Copyright © 2004, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

BANDWIDTH GUARANTEED ROUTING
FOR AD HOC NETWORKS WITH
INTERFERENCE CONSIDERATION

by

Zhanfeng Jia, Rajarshi Gupta, Jean Walrand and
Pravin Varaiya

Memorandum No. UCB/ERL M04/43

Fall 2004

BANDWIDTH GUARANTEED ROUTING
FOR AD HOC NETWORKS WITH
INTERFERENCE CONSIDERATION

by

Zhanfeng Jia, Rajarshi Gupta, Jean Walrand and
Pravin Varaiya

Memorandum No. UCB/ERL M04/43

Fall 2004

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Bandwidth Guaranteed Routing for Ad-Hoc
Networks with Interference Consideration

Zhanfeng Jia, Rajarshi Gupta, Jean Walrand and Pravin Varaiya
University of California, Berkeley
{jia, guptar, wir, varaiya}@eecs.berkeley.edu

Abstract— The problem of computing bandwidth guar-
anteed paths for given flow requests in an ad-hoc net-
work is complicated because neighboring links share the
medium. To address this issue, we first separate the
underlying scheduling problem from QoS routing with
guaranteed bandwidth, by presenting clique based con-
straints as the feasibility conditions for flows. We then
define the path width, and present the Shortest Widest
Path (SWP) routing problem in an ad-hoc network context.
We propose a family of distributed Ad-hec Shortest Widest
Path (ASWP) algorithms to address the SWP problem.
Numerical simulations compare the performance of these
algorithms amongst themselves, and also analyze gains
achieved over prevalent shortest path algorithms.

Keywords: Mathematical programming/optimization,
Graph theory.

I. INTRODUCTION

In today’s ad-hoc networks, routing is primarily con-
cemed with connectivity. Present routing algorithms,
proactive or on demand, source routing or table driven,
typically characterize the network with a single metric
such as hop count, and use shortest path algorithms to
compute paths.

These shortest-path based routing algorithms are not
adequate for applications with quality-of-service (QoS)
requirements, such as bandwidth guarantees. In wired
networks, bandwidth requirements are modelled by in-
dependent link capacities c; j). Traffic carried by link
(,7) must be less than or equal to c(; ;) but does
not consume the bandwidth over other links. Routing
algorithms with bandwidth consideration include the
Widest Shortest Path (WSP) algorithm by Guerin et. al.
[1] and the Shortest Widest Path (SWP) algorithm by
Wang and Crowcroft [2].

Although the WSP and SWP algorithms are efficient
in wired networks, they cannot be directly applied to the
wireless networks. This is because the bandwidth model
in wireless environment involves interference between

This work was supported by the Defense Advanced Research
Project Agency under Grant N66001-00-C-8062.

neighboring links — the transmission on one link taking
up capacity in other links in the vicinity. It leads to
consideration of an interference model, as well as a
scheduling problem. ‘

The interference model is described as an undirected
graph CG with respect to the network graph G. By
definition in [3], each link in G is represented by a CG-
node in CG, and a CG-link exists if the two links in G
interfere with each other!. The generated CG is called
the conflict graph. It has been previously referred to by
different authors, and also called the contention graph
[4], or the interference graph [5].

To route flows across multiple hops, we need to find
sets of non-interfering links and schedule them carefully.
This forms the scheduling problem. The flows are said
to be feasible if and only if there exists a set of link
schedules that allow the network to carry the flow traffic.

The involvement of scheduling in the routing problem
not only increases computational complexity, but also
confuses different layers of the network architecture.
Moreover, in the scenarios we consider, the wireless
nodes employ the 802.11 MAC protocol with pre-defined
scheduling schemes that use RTS/CTS signaling to ac-
cess the medium in a random way. Indeed, because of
the lack of infrastructure in an ad-hoc network, it is
not practical to implement any centralized scheduling
schemes. Hence, separating the scheduling problem from
the bandwidth model is desirable and necessary, and is
an important basis of the routing algorithm proposed in
this paper.

There are three main ideas in this paper. First, we
separate the underlying scheduling problem and quantify
the feasibility of flows. This becomes the feasibility
conditions of the proposed QoS routing mechanism.
Second, we present the mathematical abstraction of the
Shortest Widest Path (SWP) problem that we want to
solve. It allows us to compute the maximum amount of
traffic that a flow can carry. Though similar to the SWP

'We use the terms node and link for the network graph G, and the
terms CG-node and CG-link for the conflict graph CG. Be cautious
with these terms since they are different from those in [3].

problem in wired networks, it is NP-complete. And third,
we propose distributed Ad-hoc Shortest Widest Path
(ASWP) algorithms that find paths close to the optimum.
The algorithms contain a parameter k that is adjustable
to balance between the optimality and complexity. Nu-
merical simulations demonstrate the performance of the
proposed algorithms and the effects of different & values.
We also provide a guidance on selecting the k parameter.

The rest of the paper is organized as following. We
begin in Section Il by presenting the related work in the
field. Section III presents the scheduling problem and
the feasibility of flows. We formulate the SWP problem
in Section IV. Sections V and VI present our distributed
ASWP algorithm and study its performance. Finally we
conclude in Section VI

II. RELATED WORK

The problem of providing QoS in an ad-hoc network
has intrigued researchers for some time now, and several
solutions have been suggested to address this. First, we
must note that many researchers have looked at providing
QoS at the MAC layer (e.g. [6]). While this line of
research is quite valuable, the problem we propose to
address is different — to guarantee quality for an entire
flow from end to end.

The initial solutions addressing end-to-end quality
considered the bandwidth on an ad-hoc link individually,
and attempted to find paths that satisfied the quality
requirements (e.g. [7] and [8]). Such solutions relied on
links to adequately estimate the available bandwidth, and
did not consider the interference between multiple hops
of the same flow.

