
Approaches to Bin Packing with Clique-Graph Conflicts

Bill McCloskey
billm@cs.berkeley.edu

AJ Shankar
aj@cs.berkeley.edu

Report No. UCB/CSD-5-1378

April 2005

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Approaches to Bin Packing with Clique-Graph Conflicts

Bill McCloskey
billm@cs.berkeley.edu

AJ Shankar
aj@cs.berkeley.edu

April 2005
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, CA 94720

Abstract

The problem of bin packing with arbitrary conflicts was introduced in [3]. In this paper, we consider a
restricted problem, bin packing with clique-graph conflicts. We prove bounds for several approximation
algorithms, and show that certain on- and off-line algorithms are equivalent. Finally, we present an
optimal polynomial-time algorithm for the case of constant item sizes, and analyze its performance in
the more general case of bounded item sizes.

1 Introduction

The standard bin packing problem (without conflicts) has been studied for some time. Coffman, Garey,
and Johnson [1] present a survey of current results. A number of simple approximation algorithms exist
for standard bin packing. A generalization of this problem, called bin packing with arbitrary conflicts
(BPAC) in this paper, was treated by Jansen and Öhring [3]. In BPAC, certain items cannot be packed
into the same bin. Conflicts are represented by edges in a graph over the items. In this paper, we analyze
a special case of BPAC involving conflict graphs consisting only of cliques (called clique-graphs here); we
call this problem bin packing with clique-graph conflicts (BPCC), or, informally, the mix-tape problem.

Formally, the inputs to the problem are a set of items V with weight function w, a conflict clique-
graph G = (V, E), and a number m. A valid solution is a partition of items into bins B1, . . . , Bm, with
bin Bi containing items Bi,1, . . . , Bi,bi , satisfying:

∀i.

biX

j=1

w(Bi,j) ≤ 1

∀i, j, `. {Bi,j , Bi,`} 6∈ E

1.1 Motivations

The BPCC problem has many interesting applications. For example, distributed systems such as
SETI@Home must dispense work items to clients. Clients can be considered bins that contain work
items. Each work item requires some amount of processing time. A client will contribute only a fixed
number of processor cycles per day. Assume that work items that are correlated (such as signals from
the same region of the sky) can be verified against each other. To avoid tampering, the server would like
to distribute the signals so that no client processes more than one signal from the same region.

Or, consider the problem of seating guests at a large corporate gathering. In order for a guest to
make as many new acquaintances as possible, members of the same office should not be seated together.
Of course, each table can only seat a certain number of people. In this case, the problem includes not
only clique-graph conflicts, but also constant item sizes. We give an exact polynomial-time solution to
this problem later in this paper.

A third problem concerns the use of digital music, which is exploding in popularity. It is becoming
common for users to store tens or hundreds of gigabytes of music on their computers. But many disc-
based music players require songs to be apportioned into 650 megabyte CDs (or mix-tapes). Users would

1

like to create CDs with a varied selection of songs, where no two songs from the same album appear on
a CD. Combined with the 650 megabyte limitation, this problem fits nicely into the BPCC formulation.

Finally, BPCC is applicable to the problem of sharing music over a peer-to-peer network. For legal
reasons, no one user can store more than a single fragment (say, 1 minute) of a song. Thus, songs must
be distributed among the clients so that every song is stored somehwere, and no two fragments of the
same song are stored on the same client. Here, clients are bins, song fragments are items, and songs
are cliques. As in the corporate gathering problem, since fragments are of fixed size, we can solve this
problem exactly in polynomial time.

1.2 NP-completeness

BPCC is in NP. A valid certificate is an assignment of items to bins. A polynomial-time verifier can check
that the assignment uses at most m bins, that no bin overflows, and that no bin contains conflicting
items. A reduction from standard bin packing suffices to show that BPCC is NP-hard. On input S, a
set of items for bin packing, the reduction creates an empty conflict graph, G = (S, ∅), since naturally
BPCC without conflicts is equivalent to bin packing.

