of clock cycles starting
at t = 165ns. This is simply a positive by-product of the fact that the storing capacity of a
relay station is double. Recall that the primary reason for this double capacity is the need to
avoid losing data during the necessary one cycle it takes to propagate the stop signal. =

CHAPTER 4. CORRECT-BY-CONSTRUCTION SOC DESIGN METHODOLOGY 93

.FmW | p1 | | r2 .

Fet?h Address Channel Instruction
Unit — = — — Cache

| s || R [w3

Figure 4.6: Channels between Fetch Unit and Instruction Cache

Besides providing a systematic method to perform wire pipelining, the insertion of
relay stations on a channel creates a sort of distributed queue. Further, the control logic of
the queue is also distributed as it is implemented by the back-pressure mechanism, which
is inherently modular. Due to the increasingly distributed nature of SOCs (as discussed
in Section 1.1.3), distributed queues seems to represent a design solution more promising
than having long, centralized communication queues located next to each IP core module.
This observation is also supported by the fact, discussed in Chapter 5, that sizing the shell
input-queues with a length equal exactly to two provides an optimal implementation of a

latency-insensitive protocols with back-pressure.

4.3 Impact on System Performance

In this section I discuss how the insertion of relay stations may affect the system per-
formance and discuss some techniques that can minimize the decrease in communication
throughput in DSM design.

4.3.1 Nominal versus Effective Clock Frequency

Latency-insensitive design makes the system functionality robust with respect to arbi-
trary variations of the interconnect latency among the core modules. But, to which extent
is the system performance also made robust? Meeting the time constraints imposed by the

target nominal clock is certainly a most important performance metric, but it would be

CHAPTER 4. CORRECT-BY-CONSTRUCTION SOC DESIGN METHODOLOGY 94

SimWave 3.17-E Thu Jul 23 14:07:49 1998 |

IRehySkﬁm.RPM’

Lsﬂ:!aﬁmﬁ?.o\x }POOOOM“OOO(JOMZPOOOOMS 00000044 OOOWTOOOOMHOOOOO(W MWMFOWWTWOONMWTGOWWOMﬂ

RelayStafon.RP.stopin

pReaSEnR 0 11000004200000043000000440000004 00000046 0OO000470000004 ummmwoomuommww*mm

N

F'RM"-" 00000043000000441000000450000004600000047 00000048 000430000 oooooabrooooowooomnooowwoooooa

kidzﬁtamePsZ_sO :

T PR

biaysizton RP sopOut

time (ns)

54.631 75.0 100.0 125.0 1500 175.0 200.0

Figure 4.7: Waveforms on Address Channel.

CHAPTER 4. CORRECT-BY-CONSTRUCTION SOC DESIGN METHODOLOGY 95

fallacious to claim that the final SOC runs with frequency ¢ = % if, for instance, at every
other cycle it produces a void packet. It would then be more accurate to say that the system
runs with an effective frequency that is only half of the nominal frequency. Hence, the
final design implementation would be correct but it would run relatively quite slowly. This
thought raises the question that instead of inserting relay stations it would suffice to slow
down the nominal clock in the first place.

In order to correctly evaluate the performance of a latency-insensitive system it is neces-
sary to check how frequently it produces void packages at its output ports. Accordingly,
I define the throughput 9(S) of a latency-insensitive system S as the amount of true pack-
ets produced by S in a given time interval. This of course corresponds to the ratio of true
packets over the sum of true packets plus void packets (as observed at the system outputs
during such interval) and it is a number between zero and one. It follows that, given a

nominal clock period y, the effective frequency of a latency-insensitive system Sis

Pesrr(S) = 0 0(S)

The next question is where do void packets come from. A latency-insensitive system
S may receive void packets at its primary inputs from the environment as well as generate
them itself. In the first case, obviously, the environment reduces the throughput of S. The
second case is more interesting from a design perspective because it sets a limit on the
maximum throughput that S can sustain regardless of the environment in which it operates.

A properly designed shell emits void packets (stalling events) on its output channels
only as a result of having previously received one or more void packets on its input chan-
nels. In fact, when the system starts-up, each core, being a sequential process, has is
output registers initialized with a true packet (an informative event) °. Then, according
to the AND-causality semantics that controls the shell operations, incoming void packets
force the shell to stall the core and produce, at the next clock cycle, outgoing void pack-
ets. Therefore, the shell does not really generate new void packets, but it only re-transmits

those that it receives. Instead, the generation of void packets inside system S is due to the

9This follows directly from the fact that, as discussed in Chapter 3, a latency-insensitive system is derived
from a correct strict system where every process is a strict process and no stalling events are present.

CHAPTER 4. CORRECT-BY-CONSTRUCTION SOC DESIGN METHODOLOGY 96

presence of relay stations. More precisely, each relay station introduces one void packet
in the system. The void packet corresponds to the initialization value for the storage ele-
ment of the relay station. Since a relay station is a “design correction” that is extraneous
to the original system specification, its initialization value must remain transparent to the
cores (while visible to other relay stations and shells) in order to make sure that it does not
corrupt their internal state. In other words, the simplest way to insert additional stateful
repeaters into a sequential system without changing the internal logic of its components
nor jeopardizing the correctness of its overall functional behavior is to make sure that such
repeaters are initialized with values that will not get processed by the components that re-
ceive them. With a latency-insensitive protocol this can be done systematically as relay
stations introduce stalling events and shells make sure that the cores do not see them 1°.
Example Figure 4.8 illustrates a simple latency-insensitive system with three shell/core
pairs P, Qr,R; and one relay station between Oy and R;. Table 4.1 reports the behavior
of this system. When the system starts up, a relay station outputs its initialization value,
a stalling (T) event, while each core outputs its initialization value, an informative event.
As the behavior evolves, new stalling events are generated whenever a core is stalled by its
shell. In fact, since the system is cyclic, stalling events occur periodically on each signal at
the rate of 1/4. [
Techniques to analyze and optimize the performance of a latency-insensitive system are

presented in Chapter 5 and Chapter 6, respectively.

4.3.2 Preserving Communication Throughput in DSM Design

The effectiveness of the latency-insensitive design methodology is strongly related to
the ability of maintaining a sufficient communication throughput in the presence of in-
creased channel latencies. However, in the case of integrated circuit design this is just one
instance of a more general problem that has to be faced while working with nanometer
technologies. In fact, since on-chip communication was not an issue with previous process

technologies, the vast majority of chips produced over the past two decades are based on ar-

10The systematic nature of this transformation is very important for the reasons discussed in Section 2.2.4.

CHAPTER 4. CORRECT-BY-CONSTRUCTION SOC DESIGN METHODOLOGY 97

timestamp |t |h |h |||l |

wy 1{0|T|1}0|1[T]|O

B Y 0(2|2|T|6]|6|10]| T
Zy oft|0[4|0|T| 8|4

wy i1(oflz|1|0fj1|T}|O

O X1, 1{3(S5){t|7[%9|11]| "
Vi 0[2(|2|t}6|6|10]|

wy 110t |1]0}1 0

R;: X1y ti1]|3|5(7t|7 11
2z 0O(t}0 0|~ 4

Table 4.1: The periodic behavior of the latency-insensitive system of Figure 4.8.

chitectural models relying on low-latency communication to shared global resources. The
advantage of such models is that they provide the most uniform computational framework
and the best utilization of the functional units. However, their focus on function rather than
on communication is now seen as the fundamental conceptual roadblock to be overcome in
nanometer design [112]. Due to the inherent separation of communication and computa-
tion, the latency-insensitive design methodology for SOC represents a promising approach
in this new environment.

Inserting extra latency stages on a cyclic pipeline does not necessary translate into a
performance degradation. For instance, the case of the Alpha 21264 microprocessor—
where the integer unit is partitioned into two modules communicating with a latency of an
additional clock cycle [89] and the pipeline presents an additional stage just to drive date
from the outputs of the primary data cache back to the processor core [129]—shows how
it is possible to pipeline long wires, thereby increasing their latency, while still offering
high computational bandwidth. Similarly, the presence of the so-called drive stages in the
intEL® hyper-pipelined NETBURST® micro-architecture [91, 111, 201] indicates that
for high-end designs, such as the PentiuM®4 microprocessor, the insertion of extra stages

dedicated exclusively to handle wire delays may be the result of a precise engineering

CHAPTER 4. CORRECT-BY-CONSTRUCTION SOC DESIGN METHODOLOGY 98

Figure 4.8: A simple cyclic latency-insensitive system.

decision !'. Accordingly, the proposed approach represents a formal framework for the
definition of design methodologies that allow an efficient analysis and exploitation of the

latency/throughput trade-offs at any stage of the design flow.

Furthermore, the latency-insensitive approach can be extended to incorporate other
techniques also aimed at minimizing the impact of large variations in channel latency on
the performance of the system. For instance, a simple technique consists of ensuring that
the design specification contains some slack in the form of uncalled-for pipeline delays.
If there is sufficient slack latency around every cyclic path in the design, after the final
layout is derived the latency-insensitive protocol allows us to re-distribute this slack in a
completely transparent manner in order to cover an increase in wire latency without any
changes to the design or the layout of the modules 12 The overall design becomes more

robust in the sense that it is less likely that some modules would have to be modified in

1 A drive stage is used purely to move signal across the chip without performing any computation and,
therefore, can be seen as a physical implementation of a relay station.

12This idea is discussed in detail in Chapter 6 in the context of a more general discussion on how to
optimize latency-insensitive systems by balancing communication and computation.

CHAPTER 4. CORRECT-BY-CONSTRUCTION SOC DESIGN METHODOLOGY 99

order to recover the performance lost due to unexpectedly large wire delays.

There will sometimes be cases where cyclic paths of low latency affecting the overall
system throughput are inevitable. In such cases, techniques typically used for microproces-
sor design such as speculative [153] and out-of-order execution [108] may be embedded
within a latency-insensitive protocol. For instance, when a particular data item on the crit-
ical path, is not yet computed, it is sometimes possible to predict its likely value and allow
the computation to proceed. The predicted value can be later “retracted” if it proves to be
incorrect. Such techniques can dramatically increase the overall system performance. They
are currently adopted only in high-end microprocessor design because they are error-prone
and quite difficult to implement, but their use is destined to grow as wire latencies continue
to increase. They could be rigorously built into a latency-insensitive protocol that would
allow speculation to break the tight dependency cycles, provided the designer can identify
an appropriate prediction strategy. Once they become part of the protocol, these techniques
would be isolated from the functional specification and would enter the design picture in
a correct-by-construction manner that would forbid the introduction of a design error and

prevent previous simulation work from being invalidated.

4.4 Case Study: the PDLX Microprocessor

To experiment with the proposed methodology, I performed a latency-insensitive design
of PDLX, a microprocessor with out-of-order and speculative execution. In the present
section, I first summarize the architectural specification of PDLX, and, then, discuss the

latency-insensitive design as well as the experimental results.

4.4.1 PDLX Architecture and Instruction Flow

The instruction set of PDLX is the same as the one of the DLX microprocessor, de-
scribed in [108]. The PDLX architecture is based on an extended version of the Tomasulo s
Algorithm [235], which combines traditional dynamic scheduling with hardware-based
speculative execution [108]. As a consequence, the data-path of PDLX is similar to the one

of some of the most advanced microprocessors available on the market today [89, 129].

CHAPTER 4. CORRECT-BY-CONSTRUCTION SOC DESIGN METHODOLOGY 100

The PDLX architecture is conceptually illustrated by the block diagram of Figure 4.9.
At the center of the PDLX pipeline lies a set of execution units (gray shaded) which operate
in parallel. Schematically the PDLX behavior can be summarized as follows: the branch
processing unit sends the next value of the program counter (PC) to the fetch unit, which
fetches the corresponding instruction from the instruction cache and passes it to the decode
unit. Once instruction decoding is completed, the result arrives to the dispatch unit which
interacts with the reservation stations (RS) of the different processing units as well as with
the completion unit and the system register unit. Instructions are fetched, decoded and
dispatched sequentially following the order of the program which is executed. Once a
new decoded instruction 7 arrives, the dispatch unit starts by assigning it to one of the
functional categories (integer arithmetic/logic, floating-point, load, store, branch, ...) and,

then checks whether the following two conditions are verified:

1. there is one entry available in the reorder buffer within the completion unit;

2. there is an available reservation station at the head of a processing unit matching the

functional category to which the instruction belongs;

If one of these conditions is not satisfied the dispatch unit stalls, otherwise instruction 7 is
dispatched. This means that the instruction is labeled with a fag ¢ identifying the reorder
buffer entry which has been assigned to it and which at the end of the execution will contain
the result. Then, operands and opcode of instruction J are loaded into the selected reser-
vation station to start the execution. The execution starts immediately only if the values
of the operands that have been read from the System Register Unit are “currently correct”,
in the sense that no other instruction I’ (previously dispatched and still not completed) is
destined to change the value of one of these operands. If this is indeed the case, then for
each operand whose value is not yet available the dispatch unit writes on the corresponding
entry in the reservation station the tag #y. Tag ¢y identifies the reorder buffer entry previ-
ously assigned to instruction I’ on which the operand depends. The execution of instruction
1 is procrastinated until all correct values of its operands arrive at the reservation station.
Different instructions may take a different number of clock cycles to be executed not only
due to this procrastination, but also because their executions may present different laten-

cies. When the execution of an instruction is completed, the corresponding processing unit

CHAPTER 4. CORRECT-BY-CONSTRUCTION SOC DESIGN METHODOLOGY 101

\j

MMU
(instr.) |=—|I-Cache

Fetch Unit [

_Completion Unit / e De°°j:e Unit \\: DDD :H:I]DD

= -
System

—— reorder

=—= puffer, N
— . F Register
= / Rinpatel Lol Unit

(s |

MMU (data)
D-Cache

Figure 4.9: PDLX microprocessor block diagram (conceptual view).

broadcasts the result to the reorder buffer entry and to any reservation station which has

been waiting for it.

The completion unit tracks each instruction from dispatch through execution, retires it
by removing the result from the bottom entry of the reorder buffer, and commits it to update
the system registers. In-order completion guarantees that the system is in the correct state
should it be necessary to recover from a mispredicted branch or any exception. In the pres-
ence of a conditional branch whose condition cannot be resolved immediately, the branch
processing unit predicts the “branch target address™ and instruction fetching, dispatching,
and execution continue from the predicted path [108]. However, these instructions can-
not commit and write back results into the system register until the prediction has been
resolved, i.e. determined to be correct. In the case when a prediction is proved wrong, the
instruction from the wrong path are flushed from the data-path and the execution resumes

from the correct path.

CHAPTER 4. CORRECT-BY-CONSTRUCTION SOC DESIGN METHODOLOGY 102
4.4.2 Latency-Insensitive Design of PDLX

I performed a high-level cycle-accurate design of the PDLX microprocessor by using
BONES DESIGNER [208], a CAD tool which provides a powerful modeling and analysis
environment for system design. I first defined a synchronous specification of the PDLX and
designed each of the PDLX modules illustrated in Figure 4.9, assuming only the following
informal rule in order to make the process stallable: at each clock cycle the execution
process of a module can always be frozen without affecting its internal state. Independently
from the design of the PDLX modules, I also specified a latency-insensitive protocol library
of parameterized components to guide the automatic generation of different kinds of relay
stations and shells. Finally, I encapsulated each module in a shell and obtained the final
system. Obviously, this decomposition of the hardware implementing the PDLX is not the
only possible, let alone the best one. Still, while reasonably simple, it presents interesting
challenges to the design of the proposed latency-insensitive communication architecture.
In particular, modules such as the fetch unit and the dispatch unit merge channels coming
from separate sources, and which are likely to have different latencies. Further, each time
the predicted value of a conditional branch is confirmed a feedback path is activated from

the system register through the completion unit to the branch processing unit.

Most PDLX modules were specified based on the assumption that they communicate
by means of point-to-point channels with arbitrary latencies. However, due to the peculiar
structure of a microprocessor such as PDLX, and, in particular, to the parallel organization
of its execution units, I adopted a different type of communication structure to connect the
several relay stations, the execution units, and the reorder buffer: a pipelined ring. A ring,
like a bus, inherently supports broadcast-based communication: the sender places a packet
on the ring and the other modules inspect (snoop) it as it goes by and decide if it is relevant
to them [65]. In the case of PDLX, the snooping mechanism is obviously based on identi-
fying the tags associated to the entries of the reorder buffer, as described in Section 4.4.1.
In general, it is more complex to keep sequential consistency on a ring than on a bus since
multiple packets may traverse it simultaneously. However, in PDLX it constitutes a lesser
problem since the completion unit guarantees in-order instruction commitment together

with the correct serial progress of the state of the system. And while the linear point-to-

CHAPTER 4. CORRECT-BY-CONSTRUCTION SOC DESIGN METHODOLOGY 103

1.2]

R
S v

0.2

LOOL1OL20L3.0L40L50L01 L1 L21L31L41LETLO2L121L221L32L42L52
[==perm3 =®=domo1 binSea |

.5 +——— A

0.4 - N\W
03 w
0.2 AT

0.1
|
0 I e e e e e J

JFCIPC N Z T, JOC . .
RV SN SV VRV

Figure 4.10: PDLX performance: throughput (bottom) and effective throughput (above)

point nature of a ring allows aggressive pipelining and potentially very high clock rates, it
has the disadvantage of high communication latency which grows linearly with the number
of nodes on the ring. Overall a ring represents a design solution in high agreement with the
latency-insensitive design methodology: its modules are by definition latency-insensitive

and pipelining can be extensively applied.

4.4.3 Experimental Results with PDLX

To test this design, I used some simple numerical C programs (permutations, binary

search, ...) and generated the corresponding DLX assembler code by running DLXCC,

CHAPTER 4. CORRECT-BY-CONSTRUCTION SOC DESIGN METHODOLOGY 104

a publicly available DLX compiler [218]. The assembler was loaded into the PDLX’s
instruction cache and executed while logging every read/write access to the data cache.
Then, I compared the “log file” with the one obtained executing the same assembler code
on the DLX simulator DLXSIM to verify that the functional behavior was indeed the same.

For each program execution, I computed the total number of clock cycles N necessary
to complete the execution of the assembler code: this number is equal to 7+ S+ P, where
I is the number of instruction which have been issued, S is the number of cycles lost due
to a stall within the execution unit, and P is the number of cycles lost due to pipeline la-
tency. Since PDLX is a single-issue multiprocessor, the instruction throughput T = I/N is
a quantity less than or equal to one. This quantity can be multiplied by the system clock
frequency to obtain the effective instruction throughput ET = (I/N) % ¢, which makes it
possible to compare the execution of the same assembler code on different PDLX imple-
mentations running at different speeds. Figure 4.10 illustrates the results obtained running
three different assembler programs: the y-axis represent the instruction throughput on the
bottom chart and the effective instruction throughput on the top chart. In both charts each
discrete point on the x-axis corresponds to a different PDLX implementation with its own
fixed amount of latency specified communication channels.

For this experiment, I focused on two specific channels on Figure 4.9: channel C,
between the Instruction Memory Management Unit and the Instruction Cache (I-Cache)
and channel Cj, between the Data Memory Management Unit and the Data Cache (D-
Cache). The latencies of the two channels were changed as follows: going from left to
right on the x-axis, each of the 18 data-points represents an implementation case and is
labeled as L_a_b, where a and b denote the amounts by which the latencies of channels
C, and Cj have been increased. In particular, a varies from 0 to 5 and b from 0 to 2. As
expected, the bottom chart confirms that the larger is the latency between the two caches
and the rest of the system, the higher is the throughput degradation. It is also clear that
for this PDLX implementation the impact of increasing the D-Cache latency by 1 unit
while leaving untouched the I-Cache latency (data-point L_0_1) is more or less equivalent
to increasing the I-Cache latency by 4 units while leaving untouched the D-Cache latency
(data-point L_4_0).

The data illustrated in the chart of Figure 4.10 have been obtained based on the as-

CHAPTER 4. CORRECT-B ¥CONSTRUCTION SOC DESIGN METHODOLOGY 105

sumption that the wires grouped in channels C, and C, represent the critical path of the
overall PDLX design and that, after segmenting them (by inserting relay stations), it is
possible to raise the clock frequency appropriately. Specifically, for each implementation,
the system has a nominal clock with period y = min{a,b} + 1. One could argue that the
assumption is too coarse, since, for instance, it is unlikely that all the other modules in the
design are able to work correctly after doubling the clock. However, the main point of the
experiment is that, within the present methodology, one may perform an early exploration
of the latency/throughput trade-offs to guide architectural choices based on a rough estima-
tion of the channel latencies and proceed to refine these choices throughout the different
stages of the design flow in order to accommodate various implementation constraints,
while relying always on the property of the latency-insensitive communication protocol 13
It is important to emphasize that the above implementations are all functionally equivalent
by construction, being obtained simply by changing the number of relay stations on the
channels without any need of re-designing the PDLX modules. Also, the insertion of relay
stations to “fix” those channels whose latencies are higher than the desired clock cycle can
be made at late stages in the design process, after detailed information has been extracted
from the physical layout. While this operation is performed it is easy to keep track of the

throughput variations.

4.5 Related Work

In this section I discuss related work along three main lines. I summarize first some of
the approaches that have been proposed to address the increasing impact of interconnect
delays in DSM design. Secondly, I discuss recent papers that advocate the combination
of wire pipelining and retiming as the solution to the global interconnect problem, while
highlighting the key difference between these approaches and latency-insensitive design.
Thirdly, I briefly comment on some circuit-level works that are closely related to latency-

insensitive design.

131n Chapter 6, I discuss in detail how latency-insensitive design supports system-level design exploration.

CHAPTER 4. CORRECT-BY-CONSTRUCTION SOC DESIGN METHODOLOGY 106

4.5.1 DSM Design Methodologies

As discussed in Section 2.2.1, the arrival of nanometer technologies has generated an
intense debate on the magnitude of the “wire delay problem”. Although there has been
a fair amount of disagreement between the various studies proposing models to predict
the interconnect delay [74, 112, 113, 163, 167, 223, 224, 225, 226, 206, 207], researchers
tend to agree with each other on the dominant role played by global wires and on the
likely aggravation of the timing-closure problem. In Section 2.2.3 I explained how this
problem leads designers to many costly iterations during the design process before they
can arrive at the final chip layout. The main cause is that logic synthesis and physical
design are performed separately and the former uses statistical delay models that badly
estimate the post-layout wire load capacitance [58, 68, 126, 188]. Specifically, in the cur-
rent standard-cell design methodology, logic synthesis is performed using delay estimates
for library modules that are parameterized to account for loading factors and transition (or
slew) rates. As the delays of long wires become larger relative to gate delays, these esti-
mates become increasingly sensitive to layout. Furthermore, process variations, cross-talk
and power-supply drop variations, which were treated as second-order “physical effects”
while designing with previous technologies, can no more be underestimated in the DSM
realm. In fact, their combined action may substantially affect the interconnect delays in
a way that is difficult to predict and that can vary across chip regions and periods of chip
operation. Advances on interconnect optimization techniques (such as interconnect topol-
ogy optimization, optimal buffer insertion and sizing, and optimal wire-sizing) can help to
reduce interconnect delays significantly [59], but they are not able to reverse the trend of
the growing gap between device and interconnect performance [58]. In summary, it is not
surprising that most of the approaches that have been proposed in the literature to address
the timing-closure problem call for a tighter interaction between synthesis and physical
design.

Otten and Brayton proposed to account for layout effects by performing floor-planning
and wire-planning on register-transfer level (RTL) descriptions [192]. Such an approach
requires extreme precaution in deriving constraints for the synthesis tools because any wire

whose delay approaches a single clock cycle may cause a failure to meet the timing con-

CHAPTER 4. CORRECT-BY-CONSTRUCTION SOC DESIGN METHODOLOGY 107

straints. Furthermore, as explained in Section 2.2.3, logic synthesis is inherently unstable,
ie. small variations in the HDL RTL specification may lead to major variations in the
produced standard-cell netlist and, consequently, in the final layout.

Gosti et al. have proposed a synthesis-driven methodology that optimizes for inter-
connect delay rather than gate delay during logic synthesis [92, 93]. Unfortunately, their
approach produces a large amount of ’logic duplication with consequent expensive area
overheads.

Floorplanning, technology mapping and gate placement are combined in [204], where,
after placement has been completed, the critical paths are reduced one at a time in order to
meet the timing requirements. Because, fixing one critical path often results in generating
new ones, this approach is unable to solve by construction the timing-closure problem.

A series of layout-driven approaches have offered to fix the layout by extracting accu-
rate physical information which is then used to guide different types of logic optimization,
such as gate-resizing [114], fanout optimization [125], buffer insertion [205] and logic re-
synthesis [154].

These approaches, however, constitute remedies to the effects of poor estimations made
during logic synthesis but do not seem able to scale well with the continuous shrinking of

process geometries.

4.5.2 Wire Buffering and Wire Pipelining

The combination of wire buffering and wire pipelining, recently advocated by several
researchers, is an important issue and deserves a separate discussion.

First, it should be said that wire buffering is a well-known technique that designers
have used for many years to optimize on-chip wire transmission [7, 70, 193]. Also from a
CAD perspective, methods for combining routing with the insertion of buffers have been
proposed for many years before the advent of nanometer technology processes, €.g. see the
classic paper by Van Ginneken [90]. Given a metal line of a certain length, optimal wire
buffering corresponds to the distribution of an optimal number of optimally sized transistor
buffers on the line to minimize the transmission delay. As illustrated in Figure 4.11, with

optimal wire buffering the delay of a metal line grows linearly with its length instead of

CHAPTER 4. CORRECT-BY-CONSTRUCTION SOC DESIGN METHODOLOGY 108

EJ!

N |
) [
I LA

—> b ppe—]
R o .p.w{;].w_.r._-..-W).y.._. -

%

Figure 4.11: Wire buffering versus wire pipelining.

quadratically. Naturally this is a formidable gain, which, according to a recent study by
Ho et. al [113], will continue to have a major impact on IC design: a careful use of
simple buffering circuits (a single inverter or two back-to-back inverters) can reduce the
degradation of global wire delay with respect to gate delay from a factor of 2000x to a
factor of 40x (over nine generations) while for local wire delay the reduction is from a

factor of 10x to a factor of 2 — 3x.

Still, optimal wire buffering carries precise limitations that are also illustrated in Fig-
ure 4.11: if the the delay of the optimally buffered metal line is still larger than the nominal
clock period, it is necessary to go beyond wire buffering and break the long wire into
smaller segments by inserting memory elements like latches or flip-flops (wire pipelin-
ing). This approach trades-off fixing a wire exception with increasing its latency by one or
more clock cycles and allows driving long wires with the same clock signal used to control
short wires and logic gates. An alternative to wire pipelining is to drive long wires with

slower clocks, thus effectively implementing the chip as a multi-clock system where many

CHAPTER 4. CORRECT-BY-CONSTRUCTION SOC DESIGN METHODOLOGY 109

isochronic regions exchange data at a speed slower than the one at which they operate. It
is also possible to avoid using clock mechanisms to drive long wires altogether and instead

to adopt asynchronous communication protocols to build GALS architectures !4.

The common point among all these options is that the chip is regarded as a distributed
system, invalidating the main assumption of the synchronous design methodology [42].
This important fact is implicitly addressed in the case of multi-clock and GALS implemen-
tations, which do not rely on the synchronous hypothesis. Different is the case of those
approaches that have been recently proposed in the literature combining wire buffering and
wire pipelining in the context of a traditional design methodology. Cocchini has proposed
algorithms for the concurrent insertion of buffer and flip-flops on latency-constrained inter-
connects [56]. However, to assume that the designers predefine latency-constraints for each
wire at the micro-architectural level is a strong prerequisite that may limit considerably the
applicability of the approach. Lu ef al. have proposed methods to reserve spaces for buffers
and flip-flops during floorplanning [155], but they seem to neglect the key difference be-
tween inserting combinational buffers and inserting latches or flip-flops. In fact, while the
former are stateless repeaters, the latter are stateful repeaters, i.e. they are sequential ele-
ments that must be initialized and whose insertion modifies the latency (expressed in num-
ber of clock cycles) between the chip modules lying at the two extremes of the pipelined
wire. In general, to initialize these elements and to interface them with the surrounding
control logic, which has been derived assuming a different communication latency, a cer-
tain amount of careful redesign must be performed with negative consequences on design
productivity [209].

Finally, it should be noticed that techniques combining global placement and retiming
may help to avoid the need of wire pipelining only to the extent that the original design
specification contains a sufficient number of latches that can be distributed along the inter-
connect paths [61]. As explained in Section 7.1.3, however, retiming carries as an intrinsic
limitation the fact that the number of latches on any feedback loop in the design must

remain constant.

14While originally conceived to facilitate wire pipelining and IP assembly in single-clock chips, latency-
insensitive design can be used also as a formal framework to develop tools for the automatic deployment of
synchronous designs on distributed architectures, like GALS [41).

CHAPTER 4. CORRECT-BY-CONSTRUCTION SOC DESIGN METHODOLOGY 110

4.5.3 Related Work in Integrated Circuits Design

Chelcea and Nowick have developed a library of robust circuit interfaces for mixed-
timing integrated circuits, i.e. circuits working at different clock speeds and different timing
models (synchronous, asynchronous) [49]. The library contains several low-latency, high-
throughput, first-in first-out (FIFO) queues as well as two new mixed-timing relay stations.
These circuits have been designed using a modular approach: a set of basic interfaces, both
synchronous and asynchronous, has been defined; these interfaces then can be assembled to
obtain a FIFO meeting the desired timing assumptions on both the senders’ and receivers’
end. Thus, the design of a mixed-timing FIFO is reduced to reusing and assembling a
few pre-designed components. One of the important contributions of this work is precisely
the novel design of relay stations for mixed asynchronous/synchronous interfaces. This is
the first published work that addresses simultaneously the following challenges: handling
mixed asynchronous/synchronous interfaces and coping with slow global interconnect.

At ASYNCH’02, Jacobson ef al. presented an interesting paper on synchronous inter-
locked pipelines [118] which contains several commonalities with the latency-insensitive
design methodology. The authors share some of the motivations (e.g., the dominance of
interconnect delay in DSM design) although they do put a strong emphasis on the need
to develop power-aware techniques that perform computation only on demand. More
importantly, however, the underlying philosophy—the goal of finding “a middle ground
in techniques that can provide the benefits of asynchronous properties in a synchronous
context"—parallels the main thesis advocated in the present dissertation and that was first
proposed at ICCAD’99 [34]. Jacobson et al.’s strategy towards this goal embodies some of

the ideas that were presented in the context of latency-insensitive design [34, 37], including:
e applying stalling at a fine-grained level;
e using “clock-gating” to implement this fine grained stalling;
o performing pipelining stalling in the backward direction (i.e., pipelined back-pressure);

e using a valid/void signal to encode the presence/absence of informative events.

CHAPTER 4. CORRECT-BY-CONSTRUCTION SOC DESIGN METHODOLOGY 111

The main difference between the two approaches lies at the implementation level, particu-
larly in the circuitry used to make the stages of the synchronous pipeline. A relay station
requires the insertion of an “auxiliary register” in parallel to each “stage register”. The
role of this auxiliary register is to avoid losing data during the single cycle necessary for
the back-pressure stalling signal to cross the stage. In [118], instead, there is no insertion
of parallel extra registers and the loss of data is avoided by using every other register in
series to achieve the same result (this is done on opposite phases of the clock in the 2-phase
clocked pipeline and relying on the master/slave structure in the 1-phase clocked pipeline).
As a consequence, Jacobson et al. report that the maximum occupancy of the pipeline,
when no stalling has occurred, is of N/2 data items, where N is the number of (serial)
stage registers. This is equivalent to the occupancy of an analogous pipeline with N relay
stations, where, however, the flow throughput is 1 instead of 0.5.

Finally, in [21], Borgatti et al. have proposed a reconfigurable on-chip communication
network that consists of a multi-context, programmable crossbar implemented using a ma-
trix of modified Flash-EEPROM devices. On-chip interconnect networks that are modular,
wide-bandwidth, and reconfigurable are of major interest for the design of large multipro-
cessors systems. However, programmable interconnects have strong intrinsic limitations in
terms of signal propagation speed. To improve their speed, Borgatti ez al. have combined
the concept of elastic interconnect, recently proposed by Mizuno et al. [169], together
with a newly-designed communication protocol. The protocol operates quite similarly to
a latency-insensitive protocol as it guarantees lossless communication through the use of a
congestion signal, which propagates in opposite direction with respect to the flow of data
and control. In completing the custom design of the crossbar, they paid particular attention
to the timing synchronization of the switches, thus avoiding the area overhead of a typical

standard-cell implementation of a relay-station.

4.6 Concluding Remarks

1 presented a correct-by-construction methodology for designing complex SOCs by as-

sembling IP functional modules. The modules interact exchanging data on a communica-

CHAPTER 4. CORRECT-BY-CONSTRUCTION SOC DESIGN METHODOLOGY 112

tion architecture that is built according to a latency-insensitive protocol. The protocol guar-
antees a correct system behavior independently from the latencies of the communication
channels. As a consequence, a robust implementation is achieved in a shorter time frame
simplifying the assembly of pre-designed modules and reducing the number of iterations
between logical and physical design. Specifically, the application of latency-insensitive
design to integrated circuits provides two main advantages: (1) it facilitates the assembly
of pre-designed components, that, as long as they are stallable, can be interfaced with the
communication protocol without changing their internal structure, and (2) it enables the a-
posteriori automatic pipelining of long wires through the insertion of relay stations. I gave
an operational description for the main building blocks of a latency-insensitive communi-
cation architecture (channels, relay stations, and shells) and provided a reference hardware
implementation based on the concept of back-pressure. As a case study, I reported on the
latency-insensitive design of PDLX, an a microprocessor with out-of-order and speculative
execution. Finally, I discussed qualitatively the possible impact of the proposed methodol-

ogy on the system performance. A quantitative analysis is the subject of Chapter 5.

113

Chapter S
Performance Analysis

In which tokens move around and everything is transient, but in tune.

NE of the main advantages of latency-insensitive design is perhaps the simplicity
of doing performance analysis. As shown in the sequel, a latency-insensitive
system can be modeled using a particular kind of Petri nets called marked

graphs. Albeit their simplicity, marked graphs allow us to capture the concurrent behav-
ior of a distributed deterministic system, to verify whether it satisfies important properties
like liveness and boundedness, and to compute statically its performance. In this chapter,
after providing essential background material, I present a method to use marked graphs for
building models of latency-insensitive system implementations. Specifically, I distinguish
two cases: first I assume that shells have unlimited memory space to store interface signals
(infinite queues) and then I analyze the case of finite queues with back-pressure. For both
models I rely on previous results about the cycle time of a marked graph necessary to com-
pute the maximum throughput at which the system implementation can consume/produce
informative events. I conclude presenting a theoretical result valid under the assumption
that the environment is willing to adapt itself to the system’s throughput: a physical im-
plementation based on back-pressure and finite queues with length equal to two is able to

perform as well as a virtual implementation with infinite queues.

CHAPTER 5. PERFORMANCE ANALYSIS 114

5.1 Petri Nets and Marked Graphs

This section provides some background material on Petri nets and marked graphs. A
more complete presentation is offered in the journal paper by Murata [176] and the book
by Peterson [186], which also contains a detail, albeit outdated, annotated bibliography.

5.1.1 Petri Nets

Petri nets are a model of computation introduced by C.A. Petri in 1962 [187]. They can
be used to model various kinds of systems and are particularly effective to capture concur-
rency, parallelism, distributiveness, non-determinism, as well as various synchronization
policies.

A Petri net consists of a particular type of directed weighted bipartite graph [62] to-
gether with an initial state called the initial marking. Being a bipartite graph, a Petri net has
its vertices partitioned into two subsets, called respectively places and transitions, that are
connected through directed arcs. Graphically places are drawn as circles and transitions as
bars. A marking assigns to each place a nonnegative integer k corresponding to the number

of tokens contained by the place.

Definition 5.1 A Petri net is a 5-tuple, PN = (P,T,F,W,My) where P is a finite set of
places, T is a finite set of transitions, F C (P x T)U(T x P) is a set of arcs (flow relation),
W :F — Z* is a weight function, My : P — Z* is the initial marking, and such that P0T =
O ANPUT=0.

Definition 5.2 Given a Petri net PN = (P,T,F,W,M) a place p € P is initially empty
when My(p) = 0. The set of initially empty places is denoted as Po = {p € P|My(p) = 0}.

Pre-sets and post-sets of a transition, or a place, of a Petri net are denoted as follows.

Definition 5.3 Given a Petri net PN = (P,T,F,W, M), for all transitions t € T and all

CHAPTER 5. PERFORMANCE ANALYSIS 115

Figure 5.1: Petri net examples taken from [176, 194].

places p € P,

ot = {p|(p,t) €F} is the set of input places (pre-set) of t

te = {p|(t,p) € F} is the set of output places (post-set) of t

op = {t|(t,p) € F} is the set of input transitions (pre-set) of p
pe = {t|(p,t) € F} is the set of output transitions (post-set) of p

Example Figure 5.1 illustrates four examples of Petri nets taken from [176, 194] and
drawn using VISUAL OBJECT NET++, an engineering toolset for regular and hybrid Petri
nets developed by Drath [78]. In particular, Figure 5.1(a) represents a Petri net N =
(P,T,F,W, M) with a set of places P= {p1, p2, p3, p4}, a set of transitions T = {11, 12,23, 4},
a set of arcs F = {p1 — 1,1 = p2,p2 — b,ta — p1,p2 — 3,13 — p3,p3 — la,la —
P4, p4 — t3} and an initial marking {Mo(p1) = 1, Mo(p2) = 0, Mo(p3) = 0, Moy(pa) = l}.
Hence, Py = {p2.p3}- Also, for instance, o713 = {p2, ps} and pe = {1,53}. n

CHAPTER 5. PERFORMANCE ANALYSIS 116

In order to simulate the dynamic behavior of a system, a marking in a Petri net is

changed according to the following firing rules:

1. a transition ¢ € T is said to be enabled if each input place p of ¢ is marked with at
least w(p,) tokens, where w(p, ?) is the weight of the arc from p to z;

2. an enabled transition may or may not fire (depending on whether or not the corre-

sponding event does occur);

3. a firing of an enabled transition ¢ removes w(p;, ¢) tokens from each input place p; of

t, and adds w(¢, p,) tokens to each output place p, of z.

A transition without any input place is called a source transition and one without any
output place is called a sink transition. A source transition is unconditionally enabled. The
firing of a sink transition consumes tokens, but does not produce any.

A marking M is said to be reachable My if there is a sequence of firings that transforms
M, into M. The set of all possible markings reachable from M, is denoted as R(Mp).

A Petri net is ordinary when all of its arc weights are equal to one, i.e. it has a weight
function W : F — 1. In the sequel I only consider ordinary Petri nets and, therefore, omit
the adjective !. A Petri net is K-bounded, or simply bounded when for each place p there
is an upper bound K on the number of tokens that can be contained by p for any marking
reachable from My. A Petri net is safe when it is 1-bounded.

