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Abstract

If a signal z is known to have a sparse representation with respect to a frame,
the signal can be estimated from a noise-corrupted observation y by finding the
best sparse approximation to y. The ability to remove noise in this manner de-
pends on the frame being designed to efficiently represent the signal while it in-
efficiently represents the noise. This paper gives bounds on the expected squared
error of this denoising scheme. The main challenge in computing the expected
squared error is that the noise realization affects the choice of subspace in the
sparse approximation of y.

One error bound depends on the expected fraction of energy of a white Gaussian
signal in a signal-dependent choice of subspaces. A bound on this expected frac-
tion, derived using rate—distortion theory, may be of independent interest. Fur-
thermore, for certain randomly generated frames, a simple expression is obtained
for the probability that the estimate lies in the correct subspace.
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1 Introduction

1.1 Denoising by Sparse Approximation with a Frame

Consider the problem of estimating an unknown signal z € R" from the noisy obser-
vation y = = + d where d € R" has the i.i.d. Gaussian N(0,0%1Iy) distribution. If =
is known to lie in a given K-dimensional subspace of R¥, the situation can immedi-
ately be improved by projecting y to the given subspace; since the noise distribution
is spherically symmetric and the projection is, independent of the noise, only K/N
fraction of the original noise is then left. Further information about the distribution
of z could be exploited to remove even more noise.

In this paper we consider the estimation of z from y with a weaker, more permissive,
signal model. Rather than knowing a K-dimensional subspace that contains z, we
are given a set of K-dimensional subspaces such that z is contained in their union.
Specifically, let ® = {p;}¥, C RN, M > N, be a frame. Our model is that

M
z=) i

i=1

for some coefficient vector a € RM with at most K nonzero elements. An equivalent

statement is that z lies in one of the J = ’}g ) subspaces obtained by selecting a

K-element subset of ®. When K <« N, it is said that z is represented sparsely in the
frame 9.

With the addition of the noise d, the observed vector y will (almost surely) not
be represented sparsely. Intuitively, the point from one of the J subspaces under
consideration that is closest to y is a good estimate for z. Formally, because the
probability density function of d is a strictly decreasing function of ||d||, this is the
maximum likelihood estimate of = given y. We will write

5= argmin ly — =l (1)

M
z | x= a;; with at most K nonzero a;s
®

i=1

for this estimate and call it the optimal K-term approximation of y. Henceforth we
omit the subscript 2 that indicates the use of the Euclidean norm.

The main results of this paper are bounds on the per-component mean-squared
estimation error %E [||lz — £||] for denoising via sparse approximation. (The expec-
tation is over the noise d only, as we do not assume a probabilistic model for z.) These
bounds depend on (N, M, K) but avoid further dependence on the frame @ (such as
the coherence of ®); some results hold for all ® and others are for randomly generated
®. To the best of our knowledge, the results are novel for



(a) being an average-case (rather than worst-case) analysis;

(b) having dependence on frame size rather than more fine-grained properties of the
frame; and

(c) using source coding gedanken experiments in this context.

Preliminary results were first presented in [16].

1.2 Connections to Approximation and to Practice

A likely situation in practice is that the underlying true signal = has a good K-term
approzimation rather than an exact K-term representation. At very least, this is the
goal in designing the frame & for a signal class of interest. It is then still reasonable
to compute (1) to estimate z from y, but there are trade-offs in the selections of K
and M.

Let fa,x denote the squared Euclidean approximation error of the optimal K-term
approximation, where the subscript M emphasizes the frame size. It is obvious that
fm,k decreases with increasing K, and with suitably designed frames it also decreases
with increasing M. One concern of approximation theory is to study the decay of
fum x precisely. (For this we should consider N very large or infinite.) For piecewise
smooth signals, for example, wavelet frames give exponential decay with K [5, 10, 13].

When one uses sparse approximation to denoise, the performance depends on both
the ability to approximate z and the ability to reject the noise. Approximation is
improved by increasing M and K, but noise rejection is diminished. The dependence
on K is clear, as the fraction of the original noise that remains on average is at least
K/N. For the dependence on M, note that increasing M increases the number of
subspaces and thus increases the chance that the selected subspace is not the best one
for approximating z. When M is very large, there is some subspace very close to y
and thus £ = y.

