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Abstract

This paper describes a framework for controlling autonomous
agents. We estimate an optimal controller using a novel rein-
forcement learning method based on stochastic optimization. The
agent’s skeletal configurations are taken from a motion graph
which contains seamless transitions, guaranteeing smooth, natural-
looking motion. The controller learns a parametric value function
for choosing transitions at the branch points in the motion graph.
Since this query can be completed quickly, synthesis is performed
online in real-time. We couple the local controller with a global
path planner to create a system which produces realistic motion
even in a rapidly changing environment.

Keywords: Motion synthesis, reinforcement learning

1 Introduction

As virtual worlds become richer and more complex, the agents that
populate them face increasingly complicated control decisions. Not
only must they interact with the environment in a natural way, but
they are also often tasked with complex objectives, such as hunting
monsters or exploring a labyrinth.

Many of these interactions and objectives can easily be phrased
as areward function. The agent receives positive scores for accom-
plishing goals, such as reaching a rendezvous point. He is punished
with negative scores for engaging in harmful interaction with the
environment (such as bumping into solid objects), and for commit-
ting actions which detract from his goals (like being seen by ene-
mies). An optimal controller will generate a motion that maximizes
the agent’s reward.Reinforcement learningharbors several well-
studied methods for calculating an optimal or near-optimal con-
troller from a state space and reward function.

In our system, we place an agent into a hostile environment that
contains both obstacles and enemies. We introduce a framework
in which we estimate a controller for the agent using reinforce-
ment learning. The agent’s skeletal configurations are taken from
a motion graph ([Kovar et al. 2002], [Lee et al. 2002], [Arikan and
Forsyth 2002]), which contains seamless transitions, guaranteeing
smooth motion. The controller determines how the motion graph is
traversed. We perform the estimation by sampling control param-
eters for a series of randomized scenarios. The control parameters
that yield the maximum reward for each state are written into a scat-
tered data interpolator. During synthesis, we query the interpolator
for control parameters every time we reach a branching point in the
motion graph. Since this query can be completed quickly, synthesis
is performed online inreal-time(Figures 1 and 2).

One of the major advantages of this framework is that it ad-
dresses theshort-horizonproblem inherent in local search. When
a branching point in a motion graph is reached, one can look only
a few frames into the future in real-time. The long-term effects of
choosing a branch are hidden. We attack this problem by estimating
the long-term effects during training.

Additionally, we combine our local controller with aglobal path
planner, yielding two levels of control. In computer games, the
path planner in an autonomous entity is separate from the controller.
The path planner computes an optimal path, and the local controller

Figure 1:Avoiding an Obstacle.This sequence was recorded from
a live, interactive demo, in which the user controls the crate and can
move it anywhere at anytime. A virtual agent is tasked with travel-
ing from the left of the scene to the target on the right. While the
agent is running towards the crate (top), the user suddenly moves
it into the agent’s path. The controller successfully replans the mo-
tion on the fly. The agent not only dodges the crates and meets the
target position (bottom), but does so seamlessly, since transitions
are derived from a pre-computed motion graph. This sequence fur-
ther illustrates that the controller has learned to balance competing
goals of (a) reaching the target position quickly, and (b) avoiding
obstacles.

tries to follow it. However, the local controller may not have imme-
diate access to motions that will meet the path plan, and will there-
fore produce awkward sequences. In our framework, the two are
strongly coupled, because the local controller periodically queries
the global path planner for an updated plan.