A Petri net is reversible when for each marking M € R(My), My is reachable from M,
i.e. it is always possible to get back to the initial marking. In many applications it is not
necessary to get back to the initial marking Mj as long as it is always possible to get back
to a certain marking Mj,. This leads to a notion of relaxed reversibility that is based on
the definition of a home state My as any marking that is reachable from each marking
M € R(My;). This is the notion of reversibility that is used in this chapter.

A Petri net is /ive for the initial marking Mp if, no matter what marking has been reached
from Mp, it is possible to ultimately fire any transition of the net by progressing through

some further firing sequence. A Petri net that is not live is deadlocked.

1Both ordinary and non-ordinary Petri nets have the same modeling power.

CHAPTER 5. PERFORMANCE ANALYSIS 117

A Petri net is persistent when, for any two enabled transitions, the firing of one tran-
sition will not disable the other. In other words, for all reachable markings in a persistent

Petri net, a transition 7 is disabled only by firing 7.

Example The Petri net of Figure 5.1(2) is bounded, not live, and not reversible. The Petri
net of Figure 5.1(b) is live, not reversible, and not bounded (tokens keep accumulating at
place p7). The Petri net of Figure 5.1(c) presents an interesting substructure referred to as
choice (or conflict or decision) which allows the modeling of non-determinism. A choice
occurs whenever a place has more than one outgoing arc. This is the case of place p, that
has both #, and 7, as output transitions. However, an analysis of the global structure of this
Petri net reveals that a choice actually never occurs, because when 7, is enabled #; is not

(and vice versa): in fact, this Petri net is persistent. (]

Definition 5.4 A directed path {po,?1,P1,%2; - - ,tn, Pn} Of @ Petrinet PN = (P, T,F,W,Mp)
is a sequence of places and transitions such that for i € [1,n), t; is an output transition of
pi—1 and input transition for p;. A path is elementary when no vertex is traversed more
than once. A path is simple when no arc is traversed more than once. If po and py, coincide
then the directed path is a directed cycle. A Petri net is strongly connected if every pair of

places is contained in a directed cycle.

Example The Petri nets of Figures 5.1(a,b) are not strongly connected. Instead they con-
tain two and three strongly connected components [62] respectively. The Petri nets of
Figures 5.1(c,d) are strongly connected. =

While the concept of time is not explicitly given in the original definition of Petri nets,
various extended Petri net models have been proposed to study the performance and the
schedulability of dynamic systems and distributed systems [195, 242]. In these models
delays are associated to transitions and/or places. For instance, an execution time d(¢) can
be associated to each transition ¢ to denofe the number of time units necessary to complete

the execution of ¢.

CHAPTER 5. PERFORMANCE ANALYSIS 118

5.1.2 Marked Graphs

Marked graphs, also known as decision-fiee Petri nets, are a simple model for decision-
free (or deterministic) concurrent systems [57]. Their simplicity makes them quite amenable
to analysis. A Petri net is a marked graph when for each place in the net there is only one
incoming arc and one outgoing arc. In other words, the tokens that transit through this
place are generated only by one input transition and consumed only by one output tran-
sition. Hence, a marked-graph representation of a system with decisions is possible only
when each decision can be embedded in a subsystem having only a single input and a sin-
gle output. In summary, marked graphs allow researchers to model concurrency (multiple
enabled transitions can fire simultaneously) and synchronization (a transition with multiple

incoming arcs), but not choice (non-determinism).

Definition 5.5 4 marked graph M G = (P, T,F,W,My) is an ordinary Petri net in which
each place p € P has exactly one input transition and exactly one output transition, i.e.

VpeP(lepi=Ipe|=1).

Being an ordinary Petri net, a marked graph has constant weight function W : F — 1.

A marked graph M G is consistent if there is a marking My and a firing sequence ¢
from My back to My such that every transition occurs at least once in ¢. In the sequel I only
consider consistent marked graphs.
Example The Petri nets of Figures 5.1(a,b,d) are marked graphs, while the Petri net of
Figure 5.1(c) is not (due both to the presence of the choice structure at place p, and to the
presence of two incoming arcs at place pyg). .

Definitions and properties of Petri nets naturally extend to marked graphs. Further,

marked graphs enjoy special properties on liveness and safeness as described below.

Theorem 5.1 A marked graph M G is live when the initial marking Mo assigns at least
one token on each directed cycle. A marked graph M G is safe when every arc belongs to

a directed cycle c such that the total number of tokens on c is equal to one. A live marked

graph is reversible.

Proof. See [57, 176]. a

CHAPTER 5. PERFORMANCE ANALYSIS 119

An important property of any marked graph M G regards the number of tokens M (c)
that are present on a cycle ¢ of M G. This number remains constant for any marking that

can be reached from the initial marking Mp.

Theorem 5.2 The number of tokens in every cycle of a marked graph remains invariant

under any firing sequence.

Proof, Proven by many researchers, e.g see [6, 57, 175, 194]. It follows from the following
facts: (1) tokens in any cycle can only be produced or consumed by transitions belonging
to the cycle and (2) when a transition in the cycle consumes a token, it produces a new
token into the cycle. a

Strongly connected marked graphs are not necessarily safe, but they are always K-
bounded. This fact is a consequence of the following theorem, which suggests also that

the value K can be determined by analyzing the number of tokens Mp(c) of each cycle ¢ of
MG.

Theorem 5.3 Given an initial marking My, the maximum number of tokens that a place p
can have in a marked graph M G is equal to the minimum number of tokens My(c) over all

cycles ¢ containing p.

Proof. See [176]. m]
Marked graphs are a natural model for homogeneous cyclic concurrent systems that
have a periodic behavior where for each period the same number of events occur at each

component.

Theorem 5.4 For a strongly connected marked graph a firing sequence leads it back to the

initial marking My when it fires every transition an equal number of times.

Proof. See [6, 176]. O

A marked graph M G is timed if there exists a delay d(t) associated with each transition
int € MG. In the sequel I assume to deal only with timed marked graphs and, unless
specified otherwise, that Vi € M G (d(t) = 1). Furthermore, I assume that a timed marked
graph M G operates according to a step semantics [197, 198].

CHAPTER 5. PERFORMANCE ANALYSIS 120

Assumption 5.1 (Step semantics). Marked graph M G moves from a marking M; to a

marking M;y, in a single step during which all enabled transitions fire concurrently.

Given this assumption, the firing activity of a timed marked graph can be cast into the
synchronous paradigm discussed in Section 1.1: it evolves through an infinite sequence of
atomic reactions where each reaction corresponds to a step between two markings; each
reaction can be indexed with a natural number capturing the progression of time (a times-
tamp); if each place is associated to a variable v, then the presence/absence of tokens in a
place can be interpreted as thé presence/absence of a value of v at a given timestamp.

An important metric for a timed marked graph M G is the average time separation
between two consecutive firings of a transition [179].

Definition 5.6 Given a transition t in a timed marked graph M G, the average occurrence

distance 6(¢,n) of t after n executions is
bi(n)

n

d(t,n) =
where b,(n) is the time at which transition t starts its n-th execution.

The cycle time of a transition is defined as the asymptotic value of 8(¢,#).

Definition 5.7 The cycle time () of a transition t of a timed marked graph M G is defined
as
7(¢) = lim 8(¢,n)

n—oo
The reciprocal of the cycle time gives the average firing rate of the transition.
Thanks to the following result, for strongly connected marked graphs it is possible to
define the cycle time n(M G) of the marked graph M G as a whole.

Theorem 5.5 In a strongly connected timed marked graph M G all transitions have the

same cycle time.

Proof. See [179]. a
As discussed in Section 5.2.2, this quantity represents a natural performance met-

ric for the system modeled by M G because its reciprocal gives the rate of consump-

tion/production of tokens by the system, i.e. the system’s throughput. Although all the

CHAPTER 5. PERFORMANCE ANALYSIS 121

transitions of a strongly connected marked graph have the same cycle time, they do not
necessarily have the same average occurrence distance. Before expanding further on this
point, I discuss how the cycle time of a marked graph is calculated. In this regard it is
useful to define first the notion of cycle metric.

Definition 5.8 The cycle metric u(c) of a cycle ¢ of a marked graph M G is equal to the
sum of the transition delays along a cycle divided by the number of tokens in the cycle, i.e:

Zrecd(t)

()= Mo(c)
With the assumption that all the transition have unit delays, i.e V¢ € MG (d@r) =1),
the numerator of the cycle metric coincides with the number of transitions in the cycle, i.e.
the cardinality of the cycle.

Definition 5.9 The cardinality |c| of a cycle ¢ of a marked graph M G is equal to the

number of the transitions on c.

Theorem 5.6 The cycle time (M G) of a strongly connected timed marked graph MG is
given by the largest cycle metric across all its cycles, i.e:

(M G) = max
(91G) = max {u(c)}
Proof. See [194]. Similar results can be found in [32, 71, 175, 179, 199].]

Definition 5.10 In a timed marked graph M G, a cycle c* whose cycle metric coincides
with °(M G) is called critical.

Hence, a naive method to compute the cycle time (M G) is simply based on the enu-
meration of all cycles of M G in order to identify a critical cycle. All the cycles of a strongly
connected graph can be detected in O ((|P| + |T| + |F|)- (IC| + 1)) operations, where C is
the set of elementary cycles in the graph [120, 196].

CHAPTER 5. PERFORMANCE ANALYSIS 122

Event a is on a critical cycle Event a is not on a critical cvele

b delta, (al) 4 deltag (:1i)

1
1 The cycle time

' 1 The cycle time

'
]
]
i
]
T
1

.

mm e e

Periods Periods

Figure 5.2: Asymptotic behavior of average occurrence distances of transitions [179].

Example The marked graph M G, of Figure 5.1(d) is strongly connected and has four

cycles:

aq = {ta,Pc,tb’PbL

G = {ta’Pc,thde:thapal},
e3 = {ta,Par,te1,Pa2:6, Db}
C4 = {tmpdl,tcl ,Pa2ytbypd2,tc2,Pal}

With the assumption that ¥i(d(#;) = 1), the cycle metrics are u(c1) = 2 ucr) =3, ulc3) =
3, u(ca) = 4. Therefore 4 is the only critical cycle and the cycle time of M G is T(M G) =
#cs) =4. -

Although it is reasonable to expect that marked graphs modeling real systems have a
limited number of cycles, in general the number of cycles in a directed graph can be ex-
ponential in the number of its arcs. Ramamoorthy and Ho point out that if the required
performance of the system is given, then it can be verified efficiently in O(|P|?) without
enumerating all cycles by using Floyd’s shortest path algorithm [86]. In his thesis [32]
Burns discusses the problem of computing the cycle time 2 and explains the connection be-

tween this problem and linear programming (LP). This connection was originally observed

2Strictly speaking, Burns uses the term minimum cycle period instead of cycle time and his underlying
formalism is based on event-rule systems, which are equivalent to timed marked graphs.

CHAPTER 5. PERFORMANCE ANALYSIS 123

by Magott who formulated a LP problem with |T|+ 1 variables and |P| constraints, which
is solved with a general-purpose polynomial algorithm [156]. Alternative formulations of
this LP problem have been proposed and their relationships are discussed in [250]. Burns
provides a specialized algorithm that exploits the particular structure of this LP problem
to solve it in a low-order polynomial time. In Section 5.3.1 I discuss the relationships be-
tween the cycle time of a marked graph and the maximum cycle mean of a generic weighted
directed cyclic graph. Specifically, I show under which hypothesis the former can be com-
puted by applying one of the many algorithms that have been proposed, dating back to
Karp’s algorithm [127], to find the value of the latter.

The definition of critical cycle is instrumental to understanding the difference between
cycle time 7(¢) and average occurrence distance 3(¢,7) of a transition 7 in a strongly con-
nected marked graph M G. As explained by Nielsen and Kishinevsky [179], it is the loca-
tion of # on M G that makes the difference: if transition # is located on a critical cycle of
M G then its average occurrence distance (,7) becomes equal to the cycle time n(MG);
instead, if ¢ is not located on a critical cycle then it does still present an asymptotic behav-
ior (as expected from Theorem 5.5), but it actually never reaches the asymptote (M G).
The different asymptotic behaviors are reported in Figure 5.2, which is taken from [179].
In summary, cycle time n(%4 G) is an upper-bound on the asymptotic performance of the
system modeled by M G.

5.2 Performance Analysis of Latency-Insensitive Systems

In this section I present constructive modeling, an approach based on marked graphs
to capture the structure of a latency-insensitive system at the level of inter-shell commu-
nication (protocol level) and analyze its performance. Latency-insensitive systems can be
conveniently modeled with marked graphs because at the protocol level they operate as
deterministic systems. Given the specification of a latency-insensitive system S, I derive a
marked-graph model M Gs representing a particular implementation of S.

Marked-graph models make it possible to abstract away the details of the internal logic

of each component of S as well as the particular format of the data that the shells exchange

CHAPTER 5. PERFORMANCE ANALYSIS 124

on the channels of S. Instead, the focus is on the presence/absence of the data on these
channels, represented by the presence/absence of tokens in the places of M Gs 5. Im
other words, the focus is on the analysis of the performance of the implementation of S,
after abstracting away the details of its functional behavior. This corresponds to decoupling
functionality from performance, which is an application of the principle of orthogonaliza-

tion of concerns (see Section 2.3).

In particular, a marked-graph model M Gs can be used to compute exactly the max-
imum throughput 9(S) at which the implementation of S can work. This performance
metric is fundamental to comprehend the interaction of the implementation of S with the
environment in which it operates.

I present two marked-graph models. Both models work on the assumption that the
system operates in an environment that “understands” the basics of latency-insensitive pro-
tocols. In other words, the environment is able to distinguish between informative events
and stalling events. However, the two models differ in the level of this understanding. In
both cases the environment is able to detect whether an output event produced by the system
is informative or not. But only in the second model the environment can stall the system
as well as be forced by the system—via back-pressure—to postpone the transmission of a
new informative event.

The first marked-graph model, which is described in Section 5.2.3, relies on the addi-
tional assumption that the shells have input queues with infinite length. Naturally infinite
queues cannot be physically manufactured. Besides being simpler, however, this model is
practically useful to analyze system performance in the special case when the environment
never asks the system to stall, i.e. stalling events are only produced inside the system. The
model can be used to calculate the maximum throughput that the system can sustain as well
as the number of stalling events that cycle around during its operations. This information
can then be used to verify whether the system’s throughput is high enough to satisfy the
performance requirement imposed by the environment and, if so, to statically determine

the minimum finite size of each queue in order to guarantee correct operations.

3With respect to the encoding of the latency-insensitive protocol discussed in Section 4.2.1, the presence
of data corresponds to the presence of a true packet (informative event), while the absence of data corresponds
to the presence of a void packet (stalling event).

CHAPTER 5. PERFORMANCE.ANALYSIS 125

The second marked-graph model, described in Section 5.2.4, assumes that the shells
have finite-length input queues and communicate by means of channels implementing a
latency-insensitive protocol with back-pressure (like the one discussed in Section 4.2).
This translates into the assumption that the environment must be willing to stall if the sys-
tem requires it to do so (by “sending-back” a stalling event). There is also, however, an
important advantage: this model can likewise handle the case when it is the environment
that may randomly require the system to stall by sending stalling events to its input ports.
Furthermore, at the price of being slightly more complex, this model offers the key to un-
derstanding the impact of queue lengths on the behavior of a latency-insensitive system. In
particular, it makes it possible to answer the question of whether there is a “single special
length” for the queues of all shells in order to support an optimal latency-insensitive pro-
tocol, i.e. a protocol that, in the best case, can sustain communication with the maximum
possible throughput (equal to one).

The two marked-graph models are described in Section 5.2.3 and Section 5.2.4 respec-
tively, while the next two sections contain concepts that are common to both.

5.2.1 Constructive Modeling of Latency-Insensitive Systems

Given a latency-insensitive system S, a marked-graph model M Gs is constructed in two

main steps:

1. define a synthetic library £ of simple marked graphs, which act as primitives; specif-
ically, the library must contain one primitive marked graph to model a relay station
and a “meta-primitive” for modeling the shell-core pairs; the meta-primitive is a
generic template from which a unique primitive marked graph can be derived for a
given shell-core pair based only on the cardinality of its input and output sets (the
shell I/O interface);

2. execute the constructiveModeling procedure of Figure 5.3 to obtain the composite

marked graph M Gs by assembling primitives that are instanced from L.

The constructiveModeling procedure is independent from the particular library £ of prim-

itives. In Sections 5.2.3 and 5.2.4 I present primitives from two different libraries which

CHAPTER 5. PERFORMANCE ANALYSIS 126

procedure constructiveModeling
1. take a latency-insensitive system S and a synthetic primitive library L;

2. for each relay station i of S, instance the corresponding primitive marked
graph M G; from L;

3. for each shell-core pair j of S, instance the corresponding primitive marked
graph M G; after generating it from the meta-primitive template in £ based
on the I/O interface of j;

4. for all relay station i and shell-core pair j of S connect the instanced primitives
M Gi, M G; based on the interconnect pattern of S;

5. return the composite marked graph M Gs;

Figure 5.3: Procedure to build a marked-graph model for a latency-insensitive system.

can be used to derive distinct marked-graph models associated to different implementations
of the same latency-insensitive system S. However, both models are derived executing the

constructiveModeling procedure of Figure 5.3.

The constructiveModeling procedure does not necessarily have to be performed directly
on the whole system specification S. It is also possible to act on a decomposition of § as
follows: derive first a marked-graph model for each sub-system of the decomposition and
then build incrementally M Gs by connecting them. Furthermore, possible modifications
or expansions of S can be tracked immediately on M Gs to assess their impact on the over-
all system behavior. For instance, modeling the insertion of a relay station on a channel
is straightforward (simply insert the corresponding primitive marked graph). These op-
erations are simple because the constructive modeling approach relies on the property of

compositionality of patient processes discussed in Section 3.3.

Example Figure 5.4 represents a simple latency-insensitive system S with four shells
Sa,Sb,Sy,Se and three relay stations RS¢,RS4,RS;. System S is modeled by marked graph

CHAPTER 5. PERFORMANCE ANALYSIS 127

Figure 5.4: Example of latency-insensitive system with no back-pressure.

M G; on the right-hand side of Figure 5.5. The derivation of this marked-graph model will
be clearer after reading Section 5.2.3 where I present the details of the particular library
that was used. On the left-hand side of Figure 5.5 two marked graphs M G and M G2
represent a possible decomposition of M Gs. Conversely, M G can be seen as the marked
graph that is obtained by connecting M G| and M G, which communicate by means of
places P and P,. A general rule of the proposed constructive modeling approach is that
connecting two or more marked graphs involves only the addition of new places and arcs
between them. Consequently, each single component marked graph preserves its structure

while becoming part of a larger composite marked graph.]

The fundamental performance metric of a latency-insensitive system S is the rate of
production of informative events, i.e. its throughput 8(S). The throughput of S depends on
two factors: the internal structure of S and the interaction of S with the environment where
it operates. The structure of S determines the maximum throughput that S can sustain.
Latency-insensitive system S effectively runs at this throughput unless the environment

forces it to slow down by either not providing enough informative events to process or

CHAPTER 5. PERFORMANCE ANALYSIS 128

Te P Tc Pc
-®
MG1 d
Pd 1d P ™
OF o
| NGO
Te Pe M G 3
MG2
Py T "
‘, o=

Figure 5.5: Example of constructive modeling with marked graphs.

requiring it to wait via back-pressure.

In Section 4.3 I discussed qualitatively how the insertion of relay stations, by changing
the internal structure of S, may have a negative impact on %(S). To quantify such impact,
in the next section I define the notion of maximum sustainable throughput of a marked
graph. Then, I explain how to use the properties reported in Section 5.1.2 to compute
the maximum sustainable throughput 3(M Gs) of the marked graph M Gs modeling S.
Since, by construction, there is a one-to-one correspondence between the tokens of M Gs
and the informative events of S, it follows naturally that 9(S) < 3(M Gs). Obviously,
this inequality becomes an equation when the environment is is able to adapt itself to the

system’s throughput.

5.2.2 Maximum Sustainable Throughput

Definition 5.7 implies that the reciprocal of the cycle time of a transition corresponds
to the average firing rate of the transition. Theorem 5.5 guarantees that all transitions in
a strongly connected timed marked graph have the same cycle time. These facts together
with Assumption 5.1 on step semantics lead to the definition of the maximum sustainable

throughput of a strongly connected marked graph simply as the lesser between the recipro-

CHAPTER 5. PERFORMANCE ANALYSIS 129

cal of its cycle time and one *.

Definition 5.11 The maximum sustainable throughput of a strongly connected marked
graph M G is defined as

ﬁ(M§)=.min{l, H%@}

Hence, the maximum sustainable throughput is a rational number in the interval 10,1]. The
modifier “maximum sustainable” comes from the following fact: when a marked graph is
connected to another marked graph its throughput can only decrease.

In the context of constructive modeling, a marked graph represents a patient process of
a latency-insensitive system. This can either be a primitive marked graph (a shell/core pair
or a relay station) or a composite marked graph, which is obtained by connecting primitive
marked graphs. When two generic strongly connected marked graphs M G4 and M Gp
are connected, two scenarios are possible for the resulting marked graph M Gc: it is either
strongly connected or not.

When M Gc is strongly connected, the cycle time of each component marked graph
(taken as a stand-alone marked graph) represents a lower bound on the cycle time of the

composite marked graph, i.e.
(M Ga) < (M Ge) = T(MGa)

In fact, comparing the observation of the firing of a transition # of M G4 as a component
within M Gc with the observation of the firing of # when M G is stand-alone gives:

Targe(t) 2 o, (1),

i.e. as a result of the composition the cycle time of 7 can only increase. This is a conse-
quence of Theorems 5.5 and 5.6: since all cycles of M G4 are also cycles of M Gc, then
(M G,) is a lower bound of the cycle time of M Gc. Conversely, O(M G4) is an upper
bound of 9(M Gc), justifying the modifier “maximum sustainable” that is attached to the
term “throughput”.

4Each transition in a marked graph when it fires consumes a token from each input place and produces a
token on each output place because a marked graph is an ordinary Petri net. Therefore, given Assumption 5.1,
at each step all enabled transitions fire concurrently and only once.

CHAPTER 5. PERFORMANCE ANALYSIS 130

Example All marked graphs of Figure 5.5 are strongly connected. Marked graph MG
contains only cycle ¢; = {ta, Pa,c, Pe:tb: Pb:1d, Pa} and marked graph M G, contains only
cycle ¢ = {te, Pe,t7, Pf:1g, Pg}- The cycle times of M Gy and M G, coincide with the cycle
metrics of their corresponding single cycles, i.e: T{M Gi) = u(c1) = f‘i and ©(M @) =
yler) = % Besides cycles ¢; and c;, marked graph M G; presents the additional cycle
¢3 = {tas PartesPesths Pystfs Pfslg, Pagrtes Px} With cycle metric ules) = g. Hence, M G3 has
one critical cycle, ¢1, and cycle mean T(M Gz3) = (M G1) = p(c1) = % = 2. Notice that
(M G3) remains equal to 2 regardless of the number of tokens that the initial marking
presents on P, and P,. Seen from the “component perspective” of M Gi and M G, any
possible composition may only increase their cycle time, or, dually, make them operate at
a throughput which can be at most equal to their maximal sustainable throughput. Instead,
from the “system perspective” of M G, its throughput is dictated by the slowest among its

components, which in this case is M G. n

When M G is not strongly connected the analysis is not as simple. The next example

illustrates the main issue with this scenario and suggests a possible way to handle it.

Example The marked graph M G, of Figure 5.1(b) is not strongly connected. Instead,
it presents two strongly connected components that coincide respectively with cycle c; =
{ts,ps,t6, D6} and cycle c2 = {t7, ps, 3, P9, 19, pio} that are connected via place p7. Their
cycle metrics are respectively u(c1) = % and y(cy) = % Since it is the strongly connected
component with the smallest cycle time that outputs tokens to the other, there is unbounded
token accumulation at place p;. Therefore, M Gj, is not bounded. Further, the transitions
of M G do not have the same cycle time: t5 and #5 have cycle time equal to 2, while 77, f3
and 19 have cycle time equal to 3. Indeed, the cycle time of the entire marked graph is only

defined if it is strongly connected, since Theorem 5.5 does not hold otherwise.

On the other hand, reversing the direction of the linking between the two strongly con-
nected components results in a new marked graph that is now bounded, albeit still not
strongly connected. Strictly speaking, it is not correct to refer to the cycle time of the entire
marked graph in this case either. Nevertheless transitions 5 and ¢ are now forced to fire
with a cycle time that is also equal to 3, i.e. mirroring the cycle metric of c3. All transitions

therefore have now the same cycle time. "

CHAPTER 5. PERFORMANCE ANALYSIS 131

Without touching the classical concept of cycle time, I extend the definition of maxi-
mum sustainable throughput to marked graphs that are not strongly connected as well as to
marked graphs that are acyclic. Recall that a marked graph that is not strongly connected
is still a directed graph and, therefore, can be partitioned in strongly connected compo-
nents (SCCs) using one of the various algorithms that have been proposed [62], including
Tarjan’s linear-time algorithm [232] or, in case of very large graphs, algorithms based on
implicit techniques [246]. In particular, it is simple to build the component graph G5€
where each vertex represents an SCC of M G and there is one arc between two vertices of
GSCC whenever there is at least one arc between the two corresponding SCCs of M G [62].
GSCC is a directed acyclic graph (DAG). The component graph and the maximum sustain-
able throughput of each SCC are the tools to analyze the interaction between the various
SCCs during the system’s operation.

Without lack of generality, consider the scenario where marked graph M Gc has only
two SCCs, M G4 and M Gp, with M G4 passing tokens to M Gp. Considering the two
SCCs as stand-alone marked graphs, three cases are possible:

o O(MGy) < O(MGs), ie. the rate of token production of M G4 is smaller than the
rate of token consumption of M Gp. Therefore, M Gp is “slowed down” by M G4.
The composite marked graph H Gc consumes and produces tokens with the same
rate as 9(M G,4). This suggests that the definition of maximum sustainable through-
put can be relaxed by writing 3(M G¢) = B(M G4) even though M Gc is not strongly

connected.

o (M G4) = (M Gg), i.e. M Gp consumes token at the same rate that they are pro-
duced by M G;. Therefore, it is natural to write again: 9(M Gc) = 3(M Ga).

o O(MGy) > O(MGp), ie. the rate of token production of M Gy is larger than the
rate of token consumption of M Gp. Therefore, M Gp cannot “keep up” with MGy.
In fact, M Gc is not a bounded marked graph because at the boundary between the
two SCCs there is a place p that experiences unbounded token accumulation. In
this case, to define a notion of throughput of M Gc is less immediate because the

latency-insensitive system modeled by M G¢ can produce informative events with

CHAPTER 5. PERFORMANCE ANALYSIS 132

rate 3(M Gp) but cannot really consume them with rate 3(M G). In fact, it cannot
even store all of them! The reason is that practically it is not possible to implement
an infinite queue in place of p. Instead, a feasible implementation of a latency-
insensitive system can be obtained using only storage elements of finite capacity.
Therefore, one of the goals of constructive modeling with marked graphs is to verify
the boundedness of M G, as this'captures a necessary physical limit for the imple-
mentation of the latency-insensitive system modeled by M Gc.

These observations further motivate the modifier “maximum sustainable” in Defini-
tion 5.11. Setting (M Gc) = D(M G3) is a concise way to capture a fundamental
practical limitation, namely the maximum rate at which the environment can safely
send informative events (tokens) to the system. Conversely, it is also the rate at which

it must send them to keep the system operating at the top of its capabilities.

There is one last scenario of marked graph composition to consider: marked graphs
M G4 and M Gp are acyclic graphs and their connection gives a marked graph M G that is
also acyclic. Since an acyclic marked graph can sustain any rate of production/consumption,
it is reasonable to set its maximum sustainable throughput equal to one by definition. This
confirms the intuition, because a marked graph without cycles represents a pipelined sys-
tem without feedback paths. Hence, for any possible initial marking there exists a finite
number K of steps after which, all token vacancies (stalling events) originally in the sys-
tem have been ejected through its output ports and, as long as each input port continues to
receive an input token at each step, each place in the system contains a token.

Based on the above discussion, Definition 5.11 can be revised as follows:

Definition 5.12 The maximum sustainable throughput of a marked graph M G is defined
as
1 if M G is acyclic;
H(MG)=< min { 1, n(—ﬂ]{_g)} if M G is cyclic and strongly connected;
MilyascoeM {13(91'[gscc)} otherwise.

In the sequel, when a marked graph M G is firing at the top of its capability, I may refer to
B(M G) simply as the throughput of M G.

CHAPTER 5. PERFORMANCE ANALYSIS 133

a c
—le
b

d

Figure 5.6: Primitive marked graphs from the infinite-queue model library £;p.

5.2.3 Performance Analysis with the Infinite-Queue Model

The first constructive model is based on the assumption that the shells have unlimited
storage space in their input queues, i.e. queues of infinite length. This model is called the
infinite-queue model. Figure 5.6 illustrates the library Lo for this model. The diagrams
on the left-hand side represent respectively a relay station and a shell-core pair with two
input channels and two output channels. On the right-hand side there are the corresponding
primitive marked graphs. Primitive marked graphs for shells having different I/O interfaces
have similar structures.

In the infinite-queue model a relay station is simply represented as a transition with an
incoming arc, an outgoing arc, and an output place that does not contain a token in the

initial marking. This initially empty place fulfills two roles:

e it represent the generic storage element that makes a relay station be a stateful re-

peater which can be used to pipeline a channel between two shells;

e it captures the fact that the initialization value for the storage element of a relay

CHAPTER 5. PERFORMANCE ANALYSIS 134

Q_@

: —
oié” " O—HO—HO—HO—H-O—HO0—FO ;i

O

Q|

b CHANNEL (LATENCY = 8)

J é‘D CHANNEL WITH BACK-PRESSURE (LATENCY = 8)

Figure 5.7: Channels in marked graph models.

station is a stalling event as discussed in Section 4.3.1.

In the infinite-queue model, the marked-graph modeling a shell-core pair with m input
channels and » output channels is simply a transition with m incoming arcs, » outgoing
arcs and r distinct output places. Also, in the initial marking, each of these places contains
exactly one token representing the informative event that is associated to the correspond-
ing initialization value stored in the output register of the sequential core, i.e. the first
informative event of the corresponding signal according to the strict system specification.
The logic controlling the operations of a shell-core pair is implicitly captured by the firing
rule that governs a transition in a ordinary marked graph: a transition fires when each of
its input place presents at least a token. This rule corresponds to an AND-causality se-
mantics [96] and for a latency-insensitive system can be reinterpreted as follows: if a new
informative event is available on each input channel then the core processes all of them,
thereby updating its internal state and producing a new informative event on each output
channel; instead, it is sufficient that one informative event is missing (i.e. a stalling event is
present in its place) for the shell to freeze the computation of the core. Based on Assump-

tion 5.1, a marked graph evolves through a sequence of firing steps indexed by timestamps

CHAPTER 5. PERFORMANCE ANALYSIS 135

and at each step all enabled transitions fire concurrently. Therefore, the freezing of a core
of the latency-insensitive system at a given clock cycle is simply captured in the marked-
graph model by the fact that the corresponding transition does not fire at the corresponding
timestamp.

The notion of channel of a marked graph is instrumental to define formally an infinite-

queue marked-graph model.

Definition 5.13 A channel g of a marked graph M G = (P, T,F,W,Mp) is a directed ele-
mentary path {ty, po,11,P1,-- - sIn=1,Pn—1,n} Such that Vn € N and Vi € [1,n—1]

Mp) = 1

Vpe te (M(p)= 1)
Mp) = 0

ltie] = 1

leti] = 1

The latency of channel q is M(q) = n. Transition tq is the tail transition ail(q) of q. Tran-
sition t, is the head transition head(q) of q. Transitions {1,,... ,In—1} are the elements of
the set int(q) of internal transitions of g. The set of channels of a marked graph MG is
denoted as Q(M G).

A channel in a marked-graph model corresponds exactly to a channel ofa latency-insensitive
system, i.e. a point-to-point connection between two shell/pairs cores. A channel may con-
tain any number of consecutive relay stations. The latency A(g) of a channel g is equal
to the number of its internal transitions (relay stations) plus one. A channel has minimum
latency, equal to one, when it does not contain any transition.
Example The top diagram of Figure 5.7 illustrates a marked-graph channel ¢ with latency
Mg) =8. =
An infinite-queue marked-graph model is a marked graph where no place has initial
marking greater than one and the input transition of each initially empty place belongs to

the set of internal transition of exactly one channel.

CHAPTER 5. PERFORMANCE ANALYSIS 136

Definition 5.14 A infinite-queue marked-graph model of a latency-insensitive system im-
plementation S, is a marked graph M G = (P, T,F,W, Mp) such that Vp € P(Mo(p) < l)

andVp € Py3lqg € Q(M G) (op - z'nt(q)).

Hence, with respect to library L;p, each internal transition of a channel together with its
output place corresponds to a primitive marked graph for a relay station, while each of the
remaining transitions corresponds to a primitive marked graph for a shell.

Example Marked graph M G of Figure 5.5 is an infinite-queue model of the latency-
insensitive system S of Figure 5.4. Transitions #4,2,!y,t together with the corresponding
output places correspond to shells Sz, Sp, Sr,Se respectively. Notice that S, and Sy have two
input channels and one output channel, while S, and S, have two output channels and one

input channel. Overall, M G3 has six channels:

Qtpasy = o Pystr} with Mggy) =1
Qtoasy = {tesPests} With Mggupy) =1
G{tete} = tesProta} With Mgy z}) =1
D{taty} = {ta: Partes Desty} With Mgy,) =2
Qityia} = {t6:Postas Pasta} With Mgy,) =2
Qs = {1 Pt Ppste} With Mage)) =2

Transitions #,4,1g together with their single output place correspond to relay stations
RS;,RS4,RS, respectively Figure 5.5 shows the initial marking of M G, which captures
the initialization values of the storage elements within shell/core pairs and relay stations in
accordance with the discussion of Section 4.3.1. Tokens correspond to informative events
and “token vacancies” correspond to stalling events (i.e. absences of informative events).
Observe the presence of one token on each place of a shell/core pair and the lack of to-
kens in the place of each relay station. Figure 5.8 shows the same marked graphs after
45 timestamps (steps) have passed by. To look at the extra “count” places that have been
added to track the firing activity in each marked graph—recall that these marked graphs

are all strongly connected—gives a visual confirmation of the values for their throughput:

CHAPTER 5. PERFORMANCE ANALYSIS 137

M G) = 1, MG,) = 2, and D(M G3) = §. Naturally, these values can be computed
statically based on the initial marking of # Gz by using the result of Theorem 5.6 or one
of the methods discussed in Section 5.3.1. =

As discussed in Section 4.2.2, if a given shell S; with multiple input channels cannot
fire for one or more consecutive timestamps due to the repeated absence of an informative
event on an input channel, then it has to buffer one or more informative events that, in the
meantime, may have arrived on the remaining channels. In this model, the input-buffering
activity of a shell is captured .by the accumulation of tokens in the input places of the shell
transition 3. Strictly speaking, based on Figure 5.6, these places represent either the output
register of a core in an up-link shell/core pair or the storage element in an up-link relay
station. However, latency-insensitive design aims at producing modular system whithout
touching the internal logic of the core modules. This is why the additional buffering space
is located within the shells. The bottom line is that if # is the maximum number of tokens
that can be present at any given timestamp on a input place p of a shell S;, then the input
queue of S; must be sized with a length equal to 7.

Figure 5.8 is a snapshot of the firing activity of marked graph M G taken at timestamp
45. Observe that place P, contains two tokens at this timestamp. In fact, by analyzing
the periodic behavior of M G; it is possible to determine which transition fires at every
timestamp. This allows us to compute statically how many tokens there are in each place at
each timestamp and, consequently, what is the maximum number of tokens that may ever
stay at a given place (over all timestamps). In this example, 2, fires every other timestamp,
and P,, which lies at the interface from the faster to the slower SCC, contains alternatively
one token or two tokens. Therefore, it is necessary to add an extra storage slot between Z,
and 1, to buffer the additional token. While place P; originally represents an output register
of the core associated to transition 7, the necessary additional slot must be implemented
as a unit-length input queue within the shell S, associated to #, because it is shell S, that

synchronizes the input coming from S, with those coming from S.

SRecalling the step semantics, it is easy to prove that there can be accumulation of tokens only on the
input places of a transition with multiple incoming arcs. Hence, among the primitives of library L;g, token
accumulation can only happen in front of a transition associated to a shell with multiple inputs (and not
a relay station). This is consistent with the goals of the infinite-queue model, which does not capture the
back-pressure mechanism.

CHAPTER 5. PERFORMANCE ANALYSIS 138

To pe L Te P T e

FO— 40O }O 10

MG1

3
2?

4
®

a

¥
2

ot T | w MG3

MG2

ml 6. ~ " "()‘:-I > "n

Figure 5.8: The marked graph of Figure 5.5 after 45 timestamps.

Using the marked-graph model it is easy to have a confirmation that a latency-insensitive

system does never deadlock, i.e. it is live by-construction.

Theorem 5.7 The infinite-queue marked-graph model M Gs of a latency-insensitive sys-

tem implementation S is live.

Proof. Theorem 5.1 guarantees that any marked graph M G is live when the initial mark-
ing My assigns at least one token on each directed cycle of M G. Hence, it sufficient to
prove that in M Gs there is no cycle ¢ that does not have any token on its places. By
Definition 5.14 every initially empty place p € Py of M Gs is contained in exactly one
channel ¢ € Q(M Gs). Without loss of generality, let consider any place p and its channel
g ={t0,00,11,P1,---+Ds-- - 1In—1, Pn—1:1n}. By Definition 5.13 place po contains one token.
Recall that every place of a marked graph has only one input and one output transition.
Also, every internal transition of a channel has only one input and one output place. There-
fore, places pg and p belong exactly to the same cycles in M Gs. Thanks to the generality
of choosing p, all cycles of M Gs contain at least one place pp having a token in the initial
marking. O

CHAPTER 5. PERFORMANCE ANALYSIS 139

Figure 5.9: A non-strongly connected latency-insensitive system without back-pressure.

The previous result corresponds to the fact that a latency-insensitive system is obtained
from a patient system by encapsulating stallable cores with shells and, where necessary, in-
serting relay station on the channels between the shells. Therefore, in a latency-insensitive
system it is not possible to have a feedback loop that contains only relay stations without

also, at least, one shell/pair core.

Example Figure 5.9 shows an implementation of a latency-insensitive system S that is
not strongly connected. The diagram Figure 5.9 could be legitimately interpreted as a sub-
system Sgon (consisting of two shells S and S4 and one relay station) that receives input
data from another sub-system .S, (consisting of shells S, and S3). From each sub-system
viewpoint, the other sub-system represents the environment. System S is represented by
the marked-graph model of Figure 5.10, which is made of the primitives from library L;rg
illustrated in Figure 5.6. The marking in Figure 5.14 is the initial marking. Figure 5.11
shows the marking for the same marked graph after 30 timestamps have passed by from the
initial marking. Observe that there is unbounded accumulation of tokens at place e between

shell S and shell S4. This accumulation is not surprising because 5, has throughput

CHAPTER 5. PERFORMANCE ANALYSIS 140

e
AT .

