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Abstract

We have developed EM-trust, a robust algorithm for evaluating rep-
utations in peer-to-peer marketplaces. EM-trust is robust in the sense
that it is far less susceptible than are previous algorithms to errors due
to inaccurate feedback. Moreover, a Bayesian version of EM-trust seems
ideally suited to real peer-to-peer marketplaces, in which participants are
unlikely to have had previous interactions. The properties of both EM-
trust variants as well as eBay’s “percent positive feedback” algorithm
have been evaluated in a marketplace simulator designed to model a real
peer-to-peer marketplace.

1 Introduction

In any marketplace, conducting a transaction entails risk. Will the seller deliver
the promised goods on time and in good condition? Will the buyer provide
payment? Traditionally, the reputations of the two parties involved helped to
reduce this risk to the point that conducting business was possible. A store that
has sold quality merchandise in the past will probably be a good place to shop
in the future. One’s history of paying debts on time will determine whether
banks or retailers will extend credit.

However, these simple methods for evaluating reputations of buyers and
sellers break down in large scale peer-to-peer marketplaces online. Many of these
markets have so many participants that it is highly unlikely that a user has had
past interactions with any given other person in these systems. In addition, users
can easily change identities in these systems, allowing untrustworthy individuals
a way to escape a bad reputation.

Reputation systems aid users of online peer-to-peer marketplaces in making
trust decisions under these difficult conditions. Instead of relying on tradi-
tional word-of-mouth mechanisms for discovering the reputation potential trad-
ing partners, users of large online markets query the reputation system. Reputa-
tions are computed by aggregating the opinions of the other users in the system,
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effectively allowing users to evaluate the trustworthiness of total strangers by
using the opinions of other total strangers.

Perhaps the most well known and widely used reputation system is the Feed-
back Forum on eBay, a major online auction marketplace. In this reputation
system, users are asked to rate the people with whom they interact by giving
them either positive, neutral, or negative feedback. eBay then takes these rat-
ings and generates two reputation scores: the first, percent positive feedback,
is simply the percentage of feedback that is positive. The second score is the
number of positive feedbacks minus the number of negative feedbacks.

While the Feedback Forum has its documented problems [12, 4], it does seem
to work well in practice. One of its weakest points, however, is that it näıvely
assumes that the feedback users give is accurate. While most users are probably
honest in their assessment of others, feedback does not always reliably indicate
how well a user performed in a transaction.

Of particular concern is the problem of retaliatory negative feedback. In the
typical retaliatory negative scenario, one of the participants in a transaction
is unhappy with the other’s performance and leaves a negative feedback. The
recipient of the negative feedback responds with a negative feedback for the first
user, even though he did nothing wrong aside from complain. It now becomes
much more difficult to ascertain which negative is accurate, and should thus
count against the user’s reputation, and which is merely retaliation and should
be ignored. The Feedback Forum currently makes no attempt to determine the
accuracy of ratings and thus counts each feedback equally.

A further effect of retaliatory negatives is the overall chilling effect they have
on participation in the feedback process. A single negative feedback will have
a large effect on the reputation of a user who has participated in only a few
transactions, while it will have scarcely any effect on users with long histories.
Experienced users — typically large sellers — exploit this asymmetry and rarely
leave feedback first. If they receive a negative, even one that is justified, they
often respond with a retaliatory negative that can badly damage the reputation
of a trading partner with only a few transactions. Small-time users are often
aware of this tactic and thus won’t leave negative feedback except in the case of
outright fraud. The overall result is that negative feedback is discouraged and
underreported [12]. Some researchers believe that eBay turns a blind eye to this
underreporting since a marketplace with abundant positive feedback appears
safer and more inviting to new customers [4].

In this paper, we present a new reputation algorithm, which we call EM-
trust, that mitigates the effects of retaliatory negative feedback. It uses an
Expectation-Maximization (EM) approach to calculate the maximum likelihood
estimates for agents’ probabilities of completing a transaction successfully.

Using a marketplace simulator, we demonstrate that EM-trust estimates
agents’ true honesty more accurately than eBay’s percent positive feedback,
even in the absence of retaliatory negative feedbacks. The relative performance
of EM-trust improves further at high rates of retaliation. In addition, we show
that EM-trust’s ability to prevent failed transactions is comparable to eBay’s,
and it is significantly less likely to give low reputations unfairly to honest users.
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Finally, we present a Bayesian version of EM-trust that yields even better results
in our tests.

2 Related Work

Reputation systems grew out of earlier work on so-called “soft security,” the
problem of determining whether online services should be trusted, as contrasted
with “hard security,” which concerns itself with cryptographic solutions to the
problem of communicating reliably and privately [10]. Marsh [11] is among
the early work that combines notions of trust and reputation from philosophy,
psychology, and economics and applies them to multi-agent systems. While he
gives a roadmap of issues in the field, Marsh does not propose a reputation
system.

The concept of reputation has been studied in some depth by the economics
community, though their conclusions are often not applicable to practical repu-
tation systems. For example, Kennes and Schiff [9] present a theoretical analysis
of the value of a reputation system. However, their model assumes a two epoch
time horizon that does not effectively capture user behavior in real markets (and
which allows them to reach the dubious conclusion that reputation systems have
negative value for buyers). Tadelis [14] models reputation as an asset that can
be traded and finds that a good reputation is not always an indication of a good
agent. However, most online reputation systems do not allow users to transfer
their reputation to others.

