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Abstract

We present a method for capturing the geometry and parameterization of fast-
moving cloth using multiple video cameras, without requiring camera calibration.
Our cloth is printed with a multiscale pattern that allows capture at both high
speed and high spatial resolution even though self-occlusion might block any in-
dividual camera from seeing the majority of the cloth. We show how to incorpo-
rate knowledge of this pattern into conventional structure from motion approaches,
and use a novel scheme for camera calibration using the pattern, derived from the
shape from texture literature. By combining strain minimization with the point
reconstruction we produce visually appealing cloth sequences. We demonstrate
our algorithm by capturing, retexturing and displaying several sequences of fast
moving cloth.

1 Overview

Cloth modelling is an important technical problem, because people are interesting to
look at and most people wear clothing. As a result, there is a substantial literature on
cloth modelling; only a superficial introduction is possible in space available. Cloth is
difficult to model for a variety of reasons. It is much more resistant to stretch than to
bend: this means that dynamical models result in stiff differential equations (for ex-
ample, see [1, 18]; the currently most sophisticated integration strategy is [5]) and that
it buckles in fine scale, complex folds (for example, see [4]). Stiff differential equa-
tions result in either relatively small time steps — making the simulation slow — or in
relatively heavy damping — making the cloth slow-moving and “dead” in appearance.
Cloth has complex interactions: it collides with itself and rigid objects; it is driven
by forces that are hard to model, including human motion and aerodynamics. Colli-
sions create difficulties because the fine scale structure tends to require large, complex
meshes, and resolving collisions can be tricky; for example, careless resolution of colli-
sions can introduce small stretches (equivalently, large increments in potential energy)
and so make a simulation unstable (for example, see [2]). A summary of the recent state
of the art appears in [11]. While each of these issues can be controlled sufficiently to
produce plausible looking simulations of cloth, the process remains extremely tricky,
particularly for light, strong cloth (e.g. woven silk), where the difficulties are most
pronounced.

[3] show that useful settings of simulation parameters can be estimated by observ-
ing cloth. A natural extension of this strategy is to attempt to motion capture the cloth
itself. This paper reports motion capture of cloth that can capture fast movements in
high detail.

2 Previous work

Motion capturing cloth is fairly clearly a structure from motion problem, and we re-
view that area briefly for useful terminology. The area is now very well understood,
with comprehensive reviews in two excellent books [6, 10]. Multiple views of a rigid
object can be used to obtain a reconstruction of both the geometry of the object, and the
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extrinsic (configuration) andintrinsic (focal length, camera center, etc.) parameters
of all cameras. The standard method involves: identifyinginterest points; usingap-
pearance, epipolar andthree view constraints to build frame-frame correspondences
between these points; obtaining aprojective reconstruction — which yields geome-
try and cameras up to a 3D projective transformation — using one of several current
factorization methods; and then using eithercalibration objects, known geometry, or
auto-calibration — which applies where each view is from a camera with the same
intrinsic parameters — to obtain anupgrade to a Euclidean reconstruction. The recon-
struction and cameras are then cleaned up with abundle adjustment, which minimizes
reprojection error as a function of reconstruction and camera parameters.

Attempts to motion capture cloth probably date to [8], who mark surfaces with a
grid and track the deformation of elements of this grid in the image. This work does
not report a 3D reconstruction, because the pattern of elements is periodic, meaning
that one would have to solve a difficult correspondence problem to obtain a 3D recon-
struction. Guskov, Klibanov and Bryant give views of a 3D reconstruction, obtained by
printing square elements with internal patterns on the surface, estimating local homo-
graphies at each element, then linking these estimates into a surface reconstruction [9].
The homographies tend to be noisy because perspective effects are weak or unobserv-
able at the scale of an element, meaning that considerable work must be done to get
a set of consistent estimates. The resulting surfaces — for a hand, an elbow, and a
T-shirt — are fair but noisy and do not move fast. There is no bundle adjustment. [17]
obtain better surfaces by using optical flow predicted from a deformable model, with
matches constrained to produce the correct silhouette; again, there is no bundle adjust-
ment. [14, 15] use a calibrated stereo pair and SIFT feature matches to build a 3D
model. They observe that one can obtain a parameterization of this model — which
is essential for retexturing — by matching to a flat view of the cloth. Because they
use features with structure at fine spatial scales, there are difficulties caused by motion
blur, which reduce the accuracy of the match. Again, there is no bundle adjustment.