Figure 5.10: Infinite-queue model for the latency-insensitive system of Figure 5.13.

3 S
[]
S
[]
[
L i
®
N ——
S2 s2 .
[
®
d
®
Tene
)

Figure 5.11: The marked graph of Figure 5.10 after 30 timestamps.

CHAPTER 5. PERFORMANCE ANALYSIS 141

(Sup) = 1 while Sgown has maximum sustainable throughput Y Sdown) = % Based on
Definition 5.11, the maximum sustainable throughput of the whole system is BS) = %
However, in this case, the implementation has a correct behavior only if at place e there is
an infinite queue.]

The previous example shows the pros and cons of the infinite-queue model. If the
latency-insensitive system S is a closed system, i.e. designers can modify all its parts,
then the infinite queue model is sufficient to reason on the interaction of the sub-systems
of S and how this affects the functionality and performance of S. In the above example,
since infinite queues are not feasible, designers must decide how to modify the system, e.g.
either slow-down S, or speed-up Syown. However, the infinite-queue model falls short for
the case of system S, which is an open system, i.e. designers have to specify and implement
S without knowing anything about the environment in which S operates (but for the fact that
it understands the latency-insensitive protocol). This is the case of the previous example
assuming that designers cannot modify the structure of 5,p, while they can only use the
latency-insensitive protocol to require S, to stall. The model presented in the next section

makes it possible to capture this case because it handles the back-pressure mechanism.

5.2.4 Performance Analysis with the Finite-Queue Model

The second constructive model replaces the infinite-queue assumption with two “weaker”

assumptions:

1. the shells have limited storage space in their input queues; specifically, each input
queue of every shell in the system has a length equal to K, where K is a finite natural

number;

2. the shells communicate by means of channels that implement a latency-insensitive

protocol with back-pressure (like the one discussed in Section 4.2).

This model is called the K-finite-queue model, or simply finite-queue model when the value
of X is clear from the context.

The right-hand side of Figure 5.12 illustrates two primitive marked graphs from the
library Lprg of the 2-finite-queue model. These primitive can be compared with the prim-

CHAPTER 5. PERFORMANCE ANALYSIS 142

i 0
i_back o_back
a ¢_back
a_back ¢
b_back d
b/ d_back

Figure 5.12: Primitive marked graphs from the 2-finite-queue model library Lyrg.

itives of library Lo in Figure 5.6 which model the same components (a relay station and
two-input two-output shell) but assuming infinite-length queues. The visible difference is
only in the presence of additional arcs and places to represent the back-pressure mecha-
nism.

A relay station is modeled by a transition with two incoming arcs, two outgoing arcs,
an initially empty place, and a place that is initialized with two tokens. The initially empty
place fulfills the same two roles as before, i.e. it captures both the storage capability in
the forward direction and the stalling symbol as the initialization value within the relay
station. The additional place together with the additional incoming arc and outgoing arc
are necessary to model back-pressure. In particular, the place initialized with two tokens
represents the storage capability of the relay station, which is equal to two 8

A shell-core pair with m input channels and » output channels is again modeled as

a transition, but this time it has twice the number of arcs and places. More precisely, it

SStrictly speaking, this model is actually the correcr model of a relay station, because a relay station is
formally defined as a buffer of capacity equal to two (Definition 3.19). Instead, it is more proper to say that
the model of Figure 5.6 represents just a sequential buffer, a stateful repeater, of potentially infinite capacity.

CHAPTER 5. PERFORMANCE ANALYSIS 143

has m + » incoming arcs and m + n outgoing arcs because there is an additional arc for
each channel to express back-pressure. Specifically, there are 7 outgoing arcs linked to
forward-output places that contain one token each and m outgoing arcs linked to backward-
output places that contain two tokens each. The main difference is obviously given by the
backward-output places, whose initial marking represents the fact that all input queues
of this shell have a finite length equal to two. Different queue lengths can be captured
straightforwardly by changing the number of tokens in the initial marking.

The finite-queue model uses tokens for a twofold purpose: a token traversing the
marked graph either represents an informative event or the availability of storage space
(in a relay station or a shell queue) for buffering an incoming informative event. Dually,
the lack of a token in a place represents either the absence of an informative event (i.e.
the presence of a stalling event) or the lack of available storage space (the relay station
or the queue is filled). However, it is still reasonable to interpret simply a token as an
informative event and the absence of tokens in a place as a stalling event. In fact, this is
in complete harmony with the formalization of the theory of latency-insensitive protocols
given in Chapter 3, where no distinction was made between “forward stalling” and “back-
ward stalling” and the emphasis was all on distinguishing informative events from stalling
events ’.

The shell-core pair modeled by the primitive marked graph of Figure 5.12 is the two-
input two-output shell of Figure 4.2 having the following characteristics:

o the shell has input queues with finite length (equal to two in this particular case);
o the shell only stores informative events in the input queues;

e the input queue is “by-passable” whenever two conditions hold: (1) it is empty and
(2) the shell does not need to stall its core. In this case an incoming informative event

is immediately passed through to the core for being processed.

7In particular, recall that the buffers and relay stations were formally defined in Section 3.3 without
even specifying the direction of their signals, i.e. without assuming that they are functional processes. The
distinction between void flag signal and stop flag signal was introduced as part of the refinement step that
produces the implementation of Section 4.2.

CHAPTER 5. PERFORMANCE ANALYSIS 144

Figure 5.13: Finite-queue model for the latency-insensitive system of Figure 5.9.

Definition 5.13 of channel is modified as follow in the K-finite-queue model to account

for the back-pressure mechanism.

Definition 5.15 A channel with back-pressure g of a marked graph M G = (P, T,F,W, M)
is a directed elementary path {to, po,t1,P1s- - -stn—1,Pn—1.1n} together with a set of places
Pop={p\,Ph;-- P> Pn} such that in €N, Vi€ [1,n—1] and VK € N

M(po) = 1
VpE e (M(p)=1)
M(pi) = 0
M) = K
ltie] = 2
|eti| = 2

The elements of Py, are the backward places. Places py, ..., pn-1 are the forward places.

CHAPTER 5. PERFORMANCE ANALYSIS 145

The definitions given for a channel naturally extends to a channel with back-pressure. A
marked-graph channel with back-pressure models precisely the channel of the latency-

insensitive system defined in Section 4.2.1.

Example The bottom diagram of Figure 5.7 illustrates a marked-graph channel with back-
pressure g. This channel has latency A(g) = 8.]

An K-finite-queue marked-graph model is a marked graph where no place has initial
marking greater than K, each initially empty place is a forward place of a channel with
back-pressure and each place with initial marking greater than 1 is the backward place of a

channel with back-pressure.

Definition 5.16 A K-finite-queue marked-graph model of a latency-insensitive system im-
plementation S is the marked graph constructed through the following steps:

1. build an an infinite-queue marked-graph model M G of S;

2. transform every channel g € M G into a channel with back-pressure through the
addition of backward places having initial marking equal fo K.

Hence, with respect to library Lxrg, each internal transition of a channel together with its
backward and forward output places corresponds to a primitive marked graph for a relay
station, while each of the remaining transitions corresponds to a primitive marked graph
for a shell.

Example Figure 5.13 shows a latency-insensitive system implementation based on back-
pressure. This implementation is equivalent to the one of Figure 5.9, which does not use
back-pressure. Figure 5.14 shows a marked graph M G that models the implementation of
Figure 5.13. and is built using the primitives from library Lorg illustrated in Figure 5.12.
The marking in Figure 5.14 is the initial marking. Observe the presence of the backward
output places that contain two tokens each in the initial marking. Overall, M G has five

CHAPTER 5. PERFORMANCE ANALYSIS 146

Figure 5.14: Finite-queue model for the latency-insensitive system of Figure 5.13 (queues
length = 2).

Figure 5.15: The marked graph of Figure 5.14 after 30 timestamps.

CHAPTER 5. PERFORMANCE ANALYSIS 147

channels:

a5} = {51,a,RS,d’,S4} with Mgys, ,s,3) =2
gisesi} = {54,0,51} with A(g(s,s,}) =1
4$r,55) = {52,6,53} with Mgys, 55)) = 1
4isy.5) = {53,4: 8} with Mags,5)) =1
ais;.50) = {53,654} with Alg(s; 5,)) =1

Compared to the marked graph of Figure 5.10, which models the same system but with
the primitives from library L7g, M G contains the same two “global” cycles ({S1,RS, 54},
and {S>,S3}) plus several additional cycles due to the insertion of back-pressure. Of these
eight are elementary cycles 8: two cycles mirror the original global cycles (mirror cycles)
and six are “local cycles” corresponding to the four un-pipelined channels and the two sub-
channels composing the pipelined channel (local back-pressure cycles). Figure 5.15 shows
the marking of M G after 30 timestamps have passed by from the initial marking. Observe
that there is no unbounded accumulation of tokens at place e between shell S3 and shell Sy.
The reason is precisely the back-pressure mechanism which, in marked-graph terms, forces
the number of tokens in the cycle around transition S3 and S4 to remain constant (equal to
three). []

The following theorem states an important result: given a latency-insensitive system S,
an implementation based on back-pressure and input queues of length equal or greater that
two can sustain the same maximum throughput as a implementation with infinite queues
and no back-pressure. Naturally, the importance of this results consists of its practical con-
sequences as infinite queues cannot be physically built, while a back-pressure mechanism

with finite queues is easy to implement.

Theorem 5.8 Given a latency-insensitive system S, the marked-graph model M g§< built
using any K-finite-queue model library Lxro with K > 2 has maximum sustainable through-

8 As discussed in Section 5.3.1, to compute the cycle time of a strongly connected marked graph is suffi-
cient to consider only the elementary cycles.

CHAPTER 5. PERFORMANCE ANALYSIS 148

put 3(M GX) equal to the maximum sustainable throughput (M G5°) of the marked-graph
model M G of S that is built using the infinite-queue model library Lig.

Proof. Since both M GX and M Gg° model the same system the former can be obtained
from the latter by inserting » backward-output places (together with the corresponding 2-r
arcs) on its channels. This operation creates new cycles. Let C be the set of cycles of M Gg.
Then, the set of cycles C' of M GX contains the same |C| cycles plus |C|+r new elementary
cycles. Each of the additional |C| elementary cycles is a cycle m. mirroring a given cycle ¢
in C. Recalling Definition 5.8 of cycle metric, it is easy to see that Ve € C(u(c) < p(me))
because ¢ and m, have the same number of transitions and places, but each place in m,
contains two tokens while the places of ¢ contain either one or zero tokens. Each of the »
additional cycles is a local back-pressure cycle g = {ta, pa,ts, pp} With two transitions and
two places. Transition #, and ¢, may model either a relay station or a shell-core pair. Hence,

there are four possible combinations to consider:

e ifz, models a shell-core pair and ¢, a relay station then x(g) = k%;
e ifz, models a relay station and ¢ a shell-core pair then u(g) = %;
e ifboth 7, and ¢, model shell-core pairs then u(g) = g47;

e if both 7, and #, model relay stations then u(g) = 2.

Recalling the hypothesis K > 2, any local back-pressure cycle g has cycle metric u(g) < 1.
Therefore, if [C| > 1, i.e. M G5 contains at least one cycle, then a cycle ¢* in C has the
largest cycle metric u(c*) among all cycles of M GX. From Definition 5.12 of maximum
sustainable throughput and Theorem 5.6 it follows that §(M GEY=3(MGS) = ﬁ
Finally, if |C| = 0, i.e. if M GF is acyclic, then (M G5") = 1 by Definition 5.12.
Instead, M g§ is strongly connected. Its elementary cycles, however, are only mirror cycles
g with cycle metric u(g) < 1 and, therefore, by Definition 5.12, also ¥MgK =1 O
An important design guideline on the sizing of the shell input queues follows from the
previous result: to increase the lengths of the queues beyond two slots is not useful when
using back-pressure. On the other hand, the following result confirms that the “number

two” plays a special role in latency-insensitive design 9. In fact, an implementation of S

9Recall Lemma 3.8 which motivates Definition 3.19 of relay station.

CHAPTER 5. PERFORMANCE ANALYSIS 149

based on back-pressure and finite queue of length one is functionally correct, but is not able

to offer the same performance.

Corollary 5.9 Given a latency-insensitive system S with at least one relay station, the
marked-graph model M G} built using a 1-finite-queue model library Lirg has maximum
sustainable throughput not greater than 0.5.

Proof, Following the same lines of Theorem 5.8, it is sufficient to focus on the local back-
pressure cycle g = {ta, pa,t, pp} Where 7, models a relay station and #; a shell-core pair.
This cycle has cycle metric 4(g) = 1% = %- Therefore, the maximum sustainable throughput
B(MG}) of M G} is capped at 0.5 by the reciprocal of 4(g). m]
Example Figures 5.16 shows a marked graph modeling an implementation of the system
of Figure 5.13 that is built using the primitives from library £;rg. Compare the marked
graph with the one in Figure 5.14 that models an implementation of the same system but
it is built using the primitives from library Lorg. The structure of the marked graph is
obviously the same, but the initial marking is different: the backward output places contain
only one token to represent the reduced storage capacity 10, Figure 5.17 shows the marking
for the same marked graph after 30 timestamps have passed by from the initial marking of
Figures 5.16. Not surprisingly, the system has been able to process only 15 tokens during
an interval of 30 time units.]

I conclude this section proving liveness and boundedness for marked-graph models
built using library Lgrg. The following result guarantees that given a latency-insensitive

system S, any implementation based on back-pressure and finite queues does not deadlock.

Theorem 5.10 The K-finite-queue marked-graph model M Gs of a latency-insensitive sys-

tem implementation S is live.

Proof, It is necessary to prove that there are no cycles of initially empty places. This nat-
urally follows from the observation that marked graph M Gs is obtained from an infinite-
queue marked-graph model M G of S by adding some backward places having initial

10Here the relay station are replaced with the buffers B} (i, /) defined in Section 3.3.2. As discussed
in Section 3.3.4 these buffers can only sustain a throughput equal to 0.5. This, however, is the maximum
throughput sustainable by the whole implementation as guaranteed by Corollary 5.9.

CHAPTER 5. PERFORMANCE ANALYSIS 150

Figure 5.16: Finite-queue model for the latency-insensitive system of Figure 5.13 (queues

length =1).

¢_beck o

s2
c
d_back
I—

Figure 5.17: The marked graph of Figure 5.16 after 30 timestamps.

CHAPTER 5. PERFORMANCE ANALYSIS 151

marking equal to X € IN (Definition 5.16). Since M Gg is always live (by Theorem 5.7),
M Gs is also live. In fact, the simple insertion of places that are not initially empty cannot
create a cycle of initially empty places and, therefore, the preservation of the liveness con-

dition of Theorem 5.1 is guaranteed. O

The following result confirms that the introduction of back-pressure removes the need
for the infinite queue assumption. Given a latency-insensitive system S, any implementa-

tion based on back-pressure and finite queues is guaranteed not to overflow.

Theorem 5.11 The K-finite-queue marked-graph model M Gs of a latency-insensitive sys-
tem implementation S is (K + 1)-bounded.

Proof. The boundedness of M Gz follows directly from Theorem 5.2 and the observation
that every place in marked graph M Gs belongs to at least one cycle. In fact, each place
corresponds to a distinct local back-pressure cycle g = {tayPasts, pb}. Therefore, to com-
pute the maximum number of tokens that can accumulate at each place, it is sufficient
to consider the four possible scenarios for a channel cycle g as discussed in the proof of
Theorem 5.8:

e if £, models a shell-core pair and 7; a relay station then all places on g are K + 1-
bounded;

e ifz, models a relay station and ¢, a shell-core pair then all places on g are K-bounded;
e if both 7, and ¢, model shell-core pairs then all places on g are K + 1-bounded;

e ifboth 7, and #, model relay stations then all places on g are K -bounded.

Hence, M Gs is (K + 1)-bounded. O

The previous result is consistent with the physical reality of an implementation such as
the reference implementation discussed in Section 4.2, which is based on back-pressure
and queues of length two. The corresponding marked-graph model is 3-bounded and three
is precisely the number of back-to-back storage elements that are present on a connection
between two shells or from one shell to a relay station (this number goes up to four on a

connection between two relay stations or from a relay station to a shell).

CHAPTER 5. PERFORMANCE ANALYSIS 152

5.3 Related Work

I summarize here the previous work that is most related to the modeling techniques
discussed in this chapter. First, I compare the concepts of cycle time, maximum profit-to-
time ratio, and maximum cycle mean and I clarify why algorithms solving the maximum
cycle mean problem can be used to compute the throughput of a latency-insensitive system.
Then, I quickly survey previous literature on AND/OR causality as well as on the use of
Petri nets to model asynchronous systems and analyze their performance. Finally, I explain

the relationships between marked graphs and synchronous data flows.

5.3.1 Maximum Profit-To-Time Ratio and Maximum Cycle Mean

The cycle time of a timed marked graph is a concept similar to the maximum profit-to-
time ratio [140]. Given a doubly weighted cyclic directed graph G, the profit-to-time ratio
of a cycle ¢ € G is given by the sum of the weights w(a;) of each arc a; of ¢ divided by the
sum of the “times” d(a;) of each of these arcs. Hence, to solve the maximum profit-to-time

ratio problem amounts to find a critical cycle c whose ratio coincides with

w(c)
s (50)

where w(c) is the sum of the weights of the arcs of cycle ¢, and d(c) is the sum of their
delays. Notice that it is sufficient to consider only the elementary cycles of G, i.e. cycles
where no vertex is repeated. In [140], Lawler provides an O(|V|- |4|- logB) algorithm to
solve this problem where V is the set of vertices of G, 4 is the set of arcs, and B is a variable
related to the desired precision of the results.

As discussed in [71], the maximum cycle mean problem is a special case of the max-

imum profit-to-time ratio problem. In fact, the maximum cycle mean of a weighted cyclic

e 2
VeeG |C|

where w(c) is the sum of the weights of the arcs of cycle ¢, and |c| is equal to the number of

directed graph G is defined as

arcs of c. Therefore, if Va; € ¢(d(a;) = 1), then the profit-to-time ratio of ¢ coincides with

CHAPTER 5. PERFORMANCE ANALYSIS 153

the cycle mean of c. In 1978 Karp published an elegant theorem for calculating the max-
imum cycle mean together with a companion algorithm of complexity O3] - 14]) [127].
Since then, several other algorithms have been proposed to solve the maximum cycle mean
problem as surveyed in [71, 101]. Relationships with the dual optimization problems, i.e.

finding the minimum cycle mean and the minimum cost-to-time ratio, are discussed in [71].

In modeling latency-insensitive systems with marked graphs each transition is assumed
to have unit delay. Hence, operationally, one can take a marked graph M G and build a cor-
responding weighted directed graph G by transforming each transition into a vertex, each
place into an arc, and labelling each arc with a weight equal to the number of tokens con-
tained in the corresponding place (for any given marking). Then, computing the maximum

cycle mean of G returns also the cycle time of M G.

5.3.2 AND/OR Causality in Modeling Discrete Event Systems

Discrete event systems with maximum and minimum constraints are a pervasive model
in control theory, computer science, and operation research. A maximum constraint on a
given signal s corresponds to an AND-causality relation: a new event of s can occur only
after a new event for each signal on which s depends has occurred. Instead, a minimum
constraint corresponds to an OR causality relation where one single event is sufficient to
trigger a new event of s. If a discrete event system can be modeled using only maximum (or,
dually, minimum) constraints then it can be studied by linear methods based on max-plus
algebra [6]. In [97] Gunawardena offers a brief historical account of the main works on
timed systems with maximum constraints before introducing the model of timed AND,OR
automata as a framework to study systems with mixed constraints, which are also the sub-
ject of [98]. Interestingly enough, Gunawardena reveals that the original motivation of his
work is to extend the performance analysis of asynchronous circuits by Burns [32] to ac-
commodate system with “disjunctive behavior”, but that some of his results can also be
applied to the clock schedule verification problem for synchronous circuits [203, 227]. Gu-
nawardena’s conclusive comment is: “it is amusing that the same underlying mathematics

can be applied to study timing behavior of both synchronous and asynchronous hardware.”

CHAPTER 5. PERFORMANCE ANALYSIS 154

5.3.3 Performance Analysis of Asynchronous Systems Using Petri Nets

Ramchandani is the first to apply timed Petri nets to the analysis of asynchronous con-
current systems [195). Williams proposes two types of marked graphs, called respectively
dependency graphs and folded graphs, as a specialized model targeting the efficient com-
putation of the exact throughput and latency for deterministic self-timed pipelines [244).
To model asynchronous circuits Burns introduces event-rule systems that are equivalent to
marked graphs. He defines the cycle period of an asynchronous system as the asymptotic
average time separation between consecutive occurrences of the same event. To compute
it, he proposes an efficient algorithm based on the primal-dual technique for solving a spe-
cial linear programming problem [31, 32, 30]. Lee extends Burns’ models to accommodate
OR-causality [146]. Xie and Beerel propose symbolic techniques to analyze the perfor-
mance of asynchronous systems with non-fixed delays (due to data-dependency or random
environment requests) [245]. More recently, they have presented a new approach based
on stochastic timed Petri nets in a paper [247] that includes also a review of the various
efforts on performance analysis of asynchronous circuits. Finally, the collection edited by
Yakovlev et al. offers a summary of the state of the art in the application of Petri nets to
the design of digital systems and circuits [249].

5.3.4 Performance Analysis of Embedded Systems

In [161], Mathur et al. address the problem of analyzing the performance of an embed-
ded system obtained as a composition of processes. For each process, they assume to have
constraints on its execution rate, which is defined as the number of executions per unit time.
These constraints are either imposed by the designers or by the environment in which the
system operates. After defining a process graph to capture the structure of the system, they
propose an interactive rate analysis framework to compute bounds on the execution rate of
each process. Their main algorithm is based on the relationship between the execution rate

of each process and the maximum cycle mean in the process graph.

CHAPTER 5. PERFORMANCE ANALYSIS 155

5.3.5 Marked Graphs versus Data Flow Models

Being ordinary Petri nets where each place has exactly one input transition and exactly
one output transition, marked graphs are a model of computation equivalent to homoge-
neous synchronous data flows [143). Synchronous data flows [18, 143] are a restricted
version of data flow models of computation originally pioneered by Dennis [75] and are
closely related to the computation graphs proposed by Karp and Miller in 1966 [128].

In a data flow model, a program is represented as a directed graph in which vertices,
called actors, represent functional computations and arcs represent FIFO channels that
queue data values (represented by tokens). In a synchronous data flow (SDF) the number
of tokens produced (consumed) by the firing of an actor v is a quantity k(a;) that is con-
stant !! for each input (output) arc a; of v. An SDF is homogeneous when Vi(k(a;) = 1).

Marked graphs are equivalent to homogeneous SDFs. Therefore, they can be seen as
a restricted version of SDFs that cannot support different sample rates. In fact, SDFs are
better suited to the modeling of mixed-grain data-flow programming of multi-rate digital
signal processing (DSP) systems. In their seminal work [142, 143, 145], Lee and Messer-
schmitt prove important properties of SDFs and provide efficient techniques to determine
statically (at compile time) whether an arbitrary SDF graph is live and bounded. When
this is the case, it is possible to build a periodic schedule that becomes the basis for a
bounded-memory implementation that is guaranteed not to deadlock (static scheduling).
Such schedules can be either sequential or parallel depending on whether the target ar-
chitecture is a single processors or a multiprocessor system. In general, there are many
possible valid schedules that can be built. An interesting optimization criterion is to find
the schedule that minimize the amount of storage space on the FIFO channels between the
actors (minimum buffer schedule). For each channel such amount corresponds to the max-
imum number of tokens that are queued during one period of the schedule. However, in
general it is necessary to rely on heuristics because the minimum buffer schedule problem

is proven to be NP-complete [88] even for an arbitrary homogeneous SDF [177, 18].
I conclude mentioning Boolean data flows (BDFs), originally defined by Lee [141]

1Being constant these quantities are szatically known at compile time. Therefore, some researchers prefer
to interpret the acronym SDF as static data flow.

CHAPTER 5. PERFORMANCE ANALYSIS 156

and then studied by Buck [28). BDFs are an extension of SDFs where the number of
tokens produced/consumed by each actor is either fixed (as for SDFs) or a function of a
boolean-valued token that is produced/consumed by the actor. This difference is sufficient
to make the BDF model Turing complete and the problem of finding a bounded-memory
implementation of a BDF model undecidable [115].

5.4 Concluding Remarks

I presented a modeling approach for the quantitative analysis of the performance of
a latency-insensitive system. The approach is based on the “marked graphs” model of
computation and exploits their many properties. Specifically, I proposed two constructive
models: the infinite-queue model and the finite-queue model. Each of them uses a simple
set of building blocks and the compositional properties of patient processes to construct
a marked graph representing the given latency-insensitive system. The two models are
different because they express alternative system implementations which are based on dif-
ferent design styles for the shells. The infinite-queue model is useful for designing closed
latency-insensitive systems because it can be used to check their boundedness and statically
size the shell queues to guarantee correct operations without the need for back-pressure.
The finite-queue model addresses implementation of latency-insensitive protocols based
on back-pressure and can handle a system operating in an environment that may be stalled
as well as may require the system to stall. Both models can be used to compute exactly and
statically the highest throughput that the system can sustain. For a given latency-insensitive
system, this quantity turns out to be the same in both cases because it is independent from
the shell implementation style and only depends on where (and in which number) the relay
stations have been inserted. Indeed, I demonstrate that a physical implementation based
on back-pressure and finite queue of length two is able to sustain the same throughput as
a virtual implementation with infinite queues. In summary, constructive models make it
possible to prove that a latency-insensitive system is live by-construction and to determine
the impact on the system performance due to the insertion of relay stations on the commu-

nication channels between shells. How to optimize this impact is the subject of Chapter 6.

157

Chapter 6
Performance Optimization

In which a balanced quest for the top is restlessly sought.

O matter how many relay stations are introduced on the channels of a latency-
insensitive system, its functional correctness is guaranteed to be preserved: the
system may produce more stalling events on the output channels as well as exer-

cise more back-pressure on the input channels but, nevertheless, its processing activity pro-
gresses without deadlocking. Naturally, however, the effectiveness of latency-insensitive
design is strongly related to the ability of maintaining a sufficient communication through-
put in the presence of increased channel latencies. In this chapter I discuss the performance
optimization of latency-insensitive systems. I explain the role played by the system topol-
ogy with respect to channel pipelining, the factors that influence the decision of whether
to use back-pressure or not, and the important trade-offs related to shell encapsulation. I
provide design guidelines to optimize the system throughput and I introduce the concept
of recycling. By combining three operations (inserting relay stations, moving them across
shell-core pairs, and redrawing the boundaries of the shells around the cores), recycling en-
ables the exploration of latency/throughput trade-offs in order to achieve the right balance
between communication and computation latencies.

The content of this chapter was partially presented at the 36th Design Automation Con-
ference [38] based on an ad-hoc formalism (called /is-graphs, i.e. latency-insensitive sys-
tem graphs), which turned out to be equivalent to marked graphs and, therefore, unable to

add real value.

CHAPTER 6. PERFORMANCE OPTIMIZATION 158

6.1 The Global Impact of Channel Pipelining

Using the marked-graph models introduced in Section 5.2, I formalize the operation of
wire pipelining and explain the dramatic impact that the local insertion of relay stations can
have on the global behavior of a latency-insensitive system. In this regard, I discuss the role
played by the topology of the system and the factors to consider when making a decision
whether to base the system implementation on back-pressure or not. I conclude the section
providing general design guidelines to minimize the impact of relay station insertion and I

illustrate them with a case study.

6.1.1 Channel Pipelining

In order to formalize the practice of wire pipelining, it is convenient to extend to
marked graph models the notion of latency-equivalence that was given in Section 3.2.3,
Two marked graph models are latency equivalent when they only differ for the latency of

their channels.

Definition 6.1 A4 reference marked graph model M Grer = (P, T,F, W, My) is a marked
graph model such that
Vg € Q(M Grey) (Ma) = 1)

Hence, from Definition 5.13 of channel latency it follows that the reference marked-graph
model does not have any internal transition in its channels. In fact, M Grey models a strict
latency-insensitive system Sgricr, i.€. a system without relay stations, while each member

of its latency-equivalence class models a patient system S.

Definition 6.2 Two marked graph models M G' = (P',T' . F'\W' ,My) and M G' = (P",T",
F"W", M), are latency equivalent (M G' =1 M G") when they can be derived from the
same reference model M G, s by increasing the latency of the channels in O(M Gref).

Hence, the channels of latency-equivalent marked-graph models correspond pairwise, i.e.
Vg € QM G) 3¢" € (M G") (head(q') = head(q") A 1ail(g') = tail(g"))

and vice versa.

CHAPTER 6. PERFORMANCE OPTIMIZATION 159

Given the specification of a stallable sequential system a latency-equivalent implemen-
tation S can be derived following the five main steps discussed in Section 4.1. 1. The present
section discusses the formalization of the last step, i.e. the post-layout optimization per-
formed by means of channel pipelining. Channel pipelining can be performed separately
on each critical channel in the implementation S. A channel is critical when some of the
wires that implement it on the final layout have a delay higher than the period y of the
nominal clock of S. From the analysis of the layout it is possible to determine for each wire
what is the smallest multiple of that is larger than its delay. If this multiple is greater
than one then the wire represents a design exception that needs to be fixed. This reasoning
justifies the following definitions of annotated marked-graph model and critical channel.

Definition 6.3 A marked-graph model M Gs= (P,T,F,W, My) of a latency-insensitive sys-
tem implementation S with nominal clock period is annotated when a normalized delay

v(g,V) is associated to each channel g € Q(M G) with

Vg v) = [———delfvy(q)]

where delay(q) is the timing delay of the slowest among the wires of S implementing q.

The quantity Y(g,) expresses the delay of a channel in clock-cycle units.

Definition 6.4 An annotated marked-graph model M Gs = (P,T,F,W,Mp) of a latency-
insensitive system implementation S with respect to a nominal clock period v, is legal

when
vg € Q(M6) (Yig. W) M)
A channel q € Q(M Gs) such that ¥(g, V) > A(q) is a critical channel of M Gs.

Hence, each critical channel of M Gs captures the presence in S of a wire that connects
the I/O ports of two components (relay stations or shells) and has a delay larger than the
nominal clock period . The latency insensitive methodology makes it easy and systematic
to fix these design exceptions: each critical wire is pipelined with the insertion of the
necessary number of relay stations in order to divide it in segments whose delay is smaller
than .

CHAPTER 6. PERFORMANCE OPTIMIZATION 160

The third step of the design flow described in Section 4.1.1 dictates that all the wires
connecting one module with another module be grouped into a point-to-point channel. The
channeling operation is motivated by the practical idea of “keeping close” those wires that
must span the same distance while deriving the layout of S. This strategy minimizes the
delay variations among these wires and makes it possible to uniformly pipeline them based
on the delay of the slowest among them !.

Hence, pipelining a wire in S corresponds to increasing the latency of the correspond-
ing channel in M Gs such that ¥(g,) < A(g). Likewise, at the system-level, the non-legal
annotated marked-graph model M Gs is transformed into a latency-equivalent, legal, anno-
tated marked-graph model M G by simply incrementing the latency of its channels by the
necessary quantity. Since M G§ = M Gs, for all behaviors of M Gs there is a correspondent
equivalent behavior of M G. This transformation is called channel pipelining.

Lemma 6.1 Channel pipelining. Let M Gs be an non-legal annotated marked-graph model
of a latency-insensitive system implementation S with respect to a nominal clock period
V. A latency-equivalent legal annotated marked-graph model M G is obtained from
M Gs by inserting AM(g) internal transitions on each channel g € Q(M Gs) with AMgq) =

(g, ¥) — Mq).

Proof, Obviously, with the insertion of the internal internal transitions,

vge QM GY) (V(g) = Ma)+8Ma) = ¥(q.v))

Therefore, by Definition 6.4 M G4 is legal. Further, by Definition 6.2, M Gs =1 M Gs since
M Gs and M Gy differ only for their channel latencies. m]

Although channel pipelining is an easy way to correct the final implementation of sys-
tem S and satisfy the timing constraints imposed by the nominal clock y, it does not always
come without a cost. In fact, augmenting the latency of some channels of MGs (ie., in-
serting relay stations on the commqnication channels of S) may increase the cycle time
7(M Gs) and, reciprocally, decrease the throughput (M Gs) = 9(S). This is always the

INaturally, if the wires between two modules are laid out separately, they can be considered as separate
channels and the latency-insensitive design methodology can still be applied. However, this makes the design
implementation less modular and complicates its optimization: it may be more difficult to maintain high
throughput and the area overhead of the shells increases.

CHAPTER 6. PERFORMANCE OPTIMIZATION 161

case if the critical channel g that needs to be pipelined belongs to a critical cycle 2 of M Gs
simply because the numerator of the cycle metric ratio u(c) increases by the quantity AA(g)
while the denominator remains unaffected (Definition 5.8). It may also happen that insert-
ing internal transitions on some channels transforms a non-critical cycle of M Gs into a
critical cycle of M Gg. In any case, the impact of any channel pipelining transformation on
the system throughput can be easily pre-assessed by calculating the consequent throughput
degradation AO(M Gs, M Gg) = B(M Gs) — 3(M Gy), using one of the following methods:

e find the cycle time T(M G5) of M G, with one of the algorithms discussed in Sec-
tion 5.3.1 and simply calculate AS(M Gs, M Gg) = (M Gs) — N(_“}EZJ;

e determine the set C,i; of cycles of M Gs containing at least one critical channel g;
that has to be pipelined. Then, increment the cycle metric x(c) for each ¢ € Cerit by
the quantity]Z—! .3;AMg;). Let z* be the maximum among all these cycle metrics, i.e.
4" = maxeec,, {#(c)}- Then,

o 0 if i < n(M Gs)
AY(M Gs, M Gs) = g —7(MGs) .
M @Gs)- otherwise

The second method is more convenient when channel pipelining is applied incrementally
on few channels at the time.
Example Figure 6.1 shows three infinite-queue marked-graph models for three distinct
implementations of the MAC circuit Spqc shown in Figure 1.2. This is a fairly small circuit
that nowadays is available as a simple IP core. Therefore, it is unlikely that its internal
wires need any post-layout optimization in terms of wire pipelining. Still, I use ithereas a
simple example to illustrate the concepts that I presented.

The MAC circuit contains only one cycle corresponding to the feedback path around the
add/sub-mux block. The left-hand side marked graph M G,y is the reference marked-graph
model for Spqe. I consider two implementations without back-pressure and, therefore, 1

analyze them with the infinite-queue marked graph model.

2Besides the common modifier, “critical”, the notion of critical cycle of a marked graph, given in Defini-
tion 5.10, is completely unrelated to the notion of critical channel of an annotated marked graph model given
in Definition 6.4.

CHAPTER 6. PERFORMANCE OPTIMIZATION 162

Figure 6.1: Marked-graphs for three implementations of the MAC circuit of Figure 1.2.

The first implementation bas 3 critical channels (¢{ixD,acc}> 9{acc,shifter}s and g{iB acc})
with 'Y(Q{inB,acc}all’) =2, 'Y(Q{inD,acc}s‘V) =2 and Y(Q{acc,shi fter}aW) = 3 for a given nom-
inal clock period y. Then, the legalization step requires the insertion of one relay sta-
tion on the first two channels and two on the third in order to have the matching laten-
cies 7\'(Q{inB,acc}) =2, k(q{inD,acc}) =2 and Ag {ace,shi frer)) = 3. The resulting legalized
infinite-queue marked graphs model M G is shown on the right-hand side of Figure 6.1
with the initially empty place representing the four relay stations in the initial marking. The
insertion of the relay stations gives a latency-equivalent design without performance degra-
dation. The marking of M G after one hundred timestamps is shown in Figure 6.4. The
behavior of the corresponding latency-insensitive system is reported in Figure 6.2, where

the progressive natural numbers simply denote distinct informative events. The acc mod-

CHAPTER 6. PERFORMANCE OPTIMIZATION 163

time = 123456789...
olregX) = 123456789..
o(reg¥) = 123456789...
olregM) = 123456789...
ofregB) = 123456789..
o(rsB) = t123456789...
ofregZ) = 123456789...
orsZ)y = 1123456789..
olregC) = 1123456789...
ofregd) = 1123456789...
orsd) = t1123456789...
o(rsA’) = 11711234567809...
oregT) = 1234567809...
olowtT) = 111213456789...
clomW) = 111213456789...

Figure 6.2: Sequence of events on the channels of marked graph M G in Figure 6.4.

time = 1234567809...

o(regX) 1234567809...

ofreg¥) = 123456789...

o(regM) 123456789...

o(regB) 123456789...

o(regZ) 123456789...

o(sC) = t1l11tt21131141151T16TT71T8T71TI...
o(rsC) = ttltt21T3TT411511671T71781T19...
o(regC) l1tt21131tt4t151T161TTt7T1811T9...
o(regd) l1tt21131t41t51161171718119...
o(regT) 1234567809...

o(outT) 1271311411511 6117t18119...
clowW) = 1211311411511 6tT771T81719...

Figure 6.3: Sequence of events on the channels of marked graph M G in Figure 6.4.

CHAPTER 6. PERFORMANCE OPTIMIZATION 164

Figure 6.4: The marked graphs of Figure 6.1 after 100 timestamps.

ule stalls once at the first timestamp, while the shifter module stalls three times (at the first,
second and fourth timestamp). After four timestamps the stalling events (token vacancies)
have left the system, which has reached its steady-state, processing data with throughput
8(M G1) = 1. The shell encapsulating the acc module must have a queue of length one at
the input port of the feedback path. Similarly, the shell encapsulating the shifier module
must have a queue of length two at the input port of the channel associated to place regS.
All the other shells do not need to have any queue and, since back-pressure is not used,
relay stations can simply be implemented as unit-capacity stateful repeaters (e.g. like a

normal flip-flop).

The second implementation contains only one critical channel g{acc,acc) (@ self-loop)
on the feedback path of the acc module, with Y(q{acc acc}, W) = 3. The resulting legalized

CHAPTER 6. PERFORMANCE OPTIMIZATION 165

marked graphs model M G, with two relay stations on channel g(4cc,acc} is shown with its
initial marking also on the right-hand side of Figure 6.1. Since channel g{gcc acc) belongs
to a cycle of the M G (it is a self-loop!), the system throughput becomes 9(G') = %,
with degradation A®(G, G') = 66%, as illustrated in Figures 6.3 and 6.4. Furthermore, this
implementation is not feasible under the assumption that the environment cannot be slowed
down to produce data at the rate of % 3, In fact, as illustrated by the token accumulations
in Figure 6.4, infinite queues would be necessary in various places: €.g, in the shell of the
acc module to buffer data coming from the channels associated to places regd, regB, and
regZ, as well as in the shell of the shifter module to buffer data on the channel associated
to place regS. u

The previous example illustrates the dramatic difference in terms of global impact that
the insertion of relay stations on a local channel can have. In the first implementation the
performance is unaffected and finite queues are sufficient, in the second implementation
the performance is cut to one-third of its original value and there is unbounded token ac-
cumulation. The next section discusses how this impact can be explained based on the

computational structure of the specific latency-insensitive system.