Many existing proposals for reputation systems assume a pure peer-to-peer
market where there is no central reputation system to query. These systems
can be broadly divided into categories. On one hand are those that primarily
use one’s previous experience with an agent to estimate its reliability [8]. On
the other are systems that use small-world phenomena to build chains of ac-
quaintance to find other agents who can vouch for the reputation of a potential
trading partner [7, 15]. Some systems, like Kasbah’s Histos and Sporas system
use a combination of both mechanisms [16]. Relying on past experiences to
judge reputations is unlikely to work with eBay-like marketplaces because their
size means that most interactions will be with strangers. It is also far from
clear that the small-world model is applicable to these large scale peer-to-peer
markets.

The problem of fraud in online markets and in the feedback system has
recently attracted considerable attention both from researchers and the main-
stream press. Dellarocas [5] discusses the problem of making robust evaluations
of reputation despite unreliable feedback but does not propose an actual reputa-
tion system. The Pinocchio system [6] tries to detect and discourage inaccurate
feedback using a combination of economic incentives and fraud detection. Un-
like EM-trust, it does not try to compensate for any inaccurate feedback that
is left.

Online marketplaces, and particularly eBay, have been widely studied by the
economics and business communities. For example, Lucking-Reiley et al. look at
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online auctions of rare coins to determine what features drive pricing differences
among similar items on eBay [3]. Bajari and Hortacsu [1] also look at pricing and
compare eBay users’ behavior to theoretically ideal auction behavior. Calkins
[4] analyzes the eBay reputation system from a legal standpoint and finds it
lacking.

Resnick and Zeckhauser performed a major empirical study [12] of eBay
user behavior, including participation rates, bidding behavior and feedback. We
have used their results as the foundation for our marketplace simulator. They
conclude their study with several important lessons regarding the design of rep-
utation systems. Resnick, Zeckhauser, and other collaborators also authored a
comparison of various reputation systems [13], which analyzed their strengths
and weakness, and proposed several requirements for successful reputation sys-
tems.

3 Robust Reputation Systems: Our Approach

Our goal is to create a reputation system that is robust in the face of the missing
and inaccurate feedback that will inevitably confront real systems. We assume
that we are operating in a peer-to-peer market like today’s eBay. These markets
are large enough that most agents have no interaction history with each other.
There are also no clear strongly connected communities that would allow us to
exploit network structure. Therefore, the only information source the reputation
system uses is the potentially unreliable feedback left by other, unknown users.

We begin by defining an agent’s reputation as the probability that the agent
will perform acceptably in a transaction. Acceptable performance for a seller
means selling only accurately described, functional products and sending the
goods in a timely fashion through a reliable shipper. For a buyer, it involves
remitting payment in an approved form on time. As suggested by [2], we cur-
rently do not try to assess motivation — poor performance caused by dishonesty
or malice is indistinguishable from mere incompetence. Since the end result is
the same, we do not think it is necessary to treat the sources of unacceptable
performance separately.

The job of the reputation system, then, is to accurate estimate this probabil-
ity from users’ (possibly unreliable) feedback. We propose to do so by using an
expectation-maximization approach, leading to an algorithm we call EM-trust.

Because most agents only interact with a tiny fraction of the other agents
in a system, the matrix of feedbacks is typically very sparse. As with many
such applications in which data are sparse, such approaches can be made more
accurate, or can converge more quickly, if something is known about likely
distribution of agents’ behaviors. Taking the prior distribution of agent success
rates into account leads to Bayesian EM-trust. This Bayesian approach may
improve the estimation accuracy in the face of this sparsity, but introduces the
additional problem of prior selection.

Testing such algorithms in a real market is not feasible, so we developed a
simulator to evaluate our algorithms. This simulator was designed using the
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results of [12] to model eBay as closely as possible. We describe the simulator
in detail further below.

3.1 The EM-trust Algorithm

When agent i interacts with agent j in a transaction, we observe two feedback
variables, Fij and Fji, indicating the feedback left by agent i for agent j and
vice versa. These variables are multinomial distributed and can take values in
the set {−1, 1, 0} indicating negative, positive, and no feedback respectively.
We do not currently model neutral feedback, since it is both infrequently given
and is considered by many to be merely a weak negative.

Also associated with each transaction are two latent random variables, Pij

and Pji, indicating whether agent i and j respectively performed acceptably in
the transaction. We assume independence between transactions, so the distri-
bution of these Bernoulli random variables is characterized by their parameters,
λi and λj , which we call the “honesty” of the agents.1

In general, the feedback variables can depend on the individual performance
variables as well as on each other. These dependencies are complex and difficult
to quantify, so we do not attempt to model them explicitly. However, we do
make some assumptions about the way rational agents leave feedback. Our
first assumption is that a positive feedback always indicates that the recipient
behaved acceptably in the transactions. While there are reasons why an agent
may withhold giving negative feedback to an underperforming partner (e.g.,
because of fear of retaliation), there is no compelling scenario under which it
makes sense to leave a false positive feedback. Second, we assume that a negative
feedback by itself does not indicate poor performance, unless the recipient of the
negative feedback has left a positive for her partner. We know that the process
of retaliation creates false negatives, and we also hypothesize that a nefarious
user may leave pre-emptive false negatives to try to disguise her bad behavior.

The goal of EM-trust is to estimate the values of λi for all agents in the
system. Since we do not observe the Pij variables, we proceed by using an
Expectation-Maximization algorithm to iteratively refine our estimates of these
parameters.

We start with initial estimates λ
(0)
i for each of the i agents’ parameters.