It is not possible to simply drop the successful, well-established recipe for structure
from motion onto cloth motion capture. First, cloth is not rigid. This means that each
frame will need to be reconstructed separately from multiple camera views, which in
turn means that autocalibration from shared camera parameters is not available. Al-
though cloth is not rigid, it is highly resistant to strain. Like rigidity in structure from
motion, strain minimization allows more accurate reconstructions with fewer views
and more noise. Second, while it is clearly useful to print a special pattern on the cloth,
such patterns are too small to serve as useful calibration objects and it is impractical to
insist a calibration object be present. These two points have pushed us to use a novel
camera calibration method. However, we can adopt components of the recipe; first, it is
extremely helpful to concentrate on the frame-frame correspondence problem; second,
bundle adjustment makes major contributions to accurate reconstructions.

2.1 Overview

Our system adopts important components of each of the existing approaches, but dif-
fers by using a novel variant of conventional structure from motion, and by careful
engineering of cloth motion capture as a structure from motion problem. First, we sim-
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plify correspondence by printing cloth with adistinctive pattern, that allows simple
identification of feature points at a relatively fine spatial scale that is robust to mo-
tion blur (section 3). Second, our pattern is chosen to reveal a parameterization of the
cloth reconstruction immediately, without difficulties caused by motion blur. Third,
our structure from motion algorithm involves: adjusting our cameras so that scaled or-
thography is a reasonablelocal approximation; reconstructing using this approximation
— which allows autocalibration using a novel method involving surface normals (sec-
tion 4); and then bundle adjusting to correct for perspective effects (section 5); there
is no projective reconstruction, or upgrade. Finally, by combining reconstruction with
strain reduction, we compute a mesh that is both consistent with the original image
data and simple cloth properties (section 6).

3 Obtaining Features with a Cloth Pattern

We print a pattern on our cloth which is carefully chosen to allow robust observation.
Our pattern is a set of large equilateral color coded triangles where the coloring of
each triangle identifies the location and orientation on the cloth. Each large triangle
consists of a number of small triangles — where the vertices of the small triangles
form a fine grid like structure over the cloth (figure 1). First, elements are highly
distinctive and there is little repetition over a large area of cloth. If the cloth is moving
quickly, some cameras may see only a small fraction of the entire cloth, so that global
correspondence reasoning is impractical. A distinctive element allows reconstruction
even in this difficult case. For small sheets, we use entirely unique elements, but on
larger sheets we distribute unique triangles over the cloth. Second, our pattern offers
a high degree of spatial accuracy, while allowing robust observations during dynamic
sequences. These two requirements are in tension because motion blur tends to obscure
the high frequency information need for accurate localization. Our large triangles are
relatively easy to identify despite motion blur; a deformable template approach then
yields the interior structure (15 vertices of the smaller triangles), in a form of coarse-
to-fine search.

Coarse step — finding large triangles and their normals:We assume that, over
the scale of an individual triangle, perspective effects are negligible; that over the scale
of the whole frame, the effects of perspective are small; and, for the purposes of normal
estimation, that the surface curvature at the scale of a triangle is small. Our search runs
through several steps: threshold the image at different values, perform rough fit of
locations and normals, combine triangles at different thresholds, and finally perform a
nonlinear optimization over triangle parameters. In each case, the current step either
narrows the search space, or provides a better initialization for the next step.