2 Related Work

The literature in data-driven synthesis([Pullen and Bregler
2002], [Arikan et al. 2003], [Molina-Tanco and Hilton 2000], [Li
et al. 2002]) reveals a continuum of graph-based search methods,
ranging from local to global. For example, [Kovar et al. 2002]
consider local information only, while [Lee et al. 2002] appraise
a longer horizon by expanding their search tree to a fixed depth. At
the global end of the spectrum, [Arikan and Forsyth 2002] com-
pute the entire motion at once. Our method falls into the local side
of the continuum, but considers a longer horizon than [Lee et al.
2002] by pre-computing the expected future value of choosing a
particular frame. [Lee et al. 2002] and [Arikan and Forsyth 2002]



Figure 2:Hiding from an Enemy. In this scenario, the agent must hide from the enemy skull who scares him. On theleft, the agent begins
walking towards the goal, but notices said skull around the corner. He hides just behind the crate (inset) until the enemy disappears. The
controller then leads the agent to his goal position (right ). This sequence demonstrates that the controllerindependentlylearned the emergent
behavior of using obstacles to hide from enemies; behaviors are not explicitly encoded. Note that this controller is the same one that produced
the sequence in Figure 1.

also describe methods for allowing an avatar to interact with its en-
vironment, but these interactions are pre-recorded. We address the
problem of interacting with arbitrary environments.

In the area ofautonomous motion, several papers address the
problem of learning behaviors to achieve objectives ([Funge et al.
1999], [Terzopoulos 1999], [Blumberg and Galyean 1995], [Go
et al. 2004], [Mataric 2000]). [Reynolds 1987] did seminal work
in this field; he controlled animals in a flock by blending between
different behavioral forces. [Terzopoulos et al. 1994] successfully
demonstrate the animation of autonomous fish in a virtual marine
environment. More recently, [Lee and Lee 2004] describe a method
that uses dynamic programming to animate a human boxing avatar.
They train their controller to perform two behaviors: (a) moving to-
wards a target, and (b) hitting it. However, cleanly dividing actions
into behaviors is very difficult. A controller should learn how to
achieve goals for itself (e.g., it should learn on its own that it first
needs to step in range of a target before hitting it). Furthermore,
the mapping between behaviors and motivations quickly becomes
complex as motivations become longer-term and more difficult to
satisfy.

Finally, our system is inspired by work in the well-established
field of reinforcement learning. In the standard framework, an agent
interacts with his environment to learn a policy for choosing actions
that will increase his expected reward. [Sutton and Barto 1998] pro-
vide a good overview of the work in this area. [Baxter and Bartlett
1999] and [Baxter and Bartlett 2001] demonstrate a technique for
learning a parametric value function. We implement some of their
ideas in this paper.

3 Overview

In our system, we would like the agent to (a) avoid obstacles, (b)
hide from hostile enemies, and (c) reach target positions. (A sam-
ple environment is shown in Figures 1 and 2.) The controller must
determine how best to meet these objectives. At every branching
point in the motion graph, it chooses one of the agent’s available
alternatives. Each alternative yields a reward. The goal is to maxi-
mize the agent’s expected reward. Therefore, the controller cannot
simply choose the alternative with the highest immediate reward,
because it may lead to small future rewards. Instead, we would like
it to choose the alternative that will generate the highest cumulative
reward. In reinforcement learning, the expected cumulative reward
of an alternative is called itsvalue.

In our system, we evaluate a reward functionr for each frame

in the sequence. The reward function penalizes the agent for walk-
ing into objects or for being seen by an enemy. It also punishes
the agent for his distance to the current waypoint on the path that
the global path planner determined. The global path planner has
knowledge of the current obstacle configuration only; it has no in-
formation about the future, nor does it predict configurations. The
local controller asks the path planner to update the plan periodically.

Based on the agent’s position at the frame (p), intersections with
objects (I ), enemy visibility (F), and distance from the waypoint
(y), r is defined as:

r =−wI ∗ I(p)−wF ∗F(p)−wY∗ ‖ y− p ‖ (1)

Each term is weighted withwI , wF , or wY based on how much it
affects the agent’s objectives. We setwI andwF very large because
either event is very detrimental.wY is fixed at 1 for scale invariance.