One way to effectively provide QoS guarantees for a
flow is to settle on a time division mulitiplexing (TDM)
scheme that chooses the exact time slots to be used
by a flow along each link. Lin and Liu proposed this
approach in [9], and Lin extended that work in [10]. The
authors of [11] proposed a new way for sharing the ad-
hoc network, that seeks to achieve fair and maximum
allocation of the shared wireless channel bandwidth.
These proposals make a key assumption: By overlaying
a Code Division Multiplexing (CDM) scheme on top
of the TDM infrastructure, they allow multiple local
sessions to share the same slot. This is difficult to
implement in a real network due to issues of code and
time synchronization between the nodes.

More recently, Zhu and Corson in [12] and Salonidis
and Tassiulas in [13] have proposed distributed algo-
rithms to determine the exact schedule of slots for a flow
through the network. These schedules take the interfer-
ence into account and guarantees bandwidth for constant

bit rate flows. However, there is still an implicit as-
sumption that the ad-hoc nodes are synchronized to slot
boundaries, at a fairly accurate time scale. [13] attempts
to overcome the synchronization requirement, but at a
fairly high cost, and only for restrictive topologies. Our
work does not assume any TDM/CDM scheme available
in the network, and works with only the bandwidth
requirement on the flows.

A similar bandwidth based approach is suggested by
Yang and Kravets [14], who consider the interference be-
tween neighboring links, as also the interference between
multiple hops on the same flow. The available bandwidth
on a link is determined as a function of the neighboring
link bandwidths. The route requests are flooded through
the network to determine a feasible path that satisfies the
bandwidth constraints.

The AQOR protocol proposed by Xue and Ganz
[15] also maintain neighbor information to incorporate
interference, and broadcast the route request. By utilizing
the neighborhood bandwidth utilization of the new flow,
feasible paths are detected; the final choice is made at
the destination.

Of course, there is a vast body of literature on QoS
routing in wired networks. It is imperative to mention
these since the ideas presented in this paper are in fact
adapted from the wired domain. However, due to space
constraints, it is impossible to do justice to describing
the related work in this area. So we limit the references
here to the two major QoS algorithms referred to already
in [1] and [2].

I11. FEASIBILITY OF FLOWS

Consider the feasibility problem of a flow in an ad-hoc
network G = (V, E). The flow is represented by a vector
x = (24 * (i,§) € E) where z(; ;) is the amount of
traffic need to be carried over link (3, 7). The question
is whether flow x is feasible or not.

We introduce some notation before going on.Denote
l = (i,7) € E to be a link in the graph G = (V, E). Let
CG = (E,I) be the conflict graph with respect to G. As
the definition in the previous section, (I;,l2) € I is an
CG-link in CG if and only if the two links (CG-nodes)
{1 and I, interfere with each other, meaning that /; and
l> cannot be active at the same time.

We make the following assumptions about the wireless
nodes in the ad-hoc networks. First, every wireless
node uses the same power to transmit signals. Secondly,
interference happens not only at the receiver of a link, but
also at the sender. This is true when the senders expect
acknowledgement from the receivers for each success-
fully transmitted packet. These assumptions are natural

for 802.11 nodes, and imply symmetric interference that
underlies the undirected conflict graph, i.e., if link (4,)
interferes with link (k, 1), (i,) is also interfered by (k,{)
and so must keep silent when (k, 1) is active.

The conflict graph describes how links share the
medium. Qualitatively, the cligues (a complete subgraph)
of the conflict graph denote which links are actually
sharing the medium, and the independent sets (a set of
nodes that are not connected with each other) describe
which links can be active at the same time. Although it
is known [16] that the problems of finding cliques and
independent sets are both NP-complete, [3] provides a
simple heuristic to compute cliques in the case of ad-hoc
networks.

Let ¢ C E be a maximal clique?, and Q be the set
of all maximal cliques. g can be represented as a row
vector q = (g : ! € E). Foreach link [€ E, qp is 1 if
l € gand 0if ! ¢ g. The collection of all the row vectors
q’s forms a |Q| x |E| matrix of 0/1, and is called the
clique matrix Q. This is nothing but the usual definition
of a clique-node incidence matrix [17] for CG.

A. Clique Constraints

Assume that the access of the medium is divided into a
number of T time slots for every one-second interval. Let
Z; € {1,...,T} denote the set of active time slots over
link I. Let 2;; € {0,1} indicate whether slot ¢ belongs
to Z;, and 2 be the size of set Z;. Since only one link
can be active in a clique at a time,

> aze<1,V¥geQ,1<t<T
leE

)

The number of active time slots 2; is decided by z;, the
amount of traffic carried by link [. Define integer vector
z = (2; :l € E) where

Tz
ol 2)

and C is the capacity of the medium. Inequality (1) and
equation (2) together define the scheduling problem of
flow x. Flow x is feasible if and only if there exists a
set of schedules {Z;,! € E} that solve the scheduling
problem.

The scheduling problem of flow x over the graph
G is equivalent to the weighted coloring problem over
the conflict graph CG. The coloring problem is widely
studied in graph theory — it assigns colors to nodes of
a graph such that any pair of connected nodes have
different colors. The fiow vector x weights the CG-nodes

=

2A maximal clique is a clique such that it is not contained in any
other clique.

by assigning z = Tz;/C colors to CG-node (link) .
We use the chromatic number x(CG,z) to denote the
least number of colors needed in the weighted coloring
problem. Obviously, x(CG,z) < T is the necessary and
sufficient condition such that the scheduling problem is
solvable, or equivalently, that x is feasible.

The results presented in [18] help to separate the
scheduling problem from the feasibility conditions. De-
fine w(CG,z) to be the maximum value of 3 e, 2
over all the cliques of CG. w(CG,z) is actually the
clique number® of a graph CG, associated with the pair
(CG, z), obtained by replacing each CG-node in CG
by a clique of size z;. The authors of [18] introduce the
imperfection ratio imp(G) for a graph G, and show that

imp(G) = sgp{% 1z € NlEi}. 3)
" Euqation (3) implies
x(G,2z) < imp(G)w(G, z). “4)

We can now introduce the cliqgue constraints as the re-
laxed but sufficient conditions to the feasibility problem
of a new flow x. In Proposition 1, the capacity of the
medium is scaled down to ensure the sufficiency. The
scaling factor is defined as

1
"= mp(ca)

Notice that when the new flow x is introduced, there
could be some flows that have already been installed
in the network. However, the scheduling problem only
concerns the aggregate of all these flows.