Given variation in lighting and shadows, different regions have greatly varying in-
tensities. A simple threshold for intensity on grayscale images is not enough to find all
of the triangles in these different regions, so we threshold at multiple values. For each
thresholded image, we use morphological operations to find all blobs of the appropriate
size. Because perspective is negligible at the scale of an element, each triangle is im-
aged through an affine transformation that is a function of camera scale, the slant and
tilt of the plane on which the triangle lies, and the in-plane rotation of the triangle. We
obtain a rough estimate of camera scale by assuming some triangles in the sequence
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Figure 1: Our pattern consists of repeating triangles at multiple scales. The large
scale triangle has a unique pattern that can easily accommodate 216 unique elements.
The vertices of the small scale triangles allow for fine sampling of point locations.
The results of our localization code are shown as black dots. Notice how the pat-
terns within the large triangles identify them, and so, through the small triangles, the
vertices, leading to a mesh structure — and so a measurement of the cloth parameter-
ization. Accurate localization drives the reconstruction process — important for both
bundle adjustment (section 5) and strain reduction (section 6).

will be viewed frontally by this camera, so that the largest triangles offer an estimate of
camera scale. We now use the scale estimate to precompute views of each triangle at a
set of different slants, tilts and in-plane rotations. The blobs are compared against this
precomputed set — using the number of mismatched pixels as a cost for the quality of
the fit.

To combine the triangles at different thresholds, we keep the blob in each area of
the image that has the lowest cost. Using the precomputed triangle as a start point, we
run a continuous optimization over scale, slant, tilt and in-plane rotation (we attempted
to optimize over location as well, but found that typical variation was less than a 1/4
pixel and increased convergence time). At the end of this optimization, we have a
model of the triangle location and normal without taking into account local curvature.

Fine step — localizing triangle vertices:For each large triangle, at the fine scale
we extract two quantities: sub-triangle colors and sub-triangle vertex locations. Again,
we work through several steps of processing, moving from high level information to
lower level information, using higher level information to drive the lower level search.
Continuing the refinement, we start with a course deforming model for each triangle,
then assign colors and finally run a fine deforming mesh. Figure 3 contains an overview
of this process.

The course scale deforming model is made up of 4 triangles with 6 unique vertices.
Initializing with the planar triangle defined in the previous section, we allow each of the
6 vertices to move freely, penalizing errors with the thresholded image of the triangle
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Figure 2: Notation for normal ambiguity in two views. There are two simple ortho-
graphic views of the pointP, with normalN; view directions areV1 andV2. The text
shows thatS1 and S2 — ambiguous normals in their respective views — have heads
lying on the same epipolar plane and that an incorrect match of these leads to a recon-
struction of−N.
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taken from the corresponding threshold choice.
Dividing this course triangle mesh into 16 triangles, we have indices for determin-

ing the sub-triangle colors. Image color is a surprisingly poor guide to object color,
as it is affected by shadows, variations in printing, lighting and camera sensitivities.
Because we know the location of the large triangles, we can rectify the color with
a simple strategy. We know that the color pixels are distributed uniformly amongst
red, green, blue and black. We then allocate pixels to colors using a greedy strategy,
rather like round-robin: assign the red most pixel the label red, the green most green,
et cetera, then repeat until no pixels are left. Now, to determine colors for each of the
sub-triangles, we group sub-triangles by known relationships (for instance, the four
sub-triangles in the middle are always the same color), choose a color and work out-
ward. The sub-triangles that are the farthest from the center of the large triangle are the
most problematic. Triangles that deviate from known patterns are thrown out as poor
matches.

We now localize each point using a deformable model. Starting with the course
scale deforming model, we allow all 15 of the vertices of the smaller triangles to de-
form. In many cases, the colors assigned to each pixel in the previous stage are erro-
neous because large variations in lighting across the image create large deviations in
color. Instead of making a hard assignment, for the final matching, we warp the color
space in a heuristic way to estimate likelihood. On a triangle by triangle basis, we take
the raw image values from the original image and warp the color-space to force the
black most pixels to be black, red most pixels to be red, et cetera. In the optimization
over the deformable model, we charge for deviations from expected colors. We take
the final positions of these vertices to be the vertices used for reconstruction.