Fortunately, there are many classes of signals for which M need not grow too quickly
as a function of N to get good sparse approximations. The design of frames @ for this
problem is essentially the same as designing dictionaries for matching pursuit [23].
Examples of audio dictionaries with good computational properties were given by
Goodwin [18]. See also Moschetti et al. [24] for video compression and Engan et
al. [15] for an iterative design procedure.

One motivation for this work was to give guidance for the selection of M. This
requires the combination of approximation results (e.g., bounds on fjs k) with results
such as ours. The results presented here do not address approximation quality.

1.3 Related Work

Computing optimal K-term approximations is generally a difficult problem. Given
€ € R* and K € Z1, to determine if there exists a K-term approximation such that



lz — Z|| < € is an NP-complete problem [9, 26]. Similarly, given K € Z*, to find an
« that minimizes ||z — Z|| among all vectors with not more than K nonzero entries is
NP-hard [9].

The difficulty of optimal sparse approximation has prompted study of heuristics.
A greedy heuristic that is standard for finding sparse approximate solutions to linear
equations [17] has been known as matiching pursuit in the signal processing literature
since the work of Mallat and Zhang [23]. One of Mallat and Zhang’s initial applications
was the separation of signal from noise. Chen, Donoho and Saunders (3, 4] proposed
a convex relaxation of the approximation problem (1) called basis pursuit.

Both matching pursuit and basis pursuit have been the subject of many analyt-
ical and numerical investigations. Recently, Donoho, Elad, Temlyakov, and Tropp
have determined conditions on the frame such that matching pursuit and basis pursuit
find optimal approximations [11, 12, 31, 32]. An overlapping body of recent litera-
ture establishes that optimal approximations have stability properties, depending on
a coherence measure of the frame, that make the positions of the nonzero entries in a
insensitive to additive noise up to some bound in magnitude 11, 14, 20]. The results
of this paper look beyond the noise magnitude threshold at which the footprint of the
optimal « is unchanged.

Denoising by finding a sparse approximation is similar to the concept of denoising
by compression popularized by Saito [28] and Natarajan [25]. More recent works in
this area include those by Krim et al. [21], Chang et al. [2] and Liu and Moulin [22)].
All of these works use bases rather than frames. To put the present work into a
similar framework would require a “rate” penalty for redundancy. Instead, the only
penalty for redundancy comes from choosing a subspace that does not contain the true
signal (“overfitting” or “fitting the noise”). The literature on compression with frames
notably includes [1, 19, 27].

This paper uses quantization and rate—distortion theory only as a proof technique;
there are no encoding rates because the problem is purely one of estimation. However,
the “negative” results on representing white Gaussian signals with frames presented
here should be contrasted with the “positive” encoding results of Goyal et al. [19].
The positive results are limited to low rates (and hence signal-to-noise ratios that are
usually uninteresting). A natural extension of this work is to derive negative results
for encoding. This would support the assertion that frames in compression are useful
not universally, but only when they can be designed to yield very good sparseness for
the signal class of interest.

1.4 Preview of Results

To motivate the paper, we present a set of numerical results from Monte Carlo simu-
lations that qualitatively reflect our main results. The sizes of N, M, and K are small
because of the high complexity of optimal approximation and because a large number
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Figure 1: Performance of denoising by sparse approximation when the true signal
z € R? has an exact 1-term representation with respect to a frame that is an optimal
M-element Grassmannian packing.

of independent trials is needed to get adequate precision. Each data point shown is
the average of 100 000 trials.

Consider a true signal z € R* (N = 4) that has an exact 1-term representation
(K = 1) with respect to M-element frame $. We observe y = z+d with d ~ N(0, o?ly)
and compute estimate # from (1). The signal is generated with unit norm so that the
signal-to-noise ratio (SNR) is 1/0 or —10log,o0? dB.