2 Naive Approximations

We present the analysis of several naive algorithms adapted from standard bin packing algorithms. We
let k denote the size of the largest clique in the conflict graph.

2.1 Naive Next Fit

Next fit is the most elementary bin packing algorithm. In this algorithm, one bin is designated the
“active bin.” New items are always placed in the active bin. If the current item does not fit in the active
bin, a new bin is created and designated the active bin. According to [1], the number of bins used by
the naive next fit algorithm, ωNF , satisfies

ωNF ≤ 2 · ω∗ − 1

where ω∗ is the optimal number of bins.
This algorithm generalizes to BPCC. We call the generalization naive next fit (NNF). The condition

that tests if an item fits into a bin must additionally check that the item does not conflict with any item
in the bin. Unfortunately, Jansen shows that the algorithm has arbitrarily bad behavior (i.e. O(n)) for
the BPAC problem; we prove that the same fact holds true even for BPCC.

Theorem 1 Let ωNNF be the number of bins required by the naive next fit algorithm on an instance I
of BPCC. Let n be the number of items in I. Let ω∗ be the optimal number of bins required by I. Then

ωNNF = O(n) · ω∗

and the bound is tight.

Proof. Our notation is as follows. A circle denotes a clique. The jth element of clique Ci is written ci,j .

A packing of items into bins, such that the ith bin contains elements Bi, is written [B1, . . . , Bk]. For a
given n, consider the input instance below.

size 2/n

2 items

size 2/n

2 items

size 2/n

2 items . . .

1 2 n/2C C C

Let the items be processed in order of the bins they are in: c1,1, c1,2, c2,1, c2,2, . . . , cn/2,1, cn/2,2. The
optimal packing uses two bins, each with one item from each clique:

[{c1,1, . . . , cn/2,1}, {c1,2, . . . , cn/2,2}].

2

However, next fit creates a new bin every time it hits a conflict, resulting in the following assignment

[{c1,1}, {c1,2, c2,1}, . . . , {cn/2−1,2, cn/2,1}, {cn/2,2}].
This assignment uses n

2
+1 bins. Thus ωNNF = n

2
+1, while ω∗ = 2, which yields the ratio n

4
+ 1

2
= O(n).

�

2.2 Naive First Fit

First fit is another elementary bin packing algorithm. For each item to be processed, the algorithm
iterates through the list of existing bins. It places the item in the first bin in which it will fit. If the
item does not fit in any existing bins, then the item is placed in a new bin. As before, we generalize
the algorithm to skip bins with conflicts, and we call it naive first fit (NFF). Like NNF, NFF has O(n)
behavior for BPAC; however, we show below that it performs much better for BPCC.

Theorem 2 Let ωNF F be the number of bins required by this naive first fit algorithm on an instance I
of BPCC where the largest clique has k items. Let ω∗ be the optimal number of bins required by I. Then

ωNF F ≤ 2 · ω∗ + k

Proof. Let L be the sum of the sizes of the items. Assume that all but k bins produced by the NFF
algorithm are at least half full (proved below). Since they each contribute at least 1/2 to the sum L,
L ≥ 1

2
(ωNF F −k). In addition, ω∗ ≥ L, as there must be enough bins to hold all of the items. Therefore,

ωNF F ≤ 2 · L + k

≤ 2 · ω∗ + k

Now it is necessary to prove that at most k of the bins are less than half full. Assume, for purposes
of finding a contradiction, that there are at least k + 1 bins, B1, . . . , Bk+1, less than half full, ordered
as they were created by the NFF algorithm. Let bi be the number of elements in bin Bi. Let Bf be
a bin with the fewest number of elements. Consider an element in the bins Bf+1, . . . , Bk+1. It could
fit into Bf , since all of the bins are less than half full; therefore it must conflict with some element in
Bf , or else NFF would have placed it there. So, the total number of conflict edges between elements
in Bf+1, . . . , Bk+1 and elements in Bf is

Pk+1
i=f+1 bi. Let x be an element of Bf that has at least the

average number of conflicts with elements in Bf+1, . . . , Bk+1,
Pk+1

i=f+1 bi

bf
.

