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Abstract
Linking TCAD and EDA through Pattern Matching
by
Frank Edward Gennari
Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences
University of California, Berkeley
Professor Andrew R. Neureuther, Chair

As the critical dimension in optical lithography shrinks to 90nm and below,
determining where the layout is most affected by non-ideal process conditions is increasingly
important. In man); cases, combinations of local layout geometries that produce or are
sensitive to residual effects can be found by locating theoretically problematic configurations
of shapes. This dissertation explores the architectural, physical, and algorithmic feasibility of
a prototype pattern matching approach as a novel Technology Computer Aided Design
(TCAD) tool for linking to Electronic Design Automation (EDA).

The pattern matcher software architecture was created as a standalone Design for
Manufacturability (DFM) tool that fits easily into the design flow and can be applied to many
areas of lithography and integrated circuit processing. The development was motivated by the
need to relate residual lens aberration effects back to the layout design. For this application,
the pattern generator first reads a set of Zernike polynomials and takes the inverse Fourier
transform (IFT) of the aberrated pupil function in order to generate the pattern bitmap. The
pattern matcher then loads the pattern, a user input parameter file, and a multilayer mask
layout in CIF or GDSII format. The match factor is computed along each edge and at each

corner of interest, and a resulting sorted table of highest match factors for each pattern is



output. The matching geometry is extracted for more rigorous process simulators such as
SPLAT. The system also supports an interactive graphical display of the layout with pattern
images drawn over the match locations.

In assessing the physical feasibility of this approach, it has been determined that
aberrations produce half the line edge shift as optical proximity effects, and the pattern
matcher has been verified to accurately predict electric field change through comparison with
SPLAT simulations. Other applications of pattern matching include analyzing effects of
misalignment, defects, reflective notching, laser-assisted thermal processing, Chemical-
Mechanical Polishing (CMP) dishing, and flare, some of which involve processing multiple
layers and performing Boolean layer operations.

The key contribution to this thesis is the collection of data structures and algorithms
that implement pattern matching. The algorithm requirements of searching for images in
layouts differ significantly from image correlation, video compression, and geometric
matching methods due to the enormous search space, large groups of identical pixel values,
complex pixel and layer weights, inexact matching, and filtering methods used. The novel
techniques developed for pattern matching include spatial sorting and subdivision of the
layout, pre-integration of the pattern, triangulation of polygons, layer Boolean operations, and
pre-filtering of match locations. The most efficient matching algorithm uses rectangle and
triangle primitives and can efficiently process an entire chip in less than an hour on a
standard desktop computer with near perfect scaling on parallel processor machines. This

runtime is two orders of magnitude faster than Optical Proximity Correction (OPC).

Professor Andrew R. Neureuther, Committee Chairman
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1 Introduction

1.1 Orientation

1.1.1 Motivation

In order to enable the next generation of integrated circuit technology, it is important
to find an efficient way of linking residual processing effects back to the circuit design stage.
In this way, information can flow back to designers so that problems can be corrected early in
the design. This is the fundamental concept of Design for Manufacturability (DFM). Current
Electronic Design Automation (EDA) tool features such as Optical Proximity Correction
(OPC) typically only deal with first order processing effects and neglect the impact of effects
such as lens aberrations on the printed image. As minimum feature sizes continue to shrink to
the 90nm node and below, it is becoming increasingly important to take these processing
effects into account within the EDA tool environment of the designers. The pattern matching
system presented in this dissertation is a valuable way of linking Technology Computer

Aided Design (TCAD) with EDA.

1.1.2 Problem

Residual processing effects such as lens aberrations, flare, and reflective notching
cause unwanted effects such as line edge shift and critical dimension (CD) variation. EDA
tools exist that correct for the optical proximity effects and other well-modeled and
predictable problems, but there are relatively few software tools that take into account other

difficult to predict, not well understood, or secondary non-idealities in integrated circuit



manufacturing. Predicting the results of these effects requires time-consuming simulations
that often cannot be run full chip and otherwise require tedious user input to limit the
simulation area. Because of their complexity, standard design rules cannot locate areas
sensitive to these effects, especially the statistical problems. Furthermore, many of these
process correction tools occur late in the design stage after a significant amount of time and
effort have been spent on a problematic design, requiring expensive mask rewrites. In
addition, the number of circuit features that need to be taken into account when predicting
the results of these processing effects is continuously growing as the layout scales faster than
the area of influence. The adoption of phase-shifting masks not only contributes to the
complexity of processing effects such as lens aberrations, but it also makes the effects more
severe.

These lithographic and processing effects cannot be neglected in the design of
modern chip layouts in the sub-100nm, low k1 regime where feature widths are less than a
quarter the wavelength of the light used to print them. Ignoring the effects of aberrations and
other residual processing effects may result in reduced reliability and yield loss in the
fabricated design or an increased number of mask rewrites. B. Grenon [1] reports that masks
must often be written three times and, in some cases, as many as seven times. It is becoming
more and more critical that these effects be taken into account when designing the circuit
layout. Conservative over-specification of the design through tight design rules is not the

answer to this problem.

1.1.3 Approach

If the geometries that are most susceptible to residual processing effects can be



determined, then a search can be made to locate all areas in an integrated circuit layout
design that are similar to these sensitive geometries. This search can be performed for a very
general class of physical effects by pattern matching a bitmap representation of the
theoretically most sensitive pattern on the layout. All matches found are potential problem
areas that must be examined in more detail by the designer or process engineer to determine
if action needs to be taken. These problematic geometries can then be modified toreduce the
layout’s overall susceptibility to process-induced manufacturability issues. This software
system allows designers to utilize processing information developed by technologists so as to
produce lithography-friendly designs. Pattern matcﬁing can thus be used to determine when a
design is ready for tape-out. Alternatively, these areas predicted to be most affected by
aberrations and other residual processing effects could be recorded and later used to reduce
the number of locations that must be inspected in the printed layout.

This pattern-matching procedure can potentially reduce the effects of imperfect optics
and other integrated circuit manufacturing equipment on the printing of the image from the
mask to the wafer, improving the yield of the design. Patterns can even be generated from the
quantitative description of the manufacturing equipment that will be used. This allows a
designer to tailor the design to be robust to the limitations of the particular machines that will
be used to manufacture it. Non-ideal processing effects can be compensated for in a way
similar to OPC.

The pattern matching system is fast enough to be run on a full chip layout and exists
entirely in software thus does not require printing of test wafers or other expensive
procedures. Pattern matching is therefore a fast and low cost method of improving the

robustness of integrated circuit layouts early in the design cycle.



1.2 Contributions of this Dissertation

The goal of this research was to create a complete system based on a sound
theoretical background that provides an efficient way of locating layout geometries that are
the most affected by physical effects involved in the manufacturing of semiconductors. The
contributions of this dissertation can be broken down into three areas: architectural, physical,
and algorithmic. The architectufa] contributions involve the creation of a pattern matching
system that allows a user to analytically specify a pattern, import layout geometry in a
standard format, process the layout, and receive a list of locations that meet the matching
criteria. The physical aspects of this project can be broken down into the theoretical
derivation of the patterns used in the matching, testing on various layouts, and verification of
the match results against simulation. The algorithmic contributions include the bitmap, edge,
rectangle, and triangle algorithms along with their data structures and supporting geometric
algorithms. The following sections describe the pattern matching approach, the system
architecture used to implement this approach, the algorithms used for efficient pattern
matching, and the physical testing used to verify the accuracy and importance of the pattern

matching software system.

1.2.1 Pattern Matching Approach

This research project began with the pattern matcher theory and the initial application
of determining areas in a mask layout sensitive to lithographic lens aberrations. Finding a
quantitative method of measuring and reducing the layout’s sensitivity to lens aberrations at

the design stage had not previously been done and was thus a motivation for this research.
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The lens aberration application was the driving force behind the pattern matcher project and
defined the initial goals and requirements of the system. Using the theory developed by
Robins, Neureuther, and Adam [30] that the inverse Fourier Transform of Zemike
polynomials over a circular pupil provides the aberrated point spread function (PSF), a
library of patterns has been generated for representing various lens aberration terms.
Extensions to the aberration theory have been applied to generate equations used to derive
the electric field change, intensity change, and line edge shift from the calculated match
factor.

The lens aberration pattern matching idea has been generalized to a Maximal Lateral
Test Pattern (MLTP) representing the worst case geometries for a number of residual
processing effects. MLTPs have been formulated and patterns generated for applications such
as flare, reflective notching, laser-assisted processing, CMP dishing, defects, and

misalignment.

1.2.2 Architecture

A software system has been written which implements efficient pattern matching
algorithms in order to test the pattern matching theory. This system includes a program for
generating aberration patterns from the inverse Fourier transform (IFT) of Zernike
polynomials and flare patterns from the IFT of scattered light equations. It also includes a
tool for loading CIF and GDSII layouts and either storing them hierarchically or converting
them to other formats. The core pattern matcher executable then reads the layout and patterns
and produces various text files and one or more images of the results. The system utilizes a

custom high-performance OpenGL interactive graphical display system developed for



viewing the pattern matching results. Layouts, patterns, and various simulation results can
also be viewed with these display programs. Together, these components form a complete
software system that directly reads a layout in standard industry formats and a set of pattern
equations, producing both textual and graphical results of all locations in the layout that are
sensitive to the processing effect described by the pattern equations. Figure 1 gives an
overview of the system architecture as used for determining sensitivity to lens aberrations. A

more thorough description of the software is given in Chapter 1.
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Figure 1: Pattern matcher system architecture for detecting areas sensitive to lens aberrations

1.2.3 Algorithms

One of the most important contributions to this research is the set of algorithms that
has been implemented in the core pattern matcher executable. Four generations of algorithms
have been developed, each much more efficient than the last: the bitmap algorithm, edge-
intersection algorithm, rectangle algorithm, and rectangle/triangle algorithm. The algorithms
involve pre-integrating the pattern matrices, splitting polygons into smaller primitives,
spatially partitioning and sorting the layout geometry, computing Boolean operations on
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layers, and filtering match locations by various methods. The novel algorithms that have been
developed for efficient pattern matching include not only the core pattern matching
components but also the method of computing layer Boolean and other operations on
rectangles by recursively spatially subdividing the layout into small areas that can be
processed very quickly and stitched back together. The unique polygon splitting algorithm
can divide an arbitrary polygon into a minimal set of simpler shapes through repeated
horizontal and vertical subdivision into smaller polygons until the sub-polygons are simple
rectangles and right triangles. Another important component of this research is the
compressed hierarchical database structure that allows for efficient query of pattern matching
results, and the related interactive layout graphical display engine.

These algorithms combined allow the program to efficiently process a full chip layout
in only minutes on a standard desktop PC or workstation. Abacus.gds', one example of a full

chip GDSII layout that the pattern matcher has been run on, is shown in Figure 2.

Figure 2: Abacus GDSII layout, 3mm by 3mm, 2pm technology, 14 layers, 5 levels of hierarchy’

1. Example from Dolphin Integration, hitp: www.dolphin.fr medal'soceds socgds_free_overview.hunl

7



1.2.4 Physical Testing

A significant contribution to this dissertation involves the physical verification of the
aberration pattern matcher theory. Experimental simulations have been performed on a
number of test layouts that show the effect of lens aberrations on feature edge positions is
significant, resulting in as much as half the line edge shift as optical proximity effects even
for high-quality optical lenses. SPLAT aerial image simulations have been used to analyze
the effects of geometry on line end and line edge shift due to even and odd lens aberrations
such as coma.

In addition to verifying the importance of aberrations, the accuracy of the pattern
matcher in predicting the geometries sensitive to aberrations has been proven through
simulation. These experiments involved running the pattern matcher on a large number of
hand drawn, script generated, and real industry layouts. The pattern matcher was found to
predict electrical field changes that agreed well with SPLAT simulations, and these electric
field changes can be extended to the computation of intensity changes and line edge shifts.

Some other pattern matching applications have also been experimentally verified to
some extent. The effects of flare at various magnitudes and coherence lengths were analyzed
in a number of situations. The pattern matcher was found to locate areas in a layout sensitive
to flare as well as optical proximity effects. In addition, pattern matching runs have been
performed on hand-crafted test layouts for applications such as laser-assisted processing,

reflective notching, and CMP dishing.



1.3 Dissertation Organization

This dissertation begins with background information and previous work in the
relevant areas of lithography in Chapter 2, including lens aberrations and Optical Proximity
Correction. Chapter 3 discusses the theoretical background of pattern matching for the
application of lens aberrations, the meaning of the match factor, and the definition of a
Maximal Lateral Test Pattern. Chapter 4.describes the pattern matcher software system and
how each of the components contributes to a complete EDA tool. Chapter S explains how the
pattern matching software has evolved from a simple tool that was integrated into the
Cadence Design Framework II to a standalone graphical system. Chapter 6 compares in detail
the various pattern matching algorithms that were examined and the strengths, weaknesses,
and performance of each. Chapter 7 describes the details of the software data structures and
algorithms, including some of the novel features of the system. Chapter 8 presents results
that show the importance of lens aberrations, verify the accuracy of the match factor
prediction, and give performance numbers on real full-chip layouts. Chapter 9 extends the
pattern matching idea to other areas of lithography and wafer processing. Finally, concluding

remarks are given in Chapter 10.



2 Background

This dissertation involves a broad range of topics from several engineering fields,
including lithographic issues such as lens aberrations and OPC, computational geometry,
computer science algorithms, CAD/EDA tools, and computer graphics. Some of these areas

and additional background material are introduced in the following sections.

2.1 Lithography

Most of the pattern matching applications discussed in this dissertation are in the area
of lithography. The pattern matcher system was designed to locate areas in a layout that are
sensitive to problematic effects somewhere in the process of turning a set of polygons stored
on a designer’s hard drive into a printed image on a wafer. These circuits contain polygons
that will eventually be printed as tiny metal and polysilicon lines on the order of 100nm or
less in width, or around one thousandth the width of a human hair. Recent technology nodes
involve printing line widths smaller than the wavelength of the light used, which requires a
significant number of Resolution Enhancement Techniques (RETs) [2, 3, 4]. The polygons
representing an integrated circuit layout are first written to a mask, which is then used to
print a large number of wafers through an extremely complex lithographic process. The
wafers are then cut into individual chips that are packaged into integrated circuits such as
microprocessors and memory. The lithographic process involves a stepper or scanner
projecting light through the openings on the mask, through a complex system of lenses that

reduces the size of the image, and onto the wafer, where the light exposes the photo-sensitive
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resist and creates images approximating the original mask polygons.

This process is by no means easy or exact. The lithography process is a limiting factor
in determining the critical dimension of the technology, and thus is continuously pushed to
its limits to further reduce feature sizes. As these feature sizes shrink, the effects of polygons
on their neighbors become increasingly strong. The results of an imperfect optical path and of
adjacent feature interactions are difficult to predict at the full chip level, but are extremely
important in creating a manufacturable design with good yield. Thus it is critical to determine
which geometries are prone to adverse lithographic process effects early in the design cycle,

before the expensive masks are even written.

2.2 Optical Proximity Effects

Lithographic projection printing systems employ a series of lenses to send light
through the mask and produce a de-magnified image in the resist on the wafer. Light entering
the openings in the mask produces plane waves that are the Fourier transform of the mask
geometry. The lens then low-pass filters and inverse Fourier transforms (IFTs) the
transmitted plane waves to reproduce an image in the resist resembling the original mask
openings. Several problems arise from the small size of modern integrated circuit device
features and the finite size and inherent limitations of the imaging systems. First, since the
lens system is diffraction limited, the high spatial frequency components required to
reproduce the sharp edges in polygon features fall outside the lens. Secondly, stray light
entering the opening from one shape may find its way into another shape in close proximity,

leading to a complex interaction of the electric fields of adjacent polygons. Thus the final
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shapes will have rounded corners and may bulge towards adjacent shapes, possibly shorting
together (bridging) and rendering the chip defective if the situation 1S severe.

Optical Proximity Correction (OPC) [3, 6, 7] is a step in the manufacturing process
that semiconductor manufactures employ to improve the manufacturability of high-
performance integrated circuit designs such as microprocessors. OPC is the process of
modifying the polygons that are drawn by the chip designers in order to compensate for the
limitations of the lithographic process assuming a perfect but finite lens. Given the shapes
desired on the wafer, such as exact line widths and sharp corners, the mask i1s modified to
improve the reproduction of the critical geometry [8, 9]. This is done by dividing polygon
edges into small segments and moving the segments around, and by adding additional small
polygons to strategic locations in the layout. The addition of OPC serifs and scatter bars to a
layout is shown in Figure 3 [10]. The addition of OPC features to the mask layout allows for
tighter design rules and significantly improves process reliability and yield. However, OPC

also increases the data size and may destroy the hierarchy.

—
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Figure 3: Addition of OPC shapes to layout for improved printed image (image taken from [10])
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OPC is often run on the entire chip at once and iterated until convergence. There are
many different types of OPC algorithms, the two main classifications being rule-based and
model-based. Each involves subdividing polygons into smaller shapes or edge segments,
known as fragmentation, and moving or adding shapes to other positions. Rule-based OPC is
simpler in that various geometries are treated by different rules from a rule library. Model-
based OPC, as demonstrated in Figure 4, is more complex and involves performing fast
optical image simulations, which may be accomplished by computing a weighted sum of pre-
simulated “OPC kernels” for simple edges and corners that are stored in a library. The
proximity effects due to adjacent shapes is additive in electric field, but since the actual
printed feature edges are related to light intensity / = E - E * | the nonlinear addition of terms
requires multiple kernels and longer computation times. Model-based OPC is an iterative
solution involving repeated simulation and modification of geometry to incrementally
improve the image. Managing the large geometry database is CPU intensive, and the
simulations involved in model-based OPC are even more CPU intensive since there is no

closed form solution for the optimal layout.
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Figure 4: Model-based OPC algorithm flowchart (diagram derived from [10])

Pattern matching is similar to OPC since it involves predicting the effects of the

lithographic process on the printed image. The algorithms are in fact related as well, as both
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OPC and pattern matching can look up polygon features in a table to determine the
contribution of each feature at some point in the layout. The rectangle and triangle pattern
matching algorithms explained in Section 6.4 and Section 6.5 are similar to the edge table

lookup used in the OPC algorithm developed by Nick Cobb [101°.

2.3 Lens Aberrations

Ideal lithographic lense§ act as low-pass filters, resulting in corner rounding due to
the loss of high spatial frequencies. Furthermore, lenses may also have aberrations, or
deviations between the real and ideal wavefronts exiting the lens. Aberrations distort light
rays so that the reduced image in the wafer is not an exact demagnification of the object.
Aberrations correspond to optical path differences due to inhomogeneity in the lens material,
imperfect lens shape, or incorrect alignment of optical elements in the tool, which produce
phase differences in the resulting plane waves. The Strehl ratio [11] is a measure of the
quality of a lens and can be as high as 0.986 in modern lithographic lenses, corresponding to
at most 0.014 waves of RMS lens aberration. The human eye typically contains much larger
amounts of lens aberration, which results in reduced clarity of vision.

An inherent effect of lens aberrations is that they take light from openings on the
mask and redirect it towards incorrect locations on the wafer, decreasing pattern fidelity and
reducing the manufacturability of the design. Even the small amounts of aberrations present

in modern, high-quality optical lenses can lead to Across-Chip Linewidth Variation (ACLV)

2. hup: www-video.cecs.berkeleyv.edu’papers ncobb. cobb_phd thesis.pdl
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and reliability problems [12]. Common aberrations include coma, astigmatism, spherical, and
trefoil. Additional background material on aberrations, their effects on imaging, and their
measurement techniques can be found in [13]. Other methods for measuring aberrations
include phase-edge focus monitors [14], the Litel mask’, Dirksen’s phase dots [15, 16, 17],
the measurement of side-lobe artifacts on halftone masks by Hayano, Fukuda and Imai [18,
24}, and Kirk’s double exposure method [13].

Traditional design flows include an OPC step that modifies the polygon edges to take
the optical proximity effect due to surrounding shapes into account and correct for low-pass
filtering. However, aberrations are additional phase errors in the Fourier spectrum [19] and
may be different for each projection printing machine. A significant amount of work is in
progress to characterize the aberrations in printing equipment for the purpose of “aberration
proximity correction”. There is no generalized solution to reducing the effects of all lens
aberrations on a layout, and it is often not feasible to run separate corrective runs on each
design for every aberration of every stepper or scanner. There is a need for a system that can
quickly process the entire layout and locate areas where a known set of lens aberrations will
have a significant effect on the printed image. Thus, the pattemn matcher was initially created
as a solution to this problem.

This dissertation suggests using a multi-prong approach to aberration proximity
correction. The first step is to reduce the aberrations in lithographic equipment to the extent
possible, which is the responsibility of the equipment manufacturer. The next step is to

actually measure the dominant residual aberrations that could not be removed from the tools.

3. hup:Swww. litel.net
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The final step is to make the layouts less sensitive to these dominant residuals through a
pattern matching approach. This is clearly a complex problem involving tool manufacturers,

process engineers, and circuit designers.

2.4 Image Processing & Shape Recognition

Image processing and shape recognition generally fall under computer science,
computer learning, or computer vision. In many cases, the images used are photographs or
video camera feeds, and the objectives of computer vision and shape recognition are to locate
a certain shape or sub-image in a larger image. In some cases the objective is to determine if
two images match.

If the integrated circuit layout is represented as a large image and the pattern is also
represented as an image (for purely real-valued patterns), then any generalized image-
processing algorithm can be used. Therefore, pattern matching is a form of image processing
and image processing theory can be applied. However, most image processing algorithms are
inefficient for images as large as an integrated circuit bitmap representation. The reason
pattern matching is still a tractable problem is that the layout “images” have certain
properties that can be utilized to make pattern matching easier. The pattern matching
algorithms developed under this research are compared with standard image processing and
shape recognition algorithms in Section 6.6 on the basis of performance, features, and

accuracy.
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3 Pattern Matching Theory

3.1 Aberration Effects

The optical lenses of a non-ideal lithographic system may contain aberrations, which
correspond to optical path differences in the lens material that produce phase differences in
the resulting plane waves. The pattern matching approach involves determining the
geometries which are the most sensitive to a residual processing effect, which is best done
through a theoretical analysis of the effect. The patterns used to locate areas sensitive to lens
aberrations can be derived from the optical system’s parameters and aberration fingerprints
of the lenses, which provide a clear representation of the effects of lens aberrations on
geometries to be printed. A perturbational analysis [20] of lens aberrations is given below
and also provided in [21], and a discussion of the modeling of PSM optics is given in .
Portions of the following discussion have been taken from [23].

An integral over the lens pupil is used to determine the optical path difference (OPD)
due to aberrations and takes the form of ¢/°P°. When aberrations are small, the exponential

factor can be linearized [24] by a Taylor series expansion as e/’ =1+ jOPD . The constant 1

gives the electric field for an unaberrated image, and the jOPD term represents an additional
electric field component that spills outside of the image of a point source and is proportional
to the size of the OPD. For a modemn lens with a Strehl ratio [11] of 0.975 [25], a two-term
Taylor series approximation is reasonable as the total RMS aberration is 0.025 waves, the
peak OPD function values are about 0.05 RMS waves, and a third term is at most only 10%

as large as the first term. These spillover electric fields from adjacent features must be added,
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and in forming the composite it is equivalent to simply determine the similarity of the region
surrounding an observation point to the spillover function. This spillover function s the IFT
of the OPD function and for the special case of a single Zernike [20] aberration it is the IFT
of that Zemnike term.

The goal is to determine the additive electric field of the JOPD term from a collection
of mask openings in a neighborhood of a central observation point. One approach is to
compute the contribution to the electric field from each of the surrounding pixels and then
sum them up. A more interesting alternative is to first view the problem in the pupil of the
lens and attempt to maximize the spillover from the jOPD term onto the unaberrated image
term. In this view the additive field will be largest when the incident electric field is uniform
in magnitude and exactly cancels the phase of the OPD. That is, the additive field in the pupil

- joPD

is proportional toe ~1- jOPD . The inverse Fourier transform (IFT) of this function in

the pupil can be used to determine the pattern on the mask that will create this maximized
spillover onto the unaberrated image of the central pixel. The IFT of the constant term
corresponds to a fixed infinitesimal pinhole at the pattern center. The effect of this pinhole is
independent of the level of aberrations and so it may be disregarded in studying the additive
perturbation due to aberrations.

The IFT of the second term yields the desired composite pattern centered at the
observation point on the mask that will produce the greatest spillover onto the observation
point for the given set of aberrations making up the OPD. This pattern is zero at the
observation point itself due to the fact that the Zernike functions other than the zeroth that are
included in aberration measurements individually have zero area when integrated over the
pupil. The zeroth order term can be viewed as producing the unaberrated image complete
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with optical proximity effects. The contribution of the IFT test pattern at the wafer to an
additive aberration-induced electric field E, at the central observation point can be calibrated
as follows. First compute the IFT for a given JOPD and digitize it into a pattern surrounding
the central observation point. Then simulate the aerial image of this pattern in the presence of
aberrations and take the square root to convert intensity to electric field. Here E, is a
complex quantity and its imaginary part comes from even aberrations (such as defocus,
spherical, and astigmatism) while its real part comes from imaginary aberrations (such as
coma and trefoil). Simulating the image of this pattern under the illumination conditions
utilized in printing the wafer is believed to also help account for the reduction in sensitivity
with partial coherence. The theory above implicitly assumes coherent illumination rather than
the partial coherence used in various illumination schemes in projection printing.

The intensity increase and feature position change can be estimated from the electric
field spillover by applying a second perturbational argument developed for assessing defect
printability [26, 27]. At an observation point such as a line edge or line end, the unaberrated
image of the feature can be taken as the dominant electric field contribution. The aberration
spillover then adds a second smaller contribution A. Say, for example, A is 0.1. If the
spillover is in phase, the intensity will increase as (1+ 2A + A%) =(1+2A) = 1.2. However, if
the addition is in quadrature, the increase will be only (1+ A% =1.01. It is anticipated that the
former case will occur for odd aberrations and the latter case will occur for even aberrations.
The feature position change can then be evaluated by simply assuming that the entire feature
intensity shifts upward locally, and then finding the new position of a fixed threshold image
intensity.

A method of determining the intensity change and line edge shift from the electric
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field change is given in Section 3.3. This method is based on the procedure described in [21]
of separating the portion of the electric field into components that are orthogonal to the

feature electric field and co-linear with the feature, and by using the fact that intensity can be
approximated by the square of the electric field: 7 =E-E*=|E |*, where * refers to the

complex conjugate operation.

A final theoretical note is that the partial coherence of the illumination plays an
important role. In making the calculations for this research, the mutual coherence between
the layout contribution point and the match point has been included in summing up the
pattern match factor. The pattern is multiplied by the mutual coherence function for a
conventional illumination system as a preprocessing step:

J,(27or)
nor

Urop_nar(r) =

This effect was included to be more realistic in our assessment as the more incoherent
the illumination, the less the spillover and the lower the aberration impact. In so doing we
also found a numerical advantage in that the error in truncating the radial integral to a finite
size became more acceptable at smaller areas of integration. Results for several illumination
functions are available [28].

Examples of finite radius approximations to these spillover functions for five Zernike
terms are shown in Figure 5. These are actually Zernike monitor patterns and include a
separate central phase reference probe for measuring aberration levels [29]. These targets
consist of alternating regions of 0- and 180-degree phases, with either a 0-degree or 90-

degree probe in the center. The colored phases and positions of the concentric rings and other

shapes are computed using the sign of the IFT of the Zernike polynomial, and each region is
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separated by a small chrome border. The value of A for this figure was chosen to be 0.5pum
and NA was set to 0.5, so that A/NA = 1.0um. Each of the five dark boxes containing the

targets in Figure 5 is 6.4 A/NA by 6.4 2/NA 1n size, or 6.4um square.
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Figure 5: Zernike aberration targets (image taken from [29])

It is difficult to predict in advance whether binary or phase-shifting masks (PSMs)
will be more prone to aberration effects. Since PSMs have the ability to drive both the
positive and negative areas of the spillover function, it is only natural to expect phase-shifted
layouts to generate match factors that are potentially twice as large as those of binary masks.
On the other hand, the use of phase-shifting regions can result in steeper image slopes,
especially in the case of phase-edge masks. Another important factor is the subset of feature
attributes of greatest concern to the designer and technologist, which determines the range of
image slopes.

The actual Zernike polynomials used to generate match patterns must be determined



from the aberrations present in a specific machine or common to a family of machines, and
can be measured with programmed probe-based targets [30] as well as several other methods

such as that of Garza [31].

3.2 Aberration Pattern Generation

The pattern generator reads a weighted sum of Zernike polynomials as defined in
Born and Wolf [20] describing the aberrations present in the optical printing machine or
family of equipment of interest. Each Zernike term is in the form of a list of coefficients
representing powers of rho, sin and cosine coefficients, and coefficients for phi in both the
sin and cosine terms. Zernike polynomials are an orthonormal set that together specify an
exact aberration fingerprint. This allows a set of aberrations present in the lens of a particular
stepper or other printing system to be summed into a single pattern matrix. In fact, designers
can maintain a collection of matching patterns, one for each machine, and select for the
matching run the pattern corresponding to the machine(s) intended to be used in printing the
design. Since flare is essentially the combination of high-order aberrations, flare components
can be modeled in a similar way. The pattern generator then uses these Zemike polynomials
to compute the aberrated pupil function in a circular area superimposed on a large rectangular
background matrix of zeros for isolation. It then takes the inverse Fourier transform (IFT) of
the sum of Zernike terms, and the center portion of the resulting matrix is written out as the

pattern matrix of complex numbers. The 2D IFFT computations are implemented with a
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publicly available FFT package® and take only a few seconds per pattern.