6.1.2 The Role of System Topology

Using the modeling techniques of Chapter 5, it is possible to classify the impact of
channel pipelining on a latency-insensitive system implementation S based only on the
topology of the marked-graph model M Gs, which reflects the computational structure of

S. Four main scenarios are possible:

1. M Gs is an acyclic graph. The insertion of relay stations on any channel of M Gs
does not have impact on the maximum sustainable throughput 9(% Gs). Some
stalling events are observed at the output ports of the system, thereby forcing the
corresponding informative events to arrive with some clock cycles of additional la-

tency, but, eventually, the system reaches a steady state and no more stalling events

3In the marked-graph model, slowing down the operational environment to a rate of % can be represented
by adding an “environment source” transition-place pair connected to the input transitions of the system and,
then, inserting a feedback path on the source transition with two initially empty places.

CHAPTER 6. PERFORMANCE OPTIMIZATION 166

Figure 6.5: Models of cyclic latency-insensitive system with relay station on acyclic path.

are observed. Also, no unbounded token accumulation occurs within the system.
Queues of finite length are necessary in those shells that have multiple input chan-
nels and at least one of these channels receives some stalling events. These channels,
however, can be easily identified based on the location of the relay stations and the
overall topology of 8(M Gs).

2. M Gs is a cyclic graph with several strongly connected components (SCC) and the
relay station are inserted between them. To analyze this scenario without loss of
generality it is sufficient to consider the case of only two SCCs. The insertion of
relay stations on any channel connecting two distinct SCCs of M Gs does not have

any impact on the maximum sustainable throughput 9(M Gs) either. This fact may

CHAPTER 6. PERFORMANCE OPTIMIZATION 167

N - | - .
% A gtf

g

<

pr—

\i\)g
o W L — -
o S

N\ ,

8_beck

2 cback reloy staton
@ 8/ <

Figure 6.6: The marked graphs of Figure 6.5 after 1 timestamp.

initially seem counterintuitive. After all the down-link SCC Sgown is a cyclic system
and the shell 51 of S0, When receives the stalling events from the pipelined channel,
reacts producing stalling events that cycle around within Szown. However, shell sy is
also the shell that “retires” these stalling events after they have completed a cycle

around the system.

The scenario is illustrated in Figure 6.5 both for the case of an infinite-queue model
(top diagram) and the case of a 2-finite queue model (bottom diagram). The system
contains two SCCs having two shell-core pairs each and no internal relay stations
(therefore they share the same unit throughput). The two SCCs are connected by
a channel g that contains two relay stations (channel latency A(g) = 3). The same

CHAPTER 6. PERFORMANCE OPTIMIZATION 168

o

K

o

(A

<

&N

o _back

o uct .| R
ij J
5)

‘ ¢ beck mmi i I
[-4

Figure 6.7: The marked graphs of Figure 6.5 after 30 timestamps.

marked graphs are reported in Figure 6.6 after one timestamp has passed from the
initial marking: in the infinite-queue model, shell s4 has received a stalling event (a
token vacancy) from g and stalled (i.e. produced a stalling event), while shell S3 has
produced a stalling event that is accumulated in place d together with the previous
event (which has not been processed by s4 yet). At the following timestamp, shell 54
receives the second and last informative event from g, stalls again, but now also s3
stalls and the token count on place d remains the same. At the third timestamps, shell
s4 finally consumes an informative event while s3 stalls for the second and last time.
The token count on d goes back to one and from now on stays equal to one as no shell

stalls any longer. Figure 6.7 shows the same marked graph after thirty timestamp

CHAPTER 6. PERFORMANCE OPTIMIZATION 169

have passed. The impact of channel pipelining on the system performance is limited
to a latency of two cycles with respect to the output sequence of a latency-equivalent
strict system. The impact in terms of area overhead is limited to the insertion of a
queue of size two within s4 in correspondence of the input channel from s3. The

behavior of the 2-finite queue marked-graph model is completely equivalent.

3. M Gs is a single strongly connected component. The insertion of relay stations on
any channel of M Gg has always a negative impact on the maximum sustainable
throughput 9(M Gs). The impact, which varies depending on the structure of the cy-
cles of M Gs, can be exactly calculated using the techniques discussed in Chapter 5.
No unbounded token accumulation occurs within the system whether the implemen-
tation is based on back-pressure or not. Unbounded token accumulation can occur
at the boundary between the system and the environment in which it operates. This

issue is discussed in detail in Section 6.1.3.

4. M Gs is a cyclic graph with several strongly connected components and the relay
station are inserted within some of them. For each distinct SCC this case boils down
to the previous case and the corresponding maximum sustainable throughput can be
calculated exactly. The interaction between the SCCs, however, needs to be managed
carefully because this is the case where unbounded token accumulation can occur in-
side the system. In fact, considering the component graph G%¢C ifaSCC S liesinan
up-link position with respect to another SCC S, and §(S1) > 9(S>) then unbounded
token accumulation is guaranteed to happen 4. To avoid unbounded token accumu-
lation it is necessary either to implement back-pressure or to slow-down the faster
SCC. The trade-off between these two alternatives is discussed in Section 6.1.3. Sec-
tion 6.1.4 explains a strategy to slow-down the faster SCC through the insertion of a

proper number of uncalled-for relay stations.

4See also the discussion in Section 5.2.2.

CHAPTER 6. PERFORMANCE OPTIMIZATION 170

6.1.3 The Role of Back-Pressure

The choice of whether to use a back-pressure mechanism in completing the physical
implementation of a latency-insensitive system S that operates within an environment E
is not straightforward. From Chapter 5, and particularly Theorem 5.8, it is clear that this
choice does not affect the maximum sustainable throughput 9(S) of the system. In other
words, as long as the environment is always capable of providing new true packets and does
not generate ever stalling requests, back-pressure is not a factor on determining the system
performance. On the other hand, back-pressure is a factor in guaranteeing that any specifi-
cation of a latency-insensitive system S can be physically implemented under any possible
configuration of channel pipelining. In fact, a back-pressure mechanism can always replace
the need for (unfeasible) infinite-length queues in providing a correct, physical, system im-
plementation that runs at the same throughput and does not experience any queue overfiow.
Back-pressure, however, comes with the assumption that the operational environment is
ready to stall whenever the system sends back a stalling event. In this regard, the com-
pletion of a physical implementation (like the one represented by the marked-graph model
M G, of Figure 6.4) generally boils down to a choice between two alternatives in order to

handle the token accumulation problem:

e use back-pressure and reduce dynamically the token production rate of the environ-

ment E to match the maximum sustainable throughput of S;

e do not use back-pressure and reduce statically the token production rate of £ by
having E running with a nominal clock frequency ¢(E) that matches the effective
clock frequency 0.77(S) of S, which, as defined in Section 4.3.1, corresponds to the
nominal clock frequency ¢(S) times throughput ¥(S).

This choice, however, may be restricted when S is an open system, i.e. a system that must
be designed without being able to control also the design of the other systems that constitute
its operational environment E. In this case, if E is latency-insensitive then back-pressure
must be used, while if E is not latency-insensitive then the final design of S will be good

only for those environments running at the effective clock frequency of S.

CHAPTER 6. PERFORMANCE OPTIMIZATION 171

When S is not an open system, the above decision is only influenced by considerations
on the area and power overhead of the alternative solutions (since their performance is the
same). The results presented in Section 5.2.4 guarantee that with an implementation based
on back-pressure it is sufficient to size the lengths of all the shell input queues to be equal to
two. Therefore, back-pressure enables the creation of a very modular design. Furthermore,
the area impact of each shell can be easily estimated from the information on the number
of input channels of the corresponding core. In addition, it is necessary to account for
the additional wires implementing the back-pressure signal and the double storage space
within each relay station. The alternative is not to use back-pressure, thereby removing
these additional wires and deploying a unit-capacity stateful repeater in the place of each
relay station. However, in this case, it is necessary to equalize the throughput values of
each SCC component in the system to avoid unbounded accumulation. Furthermore each
input queue of every shell in the system must be sized ad hoc and its length may possibly
be bigger than two. This is another reason why it is important to make an attempt for a
balanced design. The next section presents a simple strategy to equalize the throughput
across many SCCs, while Section 6.2.3 discusses more sophisticated techniques to achieve

a design where communication and computation are well balanced.

6.1.4 Throughput Equalization in the Absence of Back-Pressure

In this section, I consider a marked-graph model M Gs that is cyclic and contains more
than one strongly connected component. This may be the result of (1) modeling a latency-
insensitive system S that has such topology or (2) modeling together the system S and its
environment E as part of a design where there is no feedback-loop from S to £. Under the
assumption that M Gs represents an implementation without back-pressure, after perform-
ing channel pipelining it is necessary to equalize the throughput across all SCCs of M Gs in
order to avoid unbounded token accumulation. Under the additional assumption that M Gs
is implemented as a synchronous design with a single-clock domain of nominal period v,
the simplest way to perform throughput equalization is through the insertion of extra relay
stations that are not required for pipelining purposes.

Besides avoiding unbounded token accumulation, it may be convenient to minimize the

CHAPTER 6. PERFORMANCE OPTIMIZATION 172

number and size of the shell queues versus the number of extra relay stations. The following

procedure can be executed to achieve both goals while legalizing the marked-graph model

Mgsi

1. Channel delay annotation: based on the information from the layout derive the an-

notated marked-graph model M G.

2. Channel pipelining: legalize M Gg by inserting the required number of relay stations

for each of its critical channels as specified by Lemma 6.1.

3. SCC throughput calculation: derive the component graph G5CC of M G and for each
SCC S; € G5°C compute the maximum sustainable throughput 9(S;) as discussed in
Section 5.2.2;

4. Target throughput calculation: calculate the target throughput

(M Gs) = (3(s1)

min
{5:€G<C}
5. Detection of critical and potentially critical cycles: for each S; € G5¢C compute

the set of critical cycles and potentially critical cycles C(S;). This set contains

each cycle ¢, such that the reciprocal of its cycle metric is higher than the target

throughput, i.e.
1 ay
=—=>%
ulex) br
A potentially critical cycle satisfies the above condition without being a critical cycle

of S;. Let Cerit (M Gs) be the union of the sets Cerif (S;).

6. Throughput equalization: equalize the throughput values of all SCCs by inserting the
necessary number n; of extra relay station on each cycle ¢ in the set Crir (M Gs).
This corresponds to augmenting by a quantity »; € IN the numerator a; of u(cx). To
find the quantities »y, is necessary to solve Problem A.3, the decreasing rate equal-

ization problem, discussed in the Appendix (together with an algorithm to solve it).

The above procedure can be slightly modified if the goal is only to avoid the use of back-

pressure. In this case, one can exploit the fact that a SCC S; with maximum sustainable

CHAPTER 6. PERFORMANCE OPTIMIZATION 173

throughput 9(S;) can always sustain the throughput of a SCC S; with B(S;) < ¥(Si). In
other words if S; is the up-link component the throughput equalization occurs implicitly
even in absence of back-pressure. Therefore, while traversing in topological order the
component graph GCC it is possible to detect local situations where the throughput of an
SCC does necessarily need to be equalized. Normally, the price to pay is longer input
queues within the shells of the faster SCCs.

The above procedure assumes that each potentially critical cycle of a SCC S; contains at
least one channel that is not shared with any other cycle and, therefore, that can be pipelined
without affecting the cycle metric of the other cycles of S;. Although one can conceive
cyclic structure where this is not the case, in practice, it is a reasonable assumption. In
any case, the algorithm presented in the Appendix to solve the cycle balancing problem

discussed in Section 6.2.3 handles also the case when this assumption does not hold.

6.1.5 Case Study: an MPEG Video Encoder. Part One

Figure 6.8 illustrates the functional block diagram of an MPEG-2 video encoder, a
system that was implemented first as a chip-set and then as a system-on-chip by Ikeda et.
al [83, 84]. For the purposes of this example, I assume that the functional block diagram
corresponds also to the block diagram of the final implementation and that, at each clock
cycle, every block in the pipeline provides a new relevant data item to the down-link block:
in other words, at every cycle, on each channel there is either a stalling event or an infor-
mative event, and the latter corresponds to a data value that is not a don 't care value for the
receiving block [168]. Naturally, this may not always be the case for a system specified at
this level of granularity, because, for instance, the quantizer module may take more than
one clock cycle before it is able to produce a result which can trigger a new computation
of the down-link inverse quantizer module. Still, these kinds of dont care values may only
help from the performance viewpoint because they can be exploited to reduce the stalling
a module.

Figure 6.9 illustrates the reference infinite-queue marked-graph model M G> for the
MPEG-2 video encoder. Being a reference graph, it does not have any initially empty place

(relay station) and every channel g consists exactly of one place between two transitions

CHAPTER 6. PERFORMANCE OPTIMIZATION 174

Regulator |-
Discrete + Vari
; - ariable
— ™t 1—| cosine |— Quantizer ——» length code
? transform Q) — encoder
Frame lnve(se l
memory qu(a(;)t_lger
&
(7]
¢ ! 3
s Inverse
® discrete
(=2} .
£ 2 cosine transform
@ S
S| ! '
& >+ Output
o
Y o
e
Motion Frame 2
|att——— >
compensation memory :
Input kel
o
! g
Motion
a— . . l———————
estimation

Figure 6.8: MPEG-2 video encoder (functional block diagram).

(two shell-pair cores), thereby having latency A(g) = 1.

Table 6.1 reports the six cycles of M G, r together with the sum of the tokens presented
in their places on the initial marking and their (unit) cycle times. Table 6.2 is a matrix
whose entry (gi,c;) denotes that channel g; belongs to cycle c;. Most channels of M G2 7
are common to more than one cycle, e.g. channel gy, ,,,} between transition #16 (sum-
2) and transition 3¢ (frame memory-2) belongs to five cycles (¢;,c¢2,c¢4,c¢s, and cg). Others
channels are contained only in one cycle, e.g. channel gy ,,.} between transition ¢ (motion
estimation) and transition ¢;3 (VLC encoder) is only part of cycle cg. Finally, some channels

CHAPTER 6. PERFORMANCE OPTIMIZATION 175

Figure 6.9: Reference infinite-queue marked graph model for the MPEG-2 video encoder
of Figure 6.8.

are not part of any cycle, e.g. channel g, ,;} between transition #, (frame memory 2) and
transition #3 (sum-1), and, therefore, to increase their latency does not affect the system
throughput.

As discussed in Section 6.1.1, the throughput degradation that may occur as a conse-
quence of pipelining a given channel can be calculated in advance. Intuitively, to pipeline
channels that belong to cycles of relatively small cardinality has a worse impact on the
system throughput. This follows directly from Definition 5.8 of cycle metric: for a given
number of relay stations that must be inserted on a channel g that belongs to a cycle ¢;, the
smaller is the cardinality |c;| the worse is the loss in throughput for MG=3.

Figure 6.10 reports the results of a simple analysis that can be completed based only on
the topology of M G=. The six curves in the chart are associated to the cycles of Table 6.1
and their shapes should be interpreted as follows: each point of curve c; shows the amount
of system throughput degradation which is detected after setting the total sum A(c;) of the
latency of the channels of c; equal to integer x, with x € [0,20]. Obviously, the underlying

SThe worst case is clearly represented by self-loops like in the case of the MAC circuit of Figure 6.1.

CHAPTER 6. PERFORMANCE OPTIMIZATION

¢; | cycle transitions My(c;i) | plci)
c1 | {ts.t16:120} 3 3/3
¢ | {te,t3,116,220} 4 4/4
c3 | {ho.t13, 221,222} 4 4/4
ca | {t10,114: 118,116,220, 18, 13,15 } 8 8/8
cs | {110,114, 218,116,120, %6, 18, 13,15 } 9 9/9
cs | {t0,t14:118, 16,220, 86, 113, 21,122} | 9 | 9/9

Table 6.1: Cycles and cycle times for the marked graph of Figure 6.9.

Table 6.2: Channels vs. cycles matrix for the marked graph of Figure 6.9.

qi crjcajes|cafes|ce "
a1 .2}

CICTY)

9{r26}

9135} x| *
9{1s.no} x|
9{t6.n3} *
9{t6.13} * *
G513} ol el
Qsne} || * [*

9{no.ns} *

9{nona} fall I
iz} * *
9{nans} * x| *
inero} || * | * * | x| *x
9{ns.ne} P x| x
9206} * * | *
9{ons} || * *
9{r21422} * *
9{t22.110} * *

176

CHAPTER 6. PERFORMANCE OPTIMIZATION 177

12
14,
&\
s\
\ \ | =—t—c1
. \\ —e—c2
06 \ \ e3|
N S 4
N e —s
\h* 6!
. M—l0
] Oy
04 ' Pt
S e
0.2 - - -
0
0 1 2 3 4 8 6 7 8 o 10 11 12 13 14 16 18 17 18 18 20

X

Figure 6.10: MPEG-2 encoder: analysis of throughput degradation (worst-case scenario).

assumption is that ¢; is a critical cycle of M Gs, and this limits the choice of those channels

of ¢; whose latency can be augmented. For example, assume that AMc2) =5, as a result of

summing of a latency 7\-(‘1{116,!20}) =4, 7\-(q{zzo,z(,}) =1, 7\'(?{:6,:3}) =0, and Mq{ts.tw}) =0.
In this case ¢ is definitely not a critical cycle. In fact, its cycle metric is ule2) = §4ﬁ = % =
2.250, while, even if M {1,0.55}) = M3 {551 «}) = 0, cycle cy, having Mer) =M nemoy) =4

has a larger cycle metric, exactly p(c1) = 4—*3;31 = % = 2.333. Not surprisingly, Figure 6.10
confirms that to avoid the risk of major performance losses is necessary to avoid being
forced to pipeline channels which belong to a critical cycle or a potentially critical cycle,
i.e. a cycle of relatively small cardinality. While performing channel pipelining, this choice
may be quite restricted. For example, if the length of the wires implementing channel
G{no,5) DEIWEED the frame memory-2 module (transition #20) and the motion compensation

module (transition 1g) is very big, cycle c; will ultimately dictate the system throughput.

These considerations must be kept in mind while partitioning the functionality of the

system in tasks to be assigned to different IP cores. It is true that the latency insensitive

CHAPTER 6. PERFORMANCE OPTIMIZATION 178

methodology guarantees that no matter how bad is the final implementation of the system
(in terms of lengths of the wires implementing the communication channels), it is always
possible to fix it by adding relay stations. Still, to achieve good performance, it is necessary

to adopt a design strategy based on the following guidelines:

e all modules encapsulated within a shell should put comparable timing constraints
on the global clock (i.e. the delays of the longest combinatorial paths inside each

module should be similar);

e modules belonging to the same SCC should be kept close in the final layout; this
is quite intuitive, but less intuitive is the observation that latency-insensitive design
offers the additional freedom of placing interacting SCCs far apart; this trade-off is
possible because, as discussed in Section 6.1.3, pipelining inter-SCC channels does

not have any impact on the performance of a latency-insensitive system;

e within a SCC, modules that belong to the same cycle should be placed close together
in the final layout; the smaller is the cardinality of the cycle, the closer its components
should be;

o one of the goals of physical design should be the optimization of the following trade-
off: minimize the length of those wires which implement channels that belong to
both small and big cycles while increasing, if necessary, those wires implementing

channels that belong only to cycles of bigger cardinality.

The last point is illustrated in Figure 6.9 and Table 6.2. In the case of the MPEG-2
video encoder, a good trade-off is to reduce the length of the wires connecting the sum-2
module (transition #,¢) with the frame memory-2 module (transition 39), while increasing
in exchange the length of the wires connecting the motion estimation module (transition
t¢) with the VLC encoder module (transition 713). In fact, this trade-off would reduce the
normalized delay Y(q{s,s 0} : W) ©f 9{1,6,120}> Which belongs to 5 cycles including the small
cycles ¢ and ¢z, in exchange for an increase of the normalized delay ¥(g{ 5}, V) of chan-
nel gy 5}» Which belongs only to the biggest cycle cs. Consequently, if M G, r needs
to be legalized, there are considerably more options for increasing the latency of chan-

nels that do not impact the overall system throughput. For instance, a layout S where

CHAPTER 6. PERFORMANCE OPTIMIZATION 179

960} ¥) = 3, While Y(g(s 15}, ¥) = 1, must be legalized through the pipelining of
channel gy, o} With two relay stations in order to have M(grq0)) = 3- Instead, a lay-
out S with ¥(q{s.1,5),¥) = 3 and Y(q(, 6m0) W) = 1 requires the two relay stations be in-
serted on gyy,;)- Assuming that in both cases the remaining channels do not need any
pipelining, the throughput values of the two implementations are ¥S) = % = 0.6 and
¥S) = -19—1 =0.818. Hence, the latter gives a 36% performance improvement with respect

to the former.

6.2 Recycling

As the case study of the previous section shows, the interaction among the components
of a modern system on silicon can be quite complex. SOC designers face many critical
decisions, including: which component to use to implement a given functionality, where to
place the chosen components, and which communication scheme to implement.

Several pre-designed IP core modules are generally available for a given functional-
ity, and they offer different benefits: e.g., a deeply pipelined module may provide higher
throughput in exchange for a bigger design overhead in terms of area and power dissipa-
tion. While choosing the best suited IP cores designers must solve the problem of balancing
the differences in throughput and latency among them. Also, a complex functionality can
be implemented by either assembling multiple modules or choosing a single pre-designed
one. These decisions are further complicated by the fact that a local design choice may
have a global impact on the system performance. Finally, the shift from computation- to
communication-bound design, discussed in Section 2.2, makes matters worse by adding
the new challenge of designing a distributed system where communication and computa-
tion latencies are well-balanced.

In this context, one of the main advantages offered by latency-insensitive design is the
new freedom in moving around latency—at any stage of the design process and without
necessarily forcing the redesign of any core module—in order to optimize “latency vs.
throughput” trade-offs and balance communication and computation. Latency can be varied

in a controlled way that is transparent to the core modules, by inserting and pushing around

CHAPTER 6. PERFORMANCE OPTIMIZATION 180

Figure 6.11: Strict system specification of a pipelined data-path and two alternative latency-
insensitive implementations.

relay stations and by redrawing the boundaries of the shells. The combination of these

operations is referred to as recycling.

6.2.1 The Role of Shell Encapsulation

Among the other factors, the performance of a latency-insensitive system is also af-
fected by how shell encapsulation is performed. Where do draw the boundaries of each
shell has a direct impact on the maximum sustainable throughput of a cyclic latency-

insensitive system as demonstrated by the following example.

Example Figure 6.11 shows a simple system specification S; together with two distinct

latency-insensitive implementation S> and S3. System S represents a pipelined data-path,

CHAPTER 6. PERFORMANCE OPTIMIZATION 181

timestamp n 0|12 |3] 4
z 03 0 [|-2
b 012 2| 8110
X 1{of-1]2 |2 |10
a 11213 (4 |5|6
y 2|1 -31 8 |10
c 11 1 110

Table 6.3: The behavior of the strict system S in Figure 6.11.

whose functionality is captured by the following equations

Xntl = bn—2p
Yn+tl = Gn*Xp
Zntl = CptYn

where x; = 1,y =2,z; = 0 and n € IN denotes the clock timestamp. Therefore S; consists
of three sequential modules, each computing a basic arithmetic operation and storing its
value into a clocked register. Table 6.3 reports a behavior of system S;, which obviously
has throughput 8(S5;) = 1.

Latency-insensitive system S is obtained encapsulating the first sequential module
(producing the values of signal x) into a shell and the other two modules into a second
shell. A relay station RS has been inserted to pipeline the channel on the feedback path
(signal z) which is assumed to be critical. Also, for the sake of simplicity, I assume that
each shell contains an infinite queue for buffering the input signals that arrive with constant
(unit) rate. Due to the presence of the relay station, system S is not able to sustain unit
throughput. Hence, it is necessary to slow down the rate of production of the environment
to match the maximum sustainable throughput of S, 6.

Considering the stalling of the cores and the consequent input buffering in the queues,

6The considerations made in this example would not change with the assumption of using back-pressure
in order to dynamically slow down the environment.

CHAPTER 6. PERFORMANCE OPTIMIZATION 182

the functional activity of the latency-insensitive implementation S is captured by the fol-

lowing equations ’:

T if RS, =<

bn -RSn ifRSn # T/\ Qb.empty

Qb.pop— RS, otherwise

Qbny1 = Qb.pushlb,) if ((RS,, =1)V (RS, #TA —Qb.empty))

Yn) ifxn =T

Xn+1

Ynel = an *Xp if x, # TA Qa.empty
Qa.pop+x, otherwise

Qany1 = Qa.pushlay) if ((x,, =1V (xn #TA ﬂQa.empty))
RSp+1 = zn
T ifxp=1
Znsl = Cn+¥n if x, # TA Qc.empty
Qc.pop+yn otherwise
Qcnet = Qe.push(cy) if ((xn =T)V (xs #TA —:Qc.empty))

wheren € N, xo =1, y0 = 2,29 = 0 and RSy = 7.

Table 6.4 reports a behavior of system S>. The restriction of this behavior to the inter-
shell communication signals (i.e. all signals but y which is encapsulated within the second
shell) is latency equivalent to the corresponding behavior of S; which is reported in Ta-
ble 6.3. The signal traces in Table 6.4 are a confirmation of what can be calculated based
on the topology of S, i.e. that the maximum sustainable throughput is 9(Sz) = % In par-
ticular, at timestamp » = 1, signal x presents a stalling event that forces the larger shell to
stall the computation of both y and z; in fact, the y register already contains a value (y = 1)
that could be use to compute the next value (z = 2) of z, but the control logic of the shell
(discussed in Section 4.2.2) prevents this value from being computed at this cycle since the

entire logic of the core is stalled. Hence, z carries a stalling event at timestamp n = 2.

"These equations are simplified thanks to the observation that queues Ox and Qz are never activated.

CHAPTER 6. PERFORMANCE OPTIMIZATION 183

The other latency-insensitive system implementation, system S3, presents a more gran-
ular shell encapsulation with respect to S3: each sequential module has its own shell that

controls its operations. Therefore, the behavior of §3 is slightly different. The correspond-

ing equations are:
T ifRS,=1
Xntbl = bn— RSy, if RS, # 1A Qb.empty
Ob.pop— RS, otherwise
Obns1 = Ob.pushib,) if ((RS,, =1) V (RS, # TA~Qb.em pzy))
T ifx,=1
Ynel = Qn *Xn if x, # 1A Qa.empty
Qa.pop+x, otherwise
Qanry = Qa.pushlay) if ((x,, =T)V (xn # ‘t/\—an.empty))
RSps1 = 2n
T ifyn=1
Znyl = Cn+Yn if yn # TA Qc.empty

Qc.pop+yn otherwise
Ocne1 = Qc.pushics] if ((yn =T)V (I #TA —|Qc.empty))

wheren € N, xp=1,y0 =2,z0=0and RSp = 7.

Table 6.5 reports the behavior of system S3 which is latency equivalent to the corre-
sponding behaviors of S; and S,. Since the core that computes the values for z is not forced
to stall simultaneously with the core computing the values for y, the maximum sustainable
throughput of system S is 9(S3) = ‘37, i.e. 1.125 times higher than S,. This speed-up is
achieved at the cost of some shell logic duplication.]

Therefore, shell encapsulation is another variable to consider in designing a latency-
insensitive systems. The basic trade-off is between encapsulating together many sequential
modules, thereby reducing the shell overhead, and performing a fine-grain shell encapsu-
lation that, in general, helps raising the system throughput. There is no “one-size-fits-all”

solution. Different designs require different decisions based on their topology, the number

CHAPTER 6. PERFORMANCE OPTIMIZATION 184

timestamp n 0|1]2 3 4 5 6 7 8
z 0|3 2|0 -2
RS 03 2 (0 -2 9
b ol2]|4]|2]81]10
0ob o|l2(4]2]8]10]..

x 1 0 |-1 2 | 2 10
a 12134]|5]|6
Qa 21345)|6]..

y 1110]|-3]-3 10

¢ 1j1f(ol1|1}(0]..

Qc 1101 0

Table 6.4: The behavior of the latency-insensitive system S in Figure 6.11.

timestamp n o|1}2|3|[4]|5]|]6]|7]8
z 0132 0 |-2
RS 03 2 0l-2]9
b 0}l2 (42| 8]10
ob 0]2|4|2]8]|10
x 1 0}-1}| 2 2 110
a 112 (34|56
Qa 213 [4]|5]6]..
y 2 |1 0 |-3] 8 10
c 110 1 1 0
Oc ol1]|1]o

Table 6.5: The behavior of the latency-insensitive system S3 in Figure 6.11.

CHAPTER 6. PERFORMANCE OPTIMIZATION 185

and the location of critical channels, and the characteristics of the core modules. The good
news is that recycling offers new opportunities for SOC design exploration both in the case
when the SOC components are newly designed core modules as well as when pre-designed
IP core are extensively reused. In the latter case, even when only a library of black-box
cores is available, it is still possible to choose between alternative implementations, e.g. a

2-stage pipelined multiplier versus a 5-stage pipelined multiplier.

6.2.2 Recycling Transformations

Given a marked graph model ¢ Gs modeling a latency-insensitive system implemen-
tation S, the recycling transformations make it possible to derive automatically a set R(S)
of alternative implementation of S. The elements of K(S) differ from S for the number
and the position of the relay stations as well as the number of shells/core pairs. Hence,
from a marked-graph viewpoint, they differ for the number of initially empty places and

the number of transitions.

Definition 6.5 Let M Gs= (P, T,F,W,My) be amarked graph model of a latency-insensitive
system implementation S. A recycling transformation refurning a recycled marked graph
model of M Gs= (P, T',F',W', My) of an alternative latency-insensitive system implemen-

tation S’ is one of the followings:

e relay station insertion: a transition t; and an initially empty place p; are inserted

after a place p; € P with pje = {#;} such that

T = TU{tj}
P = Pu{p;}
F = FU{(Pi:tj)a(tjapj)’(pj’tk)}\(.pi’tk)
W' = F' —1

vpeP (My(p) = Mo(p)) A My(py) =0

e relay station removal: a transition t; and an initially empty place p; with (t;,p;) € F,

CHAPTER 6. PERFORMANCE OPTIMIZATION 186

Mo(pj) =0) ot; = {p;}, and pje = {tx} are removed from M Ggs such that

.
P
o
i
vp e P (My(p)

T\{z}
P\ {p;}
FU@nt\{ (1), (5,29, (piste) |
F'—1
Mo(P))

o shell splitting: an initially non-empty place p; and a transition t; are inserted after

a transition t; withVp € t o (My(p) = 1) such that

T = TU{tj}
P = PU{p;}
F' = FUu{(tp) st) }U{(t:P)I(t,2) € F}\ (1P)

W = F' -1

vpeP (Myp) = Molp)) A Mop)) =1

o shell collapsing: a transition t; with Vp € t e (Mo(p) = 1) is removed from M Gs

such that

' = T\{y}
P' = P\th
F' = F\{@plpeye}
W o= F =1

vpeP (Myp) = Mo(p))

and Vqin,qour € Q(MGS) with

head(qin) = t; A tail(gin) =t A tail(qou) =1; A head(gou) = t

if Aq € Q(M Gs) with tail(q) = t; N head(q) = t; then

CHAPTER 6. PERFORMANCE OPTIMIZATION 187

@ Al relay station insertion <.> —"’O rl
<.>— I-.Oi *‘*I relay station removal ‘.\f l

Figure 6.12: Examples of recycling transformations.

- if(t,'0=0tj =p) then
P = Pu{p}\{p}

F = Fu{@s).0m P\ {@), @)}
My(p') = 0

— if (70 # ot;) then (assuming int(gin) = {122, .-, 11} and | = \(gin) — 1)

T = T'u{,t,... .43\ {t,%,....u}
P = PU{pp.p---» i} \{po,p1;---. pi}
F'o= FU{@ph) (o), 6P G) (P11, |
\ {(5,20), (Bo,1), (1,2)s -, (1,20, (P1ote) |
vme [11] (My(pi) = 0) A My(pp) =1

CHAPTER 6. PERFORMANCE OPTIMIZATION 188

Figure 6.12 illustrates the four recycling transformations. Relay station insertion and
removal only change the latency of the channel g of M Gs where they are applied (i.e. this
latency is incremented or decremented by one unit). The recycled marked graph M Gg has
the same cycle structure as M Gs and, by Definition 6.2, is latency equivalent to it. After
shell splitting the recycled marked-graph model M G has also the same cycle structure as
M Gs: two additional channels g, .} and gy,) that belong to exactly the same cycle as
{1)- After shell collapsing the recycled marked graph M Gg is still cyclic but may have
less cycles than M Gs since, while removing the channels passing through #; and creating
new channels to connect each up-link tail transition #; to each down-link head transition #,
it may be the case that a channel gy, ,} is already present in ‘M Gs. Then a new channel
is not necessary (a marked-graph model is not a multi-graph). When shell collapsing is
performed the functionality of the core process is duplicated as many times as the number
of its output channels and each copy is inserted into the corresponding down-link shell.
Conversely, shell splitting amounts to divide the functionality of a core modules s into two
new core modules s; and s; and to encapsulate them in separate back-to-back shells. This
division can be performed only if the two resulting modules are both sequential elements,
i.e. they do not present a combinational path from their inputs to their outputs. Therefore,
for a generic block the division is performed along an “internal cut” of storage elements of
s. From an IP core library viewpoint, the division could correspond to choose a four-stage
pipelined version of a module instead of a two-stage one and then put the first two stages

in a shell and the last two in another.

Shell collapsing and shell splitting return a recycled marked-graph model M Gy that,
strictly speaking by Definition 6.2, would not be latency-equivalent to M Gs. In practice,
they are latency-equivalence because putting two back-to-back sequential cores into the
same shell gives a process that is latency-equivalent to the sub-system given by the serial

composition of the original ones.

The recycling transformations can be unambiguously distinguished based on their effect
on the cycle metric y(c) = -f;f of each cycle ¢ of M G that contains the channel g which is
involved in the transformation. The cycle metric x(c’) of the corresponding cycle ¢’ in the

recycled marked-graph model M Gs changes as follows:

CHAPTER 6. PERFORMANCE OPTIMIZATION 189

o relay station insertion: u(c') = b": !
k
. N br—1
e relay station removal: u(c') = ~
k
br+1
hell splitting: p(c') =
o shell splitting: u(c'))
o shell collapsing: p(c') = bi—1
ap—1

Hence, the transformations all share the property of monotonically affecting the cycle met-
rics to which the targeted channel belongs: relay station insertion and shell collapsing
increase the cycle metric of ¢’ while relay station removal and shell splitting decrease it 8,
Naturally, if ¢ is the only critical cycle of M Gs these transformations have an impact on
its throughput.

Since all the transition of a marked graph model have unit delay the numerator of cycle
metric (c) coincides with the number of transitions in ¢, i.e. its cardinality |c|. Hence,

Definition 5.8 can be rewritten as follows.

Definition 6.6 The extended form of the cycle metric of a cycle ¢ € C(M G) in a marked
graph model M G = (P,T,F,W, M) is written as
> x(tic) - n(t)

ueT

M) = e mp))

Pj€P

whereNt; € T, Vpj € P
° n(t,') =1

0 ifpjeh

1 otherwise

1 ifye
ox(ti,c)={ yuce

0 otherwise

J m(Pj)={

8To be precise, shell splitting (collapsing) decreases (increases) the cycle metric only if this is greater than
one, while leaves it equal to one otherwise.

CHAPTER 6. PERFORMANCE OPTIMIZATION 190

1 ifpjec
0 otherwise

d y(Pj,C) = {

In the above definition functions x and y capture analytically how the transitions and the
places are shared among intersecting cycles of M Gs. Then, for each transition #; of M Gs,
the term x(¢;, ¢) - n(t;) accounts for the unit latency contribution associated to #; (in case #;
belongs to ¢). Similarly, for each place p; of M Gs the term y(pj, c) -m(p;) accounts for the
throughput contribution associated to place p; if this place belongs to ¢ and if it presents a
token in the initial marking M (i.e. does not belong to the set Py of initially empty places).

For the purpose of tracking the impact on the cycle metrics, the transformation of
a marked-graph model M Gs = (P, T,F,W,Mp) into a recycled marked graph M Gg =
(P',T',F',W',My) can be expressed based on the structure of M Gs with the help of two
integer-value functions, #'(#;) : T — [—1,1] and m'(p;) : P — [—1, 1], which encode the

following actions:
e 1'(t;) = —1 : remove transition #;, i.e. T' =T\ {#;};
e 7/(t;) = 0: leave transition #; untouched, ie. 7' =T;
e 7/'(t;)=1: add a transition ¢/ nextto t;, T' = TU {t/};
e m'(p;) = —1: remove an initially non-empty place p;, i.e. P = P\ {p;};
e m'(p;) =0 : leave place p; untouched, i.e. P' = P;

e m'(pj) =1 : add an initially non-empty place p;, i.e. P = PU{p;};

Then, the recycling transformation can be encoded using functions #'(s;),m’(p;) as
shown in Table 6.6.

The recycling transformations can be applied independently or together. In both cases
the cycle metrics of the cycles in the recycled marked-graph model can be expressed in
closed form using functions »'(#;),m’(p;) and the functions of Definition 6.6.

CHAPTER 6. PERFORMANCE OPTIMIZATION 191

recycling ' (t) m'(p;)
transformation -1{0|+1[-1]0]+1
relay station insertion *

relay station removal || *

shell splitting : * *

shell collapsing * *

Table 6.6: Encoding of recycling transformations.

Definition 6.7 The recycled cycle metric of cycle ¢ € C(M G') in marked-graph model
MGs=(P,T',F',W', M) obtained recycling marked-graph model M G = (P,T,F,W, M)
is given by

=T o) o))]
pjeP
Thanks to the relationship between the cycle metrics and the cycle time of M G, the
collection of recycling transformations represents an effective toolkit to carry a design ex-
ploration of the latency-insensitive system under the guidance of latency/throughput trade-
offs. In, the following section I define the cycle balancing problem as the formal structure

to perform such design exploration.

6.2.3 The Cycle Balancing Problem

Given a marked graph M Gs modeling a latency-insensitive system implementation S,

the cycle balancing problem is defined as follows:

Problem 6.1 (Cycle Balancing Problem (CPB))

Given: A marked graph M Gs = (P,T,F,W, Mp) with a set of cycles C(M Gs).

Minimize: The cost

g= Y W@+ X Im'(p))

el pjEP

CHAPTER 6. PERFORMANCE OPTIMIZATION 192

over all integer variables v'(11),...,n'(4|) and m' (p1),...,m'(pp)), with

Vie [1,|T|},(7' (%) € [-1,1] A Vj€[L,|P]],(m'(p;) € [-1,1]

Subject to: 3g € Q*,g > 1, Vke [1,|C(MGs)]] -
>, x(tice)- [n(5) +'(8)]

ueT =
3 ywnen) - [me)+me)]

pjEeP

where functions n(t;),m(p;),x(ti,cx),y(p;, k) are those defined in Definition 6.6.