To have tunable M, we used frames that are M maximally separated unit vectors in
RY, where separation is measured by the minimum pairwise angle among the vectors
and their negations. These are cases of Grassmannian packings [6, 30] in the simplest
case of packing one-dimensional subspaces (lines). We used packings tabulated by
Sloane with Hardin, Smith and others [29].

Throughout we use the following definition for mean-squared error:

_1 a2
MSE = NE[II:z: £)1°] .

Fig. 1 shows the MSE as a function of o for several values of M. Note that for visual

clarity, MSE / 02 is plotted. For small values of o, the MSE is (1/4)o®. This is an

example of the general statement that
MSE = LS o?

N for small o,
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Figure 2: Performance of denoising by sparse approximation when the true signal
z € R? has an exact 2-term representation with respect to a frame that is an optimal
M-element Grassmannian packing.

as described in detail in Section 2. For large values of o, the scaled MSE approaches
a constant value: . MSE
lim ——

om0 o2 =9gM,

where gps is a slowly increasing function of M and limps_..o gpr = 1. The character-
ization of the dependence on M is the main contribution of Section 3. Finally, the
transition between low and high SNR is studied in Section 4. The same properties are
illustrated for K = 2 in Fig. 2.

2 Preliminary Computations

The set of vectors comprising the dictionary is denoted ®. In the following analysis,
it is possible for the dictionary to be undercomplete, i.e. M < N. The model for the
signal z is that it is known to be some linear combination of K of the M dictionary
vectors. The K vectors to select and the K coefficients of the linear combination must
be estimated from y. Furthermore, it is assumed that K < N; otherwise there is no
sparseness at all.

One could use any of several techniques to form the estimate # from y. Without
introducing a probability distribution for z, the maximum likelihood estimate over the



noise d is considered. This yields
Emi(y) = argmin|ly — z|, ()
reX

where X is the set of all z spanned by K of the M frame vectors in U. In this scenario,
the error of the ML estimate provides a lower bound on the average error achievable
by any other estimator. Many methods used in practice attempt to emulate the ML
estimator.

The view of the ML estimate as a projection is used in the analysis. Given a frame
U, let Px be the set of all projections onto spaces spanned by K of the M frame
vectors in U. Then P has (}) projections, and the ML estimate is given by

ML = Py, (3)

where .
P = argmax || Py||.
PePk

We now analyze the error of the ML estimator. The error usually depends on the
true signal z. Define the conditional MSE

1 .
e(z) = ~E (llz — #mLl® | 2).

When M = K, there is no subspace selection: there is just one approximation
subspace. In this case, the ML estimate & sy is the projection of the noisy signal onto
a fixed K-dimensional subspace, which is equivalent to standard least squares (LS)

denoising. The estimation error does not then depend on z. The error reduces by a
factor K/N,

e(z) = %02 Vz. (4)

At high SNR (small o2), the selection of the K-dimensional subspace is unperturbed
by d. The error expression (4) thus holds at this extreme as well.

3 Rate-Distortion Analysis

3.1 Sparse Approximation of a Gaussian Source

Before directly addressing the denoising performance of sparse approximation, we give
a new approximation result for white Gaussian signals. This result is a lower bound
on the error in sparse approximation of a white Gaussian signal; it serves as the basis
for upper bounds on the MSE for denoising when the SNR is low.



Theorem 1 Let & be an M-element frame and let d € RY be a zero-mean, Gaussian

vector with variance o2Iy. For any d that can be represented as a linear combination
of K vectors from ®,

l i 21—/ _IE K/(N-K) _ ..Ii N/(N-K)
NE[ud d| ] > o2J - 7 , (5)
where M N—K

J= (K) and r=— 7 (6)

For large N and small K/N, the bound reduces to the simple expression
1 7 -1/r
S E[ld-dIF] 2 6% (1 - K/N). ™

Proof: See Appendix A.

Theorem 1 shows that for any @, there is an approximation error lower bound that
depends only on the frame size M, the dimension of the signal N, and the dimension
of the signal model K. Henceforth we use the notation

Dinin = min (%E CE ci||2]) ®)

where the minimization is over all functions that map d to a K-sparse vector d.
Observe that when M = K, the bound in (7) reduces to

Dmin > 0*(1 = K/N),

which is tight: When M = K there is only one subspace and the frame will capture a
fraction K/N of the source signal power.