The pattern generator reads a number of optical parameters describing the radius of
the lens pupil, the size of the background matrix, and the size of the output pattern matrix.
The effect of the illumination source can also be included by initializing the matnx to the
shape of the pupil before it is multiplied by the Zemike terms. Partial coherence is dealt with
inside the pattern matcher itself and not in the pattern generator. The pupil size is based on
the wavelength of light and numerical aperture (NA) of the system. A larger background
matrix provides a more accurate IFT but requires a larger IFT time and more memory. A
background matrix eight times the size of the output pattern matrix is usually sufficient.

The output pattern radius is chosen so that at least 95% of the pattemn weight is
included in that radius, so that the pattern includes almost the entire aberration fingerprint
and is a good approximation of the worst-case geometry due to that combination of lens
aberrations. It is important to choose the proper radius of influence of the pattern to be large
enough to capture the influence range of the aberration yet small enough to avoid excessive
computation time during the matching process. A typical pattern size for A=0.5um, NA=0.5,

50nm pattern matching grid is 128 by 128 pixels, which is 6.4 N/NA on a side.

3.3 Predicting AE and Al from AX for Aberrations

The pattern matcher can be used to predict the change in electric field due to lens

aberrations with high accuracy, as discussed in Section 8.5. The actual change in electric
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field at a feature edge is dependent on the electric fields due to the unaberrated feature, the
unaberrated optical proximity effect. due to surrounding features, the aberrated feature, and
the aberrated optical proximity effect. These individual components cannot easily be
separated, but some approximations can be made, and simplifying assumptions of mask
phase and aberration type will aid in the derivation of the intensity change. The following
derivation of the intensity change and line edge shift is an extension to the theory presented
in Section 3.1.

After the electric field change is computed, the intensity change must be computed.
There are three electric field vectors: Ea, Ep, and R. Ea is the electric field due to aberrations
(both from the feature itself and from other adjacent features), which can be determined from
the match factor. Ep is the electric field due to the shape that the pattern match lies on, which
is in phase with Ea for a simple 0/180 degree phase match with an odd aberration. R is the
electric field proximity effect of other shapes, which can be approximated from the match
factor of the unaberrated pattern. The vector magnitude of Ep + R is equal to I, the
unaberrated intensity at the match location. The vector magnitude of Ep + R + Ea is equal to
the aberrated intensity Ia. The intensity change can be calculated with the following equation:
Al = Ia—I = mag(Ep + R+ Ea)’ —mag(Ep + R)?

= (re{Ep} + re{R) + re{Ea})’ + (im{Ep} + im{R} + im{Ea})’ - (re{Ep} + re{R})’ — (im{Ep} + im{R})’

If using a 0/180 degree PSM and an odd aberration such as coma, then Ep, Ea, and R arereal,
and this equation simplifies to:

Al = (re{Ep} + re{R} + re{Ea})’ — (re{Ep} + re{R})’

=EP2 -I-R?'-{-E.a2 +2*Ep*R+2*Ea*R+2*E’p*Ea_Ep2 _RZ -Z*EP*R
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=Ea’>+2*¥Ea*R+2*Ep*Fa
=Ea’ +2*Ea*(R+ Ep)
Assuming a small amount of aberration, Ea is small and the Ea’ term can be neglected:

A] = 2 * Ea * (R + Ep) = 2 * Ea *Eunnbermled = 2 * Ea * Vlunabermled

Finally, the line-end or line-edge shift is computed from the intensity change, and that
is used to calculate the critical dimension (CD) change. The line edge shift can be calculated

with the following equation:

AX = Al /image _slope =2* Ea* 1/[ wnaberrared | iMAgE _ slope
The CD change of a vertical line can be calculated as:

ACD = AX y; ogee — DX

right _edge

=% % * .
=2 (E a left ‘\l ]lmaberrmed _left +E arigh! ‘\/ Iunabermled _right ) / mmage sl ope

Ea can be directly calculated from the match factor. Iinaberraed €an be computed
through an acrial image simulation in SPLAT, or can be approximated by computing the
match factor of the unaberrated pattern at that location with the pattern matcher or through
fast image simulation as is used in model-based OPC. The image slope can be simulated with
SPLAT or approximated based on the type of geometry (edge, line end, or comer), mask
phases, and optical parameters. Note, however, that the derivation of these equations assumes
a purely real phased mask and odd aberrations. The equation for imaginary phased masks and
even aberrations can be calculated in a similar manner, but the equation becomes much more

complex with combined real/imaginary phased masks or combined even and odd aberrations.
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3.4 Match Factor Definition

The match factor is a measure of the similarity of the layout geometry to the pattern at
a particular location on the mask. The match factor lies in the range [-1.0,1.0], with 1.0 being
a perfect positive match, -1.0 being a perfect negative match, and 0.0 having no resemblance
to the pattern. The match factor is calculated through a normalized 2D discrete correlation
computation, which is similar to an image convolution. The match factor (MF) at layout

position (i, j) for an X by Y pattern is calculated as:
ME(i X . Y L . N p
@ +?,j +—2—) = Zyzx ayout(x +1i,y+ j)* Pat(x,y)

In the general case both the pattern and layout values are complex numbers, so the
actual result of the raw correlation computation is also a complex number. Normalization
consists of dividing the raw correlation number by the best possible match factor given the
pattern and set of available layout layers, and then choosing the real value, imaginary value,
or magnitude of the resulting complex number, depending on the application.

The match factor is defined so that superposition can be used to independently add
linear contributions from each shape overlapping the pattern. Since the correlation
computation is performed on a discrete grid, diagonal and curved edges must be
approximated on the pixel grid. Since each shape that overlaps the pattern may contribute
some value to the final match factor, the time taken to compute the match factor is dependent
on the number of overlapping shapes. Thus, the match factor is only efficiently computed
when the pattern is much smaller than the overall set of polygons that form the entire layout
on which the pattern match is run. This limits the applications of pattern matching where this

match factor definition can be used, but fortunately there are ways to speed up the match for
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large patterns by reducing the resolution. The match factor at any location is independent of
previously computed match factors, so only a subset of the total number of layout locations
can be processed without loss of accuracy. Finally, with a typical grid size equal to a fraction
of a minimum feature size and a small number of layout layers, the layout “image” consists
of large groups of the same set of only a few unique pixel values. This observation can be

used to speed up the naive correlation computation, as explained in Chapter 6.

3.5 MLTP Definition

A Maximal Lateral Test Pattern (MLTP) is based on an inverse function representing
the worst-case geometry with respect to the processing non-ideality of interest. Multiple
MLTPs can also be combined together as kernels in a larger pattern. MLTPs are generally
determined theoretically through perturbational analysis. For optical effects, the MLTP is the
geometry that results in the greatest spillover of light from surrounding shapes to a central
point. If the processing effect of interest is lens aberrations, then the MLTP is the inverse
Fourier transform (IFT) of the aberrated pupil function as described by Zernike polynomials.
The MLTP is defined over a radius of influence, which determines the number of shapes that
affect the results of the match with that pattern. Pattern matching can be applied to any
MLTP where the sensitivity of the layout to the processing effect is proportional to the
similarity of the actual mask geometry to the worst-case geometry. In other words, the higher
the match factor, or correlation between the pattern and the layout, the more severe the
impact of the processing effect on the printed layout at that point. This definition of match

factor allows superposition to be used to sum up the contributions of each layout geometry
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component to the match.

The match factors are rank ordered so that the user is presented with the best N
matches, which represent the areas of the layout that must be examined for susceptibility to
the processing effect. These areas can then be simulated more rigorously with a process or
lithographic simulator such as SPLAT [32]. If necessary, the reported geometry may be
modified to reduce its sensitivity to the process effect. This process can be repeated until all
of the problematic geometry is modified so that no geometry resembles the pattern. The final
design will thus be robust to that particular processing effect as modeled by the MLTP. If the
geometry cannot easily be modified, then these areas can be inspected'more thoroughly at

inspection time to determine if the process effect did cause a problem at the match locations.
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4 Software System

A block diagram of the pattern matching software system is shown in Figure 6 and is
explained below. The complete software system consists of about 60,000 lines of C and C++
code divided into a number of modules. The pattern generator reads a set of Zernike
polynomials representing an aberrated pupil function for the optical system of interest, or any
other user-defined equation, in order to generate the pattern bitmap of complex numbers. The
main pattern matcher executable then reads the pattern, a user input parameter file, and a
possibly multilayer mask layout in CIF, GDSII, or custom pattern matcher format. The
pattern matcher is capable of reading GDSII and CIF layouts directly, storing them in
compact hierarchical form for efficient access to geometry. The pattern matcher isrun, and a
resulting sorted table of the highest match factors and their locations for each pattern is
output as well as JPEG images of the patterns over the match locations. An arbitrary number
of patterns can be used in one matching run and several layouts can be combined and run

together.

User Input  Data Utilities  Pattern Matching Graphical

Output
Input % Pattern Web
i e Generator Bitmap
Equations P Browser
60,000 lines of code
GDSIL R ES ' Pattern | OpenGL JPEG
(text or - el — | Matcher | Display Images
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CIF Eﬁmir Rectangles Output
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Figure 6: Pattern Matcher Block Diagram
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In addition to the main matching programs, the system includes a tool for flattening
and converting CIF and GDSII layouts into the internal layout format of the pattern matcher.
The pattern matching software also provides a graphical interface for the user to view the
layout with the highest scoring match locations highlighted. This software has been
developed in several forms as discussed in Chapter 5: a UNIX version integrated with the
Cadence DF II CAD tool, a standalone Microsoft Windows PC version with OpenGL GUI
support, and several versions of a public web interface to the system. This web version
allows remote users to input their layouts and aberrations into the system to take advantage

of the full power of the tool.

4.1 Input and Output Files

The pattern matcher system first reads a set of patterns, a mask layout, and a
configuration file written by the designer. The pattern is scanned over the layout in order to
compute the match factors at locations of interest along edges, line ends, and/or comers, and
the match factor results are sorted and written to an output file. The system generates SPLAT
files of the geometry overlapping the pattern at the highest scoring locations, and JPEG,
RAW, or BMP output images of the match results. The software also includes pattern
generation and layout conversion utilities, and an interactive graphical user interface for
viewing the match results. The various input and output file formats are described in the

following subsections.

4.1.1 Patterns

The pattern matcher reads a set of patterns corresponding to a representation of the
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geometry on which to match. The closer the layout at a location matches the pattern, the
higher the match factor. A pattern file is a binary or ASCII text 2D matrix of complex
numbers stored in rectangular form. The magnitude of the complex number encodes the
weight of the pixel such that larger magnitude numbers have a greater effect on the match
factor. The phase of the complex numbers, which is not used in all pattern-matching
applications, relates to which layout layer matches at that location.

In the case of lens aberrations, these pattern matrix values are the direct output of the
IFT of the Zernike polynomials describing the aberration(s) of interest. The pattern matcher
provides the option to trim the pattern values to a circle for more pleasing visual results and
to remove the orientation bias. In addition, an aberration pattern can be multiplied by the
partial coherence function in order to model a partially coherent system. The pattern matcher
is also capable of transforming the patterns through rotations and mirroring in order to
produce orientation-independent match results. Typical pattern size is 128 by 128 pixels,
which corresponds to a few microns or several minimum feature sizes. Patterns are usually
square and a power of two in size, but are actually only required to be at least four by four

pixels and even in size.

4.1.2 Layout

The software system reads an integrated circuit mask layout in one of several
geometry formats. This layout defines the geometry that the pattern will be matched to. The
system includes a tool that converts hierarchical GDSII and CIF layouts into flat pattern

matcher binary layouts.
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4.1.2.1 Pattern Matcher Format

Pattern matcher geometry files can be stored in either binary or ASCII text formats,
both of which support polygon, rectangle, and circle geometric primitives. The text geometry
files support a weak hierarchy that includes scaling and translation of geometry, which is
implemented through includes of either binary or text files. Geometry is specified in
unsigned integer pattern matcher grid units and is referenced from the lower left comer of the
layout’s bounding box. Integers are used so that transformations can be performed with exact
math and so as to reduce the size of the vertex data compared to double-precision floating-
point numbers. Each set of geometric primitives is specified by a set of vertices and other
measures describing the primitive, as well as an integer representing the layer index of the

shape.

4.1.2.2 GDSII

The Graphical Data Stream II (GDSII) format [33, 34] consists of a collection of
records describing the hierarchical geometry of an integrated circuit layout, including cells,
geometric primitives, text, layers, and other commands. Geometric primitives include
polygons, paths, and boxes represented with integer coordinates. GDSII layouts can be stored
in both binary and ASCII text forms, with binary format being more compact on disk and text
format being human readable. In addition, the Key is a partially supported text layout format
similar to GDSII. Binary GDSII is the industry standard layout format for large designs due
to its streaming nature, efficient data storage, and machine-independent format. The pattern
matcher executable can read zipped GDSII binary files as well as unzipped files since the

zipped data is usually about 5.5 times smaller on disk. It is also possible to have the pattern
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matcher read the newer OASIS layout format standardized by SEMI’ which claims to have a

5-10X smaller data representation than GDSII, but this task is left for future work.

4.1.2.3 CIF

The Cal-Tech Intermediate Format (CIF) layout format [35] is common among
academic institutions due to its human readability. CIF is an ASCII text hierarchical
description of integrated circuit geometry that includes primitives similar to those in the text
version of GDSII. CIF uses an integer-based coordinate system and scaling by fractional
ratios for exact coordinate generation. Though CIF is not widely used for large industrial

designs, many university lithography simulators read and write this layout format.

4.1.3 Layers

Each pattern matcher layer has a complex-valued weight and additional information
such as color for display purposes. The layer parameters are read from the layer section of the
main input file, and the complex numbers are specified in rectangular form. In the case of
lens aberrations and phase-shifting masks, the layer’s weight is usually 1.0 and the layer’s
phase is the same as the mask phase. The purpose for the layer magnitude is to assign
different weights to each layer so that the importance of each layer can be accounted for. The
pattern matcher is optimized for processing a single layer but can handle an arbitrary number
of mask layers. The layers do not need to be for the same mask; polysilicon and several metal
layers can all be matched on in a single run. In addition to the standard input layers, the

pattern matcher allows an arbitrary number of Boolean and dependent layers that are
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computed from the set of input geometry layers. For example, the user can define a new

“transistor” layer that is equal to the areas where polysilicon overlaps active.

4.1.4 Match Requirements

Match requirements are included as sections of the main pattern matcher input file
and are generally specified per pattern. The first type of match requirement is geometry-
based. The pattern matcher can be constrained to only match on locations at inside corners,
outside corners, edges, and line ends (edges less than a user-defined length). Edges and line
ends can be further refined by requiring, for example, that only edges between two inside
corners be matched on. The match locations can also be constrained by match region
bounding boxes and coordinate lists.

Matches can be constrained to lie only on certain layers. Required match layers can
be used to specify matches that only lie within certain regions defined by a boundary layer.
Layer requirements can also be used in conjunction with Boolean layer operations to specify
that all matches occur at locations where polysilicon overlaps active.

Finally, the pattern matcher supports per-pixel pattern requirements such as required
layers, required comers, required edges, and required inequalities involving layer weights
under specific pattern pixels. This allows the user to specify, for example, that all matches of
pattern P have layer O at the left corner of the pattern, a left polygon edge at the left side of
the pattern, and a total underlying layer weight greater than 2.0 under pixel (23, 35). In
summary, match requirements allow an almost unlimited possibility of constraints to be

placed on the pattern match locations.

34



4.1.5 Output File Matches

Pattern matching results include both a text output listing the match locations and
optional images of the match location geometry. The text results file contains a sorted list of
the top match locations found for each pattern. The number of match locations reported is
limited by a user-defined maximum and/or a user-defined lower threshold cutoff based on a
fraction of the best match found, whichever limit is reached first. Multiple orientations of the
same pattern may be either listed separately or grouped together in a single sorted list,
depending on which the user prefers. Each line of the results file lists the X,Y location of the
match, the match factor normalized to [-1.0, 1.0], the type of match (edge, line end, inside
corner, outside corner, or other), and the sum of the complex-valued weights of the layers

under the match location.

4.1.6 Graphical Images

The graphical interface and resulting images allow the user to browse through the
match locations and observe the geometries of interest. If the pattern matcher is run in
command line mode with graphics enabled, then a number of user-selectable JPEG, RAW, or
Windows bitmap (BMP) images are generated. One image shows the entire layout with all
match locations highlighted and additional zoomed-in images display a user-defined number
of the top match locations. These images are suitable for inclusion in web pages, papers, and
presentations. An additional option to feed ASCII image capture commands to the pattern
matcher through the command line allows for a pseudo-interactive interface for use in web
applets. Alternatively, the pattern matcher can be run in true interactive graphical mode as -

described in Section 4.5.
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4.2 Core Pattern Matcher

At the heart of the system is the core pattern matcher executable, the component
requiring the most research and programming effort to complete. This module links the
system together by reading the layout, the patterns, the layer file, and the user
configuration/match requirements file. It outputs all of the match results, extracted geometry,
and images. The core pattern matcher has evolved from a collection of Cadence Design
Framework II SKILL procedures to a standalone executable capable of reading industry
standard layouts and providing a fully functional graphical user interface. The main pattern
matching algorithms used in this component of the system are discussed in Chapter 6, and

details on the supporting algorithms are discussed in Chapter 7.

4.3 Pattern Generator

The pattern generator is a separate executable that can be used to generate both real-
valued and complex-valued patterns for various applications. These patterns are generated
once from optical parameters such as illumination source, lambda, and NA and stored for
repeated use in the pattern matcher. The pattern generator has the capability of generating
aberration patterns, flare patterns, and patterns based on arbitrary 2D equations. Aberration
pattern generation was described in Section 3.2. Flare pattern generation is algorithmically
similar to aberration pattern generation and is discussed in Section 9.1.2.

The main pattern generator program was only designed to generate lens aberration

and flare patterns, but some other applications of pattern matching require patterns of a
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different type. An additional utility, fg_equation, complements the pattern generator’s
capabilities by allowing the user to input a custom pattern equation that is later converted to a
pattern matrix for use in the pattern matcher. Fg_equation reads an equation file much like a
set of MATLAB equations, and supports a large variety of math operations, complex
numbers, discontinuous equations, and 1-, 2-, and 3-D equations in either a Cartesian or
spherical coordinate system. It can be used to generate patterns for just about any closed-
form equation.

A Cadence SKILL script can be invoked to perform a conversion from Cadence
layout to a pattern file. This allows the user to design a custom pattern that the pattern
generator is incapable of producing from input equations. For example, the user can create a
pattern layout that meets design rules for a particular technology and then print that pattern
on a wafer for testing purposes. The layout to pattern converter was created to allow the
designer of such a custom target to run the pattern matching software so that the target
pattern matches the hand crafted layout exactly. This converter can also be used to transform
an arbitrary section of mask geometry into a pattern so that the pattern matcher can be used to
match non-aberration based patterns to layout, effectively implementing a generalized

geometric search procedure.

4.4 LayoutImport/Converter

Integrated circuit layouts in CIF and GDSII formats can be processed in one of two
ways. The first way involves reading in the layout and converting it into a flat pattern

matcher formatted layout through the cif_to_pm utility. The pattern matcher then directly
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reads this format and performs the pattern matching on that layout representation. Of course,
the large flat layout representation might not fit into memory and thus may need to be
partitioned and written to disk in geometrically sorted order. This method only works when
the layout data fits within the addressable range of the file system, with a maximum size of
2GB.

An alternative and typically much better way of processing a hierarchical layout is by
directly reading and storing the hierarchy, and only flattening small pieces of the layout just
prior to the matching of the pattern on that piece of layout. This avoids storing any
intermediate data on disk and usually reduces both the preprocessing runtime and memory
required to run the pattern matcher. The layout is also compressed in memory and spatially
subdivided for more efficient spatial queries. The internal hierarchical database format is the

same as in simpl_display, which is explained in Section 4.5.2.

4.5 Interactive Display Tools

Several OpenGL-based display tools are included in the software system for
interactive viewing of the input files, pattern matcher results, and the outputs of various
simulators developed by the UC Berkeley EECS Department. The tools are for the most part
croés-platform and have been used in both Windows and UNIX. These viewing tools are

discussed below.

4.5.1 Pattern Matcher Graphical Output

If run in interactive mode with graphics enabled, the user is presented with a display

window containing the layout with patterns and text overlaid to show the match results. The
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user can then use pan and zoom commands, make measurements, take screenshots, and query
objects in the layout. The supported features include those in simpl_display, which will be
discussed in the next section. In addition, the interactive pattern matcher allows the user to
automatically zoom to match locations and to view the pattern images under various

graphical settings.

4.5.2 Simpl_display

Simpl_display is an industrial strength CIF and GDSII layout viewer for large
integrated circuit layouts. It utilizes OpenGL for efficient, hardware-accelerated display of
large polygon datasets, including measurement, object query, image capture, and GDSII write
functionality. Simpl_display has been designed with import, query, and display performance
that is competitive with commercial EDA tools. Simpl_display and the graphical pattern
matcher share much of the same code base and therefore have nearly identical display and

query functionality.

4.5.2.1 Cell Data Structures

Hierarchical layouts are stored as an array of cells, where each cell contains a
collection of rectangles, polygons, paths, circles, text, and references to other cells. The use
of hierarchy allows a design such as a large memory chip to be represented very compactly
by storing a single copy of a memory cell and an array of references to that cell, which
together make the entire matrix of memory cells. The geometry inside of the cells includes
vertex arrays, bounding boxes, layer identifiers, and other information needed to iterate over

and perform efficient queries on the data.
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4.5.2.2 Shape Compression

Full chip GDSII layouts can contain more than ten gigabytes of data, even with
substantial hierarchy. These layouts are difficult to fit into memory without data
compression, and this is an even greater problem when the layout data exceeds the address
space of 32-bit machines. Shape data compression is needed to reduce the size of the
database in memory (or on disk if the database is stored in virtual memory or as a file). There
are a number of different ways to store cell geometry and instance information in a lossless,
compressed form. One method involves low-level compression of the layout raster image
[36], but compression at the cell and polygon levels seems more appropriate when using the
latest rectangle and triangle algorithms.

The GDSII format itself has a number of storage inefficiencies [36, 37]. For instance,
the first point of a polygon is repeated at the end of the polygon. Boxes, or rectangles, are
described with four vertices when only two are necessary. Instances reference a cell by the
cell’s name and not by the cell’s ID. Some record types contain extra data and unused bits.
All of these simple storage problems are remedied in the pattern matcher cell database.

Many layouts contain duplicate polygons where the only difference between one
polygon and the next is a translation. This is especially true for repeated geometry such as
memory cells in flat layouts. Each time a polygon is read, the GDSII parser computes a hash
value of the polygon edges and checks for the existence of a polygon with the same shape.
Each set of compatible polygons is stored as an array of polygon translations and a single
vertex array. This polygon data compression idea can be extended to rectangle compression
and to include polygon rotations and mirroring, as described in [38]. Polygons from other

sub-cells of a spatially subdivided cell can also point to common vertex sequences. Cell
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names and text strings are hashed in a similar manner so that text data can be reused.
Simpl_display and the pattern matcher maintain tables of common cell transforms so
that most of the instance transformations can be replaced with a single integer corresponding
to an index into the transformation lookup table. The default table contains all combinations
of rotations by 90-degree increments and mirroring transforms, for eight basic transformation
sequences. Translations are rarely repeated a large number of times, so they are not included
in the lookup tables. Using this system, most instances can be compressed down to a cell ID,
X and Y integer translations, and a transformation index or pointer, totaling only 16 bytes.
Many layouts contain mostly rectangles, and thus the polygon compression tricks
cannot be used as effectively. Rectangles are represented by 32-bit integers in the input
GDSII, but the cell database separates these rectangles into large (32-bit) rectangles of 20
bytes, small (16-bit length and width) rectangles of 16 bytes, and small (16-bit width) squares
of 12 bytes. Since most of the rectangles in a layout are small and most of the contacts and
vias are squares, this optimization achieves an additional compression ratio of about 1.5.
GDSII supports arrays of cells, but not all tools take advantage of arrays when
generating a hierarchical GDSII file. The cell database described here automatically
combines instances of the same cells into arrays and arrays into two-dimensional matrices,
which is extremely effective in reducing the database size for large memory and cache
blocks.
Finally, some cells may be empty or contain zero width shapes or other non-
displayable geometry. In addition, when running the pattern matcher on a layout, the user
often does not care about all cells and all layers. In these cases, the unused data is removed

from the cells, and any empty cells are removed from the hierarchy in a bottom-up manner so
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that an entire tree of unnecessary cells is removed and the memory is freed. This can yield
significant database size reduction.

In one example, a 234MB GDSII file was read and optimized for minimum database
size. The first step of combining instances into arrays reduced the GDSII file size to 68MB.
The next step of removing unused cells further reduced the size of the layout to 17MB. The
other compression methods combined reduced the database to a final size of 6.5MB in
memory, an overall compression ratio of 36. Another layout was reduced from a 462MB file
to 80MB of memory, mostly due to the grouping of millions of polygon fill shapes into a

small number of polygon arrays.

4.5.2.3 Spatial Subdivision

In order to support efficient geometric query and display of polygons, cells should
contain between 100 and 10000 objects. If there are too many objects in a cell, then the
iteration time required to find all objects satisfying a particular requirement may be too high.
On the other hand, cells with only a few objects incur a large overhead each time the cell
structure is loaded into cache and each time a cell operation is initiated. Some flat layouts
contain millions of objects in a single cell, and every object must be touched to find the
object at a certain location within the cell.

Simpl_display reduces cell processing times by adaptively dividing large cells into a
number of smaller cells. The smaller cells are further subdivided until the number of shapes
in each cell is below a threshold. With these smaller sub-cells in place, an entire sub-cell can
be skipped if the query point lies outside of its bounding box. Coupled with shape

recognition and polygon hashing, duplicate sub-cells can be found and hierarchy can even be
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introduced into a flat layout. With the proper spatial subdivision, local query time has almost
no dependence on the number of objects in a cell for medium to large cells.

For example, consider performing a single point query within a uniformly filled, flat
layout containing one million non-overlapping shapes. If the layout is subdivided by a factor
of one hundred each time a cell contains more than one thousand shapes, then the first
subdivision will yield one hundred cells, each with ten thousand shapes. The next
subdivision will divide each of the hundred cells into one hundred new cells, each containing
one hundred shapes. The point query will first iterate over the initial hundred cells to find the
one that contains the point, then iterate over the hundred cells within that cell, and finally
iterate over the hundred shapes in that sub-cell. Using two levels of spatial subdivision, this

query takes only 300 operations instead of one million.

4.5.2.4 Geometry Query

It is important to have fast query capabilities when working with full chip layouts. In
many cases, the runtime of an operation is entirely determined by the total time taken by a
large number of small queries. Typical geometric queries include request for all shapes on a
particular layer, all shapes within a bounding box, all shapes of a certain size, and all shapes
of a certain classification. In general, there is no optimal way to support all of these queries
with a single database. However, compromises can be made that lead to fairly efficient times
for all types of queries. The two major requirements for an efficient query are reducing
memory bandwidth through shape compression and reducing search time through spatial
subdivision, as discussed in the previous two sections.

The cells themselves are spatially subdivided into smaller cells, thus permitting fast
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spatial data queries. Polygons, paths, circles, large rectangles, small rectangles, and squares
are stored separately. Shapes within ; cell are first sorted and grouped by layer, allowing all
cells on a given layer to be accessed efficiently. Within a layer bin, the shapes are sorted by
size so that all shapes above or below a certain size threshold can be returned without

iterating over the shapes that fail the size requirements.

4.5.2.5 Graphical Display

Large layouts can contain hundreds of millions of shapes on dozens of layers, and
thus care must be taken to efficiently display datasets of that magnitude. Shapes that are out
of the viewing region or are too small to see can be skipped over. When the layout is fully
zoomed out, most of the shapes are smaller than a pixel and can be clipped; when fully
zoomed in, most of the shapes are off the screen and can be clipped as well. Additionally,
complex shapes can be approximated by simpler ones when small in size with little or no
reduction in image quality. Each of these clipping tests requires efficient geometric query
operations, which in turn require a good spatial subdivision of the layout.

Displayed primitives include rectangles, polygons, paths, circles, text labels, and
cells. OpenGL allows primitives such as rectangles, convex polygons, circles, and text to be
drawn on the screen. Concave polygons must first be divided into a series of triangles,
triangle strips, and triangle fans. Triangulation is performed by the GLUT tessellation engine
when the polygon first comes into view, and the triangle primitives are collected into display
lists and drawn on the screen. The display engine caches the display lists so that they can be
used for similar polygons, thus dramatically decreasing the amount of memory required for

the display list triangles. Manhattan paths are drawn as a series of rectangles, and circles are
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used to represent the corners of rounded paths. Non-Manhattan paths are first converted into
polygons and then drawn. Self-intersecting paths and polygons are supported since extra
vertices can be added to break them apart into simpler polygons. The final list of shapes is
sorted by layer and by size so as to minimize query time.