O

It is easy to see that the cycle balancing problem has always at least a trivial solution. In
fact, the variable configuration that is obtained by setting Vp;, (m/(p;) = 1< m(p;) =0)
and V4, (#'(t;) = 0) satisfies the problem constraints with g = 1. In general several solutions
are possible, with the same or different values of g. Each solution corresponds to a distinct
configuration ¢ of the integer variables #'(t1),...,7'(4r|) and m'(p1),...,m (p|p) which
unambiguously identifies a new marked graph M Gg whose cycles have all the same cycle
metric. Marked-graph M G models an alternative, balanced, latency-equivalent system
implementation.

Algorithm CYCLEBALANCER, presented in the Appendix, returns a list of solutions
including the optimal one. The list is ranked in order of optimality, i.e. by increasing val-
ues of the cost function g. Hence, the optimality criterion is to “to minimize the number
of recycling transformations while equalizing the cycle metrics”. This criterion is ideal if
the CYCLEBALANCER algorithm is executed repeatedly as part of an interactive design
environment that aims at assisting SOC designers to complete a design exploration as a
sequence of refinements steps. As portions of the design start to crystallize and the design-
ers converge toward the final implementation, the number of “proposed” changes and their
magnitude naturally diminishes. An alternative criterion could be “to minimize the equal-
ized cycle metric”, i.e. to maximize the throughput of M G. In fact, CYCLEBALANCER
accepts as input parameters the specification of ranges in order to constrain the values for

the corresponding variables.

CHAPTER 6. PERFORMANCE OPTIMIZATION 193

Figure 6.13: Un-balanced implementation of the MPEG-2 video encoder of Figure 6.8 with
(M Gs) = 0.50.

6.2.4 Case Study: an MPEG Video Encoder. Part Two

Figure 6.13 illustrates a marked-graph M Gs modeling an implementation S of the
MPEG-2 video encoder of Figure 6.8. With respect to the reference model M G* of Fig-
ure 6.9, discussed in Section 6.1.5, this implementation contains twelve relay stations dis-
tributed around the channels of the system. Table 6.7 describes the six cycles in the system
after the insertion of relay stations. This table can be compared to the corresponding Ta-
ble 6.1 for the reference implementation. Each cycle has a different cycle metric varying in
the interval [1.25,2] from 2— of cycle ¢z to %— of cycle c3. Consequently, c3 is the critical cy-
cle and M Gs has maximum sustainable throughput 3(M Gs) = 0.5. Figure 6.14 illustrates
the behavior of the system operating in an environment with a unit token-production rate
(i.e. an environment that is not equalized with respect to S). After one hundred timestamps,
the system has been able to process only half of the tokens and there is unbounded token
accumulation in correspondence of the sum-I module and the motion estimation module.
Therefore, to have a correct, albeit relatively poor, behavior it is necessary to equalize the

environment by reducing its throughput to 0.5. The resulting scenario is shown in Fig-

194

CHAPTER 6. PERFORMANCE OPTIMIZATION

Figure 6.14: The marked graph of Figure 6.13 after 100 timestamps without equalized

environment.

Figure 6.15: The marked graph of Figure 6.13 after 100 timestamps with equalized

environment.

CHAPTER 6. PERFORMANCE OPTIMIZATION

195

¢;i | cycle transitions Mo(c:) | plci) Rlcﬁ
e | {8,116, 756,220} 3 4/3 |0.75
c2 | {t6:18, 116,220} 4 5/4 {0.80
c3 | {t10,113,759,7510,7S11,7512, 21,122} 4 8/4 | 0.50
C4 {tlo,t]4,rS4,tls,rS5,tl6,rS5,tzo,t8,rS7,t3,rsz,ts,rS;;} 8 14/8 | 0.57
Ccs {tm,t14,rS4,tlg,r85,t15,r55,tzo,t6,ts,rS7,t3,rSZ,25,rS3} 9 15/9 | 0.60
cé {tlo,t14,rS4,t|g,r.5'5,t16,r35,t20,ts,rSs,t|3,121,tzz} 9 17/9 | 0.53

ure 6.15. Still M Gs is not balanced since its cycles have different cycle metrics.

Table 6.7: Cycles and cycle times for the marked graph of Figure 6.13.

The application of recycling transformation to M Gs under the constraints of the cycle

balancing problem makes it possible to consider alternative, and hopefully better, imple-

mentations: for instance, the balanced implementation illustrated in Figure 6.16. This

implementation is obtained with the application of thirteen distinct recycling transforma-

tions: three “shell collapsing”, two “shell splitting”, six relay station insertions, and two

relay station removals. However, the combination of the three “shell collapsing” and the

two “shell splitting” boils down to just two “shell collapsing” with one core duplication

(the motion estimation module). Also, two of the relay station insertions together with the

two relay station removals can be simply interpreted as pushing around two relay stations.

In summary, the final list of the design changes is the followings:

e the motion estimation core module is duplicated: one copy remains as a stand-alone

shell/core pair (fs), while the other is encapsulated within the same shell as the VLC

encoder (113);

o the sum-1 core module and the DCT core module are encapsulated together within

the same shell (%5);

e relay station rs4 is moved from channel between the inverse quantizer shell
y 9{r14.118} q

and the IDCT shell to channel gy,) between the frame memory-2 shell and the

motion estimation shell;

CHAPTER 6. PERFORMANCE OPTIMIZATION 196

I_——s_ﬂl
RO
i ol
© |
| |
Q9
Ay
| ® |
- |
|
|
|
|

Figure 6.16: Balanced implementation of the marked graph of Figure 6.13 with HMG) =
0.57 obtained via recycling.

e relay station rsg is moved from channel gy, ,,,} between the motion estimation &
VLC encoder shell and the buffer shell to channel g, ,,,) between the frame memory-

1 shell and the motion estimation & VLC encoder shell;

e relay station 7513 is added on channel gy, ,,,} between the frame memory-1 shell and

the motion estimation & VLC encoder shell;

o relay stations 7514 and rs;5 are added on channel gy, ..} between the frame memory-1

shell and the motion estimation shell;

o relay station rs1¢ is added on channel g, .} between the frame memory-1 shell and

the motion estimation shell;

Figure 6.17 shows the marked graph modeling the balanced system implementation M G

after one hundred timestamps have passed.
The result of this recycling is an implementation M Gg of the latency-insensitive system

S that:

e is balanced since the cycle metric of every cycle is a multiple of %;

CHAPTER 6. PERFORMANCE OPTIMIZATION 197

Figure 6.17: The marked graph of Figure 6.16 after 100 timestamps.

e even tough it presents 33% more relay stations than the unbalanced implementation
M Gs, it offers a maximum sustainable throughput that is 1.143 times higher than

(M Gs);

Figure 6.18 shows the model of another alternative implementation M Gg of the latency-
insensitive system S that is obtained solving the same cycle balancing problem. This im-
plementation is the result of the application of nine distinct recycling transformations: one
“shell collapsing”, two “shell splitting”, two relay station insertions, and four relay station
removals. In this case the three shell transformations are not combined, while again the two
relay station insertions together with two relay station removals can be simply interpreted
as pushing around two relay stations. The final list of the design changes with respect to
implementation M Gs is the following:

o the inverse quantizer core module is split into two stages inverse quantizer stage-1

(t14) and inverse quantizer stage-2 (t14pis) each encapsulated in a separate shell;

e the motion estimation core module is split into two stages motion estimation stage-1

(t6) and motion estimation stage-2 (tspis) each encapsulated in a separate shell;

CHAPTER 6. PERFORMANCE OPTIMIZATION 198

Figure 6.18: Balanced implementation of the marked graph of Figure 6.13 with HMG)=
0.66 obtained via recycling.

e the frame memory-2 core module and the sum-2 core module are encapsulated to-

gether within the same shell (#16);

e relay station rs4 is moved from channel gy, , 1.} between the inverse quantizer shell
and the IDCT shell to channel g .} between the sum-2 & frame memory-2 shell

and the motion estimation shell;

e relay station 7s¢ is moved from channel gy, .,y between the sum-2 shell and the
frame memory-2 shell to channel gy, ;) between the motion compensation shell and

the sum-2 & frame memory-2 shell;

The result of this recycling is a balanced implementation M Gy of the latency-insensitive

system S with the following characteristics:
e it is balanced since the cycle metric of every cycle is a multiple of 3;

e it presents 20% less relay stations than the unbalanced implementation M Gs, and it
offers a maximum sustainable throughput that is 1.333 times higher than 3(M Gs);

CHAPTER 6. PERFORMANCE OP’HMIZATI ON 199

Figure 6.19: The marked graph of Figure 6.18 after 100 timestamps.

Figure 6.19 shows the marked graph modeling the balanced system implementation Gs
after one hundred timestamps have passed.

This case study illustrates the capability of applying the recycling transformation under
the constraints of the cycle balancing problem. The first balanced implementation M Gg
demonstrates a point which is slightly counterintuitive: the insertion of several relay sta-
tions together with a reorganization of those already present may result in a significant
increase of throughput. If this is properly coupled—by means of a careful layout of the
modules—with the decrease in the period of the nominal clock that channel pipelining

naturally offers, the final performance improvement may be striking.

The second balanced implementation M Gg reports a large throughput increase but,
in doing so, it also removes two of the twelve relay stations originally presented in the
system. Clearly, this is possible only if the corresponding channel is shorteried by reducing
the distance between the source and the sink module. This confirms the need for applying
recycling in the context of a global SOC design exploration strategy that combines the
choice of the right version of the IP core for each module with a careful organization of the

system topology. In latency-insensitive design engineers find the structure to address these

CHAPTER 6. PERFORMANCE OPTIMIZATION 200

challenges globally and formally, with means other than simulation and intuition.

6.3 Related Work

Software designers have long known that functionality and performance are orthogonal
requirements that can be satisfied independently of each other by optimizing small mod-
ules and using a model of computation, e.g. Kahn process networks [122], that ensures the
independence of computed results on the performance of each module. The idea of recy-
cling latency-insensitive systems follows the same principle, which is ultimately the princi-
ple of orthogonalization of concerns. Consequently the combination of latency-insensitive
design together with recycling provides the means for performance engineering in SOC
design. So far, performance and functionality have been intertwined in the ASIC flow that
is centered around RTL synthesizable hardware-description language (HDL) specifications
(as discussed in Section 2.2.3). Recycling offers a capability which has been long avail-
able within a clock cycle, by means of various combinational logic speed-up techniques,
but which has been prohibitively complex to manage at the sequential logic level. Tradi-
tional modeling paradigms based on control/data-flow graph [107] or extended finite state
machine [50] break down when they need to confront a delay of “one more or one less
clock cycles” in one of the components of a complex synchronous circuit. Asynchronous
techniques, which could represent a more natural way to manage this problem, are tdo far
from mainstream use to be applicable in an ASIC/SOC design flow and they suffer from
the drawbacks discussed in Section 3.5.1. Still, designers know that when the latency of a
circuit is about 20ns, they can split it into four or five pipeline stages, thus achieving either
200 or 250MHz operation. The problem is that no design automation technique today sup-
ports them in this task. Previously, even high-level synthesis approaches that considered
latency as a parameter, to optimize area and throughput, were looking only at one process
at a time. Recycling considers multiple processes simultaneously by modeling the global
interaction among the processes. Khouri et al. looked at process interaction locally, in a
greedy fashion [131]. On the other hand, Mathur et al. considered only rate analysis, rather
than using rates for efficient synthesis and optimization [161].

CHAPTER 6. PERFORMANCE OPTIMIZATION 201

Recycling can be seen as a generalization of the well-known concept of retiming [150],
since it includes the performance aspect of interconnection into the retiming graph, and
makes it possible to optimize simultaneously the performance impact of more or less
pipelining and of more or less communication latency. On the other hand, while the number
of latches distributed along a cycle of the sequential circuit cannot change during retiming,
recycling theoretically enables the insertion of an arbitrary number of relay stations on any
wire of a latency-insensitive system.

In general, the insertion 6f relay stations can be completed with an automatic tool as
part of the physical design process (similarly to the buffer insertion techniques available
in current design flows {7, 59, 90]). For the derivation of the final chip implementation,
recycling can be combined with the result of recent works on throughput-driven on-chip

communication synthesis [152, 211].

6.4 Concluding Remarks

1 applied the constructive modeling techniques introduced in Chapter 5 to the particular
problem of channel pipelining and to the general issue of finding balanced implementations
for latency-insensitive systems.

The channels of a latency-insensitive system can be used to model sets of global wires
on the chip. The idea is to build a distributed communication architecture that relies on a
collection of point-to-point elastic pipelined channels instead of centralized communication
resources. In this regard, the added value of latency-insensitive design is twofold: (1)
wire pipelining can be performed automatically without changing the interface logic of the
components and (2) the logic controlling the channels is more robust to the delay variations
of global interconnect because it is implemented in a distributed fashion by the latency-
insensitive protocol.

The topology of the latency-insensitive system plays a critical role with respect to chan-
nel pipelining as the insertion of a relay station on a local channel can have a negative
impact on the system throughput. I presented design guidelines to optimize the system

performance based on the analysis of its topology. In the derivation of the final lay-

CHAPTER 6. PERFORMANCE OPTIMIZATION 202

out, physical design EDA tools should try to keep close together modules that belong to the
same strongly connected component (SCC), while interacting SCCs can be arbitrarily apart
since the inter-SCC communication channels can be arbitrarily pipelined without affecting
the system performance. Also, within a SCC, the optimization criterion should be to keep
close together those components that communicate by means of channels that belong to
cycle of relatively small cardinality. Components communicating by means of channels
that belong to big cycles (i.e. highly pipelined feedback paths) can be fairly distributed.

In general, the latency-insensitive protocol can be implemented with or without back-
pressure. Back-pressure is necessary for the design of open systems and offers a modular
implementation with a design overhead that is simple to estimate. Finite queues without
back-pressure can be used for the implementations of systems that are not open and as long
as all components in the system process data at the same throughput. This raises the issue
of throughput equalization which is intertwined with the issue of achieving a well-balanced
implementation of a latency-insensitive system while performing channel pipelining.

To explore alternative design implementations, I defined the concept of recycling, i.e.
the combined application of three design transformations: inserting relay stations (chan-
nel pipelining), moving them across shell-core pairs, and redrawing the boundaries of the
shells around the cores. To optimize the application of recycling and find the right balance
between communication and computation latencies, I defined the cycle balancing problem
(an algorithm to solve it is presented in the appendix). This is the basis for developing an
interactive design framework that automatically analyzes the impact of local design deci-
sions on the performance of the global system and synthesizes alternative better solutions
ranked in order of optimality. The target is the achievement of a balanced design that will
enhance the average-case performance of the system.

Recycling can be seen also as an extension to system-level design of retiming, a classic
circuit-level optimization techniques. Further, the combination of retiming (a sequential
module) and recycling (a system of sequential modules) opens interestingvresearch avenues

for sequential circuit optimization. It is the subject of Chapter 7.

203

Chapter 7
Recycling Synchronous Circuitry

In which unpromising attempts 1o save time reveal a surprising outcome.

N this chapter I investigate the application of latency-insensitive design and recycling
to the optimization of synchronous circuitry. Latency-insensitive design is inher-
ently a system-level design methodology and recycling is a technique to optimize the

pipelining of global wires in a latency-insensitive system with respect to the overall system
performance. Still, recycling has some similarities with retiming, the classic technique to
optimize sequential circuits at the gate level. Retiming essentially moves latches across
logic gates and in doing so changes the number of latches and the longest combinational
path delay between them. The goal of retiming is to reduce the critical path within a se-
quential module and/or reduce the area occupied by latches. Recycling adds and moves
relay stations across patient sequential modules with the goal of segmenting long inter-
connect wires. Theoretically, as I first explained in [40], recycling can also be applied
at gate-level in order to optimize the performance of sequential circuits beyond what can
be achieved by retiming. In fact, the two techniques can be combined to further enhance
the performance of a circuit beyond what is achievable through the application of retiming
for speed optimization. I present here a theoretical framework to guide the simultaneous
application of recycling are retiming. This model identifies the conditions under which
a retimed synchronous circuit can be further sped-up and determines the amount of the

resulting performance gain.

CHAPTER 7. RECYCLING SYNCHRONOUS CIRCUITRY 204

7.1 Retiming

Retiming is a classic logic optimization technique for synchronous circuits. Leiserson,
Rose and Saxe first introduced retiming to optimize systolic systems [147, 148, 151]. In
a subsequent work [149, 150], bowever, Leiserson and Saxe fully revisited the concept of
retiming and showed how generic synchronous circuits can benefit from it under three main

optimality criteria:
1. minimize the circuit clock period by adding/removing storage elements;
2. minimize the circuit area by reducing the number of storage elements;
3. minimize the circuit area under a maximum clock-period constraint.

The material in this chapter addresses mainly the first criterion.

In the last two decades, retiming has been adopted as a key optimization technique
within every major logic synthesis tool both in academia and industry. In [212], Shenoy
discusses the issues that arise in practical implementations of retiming and the research
efforts to extend the domain of circuits for which it can be applied. In particular, Shenoy
and Rudell have improved the efficiency of retiming so that circuits up to 50 thousand
equivalent gates can be retimed for minimum area under a delay constraint [213]. More

recently, retiming has been successfully applied to FPGA design [60, 217, 243].

7.1.1 The Basic Idea of Retiming

I present the basic idea of retiming borrowing the original example, shown in Fig-
ure 7.1, from [149, 150). The two graphs in this figure represent two synchronous circuits
that are functionally equivalent and can be obtained one from the other via retiming. Func-
tional equivalence means that the circuits have the same behavior from the host system
viewpoint, i.e. when solicited by the same input trace they present exactly the same out-
put trace. Hence, functional equivalence is different from latency equivalence, defined in

Section 3.2.3, as well as stuttering equivalence, discussed in Section 3.5.5.

CHAPTER 7. RECYCLING SYNCHRONOUS CIRCUITRY 205
Q) »
Iretiming

OHD
Q

Figure 7.1: Retiming the correlator circuit [150]: the top graph has y(G)) = 24 while the
bottom one has y(G,) = 13 (shading highlights critical paths).

6}

cI—CI)

B}

Sau

Definition 7.1 A circuit graph is a tuple G = (V,A,d,w), where V is the set of vertices (the
combinational circuits), A is the set of arcs (the wires between combinational circuits), d
is a vertex labelling function (the largest combinational delay of the corresponding circuit)

and w is an arc weight function (the number of storage elements on the arc).

Let C(G) be the set of cycles of G. For G to have well-defined physical meaning, the
following three constraints must be satisfied:

o« WevV (d(v) > 0)
e Vac4 (w(a) 20)
e YVcee(C(G),3acc (w(a) > 0)

Example The circuit represented by the graphs of Figure 7.1 is an instance of a digital cor-
relator that takes a stream of bits x; and compares it with a fixed-length pattern 0.y, ..., 0 in

order to produce the output y; = z‘}:o S (xi-j,05), where f(x,y) is the comparison function

CHAPTER 7. RECYCLING SYNCHRONOUS CIRCUITRY 206

returning one if x = y and zero otherwise [149, 150]. Circuit graph G is a direct imple-
mentation of this specification for J = 3. Its components are instances of two kinds of
combinational elements: 4 comparators (vi,V;,v3,v4) and 3 adders (vs, v, v7), while vertex
vo represents the host system. This implementation has 4 storage elements (e.g., edge-
triggered flip-flops controlled by a common clock) represented by the dark rectangles.

For the delay assignment of the combinational elements, I initially take the same figures as

in [150]: 7 time units for the adders and 3 time units for the comparators. .

Definition 7.2 A path p of a circuit graph G is an alternating sequence of vertices and
arcs v1,4ai, - ..,ak—1,v. IThe length of path p is |p| = k. The path delay d(p) and the path
weight w(p) of p are respectively:

k
dlp) = ;d("i)
e

> wia;)

i=1

w(p)

Example Graph G in Figure 7.1 has a path p from v; to v passing through v4 with
d(p) =33 and w(p) =3. ..

Definition 7.3 4 combinational path p is a path that does not contain any storage element,

i.e. such that w(p) = 0.

The longest combinational path (critical path) in a synchronous circuit is a lower-bound on
the minimum value of the clock period W(G) at which the circuit can operate. This lower-
bound is strict under the assumption that the clock overhead can be neglected, otherwise
it is necessary to include the value of the expression Woverhead = Wskew + Wjitter + Wiatch
containing the estimations of clock skew, clock jitter, and latch set-up time [132].

Example The critical path p.,;; of G is the path from vy to v7 with d(perir) = 24.]

Definition 7.4 A retiming of a circuit graph G = (V,4,d,w) is an integer-valued vertex-
labelling r : V — Z specifying a transformation that returns a new graph G, = (V. 4,d, wy)
such that:

Va=(vi,vj) €A (wr(a) =w(a) +r(vj)— r(v,-))

CHAPTER 7. RECYCLING SYNCHRONOUS CIRCUITRY 207

The proof of correctness of retiming can be found in [148].
Example Graph G, in Figure 7.1 represents the result of applying retiming for optimal
clock period on G). By comparing the two graphs, one can verify that G, is obtained by
repositioning two flip-flops and adding one new flip-flop according to the vertex-labelling »
such that r(v) = 0, 7(v1) = =1, r(v2) = —1, 7(v3) = =2, r(va) = =2, r(vs)=-2,r(vs) =
—1, 7(v7) = 0. Retiming reduces the clock period to ¥(G,) = 13 units. Retiming enables
interesting trade-offs between area (the circuits differ by one flip-flop) and performance
(G2 gives a 45% speed-up).]
Circuit retiming for clock period minimization can be casted as a linear programming
problem, which can be solved efficiently in O(V3) steps with O(V - 4)-time Bellman-Ford
shortest-path algorithm [62, 140]. An asymptotically faster algorithm running in Q(V - 4)
time is given in [150].

7.1.2 Using Retiming to Pipeline Combinational Circuits

In [149, 150], Leiserson and Saxe explain how their proposed general framework for
retiming can be applied to optimally pipelining combinational circuits that do not present
feedback paths, i.e. such that their circuit graph representation G is a directed acyclic graph
(DAG). The problem, called optimum pipelining problem by DeMicheli [168], can be
formulated as follows: for a given combinational circuit, insert properly storage elements
so that the circuit clock period is minimized for a given latency A. An instance of this
problem can be casted into an instance of the retiming problem for minimum clock period

by executing the following procedure:

1. add one input interface vertex v; to G and as many arcs as they are necessary from v;

to the primary inputs of G;

2. add one output interface vertex v, to G and as many arcs as they are necessary from

the primary outputs of G to vo;
3. connect v, to v; by adding an arc a, = (v,,v;) with weight w(ap) = A;

4. retime the new graph while forcing w(ap) = 0.

CHAPTER 7. RECYCLING SYNCHRONOUS CIRCUITRY 208

The resulting retimed graph represents a pipelined implementation of the original combi-
national circuit that can operate with a faster clock at the cost of introducing an I/O latency
of A clock periods. The latency/clock-period trade-off curve for the given circuit can be
derived by retiming G for different values of A.

One could wonder whether or not retiming may be used also to pipeline a generic
sequential circuit. For generic sequential circuit I intend a circuit that not only contains
storage elements, but some of these elements may sit on feedback paths. For instance, this
is the case of the state registers that are necessary to derive a circuit implementation for
any finite state machine (FSM) [124, 240] as illustrated in Figure 1.1. The answer to this
question is negative due the existence of the retiming invariant rule, which is discussed in

the following section.

7.1.3 The Invariant Rule of Retiming

The following result confirms the intuition that the circuit graph cycles (i.e. the feed-

back paths in the circuit) are a limiting factor of retiming.

Theorem 7.1 (Retiming Invariant Rule). If G = (V,4,d,w) is a circuit graphandr.V — Z

a retiming on the vertices of G then:
Vee G (w,(c) = w(c))

Proof. See [149, 150]. m]

Therefore, all the possible retimed versions of a circuit modeled by G must satisfy the
above retiming invariant rule, which can be stated as follows: the number of storage ele-
ments that lie on any feedback path of a synchronous circuit must remain constant through
retiming.

In [212], Shenoy explains the importance of checking that the invariant rule is preserved
when applying retiming in practice and discusses how it is sufficient to check this property
on one of the fundamental cycle sets of the graph. These cycles can be efficiently derived
by computing a spanning tree of the graph and using the non-tree edges to define the set.

The delay-to-register cycle ratio of a cycle in the circuit graph is defined as the ratio

between the sum of combinational delays on the cycle and the sum of storage elements on

CHAPTER 7. RECYCLING SYNCHRONOUS CIRCUITRY 209

the cycle.

Definition 7.5 The delay-to-register cycle ratio p(c) of a cycle c in a circuit graph G is
defined as

2.d()

vec

ple) = 2 w(a)

aec

The maximum value (over all cycles) of the delay-to-register cycle ratio limits the speed

optimization that can be obtained using retiming.

Theorem 7.2 If G = (V,4,d,w) is a circuit graph and V- (G) is the minimum clock period

achievable under any retiming transformationr .V — Z then

Win(G) < ¥A(G) < Yus(G)

where

_ _ Svecd(v)
vi(§) = [cgé%’é) P(C)] B "cg%'a(é) (Zazc w(a))-l

‘I’ub(g) = (Wlb(g) + dmax — 1)

and dmax = MaXye G {d(v) }

Proof. Proven by Papaefthymiou [185]. a

Definition 7.6 4 cycle c € C(G) such that p(c) = Wip(G) is a critical cycle.

Hence, the previous result sets a lower-bound on the minimum clock period achievable
via retiming and this lower-bound is a function of maximum delay-to-register cycle ratio.
The lower-bound is theoretical because it may not be necessarily reached by a retiming
transformation.

Example Table 7.1 reports the four cycles of the graph circuits of Figure 7.1 together with
the corresponding values for the sum of the vertex delays, arc weights and delay-to-register
cycle ratios. From Theorem 7.2 it follows that the retiming theoretical lower-bound for
the correlator circuit is Wi5(G) = [p(cs)] = 10. However, practically, the minimum clock

period achievable via retiming for the correlator circuit is just y(G) = 13.]

CHAPTER 7. RECYCLING SYNCHRONOUS CIRCUITRY 210

ci | cycle vertices d(c) | w(c) | p(e:)
c1 | {vo,v1,v7} 10| 1 | 10
¢z | {vo,v1,v2,v6,v7} 20 2 10
c3 | {vo,v1,v2,v3,vs,v6,v7} 30 3 10
cs | {vo,v1,v2,v3,v4,V5,V6,v7} | 33 4 | 8.25

Table 7.1: Cycles, delay, weights and delay-to-register cycle ratios for the circuit graph of
Figure 7.1.

7.2 Applying Recycling at the Gate Level

As discussed in Chapter 6, recycling is an optimization technique for latency-insensitive
systems that essentialy combines three operations: the insertion of relay stations, the move-
ment of relay stations across shell-core pairs and the re-encapsulation of the shells around
the cores. In particular, the second operation is clearly reminiscent of the movement of
registers across combinational gates that is performed by retiming. There are, however, im-
portant differences between recycling and retiming that I discuss in the next section. Then,
I study the combined application of recycling and retiming explaining qualitatively when
it can deliver a speed-up of the circuit. Finally, I discuss analytically how to estimate such

speed-up.

7.2.1 Differences between Recycling and Retiming

When applied in the context of SOC design, recycling addresses essentially the opti-
mization of global wire pipelining. Long and slow communication wires on the chip must
be segmented in shorter and faster stages in order to drive them at the same clock frequency
as the rest of the system. This clock frequency is dictated by the slowest core in the system.
Latency-insensitive design enables automatic wire pipelining via relay station insertion and
recycling combines this operation with the encapsulation of the system modules in an at-
tempt to minimize its impact on the system throughput. More generally, recycling can be
seen as a technique to re-organize the computational structure of a circuit while explor-

ing efficiently the design solution space and the trade-offs between computation delay and

CHAPTER 7. RECYCLING SYNCHRONOUS CIRCUITRY 211

communication latency.

In theory, nothing prevents the application of recycling at the gate-level as long as an
efficient shell encapsulation of the gates can be done without excessive area overhead. At
this level, the goal would not be to pipeline a long global wire, but to “break” the logic
long combinational paths beyond what can be done by moving around simple registers
as retiming does. In fact, the two techniques can be combined as long as the following

differences are kept in mind:

e both retiming and recycling “push around” storage elements: retiming moves reg-
isters across combinational gates, recycling moves relay stations across shells that
encapsulate stallable sequential circuits; any “retiming move”, however, must sat-
isfy the mathematical equation of Definition 7.4; recycling, instead, can insert and
remove relay station from any channels in arbitrary number and without respecting

any constraint;

e as long as they are stallable, the core modules can be arbitrary sequential circuits
and, therefore, contain various storage elements, and implement complex finite state
machines (FSM); this is an important difference with respect to retiming, which op-
erates on storage elements across combinational circuits (in other words, retiming

can be applied only to a graph G whose vertices are combinational circuits);

o the theory of latency-insensitive protocols guarantees that after performing shell en-
capsulation on a system S, the resulting latency-insensitive system S’ is functionally
equivalent to the original one modulo the presence of stalling () symbols; this means
that if §' is solicited with the same input traces as S, it produces an output trace that
presents exactly the same ordered sequence of data as S, but where two consecutive
valid data may be interleaved by one or more stalling events; instead, two retimed
versions of the same system S produce exactly the same output traces without the in-
terleaving of any spurious symbol; naturally, the stalling events can be easily filtered
out at the output ports of a latency-insensitive system to obtain the same exact output

trace produced by the corresponding retimed version.

As discussed in Section 4.3.1, the nature of the stalling events goes back to the idea of shells

CHAPTER 7. RECYCLING SYNCHRONOUS CIRCUITRY 212

G

Figure 7.2: Two recycled versions of the correlator circuit of of Figure 7.1 (shading shows
the shell wrapping; light rectangles are relay stations initialized to T).

and relay stations. The simplest way to insert extra storage elements into a synchronous
circuit without jeopardizing its functional behavior, is to make sure that they are initialized
with values that do not disrupt the state of the down-link sequential processes. Hence, each
relay station is initialized with a T symbol (this can be done via special encoding or by
adding an extra wire to a given bus). Then, the interface logic of a shell simply operates
according to an AND-causality semantics: if all the input channels present valid data, then
the shell lets the core receive them, make progress with its computation, and produce valid
output data; but, if even a single channel presents a T, then the shell stalls the core and puts

new T symbols on the output channels instead of valid data.

7.2.2 Combining Recycling And Retiming

The idea of combining recycling and retiming is based on the following considerations:

e any stand-alone combinational circuit can be made sequential by inserting one stor-

age element on each of its outputs;

CHAPTER 7. RECYCLING SYNCHRONOUS CIRCUITRY 213

o the resulting sequential circuit is a stallable circuit and it can be made patient by
synthesizing a shell that encapsulates it and controls its activity trough a clock-gating

mechanism (as discussed in Section 4.1.2).

Hence, any retimed circuit, and not necessarily an optimally retimed circuit, can be trans-
formed into a latency-insensitive system. Then, its critical paths can be pipelined via relay
station insertion to further reduce the minimum clock period at which it can operate. In
other words, the theory of latency-insensitive protocols together with recycling can be used
to break the retiming invariant rule expressed by Theorem 7.1. Naturally, this transfor-
mation would generally produce a circuit with a larger area occupation. Therefore, shell
encapsulation should be applied carefully to minimize such overhead.

Example The circuit graph G3 pictured at the top of Figure 7.2 is a recycled version of the
correlator that can be derived with the following procedure:

1. apply a new retimed transformation to the optimally retimed graph circuit graph G
of Figure 7.2 by using a vertex-labeling # such that 7/(vs) = 1 and ’(v) = 1 while
7’ (vj) = 0 for j # 5,6 (notice that the critical path of the resulting circuit is the path

connecting vg to v; for a delay of 17 time units);

2. partition the circuit in sub-circuits whose outputs are delimited by storage elements

and create a shell around each sub-circuit;
3. insert a relay station between vertices v and v7 to break the critical path L

Knowing that relay stations are storage elements, it is easy to verify that the critical path of
the resulting graph G is the path connecting v7 to v for a length of 10 time units. Hence, in
first approximation, Gs can nominally run with a clock period y(Gs) =10, a 23% speed-up
with respect to the optimally retimed circuit G». This idea can be pushed to its limits by
considering circuit graph Gj at the bottom of Figure 7.2. Here, the insertion of a new relay
station between v, and vg further breaks the critical path in order to reach the minimum

possible length. This coincides with the delay of the slowest circuit component, in this

! In fact, often it not necessary to insert a relay station. Here it is sufficient to insert a storage element
initialized with a T symbol on each output of the combinational circuit associated to vertex vs and, then,
encapsulate vg within a shell.

CHAPTER 7. RECYCLING SYNCHRONOUS CIRCUITRY 214

case the adder, which is 7 time units. Hence, G4 can run with a nominal clock period as
small as y(Gs) = 7, 2 46% speed-up with respect to G,. n

Besides having such considerable nominal speed-ups with respect to the optimally re-
timed circuits, it would appear that the ability of inserting extra storage elements, thus
overcoming the retiming invariant rule, makes it possible to beat even the theoretical lower-
bound expressed by the maximum delay-to-register cycle ratio of Theorem 7.2. But, before
making this claim, more considerations need to be made. First, it is not realistic to assume
that the insertion of the shell logic does not cause some timing overhead. To take this into
account, one should include an additional term Wspey to the other components of the clock
overhead Woverheas. More importantly, even if the impact of Wsrenr is negligible with re-
spect to the critical path delay, it is the presence of the T symbols that affects negatively the
amount of speed-up achievable with recycling. As discussed in Chapter 5, after initializing
each relay station with a T symbol, the AND-causality semantics of the shells implies that
the number of T symbols in a cycle of the circuit remains constant during its operations.
Hence, T symbols are periodically detected at the circuit outputs and, since they cannot
be considered as valid results, they must be discounted from the assessment of the circuit
performance.

In Section 4.3 the throughput 9(S) of a latency-insensitive system S was defined as the
amount of true packets produced by S in a given time interval. This definition naturally
extends to the case of a synchronous circuit G. Since the recycled circuit is a latency-
insensitive system, all the considerations made in Chapter 5 still apply. In particular, ¥ G)
can be computed statically as the minimum value (over all cycles) of the ratio between the
sum of storage elements (that are not relay stations) and the sum of all storage elements

(including also the relay stations). This justifies the following definition.
Definition 7.7 The throughput (G) of the circuit graph G is defined as

| 26‘. w(a)
5(g)= o, (2 w(a) +z(a))

aec

where z(a) is the number of relay stations on arc a.

Throughput ¥(&) is a rational number between zero and one.

CHAPTER 7. RECYCLING SYNCHRONOUS CIRCUITRY 215

Then, based on the analogous definition given in Section 4.3.1, the effective clock period
Ver7(G) of arecycled circuit can be computed as the ratio of the nominal clock period over

the circuit throughput:
v(G)

Verr(G) = 5@)'

The effective clock period Wezr(G) is clearly the correct performance metric for circuit G
and should be used instead of the misleading nominal clock period. Consequently, it is
possible to verify that an indiscriminate application of recycling does not necessarily pay
off from a performance viewpoint.
Example Considering again the circuit graphs of Figure 7.2: circuit G5 has throughput
8(G3) = 2/3, and, therefore, effective clock period Y, 1(G3) =10-(3/2) = 15, while cir-
cuit W(Gs) has throughput 9(Gs) = 1/2, and effective clock period Wer7(Ga) =7-(2/1) =
14. Therefore, the effective performance of both the recycled circuits is beaten by the
optimally retimed circuit W(Gz), which has clock period y(G2) =13. =

In summary, it is true that recycling can be applied to any sequential circuit in order
to overcome the retiming invariant rule, but it is also true that there exists something like
a recycling invariant rule that may cancel all the gain! Does this mean that recycling
can never return a circuit implementation whose performance is better than the optimally
retimed version? The following counter-example proves that this is not necessarily the
case.
Example Assume that all the vertices in the two circuit graphs of Figure 7.2 have the
same delay d but for d(vp) = 0. Then the recycled circuit graph G4 has an effective clock
period Wesr(Ga) = (2/1)-9 = 2 -0, which is strictly smaller than the clock period of the
optimally retimed graph for every possible value of 0. In fact, since retiming cannot change
the number of flip-flops on a cycle, each cycle ¢ of any retimed correlator will present a
sequence Oy (c) of m consecutive vertices whose connecting arcs have zero weight (i.e.
the arcs do not present a storage element) where m = [%1 In particular, while cycles
c1 = {vo,v1,v7} and c4 = {vo,n1 ,V2,V3,V4,V5, Vs, V7 } present sequences O, (c;) of, at most,
length 2, both cycles ¢z = {vo,v1,V2,vs,v7} and c3 = {vo,v1,Vv2,V3,Vs, V6, v7} present a se-
quence Gn(c;) of length 3. Hence, under this delay assignment, any optimally retimed

circuit G will have a critical path of 3 vertices for a minimum clock period y(G) =39,

CHAPTER 7. RECYCLING SYNCHRONOUS CIRCUITRY 216

which is 33% worse than the effective clock period W.s7(Ga) of the corresponding opti-
mally recycled circuit. This 33% performance gain obtained through recycling remains
constant if the length of the correlator is extended by considering any implementation with
J > 3. In fact, any extension would create new cycles presenting a critical path of 3 ver-
tices, while the effective clock period of the recycled circuit would continue to depend only
onod. ']

In summary, there are cases when recycling does not produce any gain with respect to
an optimally retimed circuit and cases where a relevant gain is guaranteed. This depends
on the circuit topology and its delay assignment. Next I give a general model to analyze

when combining recycling and retiming does pay off.

7.2.3 Benefit Analysis on the Combination of Recycling and Retiming

From the correlator circuit example it is clear that an analysis of the structure of the
cycles of a circuit is the key to gauging the possible impact of combining retiming and
recycling. After all, the results of Theorems 7.1 and 7.2 as well as Definition 7.7 are all
related to circuit cycles. The two circuits illustrated in Figure 7.3 are important special
cases to understand how to model analytically the combined application of recycling and
retiming. Both circuits present a single cycle on which N vertices sit. The top circuit,
Gs, has N — 1 registers while in the bottom circuit G there is only one register. These
represent two extreme cases for this circuit structure, which, generally, can have X registers
with K € [1,N — 1]. Notice that the case K = 0 is ruled out by assuming the absence
of combinational loops. Also case K > N is not interesting because the application of
either retiming or recycling would not produce any benefit from the timing optimization
viewpoint (the circuit would run with a clock period equal to the maximum combinational
delay among all its components anyway).