Proposition 1: Suppose there are a number of flows
F that have been installed in the network. Let x; be
the flow vectors for each installed flow f € F. A new
flow x is feasible if the following clique constraints are
satisfied,

©)

ax =) qu<cy g€ Q, (6)
leE
or
Qx<c, Q)
where ¢, = aC —) qx;y is the residual capacity in
feF

clique ¢, Q is the clique matrix, ¢ = (¢g : ¢ € @), and
« is the scaling factor.

Proof: Let z be the total number of time slots
needed at each link,

Z] = %(Cﬂl + j%;wf,l),

@®

3The clique number is the size of the largest clique of the graph.

where zy, is the element of x; at link I. Applying the
clique constraints (6), we have

qu=z n+Y z51) <ol g€Q.)
c

leE leE feF
According to (4),

x(CG,2z) < imp(CG)w(CG, z). (10)

Recall the definition of the clique number w(CG,z) =
max, (ZIEq z). Then,

x(CG,z) < imp(CG)aT =T, 11

implying that flow x is feasible.]

Thus, the mathematical formulation of the routing
problem is converted to finding a flow vector x that sat-
isfies the connectivity constraints (described in Sec. IV)
and the clique constraints (6), which form a convex
polytope. The residual capacities of each clique can be
easily computed by

cg=aC — Z axy.
feF

(12)

B. Bounds on the Scaling Factor

Some bounds on imp(G) are given in [18] for graphs
with particular characteristics. For instance, a unit disk
graph is one that can be embedded in the plane such that
two CG-nodes are connected if and only if the Euclidean
distance between them is at most 1 [19]. If the nodes
of an ad-hoc network are placed on the ground of a
free space with no obstacles in between, the associated
conflict graph is a unit disk graph. If G is a unit disk
graph, then

1++3/2
v3/2

For such networks, we can simply select the scaling
factor to be a = 5jzz =~ 0.46.

imp(G) < ~ 2.155. (13)

C. Cligue Constraints in Reality

To study the effect of the clique constraints as the
feasibitlity conditions in a real ad-hoc situation [20],
we perforrn simulations using OPNET [21], which im-
plements detailed packet level simulation models of
channels, interference, as well as 802.11 MAC and ad-
hoc routing protocols. We generate a random ad-hoc
network using a MATLAB [22] program, placing 50
nodes in a 2.5km x 2.5km area. Then, we feed the
locations of the nodes into OPNET. Transmission range
of the nodes is set to 500m, and the interference range is
1km. These numbers roughly correspond to a battalion

Averzgo Rate Roceived per Flow: 50 nodes in 2.5 km X 2.8 km

Averags rate Recsivad (in kbps)
8 H
o

Limit-
Sflows -

.?ulo-s

o 100 200 300 400 500 600
Averzgo Rste Sent (in kbps)

Fig. 1: Comparing real ad-hoc network with theoretical model

of tanks in a battlefield, with powerful radios. We set up
video flows between five pairs of nodes, and alter the
rates in order to change the load of the network.

The results are shown in Figure 1. By looking at
the paths and interpolating between various video rates,
we can determine the rate at which the spare capacity
somewhere in the network, as predicted by the scaled
clique constraints, becomes 0. We determine this limit
for simulation scenarios with three, four and five flows
respectively, and plot these using the dotted vertical bars.

The curves simply plot the received rates vs. the sent
rates for the simulations scenarios involving three, four
and five flows. As seen from the figure, the flows receive
almost all their traffic until the predicted limit. In each
case, the flows experience a sharp loss of quality soon
after the theoretical limit is crossed.

The clique constraints only indicates the existence
of feasible schedules, but do not offer any way of
calculating it. We do not attempt to determine this global
schedule, since it would be impossible to impose anyway.
Consequently, the OPNET simulations simply model
the standard 802.11b behavior. We see that the random
access MAC protocol is able to find the schedules for
flows that satisfy the clique constraints. Our capacity
constraints match the behavior observed in the simula-
tion probably because 0.46 is a good estimate of the
combined effects of typical case graph imperfection and
the inefficiencies of the distributed scheduling scheme in
802.11b.

IV. AD-HOC ROUTING WITH BANDWIDTH
GUARANTEE

The routing problem is to map a flow request
(s,d, bw) to a flow vector x by computing a feasible path

p = (s,%,3,...,k,d), where s € V is the source node,
d € V is the destination node, and bw is the bandwidth
requirement. The flow vector x = x(p, bw) is given by

_ {bw, if 1 € {(s,), (i, 3), s (K, d)}
0,

for all other ! € E.
Define path width width(p) tb be the largest bw such
that x(p, bw) is feasible. Thus, p is a feasible path for
flow request (s, d, bw) if width(p) > bw.

(14

A. Shortest Widest Path Problem

Consider the widest path problem, i.e., to find the path
p from s to d that maximizes width(p). Then, for any
flow request (s, d, bw), we can simply compare bw with
the width of the widest path and we will know whether
to admit the request or to reject it. The mathematical
formulation of the widest path is as following.

max bw (15)
-bw, j=s
st) - Y TGk =4bw, j=d (16)
(i.d) (5:k) 0, otherwise
Qx<c a7
T(ij) € {0, bw}, ¥(i,7) € E. (18)

The solution to problem (15) guarantees that for any
flow request, if there exists a feasible path to accom-
modate it, we are able to admit it and assign a path
to it. However, some concemns still exist. First, the path
computed by (15) may contain loops. Indeed, path width
is determined by the bottleneck cliques. Loops at the
under-utilized part of the network may not affect the
width at all. Secondly, it is always good to use as little
network resources as possible, especially in the ad-hoc
network where nearby links share the medium. These
concerns lead us to select the shortest path among the
widest paths, forming the Shortest Widest Path (SWP)
problem. Shortest widest paths have the loop-free prop-
erty, similar to the property of the shortest widest paths
in wired networks [2].