Implementation note: In several parts of this section, nonlinear optimization is
used to match a model of the triangle to an observation of the triangle. To achieve
reasonable results, it is important that the objective function be continuous. These
objective functions are defined as a sum over pixel differences. To achieve continuity,
the pixel values from the model must change continuously with the locations of the
vertices. For pixels at the edge of the triangle, we approximate the area of the pixel
covered by the triangle as linear in the distance from the side of the triangle.

Results are shown in figure 1.
Manual cleanup: In the interest of time, in some of the shorter sequences, we

manually deleted a number of erroneous matches between large triangles (less than
thirty per sequence). In the sequence of the skirt, this process was automated.

4 Euclidean from Scaled Orthography

Reconstruction from scaled orthographic views is now a standard algorithm (origi-
nating in [19]; many important variants appear in [10]). One builds adata matrix
containing the coordinates of each view of each point, observes that this matrix is rad-
ically rank-deficient, and estimates factors to obtain an affine reconstruction. If there
are more than two cameras, a metric reconstruction is available by enforcing scale and
angle properties of the camera basis. However, this approach ignores the fact that we
know — at least, on the scale of the large triangles — estimates of the geometry (be-
cause we know what a large triangle looks like, and so know a surface normal). A
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Figure 3:The triangle matching procedure slowly works from a course model to a fine
model, starting with the original image data. Assuming that the appropriate threshold
for the image has been picked, we start by cutting out the original image(a). Using
information from the entire frame, we can assign a color to each pixel using a round
robin scheme(b). Looking at this figure, one should note that the color assignment
problem is the biggest bottleneck — erroneous assignments are common. The process
of matching the shape of the triangle to our internal model involves(c) segmenting
and thresholding the image,(d) fitting a planar triangle model to the image and(e)
using a course deformable model to account for some amount of curvature. Using this
deformable model(e) with the color assignment(b), we can record the colors of each
sub-triangle, and use these colors to warp the original image colorspace(f). Finally,
we use a fully deformable template to find the vertex positions(g) and mark them on
the original image(h).
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Figure 4:Cloth can show significant perspective effects in some views, typically when
the plane of the cloth is at about90◦ to the plane of the camera.

metric reconstruction isn’t possible from two views in simple orthographic cameras
without calibration of camera extrinsics or some known length or angle [21, 12]. Since
the cloth moves fast and we may be stuck with only two views, and to incorporate our
normal information, we adopt a method that exploits surface normals to obtain a metric
reconstruction.

In a single scaled orthographic view, we know the normal of the plane on which the
pattern element liesup to a two-fold ambiguity(e.g. [7, 13]). This ambiguity occurs
because we can identify the cosine of the slant angle — usually written as cosσ — but
not its value from a single view. For example, a scaled-orthographic view of a circle
looks like an ellipse; we know the extent of the slant (and so the length of the normal)
but the circle could have been slanted either forward or backward to yield this ellipse.
As a result, we know the projected normal up to an ambiguity ofπ radians.

The most natural way to incorporate this information into existing multiple view
results is to think of the normal as an arrow of known length protruding from the surface
at the point in question. The base of the arrow is the point in question, and projects
as usual. The results above mean we know (up to a two-fold ambiguity) to what point
in the image the head of the vector projects — in turn, having a normal from texture
repetition is equivalent to having a second pointandhaving some metric information
because we know the length of the normal vector. For convenience, in what follows we
refer to an isolated point as apoint, and a point with the normal information described
as apatch.