These starting values do not have a great effect in our application, so we start
with λ

(0)
i = 0 for all i.

1The term “honesty” is merely a shorthand for “probability of acceptable performance.”
As noted above, these parameters encompass all possible causes of unacceptable behavior, not
just deliberate dishonesty.
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3.1.1 Expectation Step

For each transaction involving agent i, we calculate the conditional expectation
that i performed acceptably given the observed feedback:

E[Pij |Fij = 1, Fji = 1] = 1
E[Pij |Fij = 0, Fji = 1] = 1

E[Pij |Fij = −1, Fji = 1] = 1
E[Pij |Fij = 1, Fji = −1] = 0
E[Pij |Fij = 0, Fji = −1] = E[Pij |PijPji = 0]
E[Pij |Fij = −1, Fji = 0] = E[Pij |PijPji = 0]

E[Pij |Fij = −1, Fji = −1] = E[Pij |PijPji = 0]

We do not compute the expectation for the the two unlisted cases (Fij =
1, Fji = 0 and Fij = Fji = 0) and instead treat these transactions as missing
data.

When at least one negative and no positive feedback is given, all we know is
that someone behaved unacceptably. We cannot rely on the feedback being accu-
rate in these cases, so we use the more fundamental expectation E[Pij |PijPji =
0].

To compute this expectation, we simply look at the joint distribution, P{PijPji, Pij , Pji},
given in the table2:

PijPji Pij Pji P{PijPji, Pij , Pji}
0 0 0 (1 − λi)(1 − λj)
0 0 1 (1 − λi)λj

0 1 0 λi(1 − λj)
1 1 1 λiλj

Simply marginalizing over Pji, conditioning on PijPji = 0, and taking the
expectation yields the expression:

E[Pij |PijPji = 0] =
λ

(t)
i − λ

(t)
i λ

(t)
j

1 − λ
(t)
i λ

(t)
j

which we use for the expected performance in the previous estimation.
This estimation process is the key to EM-trust algorithm. We assume that

negative feedback is mostly unreliable and so we penalize both parties in such a
transaction. The amount of “blame” given to each party is based on the current
reputations of the two parties in a transaction. The aim of this technique is
to render retaliatory feedback irrelevant. If an agent has received a negative

2Missing entries have probability zero.
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feedback, it does not matter whether it leaves a retaliatory negative or not: the
reputations of both parties will be computed in the same fashion regardless of
whether the agent retaliates.

The only way in which the recipient of a negative feedback can change the
outcome of the reputation process is by leaving a positive for its partner, which
will have the effect of shifting all blame for the transaction failure onto itself,
lowering its reputation even further. On its face, it is not desirable for the
reputation system to discourage agents from leaving honest feedback. However,
agents rarely leave positive feedback for others that gave them negative feedback,
even in eBay where such behavior will not result in a lower reputation. Resnick
and Zeckhauser [12] report that none of the buyers and only 13% of sellers who
received negative feedback respond with a positive feedback. Therefore we feel
that making a pre-existing strategy, not praising those who criticize you, slightly
more optimal is a worthwhile tradeoff for eliminating most of the effect of the
far more damaging tactic of retaliation.

One minor problem is that this formulation of the conditional expectation
can cause a division by zero if the estimate for λ

(t)
i and λ

(t)
j are both 1 on some

iteration t. We solve this problem by setting any estimates of 1 to 0.999999999
or some other constant arbitrarily close to 1.

3.1.2 Maximization Step

For the maximization step, we use the conditional expectations computed above
as if they were the observed values of the Pij and use the standard maximum
likelihood estimation formula for a Bernoulli random variable to compute up-
dated estimates of the parameters λi.

Let 〈Pij〉(t) = E[Pij |Fij , Fji] be the conditional expectation of agent i’s be-
havior in a transaction with agent j computed in the expectation step of iteration
t. Let A be the set of agents with which agent i has interacted and for whom we
have computed 〈Pij〉(t). We estimate the parameter λ

(t+1)
i , the updated value

of agent i’s honesty, by

λ
(t+1)
i =

1
|A|

∑
j∈A

〈Pij〉(t)

We then use these updated parameter estimates in the next estimation step
and repeat the whole process until convergence. While we have no bounds on the
number of steps until convergence, EM algorithms generally converge quickly,
which appears to be true in practice with EM-Trust.

Currently, if a pair of agents have had multiple transactions together, EM-
trust behaves like eBay and only counts the most recent transaction. This
approach makes it more difficult for malicious users to create bogus reputations
by creating fake buyer accounts and leaving multiple positive feedbacks for sales
of non-existent items. If it should become necessary to include all transactions
between two users, the modifications to EM-trust would be trivial.
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3.2 Bayesian EM-Trust

Because most agents will only interact with a handful of others during the
course of their participation in the market, the data sets that EM-Trust will
use will likely be highly sparse. This data sparseness may cause inaccuracies in
the estimates, since maximum likelihood methods do not incorporate anything
other than the observed data. For example, the estimated probability of success
for a user with a single successful transaction and no unsuccessful ones will be
one. Yet with only one datapoint, it is hard to have much confidence in this
estimate.

To help manage this sparseness, we developed a Bayesian version of EM-
Trust that uses a prior distribution of agent behavior as well as the observed
data to estimate the agent’s actual behavior distribution. For a prior we use a
mixture of Beta distributions:

γBeta(α1, β1) + (1 − γ)Beta(α2, β2)

where the α1 and β1 parameters describe the probability distribution of ac-
ceptable performance among agents that are mostly honest and competent (i.e.,
the “good” agents) and α2 and β2 describe the distribution of acceptable per-
formance among mostly dishonest or incompetent (i.e. “bad”) agents. The
γ parameter describes the proportion of good agents in the market. As with
all Bayesian estimators, these parameters need to be calculated through some
method other than using the actual data set.