In order to display hierarchy, the display engine traverses the cells recursively in
depth-first order, clipping entire cells if they are off the screen or their contents are too small
to be seen. OpenGL transformations are used to apply translations, rotations, scaling, and
mirroring to the cells, and various display information is cached and collected into arrays to
speed up the drawing process. Once a user-selected cell depth is reached, only the bounding
boxes and names of the cells are displayed. Each cell contains iteration lists, layer tables, size
statistics, and other data that is used to efficiently access a cell’s geometry and to filter out
cells that do not need to be drawn.

Polygons and other drawing primitives can be drawn with solid colors, alpha-blended
for partial transparency, drawn as wire-frame, or filled with stipple patterns that are read
from a pattern definition file. Small polygons are approximated with a combined static and
dynamic level of detail (LOD) algorithm that displays only the larger features of the polygons
while removing the smaller features. Even smaller polygons are approximated with one or
more rectangles, and tiny polygons less than a pixel in size are drawn as alpha-blended,
partially transparent pixels. Paths less than a pixel in width are drawn as alpha-blended lines.

Pan and zoom are supported by transforming the entire layout view in OpenGL. The
user can select a zoom area by drawing a box on the screen with the mouse to get a closer
view of the layout geometry. The pan operation, invoked with the arrow keys, supports a

double-buffered bitmap copy to avoid redrawing parts of the screen that were visible before
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the pan, thus significantly speeding up scrolling of the layout. A small thumbnail image near
the lower left corner of the screen supports a view of the full layout and an indicator of the
current window position. The user can click inside the thumbnail image in order to navigate
around the layout.

The graphical display includes several measurement and navigation tools. Clicking on
polygons and cells will show the user numerical information about what is selected, and
layers can be shown and hidden by clicking on the layers. Clicking on cells in
simpl_display’s open mode opens the target cell in the viewer. A scale bar is available in the
bottom left of the screen, and a ruler command allows the user to measure the X and Y
dimensions of polygons and cells in the layout. The user can take screenshots in a variety of
color modes and image formats, including bitmap images of arbitrarily high resolution. In
addition, simpl_display has the capability of writing out GDSII files of selected parts of the
layout. The layout viewer simpl_display and the integrated view for the pattern matcher

contain many additional features that are typically found in other viewers and CAD tools.

4.5.3 Display3D

Display3D is an OpenGL visualization utility for lithography simulator input and
output files. It can read and display a number of 2D and 3D formats including SPLAT mask
layouts, SPLAT contour plots, SPLAT pupil maps, STORM 3D plots, TEMPEST 3D plots,
and NEtch 3D meshes. Display3D supports drag-and-drop of simulation data files and
interactive viewing of solid and wire-frame models that can be panned and rotated on the
screen. It was intended as an easy-to-use, hardware accelerated altemnative to existing JAVA

utilities such as drawmask and drawplot.
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4.6 Interface to SPLAT Simulator

SPLAT [32] is an aerial image simulator developed at the University of California,
Berkeley that produces image intensity plots along cutlines and contour plots of intensity
over pattern areas from an input file representing a portion of a mask layout. The SPLAT file
format consists of a header defining variables such as o, A, NA, and simulation area followed
by a list of rectangles and finally plot commands. The pattern matcher executable
automatically extracts the geometry overlapping the match locations and writes it to SPLAT
files. The number of extracted SPLAT files and the area of the extracted regions are specified
in the pattern matcher input file. This feature allows the matched geometry to be simulated
more rigorously using SPLAT, and with a minimal amount of user effort. The SPLAT results
can then be loaded into Excel, MATLAB, or a viewer such as Display3D to see the effects of
aberrations or similar lithographic effects on the printed image.

A Cadence SKILL procedure was written to directly convert a Cadence mask layout
to a SPLAT file as well. A second SKILL procedure converts SPLAT files back into layouts,
thus closing the data conversion loop.

This SPLAT file extraction procedure was utilized in order to verify the pattern
matcher results against electromagnetic simulation of lens aberrations, and to measure the
actual impact of aberrations on the printed image. These tests led to bug fixes and
improvements in both the pattern matcher and SPLAT itself. SPLAT does not have the
ability to simulate all of the process effects for which the pattern matcher can be used, but

extraction support for other simulators can easily be added to the pattern matcher.
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The bitmap to rectangle extraction algorithm involves searching for the bottom left
comer of a rectangle and expanding up and to the right while removing the rectangle pixel-
by-pixel from the bitmap matrix. The algorithm proceeds from the lower left corner to the
upper right corner of the extraction region, extracting rectangles until the region is empty.
This algorithm is linear in the size of the extraction region and efficient, but the set of
extracted rectangles is not always minimal. The newer rectangle and triangle algorithm that
has replaced the bitmap algorithm already stores the necessary primitives, so the shapes are

simply clipped to the pattern or extraction region area and written to the SPLAT file.

4.7 Usage of Results

The pattern matcher produces both textual and graphical output containing the match
results. The text results can be loaded into another CAD tool for visualization purposes, or
sent to other individuals in the design and manufacturing flow. The designer or process
engineer can then take these match results and modify the identified “bad” geometry in the
layout in order to reduce the sensitivity to the processing effect of interest. It may be possible
to extend the pattern matching software so that it can automatically correct the layout to
reduce the sensitivity, though that is out of the scope of this research. It might also be
possible to use the pattern matcher concept to generate correct-by-construction geometry by
modifying place and route tools so that they take the bad patterns into account when creating
the layout. The match results can be used at later stages in the design flow as well, in order to
direct inspection tools to examine areas of suspected manufacturing problems. This is

potentially useful in cases where the flagged geometry cannot be modified.
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5 Software Evolution

5.1 Cadence DFII/SKILL

The first experimental version of the pattern matcher was written as a set of SKILL
procedures for the Cadence Design Framework II (DF Mm% SKILL is an interpreted
programming language similar to both C and LISP that is common to all of the Cadence
tools. The Cadence layout database was a good starting point for testing the pattern matcher
theory on small test layouts, and the Cadence layout import of GDSII and graphical user
interface (GUT) provided for a user-friendly initial development environment. The layout was
streamed in from disk, stored as a Cadence cell view, or hand-drawn from generic drawing
layers representing the various mask phases. The pattern was generated with an early
MATLAB version of the pattern generator and was loaded into Cadence as a text file. The
pattern matcher was then run as a SKILL procedure that read the input files, matched on the
layout, and drew the patterns over the layout with a bitmap of colored rectangles. A

collection of SKILL scripts that still remains in use provides a semi-automated process to
convert between layouts, pattern matrices, and SPLAT aerial image simulation files.

Though the initial Cadence pattern matcher was simple and easy to use, it did not
scale well to larger layouts. SKILL did not support the proper Boolean operations, complex
number data-types, hash tables, and database spatial subdivision algorithms required for a
fast and memory efficient pattern matching algorithm. A further limitation was the slow loop

iteration due to interpreted code, and the difficulty of modifying and debugging compiled
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SKILL code. Also, SKILL uses a garbage collection method to deal with memory allocation
and freeing, while a more explicit memory management system was needed for the memory-
intensive matrix-based algorithms. The next step was to move the core matching algorithms

outside of SKILL.

5.2 Text-Based Executable

The most time-consuming parts of the pattern matching algorithm, including the
polygon processing and inner match factor computation loop, were written in C++, compiled
as a separate binary, and called from inside SKILL to do the heavy processing. The text-
based executable provides basic pattern-matching capabilities similar to those available in
the Cadence version, but with improved runtime and memory requirements. The standalone
pattern matcher contains custom data structures and algorithms and is compiled, not
interpreted. Graphical and layout processing capabilities are still achieved through integration
with the Cadence development environment, where the executable communicates with a
Cadence SKILL process through input and output files. In addition, Cadence is used to
flatten hierarchy, perform geometric transformations, determine overlap, and merge shapes
on various layers because of its efficient intenal implementations of complex geometric
operations. The non-graphical part of the system and some of the graphical parts are cross-
platform and have been compiled under Windows, Solaris, and Linux on various 32- and 64-

bit architectures.

6. hup:-www,cadence.com
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Cadence is used to first flatten the layout and then merge the shapes into a minimal
set of non-overlapping polygons. Cadence was originally used to split the polygons into
rectangles, but that functionality was later moved into the pattern matcher core executable so
as to reduce the file size. It then creates a large intermediate file consisting of rectangles,
polygons, patterns, and parameters required for the matching algorithm. Cadence then
executes the core pattern matcher, which reads the intermediate file, runs the matching
algorithm, and produces two results files. The first results file is read by another SKILL
script and the results are displayed graphically in the layout window. Each pattern is drawn
over the layout at the match location as a bitmap color coded for phase along with a text
string specifying match type, normalized score value, pattern ID, and underlying layer phase.
The other results file contains extracted rectangles that can be converted into SPLAT file
format by the final SKILL script.

The first working attempt at an external matching algorithm was slow and memory
inefficient, although redesigned and significantly better than the original SKILL version.
Further work on the code involving multi-level matrix compression, edge and corner data
structures, partitioning, pre-filtering, and polygon operations resulted in greatly improved
speed and controllable memory requirements. Eventually, new features and options were

added to the core binary, making it more powerful and the original Cadence version obsolete.

5.3 OpenGL Graphical Interface

Cadence provides a convenient graphical interface for displaying the pattern match

results, but Cadence was not designed for efficient display of many bitmap images.
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Approximating the bitmap patterns as a large array of rectangles is not only slow, it results in
a poor quality image that only supports the colors available in the standard drawing layers.
Relying on Cadence for display purposes also assumes that the users have Cadence installed
on their machines and sufficient resources to run large pattern matching jobs on those
machines. This requirement forced the development to be done on a heavily loaded, remote
system.

The next step towards an independent pattern matcher was an integrated graphical
display. The initial target platform was Microsoft Windows (Win32), and OpenGL’ was
chosen as an easy to use, efficient, and well-supported graphics library. OpenGL is also
cross-platform, so the display code will work on non-Windows systems such as Linux. This
graphical interface eventually supported many more features than were possible with
Cadence. The pattern matcher was ultimately merged with simpl_display’s layout viewing

engine for full graphical display of large hierarchical layouts.

5.4 Hierarchical Layout Import

The only dependency left in the pattern matcher was the input layout in a simple
pattern matcher format. Cadence was still used to stream in GDSII and other layout formats,
flatten the hierarchy, and convert the data to pattern matcher format. Simpl_display, the
layout viewer initially developed for reading SIMPL-2 [39] cross sections and CIF files,

provided much of the desired import functionality. The CIF layout import portion of

7. hup:www.opengl.org
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simpl_display was thus modified to create a layout conversion program, cif_to_pm, which
reads CIF layouts and writes flat pattern matcher layouts. The addition of a GDSII parser to
the simpl_display/cif_to_pm code allowed GDSII layouts to also be converted into pattern
matcher layouts.

It was soon realized that flattening the CIF and GDSII layouts was not the answer to
the layout import problem. The flat representation of a GDSII layout as small as 17MB can
be as large as 1GB or more, and even larger layouts may exceed the address space of the 32-
bit file system. The answer was to have the pattern matcher directly look into the hierarchical
cell database of simpl_display and only flatten a single partition at a time. This operation was
supported by the efficient data query operations of simpl_display. Eventually, the display
code for the pattern matcher was modified to use the simpl_display graphics engine for
drawing of hierarchical layouts. The features that the pattern matcher inherited from
simpl_display were discussed in Section 4.5.2. The final version of the pattern matcher is a
single standalone executable that reads hierarchical layouts, compresses the hierarchy, runs

the pattern matcher, and graphically displays the match results over the layout geometry.

5.5 Parallel Pattern Matcher

Many of the machines used for simulation in industry contain multiple processors,
and it makes sense for the pattern matcher to utilize all available processing resources to
improve the matching runtime. Since the match factor can be computed at any point in the
layout independent of the other match factors, pattern matching is an inherently parallel

operation. The pattern matcher parallelization strategy for both Pthreads and MPI is
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explained in Section 7.8. The parallel pattern matcher has been successfully tested under
Linux and AIX and was demonstrated to have near perfect scalability. The parallel algorithm
based on Pthreads should provide parallelization on just about any shared memory

multiprocessor machine running most operating systems.

5.6 LAVA Website

The UC Berkeley TCAD group’s LAVA/Volcano website contains publicly
accessible interfaces to various lithography simulators [40]8. The pattern matcher has
generated significant interest from industry, and a web version has been created to allow all
users who have access to a web browser to try out the pattern matching system. Details of the
web version of the pattern matcher can be found in [41]. The client/server model of the web
version of the pattern matcher and the web interface itself were written and maintained by a
number of undergraduate students in the TCAD research group. The pattern matcher is run
on a server at UC Berkeley so as to not load the client machine and so that the source code
and executables do not have to be distributed. CGI and Perl scripts are used to create and
manage the session directory where the VO files will be stored and to actually run the
simulation executables. This web interface allows remote users to input their own layouts
and aberration patterns into the system to take advantage of the full power of the tool.

The web tool was initially developed as a JAVA web applet and was later rewritten

using Forms and PHP for a more intuitive user interface that loads more quickly and does not

8. hup: ‘cuervo.cecs.berkeley.edu
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require installing special JAV A libraries. The two versions of the online pattern matcher are
described below. Both versions return an image of the final pattern match full layout view
and a zoomed in view of the best match location in the client’s web browser. The images are
compressed using the JPEG format for reduced network bandwidth and improved response

time.

5.6.1 Java Applet

The first pattern matcher web interface uses a complex JAV A applet, shown in Figure
7°. The applet contains a list of layout thumbnail images at the top and a button for uploading
user layouts. The available preprocessed layouts include simple test structures (lines, line-
ends, T-junctions, etc.), basic 2D serpentines, and snippets from actual layouts. The middle
section shows example pattern thumbnail images with a similar button for creating custom
aberration patterns. The buttons under the patterns are used to set the match geometries of the
selected patterns (edge, line end, inside comer, outside corner, etc.) Both the layouts and the
patterns can be scrolled through, and newly added layouts and patterns are added to the list
and stored in a unique session on the server. The bottom section of the applet contains text
boxes and buttons for entering optical parameters and setting up the matching configuration.
The applet allows the user to specify values for A, NA, and partial coherence 0, but currently
is not set up to scale the layout with the k1 factor. At the very bottom of the applet window is
the button that submits the job to the server. After the pattern matching run is complete, the

applet brings up a new window showing screenshots of the match results, with the patterns

9. hup:“cuervo.cees.berkelev.edu/volcanoiapplications prypm.hum}
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drawn over the layout.
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Figure 7: Pattern Matcher web applet

If the user wishes to run the pattern matcher over his or her own CIF or GDSII layout,

the layout upload feature can be used. The user selects a layout and layer definition file that is

stored on the client hard drive, enters a scaling parameter that defines the pattern matcher

grid resolution, and clicks the “upload” button. The layout size is currently limited to 2MB in

order to conserve disk space on the server, since the uploaded layouts are stored in a sessions

directory for later use by the same user.

Clicking on the custom pattern button takes the user to a screen listing the first 64

Zernike aberration terms, as depicted in Figure 8. The user enters floating-point weights into

the boxes of the selected Zernike terms to define the set of aberrations that make up the

pattern. Clicking on “done” then runs the pattern generator on the server, which computes the

IFT of the aberrated pupil function and produces a 128 by 128 pixel complex-valued pattern
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that can then be used in future pattern matching runs from the current session. The pattern
generator also generates new thumbnail images so that the user can select the pattern by
sight. Currently, patterns are limited to a fixed pixel size and fixed resolution, but the

imported layout can be scaled to account for different technologies.
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Figure 8: Custom pattern generation webpage and example custom pattern

5.6.2 Forms/PHP Web Application

The previously described JAV A applet has a number of limitations due to its complex
and dynamic nature. The client machine must have a recent web browser and a recent version
of the JAVA runtime environment installed in order to run it. The load time is long,
especially over a slow network connection, and the user interface is too complex to
understand without a user guide.

The newer web version of the pattern matcher shown in Figure 9 was created with
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Forms and PHP for more universal web browser compatibility'”. It loads faster and takes up
less screen space. The step-by-step procedure of selecting or uploading a layout, selecting a
pattern, setting up the match parameters, and executing the pattern matcher 1s much more
intuitive then presenting the user with all of the information at once. In addition, the user can

go back and change the data entered at previous steps without having to re-enter data.

e

Figure 9: New pattern matcher web interface using Forms and PHP

The new web interface is incomplete, however, and has a number of limitations not
present in the initial JAVA applet. For example, custom pattern generation 1s not yet
supported, and only a single pattern can be matched per matching run. In addition, some of
the links are broken. This version of the interface is currently being cleaned up and should
eventually be equal in power to the JAVA applet version of the pattern matcher. It may be
possible to add an interface to SPLAT so that pattern matching extracted files can be

automatically directed to SPLAT for aerial image simulation. Also, if there is interest from

10. hup:  cuervo.cecs.berkeley.edupm




industrial and academic users, then a custom pattern generation system may be included so
that visitors can use the pattern matcher for applications other then lens aberrations. The
future web interface may even include a method for users to save their sessions and log in

later to find their layouts and custom patterns saved on the server.
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6 Pattern Matching Algorithms

The goal of the pattern matcher is to match a pattern to a full chip layout in under an
hour on a standard désktop computer. This is a difficult challenge, considering today’s
layouts contain tens of millions of transistors composed of hundreds of millions of polygons
and stored in hierarchical GDSII layouts of many gigabytes. The pattern matching data
structures and algorithms must be able to efficiently store, access, and process the large
geometric databases within a very small time per match point in order to complete the
matching process in reasonable time per pattern.

This chapter describes some of the pattern matching algorithms that have been
developed, including the original bitmap correlation algorithm, the improved edge-based
algorithm, and the efficient rectangle and triangle algorithm. These algorithms take
advantage of the unique characteristics of matching a bitmap image to a large polygon
dataset: enormous search space, large groups of the same valued layout pixels, only a few
unique complex-numbered pixels, opportunities for match location filtering, and low match
factors. Additional information regarding the pattern matching algorithms that have been
developed as part of this research project can be found in [42] and [43]. These algorithms are
later compared to existing techniques in the fields of computer vision, image processing,
video compression, and polygon-based matching on the basis of resource requirements and
computational complexity.

The matching algorithm itself has four main steps as shown in Listing 1, and these
steps are taken for each partition of the input dataset. First, the layout is read and partitioned

and the pattern is read and pre-integrated. Then the input shapes are split into geometric
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primitives, depending on the matching algorithm. Next, the primitives are spatially
subdivided in both the X and Y dimensions and sorted to permit efficient access to local
areas of data. This includes partitioning the layout into smaller overlapping areas and locally
flattening any hierarchy. It is possible to perform the sort and flattening operations either in
memory or on disk. The primitives are sorted by Y-value and then by X-value, and may be
grouped together spatially into sub-regions of a partition for fast access to local collections of

shapes.

Listing 1:
1. Read and partition the layout, read and pre-integrate the pattern
2. Divide input shapes (polygons) into geometric primitives
3. Spatially organize primitives by x, y, etc.
4. Compute Match Factors:
For each pattern P {
For each X,Y match location {

For each geom. Primitive G overlapping P {

MF(X,Y) += contribution of G N P(X,Y)

The fourth step is the matching loop itself, where all of the runtime is usually spent.
The outer loops iterate over each pattern, orientations of each pattern, and match types (edge,
line end, comner, etc.). The inner loop iterates over the match locations for each match type of
each pattern orientation. The number of X,Y points tested depends on whether the user is
searching all or part of the layout and if the match locations are specified to be corners,
edges, line ends, or all points on a layout grid (typically 1/6 to 1/10 of a feature size). Even if

the points are constrained to lie on the edges of features, the number of test locations can be
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in the billions for a layout of several square centimeters. Therefore, it is critical to minimize
the time taken to compute the match factor at a point. The computation time per point is
equal to (1) the number of geometric primitives that overlap the pattern at that point
multiplied by (2) the time taken to add the contribution of a primitive to the accumulated
match factor. This assumes that (1) can be determined in time linear in the number of
overlapping primitives, which is guaranteed by the spatial sorting.

Four pattern-matching algorithms have been developed based on bitmaps, edges,
rectangles, and triangles. Each of the pattern matching algorithms relies on the fact that the
match factor is a linear sum of contributions from the weights of each of the primitives
overlapping the pattern. The contribution of each primitive is independent of the others and
can be added in any order. Several other classifications of algorithms can be used for pattern
matching, such as Fourier Transform-based methods, but they typically do not take advantage
of the large groups of similar layout pixels, small number of unique layout pixel values, and
limited set of filtered query points, and are thus typically less efficient. These alternative

methods are described below as well.

6.1 Primitives

When choosing primitives to use in the matching algorithm, there is a tradeoff; using
higher order primitives vastly reduces (1) but also increases (2). However, the increase in (2)
is more than offset by the order(s) of magnitude decrease in (1) with larger primitives.
Example numbers and costs of primitives for a typical layout and 128x 128 pattern are shown

in Table 1. Triangle primitives have a variable computation cost since they may need to be
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split into as many as three separate shapes when they overlap the edge of the pattern, though
the cost is usually only four operations. Edge/rectangle strip primitives are much more
efficient than pixel primitives, and rectangle/triangle primitives are even better. The
improved efficiency of using edges and rectangles comes at a cost of increased algorithm and

code complexity and more special cases.

Primitive Avg. number in | Cost/ Total cost
128 x 128 pattern | primitive
Pixel 16384 1 16384
| Edge/Rect. Strip 600 2 1200
Rectangle 20 4 80
Triangle 5 4-12 (5) 20-60 (25)

Table 1: Comparison of geometric primitives used in pattern matching

6.2 Bitmap Algorithm

The bitmap algorithm is the simplest method for computing a match factor at each
point, but it is also the slowest. In order to execute the inner matching loop, each input shape
must be converted into a large bitmap, specifically a matrix of complex numbers representing
the magnitude (transmittance) and phase of mask openings. The bitmap can be many
gigapixels in size and often must be split into smaller partitions in order to fit it in a
reasonable amount of memory. In addition to storing the bitmap itself, the individual polygon
edges and corners are stored before the splitting operation and maintained in separate arrays.
The edges and corners can then be iterated over directly if these filters are selected by the
user. The match factor at a location is computed by iterating over every pixel inside the

boundary of the pattern positioned at that location, as shown in the following equation:
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ysize-1 xsize—1

MF =Y (pattern[i][j1* layout _matrix{i][j])

i=0  j=0
Each complex number pixel in the layout is multiplied by the corresponding complex number
pixel in the pattern, and every pixel’s contribution is summed over the entire area.

Assume each complex number in the layout and pattern is purely real. If the Jayout
pixel and pattern pixel have the same sign, then they match, and a value equal to the product
of the magnitudes (importance) of those pixels is added to the match factor, increasing the
correlation value. If the signs differ, then the match factor is similarly decreased. Zero pixels
are “don’t cares.” Therefore, the closer a collection of layout shapes at the match location
resembles the pattern shape, the higher its match factor will be. An example of running the
bitmap algorithm on a small pattern is shown in Figure 16a.

The bitmap algorithm is simple but inefficient, and can only be run on small layouts.
Speedup techniques such as image compression, layout partitioning, match location pre-
filtering, and conditional code execution reduce the runtime significantly, but the
computational complexity remains high. The runtime is proportional to the number of layout
pixels, or the area of the layout. Large layouts must be partitioned into a very large number of
areas so that the layout bitmap fits into main memory. Fortunately, there are a number of
speedup methods based on algorithmic improvements that drastically improve the
performance of the pattern matching process. These will be discussed in the following
subsections.

There are a number of possible improvements to the bitmap algorithm that have not
been tried, though it is doubtful that the bitmap algorithm with the product of these

improvements can outperform the better basic algorithms explained in the next sections. The
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bitmap algorithm may be terminated earlier by matching on the highest weighted pixels first
and skipping a location if the best 20-50% of the pixels leads to a poor match, and by
skipping the contributions of pixels with a weight of nearly zero. Pixel-based learning can
even be used to find the “important” pixels in the pattern. The coherency-based filtering
method of the rectangle algorithm might be applicable to the bitmap algorithm as well. A
random sampling of match locations over various places in the layout can quickly determine
the proper match factor early termination threshold, coherency error bound, and match factor
cutoff. An edge skip factor (ESF) can be used to only compute the match factor at every Nth
pixel and then interpolate the match factors in between if they are expected to be high.

In the following sections, the primitive is assumed to be completely inside the pattern
area. If the primitive extends beyond the pattern boundaries, then it must be clipped. Clipping
is explained along with the triangle algorithm in Section 6.5, since this operation is simple

for edges and rectangles but nontrivial for triangles.

6.2.1 Compression

The runtime of the bitmap algorithm scales as the number of match locations times
the area of the pattern in pixels, since the match factor depends on the contributions from
each pixel. However, a significant amount of work can be avoided by approximating the
match factor using a subset of the pixel values and filtering out low matches where the
predicted match factor plus the maximum error bound does not exceed the cutoff threshold.
One way of reducing the number of pixels that needs to be tested is by terminating the match
factor computation prematurely if the match factor is low enough. This only provides a minor

speedup since, on average, maybe 75% of the pixels must be considered before the match
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factor computation can be terminated.

A much better system for eaﬂy filtering of low match factor locations is by using an
adaptive grid approximation, a form of lossy image compression. The layout and pattern are
each recursively “compressed” to yield approximating matrices of increasingly smaller size
and lower resolution. The match coordinates, match requirements, and other coordinate data
is similarly compressed by dividing the X and Y coordinates by two. Each coordinate is
flagged so that the set of original coordinates that were compressed to produce that value is
known. At each level of compression, each group of two-by-two pixels in the layout and
pattern is replaced by a single pixel with weight equal to the average of the original four.
Thus, at each compression step, the matrix is reduced by a factor of two in each dimension
for an overall reduction of a factor of four. If the match factor is computed at every point in
the layout, then the number of locations to be matched on and the time per match factor
computation are both reduced by a factor of four, giving a theoretical maximum speedup of
16 over the next higher resolution matching phase.

This speedup assumes that nearly all match locations are filtered out as poor potential
matches based on the match factors estimated from the compressed pattern match. A
threshold match factor cutoff value is determined by estimating the worst-case error in the
match factor resulting from the pixel averaging due to compression. This error is related to
the AMF pattern smoothness values described in Section 7.5.4.

The maximum 4X compression error is computed as follows. Given a cell matnx
block of four pixels with values a, b, ¢, and d that are to be compressed into a single pixel of
value e, the compression function is a simple averaging of the pixels. Similarly, a block of

four pattern pixels with values f, g, /, and i are compressed into a single pixel with value j,
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resulting in a compressed multiplication product of m:

e=(@a+b+c+d/H

J=(Ff+g+h+iH

m=e=(a+b+tc+d (f+tg+h+i)ll6

= (af+ag+ah+ai+bf+bg+bh+bi+cf+cg+ch+ci+df+dg+dh+di)/16

The exact multiplication product assuming no compression is computed as:

M=af+bg+ch+di
The compression error E is defined as the difference between the exact and compressed
products:

E=M-m =M-¢= (af +bg+ch+di)-(a+b+c+d)(f+g+h+i)l6

The maximum error can be determined by choosing the values of a through d and f
through i as either the most positive or most negative layer weight so as to maximize the
difference between M and m. Two solutions exist: maximize m and force the product of e and
J to be as negative as possible (max positive error E”), or minimize M and force the product
of e andj to be as positive as possible (max negative error £7). The error estimation algorithm
assigns maximum layer weights to the variables and chooses an error margin equal to £ *-E.
The relative error, (E* - E- )/Mexpecied, 1S the parameter that determines cutoff values and limits
the usefulness of compression. The relative error is specific to the layout and pattern values
and is usually very conservative, so it can often be divided by a factor of two or so with a low
probability of missed matches or errors in the results.

The matching run proceeds as follows. First, the layout and pattern matrices are
compressed several times. The matching algorithm is run at the lowest resolution (smallest

matrix sizes), and all locations with a match factor below the threshold are filtered out. The
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remaining set of locations is much smaller than the original set of all layout locations, though
some of the remaining locations can represent up to four locations at the next highest
resolution. Next, the matching algorithm is run on the next higher resolution representations
of the layout and the patterns, but this time the match factor is only computed at locations
that passed the previous filtering step. This process continues until the highest resolution
level (no compression) is reached, at which point there are relatively few match locations left
to consider. The final matching run is thus very fast and should still return the top match
locations. |

The choice of maximum compression level and filtering threshold determines the
speed vs. accuracy tradeoff of the compression algorithm. Conservative values lead to a 2-4X
runtime speedup due to compression with zero error, while more aggressive compression
parameters can lead to a 10X speedup, though there is a small chance that some of the results
may be missed. Experimental results showed that a single level of compression reduces the
runtime by a factor of two to four, two levels of compression by a factor of up to seven, and
three levels of compression by a factor of up to ten. Further levels of compression do not
provide a significant speedup due to compression overhead. One level of compression rarely
results in missed matches, while more than one level of compression can result in errors if
the compression adjustment and correlation factors are set incorrectly. The optimal
compression parameters depend on the layout and pattern statistics and cannot easily be

determined, so choosing the compression parameters can be a trial-and-error process.
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6.3 Edge Algorithm

6.3.1 1D Pre-Integration

One way to reduce the match factor computation time is to avoid touching each of the
many pixels in the pattern. Since the sum of pattern pixel values overlapping a polygon is
required for the match factor, and iterating through each pixel is not desired, the pattern
values must be rearranged so that the sum of a large number of pixels can be determined with
only a few operations. In the extreme example where the pattern is entirely covered by a
single shape, every pixel value in the pattern must be summed to determine the weight of the
pixels under the shape. Obviously, it is much better to sum up the pixels only once and then
use that single number every time this situation occurs. Similarly, the sum of the right half of
the pattern can be pre-computed, stored, and used any time a shape overlaps exactly the right
half of the pattern.