4.1 The 3D Ambiguity of Normals

Assume that we are dealing with a pair of simple orthographic cameras. Furthermore,
assume that the scale of the cameras is the same (we can obtain the relative scale from
the size estimates for triangles, above), and that the extrinsics are calibrated. We know
that, in a single view, the projected normal is known up to an ambiguity ofπ radians.
What ambiguity is there in 3D reconstruction of the normal?
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Figure 5:On the top row, camera frames showing the cloth being pushed by a bottle.
The middle row shows reconstruction without interpolation or strain reduction. On
the bottom row, the sequence has been strain reduced as a post-processing step and is
rendered with a new cloth texture. This suggests that combining the reconstruction and
strain reduction will produce a sequence that is both visually convincing and true to
the image data.

Write the normal asN and thei’th view vector pointing toward the camera (figure 2)
asV i . In the i’th view, there are two possible 3D normals,N andSi (the ambiguous
normal in thei’th view). Because the image ambiguity isπ radians,N, V i andSi must
be coplanar. Because the projected length ofSi is the same as the projected length of
N, V i ·N = V i ·Si . This means that we haveSi = 2(N ·V i)V i −N The epipolar planes
consist of every plane whose normal isE = V1×V2. The “heads” ofS1 andS2 lie
on the same epipolar plane, becauseE ·S1 = E ·S2 = −E ·N. In the circumstances
described, there are two possible matches for the “head” of the normal. First, the
correct matches are available, resulting in a reconstruction ofN; second, one can match
the image of the “head” ofS1 with the image of the “head” ofS2. The second case
results in a reconstruction of−N (figure 2); this is easily dealt with, because visibility
constraints mean that−N ·V i < 0 for bothi.

All this yields Lemma: A metric reconstruction from two simple orthographic
views is available from two patch correspondences. There is a maximum of sixteen
ambiguous cases, yielding no more than four camera reconstructions.Proof: (see
appendix)

There is an obviouscorollary: A fundamental matrix is available from two patch
correspondences, up to at worst a four-fold ambiguity.
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4.2 Obtaining a Euclidean Camera Solution

To obtain a camera solution, we pick two patches at random, determine a solution for
those points, compute a reconstruction using that solution, then repeat this process until
we obtain small reprojection error. To obtain a solution, we move the center of gravity
to the origin, then use singular value decomposition to get a factorization of the best
rank three approximating matrix. We obtain a factorization in the formKP, where
K has the form[iT , jT , rT

1 , rT
2 ], wherei, j are in the coordinate axis directions as usual

andrT
1 andrT

2 are the first two rows of the camera rotation matrixR. There is a one
parameter family of such factorizations (appendix). WriteN1

i for a reconstruction of
normali in camera one’s frame. We use gradient descent to obtain a factorization that
minimizes

reprojection error+∑(1−N1
i ·R(t)N2

i )

wheret is the parameter. We deal with the four ambiguities described in the appendix
by search.

5 Bundle Adjustment

At this point, we have a structure estimate and an estimate of camera extrinsics and
scale, both assuming scaled orthography. Our cameras may not, in fact, be scaled
orthographic cameras, and some lateral views of cloth display mild perspective effects
(figure 4). This results in potentially large reprojection errors and poor reconstructions.
We correct for perspective by using our structure and extrinsic parameter estimates to
start a bundle adjustment procedure.

Bundle adjustment (see reviews in [10, 20]) involves minimizing reprojection er-
ror as a function of camera parameters and point positions. The cost function is the
reconstruction error of the points in each image. We have been able to successfully
ignore camera centers, to assume that camera axes are at right angles and that pixels
are square. Using(xc

i ,y
c
i ) as the observed points in camerac, C as the set of cameras

that observe the point,p as the point in 3D in affine coordinates,(rT
1c, r

T
2c, r

T
3c) as the

rows of the camera rotation matrixRc for thec’th camera,(txc, tyc, tzc) as the translation
vector for thec’th camera,fc as the focal length of thec’th camera, we compute the
reconstruction error as:

Er =
1
|C| ∑

c∈C
((xc

i − fc
(rT

1cp+ txc)
rT

3cp+ tzc
)2 +(yc

i − fc
(rT

2cp+ tyc)
rT

3cp+ tzc
)2)

In an inner loop, we optimize over the 3d locationsp. With the optimal locations of all
of the points in the mesh, we can compute an average reconstruction cost associated
with a set of parameters – allowing a larger optimization in these parameters. This
search is slow and non-linear, but the initialization with an orthographic camera is
good enough to yield good results.