Unfortunately, calculating the value of an alternative is difficult
because the controller does not know what the agent’s future truly
entails. There are several well-known algorithms in reinforcement
learning that address this problem. In the standard reinforcement
learning framework, a controller learns how to achieve goals by
having the agent interact with its world and collect rewards. The
controller then uses those rewards to estimate avalue functionthat
outputs the value of an alternative given the agent’s current state.
For example, a proper value function returns a low value for an
alternative which leads the agent through solid walls (Figure 3).

It is difficult to apply classic methods, such as value-iteration,
policy-iteration, and dynamic programming, to our problem do-
main because of the large number of possible states in which the
agent could find himself. [Baxter and Bartlett 1999] attack this
problem using a parametric value function, which they optimize
using gradient descent. Unfortunately, computing a reliable gradi-
ent in our domain is too computationally expensive, again because
of the vast state space.

Luckily, many of the states are similar to each other. We describe
a revised reinforcement learning algorithm in Section 5 that takes
advantage of that similarity to successfully estimate an optimal con-
troller. At heart, the algorithm is a form of stochastic optimization,
which samples weights for a parametric value function. Because
nearby states are similar to each other, we expect the value function
to change slowly as the state changes. Therefore, we can safely
smooth it (see Equation 2).



Figure 3: Choosing States.When the agent reaches a branching
point in the motion graph, the controller evaluates the available al-
ternatives. In this example, there are three: walking backwards to
the left (blue), walking to the right then turning left (green), and
walking to the right (red). The controller estimates the value of
each path by predicting where each obstacle and visible enemy will
be in one second, assuming they continue moving at their current
velocities. For each alternative, the controller calculates the posi-
tion of the agent after one second. Here, the controller predicts that
a crate will land in the path of the green alternative. A good value
function will therefore assign that choice a lower expected value
than the blue or red paths.

4 Evaluating Alternatives

When the agent reaches a branching point in the motion graph, we
would like his controller to choose the highest-valued alternative.
The value the controller assigns to the agent’s alternatives should
naturally depend upon the elements in the environment that affect
the agent’s reward. Such elements are encapsulated in astaterepre-
sentation. The agent’s controller must learn to distinguish desirable
states with a high value from undesirable ones with a low value.
To do this, the controller learns a value function which it uses to
evaluate states.

Choosing a good state representation (i.e., one that is strongly
correlated to the expected reward) is very important. Without it,
the controller will be unable to learn profitable strategies because
it will appear as though each state produces a random reward. Ad-
ditionally, it is important to choose a compact representation, since
the controller needs a good estimate of the value ofall the states.

The state representation we use encapsulates information about
the obstacles and enemies. The first part of the state describes the
agent’s local geometry, which we store as a vector of shape context
data [Belongie et al. 2002]. That is, we place bins locally in the
nearby space around him. If the center of a bin falls within an ob-
ject, we mark that bin as occupied. The bin data is stored in a binary
vector. The second part of the state contains information about the
agent’s last visible enemies. Specifically, we store a binary value
indicating whether an enemy is visible from the agent’s location.
Our state representation is discrete, which permits us to enumerate
all possibilities.

To evaluate the value function, the controller also asks for in-
formation about the goal from a high-level, omniscient path plan-
ner. The path planner determines the shortest path to the goal given
the current obstacle configuration (it does not have any informa-
tion about future configurations). The path is a set of waypoints
connected by linear segments. When computing the value of an al-
ternative, the controller uses the distance between the position of

the agent and the next waypoint in the path.
The value function returns the goodness of choosing a particular

branch given the agent’s current state. In our framework, we predict
a state that the agent will likely find himself in if he chooses the
given branch (Figure 3). The value of the branch is the value of the
predicted state given the current state.

More formally, the controller first computes the agent’s current
statest , which determines the parameters to use in the value func-
tion. The controller computes control parametersα(st), a vector
that weights different components of the predicted state and envi-
ronment. Its decision is affected more heavily by those aspects with
higher weights. Section 5 describes our method for learningα.