At the other extreme, as M — o0, J — 00, and Dpj — 0. This limit is also
expected: as M — 00, the frame can eventually capture all the power of the Gaussian
signal.

However, when K/N is small, the error Dy, reduces to zero very slowly as M
increases. To see this, define a sparsity measure = K/N and a redundancy factor
p = M/N. Then for large N, the bound (7) reduces to

Dun 2% (%) (1-2) - )

For a large redundancy p — 00, Dpin = O(p~%). Consequently, Dyin — 0 slowly when
« is small. In other words, when the sparsity K/N is small, an exponentially large
number of frame vectors are needed to capture the signal. In this way, we can say that
a white Gaussian signal is not sparsely approximated well by any frame.

8



3.2 Comparison to Simulated Random Frames with K =1

The bound in Theorem 1 is not, in general, tight: the inequality in the theorem
provides only a lower bound on the error. The actual error will depend on the specific
frame. However, we expect the bound to be tight for frames designed specifically to
represent the Gaussian signal, and the qualitative value of the bound is supported by
the Monte Carlo simulations described in this section.

To empirically evaluate the tightness of the bound, we compare it to the actual
error obtained using random frames. We will address random frames in greater detail
in Section 4. For a random frame, we first fix some value for N. Then, for various
values of M, a random frame is obtained by generating a random M x N matrix A and
then finding U, the M x N matrix whose columns are the M dominant orthonormal
eigenvectors of AA’. The matrix U can be found by a singular value decomposition of
A. The M frame vectors are then given by the M rows of U.

With each random frame, we find the best (K = 1)-dimensional approximation,
d, to a random N-dunensmnal vector, d, whose components are i.i.d. Gaussian with
zero-mean and variance o2 = 1. Using 100 random frames, we estimate the average

value E [||ci||2] . Fig. 3 plots the normalized error

E|ld — dj)?
No?

as a function of the frame sizes M for signal lengths N = 10 and N = 100. Also
plotted in Fig. 3 is the theoretical lower bound from Theorem 1.

-10 logm (10)

3.3 Bound on MSE

We now return to our original denoising problem defined in Section 2. We wish to
bound the estimation error e(z) for a given signal z and frame ®.

Theorem 1 provides a lower bound on the ability of a frame to capture white noise
with a K-term approximation. Intuitively, if the true signal z is perfectly modeled with
such an approximation, frame-based denoising should capture the signal and remove
the noise. We now quantitatively justify this assertion.

To state the result, we need some more notation. As discussed earlier,. there are
J = (¥) subspaces spanned by K of the M frame vectors in ®. Index the subspaces
by j =1,...,J and let T be the index of the subspace closest to the noisy signal y.
Thus, the ML estimator £ is the projection of y onto the subspace of index T'. For
a fixed true signal, z, the subspace selection variable, T, is a discrete random variable
depending on the noisy signal y. Let H (T) denote its entropy in bits.

Theorem 2 Consider the denoising problem described in Section 2 with a fixed true
signal x. Assume the true signal can be represented by K of the M frame vectors in ®.
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Figure 3: Comparison of theoretical noise-fit lower bound to actual noise-fit error with
a random frame.

Let H(T) be the entropy of the subspace selection variable. Assume the ML estimator
is unbiased. That is,

E(ipmL | z] =z
Then, the MSE is bounded above by

e(z) < 0? (1 — 2~ HDIr (1 - %)) : (11)

Proof: See Appendix B.

Theorem 2 requires that the ML estimate is unbiased. Unfortunately, this does
not generally hold. The frame-based estimator may project to the wrong subspace
and lose signal energy. These incorrect projections will result in an estimator whose
average value is in general slightly smaller than the true signal. The theorem therefore
represents an approximation of the actual situation and is useful when combined with
an estimate of the bias error with sparse approximation.

This theorem requires the entropy H(T'). Evaluation of H(T') may be problematic;
however, we can bound the entropy in two simple cases.

First, since T takes on values in {1, 2, ..., J}, H(T) is upper bounded by log, J.