It is well-known that this reconstruction error has many local minima; much of the
current structure from motion literature treats obtaining estimates of parameters that
are good enough to start a successful minimization attempt. We have obvious good
start points for most parameters from our orthographic reconstruction (i.e. the rotation
parameters,tx andty), but must find start points fortzc and fc. A natural approach is to

10



Figure 6: In a typical cloth simulation environment, combining a fluid simulator with
a cloth modeler presents many challenges. However, complicated aerodynamic effects
are easy to produce by cloth capture.

set fc/tzc to the camera scale, andtzc to a value obtained based on physical estimates
of our recording setup. With these initial estimates, we have been able to perform
a successful bundle adjustment. Our per feature error is on the order of 1.5 pixels
throughout the sequences. We believe most of this error is due to the lack of time sync
between cameras – noting that the error is less than 0.5 pixels in slower portions of the
sequences.

6 3D Reconstruction
6.1 Matching Triangles

In cloth segments that are large enough for real world applications, our pattern does not
include enough distinctive elements to cover the entire cloth. We compensate for this
by minimizing repetition and distributing a small number of unique elements over the
larger surface. (in the skirt example, there are roughly 35 unique triangles on a cloth
with 432 total triangles)

The unique triangles are used for camera calibration, and provide a starting point
for matching. Non unique triangles face two problems: correspondence and parameter-
ization. Correspondence can be easily found through epipolar constraints, but param-
eterization is harder. We phrase the problem as follows: Given a number of triangles
in the 2D cloth domain with similar coloring, which triangle in the 3D reconstruction
corresponds with which 2D triangle? We solve this with a simple heuristic — local
neighborhoods should be similar. While our heuristic is fallible, in practice we have
observed no failures.

6.2 Combined Optimization

Our reconstruction method takes on an unusual form of structure from motion. Because
cloth changes shape in every frame, the number of views of any one configuration
is small. We have only four cameras — significantly fewer than a typical structure
from motion setup. As a result, heavily foreshorted triangles are problematic, and can
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easily be missed in some views. It is not uncommon for these triangles to be viewed
exclusively by cameras with a small baseline, causing minor errors in observation to
result in large errors in depth estimation. Figures 8 and 9 emphasize these problems.

We build on the standard approach by using cloth specific knowledge to drive re-
construction. The conventional argument prescribes minimizing the reprojection error
to reconstruct the 3D locations of points from image correspondence. We improve
upon this by penalizing large strains, after an idea due to Provot [16]. Small strains in
cloth result in relatively small forces, but larger strains can produce very large forces.
Because we have recovered a parameterization, we can observe strains in the recovered
cloth model. We create a global cost function that combines the reconstruction error
in each camera with the strain on the mesh (defined by a Delaunay triangulation of the
points in the cloth domain). Using‖e‖ as the edge length,‖er‖ as the rest length,Er(p)
as the reconstruction error defined in the previous section andks as the weight of strain
relative to reconstruction error; our cost function is defined as:

strain(e) =
{

(‖e‖−‖er‖)2 if ‖e‖> ‖er‖
0 otherwise

cost = ks ∑
e∈edges

strain(e)+ ∑
p∈points

Er(p)

Because optimizing this objective function involves simultaneously solving for
thousands of variables, we adopt a multi-stage approach to reconstructing the 3D points.
First, the points are reconstructed without any strain information because each 3D lo-
cation can be computed independently. Because many observational errors occur at the
scale of the large triangles, we minimize a course scale version of the global objective
function to produce a start-point for the final optimization problem.