The estimation step remains the same as in the standard EM-Trust algo-
rithm, but the maximization step replaces the simple maximum likelihood esti-
mate with the Bayesian estimate:

λ
(t+1)
i = π

α1 +
∑

j∈A〈Pij〉(t)

α1 + β1 + |A|
+ (1 − π)

α2 +
∑

j∈A〈Pij〉(t)

α2 + β2 + |A|
where

π =
1

1 + 1−γ
γ

B(α′
2,β′

2)
B(α′

1,β′
1)

B(α1,β1)
B(α2,β2)

α′1 =
∑
j∈A

〈Xi〉(t)j + α1

β′1 = |A| −
∑
j∈A

〈Xi〉(t)j + β1

α′2 =
∑
j∈A

〈Xi〉(t)j + α2

β′2 = |A| −
∑
j∈A

〈Xi〉(t)j + β2

and B(α, β) is the Beta function,
∫ 1

0
xα−1(1− x)β−1dx. The posterior distribu-

tion of the λi is also a mixture of Betas with parameters α′1, β′1, α′2, β′2, and
mixture parameter π.
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4 Marketplace Simulator

Ideally, we would test algorithms such as EM-Trust in a real peer-to-peer mar-
ketplace with agents of known competence. However, since such a marketplace
is unavailable, we run our experiments in a simulated one. The design of the
simulator is our attempt to achieve a balance between having enough complex-
ity to accurately model how real agents interact and keeping the number of
simulation parameters manageable.

We believe that the simulator achieves our desiderata: Its assumptions ap-
pear to us to be realistic, at least to a first approximation; it seems to model
observed behavior well enough, and robustly enough, so that the results are
plausible proxies for what would happen in real marketplaces. Moreover, as far
as we can tell, it does not incorporate any biases designed to favor (or disfa-
vor) our models. The robustness of the simulation results suggests that further
complications are unwarranted, at least for our purposes. Of course, various
improvements, such as more accurately and automatically determining model
parameters, are possible. We discuss such further work below.

The following sections describe the simulator design in depth and discuss its
many configurable parameters. As the simulator is a complex piece of software,
the descriptions are necessarily fairly long. Full knowledge of the simulator
design is not required for understanding the subsequent results.

4.1 Overall Design

For simplicity, our market assumes that all agents are trading in a single com-
modity at a fixed price. Since none of the algorithms we test currently use
price, commodity type, or bidding behavior when calculating reputations, it
was unnecessary to simulate the full auction process.

The simulator runs for a specified number epochs, each of which consist of a
number of individual transactions. Between epochs, the simulator recalculates
the reputations of all the agents in the system. We do not recalculate reputations
after each transaction both for efficiency reasons and because feedback is not
usually left immediately after completion of a transaction. All the simulations
in this report were run for 200 epochs, each with a size of 1000 transactions.

To simulate a single transaction, the simulator first chooses a seller agent.
Next, it chooses a buyer agent. The seller and buyer then decide whether they
want to interact with each other based on their reputations. The simulator
continues to choose buyers until it finds a pair that agrees to interact or until a
fixed period of time elapses. If a buyer is never found, the seller fails to sell its
goods and has to try again later.

Once a buyer/seller pair agrees to interact, the simulator determines their
performance in the transaction. Each agent has an honesty parameter (λi)
indicating their probability of performing acceptably, which is used to randomly
generate their performance on each transaction.

Finally, the agents are allowed to leave feedback for each other based on their
performance in the transaction. The agents’ performance and feedback as well
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as the transaction time, ID, and other statistics are recorded and the simulator
begins the process again for the next transaction.

At the end of an epoch, the simulator runs the reputation system to update
agent reputations. It also records some snapshot information about the state of
the market to be used for later analysis. Once the specified number of epochs
has completed, it records further performance information and exits.

The simulator is controlled by setting the various parameters prior to running
a simulation. These parameters and their default values are given in Table 1.

The simulator is written in Java and allows the user to configure the mar-
ketplace parameters, generate sets of agents, and run simulations using either
an interactive command line or a batch scripting interface. Most importantly,
it is possible to run multiple simulations with different reputation systems on
the same initial set of agents.

4.2 Creating Agents

Before the simulator can begin to process transactions, it must create the pool
of agents that will participate in the market. Agents are divided into four
classes according to two orthogonal characteristics: their disposition can be
either “good” or “bad,” and their type is either “buyer” or “seller.”

An agent’s disposition determines how its honesty parameter is generated.
The simulator first determines whether the agent will be good or bad randomly
according to a user supplied parameter. Once the agent’s disposition is chosen,
the simulator generates the agent’s honesty parameter randomly from a Beta
distribution associated with the disposition. The honesty distribution for good
agents usually has a high mean, while the distribution for bad agents has a low
mean. Across all agents, the distribution of honesties generated by this process
follow a mixture of these two Beta distributions, with the proportion of good
agents in the system as the mixture parameter.

The number of buyer and seller agents is specified by the user. While both
agent types can both buy and sell, sellers tend to sell more often than buy
and buyers do the opposite. Associated with each agent is two Poisson rate
parameters, one for buying and the other selling. Each of these parameters are
randomly generated from a Gamma distribution that varies according to the
agent type.