This gives the bound
e(z) < o2 (1 —Jur (1 - %)) . (12)

10



As a second bound, suppose we know pcorr, the probability that the estimator
selects the correct subspace. Then, the maximum entropy for T occurs when T has
probability peorr On the correct subspace and uniform probabilities (1 — peorr)/(J — 1)
on the remaining J — 1 subspaces. Thus, the entropy is upper bounded by,

1 J-1
= H(peorr)+ (1 — Peorr) logy(J - 1),

where H(p) is the binary entropy

H(p) = —plogyp — (1 — p)logy(1 — p).

Substituting this in (11) gives

e(:z:) < 0-2 (1 _ 2—H(Pcorr)/7‘(J — 1)_(1—Pcorr)/" (1 — ]_}5.)) . (13)

1-—~ 1—
H(T) < —pcorrlogs Peorr — (J — 1)%@ log, (-——( p °°"))

The bound shows that as pcorr — 1, €(z) — 02K/N, which is the result when denoising
to a single subspace.

4 Large Random Frame Analysis
4.1 Random Frames

The expression for the MSE in the previous section is, in general, difficult to evaluate
for an arbitrary frame. In order to obtain more concrete results, in this section, we
consider large random frames where the analysis is significantly simpler.

Specifically, we assume that the frame & consists of a large number of independent
random vectors ¢; uniformly distributed on the unit sphere. We will compute the
MSE averaged over the random frame.

As before, we will assume that the true signal z is represented exactly by a linear
combination of K of the M frame vectors. We will take ||z|| = N so that the SNR is

ll=I? N _1

TEE[dP] T No? oF

4.2 Probability of Correct Subspace Selection

We first compute the probability of selecting the correct subspace using the ML es-
timator. To state the main result, we need the following function. For a,b,7 > 0

define -
st = [ oo (- (1) ) o (19

11
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Figure 4: Function ¢(a,b,7) for b =2 and various values of a.

where

pr(u) = P T(r)u""le~™ (15)
and I'(r) is the Gamma function [36]). The function ¢ can be computed numerically
as a single line integral. The following lemma describes the function qualitatively.

Lemma 1 For the function ¢(a,b,r) defined above:
(a) For all a,b and r, ¢(a,b,r) € [0,1].

(b) Forallr, ¢(a,b,) monotonically decreases in a and b with ¢(a,0,7) = $(0,b,7) =
1, and

bl-;lfgo ¢(a1 b) T’) = 0) all»ngo ¢(a, b, 'I“) = (.

(c) In the limit as r — oo, ¢(a,b,T) is a step function. That is, for all a and b,

. _J 1, ifab<1+a;
rli.“é‘od’("’b”")‘{ 0, ifab>1+a.

To illustrate the function, Fig. 4 shows ¢(a,b,7) as a function of a for b = 2 and

7 = 10 and 100. As can be seen, ¢(a,b,7) monotonically decreases in a. Also, the
transition from 1 to 0 becomes sharper at the higher value of r.

12



Now consider the frame problem described earlier. Let

N-K N-K [ J ]‘/'
T= — y — ) N

2 =N O ek o

where B(p, g) is the beta function [33]. We now state the main result of this section.

Theorem 3 For sparse approxrimation with respect to a random frame, if M > K
and N > K, the probability of selecting the correct subspace is given by.

Pcorr = ¢(a02,.C, T). -
Proof: See Appendix C. v

The result shows that, for large random frames, the probability of selecting the
correct subspace can be computed with a single line integral. Also, the asymptotic
expression in Lemma 1(c) shows

lim Pogry = { 1, if aCa: <14 aaz;
r—00 0, ifaCo*>1+ao”.
If we define the critical SNR,
Yerit = a(C - 1)’
the asymptotic expression can be rewritten as

: _J 1 > et
rlggopcorr - { 0, if Y < Yerits .
where v = 1/0? is the SNR. Thus, for large r, there is a critical SNR with a simple
expression where the probability of correct subspace selection transitions from 0 to 1.