Even with a good starting point, the large optimization problem is intractable with-
out careful attention to detail. First, we reduce computation in numerically computing
the gradient by exploiting conditional independence between points on the surface that
are significantly far apart. Second, by exploiting the connectivity structure of the sur-
face, we constrain numerical estimates of the Hessian to a sparse matrix form (c.f. [20]).

The combined strain reduction, point reconstruction has little effect on the actual
reprojection errors: typically an increase of less than 0.2 pixels. Because the most
accurate views of a triangle are typically separated by a small baseline, small errors in
localization become large errors in depth estimation. The strain reduction only needs
to have small effects on the reprojected location of the point to dramatically increase
the quality of the reconstructed mesh, as shown in Figure 8.

7 Post Processing

In general, we wish to post process reconstructions as little as possible, because we
have been careful with our measurements. However, some steps produce a worthwhile
improvement. We start with a slightly noisy mesh with holes for each time frame.

Interpolation works by identifying a neighbourhood of the points — ideally, in
space and time; in time, if spatial neighbours are missing; in space, if temporal neigh-
bours are missing — and re-estimating the configuration of the missing point using a
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multilinear interpolate. This estimation is donebeforethe final minimization of strain
and reprojection error — so that large strains are removed. Because the interpolated
points are not observed, there is no corresponding reprojection cost.

Smoothing: There is still a high-frequency component of temporal noise in the
reconstruction; we polish the 3D points with a Gaussian low-pass filter, withσ of one
inter-frame interval.

8 Results

We printed our four-color pattern using a screen printing kit onto rayon, using care to
deposit a minimum of ink to reduce the effect on the cloth dynamics; we used markers
to touch up some areas. To film the dynamics of the cloth, we used 4 digital video
cameras, each sampling at 30 frames per second with a shutter speed of 1/250. Faster
shutter speeds adversely affected the color quality of the recording while slower shut-
ter speeds had unacceptable motion blur. Scenes are lit with four lights to minimize
shadows. Cameras were not genlocked. Results are best assessed by looking at the
accompanying video, which shows the extent to which we have been able to capture
fast cloth movement.

Appendix: Metric Upgrade Proof

A metric reconstruction isn’t possible from two views in simple orthographic cameras
without calibration of camera extrinsics or some known length or angle [21, 12]. The
reconstruction ambiguity is instructive to study further. WriteD for a view by point
data matrix andP for a 3xpoint geometry matrix; there must be a minimum of four
points. Define acanonical two-camera matrixto be a matrix of the form

C =


1 0 0
0 1 0

e11 e12 e13

e21 e22 e23


ande1, e2 are arbitrary orthonormal 3 vectors. We move the origin to the center of
gravity, absorb scale into the points, and place the first camera in canonical position to
obtainD = CP whereC is a canonical two-camera matrix. Now, ifL is a matrix such
thatC′ = CL is also a canonical two-camera matrix, the reconstructionsP andL(−1)P
are both available. Note thatL is a matrix of the form[[1,0,0]; [0,1,0]; [a,b,c]]. A one
parameter family of suchL exists, and they are not Euclidean transformations. Now
assume that we are working with patches.

Lemma: A metric reconstruction from two simple orthographic views is available
from two patch correspondences. There is a maximum of sixteen ambiguous cases,
yielding no more than four camera reconstructions.