For each possible transition, the controller determines a good-
ness valuef by estimating the statest+1 that results from taking the
transition and traveling along the motion the transition lead to for
one second.

To do this, the controller first predicts the agent’s local geometry
by computing his future world position and estimating future object
locations. It extrapolates where each obstacle will be one second
into the future, assuming they all continue moving at their current
velocities. Once the controller has determined the local geometry
portion of st+1, it calculates the enemy component by predicting
the position of the agent’s last visible enemy using the enemy’s
position and velocity. The controller then calculates whether there
is a line of sight between the agent’s future position and the enemy’s
predicted one.

We calculatef with the following continuous equation:

f (st ,st+1) =
n−1

∑
i=1

(αi(st)∗K(ci ,st+1))+αn(st) ‖ y− p ‖ (2)

To evaluatef , we use the control parameters computed atst to
weight the terms. The first terms are kernel functions that com-
parest+1 to statesci . ci is a vector where theith component is 1 and
every other element is 0.c1 for example represents a state where
there is an obstacle in bin 1 only. Giving these vectors to the ker-
nel function isolates the effect of each component of the state. The
kernel function returns 1 if the element inst+1 corresponding to the
sole non-zero component ofci is 1, and returns 0 otherwise.

αn(st) weights the distance between the player’s future position
(p) and the position of the next waypoint (y) on the global path plan.
The controller computesf for every alternative the agent faces, then
chooses the one with the largestf .

5 Estimating a Controller

We expect that nearby states will use similar control parameters.
For example, the decisions the controller makes when the agent
faces an obstacle 5 feet away should be similar to the decisions it
makes when an obstacle is 7 feet away. Because of this similarity,
we can estimateα(st) (which we used in Equation 2) by interpolat-
ing the control parameters for states nearbyst . α is thus represented
as a scattered data interpolator. During training, we populate the
interpolator by sampling a set of disparate states. For each sample
state, we sample control parameters and write the ones that generate
the maximum reward into the interpolator.

More specifically, we first randomly distribute obstacles and ene-
mies, then pick arbitrary starting and target positions for the agent.
After recording the agent’s starting state, we sample a randomα

and fix it for the entire motion graph. Fixing the control parame-
ters leads to a reasonable approximation of the value of the starting
state, provided that we do not travel too far in the motion graph,
and that we discount future rewards. We limit the controller to run
for four seconds to generate a motion sequence. To compute the
reward earned for this sequence, we evaluate the reward functionr



Figure 4:Reduced-state Controllers.We compare our controller
to others with smaller state representations. The reduced-state con-
trollers are trained with the same reward function as the full version.
The first uses states which ignore the agent’s local geometry (blue).
This controller learned to avoid enemies by hiding the agent inside
solid objects, which is unrealistic. The second controller uses states
which ignore the agent’s enemies (red). This controller immedi-
ately drives the agent in full-view of the skull to the target position,
which is also undesirable.

(Equation 1) for each frame. Each frame’s reward is discounted by
γ j , where j is the frame number. We sum the discounted rewards to
get the reward for the sequence.

We then reset the agent’s environment, and run the controller
again using a different sample of control parameters. After exe-
cuting this loop repeatedly (we sample 3000 parameter sets), we
save the parameters that generated the maximum reward. We then
choose a different starting state and sample the parameter space
again. In total, we sample 25 states each at approximately 30 ran-
dom skeletal configurations.

The parameters we saved for the sample states are stored in a
scattered data interpolator. The scattered data interpolator provides
our estimate to the functionα(s). To compute the control param-
eters for a states, it smoothes the parameters for nearby sample
statessi :

α(s) =

k
∑

i=1
w(s,si)α(si)

k
∑

i=1
w(s,si)

, (3)

wherew(s,si) =
1

‖ s−si ‖2 + ε
(4)

It is important to note that when we run the controller during
training, we do not always choose the edge with the maximumf . A
greedy controller will lead to a discontinuous value function, which
is hard to interpolate. As [Baxter and Bartlett 1999] note, defining a
probability distribution over the transitions renders the value func-
tion continuous. We define the probability of choosing a transition
as the goodness of the transition divided by the sum of the goodness
of all transitions.