Proposition 2: The solutions to the SWP problem are
loop-free.

Proof: The key of the proof lies in the fact that
when flow x’ < x, x is feasible implies that x’ is also
feasible. To see this, suppose {Z,! € E} is a feasible
schedule for flow x. Since xf <z foralll € E, let Z
be any subset of Z; of size T'z;/C, we have

ez, <> qui<1,VgeQ,1<t<T. (19)
leE leE

Therefore, {Z],1 € E} is a set of schedules for flow x/,
and x’ is feasible.

Suppose pathp = (s, ..., ¢, 3, ..., k, 1, ..., d) is a solution
to the SWP problem containing loop (4, j, ..., k,). Let
» = (s,..s1,...,d) be the shortened path by removing

the loop. By definition of the shortest widest path,
width(p) < width(p'). (20)

However, since for any bw, x'(p, bw) < x(p, bw), thus,

width(p') < width(p). 1)
Combining (20) and (21) together implies
width(p') = width(p). (22)

Therefore, p’ is also a widest path. But p’ is shorter than
P, contradicting the hypothesis that p is a solution to the
SWP problem. []

Notice that the solution to the SWP problem being
less than or equal to bw doesn’t necessarily mean that
the flow request cannot be accommodated. The scaled
clique constraints (17) are the sufficient conditions to
the feasibility, not the necessary conditions. In fact, the
unscaled clique constraints are necessary for a feasible
schedule to exist [23].

B. Widest Shortest Path Problem

The Widest Shortest Path (WSP) problem is also an
abstract of the routing problem with bandwidth consid-
eration. It wants to find the widest path from the set of
the shortest paths. As the name suggests, path length has
the priority to path width.

Path width and length are two metrics that address
different requirement issues. From flows’ point of view,
path width is related to the bandwidth requirement,
while path length is related to the delay requirement.
The path length is also concerned with the amount of
network resources used by a flow. Since the purpose
of this paper is to provide bandwidth guaranteed paths
for flow requests, the precedence is placed on the width
metric. Therefore, the SWP problem is the mathematical
abstraction that we want to solve.

V. AD-HOC SHORTEST WIDEST PATH ALGORITHMS

Our goal is to design a distributed algorithm towards
the SWP problem that minimizes the exchanged infor-
mation and overhead. Look at problem (15). The second
line (16) is the connectivity constraints, containing ||
equations that represent the network topology. The third
line (17) is the clique constraints, containing |Q)| inequal-
ities over the maximal cliques of the conflict graph CG.
A centralized algorithm requires all these information.

One can either collect the conflict graph by link state
protocols and compute the maximal cliques at each
node, or compute the maximal cliques distributedly and
exchange the clique information. In both cases, overhead
will be large.

It is however possible to compute the maximal cliques
in a distributed manner. Notice that interference will
not occur if two links are far from each other. Assume
that the distance threshold is d. For any link | € E,
only the links within a disk of radius d are required to
build a subgraph and compute the maximal cliques that
! belongs to. For the ad-hoc networks whose conflict
graph are unmit disk graphs, Gupta and Walrand [3]
proposed a polynomial-time approximation algorithm to
approximate the maximal cliques in a heuristic way.

The heuristic approximation uses a small disk of
diameter w (i.e. radius = w/2) to scan a larger disk of
radius w around a CG-node. Here w is the interference
range of the CG-nodes. Each position of the scanning
disk generates a clique. The generated set of cliques is
reduced to result in the set of maximal cliques around
the link.

A. The Basic Heuristic

The proposed Ad-hoc Shortest Widest Path (ASWP)
algorithm follows the Bellman-Ford architecture. Each
node maintains a table’ of the best paths to all the
destination nodes in the network. Each row of the
table forms a record, denoted by a quatemity ¢4 =
(d, p, width(p), len(p)) that contains the destination
node id d, the complete path p from the self to the
destination, the path width, and the path length in terms
of hop-count. The algorithm performs up to |N| — 1
rounds of relaxation operations over all links. These
relaxation operations update (or relax) the width and
length of the appropriate records in the table.

A complete description of the ASWP algorithm is as
follows: '

Step 1: For each node i € N, initialize the records
ria = (d,0,0,0) for all d # i, initialize ri; =
(4,4,00,0) and mark it active.

Step 2: For each active record ;4 of node j, send
the update massage rjq to every incoming
neighbor i such that (i,j) € E is a link of
the network.

Step 3: Upon receiving the update message 7 4, call
the relaxation operation at node i, as

1) Let ﬁ‘i,d = (iapj,d) = (iaj»-'-,d) be the
extended path;
2) Compute width(p;q) and len(p;q);

3) Compare with the record 7,9 =
(d, pig, width(p;,a), len(pid)). If

width(p; 4) > width(pi d),

or
width(p;) = width(p;q)

and len(p;q) < len(pi,a),
the relaxation operation succeeds and the
record 7; 4 is updated to be

7i.d = (d, Pid, width(pi a), len(Pid));

4) Mark the record r; g active if it is updated.

Step 4: The algorithms stops if no record is marked
active. Otherwise, return to Step 2.