4.3 Generating Transactions

An agent’s participation in the market is modeled by a pair of Poisson processes,
one for buying and one for selling. The rate of these processes is controlled by
the agent’s buying and selling rate parameters. These processes generate a series
of times when an agent wants to buy or sell in the market.

The simulator maintains two priority queues each containing all active agents
sorted by their next buy or sell time. When conducting a transaction, the
simulator chooses a seller from the front of the seller queue, then pulls potential
buyers off the buyer queue until an agreeable match is found. If no buyer with
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Simulator function Parameter name Default Value

General
Transactions per epoch
Number of epochs

1000
200

Agent creation
Number of buyers
Number of sellers

4000
1350

Agent honesty

Proportion of good agents
Good agent sub-distribution α
Good agent sub-distribution β
Bad agent sub-distribution α
Bad agent sub-distribution β

0.98
18.0
2.0
2.0

18.0

Buyer participation

Mean buy rate
Variance of buy rate
Mean sell rate
Variance of sell rate

0.2
0.08
008
008

Seller participation

Mean buy rate
Variance of buy rate
Mean sell rate
Variance of sell rate

0.08
0.0128

64
1.024

Interaction
Interaction threshold
Threshold width

0.884
0.2

Respawning
New agent creation rate
Respawn rate

25.0
0.6

Feedback

First feedback probability for good agents
Second feedback probability for good agents
First feedback probability for bad agents
Second feedback probability for bad agents

0.3
0.6
0.1
0.5

Retaliation
Good agent retaliation rate
Bad agent retaliation rate

0.25
0.75

Bayesian prior

γ (Mixture ratio)
α1

β1

α2

β2

0.98
18.0
2.0
2.0

18.0

Table 1: Description of simulator parameters and their default values.
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a buy time less than four time units greater than the seller’s seller time is
available, the sale expires. Likewise, the buy offers of buyers who cannot find a
seller within four units of their initial buy time also expire.

After either a completed transaction or when a buy or sell offer expires, the
simulator generates a new buy or sell time as appropriate and inserts the agents
back in the priority queues.

4.4 Agent Interactivity

Once a potential buyer/seller pair are generated using the buy/sell Poisson
processes, the agents are given the choice of whether they want to interact with
each other.

Two global parameters determine how agents choose whether to interact or
not. The first parameter, the interaction threshold, determines the reputation
value of its partner above which the agent is likely to want to interact. The
second parameter, the transition width, is the width of the transition region
between always wanting to interact and always declining to interact. The prob-
ability of interaction is given by a modified logistic function:

I(r) =
1

1 + e[− 2 ln 99
w (r−t)]

where r is the potential partner’s reputation, t is the interaction threshold and
w is the transition width.

In this function, the interaction threshold controls the value of r for which
the probability of interaction is 0.5. The transition width controls the steepness
of the slope of the logistic function and is defined as the length of the interval
of r values where I(r) lies between 0.01 and 0.99.

To determine whether to interact with a potential partner, an agent feeds
the partner’s reputation to this function to obtain a probability of interaction.
It then generates a Bernoulli distributed random variable with this probability
to determine whether to interact or not. If the transition width is set to 0,
the interaction is no longer stochastic and the agent always interacts if the
partner’s reputation is greater than the interaction threshold and declines to
interact otherwise.

Agents start with zero reputations in the eBay and standard EM-Trust sys-
tems — Bayesian EM-Trust starts users at the mean of the reputation prior
— so agents will never start to interact unless we handle interaction with new
users specially. Therefore, if an agent’s potential trading partner has received
no feedback yet, the simulator substitutes the mean honesty for the new user’s
reputation when calculating the probability of interaction.

The simulator allow the user to specify the interaction threshold and tran-
sition width globally, but currently does not permit individual agents to have
their own parameter values.

13



4.5 Leaving Feedback

Three parameters control the way in which agents leave feedback: the proba-
bility of leaving the first feedback, the probability of leaving a second feedback,
and the probability of leaving a retaliatory negative. Agents have different feed-
back strategies depending on their disposition but currently, all agents of a given
disposition share common parameters.

After the agent’s behavior in a transaction has been recorded, the simulator
polls each agent to see if they wish to leave the first feedback. If neither agent
wants to leave the first feedback, neither leave feedback for the transaction.
If both agree to leave the first feedback, the simulator picks one or the other
randomly with equal probability.

The agent that leaves feedback first must determine the type of feedback to
leave solely on the basis of its own behavior and its partner’s behavior. Since
the other agent has not yet left a feedback, it cannot base its decision on the
other’s feedback.

Good agents always leave accurate first feedback: if the other agent behaved
correctly, it will leave a positive, otherwise it will leave a negative. A bad agent
will not leave a positive feedback if it behaved dishonestly in the transaction
because leaving a positive will allow its partner to leave a negative without fear
of retribution. Instead, it will leave a pre-emptive negative feedback to try to
disguise its responsibility for a bad transaction. If it behaved honestly, it will
leave an accurate feedback.

While it is a tunable parameter, all of our tests were run with bad agents
having a low probability of leaving the first feedback. We believe the optimal
strategy for someone running a scam in a peer-to-peer market is to leave no
feedback unless it receives a negative, in which case it retaliates. Using this
strategy, in the best case no feedback is left, so there is no evidence of the scam.

After the first agent leaves feedback, the simulator queries the other agent
if it wants to leave the second feedback. If the agent wants to leave a second
feedback, it can base its decision on both the behavior of both agents in a
transaction as well as the feedback left by the first agent. If either a good or
bad agent receives a positive feedback, and it decides to leave any feedback, it
will leave an accurate second feedback.