It may appear that there are an enormous number of pixel group combinations that
must be stored in order to make this algorithm work. However, consider the case where a
shape exactly overlaps the left half of the pattern. The sum of the pixels overlapping this area
can be pre-computed and stored, or it can be calculated by subtracting the sum of pixel
values in the right side of the pattern from the total sum of pixels in the entire pattern. In this
way, a series of additions and subtractions of a small number of carefully chosen pixel blocks
will yield the area covered by a huge combination of actual pixel blocks. This is the basis of
an algorithm that pre-integrates the pattern in various directions and allows a series of
differences of pre-integrated table lookups to determine the sum of pixel values under a

shape of arbitrary size and location.
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In order to implement this idea and efficiently add contributions from edges or
rectangle strips to the match factor, the pattern can be pre-integrated either horizontally or
vertically in one dimension (1D). The following discussion assumes horizontal edge strips
and thus horizontal pre-integration directed to the right, denoted by matrix IR. Each Y row of
the pattern value matrix (PV) = PV[0,0] to PV[Nx-1,Ny-1] is processed in sequence, and a
row of a pre-integrated matrix IR is computed in a way such that IR[X,Y]=sum from {i=X
to Nx-1} of PV[i,Y], or IR[X,Y] = IR[X+1,Y] + PV[X,Y]. Each pre-integrated matrix
element in IR is equal to the sum of all elements in PV at that location and to the right, as in

the following equation:

IRG, )= PV(k,))
Then, if a rectangle strip spans from location (X1,Y) to (X2,Y), instead of summing each
pixel from X1 to X2 in row Y using PV, the same number can be obtained from the
difference of pre-integration matrix values: IR[X1,Y] - IR[X2,Y]. The number of operations

is thus reduced from (X2-X1) to 2. This idea is used in the edge algorithm, which is

described in the following section.

6.3.2 Edge Algorithm Details

A useful observation can be made about the layout pixel values. Since the layout
consists of only a few unique layers, for instance 0- and 180-degree phased mask regions, the
layout pixels take on a small number of discrete values. Moreover, these values appear
together in large blocks of pixels because the grid resolution is usually much smaller than a
feature size. This is especially true for large rectangle fills. Similarly, large areas of zero

pixels, which denote the absence of all layers, are also common and can be skipped
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completely.

Each polygon in the input layout is first split into rectangles, and the rectangles are
further split into either horizontal or vertical strips one grid unit in width that extend from
one side of the rectangle to the other. The strips are then split into segments of length one
grid unit, sorted, and stored in an array for each grid scan line of the layout. The intersections
of multiple edges on different layers are summed up into a single intersection having a
weight equal to the sum of all edge layer weights. The intersections along a row or column
can then be queried by using a binary search and can be iterated over.

The following example demonstrates how this observation can be used to speed up
the match factor computation. Assume that a large rectangle N pixels in width overlaps the
pattern and extends from pattern column X to column X+N. Take arow Y in the pattern that
lies between the top and bottom of the rectangle. If the pattern is pre-integrated to the right as
in Section 6.3.1, then the sum of the pattern values PV[X,Y] to PV[X+N,Y] can be computed
with two operations: IR[X,Y] - IR[X+N,Y]. This pre-integrated value is then multiplied by
the weight of the rectangle to yield the match factor contribution from that horizontal strip of
the rectangle. The 1D pre-integration matrix can be used to compute the sum of pattern
values under a rectangle strip (between two edges at a particular Y value) in only two
operations instead of N. The contribution of the entire rectangle to the match factor is thus
the sum of the contributions of each row Y contained in the rectangle. Figure 10
demonstrates how the edge intersection algorithm works, and Figure 16b provides a

numerical example of the edge intersection algorithm on a small pattern.
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Figure 10: Demonstration of edge intersection algorithm: pat() is the original pattern matrix, val() is the
pre-integrated matrix, and one horizontal rectangle strip is shown. Four bitmap operations have been
replaced with two pre-integration matrix lookups.

The image compression algorithm as described in Section 6.2.1 can also be used with
the edge algorithm, but the theoretical maximum speedup per compression level is only 4 as
opposed to 16 for the bitmap algorithm. This is because the layout and patterns can only be
compressed in one of the dimensions, the dimension along the pre-integration direction. In
practice, compression of edges is not very helpful due to the increased overhead.

The runtime of the edge algorithm is proportional to the total perimeter of the layout
shapes, which is a great improvement over the bitmap algorithm. There is an additional log
term resulting from the binary search time to find the initial edge intersection with the right
side of the pattern, but this term is usually insignificant. In practice, the edge algorithm is an
order of magnitude faster than the bitmap algorithm, especially on multilayer layouts. In
addition, the memory requirements are greatly reduced since only the edge pixels must be
stored in the X- and Y-intersection lists. When using the edge algorithm, layouts as large as

several square millimeters can be processed in only minutes.
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6.4 Rectangle Algorithm

6.4.1 2D Pre-Integration

The previous sections explained how the pattern could be pre-integrated in 1D. This
idea can be extended to pre-integration in 2D so that rectangular blocks of pixel values are
stored instead of only 1D strips, as explained in the following section. A 2D matrix (P0) pre-
integrated to the right and above is obtained by taking IR and performing the 1D pre-
integration in the Y-direction so that PO[X,Y] = sum from {i =Y to Ny-1} of IR[X.i], or
PO[X,Y] = PO[X,Y+1] + IR[X,Y]. Each matrix element in PQ represents the sum of pattern
values PV at that location and in the pattern area above and to the right of that location, as

shown in the following equation:
P0G, j) =Y, > PV (k)

A graphical diagram and example of 1D and 2D pre-integration is depicted in Figure 11.

Pattern Values 1D Pre-Int to the right 2D Pre-Int top right
ol1{2]1|PV 4|4|3{1|IRUV) |4 ]a3]1|PO
3/01]2]| right 6/3[3]2| above . 10|716|3
411112 814(3]2 18]1119 |5
212{0]0 4(2|0|0 22{13{9 |5

Figure 11: Illustration of 1D and 2D pre-integration

6.4.2 Rectangle Algorithm Details

The edge intersection algorithm can be taken a step further for even more efficient
addition of rectangle contributions to the match factor. If the pattern can be pre-integrated in

1D to allow 1D rectangle strips to be added efficiently, then the pattern can be pre-integrated
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again in an orthogonal direction to allow an entire 2D rectangle to be added even more
efficiently. This was demonstrated in the previous section.

The following text extends the example of Section 6.3.2 using the 2D pre-integration
method developed in Section 6.4.1. Refer to Figure 12 for a graphical version of the steps
involved in this example. Assume an N by M rectangle extends from lower left corner X,Y to
upper right corner X+N,Y+M. The sum of pattern pixel values under the rectangle can be
computed starting with the sum of all pattern pixels above and to the right of the lower left
corner (X,Y) of the rectangle. This may overestimate the size of the rectangle. The problem
is corrected by subtracting off the sum of pattern pixels above and to the right of the upper
left corner (X,Y+M), and subtracting the sum of pattern pixels above and to the right of the
lower right corner (X+N,Y). Since some area has been subtracted twice, it must be corrected
by adding the sum of pattern pixels above and to the right of the upper right comer
(X+N,Y+M) of the rectangle. In summary, the sum of pattern pixel values under the
rectangle is equal to PO[X,Y] - PO[X,Y+M] - PO[X+N,Y] + PO[X+N,Y+M], where PO is the
2D pre-integration matrix discussed previously. This number is then multiplied by the
rectangle’s layer weight to get the contribution of the entire rectangle to the match factor.
This takes only four operations as opposed to N*M for the bitmap algorithm and 2*M for the
edge algorithm, assuming the rectangles have been spatially sorted so that it is easy to
determine which overlap the pattern at a given location. A numerical example of the

rectangle algorithm is also given in Figure 16c.
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Figure 12: Illustration of rectangle algorithm

The rectangle algorithm’s data structure only contains information about the
rectangles in a certain area of the geometry. The rectangles are flagged with information from
the pélygon splitting process regarding which edges and corners are true polygon edges and
corners. The polygons overlapping a given partition can be easily and quickly extracted
directly from the hierarchy without converting the geometry into a bitmap. Since the
hierarchy is no longer flattened, the algorithm can run on any layout that will fit in memory
in compact hierarchical form. The runtime of the rectangle-based algorithm is equal to
C,*M*N, where N is the number of match locations of interest, M is the match factor
computation time per point, and C, is a constant based on the computer’s architecture. M is
linear in the number of rectangles overlapping the pattern (4*r), which can be determined for
each location in the layout in time linear in the number of total rectangles R. The average
number of rectangles overlapping a pattern is effectively the density of the layout, D =
R/area. The number of edge/line end match locations is approximately proportional to R
assuming the edges are tested at regular intervals on the layout grid. Therefore, the total
runtime of the matching algorithm is equal to C;*R*D, which overall grows as O(R) for a
fixed technology design where density D is a constant.

Extracting a local set of rectangles from the hierarchy can take time O(n*log(n)) since

the number of levels of hierarchy roughly grows as log(n), where n is the number of
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rectangles in the hierarchical layout description. The time taken to sort the rectangles is
R*log(R/#partitions), where R/#paﬁitions is related to the average number of rectangles ina
partition. If the partition size is kept constant and all rectangles of the working set can be
stored in memory, then log(R/partitions) is also constant and the rectangle sort time is O(R).
In practice, the runtime is dominated by the matching loop due to the large value of constant
C,. The inner matching loop typically consumes 60-80% of the total runtime.

The only disadvantage to using rectangles is that it is difficult to determine which
parts of each rectangle’s sides are real edges or line ends and which corners appear on the
periphery of the layout shapes. Approximately 10-20% of the overall runtime can be taken to
compute the set of real edges and corners.

The rectangle algorithm does not benefit from layout and pattern compression since it
does not depend on the actual number of pixels in the layout and the patterns. However, the
rectangle algorithm can still be made faster by reducing the number of match locations. For
example, instead of testing every pixel along a feature edge, every fourth pixel can be tested.
In fact, if the pattern values are smooth (slowly varying), then the match factor at these
intermediate pixels can be interpolated from surrounding points, and if necessary the exact
match factor can be computed at these pixels if the interpolated value is above a certain
threshold. This provides yet another way of filtering out poor match locations in order to
reduce the runtime.

The rectangle algorithm is by far the fastest and most efficient of the three, having an
order of magnitude speedup over the edge algorithm. The runtime is proportional to the
number of shapes in the layout and the density of shapes in the layout, and no longer depends

on the grid resolution. Thus, a higher grid resolution can be used for reduced discretization
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error without fear of drastically increasing the runtime. The runtime is, however, dependent
on the technology since the density of shapes within the coherence radius of most processing
effects increases as the k1 value increases. With the rectangle algorithm, layouts as large as
several square centimeters can be processed in less than an hour. Similar algorithms are used
for geometry processing in OPC calculations, such as the polygon convolution algorithm of
Cobb [10], which relies on lookup tables to store the linear intensity contributions from each

polygon edge.

6.4.3 Sorting

Input layout primitives such as paths, polygons, and circles are split into rectangles,
where non-orthogonal edges are split on a fine grid or converted to triangles as shown in the
next section. Arbitrary shapes can be processed, though diagonal lines can lead to many
rectangles.

After subdividing the layout into small regions of rectangles equal in area to the
largest pattern, at most four (two-by-two) regions overlap the pattern and thus it is easy to
determine the rectangles whose weights contribute to the match factor at a collection of
points. The lower left corner of the pattern is used to determine in which two-by-two region,
or super-region, the pattern lies. A new data structure is built that contains the list of unique
rectangles in each two-by-two combination of regions, and the match factor computation
inner loop finds the bin that contains the pattern and iterates through the unique rectangles in
that two-by-two block of regions overlapping the pattern. The rectangle pointers within each
two-by-two bin are sorted in increasing order by y1, y2, x1, and then x2 in sequence. Thus,

on average at least 25% of the rectangles iterated over actually overlap the pattern (75%
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misses), and with early termination of the iteration when the first rectangle is found to be
completely above the pattern, this “hit rate” can be increased to 33% (67% misses). More
complex sorting methods and data structures can be used to increase the ratio of “hits” to
“misses”, though the increased preprocessing time and memory requirements generally make
this not worthwhile.

The rectangles are initially sorted by region and are therefore iterated by region in the
match factor computation loop in order to minimize cache misses. It is also easy to perform
overlap removal, intersection tésts, and layer Booleans on sets of spatially subdivided and
sorted rectangles. The regions are iterated over, and each shaped in a region is tested against

all other shapes in the region.

6.4.4 Inner Matching Loop

The inner matching loop typically consumes around 60% of the overall runtime of the
pattern matcher. This simple loop is shown in Listing 2. The time is divided between
checking for overlaps between rectangles and the pattern bounding box, accessing memory in
the pattern pre-integration array PO, and performing the complex number multiply between

the rectangle weight and the pattern pre-integrated result.

Listing 2:
Determine 2x2 region (super-region) index I in which pattern P lies
For each rectangle R in super-region[I] ({
If (R overlaps P)
Clip R by the bounding box of P; R = {x1, yl, x2, y2, layer}
MF+=Weight (layer) * (PO [x1,y1]-PO[x1,y2]-P0[x2,y1]+P0[x1,y2])
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The overlap check runtime has been reduced by sorting the rectangles by region for
improved memory access patterns. Some memory operations are avoided by skipping the
pre-integration matrix contribution of rectangle coordinates that are outside of the pattern.
The pattern pre-integration table cache misses can be minimized by interleaving the real and
imaginary parts of the complex numbers when each component is nonzero, and storing only
the nonzero component separately when one component is always zero (purely real or purely
imaginary patterns). Finally, the complex number multiply can be removed if all rectangles
have the same weight, and the sum of all rectangle contributions can instead be multiplied by
the rectangle weight once at the very end. If there is more than one layer with the same
weight, then some of the four floating-point multiples involved in the complex number
multiply can be removed in certain cases. For instance, if the pattern or layout contains either
purely real or purely imaginary values, then some of the terms involved in the complex
multiply will always be zero, and their computation can be skipped. The actual inner loop for
the rectangle and triangle algorithm is thus several hundred lines of code due to the various

case splits that are used to take advantage of these special situations.

6.5 Triangle Algorithm

Some input layouts contain diagonal edges, usually with angles at multiples of 45
degrees where the technology allows. For example, permitting polysilicon lines to jog
diagonally around contacts can lead to denser layout structures. These non-Manhattan
polygons must be split into a very large number of rectangles to accurately approximate the

sloped edges. In many cases, right triangles can be used as an alternative to replace these
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large collections of tiny rectangles in efficiently representing a diagonal polygon edge. The
number of primitives will often be reduced to a fraction of the size of the required rectangle
set. However convenient this may seem, it comes at a price: triangles are much more
complex to process and involve the computation and storage of a larger number of pre-
integration matrices.

Triangles are represented as rectangles with vertices corresponding to the triangle’s
bounding box and an extra bit flag denoting which orientation the triangle is in. There are
four possible orientations, one for each location of the right angle, and the rectangular
bounding box and orientation flag uniquely identify a right triangle’s vertices. Shape
processing is nearly identical for rectangles and triangles, and most of the operations support
triangles by checking for the orientation flags in special case triangle code. One exception is
overlap removal, which is difficult to perform between rectangles and right triangles and is

therefore not currently supported.

6.5.1 8-way Pre-Integration

In the case of the four possible 45-degree triangle orientations shown in Figure 13a,
eight 2D pre-integration matrices are used, one for each quadrant (P0, P1, P2, P3) and one for
each of the four lower octants (O1, 02, 03, 04). Triangles with angles that are not amultiple
of 45 degrees are rarely encountered in integrated circuit layouts due to layout generation
algorithm complexities and manufacturing difficulties. Supporting these triangles would
require an extremely large set of pre-integration matrices, so they are not supported in the
general triangle algorithm. Details on extensions to non 45-degree triangles are explained in

Section 6.5.3. See Figure 13b for a diagram of the area (angular rotations) covered by these
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pre-integration matrices. There are a number of other possible combinations, including some
using only six matrices with added computation steps, but they will not be discussed here.
These matrices are pre-computed for 90- and 45-degree angular regions beginning at a point
in the pattern and continuing to the edges of the pattern matrix. Pixels that lie exactly on a
diagonal edge can be fully counted, not counted at all, or counted as one half their actual

pattern values for highest accuracy.

E{I l% Pt | PO

02 01
(b) 04 | 03

Figure 13: (a) Four possible triangle orientations and (b) 8-way triangle algorithm pre-integration area

Right triangles are used because they have fewer degrees of freedom and therefore do
not require as large of a pre-integration matrix. Most integrated circuit layout polygons can
be exactly divided into right triangles. Odd angles of less than 90 degrees where both
incoming and outgoing edges lie within the same quadrant cannot be split into right triangles,
so in those cases they are split into a number of approximating rectangles and triangles.
There are four possible right triangle orientations corresponding to four unique positions of
the right angle. The remainder of this section will assume the triangle is in the first
orientation with its right angle in the lower left comer and its hypotenuse oriented from the
upper left to the lower right. Two 2D pre-integration matrices are required for this case.
Matrix PO represents the sum of pattern pixel values above and to the right. Matrix O1

represents the sum of pixel values in the octant between 315 and 360 degrees.
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Figure 14 explains the steps involved in using the triangle algorithm for triangles in
this orientation, and an example is provided in Figure 16d. First, the PO pre-integration
matrix is used to retrieve the sum of pattern pixel values above and to the right of the
triangle’s right angle point at X1,Y 1. Then PO at the top left corner (X1,Y2) of the triangle is
subtracted, leaving an area of pattern pixel values that extends from the left vertical leg of the
triangle to the right side of the pattern area and includes the entire triangle. Next, the value of
O1 of the top left (X1,Y?2) triangle point is subtracted to remove the pattern pixel values to
the right of the triangle’s diagonal edge. This operation subtracts a 45-degree angular slice of
the pattern between 315 and 360 degrees. If this area extends beyond the bottom of the
triangle, the extra area must be added back in and is equal to the value of O1 at the lower
right (X2,Y1) comer of the triangle. Thus four operations are involved: PO(X1,Y1) —
PO(X1,Y2) - O1(X1,Y2) + O1(X2,Y1).

Triangle

N\

~Ne

vit

Contribution of triangle orient. 1 at (x1,y1),(x2,y2)
= PO(x1,y1) - PO(x1,y2) — O1(x1,y2) + O1(x2,y1)

.

1
Pattern x1 x2 (o)}

Figure 14: Illustration of 45-degree triangle algorithm
A triangle may need to be split if it only partially overlaps the pattern, and the
memory lookup is in a large set of pre-integration matrices. In addition, contributions from
triangles that are not multiples of 45 degrees must be added using a variant of the edge

algorithm. Thus, triangle processing is somewhat slower than rectangle processing.
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6.5.2 Clipping

One problem with the matching algorithms as presented so far occurs when the
primitive shape only partially overlaps the pattern area. If the shape extends beyond the
pattern area, then lookups in the pre-integration tables outside of the computed region will
fail. This means that the shapes must be clipped to the pattern area before the table lookups
are performed. In the case of edges and rectangles, these primitives are easily clipped to the
bounding box of the pattern using min() and max() to yield a primitive of the same type that
lies completely within the pattern.

However, additional difficulties arise when clipping a triangle to a rectangular area.
Consider the triangle clipped to the pattern bounding box in Figure 15b. The intersection of
the two shapes is no longer a triangle; it is a five-sided polygon. This shape must be further
split on the fly into smaller shapes consisting of a possible smaller triangle of the same
orientation and up to two new rectangles. There are a number of cases to consider when
splitting the polygon resulting from clipping, but fortunately these cases can be enumerated
efficiently without having to resort to the slow arbitrary non-Manhattan polygon splitting
algorithm explained later in Section 7.4.1. The contributions from each of the resulting
primitives are then added to the match factor in the usual way for rectangles and triangles as
discussed in Section 6.4 and Section 6.5. The worst-case number of operations required to
add the contribution of a 45-degree right triangle to the match factor is therefore actually 12,

since each of up to three shapes requires four operations.
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Figure 15: (a) Rectangle and (b) triangle clipping

6.5.3 Extensions for non 45 Triangles

The above triangle algorithm is capable of processing triangles with angles at
multiples of 45 degrees. A problem arises when a polygon contains an angle that is not a
multiple of 45 degrees. These polygons can occur, for example, in a spiral inductor of an
analog integrated circuit layout. In fact, even a 45-degree polygon can be split into non 45-
degree right triangles if the original polygon does not lie on the layout grid used for
triangulation and the vertices have to be snapped to the grid. Grid rounding error can result in
a one to two pixel shift in edge and comer locations, thus perturbing the angle. The tri-angle
algorithm from the previous section cannot be used in these situations.

These triangles can still be processed more efficiently than if they were split into
many small, single pixel-width rectangles. One method to do this is to use a combination of
both the rectangle algorithm and the edge intersection algorithm. The contribution of the
rectangle representing the bounding box of the triangle extended to the vertical edges of the
pattern opposite the triangle’s hypotenuse is first computed. This area includes pixels that are

not in the triangle. To correct for this, the pixels between the hypotenuse of the triangle and
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the opposite vertical edge of the pattern boundary can be subtracted in horizontal strips. This
can be done using the pre-integration matrix from the edge algorithm (IR, integrated right, or
IL, integrated left) in Section 6.3.1. The difference between this step and the edge algorithm
is that the strip runs to the vertical edge of the pattern, and thus the pre-integrated value at the
end of the edge is zero and that computation can be omitted. If the height of the triangle is H,
then the number of operations performed is equal to H+2. Figure 16e shows an example of
how this algorithm is applied to a small pattern.

The improvement in speed is not as impressive as in the 45-degree tnangle algorithm.
If rectangles are used instead of triangles then the number of operations is 4*H, and the
number of operations is 2*H for the edge intersection algorithm. The real advantage of using
this approach is that it greatly reduces the number of primitives, which in turn reduces the
computation time for pre-processing the data and the memory required to store the
primitives.

Figure 16 demonstrates the various algorithms from Section 6.5 with examples using
a simple pattern and a single triangle primitive.

The pre-integrated pattern matching idea can actually be applied to any shape or
composition of shapes satisfying the following requirements:

(a) A compact pre-integration matrix can be built for the shape at any location, size,

and orientation,
(b) The shape as clipped by the pattern boundaries can be subdivided into shapes of a
supported type, and

(c) The shapes can be combined into a rectangle.

Note that this includes edges, rectangles, and right triangles but not shapes such as circles or

non-right triangles because they violate condition (c). It might be possible to relax condition

(c) by using a non-rectangular pre-integration matrix, but this idea has not been verified.
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(a) Bitmap Algorithm (b) Edge Intersection
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(e) Non-45 degree Triangle (Proposed)

BR PV

PO(A) — PO(B) — IR(B...C) =
18-0-(4+3+3)=8
TH + 2 = 5 Operations

12

Pattern| 3NO 1 1|2
Values | 4~ 112
2120

1D Pre-Int to the right 2D Pre-Int top right

o ol S

(4)4(3[1]IR 4la[3|1|PO
63132 10/7 6|3
8l4lz)2 ghi|9 [5
4/210]0 22/13/9°|5

Figure 16: Example of adding the contribution of a rectangle and triangle to the match factor using the
(a) bitmap, (b) edge, (¢) rectangle, (d) 45-degree triangle, and (e) non-45-degree triangle algorithms
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6.6 Other Algorithms

“Pattern matching” is a very broad term that encompasses matching geometry to
geometry, images to geometry, and images to images. The type of pattern matching discussed
in this dissertation is more of a search procedure for finding an image in a collection of
geometric shapes, where the match factor is determined through an image correlation with
the layout geometry. Thus it is important to also consider image convolution and correlation
algorithms when discussing pattern-matching strategies. The basic differences between
lithographic processing effect pattern matching and standard image pattern matching are
really the larger size of the area in which the pattern is matched, and the ability to perform
application-specific filtering of the match point candidates. Any class of pattern matching
algorithm can in fact be used for applications such as lens aberration sensitivity analysis,
since an image can always be converted into pixel-sized rectangles and the layout geometry
can always be converted into a large bitmap image. However, one unique advantage of the
pattern matching system described here is the ability to determine inexact matches, Which
cannot be easily done with many of the well-known matching algorithms.

Geometric pattern matching, or geometry-to-geometry matching, is a common
method of locating unique polygons in a dataset for applications such as geometric data
compression [38]. This class of algorithms is extremely efficient in locating all exact polygon
shapes in a large search area. In fact, the pattern matching software system presented in
Chapter 4 includes this type of geometric pattern matching algorithm for polygon data

compression of the input layout, as discussed in Section 4.5.2.2. Unfortunately, this class of
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algorithms is not applicable to searching for the best match to smooth images representing
processing effects.

Pattern matching is a well-known problem in the areas of digital image processing
and computer vision, ana there are a large number of image-to-image pattern matching
algorithms in existence. These algorithms can be grouped as correlation-based solutions and
image understanding solutions [45]. There are a number of differences between pattern
matching over large integrated circuit layouts and pattern matching over standard images.
The layout pattern matching diséussed in this dissertation is made easier by the fact that there
are a small number of discrete pixel values and large groups of the same pixel value. Layout
pattern matching does not involve image scaling or rotation by arbitrary angles since the
pattern size and orientation are generally fixed. In addition, the match factor need not be
computed at every point in the layout image, so aggressive location filtering can be used.
Most of the pattern matching algorithms discussed below do not take advantage of these
optimizations.

Layout pattern matching is also more difficult than standard image pattern matching
for several reasons. The layout “image” is orders of magnitude larger than what normally is
considered an “image”, and cannot be stored in memory at one time. These layout images are
weighted by complex-valued floating-point numbers instead of the normal integer RGB
image intensity values. This leads to more complex normalization of the cprrelation factor.
Pattern matching on layouts also involves geometry processing to extract features and

feature-dependent weighting of the results.
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6.6.1 FFT-Based Algorithms

Correlation is algorithmically equivalent to convolution, so the inner pattern-
matching loop is performing operation similar to convolving the pattern with the layout.
Consequently, fast convolution methods such as derivates of Fast Fourier Transform (FFT)-
based algorithms can be used for computing the match factor [44].

Assume, for simplicity, that the layout and pattern are of the same size. This
assumption is valid because the layout can always be divided into smaller partitions that are
the same size as the pattern and matched independently. A standard convolution in the
context of the pattern matcher can be expressed as MF = L ® P, where MF is the match
factor, L is the layout matrix, and P is the pattern matrix, all complex-valued floating point
numbers. The computational complexity of basic convolution is O(n?), where n is the number
of pixels in the layout and the pattern. The runtime of the bitmap algorithm on every layout
pixel is equal to the number of match locations (n) times the number of pattern pixels (n),
which is indeed n®. A convolution can be computed mére efficiently by utilizing the FFT and
inverse FFT (IFFT) operations: MF = L ® P = IFFT{FFT{L}* FFT{P}} . The computational
complexity (CC) of this method is equal to CC(CC(*, per-pixel multiply) + 2*CC(FFT) +
CC(FFT)) = CVC(n + 2*n*log(n) + n*log(n)) = n*log(n), which is much better than a
computational complexity of n’.

This FFT-based algorithm achieves a speedup of n/log(n) over the bitmap algorithm.
In addition, its runtime does not strongly depend on the pattern size. However, this algorithm
does not take advantage of the fact that layout pixel values take on only a small number of
values and are clustered into large groups of the same pixel values. Moreover, this algorithm

always calculates the match factor at every point in the layout, even if only a small subset of
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the points along feature edges or comers is needed. Computing the FFT result at only a few
pixels out of the total matrix appears to have the same computational complexity as
computing the FFT values for all pixels. Finally, this algorithm requires additional memory
to store the intermediate FFT matrices. Unless the pattern is very large or the match factor
must be computed at a large percentage of the total layout pixels, the rectangle algorithm is
still much faster than the FFT-based algorithm. In fact, the time taken to simply construct the
matrices on which the FFT operations will later be performed is greater than the time taken
to run the entire rectangle algorithm for several layouts that were tested. Though the FFT-
based algorithm is interesting from a theoretical perspective, it is inefficient for practical
matching runs on large layouts when compared to the efficiency of the rectangle and triangle
algorithms. It may be possible to compute the FT of the layout very quickly by summing the
individual Fourier Transforms of the rectangles in the layout using a table lookup, but this

idea has not been tested.

6.6.2 Statistical Sampling Algorithms

Statistical pattern matching algorithms generally involve finding a pattern image
located within a search image by randomly checking a pixel in the pattern against a pixel in
the search area and throwing out a location if the pixel match fails. The set of test pixels is
usually a constant size regardless of pattern size, and in some cases the pixels may be
strategically chosen to improve the performance of the algorithm. This strategy can lead to
extremely fast exact pattern matching due to the small number of initial pixels that need to be
tested to filter out poor match locations. It can also handle certain types of rotations and

scaling of the pattern. One paper on a statistical sampling algorithm [45] quoted a speedup
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factor of 160 over the basic bitmap algorithm.

This algorithm does not appear to work with inexact pattern matching since it reaches
a decision after testing only a small fraction of the total pattern pixels. It is not clear whether
the assumptions made in this class of algorithms hold for the case of aberration patterns
matched on circuit layouts. Furthermore, these algorithms may not take advantage of the
small number of discrete pixels values and the large blocks of the same pixel values present

in circuit layouts.