The key step in the ASWP algorithm is to compute
the width and length of the extended path p;q =
(i, p;,4) in the relaxation operation. The length is simple,
as len(p;q) = len(pjq) + 1. The width, however,
needs more computation. It is the largest bw such that
x(p; 4, bw) satisfies the clique constraints a7n. -

Remember that width(p; 4) is computed at node ¢, a
node that owns the information of the maximal cliques
Q(i,j) = {(] g3 (7".7)1 qe€ Q} that link (21.7) belongs
to. We show that this information is enough for node
i to compute width(p;q). Let X = x(p,1) be the unit
bandwidth flow carried by path p. Thus, '

c
width(p) = min —%. 23
(p) min % (23)
Since p; 4 is one-hop extension of pja,
Xid = Xjd + €G5> (24)

where e(; j) is a vector with only one 1 at link (3,).
Therefore,

c
width(P;g) = min —=
Y 9€Q qX; 4
) . ¢ . c
= mm(min ——, min 4)
9€Qu. AXid 9€Q\Qui.5» AXj,d
. . . c
= mm(min —2&—, min —2—,
q€Qii X d 9€Q:.5» UXjd

min —)
q€Q\Q.5 AXj.d

. ¢q)
i T, W dth(p; 25
9€Qu:.5) gXid * (pJ,d))()

= min(

The implication is, when a path extends, the bottleneck
clique either remains unchanged or becomes one of
the maximal cliques that the extending link belongs to.
This is an important property that makes the distributed
algorithm possible.

Connectivity Graph

Conflict Graph

Fig. 2: QoS Routing with interference does not follow shortest
path paradigm

B. kASWP Extension

The ASWP algorithm is distributed and polynomial.
Unfortunately, it is inherently an approximate algorithm
because of the failure of the Principle of Optimality.
Bellman’s Principle of Optimality [24] states: If an
optimal path from node X to node Y passes through
Z, it must also be the optimal path from X to Z and
from Z to Y. Interference in an ad-hoc network does not
conform to this paradigm. Specifically, a partial part of
a shortest widest path may not be optimal itself.

Figure 2 illustrates an example in an ad-hoc network
where we attempt to find the widest paths. The channel
capacity is denoted by C, and the figure presents both
the connectivity graph and the conflict graph. The inter-
ference between the links in the connectivity graph are
marked using dotted lines — which become the edges of
the conflict graph.

Clearly, the widest path from node 1 to node 3 is 1-3.
But note the widest path from node 1 to node 5. The
maximum capacity of C/2 is achieved by path 1-2-3-
4-5. The shorter path 1-3-4-5 can at most achieve C/3
since its three links A, D and E all conflict with each
other.

The Bellman-Ford architecture of ASWP allows each
node to keep one record of the most promising path to
a destination. However, since a sub-optimal path may
extend to be optimal, it is efficient to keep multiple
records of the most promising paths for each destination.
This leads to a kKASWP algorithm where each node
maintains a table of up to k|N| records. The kASWP
algorithm increases the possibility of finding the optimal
solution with large k value. On the other hand, kASWP
will send up to k times more update messages than
ASWP. So a small k is desirable. Simulations in the next
section uses values of k as 2, 4, and oo to demonstrate

the trade-off between the optimality and complexity.

VI. NUMERICAL SIMULATIONS

Qualitatively, we would like to show how the proposed
algorithms improve the path width for source/destination
(s/d) pairs so that the flows can carry more traffic, and the
network can carry more flows. To achieve this goal, we
turn to simulations conducted over the 50-node network
described in section III-C. We implement five algorithms
in MATLAB to compute paths between s/d pairs. The
first three are the proposed ASWP algorithms, including
the basic ASWP algorithm and the extended 2ASWP and
4ASWP algorithms, where the numerical digits (2 and
4) indicate how many records each node has to keep.
The fourth algorithm is an ideal SWP algorithm that
computes the optimum of the SWP problem precisely by
solving the mixed integer programs given in Sec. IV-A.
This provides an ideal to compare against. Notice that
the ideal SWP is an extreme version of KASWP where
k = oo, while ASWP is another extreme with k = 1.
Therefore, the first four algorithms can be all viewed as
kASWP with k = 1, 2, 4 and oo respectively. They are
together referred to as the “ASWPs algorithms”. Finally,
we implement the Bellman-Ford shortest path algorithm,
since shortest paths are often used in ad-hoc QoS routing
(Sec. II) and are useful for performance comparison.

A. Static Simulations

1) Path Width: We compare the path width made
available on the network by the various algorithms that
we consider. We increase the load on the network by
placing constant rate flows one-by-one into the network.
The sources and destinations are randomly selected.

The load is represented by the average clique utiliza-
tion, which is the average ratio of the used capacities
over all cliques. Notice that the used capacities vary a
lot from clique to clique, depending on how the flows
are placed into the network. Therefore, the average clique
utilization gives only a rough measure of the load of the
network.

We also differentiate the simulations with respect to
the distance of s/d pairs. We use the hop counts of the
shortest path between the pair to represent the distance.
Intuitively, distant pairs seem to be more improvable,
meaning that the widest path is wider than the shortest
one. To see this in an opposite way, think of an one-hop
pair: the shortest path is clearly the widest.

The first set of simulations compare the width of given
s/d pairs as the network load increases. Figure 3 shows
the results for a pair of nodes (chosen randomly) that are
7 hops distant. In the Y-axis, we plot the width of the best

- s . x\
ém*t RN Y -
: - N
§ 3o0f-
2
200}
100}
0 . . R ;
() 0.1 02 03 0.4 05 0.6 07

utiization

Fig. 3: Path width for a distant s/d pair (7 hops away).

Fig. 4: Path width for a close s/d pair (2 hops away).

path between this pair of nodes — as computed by each of
the algorithms. We plot this against rising utilization in
the network. As seen in the figure, the ASWP algorithm
finds paths that are significantly wider than the shortest
paths; 2ASWP returns the same solutions as ASWP;
and 4ASWP improves the path width very close to
the optimum. For instance, when network utilization is
0.12, the path width of the shortest path is 357 Kb/s;
ASWP/2ASWP improve the value to be 416 Kb/s; And
4ASWP finds the optimal 488 Kb/s.

When the load of the network increases, the improve-
ments shrink. Indeed, when the utilization is over 0.53,
there is no improvement at all. This can be explained by
the fact that the network is so congested that none of the
algorithms can find good paths. At this point, the widest
available path is down to a few Kb/s.