For K € [1,N — 1] the theoretical lower bound on the minimum clock period achievable
via retiming is given by

_ | ZEidw)
vin(G) = {—If—-l

. . . N d(vi .
In Figure 7.3, this gives y;5(Gs) = [2'7',,#] and y15(Gs) = X, d(vi). Also, the opti-

CHAPTER 7. RECYCLING SYNCHRONOUS CIRCUITRY 217

mally retimed graph presents a sequence Gy, of m consecutive vertices without registers in
between, where m = [%] and the *x’ symbol denotes that this sequence is the one with the
smallest delay sum among the N possible ones. I write this delay sum as d(c},) (it coin-
cides with the circuit clock period if no single vertex has delay greater than this). Hence,
Gs has Yy (Gs) = max {d,,,ax, (d(vx) +d(w)) }, where vy, v, are the two consecutive ver-
tices with the smallest compound delay, Instead, G has Ve (Gs) = Z{il d(v;). Denote
with H-recycling the insertion of H relay stations on the circuit. The value of H depends
on both N and K, as well as the vertex delay assignment, but, in any case, it is useless to

have H > (N — K). The nominal clock period of a H-recycled circuit is

yir(G) = max {dax, (03 }

with m' = [H—N—H] For instance, Y1 (Gs) = dmax. In general, the nominal clock period
y(G) is smaller than the corresponding Wrer(G). To find the effective clock period, how-
ever, Yy (G) must be divided by the throughput ¥ = E{'ﬁ of the recycled circuit. Putting
it all together leads to the conclusion that recycling returns a gain over optimal retiming if
and only if

. K+H .
max {dm,d(o,,,,)} = < d(o}) (1.1)
The gain percentage is given by the following:
e, d(6%)} - K+H
gain(%) = (1 _ maxX{ dz’éf;f)} J—-) -100 (7.2)
m

To take into account also the clock overhead due to the shell logic it is sufficient to add the
term eyt * %’i to the left-hand side of the inequality.

For the special case of delay-homogeneous circuits (where Vi, d(v;) = d) the previous
condition can be simplified as follows:

N Kk+H [N N] k+H [N
[K+H1'a' X <[1‘<1'a © "K+H]' X <[E1 (7.3)

Therefore, recycling never pays off for circuit Gs while, as long as N > 2, it always does

for circuit Gs. In the latter case the gain percentage is given by zﬂﬁ'—_z—z - 100, which varies

from 25% for (N = 3) up to a maximum of 50%. Also, notice that for circuit Gs recycling

CHAPTER 7. RECYCLING SYNCHRONOUS CIRCUITRY 218

=

Y

Figure 7.3: Case studies for recycling benefit analysis: N-1 FFs (top), ! FF (bottom).

technically beats the theoretical lower bound of Theorem 7.2 as it allows to match exactly
the ratio ﬁﬁ—']- -0, instead of its integer ceiling.

The model presented in this section can be used to efficiently analyze more complex
circuits containing many intersecting cycles because Equation (7.1) still applies for each

potential critical cycle.

7.2.4 Recycling-Based Design Exploration

In this section I discuss an experimental case study on the application of recycling to
the exploration of alternative gate-level implementations of a synchronous circuit.

Figure 7.4 shows a relatively simple synchronous pipelined data-path circuit that con-
sists of four modules: two adders, one multiplier, and one divisor. The output of each
module is stored in a storage element, an edge-triggered flip-flop. All flip-flops are con-
trolled by the same clock. The data-path presents three feedback paths from the output of
the second adder to the first adder, the multiplier, and the second adder itself, respectively.

I performed a design exploration for this circuit using VERILOG HDL, a commercial

CHAPTER 7. RECYCLING SYNCHRONOUS CIRCUITRY 219

XN N
K-stage - K-cycle REG

p_lpelmed sequential
divisor divisor

K=[2, 5] H..H-. K=[3,6] REG

Figure 7.4: Recycling-based design exploration of a pipelined data-path.

logic synthesis tool, a commercial library of pre-designed IP cores, and two commercial
technology processes (a 130nm and a 90nm) together with the corresponding gate-level
standard cell libraries. I wrote the VERILOG code for the data-path circuit at the register
transfer level (RTL), instancing the cores from the library. Then, I synthesized it in order

to derive a standard-cell netlist with the given technologies.

Each core in the library is a black-box core that can be instanced directly in the VER-
ILOG specification. The library offers several alternative designs for the functionality of
each module. In particular, the choices for the divisor module are: a simple one stage divi-
sor, four h-stage pipelined divisors with the number of stages A varying between 2 and 5,
and four sequential divisors that complete the operation in k cycles with k varying between
3 and 6. The bottom of Figure 7.4 reports diagrams for the sequential divisor, a 2-stage

divisor and a 3-stage divisor.

I completed two distinct designs of the data-path circuit: a traditional synchronous
design and a latency-insensitive design using shell modules from a library that I had previ-
ously designed to implement the communication architecture described in Section 4.2. For

both designs I started by assuming to use a simple one-stage implementation for each mod-

CHAPTER 7. RECYCLING SYNCHRONOUS CIRCUITRY 220

130nm B 90nm

Figure 7.5: Experimental results from recycling the data-path of Figure 7.4.

ule, including the divisor. For the latency-insensitive design I simply encapsulated each
module within a distinct shell. Naturally, the resulting circuit presents a bigger area occu-
pation without providing any speed-up (the IP cores are the same). Since I did not add any
relay station, the latency-insensitive design runs at the same throughput as the traditional
design and produces the same output trace. I verified this by simulating the two designs

with a commercial VERILOG simulator.

Then, I started the design exploration targeting the divisor module that is clearly the
bottleneck for such circuit as it contains by far the longest critical path. I tried the eight
different implementations of the divisor mentioned above. In each case I simply had to

write few lines of VERILOG code to interface the core to the shell that encapsulates it.

CHAPTER 7. RECYCLING SYNCHRONOUS CIRCUITRY 221

These lines inform the shell when the core has completed its computation. For instance, in
the case of a three-stage divisor, the shell must know that once it has provided input data to
the core it has to wait three clock cycles to get the corresponding output data.

I did not have to change the internal logic of the shell, which, in fact, is an instance
of the same shell for each module in the data-path since they all have two inputs and one
output. Also, after modifying the divisor implementation I did not have to touch any other
part of my design. By simulating the VERILOG code I validated that all latency-insensitive
designs are latency equivalent to the original one.

Although no relay stations are inserted between the shells, each of the eight alternative
latency-insensitive designs runs with a throughput smaller than the original design. The
reason is the combination of the feedback paths in the design and the additional latency that
both pipelined divisors and sequential divisors present at the first timestamp. For instance,
while the flip-flop sampling the output of the two-stage pipelined divisor can be initialized
with the same value as in the original design, the value of the internal stage flip-flop must
be considered a void value, i.e. a T symbol.

The bar charts of Figure 7.5 illustrate the experimental results after synthesizing the
traditional design (original) and the eight alternative latency-insensitive designs. Specif-
ically, the top chart reports the value of the effective clock period (i.e. accounting also
for the throughput degradation) as normalized with respect to the nominal clock period of
the original design. Similarly, the bottom chart reports the value of the area occupation
normalized with respect to the area occupation of the original design. It is evident that the
latency-insensitive designs featuring the pipelined divisors offer a better performance in
exchange of a larger area occupation. Those with the sequential divisors offer better area
but less speed. Specifically, the design with the four-stage divisor appears as the best choice
among the pipeline divisors for a performance-oriented design with the 130nm technology:
it is 38% faster while being 51% larger. If the goal is to minimize the area occupation,
the 6-cycle sequential divisor is 18% smaller but more than twice slower than the origi-
nal design. It is interesting to observe that the area/delay trade-off changes across the two
technology nodes. For a performance-oriented design with the 90nm technology the best
opportunity is represented by the 3-stagé divisor which offers a 36% faster design with
respect to the original design (also synthesized at 90nm) in exchange for being 48% larger.

CHAPTER 7. RECYCLING SYNCHRONOUS CIRCUITRY 222

7.3 Related Work

In this section I discussed the relationship between recycling and three other techniques

that have been proposed to overcome the retiming invariant rule.

7.3.1 Recycling versus Slowdown

Slowdown, or c-slow retiming, was proposed together with retiming in [150], where
the main goal is to establish formal techniques to transform a synchronous circuit into a
functionally equivalent systolic circuit, i.e. a circuit that presents at least one register on
every arc of its circuit graph. More recently slowdown was separately applied to FPGA
by Snider [217] and Weaver et al. [243]. Slowdown is performed in two steps: (1) replace
each register in the original circuit by a sequence of c registers, thus producing the c-
slow equivalent circuit; (2) retime the c-slow circuit to minimize its clock period. While
slowdown is obviously defined for ¢ being an integer greater than one, it should be noticed
that for any given circuit G, there is an integer kg such that c-slow retiming produces
a clock period reduction if and only if ¢ > kg. Furthermore, slowdown does not come
for free, but, besides thé extra area due to additional registers, it implies a performance
overhead, somewhat similar to recycling. In particular, as suggested by its very name,
a c-slow circuit, while running with a potentially higher frequency clocks, processes a
single input data at the throughput of % In fact, at any given clock iteration, only % of the
registers in the c-slow circuit contains valid data. Hence, if y° is the clock period achievable
via slowdown, the effective clock period is ¢ = Hc’: It should not be a surprise, then,
that slowdown was proposed with the idea of contemporaneously processing ¢ input data
streams by properly multiplexing and de-multiplexing the /O ports of the c-slow circuit.
By doing so, the processing throughput can be raised back (up to one in the optimal case,
where each computation thread operates with period Y /7).

Besides the obvious similarities, recycling and slowdown are different and, in particular,
the former subsumes the latter when one considers only the processing of single input data
stream. In this case, recycling can always mimic slowdown, because the same results

obtained with a c-slow retiming can be obtained via recycling by inserting relay stations

CHAPTER 7. RECYCLING SYNCHRONOUS CIRCUITRY 223

(up to ¢ — 1 per cycle) instead of duplicating registers. In both cases, the resulting circuit
throughput is given by % On the other side, it is not difficult to find an example of a
case where a slowdown cannot achieve the same performance that recycling offers due
to the coarser granularity of the slowdown transformation. For instance, consider again
circuit Gs of Figure 7.3 representing a feedback loop with N vertices v;, each with a delay
d(v;) =0, and N — 1 registers. The insertion of one single relay station produces a recycled
circuit with a nominal clock period equal to d and a circuit throughput equal to Eﬁi for
an effective clock period Yerr = N]%l- .0. Instead, the simplest slowdown transformation
produces a 2-slow circuit that has the same clock period d as the recycled circuit, but a
smaller throughput equal to % (which effectively cancels the benefits of the transformation
because 2 -9 is the clock period of the original circuit). Therefore, as long as N > 2, the
performance of the recycled circuit is better than the performance of the corresponding 2-
slow circuit by a percentage equal to 2—],"]—\,*-_-2-, that, in the smallest case of N = 3, corresponds

to a gain of 25%.

7.3.2 Recycling versus Timing Optimization via Software-Pipelining

A different attempt to overcome the retiming invariant rule of Theorem 7.1 is made
in [22, 23], where Boyer et. al propose software pipelining techniques as a better alter-
native to retiming for sequential circuit optimization. The relationship between retiming
and software pipelining has been studied in several works. In general it is retiming that
is applied to further enhance software pipelining [33, 47]. Instead, Boyer et. al take the
reverse approach: their goal is to derive an optimum placement of the registers such that the
clock period is close (or, in the best case, equal) to the lower-bound of Theorem 7.2. Then,
from the optimal schedule found with software pipelining, new registers are placed in the
circuit regardless of the number and the position of the original ones. The resulting cir-
cuit is a multi-phase clocked circuit, where all clocks have the same period and the phases
are automatically determined by the algorithm. Finally, edge-triggered flip-flops are used
where the combinational delays exactly match that period, whereas level-sensitive latches
are used elsewhere, thereby improving the circuit area. In the case of the correlator of Fig-

ure 7.1, the authors can claim to reach the theoretical lower bound of the clock period equal

CHAPTER 7. RECYCLING SYNCHRONOUS CIRCUITRY 224

to 10 time units, thereby beating both the best optimally retimed circuit and the optimally
recycled one.

To compare this approach with recycling, the following considerations must be done.
First, the two approaches are similar in the sense that they both reduce the circuit critical
path by inserting new storage elements, while making sure that all storage elements are
not sampled at every clock iteration. This reduction is achieved physically by Boyer’s
approach as different latches are controlled with clock signals with different phases, while
recycling does it logically by letting all flip-flops be sampled at every clock iteration in
order to discard then those sampled data coinciding with a T symbol. Secondly, Boyer’s
approach gives a faster circuit with simpler components (edge-triggered FFs and level-
sensitive latches instead of shells and relay stations) at the price of the higher complexity
of having to deal with a multi-phase clocked circuit. Finally, while the register initialization
issue is not discussed in [22, 23], it is clear that, to guarantee functional equivalence, the
multi-phase circuit must operate according to a pre-defined schedule which makes sure that
no spurious data are ever sampled by/from a latch. Conversely, as it is also the case with
respect to slowdown, the attractiveness of the recycling alternative is that the underlying

latency-insensitive protocol implicitly and automatically encodes the scheduling logic.

7.3.3 Recycling versus Architectural Retiming

Hassoun and Ebeling have proposed architectural retiming as a technique that aims to
decrease the clock period of a circuit by increasing the number of registers on a latency-
constrained path without increasing its latency, i.e. the number of clock periods to perform
the computation [104, 105]. The name architectural retiming captures the combined effect
of this technique: it reschedules operations in time and modifies the structure of the circuit
to preserve its functionality. This is done using the concept of a negative register, which can
be implemented using either pre-computation or prediction. Pre-computation of a signal x
can be done only if there is sufficient information in the circuit to pre-compute the value of
x one cycle ahead of time. Therefore, it is possible only when x does not depend causally
(and in a combinational sense) on any primhary input signal. When pre-computation is not

possible, the alternative is to implement an oracle that predicts the value produced by the

CHAPTER 7. RECYCLING SYNCHRONOUS CIRCUITRY 225

negative register. Since a prediction can be wrong, it is necessary to implement also the
logic for checking its correctness and nullifying its effects. This ultimately may require to
change the interface of the circuit with its environment by making it “elastic” through the
addition of a protocol that expresses void output data and back-pressure. In summary, both
pre-computation and prediction require the knowledge of the internal structure of the circuit
and ad-hoc design changes. This prerequisite, which substantially limits the applicability
of architectural retiming, is a major difference with respect to the simple requirements that

are necessary to apply recycling.

7.4 Concluding Remarks

I applied the ideas of recycling and latency-insensitive protocols, which I originally
developed for system-level design, to the timing optimization of synchronous circuits at
the gate-level. I showed how recycling can be combined with retiming to get circuit speed-
ups that are not achievable by using stand-alone retiming or c-slow retiming. Recycling

goes beyond what retiming offers because:

e it can be applied to any network of sequential circuits, i.e. a circuit whose compu-
tational elements are sequential circuits, while retiming can deal only with a single

sequential circuit whose computational elements are combinational circuits;

e it can be applied to retimed circuits to obtain further speed-up; this is achieved by
extra-pipelining the circuit through relay-station insertion, thereby circumventing the

main limiting factor in retiming, namely the presence of feedback loops.

I discussed how to transform a synchronous circuit into a latency-insensitive design and
how to apply recycling to break the critical paths and reduce further the clock period.
Recycling does not come for free, but implies an overhead in terms of both area and latency.
In fact, there are cases when this transformation may not be convenient even in terms of
timing optimization. I provided an analytical formulation that, based on the circuit topology
and the delay characteristics of its components, detects when recycling is advantageous

from a performance viewpoint and determines the size of the reachable speed-up.

CHAPTER 7. RECYCLING SYNCHRONOUS CIRCUITRY 226

Then, I discussed an experimental case study to demonstrate that latency-insensitive
design and recycling make it possible to efficiently complete significant design exploration
with several alternative pre-designed IP cores also at the gate level.

Finally, I compared the proposed approach to architectural retiming as well as to the

application of software pipelining techniques to sequential circuit optimization.

227

Chapter 8
Conclusions and Future Directions

In which past and future help sustain the illusion of the present.

N the final page of this dissertation I list the major contributions of my research,
comment on the reception of latency-insensitive design and its influence on

other research projects, and outline the most promising avenues for future work.

8.1 Contributions

The major contributions of the present dissertation are summarized below:

o the theory of latency-insensitive protocols, which provides a robust foundation for
combining the benefits of synchronous specification with the efficiency of asyn-

chronous implementation in the design of moderately-distributed systems;

— the definition of the properties of latency-equivalence and patience together

with the formal proofs of their compositionality;

— the identification of the property of stallability as the minimum requirement in

order to automatically transform a synchronous process into a patient process;

— the concept of shell encapsulation, thereby any stallable core module can be
encapsulated in order to manage its communication and synchronization with

the other modules in a moderately-distributed concurrent system;

CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS 228

— the definition of relay station, the minimum-capacity stateful repeater used to
design latency-insensitive pipelined communication channels with maximum
throughput;

e the correct-by-construction latency-insensitive design methodology for SOC design,
which targets both the timing closure problem (via automatic wire pipelining) and the
productivity gap problem (via shell encapsulation of pre-designed IP components);

— the description of a latency-insensitive design flow for SOC that relies on tradi-
tional CAD tools;

— a reference hardware implementation for latency-insensitive communication
architectures based on back-pressure, including RTL circuit specification for

shells and relay stations,

— the design of distributed symmetrically pipelined channels, also based on back-
pressure, in order to handle on-chip global communication without resorting to

centralized, shared global resources;

— the application of clock gating, originally developed for low-power design, to
the fine-grained control of the processing of a synchronous circuit;

e the development of constructive modeling techniques, based on marked graphs, for

the performance analysis and optimization of latency-insensitive systems;

— the proof that latency-insensitive systems are live by construction and that their
performance can be computed statically based on where, and in which number,

relay stations have been inserted;

— the theoretical result that for latency-insensitive systems a physical implemen-
tation based on back-pressure and finite queues with length equal to two offers
the same maximum sustainable throughput as a virtual implementation with
infinite queues;

— the definition of recycling, a new design optimization technique combining
channel pipelining (via relay station insertion) and throughput equalization (via

cycle balancing) to optimize the performance of a latency-insensitive system,;

CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS 229

— the combination of retiming (a sequential module) and recycling (a network of
sequential modules) in order to optimize the performance of sequential circuitry

at the gate-level beyond what can be achieved by retiming;

8.2 Influence of Latency-Insensitive Design

I presented the first concepts of the theory of latency-insensitive protocols at the 11th
International Conference on Computer-Aided Verification in July 1999 [36]. In November
of the same year I presented the basic idea of the latency-insensitive design methodology
for systems-on-chip at the International Conference on Computer-Aided Design [34]. Al-
though the reaction was generally positive, there were a number of comments criticizing
the work for one or more of the following reasons: (1) some researchers doubted the effec-
tiveness of latency-insensitive design altogether because they basically perceived it as “yet
another asynchronous design technique” and, therefore, inherently impractical; (2) others
outright questioned the present and future need for a methodology to formally handle wire
pipelining; (3) finally, other researchers were concerned with the design overhead involved
to adopt latency-insensitive design in practice.

The essential differences between latency-insensitive and asynchronous design were
explained in Chapter 3. Beyond that detailed discussion, here it is sufficient to say that
I strongly believe that latency-insensitive design can be a vehicle to introduce the many
important benefits of asynchronous circuits within a design flow that is firmly based on the
well-established synchronous paradigm.

About the second criticism, I think that it will be completely dismissed in a few years,
when the impact of on-chip interconnect latency will be evident also for generic ASIC and
SOC design, as it already is for high-performance microprocessor design. Wire pipelining
will then necessarily become a pervasive technique in integrated circuit design. Over the
past few years I have already been pleased to see the publication of many papers which
confirm the importance of the impact of interconnect latency and its consequence on both
IC design and CAD tools in general. I discussed the most relevant of these papers in
Section 2.2.

CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS 230

The third criticism is for me the most interesting and the debate it has generated is still
ongoing. Based on the preliminary experiments discussed in Section 4.2.2, I expect that for
most IP cores the design overhead of performing a shell encapsulation will be minor (less
than 5% in area occupation). Still, it is true that this issue will only be definitively closed
once latency-insensitive design is successfully applied to the design of a real product.

More recently, the importance of the present research work has been recognized in
several ways. First, in 2003, the 1999 ICCAD paper was selected for inclusion in “The
Best of ICCAD - 20 Years of Excellence in Computer-Aided Design”, a collection of 42
out of over 2,200 works presented at ICCAD between 1983 and 2002 [35, 80].

Latency-insensitive design is also mentioned on page 21 in the Design Chapter of the
2003 International Technology Roadmap for Semiconductors (ITRS) [117], where it is said
that “[while] past methodologies rely on simple statistical models (e.g., wire-load models)
and limited-loops iteration (e.g., one implementation pass to estimate layout, and a second
pass that begins by assuming the layout estimate), current and future methodologies entail
(a) restricted circuit and layout styles (e.g., two-level programmable logic fabric imple-
mentation, or doubly-shielded signal wires) to improve or even guarantee timing and noise
correctness; (b) use of enforceable assumptions in the absence of good predictions (e.g.,
constant-delay methodology variants); and (c) removing the requirement of predictability
in the first place (e.g., latency-insensitive synchronization protocols that guarantee correct
behavior no matter how many clock cycles separate components).”

More significantly, industry researchers have shown some interest in applying the laten-
cy-insensitive design methodology discussed in Chapter 4 onto real designs. Maybe it
should not be surprising that, although this methodology was originally developed targeting
SOC design, it was a high-performance microprocessor company that first investigated its
possible applications. As of today, the jury is still out on the results of this investigation.

Finally, researchers at various institutions have applied concepts from the present work
in some of their projects. I list here the most successful cases.

Latency-insensitive design has been adopted as the mode of operation for the com-
ponents of “Xpipes”, a scalable and high-performance network-on-chip (NOC) architec-
ture for both homogeneous and heterogeneous multi-processor SOCs that has been co-
developed by researchers at Stanford University and the University of Bologna [67, 119].

CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS 231

Singh and Theobald have also been working on applying concepts from latency-insensitive
design to the construction of NOCs having arbitrary topologies and muitiple-clock do-
mains [215].

As reported in Section 4.5.3, Chelcea and Nowick have presented a family of low-

latency high-throughput interface circuits that makes it possible to extend the idea of latency
insensitive protocols to designs with mixed-timing domains (synchronous, asynchronous,
multiple clocks, ...) [49].

Hassoun and Alpert rely on the concept of relay stations as the basic synchroniza-
tion elements in their approach to achieve simultaneous routing and buffer insertion for
globally-asynchronous locally-synchronous SOC architectures [102, 103]

Casu and Macchiarulo have proposed an alternative implementation for the building
blocks of a latency-insensitive protocol [43] which applies to the particular case when the
computation of each core module can be scheduled statically (see Section 5.2). Their im-
plementation consists of building a shell circuit that stalls its core according to a periodic
scheduling sequence, which is stored in a local shift register. Hence, such shell does not
need to read the values of void signals and stop signals and these, therefore, can be removed.
Also, since in this particular case there is no need for back-pressure, the authors can replace
relay stations with normal unit-capacity stateful repeaters such as edge-triggered flip-flops.

Building on previous work on the POLYCHRONY design environment [95, 230, 231,
236], Talpin and Le Guemic presented a process algebraic theory of behavioral type sys-
tems and applied it to the synthesis of latency-insensitive protocols. They showed that the
synthesis of component wrappers can be optimized using the behavioral information carried
by interface-type descriptions to yield minimized stalls and maximized throughput [229].

Recently, Edman and Svensson have proposed a design methodology to address the
timing closure problem in IC design [82]. Their work shares several commonalities with
latency-insensitive design: in particular, the idea of preserving the traditional synchronous
design paradigm while increasing the design robustness with respect to arbitrary latency
variations of on-chip interconnect and facilitating the assembly of IP blocks.

Cortadella ef al. [63, 64] and Davare et. al. [72] have worked on a desynchronization
approach targeting hardware design: the basic idea is to start from a fully synchronous
synthesized (or manually designed) integrated circuit, and then replace automatically the

CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS 232

global clock network with a set of local handshaking circuits. In other words, the goal is
to derive automatically an asynchronous circuit implementation from a synchronous spec-
ification. The main advantage of this approach is the elimination of the global clock sig-
nal together with its big design overhead in terms of area occupation, power dissipation,
electro-magnetic interference (EMI), and sensitivity to signal integrity and process vari-
ation issues [193, 238]. The work on desynchronization clearly parallels the idea—first
described in my 1999 ICCAD paper [34]—of not to force a synchronous implementation,
but, instead, to utilize well-accepted design methodologies in the specification and valida-

tion of synchronous circuits and systems.

8.3 Avenues of Future Research

In the near future the electronic systems industry will evolve through a series of major
paradigm shifts. While systems-on-chip increasingly host components of various natures
(digital, analog, RF, MEMS ...), the combined impact of power dissipation, signal in-
tegrity, and process variations will continue to challenge traditional design methods. It will
be a daunting task to manage the complexity of a future SOC and the prospect of the ex-
pected costs of running a silicon foundry for a future technology process is anything but
encouraging. At the same time, a revolution is happening at the application level where the
pervasiveness of embedded systems in our daily lives continuously changes our notion of
computation. General-purpose computers will still play a role, but they are unlikely to hold
center stage. Moreover, embedded software increasingly drives the development costs of
embedded systems, accounting for more than 70% in the case of automotive electronics,
avionics, and communication networks. In this scenario, traditional distinctions such as
“hardware vs. software” or “analog vs. digital” are likely to lose importance. The chal-
lenge becomes how to specify, implement and verify a heterogeneous system in an efficient
and robust way.

I believe that the ideas presented in this dissertation as well as the general principles

behind them can be used to guide research efforts along the following avenues:

e Physical Modeling vs. Design Abstraction. The physical design of an integrated cir-

CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS 233

cuit with nanometer technologies is affected by many phenomena that were consid-
ered second-order effects until recently. Still, running a SPICE simulation to analyze
the capacitive coupling of every pair of close wires on the chip is unrealistic. Instead,
the complexity of today’s SOCs calls for raising the level of abstraction. The issue is
how to reach a balance between seeking a more optimized design with more accurate
models of the physics and makiné conservative choices to shield the implementation
from physical effects. Similar trade-offs apply to most embedded systems that inter-
act continuously with physical processes. For these systems the goal is to derive a
reasonable abstraction of the non-idealities of the physical world in order to properly

model the environment where they must operate.

e Local Variations and Global Reliability. How to design computing systems that are
robust with respect to bounded variations from the ideal conditions of operation of
their components? For instance, future SOCs will present aggressive voltage-scaling
mechanisms at the component level. This may occasionally prevent a component
from producing the expected results (or from doing it in the expected time frame).
How then to introduce redundancy and flexibility to conjugate the benefits of low-
power design with the requirement of having a correct average-case behavior for the
overall system? Another example is the case of a sensor network whose nodes op-
erate independently under a self-tuning/self-timing mechanism. How to introduce
redundancy and flexibility to reach a degree of inter-node connectivity that enables
the correct operations of the overall network? Communication protocols that guar-
antee the robustness of global properties without imposing tight constraints on local

activities represent a promising research avenue for these distributed systems.

e Design Technology for Heterogeneous Systems. The electronic system of a modern
car is a heterogeneous mix of components (sensors, actuators, ECUs ...) and net-
works (CAN, FlexRay, MOST ...) that are best described using different models of
computation. Designers face a hard task writing embedded software for these archi-
tectures. Furthermore, their work on these cost-sensitive and safety-critical applica-
tions has important economic implications. For instance, if a software bug is found in

the drive-by-wire subsystem after it has been deployed as part of a large-scale produc-

CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS 234

tion car, the economic damage is likely to be more similar to the impact of a mistake
in the hardware of a high-end microprocessor than the consequences of a bug in a
desktop application. This is just one of the many commonalities between embedded
software programming and integrated circuit design. Other important similarities are
the distributed heterogeneous nature of both embedded systems and future SOCs and
the demand for tools to assist designers in the specification, synthesis and verification
of such systems. Since effective design automation tools require solid mathematical
foundations, advanced research in system design must include the study of formal

methods as the basis for their development.

235

Bibliography

[1] M. Abadi and L. Lamport. Composing specifications. ACM Trans. on Programming
Languages and Systems, 15(1):1-41, 1993. 70

[2] M. Abadi and L. Lamport. Conjoining specifications. ACM Trans. on Programming
Languages and Systems, 17(3):507-534, 1995. 65, 71

[3] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger. Clock rate versus
IPC: The end of the road for conventional microarchitectures. In The 27th Annual
International Symposium on Computer Architecture, pages 248-259, June 2000. 22,
23

[4] A. Allan, D. Edenfeld, W.H. Joyner Jr., A.B. Kahng, M. Rodgers, and Y. Zorian.
2001 Technology roadmap for semiconductors. JEEE Computer, 35(1):42-53, Jan-
vary 2002. 20

[5] Peter J. Ashenden. The Designer’s Guide to VHDL. Morgan Kaufmann Publishers,
2002. 25, 65

[6] Francois Baccelli, Guy Cohen, Geert J. Olsder, and Jean-Pierre Quadrat. Synchro-
nization and Linearity. Wiley, New York, 1992. 119, 153

[7] H. B. Bakoglu. Circuits, Interconnections, and Packaging for VLSI. Addison-
Wesley, Reading, MA, 1990. 26, 107, 201

[8] P. Beerel and T.H.-Y. Meng. Automatic gate-level synthesis of speed-independent
circuits. In Proc. International Conf. Computer-Aided Design (ICCAD), pages 581—
587. IEEE Computer Society Press, November 1992. 66

BIBLIOGRAPHY 236

[9] A. Benveniste. Some synchronization issues when designing embedded systems
from componenents. In T.A. Henzinger and C.M. Kirsch, editors, Embedded Soft-
ware. Proceeding of the First International Workshop, EMSOFT 2001. Tahoe City,
CA, volume 2211 of Lecture Notes in Computer Science, pages 32-49, Berlin, Oc-
tober 2001. Springer Verlag. 72, 73, 74, 75

[10] A. Benveniste. Non-massive, non-high performance, distributed computing: Se-
lected issues. In B. Monien and R. Feldmann, editors, Proc. of the Euro-Par’2002,
Parallel Processing, Paderborn, Germany, volume 2400 of Lecture Notes in Com-

puter Science, pages 2948, Berlin, August 2002. Springer Verlag. vi, 8, 9, 10

[11] A. Benveniste, B. Caillaud, L. P. Carloni, P. Caspi, and A. L. Sangiovanni-
Vincentelli. Heterogeneous reactive systems modeling: Capturing causality and
the correctness of loosely time-triggered architectures (LTTA). In G. Buttazzo and
S. Edwards, editors, Proc. of the Fourth ACM Intl. Conf. on Embedded Software
(EMSOFT). Pisa, Italy, September 2004. 71

[12] A. Benveniste, B. Caillaud, and P. Le Guernic. From synchrony to asynchrony. In
J.C.M. Baeten and S. Mauw, editors, CONCUR99. Concurrency Theory, 10th In-
ternational Conference, volume 1664 of Lecture Notes in Computer Science, pages
162-177, Berlin, August 1999. Springer Verlag. 71

[13] A. Benveniste, B. Caillaud, and P. Le Guernic. Compositionality in dataflow syn-
chronous languages: specification & distributed code generation. Information and
Computation, 163:125-171, 2000. 7,71,72,73

[14] A. Benveniste, L. P. Carloni, P. Caspi, and A. L. Sangiovanni-Vincentelli. Het-
erogeneous reactive systems modeling and correct-by-construction deployment. In
R. Alur and L. Lee, editors, Proc. of the Third Intl. Conf. on Embedded Software
(EMSOFT). Philadelphia, PA, volume 2855 of Lecture Notes in Computer Science,
pages 35-50, Berlin, October 2003. Springer Verlag. 10,71

[15] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic, and R. de Si-

BIBLIOGRAPHY 237

mone. The synchronous language twelve years later. Proceedings of the IEEE,
91(1):64-83, January 2003. 7,9, 71

[16] A. Benveniste and P. Le Guernic. Hybrid dynamical systems theory and the signal
language. IEEE Transactions on Automatic Control, 5:535-546, May 1990. 7, 38,
71,73

[17] G. Berry. The Foundations of Esterel. MIT Press, 2000. 7, 71

[18] Shuvra S. Bhattacharyya, Praveen K. Murthy, and Edward A. Lee. Software Synthe-
sis from Dataflow Graphs. Kluwer Academic Publishers, 1996. 155

[19] M. T. Bohr. Silicon trends and limits for advanced microprocessors. Communication
of the ACM, 41(3):80-87, March 1998. 21

[20] M.T. Bohr. Interconnect scaling - the real limiter to high performance ULSI. JEEE
International Electron Devices Meeting, pages 241-244, December 1995. 21

[21] M. Borgatti, C. Auricchio, R. Pelliconi, R. Canegallo, C. Gazzina, A. Tosoni, and
P. Rolandi. A multi-context 6.4Gb/s/channel on-chip communication network us-
ing 0.18ym flash-EEPROM switches and elastic interconnects. In ISSCC Digest of
Technical Papers, February 2003. 111

[22] F.-R. Boyer, E. M. Aboulhamid, Y. Savaria, and L-E. Bennour. Optimal design of
synchronous circuits using software pipelining techniques. In Proc. Intl. Conf. on
Computer Design, pages 6267, 1998. 223, 224

[23] F.-R. Boyer, E. M. Aboulhamid, Y. Savaria, and M. Boyer. Optimal design of syn-
chronous circuits using software pipelining techniques. ACM Trans. on Design Au-
tomation of Electronic Systems, 6(4), 2001. 223, 224

[24] R. K. Brayton, R. Rudell, A. L. Sangiovanni-Vincentelli, and A. R. Wang. MIS:
A multiple-level logic optimization system. JEEE Transactions on Computer-Aided
Design of Integrated Circuits, CAD-6(6):1062-1081, November 1987. 25

BIBLIOGRAPHY _ 238

[25] Robert K. Brayton, Gary D. Hachtel, Curtis T. McMullen, and Alberto L.
Sangiovanni-Vincentelli. Logic Minimization Algorithms for VLSI Synthesis.
Kluwer Academic Publishers, 1984. 25

[26] M. C. Browne, E. M. Clarke, and O. Griimberg. Characterizing finite Kripke struc-
tures in propositional temporal logic. Theoretical Computer Science, 59:115-131,
1988. 74

[27] J. A. Brzozowski and J. C. Ebergen. On the delay-sensitivity of gate networks. JEEE
Transactions on Computers, 41(11):1349-1360, November 1992. 66

[28] Joseph T. Buck. Scheduling Dynamic Dataflow Graphs with Bounded Memory Us-
ing the Token Flow Model. PhD thesis, University of California, Berkeley, Elec-
tronics Research Laboratory, December 1993. Memorandum No. UCB/ERL 93/69.
156

[29] D. Burgerand J. R. Goodman. Billion-transistor architectures: There and back again.
IEEE Computer, 37(3):23-28, March 2004. 25

[30] S. M. Burns and A. J. Martin. Performance analysis and optimization of asyn-
chronous circuits. In Advanced Research in VLSI, pages 71-86. MIT Press, 1991.
154

[31] Steven M. Burns. Automated compilation of concurrent programs into self-timed
circuits. Master’s thesis, California Institute of Technology, 1988. 154

[32] Steven M. Burns. Performance Analysis and Optimization of Asynchronous Circuits.
PhD thesis, California Institute of Technology, 1991. 66, 121, 122, 153, 154

[33] P.-Y. Calland, A. Darte, and Y. Robert. Circuit retiming applied to decomposed soft-
ware pipelining. [EEE Transactions on Parallel and Distributed Systems, 9(1):24—
35, 1998. 223

[34] L. P. Carloni, K. L. McMillan, A. Saldanha, and A. L. Sangiovanni-Vincentelli. A

methodology for “correct-by-construction” latency insensitive design. In Proc. Intl.