As x was placed in Bf , NFF could not have placed it in any of the previous bins. Since all Bi are at
most half full, x must have conflicted with an element in each of the bins B1, . . . , Bf−1. This accounts
for f − 1 additional items in x’s clique. Therefore, including x itself, the size of x’s clique must be at
least

1 + (f − 1) +

Pk+1
i=f+1 bi

bf

= f +

k+1X

i=f+1

bi

bf

≥ f +

k+1X

i=f+1

1 since bf is minimal

= f + (k + 1)− (f + 1) + 1

= k + 1

However, the largest clique has k nodes. This is a contradiction, meaning that the number of bins that
are less than half full is at most k. �

Oh and Son [4] prove an alternative bound for NFF:

Theorem 3 ωNF F ≤ 1.7 · ω∗ + 2.19 · k
Depending on the value of k, either Theorem 2 or Theorem 3 gives a tighter bound.

3

3 Graph Coloring-Based Approximations

In bin packing with conflicts, two nodes connected by an edge in the conflict graph cannot be placed in
the same bin. Analogously, in the graph coloring problem, two nodes connected by an edge cannot share
the same color. In fact, a correspondence exists between colors and bins. Any k-coloring of the conflict
graph reduces the problem to k standard bin packing instances, since items of the same color can be
packed without constraint [3].

In fact, the conflict graph coloring approach is comprehensive: any arbitrary packing is achievable
by first coloring the conflict graph in a particular way and then independently solving conflict-free bin
packing for each color. If the arbitrary packing uses bins B1, . . . , Bm, then the items of bin Bi are given
color i. The conflict-free algorithm may then pack the items of color Bi using one bin. This implies
that, for any optimal bin packing, a coloring exists such that when each color set is independently solved
optimally, the result is no worse.

It is interesting to note that, among minimal colorings of k colors, some colorings result in better
packings than others even when item sizes are the same. Consider a graph with three cliques, A, B, C,
where A has three items, B has two items, and C has one item. In this case, a minimal coloring uses
k = 3 colors. Two possible minimal colorings are shown here.

A

3 items

colors X,Y,Z

B C

colors X,Y

2 items 1 item

color Z

A

3 items

colors X,Y,Z

B C

colors X,Y

2 items 1 item

color X
size 1/2 size 1/2 size 1/2

size 1/2size 1/2size 1/2

(a)

(b)

In coloring (a), four bins are required to pack all of the items: [X : {a1, b1}, X : {c1}, Y : {a2, b2}, Z : {a3}]
(the notation has been extended to allow each bin to have a color). In coloring (b), however, only three
bins are required: [X : {a1, b1}, Y : {a2, b2}, Z : {a3, c1}]. Hence, finding a minimal coloring is not
sufficient to solve the BPCC problem.

Furthermore, there may be no minimal coloring such that each item in the same bin of an optimal
packing has the same color. For example, consider the conflict graph containing three copies of K2,
called A, B, and C, each with items of size 1/2. There is a packing [{a1, b1}, {a2, c1}, {b2, c2}] using three
bins. However, any 2-coloring of the conflict graph splits the items into two groups of three items each.
Each group requires two bins, so any packing needs a total of four bins. Therefore, any 2-coloring of the
conflict graph results in a suboptimal packing.

Further investigation of the effect of different coloring strategies on BPCC is future work.

3.1 Standard Algorithms

In this section we analyze modifications of several standard bin packing algorithms that require the
conflict graph to be precolored. These techniques were introduced by Jansen and Öhring [3]. Of course,
all instances of BPCC can be colored optimally in linear time, since each k-clique requires k colors. Once
the graph has been colored, standard techniques are employed to pack each color separately. Jansen’s
results carry over to our work with a few modifications.

Next Fit Once the graph is colored, we run ordinary next fit, introduced in Section 2.1, on each color.
The following theorem is proved by Jansen and Öhring [3] for the BPAC problem.