The results are somewhat different for nearby s/d

pairs. Figure 4 shows the same simulations for another
randomly chosen s/d pair that are only 2 hops distant.
In this figure, as the load of the network increases, all
the ASWPs algorithms continue to find wider paths.
Consider the points where utilization is 0.53: We observe
that the shortest path can carry only 15 Kb/s; At the
same situation, path width is 143 Kb/s by ASWP, 181
Kb/s by 2ASWP, and 222 Kb/s by 4ASWP. To see this,
remember that the residual capacities vary significantly
from clique to clique, especially when the load is heavy.
For distant s/d pairs, there are always some congested
cliques becoming the bottleneck, since paths traverse
many cliques. But for close s/d pairs, it is sometimes
possible to find paths that avoid the congested cliques.
These paths can therefore be wider than the shortest
ones.

2) Improvement over all s/d pairs: Not all s/d pairs
have paths that are wider than their shortest-paths. The
next set of simulations differentiate the s/d pairs with re-
spect to the hop distance, and evaluate the improvement
over all s/d pairs.

The simulations run at two utilization levels: an empty
network with no flows installed, and a medium-loaded
network with the utilization being 0.32. The load of
the network is achieved by placing random flows in
the network, as we did in the Sec. VI-A.l. Note that
the randomly placed flows do not load the network
uniformly, different parts are loaded to different levels.
The simulations compare the ASWPs algorithms with the
simple shortest path, and compute the width improve-
ment from the width of the shortest path.

First, we consider the percentage of s/d pairs whose
path widths experience an improvement. The simulations
consider 2,450 s/d pairs of the 50-node network (total
number of s/d pairs = |N| x (|N] —1)). Among the total
pairs, 255 (10.4%) pairs have improved width when the
network is empty. When the network is partially (0.32)
loaded, 869 (35.5%) pairs are improvable. For the rest
of the pairs that are not improvable, the shortest paths
are also the widest.

As mentioned, the improvements depend on the dis-
tance between the s/d pairs. Figure 5 shows the results in
the empty network. The upper figure shows the ratio of
the improvable s/d pairs versus the hop distance of each
pair. We see that for close s/d pairs whose distance is 3
hops or less, there is no improvement at all. The ratio
increases when the distance increases. For instance, the
farthest s/d pairs of 10 hops away (there are 8 such pairs)
are all improvable, though ASWP, 2ASWP and 4ASWP
only manage to better half of them.

This trend is also seen in the lower figure, which

08

ratio of improvod s/d pas
o o
-~ wn

»
S
T

]

average improvement (%)
g R

-]

-
o
T

=)
-

Fig. 5: The upper figure shows the ratio of the improved s/d
pairs; the lower figure shows the average improvement. The
results differentiate with respect to the hop distance. The load
is low (empty, utilization = 0).

presents the percentage improvement in the path width
achieved by using the ASWPs algorithms. The values are
percentage improvement over the width of the shortest
paths, and are averaged over all the improvable pairs (no
improvement in 1, 2 or 3-hop paths).

We notice that an increment of the k parameter aug-
ments the improvement. For instance, when the distance
is 6 hops away, the average improvement at k = 1
(ASWP) is 16.4%. This value increases to be 24.4%,
29.1% and 31.2% as k changes to 2, 4 and oo (Fig-

ure 5, lower part). In general, the path width achieved

by 2ASWP lies at about the middle between the path
width by ASWP and the ideal. As expected, 4ASWP
performs even better than 2ASWP, sometimes achieving
the optimal solution.

It is difficult to predict whether a specific s/d pair is
improvable. The answer depends not only on the network
topology, but also on how the background flows are
placed in the network. Indeed, the simulations show that
in the medium loaded network, there are more improv-
able pairs than in the empty network. The results are
shown in Figure 6. Comparing with the empty network
case, the improvable ratio is 0.12 for 2-hops s/d pairs,
and is 0.22 for 3-hop s/d pairs. For s/d pairs of 6 and 7

5 6
distance between s/d pairs (Hop-count)

Fig. 6: The upper figure shows the ratio of the improved s/d
pairs; the lower figure shows the average improvement. The
results differentiate with respect to the hop distance. The load
is medium (utilization = 0.32).

hop away, the improvable ratio is more than twice that
of the empty network case.

What we learn from Figure 6 is similar to the previous
figure. First, distant s/d pairs tend to be more improvable
than close pairs. Second, the width of paths chosen by
2ASWP is larger than ASWP, and the width of paths by
4ASWP is even larger than 2ASWP.

B. Dynamic Simulations

The simulations in the previous section compare the
performance by running different algorithms on a net-
work with a specific value of load. In this section, we
want to compare how the algorithms behave when flows
are placed into the network dynamically, according to
the path found by these algorithms. We use the proposed
algorithms to route an entire sequence of flow requests,
and compare the performance generated by different
algorithms over the same sequence of requests.

1) Admission ratio: We choose five s/d pairs in the
network, and generate fixed rate flow requests of 4 Kb/s.
The requests come in at a rate of 0.32 flows per second,
and are assigned uniformly to one of the five s/d pairs. If
a flow is admitted, it will last a duration that is uniformly

distance SP ASWP 2ASWP | 4ASWP
2 hops 99.4 100 100 100
4 hops 47.9 54.8 54.8 54.7
7 hops 31.8 44.1 434 43.9
mixed 66.5 71.4 71.0 70.9

TABLE I: Admission ratio of SP and the ASWPs algorithms
in the dynamic simulations. The five s/d pairs are randomly
chosen with distance consideration.

distributed between 400 and 2800 seconds. Thus on
average the demand of the network is 0.32 x 40062800 5
4 = 2048 Kb/s, i.e., 2 Mb/s. We route the flows with SP,
ASWP, 2ASWP and 4ASWP algorithms. Some flows are
admitted and installed accordingly, the others are rejected
because the paths are not wide enough. Notice that as
the flows are installed, the network is utilized differently,
since the ASWPs algorithms may find paths that are
longer than the shortest paths.