4.3 MSE Bound

The previous subsection estimates the probability pcorr that the ML estimator selects
the correct subspace. However, in general, we are interested in the MSE of the esti-
mator. One simple method to estimate the MSE is to substitute the estimate for pcorr
into (13). However, there are two difficulties with this approach.

First, as stated earlier, an assumption in Theorem 2 is that the ML estimator is
unbiased. Actually, the ML estimator (1) is only approximately unbiased.

Secondly, Theorem 2 technically holds for a specific frame with a specific selection
probability peorr. To obtain the correct expected MSE, for each frame, we should
compute its peorr, evaluate the MSE in Theorem 2, and then average over all the
frames. However, peorr in Theorem 3 is the selection probability already averaged over
the frame. Substituting the average selection probability pcorr into the MSE expression
is not the same as averaging over the MSEs.

Nevertheless, we will show in the numerical experiment in the next subsection that
the simple substitution of peorr into (13) appears to give a reasonable estimate for the
MSE. However, the theoretical basis for this requires further investigation.

13
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Figure 5: Average probability of selecting the correct subspace with N =10, K = 1
and random frames of various sizes M. The measured selection probability is compared
against the estimate in Theorem 3.

4.4 Numerical Simulation

As a simple numerical experiment, we evaluated the estimates of the previous subsec-
tions with signal dimension N = 10. In the space R", we generated various random
frames consisting of M vectors uniformly distributed on the unit sphere. The frame
size M was varied from 1 to 1000. The true signal z is taken to be one of K =1 of
the M vectors. Noise d was added at an SNR of 3 dB, and the maximum likelihood
estimator %577 was computed as described in Section 2.

Fig. 5 shows the average probability that the estimator selects the correct subspace.
For each frame size M, the probability is averaged over 500 random frames. Also
plotted is the theoretical error probability from Theorem 3. The figures shows that as
M increases the theoretical value matches the simulated value closely.

Fig. 6 shows the average noise reduction for the same problem. Noise reduction is

defined as E ) )
—101og;o [——"”;,j’;" d ]

which represents the error normalized by the original noise value. Also plotted in
Fig. 6 is an estimate of the noise reduction based on substituting the subspace selec-
tion probability from Theorem 3 into (13). As stated in Section 4.3, this substitution
is not theoretically correct due to variation of the selection probability. Also, Theorem

14
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Figure 6: Average noise reduction with N = 10, K = 1 and random frames of various
sizes M. The measured selection noise reduction is compared against a theoretical
value.

2 does not quite apply since the estimate &psr is not unbiased. To account for this
fact, we measured the bias error in the simulation and added it to the MSE from The-
orem 2. With this modification, the theoretical noise reduction matches the measured
value within 0.5 dB. However, properly accounting for the bias error needs further
investigation.

15



A Proof of Theorem 1

There are at most J possible projections in Pg. Denote the projections by {P; }3-’=1,
and let {R; }3’=1 be the corresponding range spaces.
The minimization in (8) is given by

1 .
Doin = Elld - dI? . (17)

where X )
d = Prd, where T = argmax || P;d]|. (18)
J

Here, T is the index of the subspace with the most energy of d. The minimization is
given by the projection of d onto that subspace.

Now, fix any positive real number n. For each j € {1, 2, ..., J}, let Q; be an
optimal n-bit quantizer of Prd conditional on T = j. Define the quantizer Q by

Q(d) = Qr(Pr(d)).

That is, Q projects d to the K-dimensional space with the greatest energy and then
quantizes the projection of d within that space.

Now, for each j, the quantizer Q; quantizes points in R;, the range space of P;. We
can assume that for all z € R;, Q;(z) € R;. Therefore, for all d, P;(d)—Q;(P;(d)) € R;j,
and hence P;j(d) — Q;(P;(d)) is orthogonal to d — Pr(d). Therefore,

ld—Q@)I* = lld~ Pr(d)l +IIPr(d) — Qr(Pr(d))|>.

Using (17),
NDgin = E|ld - Q(d)|” - E||Pr(d) - Q(Pr(d))||%. (19)

We now bound the two terms on the right hand side of (19).