Theorem 4 (Jansen and Öhring) Let ωGNF be the number of bins used by the next fit algorithm with
graph coloring on BPAC. It satisfies ωGNF ≤ 3 · ω∗.

We show that this bound is asymptotically tight for BPCC. Consider the following conflict graph.
The dashed circles represent collections of isolated nodes, each node of which is a trivial clique of size 1.

4

U UC 1 2
size size 3 size 1/2− /2δ δ δ

n items 2n items 2n items

Let n be large. Let δ = 1
6n

. The optimal packing places one element from C with two elements from U2,
filling n bins. Then it uses a final bin for all of the elements of U1:

[{c1, u2,1, u2,2}, {c2, u2,3, u2,4}, . . . , {cn, u2,2n−1, u2,2n}, {u1,1, u1,2, . . . , u1,2n}].
A minimal coloring for this graph, using n colors, assigns each element of C its own color and all the
elements of U1 and U2 the same color as, say, cn. Given this coloring, and the ordering for the large color
set u2,1, u1,1, u2,2, u1,2, . . . , u2,2n, u1,2n, cn, next fit uses 3n− 1 bins:

[{c1}, {c2}, . . . , {cn−1}, {u2,1, u1,1}, {u2,2, u1,2}, . . . , {u2,2n, u1,2n, cn}].
So in this instance next fit uses ωGNF = 3n − 1 bins, and the optimal packing uses ω∗ = n + 1 bins. In
the limit,

lim
n→∞

ωGNF

ω∗
= lim

n→∞
3n− 1

n + 1
= 3.

First Fit First fit was introduced in Section 2.2. The same algorithm can be applied to the set of
items of a particular color.

Theorem 5 (Jansen and Öhring) Let ωGF F be the number of bins used by the first fit algorithm with
graph coloring on BPAC. It satisfies ωGF F ≤ 2.7 · ω∗.
Jansen [3] gives a set of instances that asymptotically achieve the 2.7 bound and use a clique-graph.
Therefore, this algorithm is unable to take advantage of the specialized BPCC graph, and the BPAC
bound holds.

First Fit Decreasing In this algorithm, the items of a given color are sorted in non-increasing size.
Then they are placed using first fit. Clearly first fit decreasing for conflict graphs (GFFD) can do no
worse than GFF. However, Jansen provides a set of instances that asymptotically achieve a ratio of ∼
2.691 using a clique-graph. It is possible, though not proven, that the 2.7 bound is tight for first fit
descending as well.

3.2 Smarter Coloring

As indicated at the beginning of this section, there are good and bad minimal colorings with respect
to optimal packings. One observation is that it is useless to assign the same color to two items of size
greater than 1/2, since they cannot possibly be placed in the same bin. A strategy that takes advantage
of this, GFF- 1

2
, simply assigns distinct colors to the large items first, then colors the rest of the items as

usual.
Jansen and Öhring prove that this strategy succeeds for BPAC.

Theorem 6

ωGF F− 1
2 ≤ 2.5 · ω∗

As before, the instances used by Jansen and Öhring to prove that the 2.5 bound is tight also have
clique-graphs, so this bound is tight for BPCC as well.

3.3 Equivalence of Online and Offline Algorithms

In the general case, NFF behaves asymptotically badly [3]. However, when the conflict graph is restricted
to cliques, NFF performs as well as GFF. In fact, the two algorithms are equivalent, even though GFF
is an offline algorithm.

5

Theorem 7 Let ωNF F (π) be the number of bins used by the naive first fit algorithm for a particular
ordering of the input items, π. Similarly, let ωGF F (π, f) be the number of bins used by first fit with graph
coloring, with ordering π and coloring f . Then

∀π. ∃f. ωGF F (π, f) = ωNF F (π)

Proof. We show that NFF’s online placement of items into bins is equivalent to first minimally coloring
them and then running FF on each color in the same order that they were given to NFF.