The five s/d pairs are chosen randomly with distance
consideration. Specifically, in the first row of Table I,
the five s/d pairs are randomly chosen from all the s/d
pairs that are 2 hops distant. Similarly for the second and
third rows, the s/d pairs are chosen with 4 hops and 7
hops distances respectively. In the last row, the distances
between the s/d pairs are mixed, with 2, 3, 5, 6, and 7
hops each.

We run the simulation over 10,000 flow requests.
The purpose is to compare the admission ratio of these
algorithms in long run. Table I presents the results: with
the ASWPs algorithms we consistently admit more flow
requests than using shortest paths. The improvement
varies for different s/d pair sets, and is up to 12.3%
for the 7-hops pairs. Indeed, the improvements are more
significant when fewer flows can be admitted into the
network — a feature that augurs well for utilizing these
algorithms in congested scenarios. The results demon-
strate that the ASWPs algorithms are good at finding
paths for flow requests between fixed s/d pairs.

We also observe that 2ASWP and 4ASWP are not
necessarily better than ASWP in the long run. As listed
in Table 1, 4ASWP admits 0.5% less flows than ASWP
in the last row, while 2ASWP admits 0.7% less flows
than ASWP in the 7-hops case. The implication is that
pursuing the widest paths may not gain in the long run.
If the chosen paths are too long, they consume more
network resources, and affect future requests. Some sub-
optimal paths selected by ASWP may in fact be better
for the longer term. In short, it is useful to find wider
paths than the shortest, but we must be cautious to adopt
the extremely long paths.

10

800 -“2.\.,
SO TN
§ oof \\\\';“m.
RN
3 60 \\““':
~ N

H NI
§ 50 N g,
g \\\ \-{:t::\.
i‘w \\ :Q‘;‘\;l’\
: N
2o - _.

. \\ N

\\
g % w0 5 20 20 30
index of flow coquest

Fig. 7: Dynamic behavior of SP, ASWP and 4ASWP routing
algorithms. The 4 Kb/s flows are generated between 5 s/d pairs
(the mixed distance case as in the last row of Table I). The
Y-axis shows the average path width of the 5 pairs; the X-axis
is the indices of the flow requests.

2) Average path width: Similar results can be found
by analyzing the path width. This time we install a
sequence of flow requests into an empty network. There
is no deletion of the installed flows. The five s/d pairs
are the same ones as in the last row of Table I, with
mixed distances. We plot in Figure 7 the average path
width over the five s/d pairs. The X-axis is simply the
indices of the flow requests. As each flow is installed, it
changes the average path width available to the s/d pairs.
We stop the simulation at flow #265, which is the first
flow rejected by the SP algorithm.

Figure 7 shows that the path width decreases linearly
as flows are admitted and installed. At any time, the
ASWPs algorithms outperform SP by providing wider
paths. The gap is about 60-70 Kb/s. Once again, 4ASWP
performs a little worse than ASWP.

The average path width of the ASWPs algorithms
are seen to increase sometimes — this is because the
introduction of a new flow may cause the algorithms
to look for a distant alternative path (not previously
considered), which turns out to have more available
bandwidth.

Notice that the dynamic simulations conducted in this
section consider flow requests with small size (4 Kb/s)
and long durations (hundreds of seconds). Therefore, the
results expose the concerns that kKASWP consumes too
much network resources and affects future requests. Ac-
tually, the ASWPs algorithms, especially KASWP with
large k value, are designed to find paths for large flow
requests as long as they are feasible. We would expect

SP ASWP 2ASWP | 4ASWP
of update
messages 12,900 14,293 16,146 22,032
running
time (sec) 5.3 279 50.4 80.0

TABLE II: Time complexity for SP and ASWPs algorithms.

that if some of the flow requests are large (hundreds of
Kb/s) and short-lived, the kASWP algorithm will further
show its superiority.

C. Time Complexity

The time complexity of the proposed algorithms can
be measured by counting how many times the relaxation
operation (Sec. V-A) is performed. It is also the number
of update messages that are sent between neighbor
nodes. Besides this, the running time in seconds is also
a straightforward measure of the complexity. However,
it only serves as a rough estimate to the time complex-
ity, because it depends on the programming language,
code efficiency, and running environment. We list the
measurements of a typical case in Table II. This is the
case of the medium loaded network in Sec. VI-A.2. The
algorithms are implemented and run in MATLAB 6.0 in
a PC with 750 Mhz Pentium III. :

We first focus on the ASWP algorithms and consider
the impact of the k& parameter. According to Table II,
2ASWP sends 1.1 times more update messages than
ASWP, while 4ASWP sends 1.5 times more. These ratios
are much less than the k values 2 and 4. However,
the kASWP algorithms need to compare and sort the
records during the relaxation operations. We thus expect
larger running time than the number of update messages
present. According to the table, 2ASWP takes 1.8 times
longer time than ASWP, while 4ASWP is 2.9 times
slower than ASWP. These numbers show that kASWP
scales sub-linearly as k increases. Note that these num-
bers do not include the time of computing the maximal
cliques (see [3] for more details).

Table II also compare the time complexity between
the ASWPs algorithms and the Bellman-Ford shortest
path algorithm. The running time of ASWP, 2ASWP and
4ASWP algorithms are about 5.3, 9.5 and 15.1 times
slower than Bellman-Ford.

VII. CONCLUSION

We study the problem of computing bandwidth guar-
anteed paths for given flow requests in an ad-hoc net-
work. The problem is complicated because neighboring
links share the medium. To route a flow, one has to solve

a feasible scheduling problem in addition to finding a
route for the flow.