If a good agent receives a negative feedback it will leave a retaliatory negative
feedback according to its probability of retaliation, regardless of its own behavior
or that of its partner. If it does not choose to retaliate, the good agent will leave
an accurate feedback. Except for retaliation, good agents do not generally try
to game the feedback system because we assume their failures are due more to
mistakes or lack of competence than to malice.

Bad agents will also retaliate for negative feedback according to their prob-
ability of retaliation. If they do not retaliate, they will always leave a negative
feedback if the other agent did not behave correctly. However, a bad agent will
leave a positive feedback for a correctly behaving partner only if the agent itself
also behaved correctly. Otherwise, it will leave no feedback. We assume bad
agent’s behave badly chiefly out of dishonesty so they try to use the feedback
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system to cover their tracks as much as possible.

4.6 Agent Respawning

In real marketplaces, agents whose reputations fall too low will likely discard
their identity and re-enter the system as a new user. This non-persistence of
identities led Zacharia et al [16] to suggest that reputation systems should never
allow reputation to fall below the level of a new user. While eBay (at least the
percent positive feedback metric) and EM-Trust systems follow this guideline,
the fact remains that a new user with a zero reputation will likely receive more
trust than a user that has zero reputation after a number of transactions.

For this reason, any user that has received at least one feedback but whose
reputation is below the mean prior honesty will throw away its old identity,
since its chance of interacting is greater as a new user than as one with a poor
reputation. The agent then either creates a new identity or leaves the market
permanently. The distribution of these two events is controlled by a simulator
parameter.

We simulate creating a new identity by adding a new agent with the same
parameter values to the simulated marketplace. The old identity is marked
inactive and is removed from the buying and selling queues. The simulator
tracks these identity changes so that we can analyze the frequency with which
individual agents change identities.

In addition to respawning agents, the simulator also adds new agents to
the market according to a Poisson process whose rate is set by user-specified
parameter. These new agents are generated in the same fashion and with the
same honesty and buy/sell rate distributions as the original set of agents in the
marketplace.

5 Experimental Results

In order to test EM-trust, we ran a series of simulations and used several metrics
to compare the reputations returned by EM-trust, Bayesian EM-trust, and eBay
percent positive feedback. The first test measures how accurately the three
reputation systems can estimate the true underlying performance parameters
for the agents in a marketplace. In the second test, we evaluate how well the
algorithms detect and eliminate low performance agents. Finally, we briefly
explore the sensitivity of Bayesian EM-trust to the choice of prior distribution.

5.1 Predicting Honesty

Our first experiment measures the three reputation systems’ abilities to learn
the actual honesty of a set of agents. We tested EM-trust, Bayesian EM-trust,
and eBay percent positive feedback in the marketplace described by the param-
eters in Table 1. The ratio of buyers to sellers, their buying and selling rates,
and the number of low-performance agents were chosen to produce interaction
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statistics that are close to the real world results reported by [12]. The interac-
tion threshold was set to 0.884, the mean honesty value of agents in the system,
implying that a new agent has a 50% chance of being allowed to interact in a
transaction.

For each reputation system, we ran simulations at four different levels of re-
taliation. The 0% level simulates a marketplace where all feedback is completely
accurate: no one leaves false negatives in retaliation for a received negative feed-
back. At the 50% level, agents leave retaliatory negative feedback for about half
of the negative feedbacks they receive. At the 100% level, agents always retal-
iate for negative feedback. Finally, we simulated a market where good agents
leave retaliatory negatives 25% of the time, while bad agents retaliate 75% of
the time. While we were unable to find concrete figures for the actual retaliation
rates in real markets, anecdotally it is fairly high [12].

After each epoch of 1000 transactions, we computed the mean absolute error
between the reputations returned by the three systems tested and the known
ground truth honesties of the agents in the system. Each simulation was run
48 times and the results averaged in order to smooth out random fluctuations.
The results of this test are shown in Figure 1.

In all four simulations, EM-trust outperformed eBay percent positive feed-
back, while Bayesian EM-trust did better than either of the other two. As
the level of retaliation increases, both EM-trust’s and eBay’s performance de-
grades, though eBay percent positive feedback is affected considerably more
than EM-trust. The level of retaliation has almost no effect on the performance
of Bayesian EM-trust.

These graphs demonstrate that both EM-trust variants accomplish the goal
we set for them: both perform at least as well as eBay percent positive feedback
in the zero retaliation case, and are much less influenced by inaccurate feed-
back data introduced by retaliatory negatives. While these charts show results
for only one set of simulation parameters, our testing indicates that they are
qualitatively representative of a wide range of parameter values.

5.2 Classification Performance

While more accurate evaluations of agents’ performance is certainly a desirable
feature in a reputation system, the fundamental problem they aim to solve is one
of classification. A participant in a peer-to-peer marketplace hopes to use the
information returned by the reputation system to make a choice about whether
to interact or not with a potential trading partner.