We infer a coloring from NFF’s item placement as follows. In placing a given item x, NFF does one
of three things:

1. It puts x into an existing bin B

2. Although there exists a bin B with which x does not conflict, it must create a new bin, because x
does not fit in B

3. x conflicts with all existing bins, so NFF creates a new bin for it

For cases 1 and 2, color x the same color as the items in B. For case 3, color x with a new color. Notice
that a new color is introduced only if an item could not be given any existing color. Such a graph coloring
algorithm is minimal for clique graphs, since the new item must belong to a clique of size greater than
the current number of colors. It is also clear that in cases 1 and 2, NFF packs the items in the same
order as FF does on each color. Therefore NFF and GFF are equivalent. �

A similar result follows for GFFD.

Theorem 8 ∀π. ∃f. ωGF F D(π, f) = ωNF F D(π)

Proof. Since NFFD processes the elements in sorted order, all the items of a given induced color are
placed in the bins in sorted order, just as GFFD would do. The rest of the proof is the same as above.
�

4 Restricted Problems

4.1 Constant Item Sizes

BPCC with constant item size δ can be solved optimally in polynomial time as follows. Each bin holds
b 1

δ
c items. To fill a bin, the algorithm picks off an independent set of size at most b 1

δ
c from the conflict

graph by selecting one item from each of the b 1
δ
c largest cliques. If there are fewer than b 1

δ
c cliques, the

algorithm takes from only as many as are available. One independent set is removed in each stage of the
algorithm.

Claim 1 If two cliques ever differ in size by at most 1 at any stage of the algorithm, then their size
differs by at most 1 at any later stage.

Proof. At any later stage, if the two cliques do differ in size by 1, then the algorithm will not select an
item from the smaller clique without selecting an item from the larger clique, because it preferentially
chooses larger cliques. �

Claim 2 For any three cliques A,B, C, if at any stage of the algorithm A has the same size as B, and
at any (potentially different) stage B has the same size as C, then after the later of these two stages A
and C will never differ in size by more than 1.

Proof. Consider the later of these two stages, say without loss of generality when B is the same size as
C. At this point, A differs from B by at most 1 due to Claim 1. Therefore A differs from C by at most
1 at that point as well, and the previous argument holds for A and C. �

Theorem 9 The constant item size algorithm produces an optimal packing in polynomial time.

Proof. Choose a clique C of maximal size. It has k items. If the algorithm selects an item from C at
every stage, then there are k stages, so k bins are produced. This is clearly optimal.

If, however, there is some stage at which the algorithm does not select an item from C, then there
must be b 1

δ
c other cliques of the same or greater size at that stage; call them T . Since C was initially

6

largest, each of the cliques in T must have been the same size as C at some stage. If the number of
cliques ever drops below b 1

δ
c, it must happen after this stage, since T has at least b 1

δ
c of them.

If the number of cliques never drops below b 1
δ
c, then the algorithm fills all bins completely, so it

must be optimal. Otherwise, at that point, one of the cliques D ∈ T ∪ {C} must have been eliminated.
If D = C, then by Claim 1 all remaining cliques must be of size 1. Since there are fewer than b 1

δ
c of

them, the algorithm will optimally place them all into the same bin. Otherwise, D ∈ T and so we know
that D must have had been the same size as C at some point, meaning that C now has size at most 1;
furthermore, since C was the largest clique and now has size 1, it must have been the same size as every
other remaining clique at some (other) point. By Claim 2, then, since D is of size 0, every other clique
must be at most size 1, and the algorithm will place them all into the same final bin. Either way, the
algorithm will produce a packing with only one bin of fewer than b 1

δ
c items, the final one. This packing

is clearly optimal.
The algorithm needs to maintain a sorted list of cliques, which can be done with a heap. A constant

number of items are removed at each stage. Removing a clique and reinserting it into the heap with a
smaller size takes O(log n) time, so the total running time is O(n log n). �

4.2 Bounded Items Sizes

We considered the problem where item sizes vary within a given range [δ − γ, δ]. The constant size
algorithm can be used to approximate a solution.

Theorem 10 The constant size algorithm, run on items of size ∈ [δ − γ, δ], uses ωCONST ≤ ω∗
1−δ−γ/δ

bins, assuming γ ≤ δ(1− δ).