For the first term, the quantized point Q(d) can be described by log, J bits to
quantize the index T plus n bits for the point Qr(Pr(d)). Therefore, Q(d) can be
described by a total of n+log, J bits. The term E||d— Q(d)||? is the average distortion
of the quantizer @ on the source d. Since d is an N-dimensional jointly Gaussian vector
with covariance 021, the distortion is bounded below by the distortion-rate function [8]
to give

Elld - Q)| > No?2-2n+logz )N, (20)

For the second term on the right hand side of (19), let
of = E(IF@I° | T =j).

Now, in general, the distribution of P;(d) conditional on T' = j is not Gaussian.
However, the distortion achievable for any distribution is always less than or equal
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to the minimum distortion for a white Gaussian source with the same total variance.
Consequently, for every j, the quantizer Q; can attain a distortion for a K-dimensional
white Gaussian source with total variance o‘?. Therefore,

E (1B (d) - Qi(P@)IF | T=3) < ol2 /K. (21)
Also, observe that
Eo} = E|Pr(@)? = E|d|? - Eld— Pr@)|? = No>~D.  (22)
Substituting (22) in (21), |
E (I1Pr(d) - Qr(Pr@)I?) < (No? - D)2~V (23)

Then, substituting (20) and (23) in (19) we obtain

(24)

ND > No? (2-2(n+log2 J)/N _2-—2n/K)
min = o

1 — 2-2n/K

Since this bound must be true for all n, one can maximize with respect to n to obtain
the strongest bound. This maximization is messy; however, maximizing the numerator
is easier and gives almost as strong a bound. The numerator is maximized when

_ NKlog (§J%Y)
"= Rlog2)(N -K)’

and substituting this value of n in (24) gives

K/(N-K) N/(N-K)
e (&) - ()"

NDpin > No*-J- K N/(N-K)
1- (%)

- K/(N-K N/(N-K
> No?.J-lr. ((%) ) )_(%) /( )).

Dividing by N completes the proof.

B Proof of Theorem 2

The proof is a slight modification of the proof of Theorem 1. Fix a signal z € RY,
The estimate %7z is the projection of the noisy signal y onto the subspace with index
T. Thus, conditional on T,

E((y— Zm1)'EmL | T,z) = 0.
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Taking the expectation over T, we obtain the orthogonality relationship
E((y - &mL)'EmL | 2) = 0.

Also, since we have assumed that the estimator £ is unbiased and the noise d has
Zero mean,

E(y—2mL)z | z)=E(z+d—-2yL)z | z)=2"z-2'z=0.
Combining these orthogonality relationships,
E[(y—&mL) (z—EmL) | 2] =0,
and therefore,

E|lz-2mel*|z] = E[lly-zl?|z] - E[lly — Emel® | 7]
E [lldI?] - E[lly - #acl? | 2]
= No?-E[lly-zmcl®| 2], (25)

so we need to evaluate the expected difference ||y — £z ||2. If we define
d=z—% ML

then

a

y—imr=z+d—-3Iyr=d—d.

Now, the expected error E [lld —d|? | x] can be lower bounded using analysis similar
to Theorem 1. Also, the bound can be tightened by replacing the log, J bits with the

entropy H(T). Performing these computations, we obtain that for large N and small
K/N,
E(ly— 2l | o) =E [Ild — dI? | a] 2 No®2~#D/7 (1 - K/N).  (26)
Substituting (26) into (25) shows
e(z) = %E lle - &aeel? | 2] = o (1= 27HO/r (1 - K/N))

C Proof of Theorem 3

We begin with two lemmas. The first describes the distance between a unit vector and
a single, random K-dimensional subspace.
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Lemma 2 Suppose z € RN with ||z|| = 1. Consider a subspace V of RY spanned by
K random vectors uniformly distributed on the unit sphere, and let p € [0,1] be the
distance squared from z to V.. Then, for smalle,

Prip<e) = WlK—-—/z—)e

r

where 1 is defined in (16) above.