6.6.3 Learning Algorithms

Learning algorithms involve training a system to accept good matches and reject poor
matches through learning trials based on test images. The system is trained to locate better
matches by processing a large number of patterns flagged as good and a similarly large
number of patterns flagged as poor, and in the process building a method of differentiating
the two cases. The training and matching can utilize neural networks or other decision
processes. The pattern matching system can be trained to locate patterns that have been
scaled and rotated, and the algorithm is robust to noise and low contrast levels. However,
these features are not required for most of the layout pattern matching applications discussed
in this dissertation.

The patented vsFIND algorithm [46] uses the highest “value” pixels to filter out poor
matches very quickly, similar to but more powerful than bitmap pixel compression. The
standard Normalized Grayscale Correlation (NGC) method is used to locate the pattern
within the search image. The training time has been optimized to scale as the pattern width to

the power of 3.5.
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Learning-bases systems are typically used to determine if two equivalently sized
images match and do not easily generalize to locating the target image in a large search
image such as an integrated circuit layout. It is not clear how this type of algorithm would
perform for finding aberration patterns in real layouts. The algorithms do not take advantage
of the small number of discrete pixels values and the large blocks of the same pixel values
present in circuit layouts. A learning algorithm would likely scale fairly well to large layouts,
but the training process could require excessive runtime that scales very strongly with the
pattern size. The training procedure might also be difficult to automate, especially for the
smoothly varying aberration patterns that may have no critical image features to search for.
Finally, in some cases the algorithm is not guaranteed to produce the correct results if using

the most aggressive performance settings.

6.6.4 Rejection Algorithms (Inverted Pyramid)

This class of algorithms uses projection vectors to filter out non-matches very quickly
and dramatically reduces the search space. In the case of the Projection Kernel algorithm
[47], the match locations are repeatedly filtered using a Walsh-Hadamard tree, even in the
presence of noise. The Maximal Rejection Classifier algorithm [48] iteratively classifies
match locations into targets and clutter. The general rejection method starts out by
performing the simplest tests first in order to filter out the obviously bad locations, which
removes the majority of locations from consideration. These simple tests check the existence
of important features of the pattern in the potential match location, such as key edges and
comners. Increasingly more difficult tests are used as the potential match set is narrowed down

to smaller and smaller sizes. The final set of results has passed all tests without being
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rejected, and therefore represents the target match.

These algorithms were not designed to locate inexact matches when the best match
value is unknown, and poor matches cannot be removed initially because the best match
factor is unknown until the algorithm is complete. These algorithms are much more efficient
than the bitmap algorithm, but are unlikely to provide the orders of magnitude speedup of the
rectangle algorithm. In addition, the Projection Kemnel algorithm requires memory
proportional to P**log(P?) as opposed to P for the bitmap algorithm, where P is the pattern
width and height (typically 128 or larger). This 2*log(P) increase in pattern memory

requirements may potentially be prohibitive for large patterns.

6.6.5 Video and Image Compression Algorithms

Pattern matching methods have been proposed for high quality two-dimensional
video and image compression in [49] and [50]. These algorithms allow for approximate
matching of a region of an image to the recently compressed portion of the image or other
previously processed images. This allows the software to locate pixel regions that can be
copied from another location so as to avoid storing the similar data twice. This idea is similar
to the lossless exact image pattern matching algorithm of Lempel-Ziv. Approximate pattern
matching can also be used to find a previous video frame that is similar to the current frame
in order to reduce the required data rate by copying pixel regions from one frame to another.
These image compression techniques are interesting, but may not scale well for full chip

layout-sized images and large patterns of several hundred pixels on a side.
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6.7 Overview and Algorithm Computational Complexity

A flowchart showing the construction of several of the major data structures is shown
in Figure 17. In all cases, polygons in the input file are first split into rectangles, since
rectangles are easier to process than polygons. In the case of the triangle algorithm, the
polygons are split into triangles as well as rectangles and the rest of the data structures and
algorithms proceed in the same way as in the rectangle algorithm. The bitmap algorithm adds
the rectangles to the Boolean layer map, where each bit of the layer map represents a
different mask layer or phase. The individual layers of the layer map are then summed up
into the complex-valued layout matrix, which is used for the pattern matching inner loop.
Alternatively, the edge algorithm stores points along either the horizontal or the vertical
edges of the rectangles. These edge intersections are stored individually for each row or
column of the layout, sorted, and merged with other overlapping edges so that there are no
duplicate points stored. This data structure is then used for edge-based pattern matching. As
another alternative, the rectangle algorithm simply sorts the rectangles spatially into sub-
regions, and maintains a pointer to each rectangle overlapping the sub-region. The set of
rectangles in each two-by-two collection of sub-regions is also stored for use in the inner

matching loop, where again duplicate overlapping rectangles are removed.
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Figure 17: Pattern matcher data structures for the bitmap, edge intersection, and rectangle/triangle
algorithms

The various matching parameters that affect runtime are described in Table 2. These
parameters are for a standard benchmark matching run on the active_test layout. This layout
was designed in 180nm technology, so the grid resolution was chosen to be 50nm so as to
have 3-4 pixels per minimum feature. The coma pattern used for matching was 128 by 128
pixels in size, or 6.4um on a side. The overall active_test layout is 2.4cm by 1.8cm, or
480Kpixels by 360Kpixels, yielding a total of 172.8Gpixels of effective matching area.
Clearly it is not possible to create a bitmap this larger, nor is it efficient to generate one
partition-by-partition. The number of actual edge match locations in this layout corresponds
to the total perimeter of all shapes, which is 2.6 billion points, or 130m of total edge length!
There are a total of 38 million flattened rectangles in a single layer, though the actual layout
file is small due to the compression ratio of eleven levels of hierarchy. The optimal FFT size
for this layout was determined to be 1920 by taking the derivative of the FFT computational

complexity and solving for the value of X that makes the derivative equal to zero.
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Table 3 presents an overview of the computational complexities of the various
pattemn-matching algorithms discussed in this dissertation. The algorithm computational
complexities alone have many terms as explained in Table 2 and depend on non-standard
input layout parameters. The estimated operation count for the active_test layout is a fairly
good indicator of the actual algorithm performance on a real input layout. The operation
counts were determined using the values of Table 2, but they do not directly determine
runtime since different types of operations may take a different number of processor
instruction cycles to execute. The “estimated true runtime” values were determined from
experiment for the short runtimes of implemented algorithms, extrapolation of runtimes from
smaller examples for the time-consuming implemented algorithms, and operation count
figures for the unimplemented algorithms. This table proves that the edge algorithm is much
faster than the bitmap algorithm for normal layouts, and the rectangle algorithm is much
faster than the edge algorithm. The other algorithms are faster than the bitmap algorithm but
slower than the rectangle algorithm, though they may be better for uncommon types of

layouts. Additional data on algorithm performance can be found in Section 8.6.1.

Parameter | Description Value

res grid resolution 50nm

P pattern size in (square pattern) 128 pixels

N layout width 2.4cm = 480000 pixels
M layout height " | 1.8cm =360000 pixels
L number of match locations along edges (perimeter) | 2.6 billion

R number of effective flat rectangles 38 million

np number of patterns to match (multiplies all runtimes) | 1

nl number of layout layers 1

X optional FFT partition size 1920

Table 2: Pattern matching parameters for algorithm computational complexity comparison
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Algorithm Computational Complexity | Operation | Estimated True
Count Runtime
Generating the bitmap | M*N 1.72E11 2 hours' '
Bitmap N*M*P* 2.8E15 > | year-
Bitmap (edges only) L* P° 4.3E13 1 month'*
Bitmap (edges only + | C*L* P’ 1.0E13 5 days"
compression)
Bitmap (edges only + | C*L* P“/ESF 4.0E12 > 1 day'”
compression + ESF)
Edge L*P*/(N*M) 6.4E11 10 hours"”
Rectangle/Triangle L*R* P*/(N*M) 9.4E9 34 minutes' '
Fourier Transform (FFT) | 2*(X+P) *log(X+P)*M*N/X" | 4.4E12 2 days °
Projection Kemel N*M*log(P) 1.2E12 -
Statistical Sampling N*M*samples_per_pattern - 160X speedup

over bitmap'*

Table 3: Pattern matching algorithm computational complexity comparison

11. Measured from system clock

12. Predicted from operation count

13. Extrapolated from smaller test cases

14. Estimated typical value taken from publication
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7 Software Details

The pattern matching algorithms described in Chapter 6 in general only apply to the
inner matching loop. The pattern matcher program contains a large variety of supporting
features and algorithms that are mostly independent of the core matching algorithm. The
following sections of Chapter 7 assume that the rectangle and triangle algorithm is in use for
the case where there is a difference, since that algorithm has been chosen for the final pattern

matcher implementation based on performance tests.

7.1 GDSII File Read

GDSII files can be read as ASCII text files, raw binary files, and zipped binary files,
including multi-file archives. The file import code is highly optimized for reading large
GDSII files of many GB using a dual pass read and on-the-fly data compression for reduced
memory requirements of polygon and hierarchy storage. It is important to have a fast input
file read because this segment of the runtime cannot otherwise be parallelized and in some
cases could dominate the overall runtime.

GDSII files are read in two passes. The first pass computes the number of cells and
number of shapes of each type in each cell, so that the entire database can be allocated at one
time using large blocks of memory. This improves cache coherency and avoids the added
runtime and memory required for dynamically allocated arrays. The bounding box of the
layout is also estimated in the first pass, and is used to create the spatial subdivision bins so

that the layout can be directly read into the sub-cells. The second pass then fills in the
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database, adding objects into the already allocated space within the target cell or sub-cell.
This two-pass algorithm can build the database extremely quickly so that the load time is
often dominated by disk /O and unzipping of the input data, especially for flat cells.

The GDSII file loader includes a preprocess file mechanism for avoiding the first pass
on repeat loads of the same layout. Normally, the first GDSII read pass is used to determine
the number of cells, bounding box of the layout, and number of objects of each type per cell.
This is a relatively small amount of information compared to the entire layout, and this
information is dependent solely on the layout. Therefore, this first pass data can be computed
the first time a layout is read and stored in a file. If the same layout is read again later, then
the required information is loaded from the preprocess file instead of the layout, avoiding one
pass through the GDSII file. The resulting load time is improved by as much as a factor of
two. Other information can be stored in the preprocess file, including sub-cell data statistics
and verification data such as a GDSII file name, timestamp, and/or checksum values.

The parallel UNIX version of the pattern matcher described in Section 7.8 also
employs a pipelined disk read/unzip/database build in both read passes. In the first step,
thread 1 reads block A of layout data, where the block size is experimentally determined to
be in the range of several megabytes. Then in the next step, thread 1 reads block B of layout
data into one memory buffer while thread 2 processes block A, which is stored in a second
memory buffer. At every step, thread 1 reads block N+1 while thread 2 builds the database
for block N, and the step ends with a thread synchronization event. Disk reads are generally
supported in hardware, so the processor 1s free to do data processing while waiting for the
read, and a speedup is possible even on a single processor machine. The disk read and unzip

can then occur in parallel with the data processing, yielding a speedup of up to a factor of
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two.

Since the disk read is inherently sequential and the unzipping cannot easily be done in
parallel using ZLIB, this is near the theoretical minimum load time. It may be possible to
fully parallelize the zip file read by preprocessing the zip archive so that smaller groups of
records are independently compressed. At load time, the processors can each read a subset of
the compressed sections of the layout and in that way unzip the data and build the database in
parallel. Then the individual processors can exchange their portion of the database through
network communication, so as to spread the communication out over the entire network

instead of constantly retrieving data from the server that contains the original zip file on disk.

7.2 Hierarchy

Many modern integrated circuits are designed using a hierarchy of standard cells,
macrocells, and/or possibly underlying clock and power grids. Large arrays of regular
structures such as on-chip RAM, cache, clock and power grids, and tiled gate arrays are poor
candidates for pattern matching because the large number of repetitive structures leads to
many matches with identical values, producing inflated sets of match results. These areas of
the design are best tested by running the matching algorithm on a single tile of the array.
However, more irregular cell hierarchies are well suited for pattern matching.

GDSII and CIF files allow an arbitrary amount of hierarchy in order to reduce the size
of the geometry representation, and the pattern matcher preserves the hierarchy up to the
partitioning stage to minimize memory requirements. The import-enabled pattern matcher

and simpl_display share the same hierarchical database, display, and query routines as
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explained in Section 4.5.2. Initially, the imported layout is built into a hierarchy of cells, each
of which contains polygonal shapes and references to other instantiated cells. The cell
hierarchy is preserved throughout the execution of the pattern matcher and used for
displaying the layout upon completion of the matching run. Each partition is iterated over,
and the pattern matcher queries the hierarchical database to determine which cells and
included shapes overlap the current partition. Those overlapping shapes are flattened and
then split into geometric primitives for use in the later match factor computation step.

The pattern matcher’s support of hierarchy has evolved over time and is still in an
unfinished state. The original pattern matcher supported only flat layouts. Later, cif_to_pm
was developed to allow hierarchical layouts to be read in and flattened for use in the core
pattern matcher, as explained in Section 4.4. The next step was to store the hierarchy in
memory and directly access the partition data from the hierarchical cell database and only
flatten a single partition at a time. A challenging future step would be to directly match on
the hierarchy without any flattening of the database, or to go even further by computing the
match factors on common cells and replicating the computed value across all instances of
that cell. There are a number of potential problems with this approach, such as determining

which of the millions of points in the cell to compute and store the match factors for.

7.3 Partitioning

Large layouts of hundreds of millions of shapes cannot be flattened and stored in
memory at one time. In order to process these layouts, they must be spatially subdivided into

a number of smaller partitions that can be flattened and stored in memory at once. These
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large layouts can either be preprocessed and written to disk or constructed directly from the
hierarchical database. If the hierarchical database is not in memory, then the layout is
partitioned using an external bucket sort and stored on disk for later access to per-partition
data. Polygons overlapping the edge of a partition are clipped by the partition boundary. The
partitions are then iterated through, and only the flat data for the current partition is loaded
and used in the matching loop. The graphical version of the pattern matcher also loads and
displays each visible partition. Rectangle, triangle, and polygon data is retrieved from the
hierarchy or the rectangle database in memory or on disk.

It is important to choose a proper partition size in order to minimize runtime and
memory requirements. If the partition size is set too small, then there will be an extremely
large number of partitions leading to long partitioning times, potential disk swap, and
excessive memory required for the partition structure itself. If the partitions are too large then
the flat geometry will not fit into cache, or even worse, not fit into main memory. This can
result in a large ratio of cache misses to cache hits and possibly costly swapping to disk as
some of the geometry is stored in virtual memory. It takes longer to spatially sort the data of
large partitions as well, but if the partition size is kept small so that only the number of
partitions increases with the size of the layout then the sort time is effectively linear in the
number of shapes. The partition size is especially critical for the biﬁnap and edge algorithms,
as they require a larger number of primitives and thus more memory to represent the layout.
In addition, the partition size impacts the granularity of the parallel pattern matching
algorithm described in Section 7.8. Fortunately, there is a large flat area in the runtime curve,
so partition sizes within a wide range work reasonably well.

The layout can be partitioned into a large number of equally sized areas that can then
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be locally flattened and processed independently from other partitions. However, when the
point of interest lies near the edge of the partition, the pattern may extend beyond the
partition boundary. The geometry near the edge of the partition boundary but outside of the
partition area must also be stored so that the contributions from these shapes can be added to
the match factor. This requires the partitions to overlap with their left and right neighbors by
an amount equal to half of the largest pattern width and with their top and bottom neighbors
by an amount equal to half of the largest pattern height. This overlap effectively increases the
partition size, so the partitions should be made much larger than the largest pattern size so as
to minimize the overlapped area relative to the core partition area. The optimal partition size
is usually much larger than the pattern anyway, so the partition overlap poses no real
problem. A small layout that has been divided into six overlapping partitions is shown in

Figure 18.

Empty partitions

Figure 18: Layout divided into six overlapping partitions



7.4 Geometry Processing

7.4.1 Polygon Splitting

Complex input layout shapes are difficult to store, access, and process quickly inside
of the matching loop, and for this reason they are split into simpler elements as a
preprocessing step. Input shapes consist of rectangles, polygons, paths, and circles. Since
each of these is either a type of polygon or can easily be converted into a polygon given a
layout grid, explaining the procedure for the case of a polygon will be sufficient. The input
polygons are split into geometric primitives, which consist of pixels, edges, rectangles, and
triangles depending on the matching method used. The overall goal of the polygon splitting
algorithm is to produce a minimal, non-overlapping set of smaller primitives that together
cover the entire area inside the polygon and none of the area outside the polygon. It is
relatively easy to convert polygons into bitmaps and edges since these operations are
common in computer graphics and computational geometry, so only the more complex
rectangle- and triangle-based splitting will be discussed here. Keil provides a good overview
of polygon classifications and the methods of splitting polygons into smaller primitives [51],
though special code was written for this research to split polygons for the application of
pattern matching. -

The choice of layout grid is critical here, since choosing too coarse of a grid can lead
to discretization errors, single pixel gaps in the polygons after they are split, and
misclassification of 45-degree angles as non-45 degree angles due to grid snapping of the
edge endpoints. The grid size should be chosen to be at least as small as the shortest polygon

edge in the input file in order to minimize the discretization error.
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Though the algorithm will in theory work with self-intersecting and other special case
polygons, these situations occur infrequently and the discussion of these cases will be
omitted. The algorithms do not have any constraints on the layout geometry, but of course
have not been tested on all possible geometries. One note on self-intersecting polygons is that
processing is much easier if the intersection points are added into the list of polygon vertices
if not already there. If polygons are preprocessed in this way, then no special cases are

needed for the splitting of self-intersecting polygons.

7.4.1.1 Splitting a Polygon into Rectangles

Most of the polygons found in an integrated circuit mask layout are Manhattan,
consisting of alternating horizontal and vertical line segments with no diagonal edges. Many
layouts contain only Manhattan geometry. These are the easiest to process, and the splitting
procedure has been optimized for this case. These polygons are first split into rectangles that
are snapped to the layout grid.

The splitting algorithm proceeds by scanning through the points and locating the set
of unique X and Y values that, if used as horizontal and vertical cutlines, will partition the
polygon into a large number of smaller rectangles on a non-uniform grid. Each grid element
that lies inside the polygon is extracted as a rectangle, and then merged with rectangles to the
right and above to produce a small number of maximally expanded rectangles. In order to
extract the rectangles, a binary edge matrix is built, where a value of ‘1’ represents the
presence of a vertical edge along that cutline segment. An in_poly binary flag is initialized to
0 and toggles each time a 1 is encountered in the edge matrix. Each X value of each row of

the edge matrix is iterated through, and horizontal rectangles are extracted from the polygon
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for each consecutive Y value. The starting X value of the rectangle results from the location
where the in_poly flag toggles from a 0 to a 1, and the ending X value results froma 1 to 0
toggle in the same row. Each rectangle is stored in an STL vector and possibly split into
smaller primitives such as pixels and edges in a post-processing step.

If the bitmap algorithm of Section 6.2 is to be used, then the layer weight of each of
the rectangles is added to the layer map through a scan conversion process such as that used
in computer graphics [52]. The layer map is a bit-vector matrix, where each bit corresponds
to the presence or absence of a layer. The layer map is converted into the 2D cell matrix prior
to calculating the match values at each location. This leads to a cell matrix of floating point
pixel values equal to the sum of the weights of every layer present at that pixel. Alternatively,
if the edge intersection algorithm of Section 6.3 is used, then the rectangles are split into
horizontal strips one pixel wide that lie between two opposite edges of each rectangle, and
adjacent edge strips are merged into a single larger edge strip. The primitives are then sorted

by Y position and then X position, and stored in memory or on disk.

7.4.1.2 Splitting a Polygon into Rectangles and Triangles

Polygons with diagonal lines pose a problem since they cannot be split directly into
rectangles aligned with the X- and Y-axes. If the above algorithm were used, then some of
the non-uniform grid elements would lie partially inside and partially outside of the polygon.
There are two solutions to this problem: (1) Convert the diagonal edges into stair-step
sequences of horizontal and vertical line segments discretized on the layout grid such as in
scan conversion, resulting in a Manhattan polygon that can be split into a (potentially large)

number of rectangles, or (2) Split the polygon into a small set of triangles as well as
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rectangles.

For practical purposes the triangles must be constrained to be right triangles;
otherwise the processing of arbitrary triangles becomes too complex and computationally
expensive, as explained in Section 6.5.1. Therefore, layouts with acute angles formed by two
diagonal line segments inside of a single quadrant of the XY plane cannot be split into right
triangles and muse be dealt with using method (1).

Polygon triangulation and tessellation are common to fields such as finite element
analysis, mesh-based simulators, and computer graphics. There are a number of known
polygon triangulation algorithms from the field of computational geometry [53].
Unfortunately, the odd properties of the pattern matching algorithms described here require
right triangles combined with rectangles, and, unlike most triangulation algorithms, allow T-
junctions. Most of the known triangulation algorithms do not satisfy the right triangle
constraint, and the ones that do produce more triangles than necessary in efforts to remove
small triangles or triangles with small angles. For this reason a custom triangulation
algorithm was developed.

When method (2) can be used, the number of resulting primitives is usually much
lower that when using method (1) due to the large number of rectangles required to
accurately approximate a diagonal edge. Furthermore, if method (1) is used then the edges of
these small approximating rectangles can lead to incorrect classification of the diagonal edge
as a series of line-ends. The diagonal edges will also contain invalid inside and outside
comers positioned at the corners of the approximating rectangles. Thus method (2) is
generally preferred whenever possible.

The extraction of rectangles and triangles from a polygon is similar to the extraction
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of rectangles alone, with a number of additional algorithm steps discussed below. Figure 19

demonstrates the polygon splitting process.

Polygon Rectangles Rectangles (final)

:
H, V Merge

Split

Polygon Many Rectangles Still many Rectangles

Steps on |11
fine grid |

Polygon

Rectangles and Right 45 degree Triangles

B

(c)

Figure 19: Splitting of polygons: (a) Manhattan polygon split into rectangles, (b) non-Manhattan polygon
split into rectangles, and (c) non-Manhattan polygon split into both rectangles and triangles

Splitting a polygon into triangles is a common operation found in areas such as mesh
triangulation for finite element analysis [54] and polygon-triangle tessellation in computer
graphics [55]. However, the requirements for pattern matcher polygon triangulation are

somewhat different, and the standard algorithms cannot be used. In this case the goal is to
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split a polygon into rectangles and triangles with a primary objective of minimizing the
number of triangles and a secondary objective of minimizing the number of rectangles. All
triangles must be right triangles, and, unlike in most triangulations, T-junctions formed by
triangle edges are allowed. Furthermore, triangles resulting from self-intersecting polygons
must not overlap. The general polygon splitting method employed here is to adaptively
determine a minimal set of horizontal and vertical cut lines that exactly divide the polygon
into rectangles and triangles. Choosing a minimal set of cut lines automatically leads to a
minimal set of resulting rectangles and triangles.

Diagonal polygons are first split into a grid along all unique X and Y vertex values so
that all horizontal and vertical polygon edges lie on a grid line and each grid rectangle
contains only diagonal interior edges. Next, each grid rectangle is classified as containing one
of the following types of geometry:

(1) Nothing,

(2) A rectangle that fills the entire grid region,

(3) A single triangle, or

(4) More complex polygon(s).

Case (1) requires no work and cases (2) and (3) result in a single rectangle or triangle being
added to the output set. The polygon(s) in case (4) must contain at least one interior dia.gonal
edge, and the grid region may contain more than one disjoint polygon. Case (4) is more
difficult and requires a recursive call to the diagonal polygon splitting function. The sub-
polygons are repeatedly split in this way until one of cases (1) through (3) is reached or all
sub-polygons have zero area. Long, thin diagonal lines may be split into a large number of

rectangles and triangles, so the result set is not bounded by the number of vertices in the

polygon. However, these excessively high-aspect ratio polygons are rarely encountered.
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Once the polygon has been split, an iterative merge stage is entered which compares
combinations of adjacent rectangles and triangles for possible merging into a single larger
shape. After a minimal set of rectangle and triangles is found, the set is added to the working
shape set of the current partition. Once all of the polygons have been spit, the list of
rectangles and triangles is iterated over to prune out any shapes that lie completely outside of

the partition and to properly clip any shapes that partially overlap the partition.

7.4.2 Shape Merging

In order to reduce the number of primitives in the layout, some adjacent and
compatible primitives on the same layer are merged into a single larger primitive. The
following discussion deals with the merging of rectangles and triangles, since bitmap and
edge merging is performed by simply adding the weights of overlapping pixels and edges
into a single representative primitive. Triangles are only merged with rectangles within a
polygon as discussed at the end of Section 7.4.1.2. In the global merge step, triangles are
compared with opposing triangles in order to combine two triangles into a full rectangle.

The set of rectangles is first subdivided into smaller working regions, and an iterative
quadratic-runtime algorithm is used to compare every shape in a region to ever other shape to
see which can be merged. Two rectangles can be merged horizontally if they are adjacent
(share opposite vertical sides) and have the same Y values. Two rectangles can be merged
vertically if they share opposite horizontal sides and have the same X values. The merging
proceeds until no rectangle can be merged with any other rectangle or an iteration limit is hit.
Then the rectangles overlapping the boundary of the region are merged with rectangles

overlapping the opposite boundary of the adjacent regions in a similar merge across the
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region boundaries.

7.4.3 Overlap Removal

In some cases, multiple shapes may overlap and an overlap removal step is necessary
to ensure the contribution from overlapping shapes is not counted more than once. The
overlap removal procedure can be thought of as a special case of OR-ing one layer with
itself. Overlap removal is currently only supported for rectangles (16 cases) due to the large
number of cases of triangle-triangle (256 cases) and triangle-rectangle (64 cases) overlap.
The rectangle overlap removal procedure can be used either before or after merging, or can
be inserted between two merge steps. The pattern matcher performs overlap removal before
merging. It has the same basic computational complexity as rectangle merging because it also
has to test all rectangles against all other rectangles in a quadratic algorithm on the same
subdivision regions. For each pair of overlapping rectangles, a 16-way binary case split is
used to determine how to modify one of the rectangles in order to remove the overlap.
Depending on the case, one of the rectangle edges is moved in, one rectangle is split into

multiple smaller rectangles, or a rectangle is removed.

7.5 Match Filtering

Quite often the user is only interested in matching on a particular layer or a particular
type of geometry such as edges, line ends, and corners. It makes little sense to compute the
match factor at points in the middle of a feature or far from a feature. Matching time is
dependent on the number of points at which the match factor is computed and scales with

resolution for line ends and edges, scales with resolution squared for unrestrained areas, and
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does not scale with resolution for corners represented by single points. The implementations
and uses of geometric and layer-based match filtering are described below, in addition to
coherency-based filtering for runtime improvement. Figure 20 demonstrates the dramatic
reduction in required work due to pipelined filtering. These filtering algorithms are not easily

applicable to the general FFT, statistical, and learning-based algorithms but work well with

the rectangle algorithm.
\ All Layout Pixels /
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Figure 20: Multilevel filtering of match locations in the pattern matcher

At times the user may only wish to run the pattern matcher on part of a layout or a
single cell in the layout or library. The pattern matcher supports the use of a bounding box to
specify a coordinate range in which to match, and only geometry within that box is
processed. Similarly, the user can force the pattern matcher to only match on a set orrange of
user-supplied pixel values regardless of what the geometry at that éoint is. The pattern
matcher can also be instructed to only match on a single cell of a GDSII or CIF layout instead

of the top cell(s).

7.5.1 Corners

The pattern matcher understands two types of feature comers: inside corners and
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outside corners. An inside corner is defined as an intersection of two polygon edges where
the angular sweep from one edge to the other edge through the polygon covers more than 180
degrees. An outside corner is an intersection of two edges where the angular sweep is less
than 180 degrees. Obviously, if the angular sweep is exactly 180 degrees then the point is not
a true corner, and the geometry processing code removes these co-linear points from
polygons before they are processed. A rectangle contains four outside corners, and an L-
shaped polygon contains five outside corners and an inside comer. In fact, every properly
formed Manhattan polygon contains four more outside corners than inside corners.

In some cases the user might want to only match on a certain type of corner, or an
edge or line end between certain types of corners. The corner type of a rectangle or triangle
can be inherited from its parent polygon before splitting, but this does not always yield the
proper classification in the case where two or more polygons share the same vertices. In order
to guarantee that all comers are correctly classified, each of the corners on every shape is
preprocessed to determine its true status prior to entering the inner matching loop. For each
corner coordinate, every rectangle and polygon that has a comer at that location is considered
in computing the type of comner, if any. For example, if two rectangles meet at a point such
that the top rectangle’s lower right corner is at the same coordinate as the bottom rectangle’s
upper right coordinate, then the corner disappears and is flagged as neither inside nor outside

in both rectangles.

7.5.2 Edges/Line Ends

Sometimes the user may wish to only match on edges in the layout, or to only match

on line ends. For example, the user might want to match on the pixel at the center of all

113



polysilicon line ends as defined by the midpoint of all lines less than or equal to a minimum
feature in length that reside between two outside corners. It is possible to specify this exact
set of match requirements in the pattern matcher. Edge classification must be performed once
per rectangle or triangle and takes up to 20% of the total pattern matching runtime, but the
classification can be reused for each additional pattern and thus edge processing time does
not scale with the number of patterns. The pattern iteration loop is thus nested inside of the
partition-processing loop so as not to discard the edge and comer information of the current
partition’s shapes.