Proof. If ω∗ = k, then, as above, the algorithm produces an optimal packing. Otherwise, when the item
sizes are constant, each bin except the last contains b 1

δ
c items and wastes at most δ space. Reducing the

item sizes by up to γ additionally wastes at most γ space per item. Thus the total waste per bin is at
most δ + γb 1

δ
c.

Let L be total size of the items. Each bin must be filled to height at least 1− (δ + γb 1
δ
c) ≥ 1− δ− γ

δ
.

Therefore, by summing the total sizes in the bins,

ωCONST · (1− δ − γ

δ
) ≤ L

ωCONST · (1− δ − γ

δ
) ≤ ω∗ since L ≤ ω∗

ωCONST ≤ ω∗

1− δ − γ/δ

In this proof, we require that γ ≤ δ(1− δ) so that the last step does not reverse the inequality. �
As an example, suppose we would like to get a 2-approximation for some δ.

1

1− δ − γ/δ
≤ 2

γ ≤ δ(1/2− δ)

δ − γ ≥ δ(1/2 + δ)

In the digital music problem, a likely value of δ is 1/10 (meaning that no song is longer than 1/10 of an
album). The minimum length that any song can be is δ − γ = 6

10
δ = 3

50
. So, for a set of fifty minute

albums, if all songs are between three and five minutes, a 2-approximation of the optimal packing can
be achieved in polynomial time.

5 Conclusion

We have presented a number of approaches to approximating BPCC. The next fit algorithm is subsumed
by first fit. We have proved that the various on- and off-line incarnations of the first fit algorithm are
equivalent, leaving us with four primary options; see Figure 1.

Some of our contributions have built upon those of others. We have proved that the naive next fit
algorithm has asymptotically bad running time for BPCC. We have discovered a bound of 2 · ω∗ + k for

7

Algorithm Requirements Bound
First Fit (NFF) none min(2ω∗ + k, 1.7ω∗ + 2.19k, 2.7ω∗)
Smart Coloring (GFF-1

2) offline 2.5ω∗

Constant Size (CONST) offline; items of equal size ω∗

Bounded Size (CONST) offline; item size between [δ−γ, δ];
γ ≤ δ(1− δ)

ω∗
1−δ−γ/δ

Figure 1: A comparison of BPCC approximation algorithms.

the naive first fit algorithm, and we have proved that naive first fit is equivalent to first fit with graph
coloring. We also have shown that the 3 ·ω∗ bound for the next fit algorithm with graph coloring is tight
even for BPCC.

Finally, we have given an optimal algorithm for the case of constant item sizes, and have shown that
this algorithm performs well when the item sizes have bounded variability.

In the future, we would like to investigate a generalization of this problem in which a constant number
of conflicts per bin are tolerated. Additionally, Jansen [2] gives an APTAS for the specific case where
the conflict graph is d-inductive for constant d. BPCC conflict graphs are (k − 1)-inductive, where k is
the size of the largest clique. We would like to find an APTAS that does not depend on k.

References

[1] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Approximation Algorithms for Bin Packing: A
Survey, pages 46–93. PWS Publishing, Boston, 1997.

[2] Klaus Jansen. An approximation scheme for bin packing with conflicts. In Scandinavian Workshop
on Algorithm Theory, pages 35–46, 1998.

[3] Klaus Jansen and Sabine R. Öhring. Approximation algorithms for time constrained scheduling. In
Workshop on Parallel Algorithms for Irregularly Structured Problems, pages 143–157, 1995.

[4] Yingfeng Oh and Sang H. Son. On a constrained bin-packing problem. Technical Report CS-95-14,
University of Virginia, 3, 1995.

8

	Introduction
	Motivations
	NP-completeness

	Naive Approximations
	Naive Next Fit
	Naive First Fit

	Graph Coloring-Based Approximations
	Standard Algorithms
	Smarter Coloring
	Equivalence of Online and Offline Algorithms

	Restricted Problems
	Constant Item Sizes
	Bounded Items Sizes

	Conclusion