Three main ideas are presented in this paper. First,
we separate the scheduling problem and quantify the
feasibility of flows. By applying recent results from
graph theory, we construct a set of clique constraints as
the feasibility conditions of the proposed QoS routing
mechanism. Second, we present the mathematical ab-
straction of the SWP problem that we want to solve. The
idea behind the SWP problem is to find the maximum
amount of traffic that a flow can carry along a single path.
And third, we propose a distributed ASWP algorithm
towards the SWP problem. It is further extended to a
family of kASWP algorithms that achieve a performance
close to the optimum. '

The simulations over a 50-node network show the
performance of the proposed algorithms. We differentiate
the results based on the network load, as well as the hop
distance between s/d pairs. The results show that for s/d
pairs with large hop distance, the ASWPs algorithms
improve the path width considerably. Moreover, the
kASWP algorithm with larger k value is able to find
paths closer to the optimum at the cost of longer running
time.

The simulations offer us another curious insight —
a comparison between the ASWP algorithm and the
kASWP algorithm. We are aware that the kKASWP
algorithm keeps & times as much state as ASWP, and
so takes more time and send more update messages. In
a static situation, kASWP indeed outperforms ASWP
and achieves results close to the optimum. Surprisingly
though, when the algorithms are compared on the basis
of their longer term performance, the ASWP results are
nearly as good or better than those of tASWP. It suggests
that ASWP probably offers the best trade-off to balance
the optimality and long term performance. Choosing
wider paths is certainly better, but the algorithm should
be careful not to consume too much resources — for the
sake of future demands.

REFERENCES

[1] R. Guerin, A. Orda and D. Williams, “QoS Routing Mecha-
nisms and OSPF Extensions”, IETF Internet Draft, November
1996.

[2) Z. Wang and J. Crowcroft, “Quality of service routing for
supporting multimedia applications,” IEEE Journal on Selected
Areas in Communications, vol. 14, pp. 1228-1234, Sept. 1996.

[3] R. Gupta and J. Walrand, “Approximating Maximal Cliques
in Ad-Hoc Networks”, Proceedings PIMRC 2004, Barcelona,
Spain, September 2004.

[4] H. Luo, S. Lu, and V. Bhargavan, “A New Model for Packet
Scheduling in Multihop Wireless Networks”, Proceedings ACM
Mobicom, 2000.

[51 A. Puri, “Optimizing Traffic Flow in Fixed Wireless Networks”,
Proceedings WCNC, 2002.

{6] R. Rozovsky and P. R. Kumar, “SEEDEX: A MAC protocol
for Ad Hoc Network,” Proceedings of The ACM Symposium
on Mobile Ad Hoc Networking & Computing, Long Beach,
California, 2001.

[7]1 E. M. Royer, C. Perkins, and S. R. Das, “Quality of Service for
Ad-Hoc On-Demand Distance Vector Routing,” /nternet Draft
draft-ietf-manet-aodvqos-00.ixt, July 2000.

(8] S. Chen and K. Nahrstedt, “Distributed quality-of-service rout-
ing in ad-hoc networks,” IEEE Journal Selected Areas in
Communication, vol. 17 no. 8, pp. 14881505, Aug 1999.

[9] C.R.Linand J.-S. Liu, “QoS Routing in Ad Hoc Wireless Net-
works,” IEEE Journal on Selected Areas in Communications,
vol. 17, no. 8, pp. 14261438, Nov./Dec. 1999.

[10] C. R. Lin, “On-Demand QoS Routing in Multihop Mobile
Networks,” Proceedings INFOCOM 2001, Anchorage, Alaska.

[11] H. Luo, S. Lu, and V. Bhargavan, “A New Mode! for Packet
Scheduling in Multihop Wireless Networks,” ACM Journal of
Mobile Networks and Applications (MONET) vol. 9, no. 3, June
2004.

{12] C. Zhu and M. S. Corson, “QoS Routing for Mobile Ad Hoc
Networks,” Proceedings INFOCOM 2002, New York.

[13] T. Salonidis and L. Tassiulas, “Distributed dynamic scheduling
for end-to-end rate guarantees in wircless ad hoc networks,”
submitted for publication.

{14] Y. Yang and R. Kravets, “Contention-aware admission control
for ad hoc networks,” UIUC Tech Report, 2003.

[15] Q. Xue and A. Ganz, “Ad hoc QoS on-demand routing (AQOR)
in mobile ad hoc networks,” Journal of Parallel Distributed
Computing vol. 63, pp. 154-165, 2003.

[16] M.R. Garey and D.S. Johnson, “Computers and Intractability:
A Guide to the Theory of NP-Completeness”, W.H. Freeman
and Company, New York, 1979.

(17] M. Grotschel, L. Lovazs, A. Schrijver, “Geometric Algorithms
and Combinatorial Optimization,” Springer, 1993.

[18] S. Gerke and C. McDiarmid, “Graph Imperfection”, Journal
of Combinatorial Theory, Series B, vol. 83, pp.58-78, 2001.

[19] A. Graf, M. Stumpf, and G. Weisenfels, “On Coloring Unit
Disk Graphs,” Algorithmica, vol. 20 (1998), pp. 277-293.

[20] R. Gupta, J. Musacchio and J. Walrand, “Sufficient Rate
Constraints for QoS Flows in Ad-Hoc Networks”, Submitted to
INFOCOM 2005. Available at
http://www.eecs.berkeley.edu/~guptar/RGpublications.html.

[21] OPNET Modeller, OPNET Technologies Inc.
http://www.opnet.com.

{22] Matlab Simulation Environment, The Mathworks Inc.
hitp://www.mathworks.com ,

[23] K. Jain, J. Padhye, V. N. Padmanabhan, and L. Qiu, “Impact
of Interference on Multi-hop Wireless Network Performance,”
Proceedings ACM Mobicom 2003, San Diego, CA, USA,
September 2003.

[24] J.Picone, “Bellman’s Principle of Optimality,” Lecture Notes,
ECE 8463, Mississippi State University. Available at:
http://www.isip.msstate.edu/publications/courses/ece_8463/
lectures/current/lecture_21/lecture 21_02.html