Deciding whether the side of a rectangle or triangle is an edge or a line end requires
knowledge of the length of the full edge between two opposing corners. The lengths of the
original polygon edges are stored in the resulting rectangles and triangles as the polygon is
split, but this length may not actually be the length of the true edge. The edges of two
adjacent polygons may in fact meet to form a single larger edge, or an opposing polygon can
meet partway along the edge and split a single edge into multiple segments. The common
edge to two adjacent and opposite rectangles can even disappear completely if the rectangles
are merged together. The actual length of rectangle or triangle’s side, if it is even part of the
true perimeter of the parent polygon, must be recalculated by processing all shapes with sides
adjacent to the side of interest. The initial classification at the time of polygon splitting can
be used to speed up this test, and after testing a shape the status of its sides and comers can
. be back annotated into the data structure so that the test does not need to be performed again
later. The polygon shown in Figure 21 contains edges, line ends, inside coers, and outside

Corners.
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Figure 21: Polygon edge and corner classifications

7.5.3 Layers

Layer requirements are also possible in the pattern matcher. The user can optionally
specify a single target layer, which may be different for each pattern. Normally, the edges
and/or corners of each shape are iterated over to compute the match factor, depending on the
type of edge, line end, and corner filtering. If the user requires a match only on a single layer
such as METALLI, then only shapes on the target layer are iterated over. Other layers may
still contribute to the match factor, but then cannot contribute to the locations at which the
match factor is computed. Edge, corner, and other types of preprocessing steps are also only

performed on the target layer(s) for efficiency purposes.

7.5.4 Match Factor Prediction Filter

The matching time of the rectangle algorithm was reduced by a factor of two to five
by using an adaptive, spatial coherency-based match factor prediction and error bounds
estimation to skip the computation of the match factor at points that are close to other

locations of low value.

115



Let AMF, be the maximum single horizontal pixel match factor change of pattern P
that is possible with any layout. AMF is related to pattern smoothness and is small for slowly
varying patterns. Thus, for any given layout where P is matched at location (X, Y) with
match factor MF(X, Y), we have:

| MF(X,Y)-MF(X £1Y)|< AMF,

The minimum acceptable match factor threshold T is equal to the correlation factor times the
best match found so far, or T = corr_factor*best_match. Any matches below this value will
not be reported as pattern matching results. Now assume the match factor at (X, Y) has been
calculated and is less than T, and match factor at (X+1, Y) is next to be computed. If the
maximum possible match factor at (X+1,Y) is less than T, then point (X+1, Y) cannot be a
result and thus the match factor computation can be skipped at this point. This condition is
expressed as:

If (MF(X,Y)+ AMF, <T) then skip (X+1, Y) and (X-1, Y)

The filtering procedure presented above can be generalized to any translation in a
combination of X and Y directions by computing a matrix of match factor deltas AMF(i,)).
Now the test can be generalized to:

If (MF(X,Y)+ AMF(m,n) < T ) then skip all pixels at coordinates (X+m, Y+n)

This filtering step allows many of the expensive match factor computations to be
avoided when testing the layout at dense intervals. However, the speedup achieved from this
method is limited by the relatively large values of AMF. Now remember that AMF was
determined for any layout and corresponds to the layout resulting in the highest match factor
changes, which for typical patterns is nothing like a real integrated circuit layout. In reality

the highest AMF actually found can be as small as one-fourth the calculated worst-case
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value. Unfortunately, it is impossible to determine the highest occurring AMF values without
computing the match factor at every point in the layout, which would defeat the purpose of
this speedup. The solution is to start with the conservative worst-case bounds for the AMF
matrix entries, and dynamically adjust the expected highest AMF values as the layout is
processed. As more low-valued AMF entries are actually calculated, the pattern matcher’s
confidence that these low AMF values are actually correct upper bounds is increased. The
highest AMF values previously found in the layout provide a ceiling for the AMF entries used
in filtering, and the values asymptotically approach this ceiling over time. Eventually, these
values stabilize at the highest values of AMF actually occurring in this layout, which in
theory provides the largest possible speedup with little chance of missed matches due to
underestimating AMF values.

Thus the above speedup method has the ability to dynamically adapt to the pattern
values and layout geometries. This filtering reduces the feature edge and line end points at
which the match factor is calculated by a factor of around five, improving the overall runtime
by a factor of two or more depending on the estimation parameters. The improvement is even
greater when matching on a dense grid of points but is generally not helpful when matching
on corners since the corners are too far away from each other to accurately predict the match
factor using another corner match. The theory behind the match factor prediction filter is
similar to the theory used in the bitmap algorithm compression of Section 6.2.1, in that both
ideas involve the estimation of error incurred by approximating the match factor from other

available information.
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7.6 Layer Booleans

Some applications of pattern matching and certain methods of constraining the
locations examined in a layout require Boolean and other layer operations (AND, OR, XOR,
NOT. ANDNOT, EDGE, GROWBY) between two or more layers. These layer operations
are needed to extend the pattern matcher to analyzing residual processing effects that involve
operations on multiple layers, such as laser-assisted processing and reflective notching. The
user is able to specify these layer operations in the layer definition file. The operations are
performed on the spatially subdivided rectangle data of each partition. The results ofthe layer
operations are used in the pattern matching inner loop and are possibly stored on disk or in
memory for later graphical display of the generated layers. Layer Boolean operations are
currently only supported for rectangles due to complexities of supporting these operations on
triangles. Figure 22 shows the results of applying these layer operations to a simple two-layer

layout. The various layer operations and their uses are explained below.
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Figure 22: Illustration of layer Boolean and other operations
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7.6.1 AND, OR, XOR, NOT, ANDNOT

A complete set of Boolean layer operations includes AND, OR, XOR, NOT, and
ANDNOT operators. A subset of only two operators such as AND and NOT will suffice, but
this rich set of layer Booleans allows for Boolean layer expressions involving fewer
operators. The layer Boolean implementation was simple when using the bitmap algorithm
since the Boolean operation could be applied at the bit level directly to the layer map matrix.
Eight layers could be processed at a time by using a table lookup for each 8-bit byte in the
layer map. The Boolean layer computation process for the rectangle algorithm is similar to
the overlap removal and shape merging steps in that the collection of shapes is subdivided
into small regions where a quadratic algorithm does not induce a large performance penaity.
Efficient polygon Boolean operations are known [56], but it was decided that a more optimal
way of performing Boolean operations was to work directly with the spatially subdivided
rectangle dataset.

AND, OR, XOR, and ANDNOT are defined for two input layers A and B. The
algorithms are implemented with custom computation kernels that test each rectangle in set
A with each overlapping rectangle in set B. Layer AND produces a results set where each
element rectangle corresponds to an overlap between a rectangle on layer A and a rectangle
on layer B. Layer OR and the related N-way OR simply duplicate all shapes on layers A, B,
and other targets into a new layer and then run the overlap removal algorithm. Layer
ANDNOT is more complex and involves maintaining a results set which is initialized by
duplicating the “AND” layer, and each of the “NOT"” layers is subtracted from the results set
by subdividing and removing rectangles. The layer XOR of A and B is basically
implemented as (A ANDNOT B) OR (B ANDNOT A). The ANDNOT algorithm is
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integrated into the XOR function for improved efficiency over using a function call, and
again the OR operation is implemented with an overlap removal step. Finally, the layer NOT
operation on layer A is computed as 1 ANDNOT A by initializing the “AND” layer of the
ANDNOT Boolean to be a rectangle covering the entire region of the layout on which the
NOT operation is computed.

Layer OR simply involves overlap removal, layer AND requires computing the
overlap between layers, and layer XOR and layer NOT can be built from layer ANDNOT.
The layer ANDNOT algorithm is the only missing component and will now be described. Let
A = {ay,...,am} denote the set of M shapes and area covered by the “AND” layer and B =
{by,...,.bn} denote the set of N shapes and area covered by the “NOT” layer. The resulting
output set R consists of rectangles covering all of A that is not included in B,orR=A - B.
Let Q be a queue of (rectangle, index) pairs which initially contains all M rectangles in A
with indices set to zero, Qi = {{ag, 0},....{am, 0} }. If ANDNOT is being used for layer
NOT, then Q will initially contain a rectangle equal in size to the entire region.

The algorithm proceeds by removing (rectangle, index) pairs {r, I} from Q until Qs
empty. Each {r, 1} is tested for overlap with each of the elements b; ofby,...,bn. If overlap is
found, then several cases are possible:

(a) r is completely inside of b;,

(b) s =r - b; is a single rectangle, or

(©) S = {sp,...,sp} = - b; results in P rectangles, where P > 1.

If case (a) occurs, then r can be eliminated and the algorithm goes on to remove another pair
from Q. If case (b) occurs, then r is replaced by s and the next rectangle in B, b+, is tested
for overlap. If case (c) occurs, then r is replaced by s, as in case (b), and the remaining P-1

rectangle(s) {si,...,sp} are paired with the next index of b and are inserted into Q as {s;, i+1}
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pairs. After rectangle r is checked against the last element of B, by, it is inserted into R.
When Q is empty, then result set R is output and the algorithm finishes. This algorithm is
guaranteed to terminate with the correct set of rectangles, and the maximum size Q will reach

is linear in max(M, N).

7.6.2 Grow-by

Layer grow-by increases or decreases the size of a polygon by moving the edges
closer or further from the center of the polygon and then possibly performing overlap
removal. This operation is typically used to expand polygon boundaries for EDA applications
such as Design Rule Checking (DRC). For example, a 10 by 10 pixel rectangle grown by 2
pixels on each edge will result in a 14 by 14 pixel rectangle at the same center point. Layer
grow-by is useful for pattern matching applications such as reflective notching, as discussed
in Section 9.3, where a fixed-width border around the edge of a layer must be extracted by
growing the edge. Negative grow-by can also be used to filter out small polygons. A negative
grow-by followed by a positive grow-by of the same amount will remove all polygon features
less than twice the grow amount in size.

Positive grow-by operations may not work properly if the grow amount causes
rectangles or triangles to extend beyond the boundaries of the layout or partitions. In
addition, large negative grow amounts may cause a single large polygon to be separated into
a number of smaller polygons, and in some cases this results in errors in the rectangle and
triangle representations of the split polygons.

Negative grow-by is much more complex then it first appears because several

interesting things can happen. If the grow amount is large enough, polygons can both
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disappear and become broken up into several disjoint polygons. In addition, bridging
rectangles must be created in certain situations to connect two rectangles that were adjacent
prior to the negative grow-by operation but moved apart as a result of the grow-by. The
addition of these bridge rectangles becomes difficult when several rectangles come together
at the same point, or when rectangles less than two times the grow amount in one or both
dimensions that would normally disappear are clustered together such that the combined
shape is large enough to be present after the grow-by. The negative grow-by algorithm
involves recursive calls that add these small bridge rectangles on the resultant layer, though
certain odd configurations of rectangles, especially those with long adjacency chains and
circular dependencies, can result in an infinite recursive loop. A recursion limit has been
added to break the loops, but this results in small holes in some of the output shapes. A better
solution probably involves storing the adjacency lists of rectangles or perhaps operating on
the input polygon set instead of the post-split rectangles, but this involves significant changes

to the code and has not been implemented.

7.6.3 Edge Extract

The edge extract operation is used to generate a new layer two pixels in width along
the edges of an existing layer. This edge layer can then be expanded by a grow-by to forma
strip surrounding the edges of the source layer, for use in applications that require matching
on polygon boundaries. This operation is more difficult than it may seem due to the existence
of internal edges in the rectangle dataset that come from shared edges of adjacent rectangles.
An edge classification algorithm similar to the one explained in Section 7.5.2 is used to

determine which sections of a rectangle’s sides are true edges and to add new rectangles
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representing those edge segments only. The overlaps that occur at the comers and other

locations between these edge rectangles must then be removed.

7.6.4 Layer Operation Complexity

Table 4 compares the per-region computational complexity and resulting set sizes of
the various layer operations presented in this section. Capital letters denote the layers and
lowercase letters denote the corresponding set sizes. The variable N represents the iteration
count of iterative algorithms, which is usually limited to a maximum of around ten. C is a
small operation-dependent constant factor of around two to four. Set sizes and computational
complexities are worst-case bounds. Each of the input layers is assumed to be merged into a
minimal set and overlap free. Layer OR, positive grow-by, and edge extract require final
quadratic runtime overlap removal steps denoted by the “=>", which usually dominates the
runtime. The computational complexity is highly dependent on the actual size of the results
set for most of the algorithms, but is in general quadratic in the input set size. The worst-case
size of the results set is typically much higher than the average case, typically quadratic as
compared to linear in the input size. The average results set size is roughly the same size as
the input set in most cases where the shapes do not significantly overlap between layers. The
worst-case is often achieved when layer A consists of vertical lines and layer B consists of
horizontal lines such that all shapes on layer A intersect with all shapes in layer B, which

leads to the a*b term common to many of the resulting set sizes.
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Operation Inputs Resulting Set Size Computational Complexity

Merge A a N*a’

Overlap Removal A (a+1)*/4 a’

AND A B a*b a*b

OR A B (a+b)=>a*b (a+b)’

N-way OR A B, ... T(a+...+n)=> (Z(a+...+n))’
(Z(a+...+n)+1)%/4

XOR A, B C*a*b max(a, b)’

ANDNOT A,B C*a*b max(a, b)*

NOT A C*a a’

Pos. Grow-by A a=>C*a a’

Neg. Grow-by A C*a a’ or more

Edge Extract A 4*3 => 4*a a’

7.7 Match Proximity Factor

Table 4: Complexity and resulting set size of layer operations

The match factor is usually siowly varying across the layout, and when calculated at a

dense set of points on a fine grid we would expect to see groups of high match factors
clustered together. The user may in fact want to more evenly spread the match factor results
across the layout so as to reduce the number of matches found while still locating all
generally problematic areas. It may be desirable to remove all match factors within a certain
pixel proximity to higher matches, since whatever is done to handle a high match factor will
likely also fix the high match factors occurring several pixels away. The final results are then
guaranteed to be separated from each other by at least the proximity factor. The pattern
matcher implements this feature through a user-define proximity factor that filters out all
lower matches within a given distance of a higher match.

In order to account for the loss of match results, the pattern matcher internally

increases the number of stored matches by a factor of ten or more. However, the match
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proximity factor still sometimes reduces the number of matches found below the user
requested number. The number of matches filtered due to the proximity factor cannot be
determined in advance, and storing too many matches could slow down the match queue
operations. For this reason, it is often useful to show more results than are actually necessary
and to have the user truncate the match list after a certain number of results or match factor

threshold is reached.

7.8 Parallel Pattern Matching Algorithms

The pattern xﬁatcher was initially developed as a sequential program, but it is easily
modified to take advantage of parallel computational resources for reducing runtime on large
inputs. A typical distributed parallel cluster is comprised of a number of computation nodes
that are networked together, each of which contains a number of processing elements and
shared memory. The input layout can be spatially subdivided among nodes and processors,
where the nodes communicate through the Message Passing Interface (MPI) [57]'°, and the
processors communicate through POSIX threads (Pthreads) [58]'°. MPI is a method of
distributed communication that can be used to spread the pattern-matching job over a large
number of machines linked by a fast network. MPI is not available on all machines and is
enabled by a compile-time definition in the pattern matcher Makefile. Multiple Pthreads are
run on shared memory machines with more than one processor. In fact, any thread library that

supports mutexes or other locks can be used for parallelization.

15, bup: www-unix.mes.anl.govimpi’
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The parallel pattern matcher was tested on two parallel computing clusters. The
CITRIS cluster, a collection of dual processor 1.3GHz Itanium2s connected by gigabit
Ethernet, is installed at the Electrical Engineering and Computer Sciences Department at the
University of California, Berkeley. Seaborg, a large cluster of 16-way 300MHz IBM Power3
processors, is one of the National Energy Research Scientific Computing Center (NERSC)"’
machines.

The actual steps of the sequential pattern-matching algorithm are shown in Figure 23.
The left side of the figure lists the pattern matching steps and the color code used in this
figure and in Figure 24. The right side of Figure 23 shows the breakdown of runtime, and is
approximately to scale for typical inputs. The actual matching step takes about half the
runtime, and is fortunately easy to parallelize. The database operations take about 25% of the
runtime and can be parallelized with more difficulty. The input file read takes a significant
part of the runtime for relatively flat layouts, but could not be completely parallelized.

Finally, the other steps are very fast and are probably not worth parallelizing.

16. htipz A www humaniactor.cony pthrcads:

17. higp www nerse.gov
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Figure 23: Pattern matching algorithm steps and breakdown of sequential code execution
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Figure 24: Breakdown of parallel pattern matcher algorithm

Figure 24 explains how the parallelization was accomplished. The colors correspond

to the color code in Figure 23, and the heights of the blocks correspond to approximate
runtimes of those steps. The parallel algorithm involves spatially subdividing the layout in
both the X and Y directions and processing the partitions in parallel. The layout is already
partitioned to conserve memory, but parallelization of the partitions is not easy. The

partitioning is somewhat complex since the partitions must overlap and load balancing may

127



be difficult due to the non-uniformity of the polygon distribution. There is no clear way to
load the compressed hierarchical layout database in parallel or efficiently distribute the
storage due to complex dependencies and overlaps between the cells. Thus each node must
load its own copy of the hierarchical database.

The final algorithm uses an approximation method that is based on previously
computed statistics, and it was initially thought that these values would have to be
communicated between the processes at various intervals in order to effectively use the
approximation algorithm. However, the approximation al gorithm reaches a steady state after
a few seconds, so each processor will independently reach the same value very quickly. The
problem became much easier once it was determined that this communication was
unnecessary.

Since the computation was expected to dominate over the communication, it was
expected to work well on a distributed memory system using MPL. Most of the code blocks
were untouched since the new parallel code went into the spatial subdivision algorithms and
the outer loops. However, a significant amount of code change was required in order to make
the pattern matcher thread-safe.

The parallelization was accomplished in two steps. First, each node loads the entire
database from disk and spatially partitions it into several hundred areas. Node N processes
every partition P where (P % Numnodes) == N. Then, the partition is further subdivided into
regions, where each processor in node N works on its own set of regions. MPI was used for
the inter-node communication, and Pthreads was used for communication within each node.
This partitioning strategy is illustrated graphically in Figure 25 for the combined MPI and

Pthreads case, with four nodes each containing four processors. The actual time taken to
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process a partition is highly variable due to the non-uniform distribution of polygons in an
integrated circuit layout. However, if each node and each processor are assigned a large
number of partitions that are evenly distributed over the entire chip area, then the overall
variance per processor will be small. This leads to good load balancing across symmetric
processing elements when the number of partitions is much larger than the number of

processors.

IThread 0] [Thread 1
'Thread 2| |Thread 3

Figure 25: Spatial layout partitioning strategy for MPI and Pthreads with four nodes and four
processors/threads per node

This use of Pthreads will be referred to as the “inner” loop version. The problem with
the inner loop version is that the procedure of further subdividing the partition into sub-
regions involves processing that takes as much as 10% of the total runtime. An alternative
method, named the “outer” loop version, involves distributing the partitions among
processors using a round-robin algorithm similar to the node partitioning method. The
disadvantage of the outer loop method is that it requires several partitions to be in memory at
once, one for each processor. However, this was not a problem in the test examples since
both clusters had adequate memory for these small cases. The largest test run required only

577MB of RAM on a 64-bit machine.




Initially, all processors loaded the entire layout database, ran on their partitions, and
sent their results to processor 0. Sending all of the results to processor zero is inefficient
when the user asks for a large number of results, so this method was replaced with a binary
tree-based results merge. A simple four-processor case of this binary tree is shown in Figure
26. In the first phase, node 1 sends its results data to node O for merging, and at the same
time node 3 sends its data to node 2. In the next merge level, node 2 sends its data to node 0,
and then node 0 outputs the final results. This binary tree merge algorithm works well even

for 32 processors (5 levels), with a merge time of less than a second.

Stepl Step 1

Output Results

(a) (b)
Figure 26: Binary tree results merge for (a) four and (b) eight processors

7.8.1 MPI and Parallel Partitioning

MPI results for the CITRIS cluster are shown in Figure 27. The parallel pattern
matcher has a high parallel efficiency, achieving over 28X speedup on 32 nodes for the 25
min. active_test run, excluding the MP1 startup time. The total runtime was reduced from 25
minutes to only 51 seconds. The match time scaling is near the theoretical limit, though there
is a large MPI startup time of several minutes when using many nodes. This MPI startup time
will not be as much of an issue when processing larger files that take hours to run
sequentially and tens of minutes in parallel. This speedup was actually achieved with only

one processor per node, which does not utilize all of the processing resources. However, the
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matching can also be partitioned using multiple Pthreads, and a 16 node run using both
processors (two threads) achieves a speedup of over 29. It appears as though pure MPI and
MPI + Pthreads work equally well, but MPI + Pthreads is preferable because it uses all
available processors and less memory (only one database per node). The reason the speedup
is not perfect is due to several issues, most notably the fact that the layout load and
preprocessing is not done in parallel and has a small constant time penalty regardless of the

number of processors.
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Figure 27: MPI runtime scalability results for the CITRIS cluster showing a near perfect speedup of 28X
on 32 nodes

Figure 28 shows the MPI speedup on Seaborg for two different configurations. These
numbers are for a single 16-processor node and multiple MPI tasks per node. It was found
that MPI worked better than Pthreads on Seaborg nodes, but this is due to Pthread memory
allocation problems as discussed in the next section. Seaborg had much longer runtimes than

CITRIS on the standard benchmark input file, and could not be run in debug mode. A smaller

131



example was used on Seaborg to achieve more reasonable runtimes. An example that used
less than 128MB of memory was chosen so that interactive jobs could be run to avoid the
difficulties of the queuing system. The first configuration involved starting an MP1 job that
ran on multiple nodes, using only one processor per node. The scaling was still quite good,
giving a speedup of over 11 for 16 nodes, but it is not as good as on CITRIS due to the
increased ratio of preprocessing time to match time required for this smaller example. In this
case, significant time was spent in the pattern pre-integration, which has not been
parallelized. The second configuration involved running MPI on the processors within a
single node. This configuration did not scale as well due to memory contention within the

node and the time taken for a single node to load multiple copies of the file from disk.

Seaborg Speedup - MPI

s ——Theoretical
g ——N Nodes l
& -1 Node |

1 3 5 7 9 11 13 15

# Processors

Figure 28: MPI runtime scalability on the Seaborg machine at NERSC

The parallel pattern matching scales extremely well on eight or more processors even
for runs that require only a few seconds of runtime. There are still areas that need work, such

as parallel pattern pre-integration and parallel results processing, but the majority of the
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processing time has been parallelized. The high computation cost and low communication
cost of the MP]I parallelization strategy leads to near perfect speedup that is only limited by

load balancing issues, file load and preprocessing time, and MPI startup overhead.

7.8.2 Pthreads Dual Processor Comparison

The core pattern matcher executable has the capability of splitting the pattern
matching work among POSIX threads (Pthreads). In fact, any thread library that supports
mutexes or other locks can be used for parallelization. Multiple threads are run on shared
memory machines with more than one processor.

The performance of Pthreads was characterized on various dual processor systems in
order to determine what the scaling limitations were. Unfortunately, it was not possible to
achieve good performance with Pthreads on Seaborg without significantly changing the code,
as the runtime actually increased with the number of threads. It is possible that the threads
were fighting with the memory system when allocating small amounts of memory inside of
the Standard Template Library (STL) vector resize (doubling array), which occurs when
constructing partial vertex arrays inside of the recursive polygon splitting code. It is not clear
how to remedy this problem, since the optimal vector allocators are not available with the
version of the STL installed on Seaborg.

Figure 29 shows the relative performance advantages that come from utilizing both
processors of a dual processor machine. As explained in the previous section, MPI can be run
on both processors to achieve a near perfect speedup of 1.95 on a CITRIS Itanium2 node.
This is because each processor builds the entire database and there is no memory sharing. If

Pthreads are used instead of MPI, then the speedup is slightly lower due to memory
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contention and time spent waiting at mutex locks. However, the memory requirements are
lower since only one copy of the database is stored, though two partitions are also stored. If
the Pthread split is done later in the code (inner loop) at finer sub-region granularity, the
memory is reduced further but the speedup falls since a smaller portion of the processing is

done in parallel. The database access is still sequential.

Dual Processor Speedup

2.5 g e e s e e e s e e e me e e s s s e

15 4d e b e

05 41 ] JUUUR Y E—

2x MPI 2x PT Outer 2x PT Inner 2x PT Outer 2x PT Inner 2x2PT Xeon
Itanium2 Itanium2 Itanium2 P4 Xeon P4 Xeon Hyperthread

Figure 29: Pattern matching performance on several dual-processor architectures

A 3.2GHz Pentium 4 Xeon with hyperthreading was tested as well as the CITRIS and
Seaborg nodes. Both Pthread algorithms resulted in a speedup of less than 1.5 due to memory
contention. Memory bandwidth is more of a bottleneck on the Xeon system than on an
Itanium?2 since the processing speed to memory bandwidth ratio of the Xeon is so much
higher. Starting four computation threads on the Xeon instead of two results in an additional
speedup, bringing the total speedup to 2.25. This extra speedup comes from the
hyperthreading technology in the Xeon processor, which allows a single processor to run two
thread instruction streams at once. Hyperthreading is not as good as having two real
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processors, but it does help somewhat in this case. The Xeon is very fast at sorting the integer
data in the database operations, and doesn’t suffer from as much slowdown when using the

inner Pthreads split instead of the outer split.

7.8.3 Dynamic Load Balancing Queue

Partitioning the layout into many small regions and dividing them among processors
works well in most cases. Each processor knows which partitions it processes in advance,
and no communication is necessary until the merging stage at the end. However, if the
number of partitions is small, the layout geometry distribution is extremely non-uniform, the
processors are unequal, or some of the processors are loaded with other jobs, then load
balancing becomes an issue. Static load balancing in this case leads to the fast processors
finishing their partitions early and having to wait for the slow processors to finish before
performing the results merge. Dynamic load balancing is easy when using Pthreads; each
thread simply takes the next available partition from a queue and increments the shared
memory partition counter inside of a lock. This method ensures that all partitions are
processed and none are matched on more than once. That way each processor accepts more
work only when it has finished its current job, allowing faster processors to work their way
through a larger number of partitions.

Dynamic load balancing in MPI is much more difficult due to a lack of shared
memory for the partition counter. Node 0 runs both a client thread and a server thread, while
all other nodes run only a client thread, as shown in Figure 30. The server thread spends the
majority of its time in an idle state waiting for partition requests, so it can be run on the same

processor as a client thread without significantly slowing the client thread. Node 0’s client
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communicates with node 0’s server through shared memory so that node O can run the
pattern matching process and simultaneously wait for other nodes to request new partitions to
process. This shared memory communication is necessary since two threads running on the
same processor may deadlock if they both try to send or receive MPI messages at the same
time. Each client node other than node 0 sends an MPI request to node O’s server as soon as
it is finished processing the current partition. Node 0’s server returns a unique partition ID
from the queue for that client to process, or a magic number to signify the end of the partition
dataset. That way, each node is constantly processing a partition, and slower nodes will
simply submit fewer requests to the server and thus process fewer partitions. If a node
contains more than one processor, then either each processor can individually communicate
with the server over MPI or the processors can communicate with a separate MPI
communication thread running on the client node. The former approach has been chosen for
the final parallel pattern matcher implementation. The communication system allows
multiple processor threads on the same client node to simultaneously ask the server for
partitions, and each thread will eventually receive a partition. The partitions may be

processed out of order, though this is acceptable due to the independence of the partitions.

Node 0

. ) Node 1
1 Client Client
L~|Queue Server
Shared
Memory
v
Node 2 Node 3
Client Client

Figure 30: Dynamic load-balancing queue client/server model including both MPI and Pthreads
communication
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The effect of the dynamic load balancing queue was tested by observing the elapsed
time between when the first processor reached the synchronization point at the results merge
tree and the time the last processor reached that point. Perfect load balancing means that all
processors reach the synchronization point at the same time. Figure 31 shows the runtime
results of pattern matching averaged over several runs on the same input. The processors
used are a combination of slow (900MHz) and fast (1.3GHz) Itanium2s. The horizontal axis
represents the number of slow nodes among the eight running. The runtime increased as the
ratio of slow nodes to fast nodes increased, as expected. The synchronization wait time
increased sharply from almost zero to 43% of the total runtime with the addition of a single
slow node, since now all of the fast nodes have to wait for the slow node to finish. There is
no communication time in Figure 31 because the static load-balancing algorithm does not
require communication. It is interesting to note that there is a load balancing issue even when
using all fast nodes. This is a result of resource contention as some of the fast nodes were
likely running processes for other users. The imbalance due to resource contention results in
increased wait time at the merge point, just as if the processors are running at different
speeds. This further justifies the need for dynamic load balancing, since in many real world

situations the user will not have complete control of the machine resources.
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Effect of Load Imbalance Due to Processor Speed Differences
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Figure 31: Parallel pattern matcher runtimes with static load balancing only

The results of running the dynamic load-balancing scheme as described above are
shown in Figure 32. The wait time at the synchronization point has dropped to nearly zero,
showing that the dynamic load-balancing algorithm is doing its job. The communication cost,
shown in magenta, is less than 1% of the total runtime for all test cases. Finally, the wait time
before synchronization can never be completely eliminated due to the granularity of the
partition size and the fact that different partitions require different amounts of work. The
processing time per partition is usually around one second, which is an upper bound on the
theoretical best dynamic load-balancing algorithm. This dynamic load-balancing queue
virtually eliminates the load-balancing problem and allows the pattern matcher to be run on

heterogeneous machines and to adapt to heavily loaded systems.
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Figure 32: Parallel pattern matcher improved runtimes when using dynamic load balancing
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8 Pattern Matching Experimental and Performance
Results

Cesar Garza has pointed out the importance of aberration effects on printed features
and the need to take aberrations into account during the design and manufacturing process
[31]. This chapter examines the physical effects of aberrations on the printed image and
characterizes the magnitude of aberration effects relative to optical proximity effects as
corrected by OPC. The lens aberration idea proved to be a useful application of pattern
matching that required the development of a pattern generation system, efficient full chip
matching algorithms, and a procedure for linking results to other, more rigorous simulators.
The automatic extraction of geometry for SPLAT aerial image simulation provides an ideal
means to perform more rigorous analysis on the geometries found through pattern matching.