6 Results and Discussion

We demonstrate our results on three environments, using a motion
graph computed from motion capture sequences of standing, walk-
ing, and running. Our motion graph does not contain sequences for
dodging obstacles or enemies. The agent’s motion reflects the un-
derlying motion graph. Our motion graph contains footskate in it.
If a motion graph without footskate was used, there would not be
any footskate in the agent’s motion.

Scene Full Controller Ignore Obstacles Ignore Enemies
Figure 2 -351.33 -3,761.20 -9,253.00
Figure 5 -215.00 -1,602.97 -1,935.4

Table 1: Average Reward. We run the full controller and two
reduced-state controllers on two scenes. The first scene is run for
2000 frames, and the second scene for 5000. We then compute the
average reward per frame that each controller earns. The reward
function is given in Equation 1. Since the function penalizes for
distance to the goal at every frame, it is impossible to earn the max-
imum score of 0 in these examples because the agent does not start
at the target. The reward earned by the the full controller is an order
of magnitude greater than the reward earned by either reduced-state
controller.

In the first scene, the agent attempts to reach a target position
while an adversarial user continually pushes a crate into his path
(Figure 1). We recorded this sequence from a live, interactive ses-
sion in which the user controlled the location of the crate. The
controller begins leading the agent towards his target position when
the user suddenly pushes the crate directly into the agent’s path.
On-the-fly, the controller replans the motion seamlessly, choosing
frames that meet the agent’s competing goals of (a) reaching the
target position quickly, and (b) avoiding the crate. Note that we do
not teach the controller specific behaviors; it learns to seek the goal
and dodge obstacles on its own.

In the second scene, an enemy hides behind a group of crates
(Figure 2). The agent is scared of being sighted by the enemy, and
waits behind the corner of a crate, just out of sight. Once the en-
emy disappears, the agent continues on his path towards the target
position. The motion is smooth and is a plausible response to the
scenario. In this scene, it is evident that the controller has learned
how to use obstacles to hide from enemies.

To determine whether our controller works, we compare it to
controllers with smaller state representations. The first controller
uses states which ignore the agent’s local geometry, and the sec-
ond uses states which ignore information about enemies. Both con-
trollers are trained with the same reward function as our original
controller (Equation 1). When we run the first controller on the
scene described in the previous paragraph (Figure 4, in blue), the
agent runs directly into the crates. This controller learned that an
optimal strategy is to hide the agent inside the crates as much as
possible to avoid the enemy. Thus, this sequence is unrealistic.
When we run the second controller (Figure 4, in red), the agent runs
to the target immediately, in full view of the enemy, violating one
of his objectives. Both sequences are not only visually suboptimal,
but also accumulate low rewards. Table 1 exhibits the average re-
ward each controller collects in this scene. The full controller earns
rewards that are an order of magnitude greater than either reduced-
state controller.

The last scene contains a patrolling enemy and sliding crates
(Figure 5). The agent waits until the enemy disappears, then runs
through the moving crates to reach a target position. This scene
demonstrates that our technique can handle rapidly changing en-
vironments on-the-fly. As was the case in the second scene, our
controller earns a reward that is an order of magnitude greater than
either reduced state controller.

We have demonstrated that we can learn a simple yet effective
controller for a motion graph from a reward function and state
space. As the accompanying video shows, we have created a real-
time, online system that can adapt to a rapidly changing environ-
ment and drive the agent to achieve his goals.



Figure 5: In this final scene, the agent waits behind a crate to avoid a patrolling enemy (left). Once the enemy disappears, the agent runs
through the opening in the obstacles, then times his exit through the sliding crates (right ). The sliding crates are shown as translucent, and
the arrows on the left side indicate their range of motion.
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