BIBLIOGRAPHY 239

Conf. on Computer-Aided Design, pages 309-315. IEEE, November 1999. 110, 229,
232

[35] L. P. Carloni, K. L. McMillan, A. Saldanha, and A. L. Sangiovanni-Vincentelli. A
methodology for “correct-by-construction” latency insensitive design. In Andreas
Kuehlmann, editor, The Best of ICCAD - 20 Years of Excellence in Computer-Aided
Design, chapter 12, pages 143-158. Kluwer Academic Publishers, 2003. 230

[36] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli. Latency insensi-
tive protocols. In N. Halbwachs and D. Peled, editors, Proc. of the 11th Intl. Conf.
on Computer-Aided Verification, volume 1633, pages 123-133, Trento, Italy, July
1999. Springer Verlag. 31, 229

[37] L.P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli. Theory of latency-
insensitive design. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 20(9):1059-1076, September 2001. 31, 110

[38] L. P. Carloni and A. L. Sangiovanni-Vincentelli. Performance analysis and optimiza-
tion of latency insensitive systems. In Proc. of the Design Automation Conf., pages
361-367. IEEE, June 2000. 157

[39] L. P. Carloni and A. L. Sangiovanni-Vincentelli. Coping with latency in SOC design.
IEEE Micro, 22(5):24-35, Sep-Oct 2002. 10, 26

[40] L. P. Carloni and A. L. Sangiovanni-Vincentelli. Combining retiming and recycling
to optimize the performance of synchronous circuits. In Proc. of the 1 6th Symposium
on Integrated Circuits and System Design, SBCCI 2003. IEEE, September 2003. 203

[41] L. P. Carloni and A. L. Sangiovanni-Vincentelli. A formal modeling framework for
deploying synchronous designs on distributed architectures. In FMGALS 2003: First
Intl. Workshop on Formal Methods for Globally Asynchronous Locally Synchronous
Architectures, pages 11-31, September 2003. 74, 109

[42] L. P. Carloni and A. L. Sangiovanni-Vincentelli. On-chip communication design:
Roadblocks and avenues. In First IEEE/ACM/IFIP Intl. Conf. on Hardware/Software

BIBLIOGRAPHY 240

Codesign & System Synthesis. IEEE, October 2003. Extended abstract for invited
talk. 109

[43] M. R. Casu and L. Macchiarulo. A new approach to latency insensitive design. In
Proc. of the Design Automation Conf., pages 576581, June 2004. 231

[44] A. Chandrakasan, S. Sheng, and R. Brodersen. Low-power CMOS digital design.
IEEE Journal of Solid-State Circuits, 27(4):473—484, April 1992. 83

[45] Anantha P. Chandrakasan. Low Power Digital CMOS Design. PhD thesis, University
of California Berkeley, Electronics Research Laboratory, College of Engineering,
University of California, Berkeley, CA 94720, August 1994. 83

[46] Henry Chang, Larry Cooke, Merrill Hunt, Grant Martin, Andrew McNelly, and Lee
Todd. Surviving the SOC Revolution: A Guide to Platform Based Design. Kluwer
Academic Publishers, Boston/Dordrecht/London, 1999. 25

[47] L. F. Chao and E. H. M. Sha. Scheduling data-flow graphs via retiming and un-
folding. IEEE Transactions on Parallel and Distributed Systems, 8(12):1259-1267,
1997. 223

[48] Daniel M. Chapiro. Globally-Asynchronous Locally-Synchronous Systems. PhD
thesis, Stanford University, October 1984. 71, 84

[49] T. Chelcea and S. Nowick. Robust interfaces for mixed-timing systems with applica-
tion to latency-insensitive protocols. In Proc. of the Design Automation Conf., 2001.
110, 231

[50] K.-T. Cheng and A. Krishnakumar. Automatic functional test generation using the
extended finite state machine model. In Proc. of the Design Automation Conf., pages
615-621, June 1994. 200

[51] David Chinnery and Kurt Keutzer. Closing the Gap Between Asic & Custom: Tools
and Techniques for High-Performance Asic Design. Kluwer Academic Publishers,
2002. 25

BIBLIOGRAPHY ' 241

[52] Wesley A. Clark. Macromodular computer systems. In AFIPS Conference Proceed-
ings: 1967 Spring Joint Computer Conference, volume 30, pages 335-336, Atlantic
City, NJ, 1967. Academic Press. 66

[53] Wesley A. Clark and Charles E. Molnar. Macromodular computer systems. In
Ralph W. Stacy and Bruce D. Waxman, editors, Computers in Biomedical Research,
volume IV, chapter 3, pages 45-85. Academic Press, 1974. 66

[54] E. M. Clarke, D. E. Long, and K. L. McMillan. Compositional model checking. In
4th Annual Symposium on Logic in Computer Science, Asilomar, CA, June 1989. 65

[55] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT Press,
2000. 70

[56] P. Cocchini. Concurrent flip-flop and repeater insertion for high-performance in-
tegrated circuits. In Proc. Intl. Conf. on Computer-Aided Design, pages 268-273,
2002. 109

[57] F. Commoner, A. W. Holt, S. Even, and A. Pnueli. Marked directed graphs. Journal
of Computer and System Science, pages 511-523, 1971. 118, 119

[58] J. Cong. Challenges and opportunities for design innovations in nanometer tech-
nologies. In SRC Design Sciences Concept Paper, December 1997. 25, 106

[59] J. Cong, L. He, K.Y. Khoo, C.K. Koh, and Z. Pan. Interconnect design for deep
submicron ICs. In Proc. Intl. Conf. on Computer-Aided Design, pages 478-585.
IEEE, November 1997. 106, 201

[60] J. Cong and C. Wu. Optimal FPGA mapping and retiming with efficient initial state
computation. In Proc. of the Design Automation Conf., pages 330-335, June 1998.
204

[61] J. Cong and X. Yuan. Multilevel global placement with retiming. In Proc. of the
Intl. Symposium on Physical Design, pages 208-213, June 2003. 109

BIBLIOGRAPHY 242

[62] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. The MIT Press, McGraw-Hill, 2001. 114, 117, 131, 207

[63] J. Cortadella, A. Kondratyev, L. Lavagno, K. Lwin, and C. Sotiriou. From syn-
chronous to asynchronous: an automatic approach. In Proc. of the Conf. on Design,
Automation and Test in Europe, March 2004. 71, 231

[64] J. Cortadella, A. Kondratyev, L. Lavagno, and C. Sotiriou. A concurrent model for
de-synchronization. In Proc. Intl. Workshop on Logic Synthesis, Laguna Beach, CA,
May 2003. 71, 231

[65] David E. Culler and Jaswinder P. Singh. Parallel Computer Architecture: A Hard-
ware/Software Approach. Morgan Kaufmann Publishers, San Mateo, CA, 1999. 102

[66] U.Cummings, A. Lines, and A. Martin. An asynchronous pipelined lattice structure
filter. In Proc. International Symposium on Advanced Research in Asynchronous
Circuits and Systems, pages 126—133, November 1994. 69

[67] M. Dall’Osso, G. Biccari, L. Giovannini, D. Bertozzi, and L. Benini. Xpipes: a
latency insensitive parameterized network-on-chip architecture for multi-processor
SoCs. In Proc. Intl. Conf. on Computer Design, pages 536-541, October 2003. 230

[68] W.J. Dally and A. Chang. The role of custom design in ASIC chips. In Proc. of the
Design Automation Conf., pages 643—647, June 2000. 25, 106

[69] W.J. Dally and S. Lacy. VLSI architecture: Past, present and future. In Proceedings
of the Advanced Research in VLSI Conference, pages 232-241. IEEE, March 1999.
24

[70] William J. Dally and John W. Poulton. Digital System Engineering. Cambridge
University Press, Cambridge, 1998. 80, 107

[71] A. Dasdan and R. K. Gupta. Faster maximum and minimum mean cycle algorithms
for system-performance analysis. I[EEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 17(10):889-899, October 1998. 121, 152, 153

BIBLIOGRAPHY 243

[72] A. Davare, K. Lwin, A. Kondratyev, and A. Sangiovanni-Vincentelli. The best of
both worlds: The efficient asynchronous implementation of synchronous specifica-
tions. In Proc. of the Design Automation Conf., pages 588-591. ACM/IEEE, June
2004. 231

[73] A. Davis and S. M. Nowick. Asynchronous circuit design: Motivation, background,
and methods. In Graham Birtwistle and Al Davis, editors, Asynchronous Digital
Circuit Design, Workshops in Computing, pages 1-49. Springer-Verlag, 1995. 66

[74] 1. A. Davis, R. Venkatesan, A. Kaloyeros, M. Beylansky, S.J. Souri, K. Banerjee,
K.C. Saraswat, A. Rahman, R. Reif, and J.D. Meindl. Interconnect limits on gigas-
cale integration (GSI) in the 21st century. Proceedings of the IEEE, 89(3):305-324,
March 2001. ix, 21, 22, 23, 106

[75] J. B. Dennis. First version of a data flow procedure language. In Programming Sym-
posium, volume 19 of Lecture Notes in Computer Science, pages 362-376, Berlin,
1974. Springer Verlag. 155

[76] Volker Diekert and Grzegorz Rozenberg (Eds.). The Book of Traces. World Scien-
tific, 1995. 73

[77] David L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-
Independent Circuits. ACM Distinguished Dissertations. MIT Press, 1989. 66, 67

[78] R. Drath. The VISUAL OBJECT NET++ Toolset. Developed at Dept. 6f Auto-
matic Control and System Engineering. Ilmenau Univ. of Technology. Available at
http:/ /www.systemtechnik.tu-ilmenau.de/~drath/visual_E.htm. 115

[79] J. C.Ebergen. A formal approach to designing delay-insensitive circuits. Distributed
Computing, 5(3):107-119, 1991. 66

[80] Andreas Kuehlmann (Ed.). The Best of ICCAD - 20 Years of Excellence in Computer-
Aided Design. Kluwer Academic Publishers, 2003. 230

[81] D. Edenfeld, A.B. Kahng, M. Rodgérs, and Y. Zorian. 2003 technology roadmap for
semiconductors. IEEE Computer, 37(1):47-56, January 2004. 19

BIBLIOGRAPHY ' 244

[82] A.Edman and C. Svensson. Timing closure through a globally synchronous, timing
partitioned design methodology. In Proc. of the Design Automation Conf., pages
71-74, June 2004. 231

[83] M. Ikeda ef al. A Hardware/Software Concurrent Design for Real-Time SP@ML
MPEG?2 Video-Encoder Chip Set. In Proc. of the Conf. on Design, Automation and
Test in Europe, pages 320-326, March 1996. 173

[84] M. Ikeda ef al. SuperENC: MPEG-2 Video Encoder Chip. IEEE Micro, 19(4):56—
65, July 1999. 173

[85] D. Filo, D. Ku, C. Coelho, and G. De Micheli. Interface optimization for concurrent
systems under timing constraints. JEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 13(9):268-281, September 1993. 69

[86] R. W. Floyd. Algorithm 97 {SHORTEST PATH}. Communications of the ACM,
5(6):345, 1962. 122

[87] M.J. Flynn, P. Hung, and K.W. Rudd. Deep-submicron microprocessor design is-
sues. JEEE Micro, 19(4):11-13, July 1999. 21

[88] Michael R. Garey and David S. Johnson. Computers and Intractability. W. H.
Freeman and Co., New York, 1979. 155

[89] B. A. Gieseke, R. L. Allmon, D. W. Bailey, B. J. Benschneider, S. M. Britton, J. D.
Clouser, H. R. F. III, J. A. Farrell, M. K. Gowan, C. L. Houghton, J. B. Keller,
T. H. Lee, D. Leibholz, S. C. Lowell, M. D. Matson, R. J. Matthew, V. Peng, M. D.
Quinn, D. A. Priore, M. J. Smith, , and K. E. Wilcox. A 600 MHz superscalar RISC
microprocessor with out-of-order execution. In ISSCC Digest of Technical Papers,
pages 176-177, February 1997. 97, 99

[90] L. P.P.P. Van Ginneken. Buffer placement in distributed RC-tree networks for mini-
mal Elmore delay. In Proc. of ISCC, pages 865-868, 1990. 107, 201

[91] P. Glaskowski. PentiuM®4 (partially) previewed. Microprocessor Report,
14(8):10-13, August 2000. 24, 97

BIBLIOGRAPHY 245

[92] W. Gosti, A. Narayan, R.K. Brayton, and A. Sangiovanni-Vincentelli. Wireplanning
in logic synthesis. In Proc. Intl. Conf. on Computer-Aided Design, pages 26-33.
IEEE, November 1998. 107

[93] Wilsin Gosti. Layout Aware Synthesis. PhD thesis, University of California, Berke-
ley, Electronics Research Laboratory, December 2000. 107

[94] P. Le Guemic and T. Gautier. Data-flow to von Neumann : The SIGNAL approach.
In J.L. Gaudiot and L. Bic, editors, Advanced topics in data-flow computing, pages
413-438. Prentice Hall, 1991. 73

[95] P.Le Guernic, J. P. Talpin, and J. C. Le Lann. Polychrony for system design. Journal
for Circuits, Systems and Computers, 12(3):26 1-303, April 2003. 231

[96] J. Gunawardena. Causal automata. Theoretical Computer Science, 101(2):265-288,
1992. 87, 134

[97] J. Gunawardena. Periodic behaviour in timed systems with (AND,OR) causality.
part I: systems of dimension 1 and 2. Technical report, Department of Computer
Science, Stanford University, Stanford, CA 94305, USA., 1993. 153

[98] J. Gunawardena. Min-max functions. Discrete Event Dynamic Systems, 4:377-406,
1994. 153

[99] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data flow pro-
gramming language LUSTRE. Proceedings of the IEEE, 79(9):1 305-1320, Septem-
ber 1991. 7,71

[100] Nicolas Halbwachs. Synchronous Programming of Reactive Systems. Kluwer Aca-
demic Publishers”, 1993. 7,9, 71

[101] M. Hartmann and J. B. Orlin. Finding minimum cost to time ratio cycles with small
integral transit times. Networks, 23:567-574, 1993. 153

BIBLIOGRAPHY 246

[102] S. Hassoun and C. J. Alpert. Optimal path routing in single and multiple clock do-
main systems. JEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 22(11):1580-1588, November 2003. 231

[103] S. Hassoun, C. J. Alpert, and M. Thiagarajan. Optimal buffered routing path con-
structions for single and multiple clock domain systems. In Proc. Intl. Conf. on
Computer-Aided Design, pages 247-253, 2002. 231

[104] S. Hassoun and C. Ebéling. Architectural retiming: Pipeline latency-constrained
circuits. In Proc. of the Design Automation Conf., pages 708-713, June 1996. 224

[105] S. Hassoun and C. Ebeling. Using precomputation in architecture and logic syn-
thesis. In Proc. Intl. Conf. on Computer-Aided Design, pages 316-323, November
1998. 224

[106] Scott Hauck. Asynchronous design methodologies: An overview. Proceedings of
the IEEE, 83(1):69-93, January 1995. 66

[107] S. Hayati, A. Parker, and J. Granacki. Automatic production of controller speci-
fications from control and timing behavioral descriptions. In Proc. of the Design
Automation Conf., pages 75-80, June 1989. 200

[108] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers, San Mateo, CA, 2002. 78, 99, 101

[109] T.A.Henzinger, S. Qadeer, and R.K. Rajamani. You assume, we guarantee: Method-
ology and case studies. In Proc. of the 10th Intl. Conf. on Computer-Aided Verifica-
tion, pages 440-451, Vancouver, Canada, July 1998. 65

[110] R.J. Higgins. Digital Signal Processing in VLSI. Analog Devices Technical Refer-
ence Books. Prentice Hall, 1990. 5

[111] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and P. Rous-
sel. The microarchitecture of the Pentium®4. Intel Technology Journal. Q1 Issue,
February 2001. 24, 97

BIBLIOGRAPHY 247

[112] R. Ho, K. Mai, and M. Horowitz. The future of wires. Proceedings of the IEEE,
89(4):490-504, April 2001. vi, 21, 22, 23, 24, 97, 106

[113] R. Ho, K. Mai, and M. Horowitz. Managing wire scaling: A circuit perspective. In
IEEE Interconnect Technology Conference, June 2003. 22, 106, 108

[114] S. Hojat and P. Villarrubia. An integrated placement and synthesis approach for
timing closure of Power PC microprocessors. In Proc. Intl. Conf. on Computer
Design. VLSI in Computers and Processors, pages 206-210. IEEE, October 1997.
107

[115] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley, Reading,MA, 1979. 156

[116] Accellera Organization Inc. SYSTEMVERILOG language reference manual. Avail-
able at http://www.systemverilog.org. 79

[117] ITRS. The international technology roadmap for semiconductors. Available at
http://www.public.itrs.net, 2003. 16, 19, 20, 230

[118] H.M. Jacobson, PN. Kudva, P. Bose, P.W. Cook, S.E. Schuster, E.G. Mercer, and
C.J. Myers. Synchronous interlocked pipelines. In 8th IEEE International Sympo-
sium on Asynchronous Circuits and Systems, April 2002. 110, 111

[119] A. Jalabert, L. Benini, S. Murali, and G. De Micheli. x pipesCompiler: a tool for
instantiating application-specific NoCs. In Proc. of the Conf. on Design, Automation
and Test in Europe, February 2004. 230

[120] D. B. Johnson. Finding all the elementary circuits of a directed graph. SIAM J.
Comput., 4:77-84, 1975. 121

[121] M. B. Josephs and J. T. Udding. An overview of DI algebra. In T. N. Mudge,
V. Milutinovic, and L. Hunter, editors, Proc. Hawaii International Conf. System

Sciences, volume I, pages 329-338. IEEE Computer Society Press, January 1993.
66

BIBLIOGRAPHY 248

[122] G.Kahn. The semantics of a simple language for parallel programming. In Proceed-
ings of the IFIP Congress 74. International Federation for Information Processing,
North-Holland Publishing Company., pages 471-475, 1974. 200

[123] A. B. Kahng. Design technology productivity in the DSM era. In Proc. of the Asia
and South Pacific Design Automation Conference, pages 443448, January 2001. 18

[124] Timothy Kam, Tiziano Villa, Robert K. Brayton, and Alberto Sangiovanni-
Vincentelli. Synthesis of FSMs: Functional Optimization. Kluwer Academic Pub-
lishers, 1997. 4, 60, 208

[125] L.N. Kannan, P.R. Suaris, and H. Fang. A methodology and algorithms for post-
placement delay optimization. In Proc. of the Design Automation Conf., pages 327-
332, June 1994. 107

[126] H.Kapadia and M. Horowitz. Using partitioning to help convergence in the standard-
cell design automation method. In Proc. of the Design Automation Conf., pages
592-597, June 1999. 25, 106

[127] R. M. Karp. A characterization of the minimum cycle mean in a digraph. Discrete
Math., 23:309-311, 1978. 123, 153

[128] R.M. Karp and R. E. Miller. Properties of a model for parallel computations: Deter-
minacy, termination, queueing. SIAM Journal of Applied Mathematics, 14(6):309—
311, November 1966. 155

[129] R.E. Kessler. The Alpha 21264 Microprocessor. IEEE Micro, 19(2):24-36, March
1999. 97,99

[130] B.Khailany, W. J. Dally, S. Rixner, U. J. Kapasi, J. D. Owen, and B. Towles. Explor-
ing the VLSI scalability of stream processors. In Proc. of the Symposium on High
Performance Computer Architecture, pages 153-164, Anaheim, California, USA,
February 2003. 24

BIBLIOGRAPHY 249

[131] K.S. Khouri, G. Lakkshminarayana, and N.K. Jha. High-level synthesis of low-
power control-flow intensive circuits. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, 18(12):1715-1729, December 1999. 200

[132] F. Klass. Latches and flip-flops. In V. G. Oklobdzija, editor, The Computer Engi-
neering Handbook, pages 10.35-10.70. CRC Press, New York, 2002. 27, 80, 206

[133] Peter M. Kogge. The Architecture of Pipelined Computers. McGraw-Hill Advanced
Computer Science Series. Hemisphere Publishing Corporation; McGraw-Hill Book
Company, 1981. 78

[134] A. Kondratyev, M. Kishinevsky, B. Lin, P. Vanbekbergen, and A. Yakovlev. Ba-
sic gate implementation of speed-independent circuits. In Proc. ACM/IEEE Design
Automation Conference, pages 5662, June 1994. 66

[135] C. E. Kozyrakis, S. Perissakis, D. Patterson, T. Anderson, K. Asanovi¢, N. Card-
well, R. Fromm, J. Golbus, B. Gribstad, K. Keeton, R. Thomas, N. Treuhaft, and
K. Yelick. Scalable processors in the billion-transistor era: IRAM. In IEEE Com-
puter, June 2000. 24

[136] D. C.Ku and G. De Micheli. Relative scheduling under timing constraints. In Proc.
of the Design Automation Conf., pages 5964, June 1990. 69

[137] Thomas S. Kuhn. The Structure of Scientific Revolutions. University of Chicago
Press; 3rd edition, 2000(1962,1970). 1

[138] L. Lamport. What good is temporal logic? Proc. IFIP 9th World Congress, 5:657-
658, 1983. 73

[139] L. Lamport. Composition: A way to make proofs harder. In Willem-Paul de Roever,
Hans Langmaack, and Amir Pnueli, editors, Compositionality: The Significant Dif-
ference (Proceedings of the COMPOS’97 Symposium), volume 1536 of Lecture
Notes in Computer Science, pages 402-423, Berlin, 1998. Springer Verlag. 70, 71

[140] Eugene Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rhine-
hart and Winston, 1976. 152, 207

BIBLIOGRAPHY 250

[141] E. A. Lee. Consistency in dataflow graphs. IEEE Transactions on Parallel and
Distributed Systems, 2(2):223-235, April 1991. 155

[142] E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous data flow pro-
grams for digital signal processing. IEEE Transactions on Computers, C-36(1):24-
35, January 1987. 155

[143] E. A. Lee and D. G. Messerschmitt. Synchronous data flow. Proceedings of the
IEEE, 75(9):1235-1245, September 1987. 155

[144] E. A. Lee and A. Sangiovanni-Vincentelli. A Framework for Comparing Models of
Computation. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 17(12):1217-1229, December 1998. 2, 34, 37, 48

[145] Edward A. Lee. 4 Coupled Hardware and Software Architecture for Programmable
Digital Signal Processors. PhD thesis, University of California, Berkeley, Electron-
ics Research Laboratory, May 1986. 155

[146] Tak Kwan Lee. A General Approach to Performance Analysis and Optimization
of Asynchronous Circuits. PhD thesis, California Institute of Technology, 1995.
Technical report CS-TR-95-07. 154

[147] C.E. Leiserson, F. M. Rose, and J. B. Saxe. Optimizing Synchronous Circuitry by
Retiming. In Advanced Research in VLSI: Proc. of the Third Caltech Conf., pages
86—116. Computer Science Press, 1983. 204

[148] C.E. Leiserson and J. B. Saxe. Optimizing Synchronous Systems. Journal of VLSI
and Computer Systems, 1(1):41-67, Spring 1983. 204, 207

[149] C.E. Leiserson and J. B. Saxe. Retiming synchronous circuitry. Technical Report
SRC-RR-13, Digital-Systems Research Center, 130 Lytton Avenue, Palo Alto, CA
94301, August 1986. 204, 206, 207, 208

[150] C.E. Leiserson and J. B. Saxe. Retiming synchronous circuitry. 4lgorithmica, 6:5-
35, 1991. viii, 201, 204, 205, 206, 207, 208, 222

BIBLIOGRAPHY ' 251

[151] Charles E. Leiserson. Area-Efficient VLSI Computation. PhD thesis, Massachusetts
Institute of Technology, 1983. MIT Press. 204

[152] T. Lin and L. T. Pileggi. Throughput-driven IC communication fabric synthesis. In
Proc. Intl. Conf. on Computer-Aided Design, pages 274-279, 2002. 201

[153] Mikko H. Lipasti. Value Locality and Speculative Execution. PhD thesis, Carnegie
Mellon University, Department of Electrical and Computer Engineering, Carnagie
Mellon University, Pittsburgh, Pennsylvania 15213, May 1997. 99

[154] A. Lu, H. Eisenmann, G. Stenz G., and F.M. Johannes. Combining technology
mapping with post-placement resynthesis for performance optimization. In Proc.
Intl. Conf. on Computer Design. VLSI in Computers and Processors, pages 616—
621. IEEE, October 1998. 107

[155] R. Lu, G. Zhong, C.K. Koh, and J.Y. Chao. Flip-flop and repeater insertion for
early interconnect planning. In Proc. of the Conf. on Design, Automation and Test
in Europe, March 2002. 109

[156] J. Magott. Performance evaluation of concurrent systems using Petri nets. Informa-
tion Processing Letters, 18(1):7-13, 1984. 123

[157] K. Mai, T. Paaske, N. Jayasena, R. Ho, and M. Horowitz. Smart memories: A
modular reconfigurable architecture. In Proc. Annual International Symposium on
Computer Architecture, June 2000. 24

[158] Rajit Manohar. The Impact of Asynchrony on Computer Architecture. PhD thesis,
California Institute of Technology, 1998. Available as Caltech technical report CS-
TR-98-12. 69

[159] A. J. Martin. The limitations to delay-insensitivity in asynchronous circuits. In
William J. Dally, editor, Advanced Research in VLSI, pages 263-278. MIT Press,
1990. 66

BIBLIOGRAPHY 252

[160] A.J. Martin, A. Lines, R. Manohar, M. Nystrom, P. Pénzes, R. Southworth, and
U. Cummings. The design of an asynchronous MIPS R3000 microprocessor. In
Advanced Research in VLSI, pages 164-181, September 1997. 69

[161] A.Mathur, A. Dasdan, and R. K. Gupta. Rate analysis for embedded systems. ACM
Trans. on Design Automation of Electronic Systems, 3(3):408-436, July 1998. 154,
200

[162] The MathWorks. MATLAB® & simuLmk® Based Books. Available at
http://www.mathworks.com/support/books/. 10

[163] D. Matzke. Will physical scalability sabotage performance gains? IEEE Computer,
8(9):37-39, September 1997. 21, 22, 106

[164] R. McInemney, K. Leeper, T. Hill, H. Chan, B. Basaran, and L. McQuiddy. Method-
ology for repeater insertion management in the RTL, floorplan and fullchip timing
databases of the ITANIUMTM microprocessor. In Proc. of the Intl. Symposium on
Physical Design, pages 99-104, 2000. 27

[165] K. L. McMillan. A compositional rule for hardware design refinement. In Proc. of
the 9th Intl. Conf. on Computer-Aided Verification, pages 24-35, Haifa, Israel, June
1997. 65

[166] K. L. McMillan. Verification of an implementation of Tomasulo’s algorithm by
compositional model checking. In Proc. of the 10th Intl. Conf. on Computer-Aided
Verification, pages 110-121, Vancouver, Canada, July 1998. 65

[167] J. D. Meindl. Interconnect opportunites for gigascale integration. IEEE Micro, 2003.
21,22,106

[168] Giovanni De Micheli. Synthesis and Optimization of Digital Circuits. Electrical and
Computer Engineering Series. McGraw-Hill Book Company, 1994. 25, 173, 207

[169] M. Mizuno, W. J. Dally, and H. Onishi. Elastic interconnects: Repeater-inserted
long wiring capable of compressing and decompressing data. In ISSCC Digest of
Technical Papers, pages 346347, February 2001. 111

BIBLIOGRAPHY 253

[170] Mohand Mokhtari, Michel Marie, Cecile Davy, and Martine Neveu. Engineering
Applications of MATLAB® 5.3 and Simulink® 3. Springer-Verlag, 2000. 10

[171] C. E. Molnar, T. P. Fang, and F. U. Rosenberger. Synthesis of delay-insensitive
modules. In Henry Fuchs, editor, 1985 Chapel Hill Conference on Very Large Scale
Integration, pages 67-86. Computer Science Press, 1985. 66

[172] G.E. Moore. Cramming More Components onto Integrated Circuits. Electronics
Magazine, 38:114-117, April 1965. 16

[173] G.E. Moore. No exponential is forever: but »Forever” can be delayed. In ISSCC
Digest of Technical Papers, pages 20-23, February 2003. vi, 16, 17

[174] Gordon E. Moore. ~ No exponential is forever: But “Forever” can be
delayed! Keynote Address at the 2003 International Solid-State Cir-
cuits Conference (ISSCC). San Francisco, CA, February 10, 2003. Available
at http://www.intel.com/pressroom/archive/speeches/ moore20030210.htm, 2003.
16

[175] T. Murata. Petri Nets, marked graphs and circuit-system theory. Circuits and Sys-
tems, 11(2):2-12, June 1977. 119, 121

[176] T. Murata. Petri Nets: Properties, analysis and applications. Proceedings of the
IEEE, 77(4):541-580, April 1989. vi, 114, 115, 118, 119

[177] Praveen K. Murthy. Scheduling Techniques for Synchronous and Multidimensiona
Synchronous Dataflow. PhD thesis, University of California, Berkeley, Electronics
Research Laboratory, December 1996. Memorandum No. UCB/ERL M96/79. 155

[178] R. Nagarajan, K. Sankaralingam, D. Burger, and S. W. Keckler. A design space
evaluation of grid processor architectures. In 34th Annual International Symposium
on Microarchitecture, 2001. 24

[179] C. D. Nielsen and M. Kishinevsky. Performance analysis based on timing simula-
tion. In Proc. ACM/IEEE Design Automation Conference, pages 70~76, June 1994.
vii, 120, 121, 122, 123

BIBLIOGRAPHY ' 254

[180] Vojin G. Oklobdzija, Vladimir M. Stojanovic, Dejan M. Markovic, and Nikola M.
Nedovic. Digital System Clocking: High-Performance and Low-Power Aspects. Wi-
ley, New York, NY, 2003. 83

[181] Alan V. Oppenheim, Ronald W. Schafer, and John R. Buck. Discrete-Time Signal
Processing (2nd Edition). Prentice Hall, 1999. 88

[182] Open SYSTEMC Initiative (OSCI). The SYSTEMC language reference manual.
Available at http://www.systemc.org/. 79

[183] P. Osler, L. Sheffer, P. Saxena, D. Sylvester, and D.A. Kirkpatrick. The great in-
terconnect buffering debate: Are you a chicken or an ostrich? In Proc. of the Intl.
Symposium on Physical Design, pages 61-61, 2004. 21

[184] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization: Al-
gorithms and Complexity. Dover Publications, 1998 (1982). 276

[185] M. C. Papaefthymiou. Understanding retiming through maximum average-weight
cycles. In ACM Symposium on Parallel Algorithms and Architectures, pages 338—
348, 1991. 209

[186] James L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice-Hall,
1981. 114

[187] Carl A. Petri. Kommunikation mit Automaten. PhD thesis, Bonn, Institut fiir Instru-
mentelle Mathematik. Also, English translation, "Communication with Automata”,
New York: Griffiss Air Force Based, Tech. Rep. RADC-TR-65-377, Vol.1, Suppl. 1,
1966., 1962. (technical report Schriften des IIM Nr. 3). 114

[188] L. Pileggi. Achieving timing closure for giga-scale IC designs. In 1999 ACM In-
ternational Workshop on Timing Issues in the Specification and Synthesis of Digital
Systems, March 1999. 25, 106

[189] F. Pogodalla, R. Hersemeule, and P. Coulomb. Fast prototyping: a system design
flow for fast design, prototyping and efficient IP reuse. In Proc. of the 7th Intl. Conf.

BIBLIOGRAPHY 255

on Hardware/Software Codesign(CODES’99), pages 69-73, Rome, Italy, May 1999.
19

[190] D. Potop-Butucaru, B. Caillaud, and A. Benveniste. Ermatum to: A. Ben-
veniste, B. Caillaud, P. Le Guemic. Compositionality in dataflow syn-
chronous languages, specification and distributed code generation. Informa-
tion and Computation 163, 125-171 (2000). Technical Report Available at
http://www.irisa.fr/prive/Benoit.Caillaud/erratum-ic-2003.pdf,
IRISA-INRIA, Campus de Beaulieu, 35042 Rennes cedex, France, September
2003. 73

[191] D. Potop-Butucaru, B. Caillaud, and A. Benveniste. Concurrency in synchronous
systems. In Fourth International Conference on Application of Concurrency to Sys-
tem Design, June 2004. 73, 74

[192] R. H. J. M. Otten and R. K. Brayton. Planning for performance. In Proc. of the
Design Automation Conf., pages 122-127, June 1998. 26, 106

[193] Jan Rabaey, Anantha Chadrakasan, and Borivoje Nikolic. Digital Integrated Cir-
cuits: A Design Perspective - Second Edition. Prentice Hall, 2003. 4, 27, 80, 107,
232

[194] C. V. Ramamoorthy and G. S. Ho. Performance evaluation of asynchronous con-
current systems using Petri nets. IEEE Transactions on Software Engineering,
6(5):440—449, September 1980. vi, 115, 119, 121

[195] C.Ramchandani. Analysis of asynchronous concurrent systems by timed Petri nets.
Technical Report Project MAC Tech. Rep. 120, Massachusetts Inst. of Tech., Febru-
ary 1974. 117, 154

[196] Edward M. Reingold, Jurg Nievergelt, and Narsingh Deo. Combinatorial Algo-
rithms: Theory and Practice. Prentice Hall, Englewood Cliffs, NJ, 1977. 121

[197] W. Reisig. On the Semantics of Petri Nets. Univ. Hamburg, Fachbereich Informatik,
Bericht Nr. 100, September 1984. NewsletterInfo: 18,23. 119

BIBLIOGRAPHY 256

[198] W. Reisig. On the semantics of Petri nets. Formal Models in Programming, IFIP
1985, pages 347-372, 1985. NewsletterInfo: 18,23. 119

[199] R. Reiter. Scheduling parallel computations. Journal of the ACM, 15(4):309-311,
October 1968. 121

[200] F. U. Rosenberger, C. E. Molnar, T. J. Chaney, and T. P. Fang. Q-modules: In-
ternally clocked delay-insensitive modules. IEEE Transactions on Computers, C-
37(9):1005-1018, September 1988. 66

[201] D. Sager, G. Hinton, M. Upton, T. Chappell, T.D. Fletcher, and R. Murray
S. Samaan. A 0.18x CMOS 1A-32 microprocessor with a 4-GHz integer execu-
tion unit. In ISSCC Digest of Technical Papers, pages 324-325, February 2001. 24,
97

[202] Sadiq M. Sait and Habib Youssef. VLSI Physical Design Automation: Theory &
Practice. World Scientific Publishing Company, 1999. 25

[203] K. Sakallah, T. Mudge, and O. Olukotun. Analysis and design of latch-controlled
synchronous digital circuits. IEEE Transactions on Computer-Aided Design,
11(3):322-333, March 1992. 153

[204] A. Salek, J. Lou, and M. Pedram. A DSM design flow: Putting floorplanning, tech-
nology mapping and gate placemente together. In Proc. of the Design Automation
Conf., pages 287-290, June 1998. 107

[205] K. Sato, M. Kawarabayashi, H. Emura, and N. Maeda. Post-layout optimization for
deep submicron design. In Proc. of the Design Automation Conf., pages 740-745,
June 1996. 107

[206] P. Saxena, N. Menezes, P. Cocchini, and D.A. Kirkpatrick. The scaling challenge:
can correct-by-construction design help? In Proc. of the Intl. Symposium on Physical
Design, pages 51-58, 2003. 22, 106

BIBLIOGRAPHY 257

[207] P. Saxena, N. Menezes, P. Cocchini, and D.A. Kirkpatrick. Repeater scaling and
its impact on CAD. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 23(4):451-462, April 2004. 22, 28, 106

[208] S.J. Schaffer and W.W. LaRue. BONeS DESIGNER: a graphical environment for
discrete-event modeling and simulation. In MASCOTS ’94. Proc. of the 2nd. Intl.
Workshop on Modeling, Analysis, and Simulation of Computer and Telecommunica-
tion Systems, pages 371-374, Los Alamitos - CA, February 1994. IEEE. 102

[209] L. Scheffer. Methodologies and tools for pipelined on-chip interconnect. In Proc.
Intl. Conf. on Computer Design, pages 152-157, October 2002. 27, 109

[210] Semiconductor Industry Association. The International Technology Roadmap for
Semiconductors. http://www.semichips.org, 2001. 18

[211] H. Shah, P. Shiu, B. Bell, M. Aldredge, N. Sopory, and J. Davis. Repeater insertion
and wire sizing optimization for throughput-centric VLSI global interconnect. In
Proc. Intl. Conf. on Computer-Aided Design, pages 280284, 2002. 201

[212] N. Shenoy. Retiming: Theory and practice. Integration, the VLSI Journal, 22:1-21,
1997. 204, 208

[213] N. Shenoy and R. Rudell. Efficient implementation of retiming. In Proc. Intl. Conf.
on Computer-Aided Design, pages 226-233, November 1994. 204

[214] Naveed A. Sherwani. Algorithms for VLSI Physical Design Automation. Kluwer
Academic Publishers, 1999. 25

[215] M. Singh and M. Theobald. Generalized latency-insensitive systems for single-clock
and multi-clock architectures. In Proc. of the Conf. on Design, Automation and Test
in Europe, February 2004. 231

[216] Michael J. Smith. Application-Specific Integrated Circuits. Addison-Wesley Pub-
lishing Company, Reading, MA, 1999. 4, 25

BIBLIOGRAPHY 258

[217] G. Snider. Performance-constrained pipelining of software loops onto reconfigurable
hardware. In Proc. Intl. Conf. Symp. on FPGAs, pages 177-186. ACM, February
2002. 204, 222

[218] The DLX Software. fip://max.stanford.edu/pub/hennessy-patterson.software. Stan-
ford University, 1994. 104

[219] G. S. Spirakis. Leading-edge and future design challenges - is the classical EDA
ready? In Proc. of the Design Automation Conf., page 416, June 2003. 17

[220] E. Sprangle and D. Carmean. Increasing processor performance by implementing
deeper pipelines. In 29th Annual International Symposium on Computer Architec-
ture, pages 25-36. IEEE, May 2002. 27

[221] R.F. Sproull, I. E. Sutherland, and C. E. Molnar. The counterflow pipeline processor
architecture. IEEE Design & Test of Computers, 11(3):48-59, Fall 1994. 67

[222] Ivan E. Sutherland. Micropipelines. Communications of the ACM, 32(6):720-738,
June 1989. 66

[223] D. Sylvester and K. Keutzer. Getting to the bottom of deep submicron. In Proc. Intl.
Conf. on Computer-Aided Design, pages 203-211, November 1998. 22, 106

[224] D. Sylvester and K. Keutzer. Getting to the bottom of deep submicron ii: A global
wiring paradigm. In Proc. of the Intl. Symposium on Physical Design, pages 193-
200, April 1999. 22, 106

[225] D. Sylvester and K. Keutzer. Rethinking deep-submicron circuit design. IEEE Com-
puter, 32(11):25-33, November 1999. 22, 106

[226] D. Sylvester and K. Keutzer. Impact of small process geometries on microarchitec-
ture in system on a chip. Proceedings of the IEEE, 89(4):467—489, April 2001. 22,
106

[227] T. G. Szymanski and N. Shenoy. Verifying clock schedules. In Proc. Intl. Conf. on
Computer-Aided Design, 1992. 153

BIBLIOGRAPHY 259

[228] J. P. Talpin, A. Benveniste, B. Caillaud, and P. Le Guernic. Hierachical normal form
for desynchronization. Technical Report 3822, IRISA, 1999. 71

[229] J. P. Talpin and P. Le Guemnic. Process algebraic theory of a behavioral type sys-
tem for protocol synthesis in system design. Journal of Formal Methods in System

Design, submitted. 231

[230] J. P. Talpin, P. Le Guernic, S. K. Shukla, R. Gupta, and F. Doucet. A polychronous
model for high-level component-based system design. In Proc. of the Conf. on De-
sign, Automation and Test in Europe, 2003. 231

[231] J. P. Talpin, P. Le Guemic, S. K. Shukla, R. Gupta, and F. Doucet. Formal
refinement-checking in a system-level design methodology. Fundamenta Informati-
cae, 2004. 231

[232] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput.,
1:146-160, 1972. 131

[233] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H. Hoffman,
P. Johnson, J. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski, N. Shnidman, V. Strumpen,
M. Frank, S. Amarasinghe, and A. Agarwal. The Raw microprocessor: A computa-
tional fabric for software circuits and general purpose programs. IEEE Micro, 22(2),
Mar-Apr 2002. 24

[234] Donald E. Thomas and Philip E. Moorby. The Verilog Hardware Description Lan-
guage. Kluwer Academic Publishers, 1996. 25, 65

[235] R.M. Tomasulo. An efficient algorithm for exploiting multiple arithmetic units. JBM
Journal Research and Development, 11:25-33, January 1967. 99

[236] The POLYCHRONY Toolset. Developed at IRISA. Available at
http:/ /www.irisa.fr/espresso/Polychrony/. 231

[237] J. T. Udding. A formal model for defining and classifying delay-insensitive circuits.
Distributed Computing, 1(4):197-204, 1986. 66

BIBLIOGRAPHY 260

[238] J. P. Uyemura. VLSI clocking and system design. In Introduction to VLSI Circuits
and Systems. Wiley, New York, 2002. 232

[239] JanL. A. van de Snepscheut. Trace Theory and VLSI Design, volume 200 of Lecture
Notes in Computer Science. Springer Verlag, Berlin, 1985. 67

[240] Tiziano Villa, Timothy Kam, Robert K. Brayton, and Alberto Sangiovanni-
Vincentelli. Synthesis of FSMs: Logic Optimization. Kluwer Academic Publishers,
1997. 4, 60, 208

[241] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank,
P. Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal. Baring it all to
software: Raw machines. JEEE Computer, 30(9):86-93, September 1997. 24

[242] Jacun Wang. Timed Petri Nets: Theory and Application. Kluwer Academic Publish-
ers, 1998. 117

[243] N. Weaver, Y. Markovskiy, Y. Patel, and J. Wawrzynek. Post-placement C-slow
retiming for the Xilinx Virtex FPGA. In Proc. Intl. Conf. Symp. on FPGA4s, pages
177-186. ACM, February 2003. 204, 222

[244] Ted E. Williams. Latency and throughput tradeoffs in self-timed asynchronous
pipelines and rings. Technical Report CSL-TR-90-431, Stanford University, August
1990. 154

[245] A.Xie and P. A. Beerel. Symbolic techniques for performance analysis of timed sys-
tems based on average time separation of events. In Proc. International Symposium
on Advanced Research in Asynchronous Circuits and Systems, pages 64-75. IEEE
Computer Society Press, April 1997. 154

[246] A. Xie and P. A. Beerel. Implicit enumeration of strongly connected components
and an application to formal verification. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 19(10): 1225-1230, October 2000. 131

[247] A. Xie and P. A. Beerel. Performance analysis of asynchronous circuits and sys-
tems using stochastic timed Petri nets. In A. Yakovlev, L. Gomes, and L. Lavagno,

BIBLIOGRAPHY ' 261

editors, Hardware Design and Petri Nets, pages 239-268. Kluwer Academic Pub-
lishers, March 2000. 68, 154

[248] Aiguo Xie. Performance Analysis of Asynchronous Circuits and Systems. PhD the-
sis, University of Southem California, August 1999. 68

[249] Alex Yakovlev, Luis Gomes, and Luciano Lavagno (Eds.). Hardware Design and
Petri Nets. Kluwer Academic Publishers, 2000. 154

[250] T. Yamada and S. Kataoka. On some LP problems for performance evaluation of

marked graphs. IEEE Transactions on Automatic Control, 39(3):696—698, 1994.
123

- BIBLIOGRAPHY | 282

263

Appendix A

Rate Equalization and Cycle Balancing

Problems

A.1 Rate Equalization Problems
In the most general case the rate equalization problem is defined as follows:

Problem A.1 (Rate Equalization Problem (RE)) Given: K pairs of nonnegative integers
(alabl),') (aK)bK) €Z* xZ"

Minimize: The cost
k=K

g= Y, Iml+In]
k=1

over all tuples of pairs of integer variables ((m},n),...,(m,ny)) such that

Yk, (ml,,n},) € ([(1—ag),eo] x [—(bk—ak)=°°[)

Subject to:

+ ax+mj,
IreQt,r<li, Vke[1,K), (———bk+m'+n’ =r) (A1)
k k
O

It is easy to see that this problem presents always a solution. In fact, for any instance

of the problem there is always at least one distinct tuple (71, 71),.. ., (mik, k) that satisfies

APPENDIX A. RATE EQUALIZATION AND CYCLE BALANCING PROBLEMS 264

constraint (A.1). This is the frivial tuple that is obtained by setting Vk, (g, vix) = (0, — (br—
ax)). The trivial tuple gives cost giriv = Xk |(bx —ax)| with 7 = 1. Naturally, if the trivial
tuple is the one with the minimum cost among all the tuples satisfying constraint (A.1), then
it is also the solution of the problem. It is also possible to consider other cost functions: for
instance, the |}| and || contributions can be weighted with two constants w; and wy:
k=K
g= kZl wi - || + w2 |

In the next sections, I first focus on three simplified versions of the rate equalization
problem. Differently from the general case of Problem A.1, these problems have in com-
mon the fact that integer variables ((m},n}), ..., (mk,nk)) are forced to be nonnegative.
First, I consider the 2-pair rate equalization problem that simply equalizes two ratios. Then
I consider two cases of multiple pairs and enforce subsequently dual constraints on the
variables: the first case requires that Vk(m}, =0 A), > 0) while the second case requires
that Vk(n, =0 A m}, >0).