To test the three algorithms’ ability to distinguish good users from bad
ones, we looked at two statistics: the transaction success rate and the precision
of agent deactivations. The transaction success rate is simply the percentage of
transactions where both parties behaved correctly. The deactivation precision is
the percentage of deactivated agents — agents that are removed from the system
because of a low reputation — whose true honesty is less than the overall mean
honesty. While different from the classical definitions, the former statistic can
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(c) Performance when retaliation rate = 100%
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(d) Performance when retaliation rate = 25% for good agents, 
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Figure 1: Reputation system accuracy with (a) retaliation rate = 0%, (b) retal-
iation rate = 50%, (c) retaliation rate = 100%, and (d) retaliation rate = 25%
for good agents and 75% for bad agents. All graphs show the mean absolute
error between reputations and true agent performance.
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Figure 2: Effect of the interaction threshold on the transaction success rate
when using eBay percent positive feedback, EM-trust, and Bayesian EM-trust
reputation systems.

be interpreted as a form of recall and the latter as type of precision. An ideal
reputation system would receive a score of 1.0 on both metrics.

We evaluated the algorithms over a range of interaction thresholds to show
how these two statistics change with the selectivity of the marketplace’s partic-
ipants. The results are shown in Figures 2 and 3. As with the MAE results,
each simulation was run 48 times and averaged to smooth out any random fluc-
tuations introduced by the simulation process. All tests were conducted with
the retaliation set to 25% for good users and 75% for bad users.

Of the three algorithms, eBay percent positive feedback yields the highest
transaction success rate for a given interaction threshold. At low interaction
thresholds, standard EM-trust outperforms its Bayesian variant, but the gap
closes at higher thresholds. The performance of all three systems is very close,
though, particularly at high interaction thresholds, where eBay has a transaction
success rate of 85.9% compared to 85.4% for the two EM-trust variants.

The differences among reputation systems is much greater when looking at
the deactivation precision. In this test, we see that the performance of the three
algorithms is reversed: about 56.4% of agents deactivated by eBay are actually
bad, while 61.2% of those deactivated by EM-trust are bad agents. Bayesian
EM-trust does even better: 64.8% of its deactivations are for bad agents.

Interestingly, the deactivation precision does not appear to be strongly af-
fected by the interaction threshold. This fact suggests that the safest interaction
strategy is to trade only with the very best agents. Of course, such a strategy
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Figure 3: Effect of the interaction threshold on the deactivation precision when
using eBay percent positive feedback, EM-trust, and Bayesian EM-trust repu-
tation systems.

requires no algorithm to speak of, just a filtering of any agents against which
are any black marks. This is typical of “precision-recall” results, in which the
best value of one desiderata may be achieved by ignoring the other. However,
assigning infinite value to safety is probably not useful in real markets: This
strategy may introduce opportunity costs by making it harder to source or sell
certain goods, particularly scarce or unpopular ones.

5.2.1 Combining Metrics

When there is a tradeoff between multiple performance metrics, it can be helpful
to combine them in some way to form a single performance index for the systems
being evaluated. In the case of traditional precision and recall, the harmonic
mean is commonly used.

In this case, taking the harmonic mean of the transaction success rate and
the deactivation precision yields a scalar performance index that ranges from 0
to 1, with the ideal reputation system having a value of 1.0. Figure 4 presents
the results of the classification experiment in terms of this performance index.

According to this performance index, Bayesian EM-trust performs best, then
standard EM-trust, and finally eBay percent positive feedback. The perfor-
mance index weights the transaction success rate and deactivation precision as
equally important. If we accept the assumption that both metrics have equal
weight, the results imply that the observed reduction in the transaction success
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Figure 4: Effect of the interaction threshold on the overall performance index
when using eBay percent positive feedback, EM-trust, and Bayesian EM-trust
reputation systems.

rate is a small price to pay for the larger improvement in deactivation precision.
Furthermore, we can explore the overall performance when the two metrics

are not considered equally important by using a performance metric computed
with a weighted harmonic mean. Using such a metric, we found that eBay
consistently outperforms EM-trust only if the transaction success rate is con-
sidered more than twenty times as important than the deactivation precision.
For Bayesian EM-trust, the transaction success rate would have to be about
30 times more important before it is outperformed by eBay percent positive
feedback.

5.3 Bayesian Priors

All of the above results were conducted with a “perfect” prior for Bayesian
EM-trust. Since we control the actual distribution of agent honesties in the
simulator, we can simply use this same distribution for the prior distribution
in Bayesian EM-trust. In a real marketplace, however, we will not have access
to the actual distribution of agent honesties. Instead, this prior will have to be
determined through some combination of domain knowledge and historic data.

While techniques for determining this prior are beyond the scope of this pa-
per, we can demonstrate how Bayesian EM-trust is affected by less than ideal
priors. We tested six different priors, whose mixture of beta parameters are de-
scribed in Table 2. The perfect prior is the prior used in the previous tests: we
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Name γ α1 β1 α2 β2 Mean
Perfect 0.98 18.0 2.0 2.0 18.0 0.884
Non-informative 1.0 1.0 1.0 — — 0.5
Prior 1 0.98 10.0 1.0 1.0 10.0 0.893
Prior 2 0.9 18.0 2.0 2.0 18.0 0.82
Prior 3 0.9 10.0 1.0 1.0 10.0 0.83
Prior 4 1.0 15.24 2.0 — — 0.884

Table 2: Parameters and mean of tested Bayesian priors

took the distribution used to generate the agents’ performance parameter and
used it as the Bayesian prior. In a real system, it is very unlikely we could ever
get this accurate of an estimate of the true prior, so the perfect prior should be
considered an upper bound on Bayesian EM-trust performance. At the opposite
end of the spectrum is the non-informative prior. The non-informative prior in-
dicates no prior knowledge of agent performance and is simply the Uniform(0,1)
distribution expressed as a mixture of Betas.