This chapter illustrates a number of example matching runs and compares the results
to expected and simulated aberration effects, verifying the accuracy of the pattern matching
approach. In addition, runtime and resource requirements are provided for a range of inputs
from small layout clips to full chip mask layers containing over a hundred million polygons.
Performance results show that the pattern matcher does meet its goal of processing a full chip

in under an hour on a standard computer.

8.1 Experimental Conditions

Unless otherwise stated, the amount of aberration chosen for the simulations herein

was 0.025 waves RMS, corresponding to a good lens with a Strehl ratio of 0.975. The partial
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coherence factor ¢ was chosen to be 0.3. The four aberrations chosen for these experiments
were balanced coma (cos), coma (sin), high order coma (cos), and spherical. This list
includes both even and odd aberrations, a similar pair, and a pair differing by a 90-degree
rotation. A pattern matcher resolution of 0.06 VNA was calculated to match the generated
pattern dimensions and to minimize the alignment error. Match factors were calculated using
the pattern matching software system described above. Intensity changes where measured
from the SPLAT simulation results of a cutline running perpendicular to and centered on the
edge or line end of interest. Line-edge and line-end shifts were derived from the changes in
intensity and AI/AX slopes at the edges of the mask regions using a 0.3 intensity threshold.

It is important to note the difference between positive and negative match factors.
Positive match factors result in increased electric field intensity and therefore line edge shifts
in one direction, say to the right. Negative match factors result in decreased intensity, and
therefore line edge shifts to the left. The actual match results should consider the absolute
value of the match factor when ranking locations based on sensitivity to aberrations or other
processing effects.

Most of the JPEG screenshot images in this chapter were taken with the integrated

pattern matcher graphical display and with Display3D.

8.2 Pattern Matcher SPLAT Verification Procedure

Figure 33 presents a graphical flow of the interface between the pattern matching
system and the SPLAT simulator. First, the pattern matcher is run on the coma (cos) pattern

to determine the layout location that is most sensitive to coma. Notice that the underlying
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PSM layout in Figure 33a correlates well to the actual pattern shape. The output of the
matcher is then automatically extracted to SPLAT format. A Drawmask plot of the SPLAT
file generated from the match in Figure 33ais shown in Figure 33b. The 0.3 intensity cutlines
of the SPLAT simulation results for that same input geometry with and without aberrations
are shown in Figure 33c. It can be seen from this plot that the addition of 0.1 waves of RMS
coma (cos) widens the printed line and shifts it to the right. Figure 33e compares contour
plots of the aberrated and unaberrated cases. Notice how coma makes the printed line in the
center of the contour plot narrower (contour lines closer together) and shifted to the left.
Figure 33d presents a 3-dimensional wire frame plot of the same contour generated by
Display3D, where the low areas of the mesh would normally print as lines. The effects of

coma may cause the line to short with another line to the right of it, leading to a faulty circuit.
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Figure 33: Pattern matcher to SPLAT graphical flow: (a) the match location is (b) extracted to SPLAT
for aerial image simulation, comparison of (c) cutlines and (d) 3D contour plots taken with Display3D
with and without 0.025 waves of RMS coma and (e) contour plots with and without 0.1 waves of coma.

8.3 Example Matching Runs

Figure 34 illustrates a handcrafted 0/180 PSM layout of test structures designed to be
sensitive to the trefoil, coma, and spherical aberrations. This layout and a similar binary

version have been designed in Cadence to investigate the qualitative accuracy of the match
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locations found. This layout consists of arrays of patterns of varied dimensions that are
common in real layouts and likely to have a high degree of similarity with the aberration
patterns indicated. It is important to note that the actual feature sizes and the optical
parameters such as partial coherence play an important rule in determining the match factor,
so only the shapes and sizes that resonate with these requirements result in a maximal score.
Even though the test layout includes an array of feature sizes, it was not easy to achieve high

match factors with the correct match between aberrations and test patterns.
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Figure 34: Handcrafted 0/180 PSM test layout for trefoil, coma, and spherical aberrations

The normalized match factor for these test shapes ranges from 0.362 for coma, 0.419
for trefoil and 0.470 for spherical. The match factors of these test structures are relatively low
compared to those achieved with more complex geometries. However, the test structures
were designed to represent common layout geometries without much complexity. Small OPC
features added to these shapes could lead to higher sensitivity since they have a higher

probability of resembling the circular aberration pattern shapes. In addition, including both 0-
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and 180-degree phase regions in the test structures while keeping them simple increases the
match factor by approximately 50% over binary test layouts. A test structure exactly
matching the aberration pattern of interest can of course achieve a match factor of 1.0.

A screenshot of a 0/180 industry PSM layout of an interconnect layer taken from [21]
is shown in Figure 35. Not only does the pattern matcher locate areas in the mask layout
susceptible to aberration effects, but Figure 14 also demonstrates that it can also locate the
points along the edges of the mask regions with the highest light intensity by using the IFT of
the unaberrated pupil function to predict optical proximity effects. All locations marked in
Figure 35 are inside comers, and the match scores and other identifying text symbols are
displayed next to their respective matched patterns. The center area of the unaberrated pattern

has the highest weighted pixels and thus contributes the most to the match factor.

Figure 35: Example of industry 0/180 PSM used for pattern matching. The match locations indicate
locations where optical proximity effects are high.

Figure 36 is an example of the coma (cos) pattern matched on a simple binary mask
layout with a few features similar to the layout shown in Figure 44. The highest scoring
location is on the comer of the inner feature and has a match factor of 0.32. The left central

lima bean-shaped area of the pattern, which contains about 40% of the total weight of the

145



pattern, lies on top of the vertical line segment, making a large contribution to the match
factor. The effect of coma is to spill light from the vertical line segment into the region

around the matched corner, which shifts the corner position to the left or the right.

Typical Coma (cos)
Local Target
Layout

Figure 36: Coma (cos) match on a clear field binary mask

Several patterns can be matched over a layout in a single matching run, such as in
Figure 37. This image is a zoomed-in section of the dense layout in Figure 39 where coma,
high-order coma, and trefoil aberration patterns have been matched to inside and outside
corners in the layout. The match factors here range between 0.16 and 0.3, corresponding to

16%-30% of the worst-case sensitivity to aberrations.
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Figure 37: Demonstration of a matching run involving several different aberration patterns
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Figure 38 demonstrates the results of combining several basic aberrations and running
the pattern matcher on these custom patterns. This layout was created by hand to test the
correctness of the matching algorithm and includes 0- and 180-degree phase polygons. These
match factors are very low, possibly due to a cancellation effect resulting from the
combination of both even and odd aberrations into a single pattern. This leads to complex-
valued pattern pixels, and only the real or the imaginary parts of the match factor are kept

depending on the phase of the layout shape at the match location.

Pattern 1

MF = 0.058

Figure 38: Pattern matching run using custom aberration patterns that are a combination of multiple
Zernike terms

Results from larger sections of layouts are also available, such as in Figure 39, where
trefoil and other patterns are matched over a dense Field-Programmable Gate Array (FPGA)
interconnection fabric. A 140x170um “fake™ 0/180 phase shift mask was created from the
first two metal layers of a piece of tiled FPGA interconnect for testing purposes. The blue
layout area represents O-degree phase, red represents 180-degree phase, and black 1s chrome.
Green in the pattern matches to O-degree phase polygons in the layout and red matches to

180-degree phase polygons. This hierarchical layout contains repeated geometry that results
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in the same match factor. Therefore, it is sufficient to test each unique cell only once and
combine the results together to avoid extra work, but this system has not been implemented
due to the complexity of handling overlaps between cells. The image must be zoomed in to
see the actual geometry producing the highest trefoil match factor of 0.169, but the text 1s
still readable from the zoomed out view and the match locations are marked with crosses.

Coma match factors are as high as 0.34 on this FPGA layout.

Close -up of Trifoll Match

Figure 39: Trefoil pattern matched over a 0/180 PSM section of “imitation” FPGA layout
Shown in Figure 40 is the geometry that is sensitive to the coma aberration with a
match factor of 0.381 in the Abacus layout, a complex two-layer mask designed ina 0.5um
technology. The full chip view was shown in Figure 2 of the introduction. This layout
includes many 45-degree edges, demonstrating how the pattern matcher can handle non-

Manhattan gecometry.
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Figure 40: Abacus layout matching run on 45-degree polygon edges

Figure 41 demonstrates that the pattern matcher can handle the reporting of thousands
of match locations with little more effort than determining the first location, providing *“1000
matches for the price of 17. This 1s a 3mm by 4mm microprocessor layout with eleven layers
and eight levels of hierarchy. The pattern matcher has been run on much larger full chip

layouts with tens of millions of transistors, with results similar to the layouts shown.

Figure 41: One thousand matches for the runtime “price™ of one
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8.4 Importance of Aberrations

The first task in verifying the pattern matcher theory is to determine the importance of
aberration effects on the printed image through simulations of test masks. The effects of

aberrations are described in the following sections. Additional details can be found in [59].

8.4.1 Effects of Aberrations and Optical Proximity

The binary layout involved in these tests consists of a minimum feature (0.6NNA)
sized horizontal line and a neighboring vertical line of variable width, as shown in Figure
42a. The point of interest was chosen to be the left end of the horizontal line, with the cutline
running from left to right. In order to observe the magnitude of line-end shift due to OPC,
SPLAT simulations were run with the left edge of the vertical line at various positions
leading to a line width (L) of up to 1.2VNA and compared to the simulation results of an
isolated horizontal line (L = 0). The effect of aberrations was determined by adding 0.025
waves of RMS aberration to the simulation for each value of L and determining the line-end

shift due to each aberration.

Line end position change of a 0.6 A/NA line vs. linewidth of an
adjacent line
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Figure 42: (a) Binary test layout for measuring aberration and optical proximity effects and (b)
simulated line edge shift due to aberrations and optical proximity effects on this test layout
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A plot of simulated line-end shift of the horizontal line vs. change in width of the
vertical line as a result of both optical proximity and 0.025 waves of RMS aberration is given
in Figure 42b. The curves are highly variable in the sub-printable linewidth region where L is
less than 0.6 ¥NA, but as the line widens the curves approach a constant value. The line-end
shift caused by coma (cos), the aberration that this layout geometry is most sensitive to, is
about 0.015 MNA, which is over half the line shift caused by optical proximity effects due to
the vertical line. This illustrates that the effect of aberrations in a good lens with a Strehl ratio
of 0.975 is about half that of adding an adjacent shape in close proximity to the line end of
interest, or half the value of the optical proximity effect. The effects of aberrations should
thus be taken into account during mask layout design. If the aberrations present in a given
exposure tool or family of exposure tools are known, then this information could be used to
counteract the effect of the aberrations in sensitive areas of the mask geometry.

Figure 43 demonstrates the sensitivity of the match factors of several different
aberrations to the width of the vertical line. It can be seen that the match factors are very
sensitive to a change in linewidth when the line is small, but as the left edge moves further
from the point of interest the match factors stabilize to constant values. This is becauée the
contribution of that area of the line to the match factor diminishes as a result of the fall-off of
pattern matrix magnitude and the effect of partial coherence ¢. The match factor is near zero

for coma (sin) because the layout is symmetric about the x-axis and has zero match factor.
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Match Factor vs. Vertical Line Width
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Figure 43: Match factor sensitivity of vertical line width L in Figure 42a

Figure 44a shows a small piece of a clear field binary mask layout and Figure 44b
shows a SEM of a similar layout printed at 193nm, taken from [21}'%. The most critical
feature in this layout is the small gap between the two vertical lines. The reason that the large
vertical lines bulge toward the small horizontal lines is actually unknown; it may be due to
optical proximity effects, aberrations, or some other processing issue. This layout was
demonstrated to have a coma match factor of 0.324 in Figure 36, but it is not clear that coma
is the source of the problems in the SEM. The pattern matching software allows the potential
effects of lens aberrations to be tested so that locations like this can be found and repaired

before the wafer is printed.

18. SEM courtesy of photolithography section of M. Hanratty of Texas Instruments.
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Figure 44: (a) Clear field binary mask and (b) similar SEM image of printed wafer

8.4.2 Line Shift for Dependence on Aberration Level

Experiments were also run to determine how various amounts of an aberration lead to
line-edge shift. These tests were performed on a vertical 0.6 M¥NA line/1.0 NNA space layout
as shown in Figure 45a, with the center of the vertical edge of one of the lines as the point of
interest. These layout dimensions were chosen so as to optimize the match factor of the coma
(cos) pattern. The amounts of each of the four aberrations were varied from zero to 0.05
waves RMS. Figure 45b shows the line-edge shift resulting from the addition of each
aberration independently. Since the layout is symmetric about the x-axis, the effect of coma
(sin) was insignificant. However, coma (cos) and high-order coma (cos) aberrations both had
a significant effect on the layout. At 0.025 waves RMS aberration, the line-edge shift caused
by coma (cos) is nearly 7% of the feature size. The line-edge shift due to coma (cos) is
proportional to the amount of aberration, and the same is true for high-order coma (cos) up to
about 0.025 waves RMS. However, the curve for spherical, an even aberration, appears to be

atamuch lower level and quadratic due to the electric fields adding in quadrature at the edge
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of interest.
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Figure 45: (a) Test pattern and (b) corresponding line edge shift due to various lens aberrations on this

pattern

Overall, even aberrations were found to cause large feature shifts in 90/270 degree
layouts and very little change in 0/180 degree layouts due to the electric fields adding in
quadrature. Odd aberrations showed the reverse situation, with the highest line-edge shift

resulting in 0/180 degree layouts.

8.4.3 Comparison of Mask Type and Geometry Type

A set of pattern matches and SPLAT simulations was run on the coma (cos), coma
(sin), HO coma (cos), and spherical aberrations for four different mask layout types shown in
Figure 46. The test layouts consist of:

(a) An edge on a binary mask,

(b) A line end on a binary mask,

(c) A line end on a phase-shift mask (PSM), and

(d) An edge on a phase-edge mask (PEM).

The points of interest, indicated by the black circles on Figure 46, correspond to the centers
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of the simulation cutlines and the center match locations of the pattern matcher. The
differences in the results for cases (a) and (b) are partially a result of the different profiles of
edges versus line ends. The differences between (b) and (c) are purely due to the 180-degree
phase region in (c) since otherwise the geometries are identical. Various parameters resulting
from the matching runs and SPLAT simulations are presented in Table 5, listed in the same
order as in Figure 46. The aberrations resulting in the largest absolute match factor in the
pattern matcher are shown below the MF row, and the aberrations producing the largest
simulated intensity change and line edge/end shift are recorded in the last row.

Binary Mask 1 Binary Mask 2 PSM PEM

Figure 46: Four simple test masks corresponding to the four entries in Table 5

Parameter Binary 1 Binary 2 PSM PEM

slope (AI/AX) 2.88 1.46 1.33 -3.02
MF @ center 0.19 0.27 0.31 0.56
Aberration (MF) Spherical Spherical Coma(sin) Coma(cos)
Al (intensity) 0.011 0.063 0.12 0.28
AX (line shift) 0.0043 0.05 0.084 0.081
Aberration (delta) | HO Coma(cos) Coma(sin) Coma(sin) Coma(cos)

Table 5: Comparison of aberration effects by mask type for binary, phase shift (PSM), and phase edge
(PEM) masks

It was found that PSMs show about twice the feature shift as binary masks for a given
aberration level, and that PEMs result in a slightly larger intensity change but smaller edge
shift due to a higher AI/AX slope. Match factors were highest for PEMs and lowest for binary

masks using the same normalization. As expected, edges produce a larger AI/AX slope than




do line ends, and the PEM has the highest slope. Therefore, aberrations may play a larger role
in the future as more complex PSMs and PEMs with reduced dimensions are created.

The aberration having the greatest effect depends on the layout, and the aberration
with the highest match factor was not always the same aberration that led to the highest Al or
AX. As mentioned earlier, even aberrations such as spherical result in only a small intensity
and line-edge shift. However, as can be seen in the two binary mask examples (a) and (b) of
Table 5, the spherical aberration can still have a large match factor when one of the rings in

the pattern is closely aligned with the underlying layout geometry.

8.5 Validation of the Aberration Pattern Matcher

A number of experiments were performed to verify that the pattern matcher does
indeed predict the locations in a layout that are sensitive to lens aberration effects. These
experiments were performed on a 0/180 degree Phase Shift Mask (PSM) that was derived
from the FPGA interconnect layout discussed in Section 8.3. The aberration chosen for these
tests was coma in the cosine direction, an odd aberration that is known to cause problems on
0/180 PSMs. The pattern matcher theory has only been verified to be valid on 0/90/180/270
phased mask layouts with purely even or purely odd aberrations. The highest match factors
have been verified through comparison with the bitmap algorithm results at those locations to
ensure the rectangle algorithm produced correct match factor results.

Figure 47 is a plot of the simulated electric field change due to the coma aberration as
a function of predicted match factor. Since SPLAT calculates image intensity and the pattern

matcher predicts changes in electric field, the square root of the SPLAT image intensity was
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taken to get the electric fields used for comparison. As can be seen in the plot, the match
factor is a good predictor of the actual electric field change, with an R? value 0f 0.9831. The
slope of the curve is an aberration dependent “sensitivity” parameter that is determined
through simulation and the amount of aberration. The outlier in the plot, the point with a
small match factor but large decrease in electric field, has several potential causes. It may be
due to an error in the pattern matcher, though this is unlikely because an identical match
factor was calculated with two completely different algorithms. The outlier may also be due
to numerical errors in the SPLAT aerial image simulator. Finally, the outlier might be a result
of invalid assumptions made about the electric field components as described in the pattern

matcher theory of Section 3.1.
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Figure 47: Comparison of match factor prediction of electric field change with SPLAT simulations

This verification method not only proves the validity of the pattern matching theory
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for the coma aberration, but also helped to debug both the pattern matcher and SPLAT. It has
been difficult to verify that the new pattern matching algorithms are correct in all cases,
especially for large layouts where comparing the rectangle algorithm results to the original
bitmap algorithm results requires prohibitive runtimes. Several bugs regarding SPLAT
integration routines and symmetry assumptions have also been found.

Additional pattern matching results with sizeable match factors were verified through
SPLAT intensity simulations for a diverse collection of binary and 0/180 PSM layouts. These
layouts include simple line and space patterns, a line end with a surrounding feature with and
without phase shifting, a phase-edge mask, and variations of the simple binary proximity
effect mask in Figure 42. These experiments included batch simulation runs of coma (cos),
coma(sin), high order coma, and spherical aberration patterns. In general, odd aberrations
such as coma showed an approximately linear relationship between predicted and actual
intensity changes, while even aberrations such as spherical showed little simulated intensity
changes due to the electric fields of the intensity spillover adding in quadrature. This effect is
expected based on the complex number math and pattern matcher theory.

Potential sources of error include the approximation of a finite pattern radius,-pixel
discretization errors, and layout/pattern sub-pixel alignment errors. Increasing the pattern
radius decreases the overall error but greatly increases the runtime and memory requirements
of the matching algorithm. It has been observed that increasing the radius of the pattern tends
to slightly decrease the values of large match factors and condense the results into a smaller
range. The discretization and alignment errors are also an issue because a fixed grid in VNA
is used to represent a layout drawn in microns, where layout edges tﬁat do not correspond to

an exact grid line are rounded to the closest grid value.
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8.6 Performance

8.6.1 Algorithm Performance Comparison

In most of the timing tests, a 1 GHz Pentium III computer with 512MB of RAM was
used. Table 6 provides runtime and memory results for the bitmap algorithm with one level
of compression, the edge-intersection algorithm, and the initial implementation of the
rectangle algorithm before several final optimizations. The newest rectangle and triangle
algorithm is 20% to 50% faster than the initial version of the rectangle algorithm shown in
the table, and includes data compression that drastically reduces the memory requirements to
a fraction of the shown values. The match type column lists the geometry filtering types used
in pattern matching, corresponding to edges (EG), line ends (LE), inside corners (IC), and

outside corners (OC).

Layout Area Rects | De | La | Match Bitma | Edge- | Rect Edge | Rect
nsit | yer | Type ] Int Time Mem | Mem
y S Time Time (MB) | (MB)
| fpga_v2 1.0E+07 | 3300 | 3.3 2 | IC,0C 25.3s 3s 0.44s 27 3
| fpga_v2 1.0E+07 | 3300 | 3.3 2 | EG,LE 183s 8s 0.79s 27 3
abacus 9.6E+08 | 400K | 4.2 14 | IC,0C hours? | 126s 23s 50 13
abacus 9.6E+08 | 400K | 4.2 14 | LE,IC,OC | hours? | 332s 29s 50 13
abacus 9.6E+08 | 400K | 4.2 | 14 | EG.LE,IC, | hours? | 25min | 174s 50 13
oC
sovachip 3.5E+08 | 8.5M | 240 | 31} IC,OC days? | 1.4 hrs | 68min | 220 129
active test | 4.1E+10| 35M | 8.6 1| LEIC,OC | weeks? | 4.8 hrs | 40min | 250 149
active_test | 4.1E+10 | 35M | 8.6 1 | EG,LE,IC, | months | 85hrs | 53min | 250 149
oC

Table 6: Pattern matcher bitmap, edge, and rectangle algorithm runtime comparison

Figure 48 shows a log-log comparison of the runtime of the bitmap, edge, rectangle,

and triangle pattern matching algorithms. The y-axis in this plot is the total pattern matcher
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runtime in seconds. The x-axis is the “layout complexity”. Since the various pattern matching
algorithm runtimes depend on diffefent parameters and statistics of the layout, there is no
general metric to use in predicting the runtime of the pattern matcher. The layout complexity
has been defined as the number of total rectangles in the flat layout times the average number
of match points per rectangle times the density, or the average number of rectangles
overlapping a pattern. Each of the pattern matching algorithms increases in runtime with

increased layout complexity.
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Figure 48: Pattern matching algorithm runtime comparison",”’

As seen in Figure 48, the bitmap algorithm is very slow and cannot even process a

larger layout in a reasonable amount of time. The most complex layout, active_test, is

19. " #rectangles*the match_points_per_rectangle*density

20. “"larger bitmap algorithm numbers extrapolated
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expected to take on the order of a year of processing if using the bitmap algorithm. The edge
algorithm is consistently one to two orders of magnitude faster than the bitmap algorithm.
The rectangle algorithm is an additional order of magnitude faster than the edge algorithm for
Manhattan layouts. However, the rectangle algorithm is approximately the same speed as the
edge algorithm on the 3™ complex layout because it contains 45-degree diagonal edges. The
rectangle algorithm is inefficient for processing this layout due to the large number of
rectangles needed to approximate the diagonal edges. Conversely, the edge algorithm is
faster than expected on this layout because the layout contains a large number of overlapped
layers that share common edges. If the rectangle and triangle algorithm is used instead, then
the diagonal edges are split into a small number of triangles, and the runtime is reduced by
about a factor of 3.5 so as to remove the spike in the rectangle algorithm curve.

Several other layouts that contained 45-degree diagonal edges were observed to have
a long runtime when the polygons were split into rectangles only. The addition of triangles to
the data structure allowed the same geometry to be represented with equivalent or even
greater accuracy while using a much smaller number of primitives. Thus, the rectangle and
triangle algorithm consistently showed a factor of 2X to 3.5X improvement in runtime over

the rectangle only algorithm for non-Manhattan layouts.

8.6.2 Rectangle Algorithm Performance

The rectangle-based matching algorithm was tested on a number of large layouts in
various technologies with one or more layers. These layouts were examined for sensitivity to
the coma lens aberration and several others. In all cases, the actual match time was

proportional to the number of rectangles in the flattened layout, though it was not actually
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flattened, times the layout density. The density increased with the number of overlapping
layers, but in actual mask layouts each layer would represent a different phase and thus
would not overlap. Therefore, one layer is sufficient to demonstrate the matching
performance.

In the timing tests, a 1GHz Pentium III computer with 512MB of RAM was used.
The largest test layout, active_test, consisted of the 234MB GDSII file of the active area
mask layout of a microprocessor with area 417mm?, eleven levels of hierarchy, and 35.3
million rectangles if flattened. Tﬁe coma test pattern was a 128x128 bitmap with pixel size of
100nm, and the layout contained 2.6 billion potential edge match locations, though only
about 20% of these points were tested due to filtering by the internal adaptive match factor
prediction algorithm. The pattern matching software took 34 minutes of runtime and about
65MB of memory to read the layout, compute the top 1000 match locations using the
rectangle algorithm, and display the results. The performance demonstrated by the pattern
matcher is much better than that of OPC algorithms since it is not iterative and does not
change the layout geometry.

Performance of the rectangle pattern-matching algorithm was measured on a variety
of operating systems and processor/memory architectures. The memory requirements were
10% to 20% higher on 64-bit architectures as opposed to 32-bit architectures due to the
increased storage size required for pointers. Table 7 below gives a comparison of active_test
runtimes on various systems. The runtime is dominated by the inner loop of the pattern
matcher where the actual match factors are computed. This loop contains some floating-point
complex number multiplies of pattern weights with layout weights and a large number of

memory accesses into the pre-integration matrices, which limit the runtime on the Pentium
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systems. The integer bounding box tests of the inner loop appear to limit the runtime on the

64-bit systems, which have better memory and floating-point subsystems. The IBM machine

spends a great deal of time allocating small amount of memory for rectangles.

Operating System | Processor Processor Speed | Bit Width | Runtime | Memory
Linux P4 Xeon 3.2GHz 32 15 min. 65MB
Windows 2000 P4 Xeon 2.0GHz 32 20 min. 65MB
Linux Itanium2 1.3GHz 64 25 min. 70MB
Windows 2000 Pentium3 1.0GHz 32 34 min. 65MB
IBM AIX IBM Power3 | 300MHz 64 150 min. | 70MB

Table 7: Rectangle algorithm active_test performance for various systems.

The largest design on which the pattern matcher was run was a critical layer of a post-
OPC full chip layout. This 5.6GB hierarchical layout contained over a hundred million
rectangles and polygons. The match factor for this pattern-matching run was computed at the
comners of the layout for two 128 by 128 pattern orientations, taking 1.3GB of memory and
running for 17 minutes on a single 2.8GHz processor. The non-OPC version of this layout
took 11 minutes to process. The pattern matcher is clearly much faster than OPC, and several

orders of magnitude faster than actual simulation.

8.7 Summary of Results

The results presented in this chapter cover the outcome of architectural choices made
in the software development, the physical verification of the aberration pattern matching
theory and assumptions, and the quality of the computational algorithms developed for large-
scale pattern matching. These results show that the pattern matcher software architecture is
capable of directly reading an industry layout and a set of Zernike polynomials and producing

a set of match locations with minimal user input. The automatic geometry extraction at result
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locations and integrated display allowed for easy simulation and verification of aberration
effects. The system as a whole is a well-integrated, platform independent pattern matching
solution that can easily fit into an integrated circuit design flow.

SPLAT simulation was used to verify the importance of aberrations, which were
found to lead to significant line end shift, as much as half that due to optical proximity
effects even in good lenses with only 0.025 waves of RMS aberrations. The pattern matcher’s
prediction of aberration effects on the electric fields at feature edges was found to be in good
agreement with SPLAT aerial image simulations. The match factor is thus an excellent
indicator of geometries that must be redesigned or otherwise examined in more detail by the
designer to assess the negative impacts of lens aberrations.

The performance results indicate that the pattern matching system is ready for use on
modern full chip layouts. The procedure of loading the layout, building an efficient
hierarchical database, processing the geometry on each layer, filtering out edge and corner
locations, and calculating the match factors has been optimized so as to remove all major
bottlenecks, leading to a streamlined matching algorithm. The rectangle and triangle
algorithm is approximately two orders of magnitude faster than OPC algorithms since the
match is performed in a single pass rather than iteratively, a single pattern is used instead of
the multiple kernels used in OPC, and the database is built as a static rather than a dynamic
data structure. All runtimes, even for large commercial microprocessor layouts, are under an

hour and can be executed on a desktop machine with 1GB of memory.
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9 Additional Applications in Linking Process and EDA

Predicting the locations sensitive to lens aberrations was an excellent starting
application for a pattern matching approach due to the known problems related to
aberrations, a solid existing theoretical background, and sufficient previous work to develop
the idea. However, the pattern matcher has the potential of matching any set of images to any
collection of geometric shapes and is especially adapted to processing the large number of
polygons found in integrated .circuit layouts. A list of additional pattern matching
applications has been generated to determine the features required in the software
architecture, such as the ability to perform Boolean and other operations directly on the
drawn geometry layers. These applications include longer-range effects which require
patterns of a much larger radius then those used for representing aberration targets.
Therefore, it was necessary to extend the pattern matching internal algorithms in order to
efficiently handle large area patterns. Finally, these applications test the extensibility of the
pattern matching theory to different classifications of patterns and muiti-layer effects that
involve more complex layer weighting schemes. The range of patterns include complex
number pixel weightings, pattern equations with infinite poles, non-smooth pixel variation,
and patterns whose equations cannot be represented in closed form.