A.1.1 The 2-Pair Decreasing Rate Equalization Problem

Foralla,b€Z*,(0<a<b),letc,p: Z — QF be the infinite sequence whose n-term
is 64,5(n) = ;. Clearly, 0,5 is decreasing monotone and converging to 0. The following
lemma shows that for all pairs (a, b), there exists a positive integer R such that one term of
sequence Gg5(n) is equal to ;% and, furthermore, that the sequence touches all the values

’R‘:'G for j=1,2,..., while converging to 0.

Lemma A.1 Va,b € Z*,(0 < a<b), IR € Z*,(R > [2]), such that
R . 1
Vj e Z* e Z*(0ap() = R+j)
Proof. For all a,b € Z*,(0 < a < b), and for all j € Z* suppose G () = #j. Then,
i=a (R+j)—b. Now,letR= [g] , then a - R is the smallest integer greater than (or equal
to) b and for all j € Z*, 7 is a nonnegative integer.]

Any two sequences O, 5 and Gy share an infinite set of common terms.

APPENDIX A. RATE EQUALIZATION AND CYCLE BALANCING PROBLEMS 265

1: TWOPAIREQUALIZER (a,b,d,b’)
2: {Find (n,n') € Z*? st. 3% = pZz..}
3: {...and the cost C = n+n' is minimum.}
4: ne=0; «<=0; d<b;, d<b;
5: {Preprocessing}
6: if (§ < ;}“-’;) then

7. n<0

8 el

9: elseif (§ > gy) then

10: n<1
11: r'<0
12: end if

13: {Main Loop}

14: while (§ # &) do
15: while (§ < %’,) do
16: d<b+n

17: n& [91‘-}‘1'—'3]
18: ren+1

19: end while

20: while (§> %) do
21: de=b+n

22: ne [“—"-d;—“'i’]
23: n<sn+l

24: end while

25: end while

26: {Postprocessing}
27: n<d-b

28: ' =d -V

29: return (n,n’)

Figure A.1: Algorithm to solve the 2-Pair Decreasing Rate Equalization Problem.

APPENDIX A. RATE EQUALIZATION AND CYCLE BALANCING PROBLEMS 266

1: DECREASINGPAIREQUALIZER (a1, b1,...,ak,bk)

2: {Find (m,...,nx) €2*K st. Ire Q*,r <1, Yk [LK], (525 =r)-}
3: {..and the cost g = T§_, r; is minimum.}

4: {Preprocessing}

5: for (k=1;k<K;k++) do

6: m<=0

7: end for

8: {Main Loop}

9: while! (ﬁ:ﬁ:---:rxﬁ)do

10: {Find indexes max and min associated...}

11: {..respectively to the pairs with the largest and smallest ratio}
12: max < 0; min < 0; maxRatio < 0; minRatio <= o=}

13: for (k=1;k<K;k++)do

14: if (5%, > maxRatio) then

15: max <k

16: maxRatio < h_ikﬁ

17: end if

18: if (5%, <minRatio) then
19: min<k

20: minRatio < h—"JfE

21: end if
22 end for

23: {Compute increment step for the denominator of the largest pair}

24: tmp « memintinn) _

Amin bmax

25: incrementStep <= [tmp — Nmax|
26: Mmax < Nmax + incrementStep
27: end while

28: return (ny,...,nx)

Figure A.2: Algorithm to solve the Decreasing Rate Equalization Problem.

APPENDIX A. RATE EQUALIZATION AND CYCLE BALANCING PROBLEMS 267

Lemma A.2 Va,b,d’,b' € Z+,(0 < a < b),(0 < d’ < b'), there exists an infinite number of
pairs (7, 7) of non-negative integers s.t. Ggp(71) = Oz y (7).
Proof. Apply Lemma A.1 for the two sequences G50z b With R = [max{2 2, 7} |. There-
fore, Vj € Z*, In, 7 € Z* s.t. Gop(71) = —. =0y p(7).]
The goal, however, is to find the first common term between two sequences Cq,p and
6z . Since the two sequences are decreasing monotone this translates into searching the
pair of positive integers n,n’ such that 6,5(%) = Oy (%') and n+ ' is minimum. This
problem can be casted as the following instance of Problem A.1.

Problem A.2 (Two-Pair Decreasing Rate Equalization Problem (2n-DRE))

Given: Two pairs of positive integers (a,b),(d,b') € (Z*)? suchthata< b, d <V,
Minimize: The cost g = n+n' over all nonnegative integers n, n' eZ*

Subject to:
a 4

b+n b +rn (A2)

O

Lemma A.2 guarantees that this problem has solution, since there exists an infinite
number of pairs (n,n’) which satisfy constraint (A.2). Fig. A.1 reports a simple algorithm

to solve this problem.

A.1.2 The Decreasing Rate Equalization Problem

Lemma A.2 can be easily extended to the case of K sequences Og,p, - - -1 Cag,bx> that

together share an infinite set of common terms.

Lemma A.3 Vai,b1,a2,b2,...,ax,bx € Z*, with Vk(0 < a; < by). there exists an in-
finite number of tuples of non-negative integers (7Ay,...,7ig) € (Z)K, s.t. Oy p, (1) =
Oa;y,b; (7i2) = -+ = Oag,b¢ (7ik)-

Proof. Apply Lemma A.1 for the K sequences Gg, b, >Cay,by - - - Oag,bx With

= ey (2]

APPENDIX A. RATE EQUALIZATION AND CYCLE BALANCING PROBLEMS 268

Therefore,

- _ _ 1
vjez*, 3, ..., i) € (), ("a:,bl (1) = Gay y (P2) = -+ = G o (M) = ==)

O

Problem A.2 can be extended to the case of K pairs of nonnegative integers as follows.

Problem A.3 (Decreasing Rate Equalization Problem (DRE))
Given: K pairs of positive integers (a1,b1), (a2,b2), .- .,(ak,bk) € (Z+)? such that

VkeK, (ak < bk)

Minimize: The cost g =YX_| ny over all nonnegative integers my € Z*.

Subject to:
IreQt,r<1 vVke[l,K], (% —r) (A.3)

bi+me
]
The solution of this problem can be obtained by applying recursively the procedure of
Figure A.1 on a binary tree computational structure, where each node corresponds to one
call of the procedure for any two fractions that have not been equalized yet. In fact, the final
solution is independent from the order adopted in subsequently selecting pairs of fractions

to equalize, as the following lemma proves.

Lemma A.4 The solution of problem A.3 is unique.

Proof (by contradiction). Let Px be an instance of problem A.3 with (a1,61),(a2,b2),..-,
(ak,bx) € (Z*)? being the K pairs of nonnegative integers. Let S = (n1,...,nk) be the
solution tuple with cost g(S) = YX_, n; and ratio ». Assume that ' = (n,...,nk) is another
solution for Pk, with differs from S for at least an element #} # n;, with i € [1,K]. Without
loss of generality, assume that 7} < n;. Denote with ¥ the ratio associated to §’. Naturally,
n: < n; implies that 7/ = Ei_i%,f > r. On the other side, since both S and §' are solutions of
P, then, necessarily, g(S) = g($'). Therefore, to compensate the difference in the cost sum,

there must be at least one index j € [1,K] with j # i and such that nj- > nj. But this would

APPENDIX A. RATE EQUALIZATION AND CYCLE BALANCING PROBLEMS 269

imply that ﬁl;; < q and, therefore, ﬁ‘? # ¥, thus contradicting that §' is a solution of Py.
O
The algorithm reported in Figure A.2 represents another method, in general more effi-

cient, to solve problem A.3.

A.1.3 The Increasing Rate Equalization Problem

For all ¢ € Z* and b € Z*, with (c < b), let 6, : Z+ — Q™ be the infinite sequence
whose n-term is G 5(n) = %. Clearly, o, 5 is increasing monotone and converging to 1. If
ap(n) = 5% and c = b—a, then G p(n) = 1 — Ga,5(n). As a consequence, results similar
to the ones obtained above for sequence G, 5(n) can now be derived for sequence G 5(n).
In particular, it is easy to prove that any two sequences O, and O share an infinite set

of common terms.

Lemma A.5 Forallcy,by,c2,ba,...,cx,bx € Z*, withVk(cx < by), there exists an infinite
number of tuples of non-negative integers (7i1,...,7ix) € z+K st e, b, (1) = Ocy 0, (M2) =
e+ = Oy, by (M)
Proof. It can be proven by applying Lemma A.3 to the sequences Oy, 5, (1), - - - Cag bx (Fik),
after setting Vk(ay = by — cx). First, notice that since Vk(cy < by), then also V(0 < ax < by).
b
Then, define R = [maxye[1 »K]{Ei}.l’ By Lemma A.3,
_ 1
VjezZ, 3(m,...,fk) € (Z*)Ka (Gahbl (M) =Cap (M) =+ = Oy bx (i) = R_-IG)
Hence, multipling each term of these relation by —1 and then adding 1 to it, gives

VjeZ* 3A,..., k) € (Z*)K,

7i = = 1
1= 06gy b, (1) = 1 = Gy 5, (F2) = -+ =1 = Oy (i) = 1 = R
And finally,
eZ* 3(n 7 * 7i = — R+j-1
vjiezZ, 3(,....nx) € (Z)%, (GChbl (B1) = Oy by (2) = - = Oy, (k) = —-Rij)
O

A dual problem of Problem A.3 can be defined for sequences of the type G (n).

APPENDIX A. RATE EQUALIZATION AND CYCLE BALANCING PROBLEMS 270

RATEEQUALIZER ((a1,b1),...,(ak, bk), justTheSeeds,constraints)
{Find (m}n}),..., (mk,nk) € [(1—ar), e[x [— (bk—ax), o[st}
(3reQt,r<1 Vke (LK), (ﬁ’& =r)..}

: {..and the cost g =YK, |m}| + || is minimum.}

:Cp<=0

: for (k= 1k < K;k++) do

Cup <= Cup+ |nk|

: end for

: {Sort input pairs (a, ;) in ascending order by the ratio §§}

10: P < sortInputPairsByRatio((m1,m),...,(mk,nk))

11: {Find the candidate equalization seeds}

12: CES < FINDCANDIDATEEQUALIZATIONSEEDS (%, Cyp)
13: {Sort the candidate equalization seeds by their optimality}
14: CESsor < sortCandidateEqualizationSeeds(CES)

15: if (justTheSeeds) then

16: return CESgon

17: endif

18: {Generate feasible solution of optimization problem}

19: for all i € CESsor do

20: {Get next best equalization seed (smallest cost)}

21: ¢ <= CESsonli]

22: (m\n)),...,(mk,nk) < deriveEqualizingPairs(c)

23: {Check whether the solution is within the input constraints}
24: if (isFeasible((m\n)),...,(my,n),constraints)) then
25: return ((m)n}),..., (mg,nk))

26: endif

27: end for

Figure A.3: Algorithm to solve the Rate Equalization Problem.

APPENDIX A. RATE EQUALIZATION AND CYCLE BALANCING PROBLEMS 271

1: FINDCANDIDATEEQUALIZATIONSEEDS(?,Cys)

2: {Compute Starting Equalization Seed Set}

3: p= P0); Muax <Cus

4: if (|1 — ap| > Mia) then Myin <= —Mpax else Mpin <= 1 —ap end if
5: for (i = Mpin;i < Mypax;i++) do

6: Npmax < Cup—lil
7. if (|1 = (bp— ap)| > Ninax) then Nipin <= —Npax €lse Npin <=0 — (bp—ap) end if
8: for (j = Numin;J < Nmax; j++) do
9: {Save seed tuple}
10: o=(i,j,,,fg-_f—.,(i+j))
11: CES « CESUG
12: end for
13: end for
14: {Filter feasible seeds}
15: I <= createlndexInterleavedArray(®P)
16: for (k= 1;k> |I|;k++) do
17 z<« P[]
18: for (c € CES) do
19: matched = FALSE; minMatch = o0, Mgy < Cyp— 04
20: if (|1 — @:| > Mpax) then Myin <= —Mpax €lse Myin <= 1 —zp end if
21: for (i = Mpin;i £ Mpx;i++) do
22: Nipax <= Cup — |i]
23: if (|1 — (b — ap)| > Ninax) then Npin <= —Npax else Npin < 0— (bp—ap) end if
24: for (j = Npin3 j < Nipar; j ++) do
25: if 524 == o[3] then
26: matched < true
27: if (Cup — [4]) + (Ji| + 1j]) < minMatch then minMatch <= (Cup — 6[4]) + (il + /1) end if
28: end if
29: end for
30: end for
3 if (matched) then 6[4] < minMatch else CES <= CES\ {c} end if
32: end for
33: end for

Figure A.4: Algorithm to find the candidate equalization seeds.

APPENDIX A. RATE EQUALIZATION AND CYCLE BALANCING PROBLEMS 272

Problem A.4 (Increasing Rate Equalization Problem (IRE))

Given: K pairs of positive integers (c1,b1),(c2,2),...,(ck,bk) € (Z+)? such that Vk €
K, (ck < be),

Minimize: The costg = Zf=1 my, over all nonnegative integers my € L*.

Subject to:

Cr+my ___Z)

FZeQ*,z<1 Vke[1,K], (b ey
(4

(A4)

a

A possible way to find the solution of this problem is to solve the corresponding in-
stance of the dual Problem A.3. This instance is obtained by considering the K pairs of
nonnegative integers (aj,b1),(a2,2),-.-,(ax,bx) € (Z*)?, where Vi (a; = b; —¢;). The
tuple (71, .-, nk) that represents the optimum solution of Problem A.3 corresponds exactly
to the tuple (my,...,mk) representing the optimum solution of Problem A.4. Naturally, the

rational numbers 7,z in the two problems are related by the fact thatr = 1 —z.

A.1.4 Solving the Rate Equalization Problem

Algorithm RATEEQUALIZER of Figure A.3 solves the general Rate Equalization Prob-
lem (RE). The algorithm start by setting an upper bound Cyp for the cost of the solution.
This is given by the cost of the trivial tuple discussed in Section A.1. Then, all input pairs
are sorted in ascending order of their ratios %f. This information is passed to routine FIND-
CANDIDATEEQUALIZATIONSEEDS, reported in Figure A.4, which does the bulk of the
work. The routine takes the pair (ap, b,) with the smallest ratio and, by varying the values
of my, ny, into the corresponding integer intervals such that the cost |my| + || < Cup, it con-
siders all the possible ratios that can be obtained from k‘j_;;:_nk. Each of these value is a
candidate equalization seed with its own ratio and cost. Then, each seed is filter iteratively
against all the other pairs (ax, bx). At each iteration a new pair (a;, ;) is considered. This
is chosen based on the interleaving order of the pair ratios. At each iteration, the goal is
to verify whether with the “remaining upper bound” available pair (ap,bp) can match the
ratio of the cost. As soon as a pair cannot match this ratio the seed is discarded. Finally,
the set CESsor of candidate equalization seeds is returned to algorithm RATEEQUALIZER

APPENDIX A. RATE EQUALIZATION AND CYCLE BALANCING PROBLEMS 273

which simply sorts it in increasing order of seed cost. For each seed the solution is quickly
computed equalizing the original pair to the ratio of the seed. Algorithm RATEEQUALIZER
accepts constrains in terms of ranges for the ratio r as well as for the cost g. Only those

solutions that are inside these ranges are returned.

A.2 Solving the Cycle Balancing Problem

Given a marked graph M Gs modeling a latency-insensitive system implementation S,
the cycle balancing problem is defined as follows:

Problem A.5 (Cycle Balancing Problem (CPB))

Given: A marked graph M Gs = (P,T,F, W, M) with a set of cycles C(M G).

Minimize: The cost

g= Y Im@)|+ Y In' (el
pjEP

LeT

over all integer variables ' (11),...,n' (i) and m'(p1),...,m'(p|py), with

vie [LIT]), (7 () € [-1,1] A Vi€ [LIP),(m'(p)) € [-1,1]

Subjectto: 3 € Q*,g> 1, Vke[1,|C(MGs)|) -
Y, x(ti,cx) - [n(t;) + n'(t,—)]

I{GT =
> y(pjici)- [’"(Pj) +m’(p,~)] !

pj€P

where Py = {p € P|My(p) = 0} is the set of initially empty places andV't; € T, Vp; € P

] n(t;’) =1
0 ifpjeh
o m(pj)= a
1 otherwise
1 i
o x(ti,cx) = i € ck
0 otherwise

APPENDIX A. RATE EQUALIZATION AND CYCLE BALANCING PROBLEMS 274

1: CYCLEBALANCER (n(11),...,n(tir)),m(p1);...,m(pip|))s
2: for all k € [1,K] do

3 br = Zyerx(tiuCr) nlt)

4 a <= ijep}'(Pj:ck) -m(p;)

5: end for

6: {Invoke algorithm RATEEQUALIZER until step 16}

7: CESsort < RATEEQUALIZER((al,bl)s- -y (aK, bK), true, 0))
8: for all candidate ¢ € CESs,r; d0

9: {Reset set of auxiliary variables}

10: forallt; €T,p; € Pdo

11: m'(t;) < 0; E(1;) < false

12: n'(p;) « 0; E(p;) < false

13: end for

14: (M,N) < computeTargetValues(c)

15: {Sort cycle row indexes in increasing order of their targets}
16: # < sortCycleRowIndexes(M,N)

17: {Fire recursive step to seek new equalization solution}
18: s < RECURSIVESTEP (K,M,N, H,E,n'(6),m'(p ,-),o,o)
19: if (s # 0) then

20: S<SUs

21: endif

22: end for

23: return S

Figure A.5: Algorithm to solve the Cycle Balancing Problem

APPENDIX A. RATE EQUALIZATION AND CYCLE BALANCING PROBLEMS 275

1: RECURSIVESTEP (K,M,N,}[,E,n'(t,'),m’(pj),h,s)
2: if (h = K) then
3: {No more rows to equalize. Exit recursjon successfully.}
4: returns
5: end if
6: k< H[h
7: NN[K] < N - yer [x(:.Ce) -/ (1)
8: MMIK] & MlK]~Zpep [P(pj:Ch) - 7' (p))]
9: R < findSetOfConfigurations(MM[k|,NN[k},E)
10: forallr € R do
11: {Pick configuration r as a possible cycle solution}
12: forallt;,p; € Cr do
13: (ni(t:).mi(p))) <= (o' (1), ()
14: (n'(t;),m' (p;)) <= setVariablesFromConfiguration(r,s)
15: Es(1;) <= E(1); Es(pj) < E(p));
16: end for
17: if (RECURSIVESTEP (K. M,N,H E,n'(t;),m' (p;),(h+ 1),s) # emptyset) then
18: s& (@), tr)m (1), ... (pyp)
19: return s
20: else
21: foralls;,p; € G do
22: (() m' (py)) <= (mges), mis(p))
23: E(1;) < Es(1:); E(pj) < Es(py);
24 end for
25: endif
26: end for
27: {No possible equalization found. Exit recursion unsuccessfully.}
28: return 9

Figure A.6: Recursive step inside algorithm CYCLEBALANCER of Figure A.5

APPENDIX A. RATE EQUALIZATION AND CYCLE BALANCING PROBLEMS 276

1 ifpi€ck
0 otherwise

o y(pj,cr) = {

0

It is easy to see that the cycle balancing problem has always at least a solution. In fact,
the trivial variable configuration that is obtained by setting V#;, (n(;) =0) and Vp;, (m'(p;)
=1« m(p;) = 0) satisfies the problem constraints with g = 1. In general several solutions
are possible. These may have the same or different values of g.

Algorithm CYCLEBALANCER illustrated in Figure A.5 solves Problem A.5. The algo-
rithm is organized on three basic routines. The main routine invokes routine RATEEQUAL-
IZER to find all the candidate solutions of a relaxed version of Problem A.5. The relaxation
consists in the fact that routine RATEEQUALIZER assumes that all the cycles have pair-
wise empty place/transition intersection. In other words, it gives the exact solution if the
marked graph is a connection of distinct strongly connected components (SCCs) each hav-
ing at most one cycle. Notice that RATEEQUALIZER searches the solution space in a very
efficient way because the independence among variables (m},n}),(m5,n5),. .., (m, k)
does not require the use of any branch-and-bound technique [184]. Once all the candi-
date solutions are returned to CYCLEBALANCER, the core routine RECURSIVESTEP is
invoked for each candidate solution. Routine RECURSIVESTEP attempts to justify the can-
didate solution by finding an assignment for the integer variables #'(t1),...,7'(fr}) and
m' (p1),---,m (pp). This assignment must satisfy the ratio constraint found during the
solution of the relaxed problem without violating the reciprocal constraints which cycles
that share common variables impose on each other. The search is limited by the maximum
number of transformations allowed. All the valid solutions are returned in increasing order

of cost g and, among those having the same cost, increasing order of cycle time.

277

Index

N, 5 symbol (L), 8

1,38 algorithm

1,8 Floyd’s, 122

o, 95 Karp’s, 153

n, 120 Tarjan’s, 131

v, 6 Tomasulo’s, 99

c, 38 AND-causality, 87, 95, 134, 153,212,214
7,38 application-specific integrated circuit (ASIC),
9,95 20, 25

¥, 159 assume-guarantee reasoning, 65

A, 135

D, 209 back-pressure, 38, 44, 84, 85, 125, 141,
C,7 170, 211

ESTEREL, 7 behavior, 34

ITANIUM®, 27 latency equivalence among, see latency
Java, 7 equivalence among behaviors
LUSTRE, 7 latency-dominant, 41

PenTiUM®4, 24, 27, 98 lexicographic order on a set, 45
SIGNAL, 7 projection of, 35

SIMULINK®, 10 reference, 41

SPICE, 233 strict, 41

STATEpLow®, 10 buffer process, 50

VHDL, 25, 65, 79 buffering, 22, 26

VERILOG, 25, 65, 79, 88,91, 218 optimal, 107

absence, 8, 38, 73 CAD, 77, see computer-aided design (CAD)

INDEX

Cantor metric, 45
causality, 42
channel, 80, 84, 135
critical, 81
latency, 135
normalized delay, 159
pipelining, 160
process, 49
with back-pressure, 144
channeling, 80, 159
circuit
area, 204
asynchronous, 66
combinational, 205, 208, 211
delay, 205
delay-insensitive, 66
graph representation, 205, 207
integrated, 2, 16, 25, 78, 84
application-specific, see application-
specific integrated circuit (ASIC)
latency, 207
quasi-delay-insensitive, 66
sequential, 208
speed-independent, 66
synchronous, 204
clock, 78
cycle, 5
reachable logic within a, 22
frequency
effective, 95
on-chip, 20

symbol (), 95
gating, 83, 87, 213
jitter, 206
of a circuit, 204
period, 26, 204, 206, 213
nominal, 5, 81, 93, 206
optimal, 207
symbol (), 6
physical, 3, 78
skew, 206
virtual, 2, 48, 78
communication, 29
vs. computation, 29
compositionality, 33, 44, 70, 77
in code generation, 71
of patient processes, 33, 45, 126
computation, 29
vs. communication, 29
computer-aided design (CAD)
tools, 6, 25, 28, 65
concurrency, 114,118
constructive modeling, 123
core, 58,79, 84
encapsulation, see encapsulation
cross-talk, 26
cycle
balancing, 191
problem, 191
combinational, 42
critical, 209
elementary, 147

278

INDEX

in a Petri net, 117
local back-pressure, 148
mirror, 148

cycle time, 120, 160
of a transition, 120
symbol (), 120

data flow, 155
Boolean (BDF), 156
synchronous (SDF), 155
synchronous(SDF)
homogeneous, 155
data-path, 4, 78
pipelined, 180
design exploration, 218
deadlock
in a Petri net, 116
deep sub-micrometer (DSM), see nanome-
ter
deep sub-micron (DSM), see deep sub-
micrometer (DSM)
delay
model, 25
resistance-capacitance (RC), 21
delay-insensitive
system, 68
delay-to-register
cycle ratio
maximum, 209, 214
design
asynchronous, 66

279

communication-bound, 23
and microprocessors, 23
complexity, 16,28
computation-bound, 23
computer-aided, see computer-aided
design (CAD)
exception, 26, 81, 159
flow, 25, 26
semi-custom, 68
implementation, see implementation
low power, 83
nanometer, 77
performance, see performance
physical, see physical design
process, 29
productivity, 27, 77
gap, 17
solution space, 29, 82, 211
specification, see specification
standard cell-based, 25, 106
validation, 68
desynchronization, see theory of desyn-
chronization
digital signal processors (DSP), 155
DLX microprocessor, 99
DSM, see deep sub-micron (DSM)

electronic design automation (EDA), 19
tools, 201

embedded software, 7

embedded system, 154

INDEX

design, 75
embedded systems, 2, 71, 232
encapsulation, 80, 83, 85
of stallable processes, 60
trade-offs, 180
endochrony, 72
weak, 73
equalizer process, 60
equivalence
checking, 27
functional, 204
stuttering, 74
esochrony, 72
event
absence, 38

asynchronous, 36

informative, 38, 95, 124, 143

alignment, 60
ordinal of, 40, 42, 45

lexicographic order on a set, 42
pair of corresponding, 40, 46
aligned, 46
slack between, 40, 46
unaligned, 46
stalling, 38, 95, 124, 143, 211
synchronous, 35
total order among them, 42

execution

out-of-order, 99

speculative, 99

280

field programmable gate arrays (FPGA),
204
filtering operators, 39
finite state machine (FSM), 60, 83, 90,
208, 211
Mealy machine, 4, 9, 42
Moore machine, 4, 88
finite-queue model, 141
firing
of a core process, 86
rules of a Petri net, 116
first-in first-out (FIFO) channel, 155
flip-flop, 27, 80
edge triggered, 206
Floyd’s algorithm, 122
formal verification, 65
FSM, see finite state machine (FSM)
functionality, 29

vs. performance, 29

GALS, see globally-asynchronous locally-
synchronous (GALS)
gigascale integration (GSI), 21, 28
globally-asynchronous locally-synchronous
(GALS), 71, 84, 109
architectures, 231
graph
acyclic, 69
component, 131, 169
cycle mean

maximum, 123, 153

INDEX

cyclic, 152
directed acyclic (DAG), 131, 207
elementary cycles, 152
fundamental cycles, 208
marked, see marked graph
polar, 69

GSI, see gigascale integration (GSI)

hardware-description languages (HDL), 3,
18, 25, 65, 107

HDL, see hardware description languages
(HDL)

implementation, 2, 29
physical, 78, 113, 170
virtual, 113
vs. specification, 29
infinite-queue model, 133
instruction-set architecture (ISA), 24
intellectual property (IP), 19
core, 19, 179
black-box, 74, 88, 185
commercial library, 218
encapsulation of, 80
reuse, 19, 77, 81
interconnect, see wire
elastic, 111
interface
mixed-timing, 110
IP, see intellectual property
IP module, see intellectual property (IP)

core

281

isochronic fork, 66
isochrony, 72
weak, 73

Karp’s algorithm, 123, 153

latch, 27, 80
latency, 135
cycle
constraints, 28
mispredicted, 28
dominance
among behaviors, 41
among processes, 41
among signals, 41
equivalence, 40
among behaviors, 41
among marked graph models, 158
among processes, 41
among signals, 40
among systems, 48
in on-chip multiprocessors, 24
interconnect
and microprocessors, 23
minimum backward, 50
minimum forward, 50
move around, 179
of a circuit, 207
of interconnect, 26
slack, 98
varying continuously with distance, 24
volatility, 26

INDEX

latency equivalence, 32
of buffer processes, 50
latency-insensitive
communication architecture, 83
design, 57, 99
analysis, 113
implementation trade-offs, 170
methodology, 77
methodology for SOCs, 79
optimization, 157
relay station, see relay station
shell, see shell
strategic guidelines, 178
theory, 66
vs. asynchronous design, 66
wrapper, see shell
design methodology
generic, 64
protocol, 68, 80
system, 32, 38, 68, 123, 127
boundedness, 151
liveness, 138, 151
performance analysis, 113
performance optimization, 157
throughput, 95, 148
layout, 18, 25, 26, 80
linear programming, 123
logic synthesis, 25, 65, 80, 218
robustness, 25, 26

macromodular computer systems, 66

282

marked graph, 118
acyclic, 131
composite, 129
consistent, 118
critical cycle, 121, 160
cycle

cardinality, 121, 175
cycle metric, 121, 188
cycle time, 120, 121
invariant, 119
life, 118

model, see marked-graph model (MGM)

primitive, 129
reversible, 118
safe, 118
timed, 119
transition
average occurrence distance of, 120,
123
cycle time of, 120
marked-graph model (MGM), 123, 158
annotated, 159
boundedness, 151
cycle metric
extended form, 189
recycled, 190
finite-queue, 145
infinite-queue, 135
liveness, 138, 151
recycled, 185

reference, 158

INDEX

maximum cycle mean, 152
maximum profit-to-time ratio, 152
memory elements, see storage elements
meta-stability, 66
metal line, see wire
MGM, see marked-graph model (MGM)
micropipelines, 66
microprocessor, 23
DLX, 99
PDLX, 99
MiniMIPS microprocessor, 69
MOC, see model of computation (MOC)
model
tagged-signal, see tagged-signal model
unbounded delay, 66
model of computation (MOC), 2, 60, 83,
114, 155
Moore’s law, 16, 21

nanometer, 16
design, 22, 67
technologies, 16, 20, 25, 67, 96, 105,
106
net, see wire

non-determinism, 114, 118

packet

true, 84, 95, 124

void, 84, 95, 124
paradigm, 1
path

combinational, 26, 206

283

critical, 26, 99, 105, 107, 206
cyclic, 99
delay, 206
feedback, 102, 109, 207, 208, 223
in a Petri net, 117
patience, 32
of buffer processes, 51
vs. stallability, 59, 83
PDLX microprocessor, 99
pearl, see core
performance, 29
analysis, 68, 93, 113
optimization, 157
vs. functionality, 29
Petri net, 114
bounded, 116
deadlock, 116
decision-free, see marked graph
directed cycle, 117
directed path, 117
elementary path, 117
firing rules, 116
home state of a, 116
live, 116
ordinary, 116
persistent, 117
place, 114
initially empty, 114, 133, 142, 185,
190
input, 114
output, 114

INDEX

post-set, 114
pre-set, 114
set of initially empty, 114, 185, 190
reversible, 116
safe, 116
simple path, 117
strongly connected, 117
timed, 117
transition, 114
input, 114
output, 114
post-set, 114
pre-set, 114
sink, 116
source, 116
physical design, 25, 201
pipelined ring, 102
pipelining, 26, 78, 81
channel, 158, 160, 171
combinational circuits, 208
in microprocessors, 98, 100
wire, 27, 55, 108
place & route, 65, 80
principle
of composition, 70
of correct-by-construction design, 28,
32,72,73,77,99
of orthogonalization of concerns, 28,
32, 81,200
process
asynchronous, 36

284

causal, 34, 37

closed, 34

composition of, 34

core, see core

determinate, 34

equalizer, 60

functional, 34

latency-dominant, 41

latency-equivalent, 41
class, 41

non-determinate, 34

patient, 32, 44, 47
compositionality of, 33, 45, 126
latency equivalence among, 33, 48

pearl, see core

projection of, 35

reference, 41

shell, see shell

stallable, 59, 74
encapsulation, 62, see encapsulation

of stallable processes .
wrapping, see encapsulation of stal-
lable processes

strict, 41

strictly causal, 37

stuttering invariant, 74

synchronous, 35

procrastination effect, 43, 44
protocol
handshake, 11, 68
request-acknowledge, 68

INDEX

queue, 86
distributed
and SOC design, 92
finite, 125
model, see finite-queue model
first-in first-out (FIFO), 110
infinite, 124

model, see infinite-queue model

recycling, 171, 180
design exploration at the gate level,
218
design exploration at the system level,
193
gate-level, 210
invariant rule of, 215
transformations, 185
encoding, 190
refinement step, 19, 29, 90
register, 4
register-transfer level (RTL), 3, 18, 79
and standard cell-based design, 25, 107
specification, 65
relay station, 57, 58, 79, 89
extended, 61
hardware RTL implementation, 90
control logic, 91
initialization, 95, 134, 136
insertion, 185, 213
mixed-timing, 110

pushing around, 195, 197

285

removal, 185
RTL implementation, 90
throughput, 56
repeater, 27
stateful, 27, 50, 80, 96, 133
stateless, 27, 50, 80
retiming, 109, 204, 207
invariant rule of, 208, 213-215, 222
RTL, see register-transfer level (RTL)

scheduling
process, 69
static, 155
with minimum buffering, 155
semantics
AND-causality, see AND-causality
step, see step semantics
sequence, 38
empty, 38
infinite, 38
length of, 38
set, 38
symbol(c), 38
set-up time
of a latch, 206
shell, 62, 65, 68, 79, 84, 85, 124
collapsing, 185
encapsulation, see encapsulation
initialization, 95, 134, 136
input buffering, 86

input queue, see queue

INDEX

input synchronization, 86
output propagation, 86
splitting, 185
signal
asynchronous, 36
delayed or stalled, 40
latency-dominant, 41
latency-equivalent, 40
reference, 40
set of events of a, 38
set of informative events of a, 38
set of stalling event of a, 38
set of timestamps of a, 38
stalling
generator, 61
strict, 40
synchronous, 35
value
don’t care, 173
well-founded order on a set, 42
slack, 69
elasticity, 69
matching, 69
SLD, see system-level design (SLD)
SOC, see system-on-chip (SOC)
specification, 2, 29
strict, 78
vs. implementation, 29
stall move, 43, 44
stallability
vs. patience, 59, 83

286

stalling, 74
synchronous, 59
step semantics, 119, 135
storage elements, 26, 55, 204, 206
strong-connectivity, 117, 119, 129
strongly connected component (SCC), 117,
131,169
STS, see synchronous transition systems
(STS)
stuttering, 74
equivalence, 74
invariance, 74
symbol
absence (L), 8
clock frequency (¢), 95
clock period (), 6
cycle time (7), 120
delay-to-register cycle ratio(p), 209
informative event (1), 38
latency(A), 135
normalized delay(Y), 159
sequence (), 38
set of natural numbers (IN), 5
stalling event (1), 38
throughput (9), 95
synchronization, 114, 118
synchronous
assumption, see synchronous hypoth-
esis
hypothesis, 2, 7, 9, 48, 58, 67, 68, 78,
80, 81

INDEX

paradigm, 2, 71

programming language, 7, 71,73, 120

transition systems (STS), 72
synthesis

high-level, 69
system

concurrent, 2

distributed, 11

embedded, see embedded system

massively distributed, 11

moderately distributed, 11

open, 8, 70, 170

synchronous transition, see synchronous

transition systems (STS)

system-on-chip (SOC)

and distributed queues, 92

design, 77

design challenges, 65

design exploration, 185
systolic systems, 204

tagged-signal model, 34
behavior, 34
connection, 34
event, 34
process, 34
signals, 34
system, 34

asynchronous, 36
synchronous, 35
timed, 37

287

tag, 34
timestamp, 37
value, 34
Tarjan’s algorithm, 131
Technology Roadmap for Semiconductors,
19,20
technology scaling, 22
theory
Dill’s trace, 67
of desynchronization, 71
of latency-insensitive design, 66
of trace structures and composition func-
tions, 67
throughput, 95, 113, 124, 160
degradation, 161
equalization, 171, 191
maximum sustainable, 129, 132, 148,
170
of a latency-insensitive system, 95, 214
of a relay station, 56
symbol (9), 95
timestamp, 2, 34, 37, 97, 120, 181, 184
greatest, 39
timing-closure problem, 21, 25, 26, 77,
106
Tomasulo’s algorithm, 99
transistor, 17
MOSFET, 22

very large scale integration (VLSI), 18

wire, 20

INDEX 288

aspect ratio, 21, 22

buffering, see buffering

delay, 21

global

delay estimation, 26

global wires vs. local wires debate,
21

pipelining, see pipelining

problem on chip, 20

scaling vs. gate scaling, 22

segmentation, see pipelining

wrapper, see shell

wrapping, see encapsulation