Proof: Since the distribution of the random vectors is spherically symmetric, we can
consider the subspace V fixed and take z to be a random vector uniformly distributed
on the unit sphere. One way to create such a random vector z is to take z = w/|jwl|,
where w is unit variance, zero-mean Gaussian white noise. Let w;,...,wxg be the
components of w on V, and wg41,...,wn be the components in the orthogonal com-
plement to V. If we define

K N
X=Zw,?, and Y= Z w?,
i=1 i=K+1
then the distance squared from z to V is
p=Y/(X+7).
Now, define
U= Y/(N - K)
- X/K
Thus, p < € if and only if
Y P €

U=a_X = a(l-p) < a(l—¢)’

where a = (N — K)/K. Since Y and X are the sums of N — K and K independent
Gaussians, U has the F distribution with N — K and K degrees of freedom [35].
Therefore U has the probability density function

a’u"™— 1

B(r, K/2)(1 + au)N/2’

fu(u) =

For small u, the probability density function simplifies to

r

a r—
o~ g xm”
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Thus, for small ¢,

_c
a(l —¢)
1 T

e/a
= ‘/0 fU(u)du ~ me .

The next lemma describes the minimum di'stance. between a unit vector and the
closest of the J subspaces spanned by K vectors in the random frame .

Pr(p<e) = Pr (U < ) ~ Pr(U < ¢/a)

Lemma 3 Let z € RV with ||z|| = 1, and consider the random frame ® in the state-
ment of the theorem. Let ppin be the minimum distance squared from z to all the
subspaces spanned by K of the M vectors in ®. If M > K and ¢ is small,

Pr(pmin > €) = exp (—(Ce)"),
where J and C are defined in (16).

Proof: There are J subspaces spanned by K of the M vectors in ®. Let p; be the
distance squared from z to the subspace with index j for j = 1, 2, ..., J, s0 pmin is
the minimum of these distances. Since M >> K, we can assume that distances p; are

independent. Now, if we set )

" rB(r,K[2)
and apply the previous lemma, we obtain

Co

J
Pr(pmin >€) = H Pr(p; > ¢)
j=1

= [1-Co€’)! ~ exp(—CoJe") = exp (—(Ce)"),

where we have used the fact that J is large.

Proof of Theorem: Let V be the true subspace. That is, Vj is a subspace
containing the true signal z and spanned by K of the frame vectors in ®. Let Dy
be the distance squared from the noisy signal y to Vp, and let Dp;, be the minimum
distance squared from y to the closest of the J subspaces spanned by K vectors in F.
The estimator will select the correct subspace when Dyin > Dg. Therefore,

Peorr = Pr(Dmin > D). (27)

To compute the probability in (27), let dp be the K-dimensional component of d
in Vp, and let d; be the N — K dimensional component orthogonal to V. Therefore,
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Dy, the distance squared from y to Vp, is ||d1]|?. Since the noise d has variance o2 per
dimension,

Do = |di|* = o*U
where U is a x? variable with N — K = 2r degrees of freedom. If we let Uy, = U/(2r)
be the normalized x? variable,
Dy = (N — K)o?Uy,. (28)
Also, since N > K, ||di|| > ||do||. Therefore,

lyl* = llz +d|* = l|lz+doll? + llda |I*
~ |lz|® + |dil|* = N + Do.

Let z = y/|ly|| and pmin be the minimum distance from z to the closest subspace
spanned by K vectors in the random frame ®. Since [|2]| = 1, the distribution of pmin
is described by Lemma 3. Also, since y = ||y||2, the squared distance, Dp;, from y to
the closest subspace is given by

Dpin = ||y"2Pmin = (1 + Do) pmin-

Therefore, applying Lemma 3 and equations (27), (28) and (29),

D
?wrr = Pr(Dpin > Do) =Pr (Pmin > T+_0D—o)

| (N = K)o2Uyr
= Pr (""‘"‘ > N+ (N = K)oUs

2
ac“Usr
= Pr (”'““‘ 17 aa2U2,)

- B 3 ac2CUs, T)
= Lexp 1+ ac2Us,

Now, it can be verified using the formulae in [34] that the normalized x? variable U,
has a probability density function p,(u) in (15). It follows that

o0 2 r
Dcorr =/ p,-(’u) e€xp (" ( ag”Cu ) ) = ¢(¢10’2,C, T)'
0

1+ ac?u

This completes the proof.
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