The other four priors express different levels of inaccuracy in knowledge
of the prior. Prior 1 has the mixing parameter correct but has incorrectly
estimated sub-distributions. Prior 2 is the opposite: its sub-distributions are
correct but it has the wrong mixture parameter. Prior 3 has both incorrect sub-
distributions and an incorrect mixture parameter. Finally, Prior 4 is a simple
Beta distribution with the second sub-distribution ignored.

Figure 5 shows the effect of different choices of prior on Bayesian EM-trust’s
MAE results in a marketplace with a 25% retaliation rate for good agents, and a
75% rate for bad agents. For each prior, we set the interaction threshold to the
prior mean, implying that new users have 0.5 probability of interacting under
all priors. Each variant was simulated 48 times and the results were averaged
for this figure.

The choice of prior clearly influences performance of Bayesian EM-trust;
however, performance is still high even with priors that deviate from the ideal.
The algorithm seems more sensitive to the value of the mixture parameter than
the sub-distributions. In particular, it seems that underestimating the mixture
parameter — assuming there are more bad agents in the system than really
exist — hurts performance significantly. Nevertheless, it is encouraging that
Prior 4, a simple Beta distribution whose mean is equal to the average honesty,
gave results slightly better than the theoretically ideal prior.

While imperfect priors give acceptable performance, it is still necessary to
put considerable effort toward choosing a sufficiently good approximation to the
true underlying prior distribution in order to realize the benefits of Bayesian EM-
trust. Using a non-informative prior distribution results in a reputation system
with performance much worse than both of the non-Bayesian alternatives.
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6 Future Work

Both EM-trust variants have clear benefits compared to eBay percent positive
feedback. Moreover, there are many avenues for further exploration and im-
provement:

1. Temporal models of reputation. Currently both EM-trust variants assume
that an agent’s honesty is an immutable property. In reality, agent per-
formance can change with time. Some users start off badly but learn from
their mistakes. Others may be honest for a while but later decide that run-
ning a scam is more profitable than a legitimate business. In particular,
we would like the reputation system to formalize the concepts of “initia-
tion dues,” the requirement that new agents prove themselves before their
reputation will grow, and “stoning bad behavior,” the quick destruction
of the reputation of a good agent who turns bad, that Resnick et al. [12]
observed as social phenomena on eBay.

2. Estimating the Bayesian prior. As discussed above, it is necessary to have
a reasonably good estimate of the distribution of agent honesties in order
for Bayesian EM-trust to show its advantages. We need to investigate
techniques for performing this estimation, ideally with real marketplace
data.

3. Improving simulator accuracy. Currently, our simulator models and pa-
rameters are based on the results in [12]. However, with more complete
information about how agents interact in a real marketplace, we could fit
more accurate models and create a more realistic simulator.

4. Exploring strategies for leaving feedback. Currently, we have a simple
model for how agents leave feedback that is based on observations of eBay
user behavior and anecdotal reports. Many of the strategies used by real
users — e.g. threatening retaliation to deter negatives — have evolved as
users learn how to play the feedback game. We would like to simulate this
evolution under different reputation systems both to discover hidden flaws
that allow the system to be gamed and to help guide the development of
more robust algorithms.

5. Incorporating additional information sources. In addition to fellow users’
feedbacks, there is other information available that can help an agent
decide whether or not to conduct business with a potential partner. We
would plan to investigate how data such as previous items bought/sold,
prices, bidding behavior, and other auction information might help avoid
failed transactions.

6. Application of reputation systems to other peer-to-peer systems. While
EM-trust is targeted toward peer-to-peer markets, similar systems may be
useful in other loosely coordinated networks, such as grid computing and
distributed hash tables, for reducing freeloading, unreliable nodes, and
other antisocial behavior.
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7 Conclusion

In large scale peer-to-peer markets, the chances that a participant has any
previous experience with a trading partner is vanishingly small. Therefore,
the information provided by the reputation system is vital for building the
trust necessary for a functional market. However, nearly all reputation systems
require marketplace participants to provide honest feedback. If the reputation
system does not provide accurate reputations, it will discourage participation
in the system, running the risk of entering a vicious cycle of declining feedback
rates leading to even less accurate reputations. This problem is particularly
serious for reputation systems that give unfairly poor reputations to honest
agents, the ones we would most likely expect to provide accurate feedback.

The EM-trust and Bayesian EM-trust algorithms we present in this report
make improvements to the simple eBay averaging approach that we believe
will help make reputation systems more accurate and useful. In the tests we
conducted, both EM-trust variants estimated true agent honesty more accu-
rately than eBay percent positive feedback did. While EM-trust did permit a
3% increase in failed transactions, it gave 19% fewer good agents unfairly poor
reputations. Bayesian EM-trust had comparable success in preventing failed
transactions and was even less likely to deactivate honest agents: about 37%
less likely than eBay percent positive feedback.

Finally, both EM-trust variants virtually eliminate the problem of retaliatory
negative feedback. Bayesian EM-trust is essentially uninfluenced by the rate
of retaliatory negatives. Standard EM-trust is slightly affected by increasing
retaliation rates, but still significantly less than eBay percent positive feedback.

In addition to the higher intrinsic accuracy of the two EM-trust algorithms,
we believe that their abilities to ignore retaliatory negatives and to prevent good
users from receiving unfairly low reputations will encourage more users to trust
and thus participate in the feedback process. It is our hope that this increased
participation will further increase feedback accuracy, creating instead a virtuous
cycle that improves both the participation in and the accuracy of the reputation
system.
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