Proof: We must first deal with scale, as the two cameras may have pixels of dif-
ferent sizes. Scale commutes with reconstruction, meaning that a camera with small
pixels produces a larger frontal view of the texture elements. The ratio of camera scales
is then found by scaling a frontal view of an element in the first camera to be the same
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Figure 7:Large scale folds and wrinkles can be captured with high precision and detail.
On the mid and lower portions of the skirt, the folds are faithfully recovered. However,
fine scale folds can be missed when triangles are heavily fore-shortened, occluded or
curved. In this figure, some level of detail is lost in the upper left hand corner. However,
without viewing the original image, the resulting mesh is still convincingly cloth-like.
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Figure 8:Because we have a small number of views of each triangle, minimizing the
reprojection error alone only produces an accurate mesh when viewed from similar
viewpoints. Images(b) and(d) are renderedviews of thereconstructedmesh (textured
with a frontal view of the flattened cloth) taken from viewpoints similar to the origi-
nal image(a). However, without strain reduction, novel views do not exhibit cloth-like
structure. The reconstucted mesh in image(c), produced by minimizing reprojection
error alone, is rendered from a view significantly different from all the original cam-
eras. Note that this results in significant variance in the mesh — indicated by large
variations in edge length. Image(e) shows a similar rendered view of a reconstructed
mesh produced bysimultaneouslyminimizing reprojection error and strain (section 6).
Now, the structure of the reconstructed mesh is significantly more realistic — seen as
uniform edge lengths — while still true to the original image data.

size as a frontal view of an element in the second camera. Note that correspondences
between elementinstancesare not necessary to do this. Each patch consists of a point
and a projected normal vector. Write thej ’th point asP j and thei’th view of the j ’th
point aspi

j . Write the j ’th normal asN j andi’th view of the j ’th projected normal vec-
tor asni

j . What we have referred to as the “head” of thei’th view of the j ’th projected
normal vector is thenpi

j + ni
j ; it is easier here to work with the vector directly. First,

a metric reconstruction is available because the normal vectors are unit vectors in 3D;
we can obtain the metric reconstruction by choosing the element of the one parameter
family L that makes the first normal a unit vector. Ambiguity is more interesting. Our
ambiguity in the projected normal vector is a sign ambiguity, yielding a total of six-
teen ambiguous cases (two per view per patch). However, these ambiguities have an
important internal structure. WriteD(kl) for[

p1
1 p1

2 n1
1 n1

2
p2

1 p2
2 (−1)kn2

1 (−1)l n2
2

]
andI(i j ) for diag(1,1,−1i ,−1 j). We then have that the ambiguous cases areD(kl)I(i j )

for (i, j,k, l)∈ [0,1]4. Now ifD(kl) = C(kl)P(kl), we have thatD(kl)I(i j ) = C(kl)P(kl)I(i j ).
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Figure 9:We demonstrate the strength of our pattern, the accuracy of localization and
the importance of combining the minimization of strain and reprojection error. This
sequence shows the front of a skirt, viewed from a direction not seen by any camera,
retextured with the original pattern for clarity. Each frame contains roughly 2000
vertices comprising almost 4000 triangles. In thetop row, the surface has been recon-
structed by minimizing reprojection error alone — gaps appear in the mesh when fewer
than two cameras view any large triangle. Furthermore, when relatively few cameras
observe a camera, the reconstruction can be inaccurate in some directions — seen as
triangles that deviate significantly from the rest of the mesh. This can be corrected by
taking strain into account. Thebottom rowuses interpolation to fill in missing points
before running a simultaneous minimization of both reprojection error and strain. An
actual image of the skirt taken from one of the cameras can be found in figure 7

This means that there are only four cases for the camera matrix. Furthermore, our
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Figure 10: Re-texturing a sequence with any pattern or texture is easy because the
coordinates in the parameter space are kept at every stage of the sequence. Thetop
row shows a sequence of the front of a skirt rendered with a new texture from a new
view. Thebottom rowshows the same sequence of from one of the camera viewpoints.
Important: There is roughly a45◦ change in angle between the camera viewpoint and
the cloth to emphasize the folds in the captured images.

ambiguities do not interfere with metric reconstruction. Note that

P00I(kl) =
[
P1P2(−1)kN1(−1)l N2

]
so that for any of four casesD00I(i j ) we will obtain the correct camera by insisting
that the third column ofP is a unit vector. Furthermore, in any of these four cases the
fourth column will be a unit vector, too. We do not expect this to be the case for any of
the other twelve cases in general — though specific geometries may make it possible
— so that the correct camera is generally easily identified.2
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