Several examples of Maximal Lateral Test Patterns (MLTPs) as defined in Section
3.5 are shown in Figure 49. The upper left MLTP (a) is one of the original patterns used for
determining mask geometries susceptible to residual coma aberration in a lens system. The
lower right MLTP is one example of a pattern designed to detect areas sensitive to flare,

which potentially has a large area of effect (Section 9.1). The upper middle MLTP (b) depicts
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combining the statistics of the relative misalignment of two masks as a Gaussian-shaped test
pattern (Section 9.2). The upper-right MLTP (c) indicates how know defects from a mask
inspection report might be incorporated into imaging effect analysis prior to combining with
misalignment to assess soft-error yield reduction (Section 9.2). The lower left MLTP (d) 1s a
donut-shaped pattern that tests for reflective slopes of polysilicon crossing the edge of the
active region to determine the relative strength of light reflected laterally into the resist for
use in assessing reflective notching effects (Section 9.3). The lower middle MLTP (e) is for
modeling the heatsinking due to lateral flow of heat into the active region to avoid the
polysilicon melting problem of Laser-Assisted Processing (LAP) (Section 9.4). For
Chemical-Mechanical Polishing (CMP) issues such as dishing and erosion and loading in
plasma etching, either specialized matching procedures based on geometry fill densities ora
very large MLTP can be used (Section 9.5). Some of the material for this chapter was taken

from Neureuther and Gennari [60].

Aberrations Alignment Gaussian  Defects
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Figure 49: MLTPs for various pattern matching applications

The pattern matching applications discussed in this chapter fall under the idea of
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Process Proximity Correction (PPC) [61, 62], which complements OPC in leading to a more
manufacturable design. These extensions of the pattern matching idea have been derived
from theory and from intuition but have not been formally verified. The pattern matcher has
the capability of simultaneously processing multiple mask layers, including Boolean layers,
and is therefore well equipped to match this diverse set of patterns involving multilayer

effects.

9.1 Flare

9.1.1 Problem Definition

Unwanted scattered light intensity, or flare, affects image-quality and OPC behavior
and is becoming an increasing concern in lithography as wavelength decreases [63]. Lai’s
study [64] shows that scattered light from the projection optics has a large impact on image
degradation and that it is possible to consider the scattering phenomena as a random phase
screen imposed on an ideal lens. Increasing the robustness against degradation due to flare
early in the design stages will help improve manufacturability. The goal is to search through
a full-chip layout and quickly identify locations worst impacted by short-range, mid-range
and long-range flare effects. A more in-depth analysis of the flare pattern formulation and

pattern matching experiments involving flare is given in [65].

9.1.2 MLTP

Flare is an intensity phenomenon and thus requires the use of statistical optics in

order to perform the analysis. Goodman [66] has shown that one method of considering flare
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under partially coherent imaging is a multiplicative Optical Transfer Function (OTF) that
scales the image spatial-frequency content. More recently, Lai [64] has shown details on the procedure
to obtain the expected value of the OTF for flare from a phase screen representing a set of surface-
scattering profiles.

This analysis uses the surface scattering model of Lai, restricted to the case where roughness

statistics of each surface are described by a Gaussian, ergodic autocorrelation function:

y=0’ exx{— - J
=

Here 62 represents the RMS surface roughness, w represents the spatial coherence radius in microns,

and r is the relative distance between two points of interest on the scattering surface. The actual
equation used to generate the flare MLTP in the pattern generator is derived from the following

intensity sensitivity function:
PSF,, = FT™'[OTF, e (¢*7" —e*)]
PSF; can then be determined by taking the square root of PSF,. The derivation of these

equations and determination of the MLTP is provided in Sections 2.2 and 2.3 of [65].
Modifications were made to the pattern generation software so as to generate patterns
from a weighted linear combination of flare functions with different values of ¢ and w. Batch
capability and exporting to images and SPLAT files were added to explore the pattern
dependence on the flare parameters. Figure 50 shows the output pattern images from a single
pattern generator input file run with a range of values for 0 and w. The alpha (transparency)
component of the pattern color displays the magnitude of the pattern value ranging from
100% to 0.1% of the normalized peak value in log scale. Blue indicates a zero-degree phase,
while yellow indicates a 180-degree phase. The patterns in the upper left with small flare

amplitude and short coherence length show concentric rings that slowly fall to zero at large
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radius values, where the zero crossings are similar to those in the Airy function. As w 1s
increased, the outer rings are attenuated and the patterns transition to an increasingly wider
Gaussian function as expected. The outer rings have completely disappeared at w= 1.7,
leaving only a large Gaussian that eventually transitions to a constant DC flare value for large
o and w. Note that the lower right image has been clipped to a circular area and in fact the

blue colored area continues out to a large radius.
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Figure 50: Flare MLTPs for various values of ¢ and w

9.1.3 Flare Results

The pattern matching results show good agreement in predicting flare sensitivity for
several test layouts as described in [65]. The line and blocker test [64] consists of two
exposures on a clear field mask. The A set of thin lines is exposed at normal dose, and the

flare intensity is extracted from the change in linewidth between the two steps. A set of wider



blockers are exposed at a much higher dose (10X) in order for the flare to spill a large
amount of extra light under the bloc;kers. Larger blockers increase the distance light must
scatter in order to affect the linewidth, thus the CD change decreases with increasing blocker
size. Lines under the smallest blockers were expected to have the highest match factor.
Patterns with area spread out as opposed to concentrated at the center are expected to have
higher match factors since the blockers eliminate the pattern contribution to the match factor
in that region. The pattern matcher was used to predict the sensitivity of flare for each
blocker width and flare patterns with several values of w, and the match factor results were as

expected. Additional tests included a five-bar knife-edge pattern and a square box test [67].

9.2 Misalignment and Defects

The pattern matcher can be used to provide a fast evaluation of the robustness ofa
manufacturing process, as illustrated in this simplified ASIC process flow. The example is
based on discussions and SEMs provided by LSI Logic [68]2l and presented in [60]. As each
new mask layer is written it is inspected and a long list of defects is reported to the
manufacturing engineer. The engineer must then predict the consequences of each defect on
yield and decide to accept, reject, or repair the mask based on an assessment of the delay and
cost versus yield tradeoff. Information on defects and their printability can be found in [26]
and [69] and a discussion of phase defects can be found in [70]. A number of systems exist

that handle creation and simulation of defect databases [71], but these systems are complex

21. SEM:s provided by Neal Callan and Ebo Croffie of LSI Logic.
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and require a considerable amount of time and computation power.

A typical polysilicon gate mask defect found in this scenario is shown in Figure 51a.
Here a small region of undesired chrome remains on the edge of the mask. When this mask 1s
used to print an image on a wafer, the defect produces a lateral bulge of polysilicon. As
shown in the top and bottom SEMs of Figure 51b and c, the presence of this defect does
result in a short of the polysilicon to the metal that interconnects the source and drain
contacts. This short is unexpected from examination of only the polysilicon mask without
considering layer-to-layer effects involving the metal layer mask. Due to statistical effects in
alignment, the occurrence of this short is also statistical in nature and creates a soft error at
die sort. The pattern matcher can be used to predict the effects of individual defects on soft

yield loss in the presence of both imaging and misalignment effects.

Mask
Seemingly 4
benign :
defect on
mask
ol Wafer SEM
Poly :
shorted

o metal

Figure 51: Example of a defect on a polysilicon gate: (a) SEM of defect on poly mask, (b) bottom view
SEM showing polysilicon shorted to metal by defect, and (c) top view SEM

Figure 52a shows the polysilicon (POLY), contact (CON), and metal (METL) masks
in the layout as drawn by the circuit designer and the associated device cross-section. Figure
52b shows how misalignment and corner rounding due to imaging affect the presence of the

defect-induced short. Considering the proximity of the defect on the POLY mask to the edge
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of the METL mask, it is clear that the alignment statistics will play a significant role,
particularly if the alignment of METL and POLY is indirectly via the CON mask. Once the
printed image shape has been determined by evaluating the imaging system, the yield
reduction can be estimated by incorporating a statistical model for the cumulative
misalignment into a MLTP. Though the true values would depend on the statistics of the
actual process that are taken from the fab, the MLTP could be described by a generic two-
dimensional Gaussian distribution function with standard deviations corresponding to the
misalignment distributions in the horizontal and vertical directions. The collective results of
these effects are shown in Figure 53. By normalizing the MLTP, the area bounded by the
edge of an adjacent feature on an electrically adjacent mask level would give a reasonable
estimate of the yield loss due to the presence of the defect. For the current example, the
likelihoods of POLY shorting to CON or METL behave differently with misalignment error
and defect size primarily due to the larger statistical variation resulting from indirect

alignment.

(a) Original Mask Layout (b) Cross Section
Defect
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Ox Poly.

Extra Poly
3D view - is there a short?

Figure 52: (a) Drawn mask layout with defect and (b) device cross-section showing potential short due to
defect
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Figure 53: Defect and misalignment problems may cause shorting between polysilicon and metal. The
drawn image is statistically affected by (a) misalignment and (b) imaging when determining the effects of
defects.

9.3 Reflective Notching

Historically, one undesired lithographic effect has been the lateral scattering of light
from the wafer topography into resist that should remain unexposed. This unwanted scattered
light tends to produce linewidth narrowing in positive resist know as reflective notching [72,
73]. There are a number of potential solutions to the reflective notching problem such as
bottom anti-reflective coatings (BARCs) and dyed resists, but these solutions add additional
processing steps and increase manufacturing costs. One situation where reflective notching is
known to occur is in the area where a polysilicon gate slopes down into the active region of a
MOS transistor, as depicted in Figure 54. The changes in surface height of the polysilicon
deposited over the edge of the active area and the reflectivity of the polysilicon together
create the lateral reflection. For this process effect, the active area mask (ACTV) along with

the process flow could be interpreted as creating the sloped surface, or the “bird’s beak™, that
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directs the light laterally into resist that should remain unexposed. Thus for this process
effect it is the device-facing edge of the active mask that must be recognized and expanded to
the size of the sloped surface to make the estimate. Also, the normally dark region of the
unexposed polysilicon on the POLY mask must not be allowed to contribute to the matching

since the light will not reflect from there.

Light

-

Resist

Cross
Section

Top

Reflective Notching

Figure 54: Demonstration of the reflective notching phenomena

The MLTP is thus a donut-shaped ring that acts only on the active region sloped
surface derived from ACTV where the POLY layer is not present. Thus the match factor is
computed only at points along a polysilicon gate defined by the Boolean layer:

MATCH_LAYER =POLY AND ACTV,
and based on the weights of another Boolean layer:

WEIGHTED LAYER =(EDGE(ACTV) GROWBY slope_width) ANDNOT POLY.
The inner radius of the donut is determined by the minimum spacing between POLY and
ACTYV, and the outer radius is limited by either the width of the sloped area of the active

region or the length at which light is attenuated to a low intensity by the resist. The weights
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of the pixels within the donut area can be generated by any radial function that gradually falls

to zero at the inner and outer radius of the donut and reaches a value of 1.0 in the center.

9.4 Laser-Assisted Thermal Processing

Another semiconductor processing application where pattern matching can be used 1s
in locating areas where polysilicon is likely to melt during Laser-Assisted Processing (LAP)/
Laser Thermal Processing (LTP) / Laser Spike Annealing (LSA) [74, 75, 76]. The oxide
within the trenches of a trench isolation layout has far lower thermal conductivity than the
silicon substrate. The thermal insulating properties of the oxide prevent dissipation of heat
built up in the polysilicon as laser light strikes the surface. Polysilicon lines far from the heat
sinking active area silicon have a high likelihood of melting, resulting in potential shorts and
open circuits. Polysilicon lines overlapping or near the active area silicon are cooled through
lateral heat transfer across the surface of the oxide and the flow of heat down to the silicon
substrate, so melting is not a problem. To estimate the cooling due to heat transfer to the
active area, a negative 1/R* MLTP was used as shown in Figure 55. This MLTP is a simple
approximation to the thermal characteristics of laser-assisted processing, but nonetheless

provides a good estimate of polysilicon areas that are subject to higher temperatures.
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Figure 55: Laser-assisted processing (a) MLTP and (b) demonstration of match location

Example screen shots of a register cell layout tested for heating of polysilicon during
laser assisted thermal processing and for reflective notching of a polysilicon gate are shown

in Figure 56a and Figure 56b, respectively.

(a) Poly heating problems at (b) Reflective notching results
points far from active (Si) from edges of active region

0 70 -00031%

Figure 56: Experimental pattern matching runs on a register cell that locate areas sensitive to (a)
polysilicon melting during LAP, and (b) reflective notching

9.5 CMP Dishing and Erosion and Plasma Etching

Chemical-mechanical polishing (CMP) and plasma etching [77] can include, in
addition to very local pattern dependent effects, pattern density effects that act over a larger
scale. The larger, more challenging scale effects include erosion and dishing [78] in CMP
and loading in plasma etching. CMP dishing and erosion are complex processes [79] that
result in the thinning of metal and dielectric (in the case of erosion) in areas that are far from
any harder supporting materials, reducing electrical performance and reliability of the circuit.
Plasma etching suffers from reactant loading problems that results in reduced etch rates in

areas of excessively exposed substrate surfaces.
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For these applications, the pattern would consist of positive real numbers that
decrease with radius and model the effects of distance on the processing effect. The mask
layers in the layout provide wafer topography information or represent the hardness of
various wafer materials that undergo the CMP process. Instead of pattern matching, simple
procedures based on finding a point that is the maximum distance from all other shapes in the
layout might be used. Some measure of local geometry densities could also be used, as could
a measure of perimeters, average shape counts, or sizes.

An example for dishing in CMP is shown in Figure 57, where the point with the
largest distance from all other features has been found. Once these match locations are found,
areas where polygon density is too high or too low can be altered so as to reduce the match
factor. This can be done by implementing CMP filling and slotting algorithms [80] directly in
the pattern matcher, though this procedure has not yet been attempted. A recursive rectangle
filling procedure was implemented in Cadence with SKILL, but this filling method was

inefficient for processing of large areas.

Dishing

Figure 57: Example of CMP dishing of soft material between two supporting posts of harder material

9.5.1 Large Area Patterns

Pattern matching applications such as CMP dishing and erosion and long-range flare
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have a much larger area of effect than the original lens aberration application. A test pattern
of a scale similar to the physical phenomena may encompass hundreds to thousands of layout
features. Therefore, the pattern must be a large number of pixels in width, and the number of
rectangles and triangles overlapping the pattern is also much larger that with standard
patterns. Since the runtime of the rectangle and triangle algorithms scales with the average
number of shapes overlapping the pattern, the overall runtime scales as the pattern width, or
radius of the processing effect, squared.

Consider an example of a CMP matching run where the CMP pattern is 100um on a
side in a 0.1pm process (so the math is easy). This translates into a pattern that is 1000
features on a side, and with 4 pixels per feature the pattern is 4000 pixels by 4000 pixels. The
runtime of this example would be 1000 times that of a 128 by 128 lens aberration pattern.
Furthermore, the pattern and pre-integration matrix of the rectangle algorithm alone would
require 512MB of memory. Clearly, this large of a pattern will cause performance problems,
and something must be done to improve the algorithm.

There are several ways to more efficiently handle large patterns. An FFT-based
algorithm could in fact be faster than the rectangle algorithm in this situation, but would still
take on the order of days to run on a full chip layout. A larger pixel grid of several minimum
feature sizes could be used, but then small shapes less than a pixel on a side would disappear,
underestimating the amount of geometry in the area. One alternative is to match only on
every nth point in the layout instead of every pixel. It is probably unnecessary to compute the
sensitivity to CMP effects at 25nm intervals; testing the layout every 250nm might work just
as well. The time per match factor computation would still be large, but testing at a

granularity of every tenth pixel would give as much as a speedup of 100 if every pixel was
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originally tested or a speedup of ten if edges are being tested.

Another method of speeding up large area patterns is by applying grayscaling
techniques and adaptively refined the layout grid resolution. This procedure is similar to the
one used to compress the layout in the bitmap algorithm, as discussed in Section 6.2.1.The
layout is first generated on a low resolution, large pixel sized grid. The pattern is down-
sampled and the layout is grayscaled, and match factors are computed on this low-resolution
layout. The regions with high match factors are then refined to a higher resolution, and run
again. This process is repeated until the highest resolution is reached, in which case there are
only a small number of high match factor locations left at this resolution. This algorithm has
not yet been written, and the runtime analysis is very complex and dependent on the
thresholds and error bounds. It is anticipated that, if implemented along with selective point

matching, the pattern matcher can be made to run very quickly even on large pattern sizes.

9.6 Phase Etch Depth Errors

Another potential application of pattern matching is to determine the locations in a
circuit design that are impacted the most by errors in phase etch depth during fabrication of a
phase-shifting mask (PSM) [81]. The effect of phase errors of nearby mask openings on a
central observation point is the spillover of an error term in the electric field that changes the
intensity at the observation point. There is no single pattern that represents the worst case
geometry sensitive to phase errors, so the pattern matching procedure is slightly different in
for this application. The MLTP in this case 1s the unaberrated point spread function, or the

Airy disk, which represents the proximity effect due shapes adjacent to the test point. The
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match factor would therefore be based on a difference between two pattern-layout correlation
calculations: one using polygon layer weights representing the correct mask phases, and
another pass using layer weights adjusted for a user-specified amount of phase error. The
results of pattern matching will contain the locations where the phase error leads to the
largest electric field change at the center location, which are the areas most sensitive to phase
erTors.

This application actually involves two passes of the correlation computation, which is
not currently supported in the code. This would, however, be fairly straightforward to
implement assuming the program reads a list of perturbations for each mask phase. In order
to speed up the matching in the case where only the electric field change is needed, only
layers representing the phases to which the error terms are added need to be considered
because the unaffected layer weights will cancel each other out. A single pass could be used
to only consider the error terms of the phases, but this would not be sufficient for calculating
the intensity change and feature edge shift due to phase errors since the individual electric
field terms are needed as described in Section 3.3.

This technique is related to the class of PSM test mask patterns introduced in [81]
which are designed to monitor errors in mask making. An example of a pattern designed to
monitor phase etch error is shown in Figure 58a. Here, the patternis constructed with 0- and
180-degree phase regions surrounding a 90-degree central probe. With an equal amount of 0
and 180 regions at any particular radius, the net spillover of electric field to the center is
nominally zero for a perfectly constructed mask. However, should an error in mask making
occur (i.e. the 180-degree region is inadvertently 185 degrees), then the residual electric field

spillover interacts with the probe. Thus, the difference in measured intensity of the probe
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position compared to a nearby, isolated probe serves as a direct measurement of phase etch

error, as shown in Figure 58b.

Example Alt-PSM Target:
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Figure 58: (a) Example mask pattern to detect errors in mask making and (b) The intensity of the
probe compared to a nearby isolated probe is a direct measurement of phase etch error of the 180
degree shifted regions

9.7 Other Applications

Pattern matching is extensible to other applications, including applications outside of
the realm of integrated circuit lithography and processing. For example, the pattern matcher
can possibly be used for handwriting or signature recognition, where the handwritten text is
the “layout™ and the each character in the matching character library can be a “pattern™. In
fact, it can be used in any situation where the user is searching for a small image in a much
larger set of polygons. Furthermore, since polygons can be represented as images and images
can be represented as polygons (each pixel being a rectangle), this pattern-matching
algorithm can be extended to a multitude of applications. However, it is not efficient for all

applications and also cannot deal with pattern transformations other than translation,
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mirroring, and 90-degree rotations. Other matching algorithms are required to deal with
rotation- and scaling-independent matching.

The layout database used for pattern matching can be useful by itself. The database
allows for efficient access and query operations, which are ideal for graphical display and
layout export operations. Modules can be added to the pattern matcher for analyzing pattern
densities and shape statistics, comparing two layouts for verification purposes, or for

computing the sensitivity of transistor gates to plasma damage (antenna effect) [82].

9.8 Summary of Applications

The various pattern matching applications discussed above were important to the
evolution of the software tool into a more complete system that was general enough to be
used in many areas of integrated circuit processing. A broad collection of Boolean and other
layer operations and a complete set of filtering options were necessary for the system to
match just about any pattern to almost any collection of polygons. Applications such as
CMP, plasma etching, and flare require large pattern sizes and thus specialized pattern
matching approaches are needed to efficiently handle these patterns. These types of
applications drove the search for better algorithms since the original bitmap algorithm’s
runtime was so strongly dependent on pattern size.

The pattern matcher is potentially useful for identifying areas in a layout sensitive to a
number of residual processing effects as described above, and there are also a large number
of potential applications not discussed here. Though these preliminary results are based on

simplified models of the underlying processing effects, the pattern matcher can likely be used
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to accurately locate areas in a layout sensitive to some of these effects using more rigorously
derived patterns. It also appears that ‘the system can match these patterns at speeds similar to
aberration patterns so that the matching run should still take under an hour on a standard
desktop computer. This assumes a solution is found that enables the large-area pattern
matching to proceed more efficiently than with the rectangle algorithm, for instance at lower
pixel resolutions, at least as an initial filtering step. Applications such as flare can take
additional runtime as there may be a large number of potential patterns to match, but there
are likely ways to save computed values from one flare pattern and apply the results to

similar patterns.
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10 Conclusions

The pattern matching software tool described above is capable of identifying areas in
a mask layout where residual process effects such a lens aberrations can lead to problems in
the printed shapes. This system provides an EDA framework for linking residual process
effects from the TCAD area back to the design stage. The efficient rectangle and triangle
algorithm allows the pattern matcher to run full-chip much more quickly than OPC
algorithms, and it scales well on parallel machines using both MPI and Pthreads. A designer
can run the pattern matcher on the raw CIF or GDSII file of a layer of an entire
microprocessor layout and receive a list of many thousands of geometries sensitive to the
process effects of interest in under an hour on a standard desktop computer.

The effects of lens aberrations have been shown to be important in determining the
size and location of printed features, producing as much as half the line edge shift as optical
proximity effects. This initial application drove the pattern matching theory and system
development. Pattern matching results for lens aberrations were found to be in good
agreement with electric field change determined through SPLAT simulation. Once the
pattern matcher has found the areas sensitive to aberration effects, the designer can correct
the problem by moving shapes so as to reduce the match factor or compensate for the
predicted line edge shift. It may also be possible to add a method of automatic layout
correction for aberration effects by moving polygon edges similarly to what is done in OPC.

Pattern matching has been shown to be extensible to other areas of integrated circuit
manufacturing such as determining the locations most subject to flare, reflective notching,

laser-assisted processing, defects and misalignment, CMP dishing and erosion, loading in
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plasma etching, and mask phase errors. Some of these ideas required additional software
features such as the ability to constrain matches to areas where polysilicon overlaps the
active region, forming transistors. These applications involve a range of layer Boolean
operations such as AND, OR, XOR, ANDNOT, EDGE, and GROWBY and multiple layer
weights as well as a wide range of pattern sizes. Large patterns are time-consuming to match
on full chip layouts and thus a better method is needed, perhaps one involving pattern
matching on a low resolution approximation of the layout and then refining the top matches
or only matching at every few grid points. It is expected that pattern matching has the
potential to be an efficient and effective technique for locating layout geometry
configurations sensitive to any of these residual processing effects.

The pattern matcher system architecture was designed as an integrated EDA tool that
fits easily into the design flow. It directly reads industry standard CIF and GDSII hierarchical
layout data, constructing a compressed hierarchical polygon database in memory for efficient
spatial query. The pattern generator is used to directly create a pattern from a set of equations
and optical system parameters, which can be archived for later use. The system includes a
cross-platform graphical user interface for visualization of the layout, patterns, and match
locations found, including screen capture capabilities. The layout visualization portion of the
tool is competitive with commercial layout viewers and supports a variety of measurement,
query, and image capture features. The pattern matcher also automatically extracts geometry
from the resulting match locations for directly simulating aberrations and other optical effects
in SPLAT. Since the software architecture is modular, additional components can be added
to extend the functionality of the pattern matcher and to allow matching for a diverse set of

applications and match requirements.
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The physical theory of lens aberrations has been discussed in detail and led to the
initial idea of locating areas sensitive to lens aberrations through a pattern matching
approach. Lens aberration patterns are generated by first taking the inverse Fourier transform
of the aberrated pupil function as defined by a set of Zernike polynomials. A perturbational

approach based on the approximation that /% ~1+ jOPD is used to estimate the electric

field change at a feature edge by convolving the layout with the aberrated point spread
function represented by the pattern. This was found to be an accurate approximation of the
effects of aberrations on electric field change for small amounts of aberration as verified
through SPLAT simulations. Intensity change can be predicted by determining the
unaberrated and optical proximity electric field vectors, combining the three electric fields,
and calculating the change in intensity, I = E-E*. Line edge shift can also be predicted by
dividing the intensity change by the slope at the feature edge, which can either be calculated
with a fast aerial image simulation or read from a lookup table of common feature
configurations.

The pattern matcher software was built from the ground up but uses concepts and
algorithms from other fields such as image processing, computational geometry, computer
graphics, and physical CAD. The final implementation was a distinct approach designed to
meet the needs of full-chip pattern matching through customized algorithms. The algorithms
needed to perform this type of pattern matching differed from image correlation, video
compression, and geometric matching methods because of the much larger search space,
large groups of identical pixel values, complex number pattern pixel and layer weights,
inexact matching, and filtering methods that were used.

A number of important data structures and algorithms were developed to support fast,
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memory efficient pattern matching on large integrated circuit mask layouts. These fall into
the layout preprocessing and pattern pre-integration steps and the actual match factor
computation phase. The layout preprocessing involves first reading a layout and building a
compressed hierarchical polygon database in memory. This is done to minimize both load
time and the size of the database in memory, which is the only limiting factor for the size of a
layout that can be processed. The layout is iteratively spatially subdivided into optimal sized
polygon bins, and the geometry is spatially sorted for efficient overlap query. As the
hierarchy is locally flattened, polygons are split into primitives such as rectangles and
triangles, overlaps are removed, Boolean layer operations are computed, and the resulting
shapes are merged into a minimum number of primitives. Polygons are split through a
recursive algorithm that divides the polygon into smaller polygons with horizontal and
vertical cutlines until the sub-polygons become simple rectangles and right triangles. The
other geometry operations are accomplished by dividing the working dataset into small
regions, checking each shape in a region against all other shapes to compute the resulting set,
and then stitching the shapes back together across region boundaries to form maximally large
rectangles and triangles. These algorithms were found to be sufficient in processing the
polygonal shapes found in most common layout styles, including digital and analog circuits
and MEMS devices.

Several pattern matching algorithms have been developed as the system evolved into
an efficient large-scale layout processing engine. The initial bitmap algorithm determined the
match factor by computing the correlation between the pattern bitmap and the layout bitmap.
Due to the extremely long runtimes of this brute-force algorithm, performance improvements

such as data compression and edge/corner filtering were developed to reduce both the
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number of match locations and the number of operations per location. The real speedup came
with the idea of pre-integrating the pattern so that only the pixels along feature edges needed
to be processed, which led to the edge-intersection algorithm and an order of magnitude
improvement in runtime. This 1D pre-integration idea was further extended to 2D, resulting
in the rectangle algorithm and a second order of magnitude reduction in runtime. Finally,
triangles were added to the rectangle algorithm in order to efficiently represent the 45-degree
diagonal edges common to some design technologies. The final filtered rectangle algorithm
allowed pattern matching on a full chip to finish in only ten to thirty minutes on a single
processor machine, two orders of magnitude faster than OPC. The parallel processor
implementation of this algorithm resulted in a near perfect 28X speedup on 32 processors.

There is still significant work that can be done in the area of pattern matching for
finding areas subject to adverse processing effects. The pattern matcher accuracy can be
verified more rigorously by printing a mask with a stepper or scanner having known lens
aberrations and examining the resulting shapes to determine if the locations found in the
pattern matcher are in fact the locations of highest line edge shift. Additional work is
required to actually verify the pattern matcher theory for physical applications such as CMP,
reflective notching, and laser-assisted thermal processing, which will require printing test
wafers involving multiple masks and multiple process steps. Several architectural and
algorithmic extensions are also possible. The pattern matcher could be integrated with the
fast image intensity simulators of OPC algorithms to calculate intensity change and line edge
shift from the electric field change predicted by the match factor. Triangle layer operations
and non-45 degree, arbitrary angle pattern pre-integration and matching must be

implemented in order to process layouts such as MEMS devices and analog circuits that
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include polygons with odd angles. Finally, it may be possible to combine the current
rectangle/triangle pattern matching algorithm with other FFT-based, learning, statistical, or
rejection algorithms for a hybrid approach that outperforms all individual methods.

The pattern matcher software is a novel and intriguing approach to improving the
manufacturability of integrated circuit devices early in the design stage. This system is a fast,
inexpensive, proven alternative to the iterative mask design process that can be applied to
many areas of DFM and perhaps even other complex optical systems outside of the
semiconductor area. This software system should make a useful addition to a mask designer’s

CAD toolset.
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