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Abstract
Most DHTs are designed more for scalability than
for consistency, and thus do not provide strong guar-
antees on the consistency of data. In this paper, we
focus on key consistency rather than data consis-
tency: key consistency requires that no key be owned
by more than one root. We briefly show how key con-
sistency can be used to support atomic DHT opera-
tions and then propose a mechanism to achieve key-
consistency. We have tested our algorithm through
simulation and a Planetlab deployment, and find that
it provides high availability in the face of node churn
and packet drops.

1 Introduction
Distributed Hash Tables (DHTs) abstract away the
details of distributed storage and retrieval, provid-
ing application developers with a simple and efficient
put/get interface. To support this interface, most
DHTs use a form of consistent hashing where each
node in the DHT serves as the root for a range of
the key space, serving the put/get requests for those
keys.1

Consistency is an important but elusive goal in
DHTs. While there have been some attempts to pro-
vide data consistency guarantees in DHTs, they typ-
ically involve significant overhead and complicated
designs [6–8]. Most DHT designs put more empha-
sis on scalability than consistency and, to achieve
scalability, provide no guarantee that each get will
return the latest data. As a result, network partitions,
churn and replication can all cause a DHT to return
values that have been removed or overwritten, or to
fail to find any value at all.

1In what follows, we will only consider DHT routing algo-
rithms that only terminate at a root (unless it can’t find one)
rather than a replica.
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Figure 1: Percentage of the keyspace that is inconsistent
over a 7-day time period in a PlanetLab deployment of
OpenDHT code.

In this paper we choose to focus on key consis-
tency rather than data consistency. We call a DHT
key-consistent for a key k if no more than one node
claims to be the root for k. This seems to be a
rather modest goal, but in practice it is often vi-
olated. Figure 1 shows the inconsistent fraction
of the keyspace in a PlanetLab deployment of the
OpenDHT code [9]. For most of the measured pe-
riod, around 5% of the keys have multiple roots (pre-
sumably due to nontransitive routing [4]), and at cer-
tain times (presumably due to increased churn), the
fraction of inconsistent keys spikes to a much higher
value.

The figures 2 (a) and (b) show scenarios in which
a key has multiple roots. In 2 (a), nodes A and C
cannot talk to B. A considers C to be its successor.
Similarly, D cannot talk to A but can talk to B. A
lookup for key k that reaches D is forwarded to B
while one that reaches A is forwarded to C. Figure
2 (b), node B that was disconnected, rejoins with an
identifier between A and C. A does not know of the
presence of B. Lookups on key k that reach are for-
warded to C. If B were to have fingers pointing to
it, then it would be forwarded lookups for key k as
well. These inconsistent configurations makes it dif-
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Figure 2: Instances of multiple root in the chord DHT.(a) The effect of transitive links. (b) The effect of churn

ficult to modify the values stored in the DHT.
Our goal is to develop a lightweight technique to

achieve key consistency. The mechanism we pro-
pose designates nodes as authorized roots in such
a way that there is never more than one authorized
root for a particular key. Our mechanism is simple,
lightweight, and scalable, and makes no assumptions
about message delivery times, system partitions, or
time synchronization across nodes (although it does
assume clocks progress at the same speed).2 More-
over, the consistency mechanism is completely sep-
arate from the normal DHT routing and replication
algorithms, so that it does not in any way impair the
performance of the DHT.

Why do we care about key consistency when it
does not guarantee data consistency? First, key-
inconsistency is an important cause of data incon-
sistency, because if several nodes claim ownership
of a particular key k, a get on a key k may reach
a different node from the one contacted by a pre-
vious put and therefore return inconsistent results.
Thus, reducing key inconsistency can reduce data in-
consistency, even if it does not provide strict data
consistency guarantees. Second, if the DHT is key-
consistent, all operations can be serialized through
the single authorized root. This serialization can be
used to build atomic DHT primitives. Thus, the pres-
ence of key consistency will allow us to build data
primitives with better semantics, even if they fall
short of full data consistency.

To put this in context, consider the spectrum of
application consistency requirements. On one end of
the spectrum, applications such as file sharing can

2Although our algorithm could be adapted to handle small
differentials in clock rates.

tolerate the level of data inconsistency that current
DHTs provide and do not need any additional data
consistency guarantees. At the other end of the spec-
trum, applications like distributed file systems re-
quire long-term data consistency where each get pro-
duces the latest put data, no matter how long ago that
put occurred. As noted above, algorithms to achieve
this level of consistency are quite complex, and in-
volve complicated agreement algorithms among the
various replicas of the data (see, for example, [7]).

Intermediate between these extremes are appli-
cations that require atomicity rather than long-term
consistency. For example, Place Lab [2] uses DHTs
to build a tree-based index data structure for range
queries and requires all tree updates to be performed
atomically so as to prevent corruption of the data
structure. It is to this category of applications that
key consistency delivers significant value.

To clarify our goal, we note that there are roughly
two main causes of data inconsistency: loss and con-
fusion. Data loss occurs when a root fails (and, if
the data is replicated, a sufficient numbers of replicas
also fail), taking with it the most recent put. Confu-
sion occurs when more than one node thinks it is the
root. Key consistency addresses the second problem
but not the first. As we describe in the next sec-
tion, we show that this is sufficient to build some
atomic operations that are not achievable in tradi-
tional DHTs.

2 Atomic Mutable Data
In this section, we show how a key-consistent DHT
can be changed to support atomic updates. We first
describe the role of key consistency, and then de-
scribe the modifications to the put/get operations.

2



The key consistency mechanism allows the DHT
to support an auth bit. A put(k) or get(k) operation
has its auth bit set to true if and only if the operation
reaches the authorized root for k. The key consis-
tency mechanism also allows the DHT to track the
chain of custody. Let history(k) indicate the longest
contiguous window of time into the past for which
the data under a key has always been under the cus-
tody of an authorized root for that key. When a new
node n joins the DHT, the current root m for a key k
that belongs to n transfers data stored under k to n.
m can also delegate authority over k to n if it itself
was the authorized root for k so that key-consistency
is still satisfied. Such a handoff of key k is called
“clean”. The value of history(k) stores the lifetime
of k across “clean” handoffs. Now suppose n crashes
and m again becomes authorized for k in the next
round of authorization algorithm, history(k) would
be set to 0 because the handoff was dirty (the value
under k is treated as new data). Thus, the value of
history(k) indicates the duration of the clean chain
of custody of key k.

To discuss atomic operations, consider a read-
modify-write instance. A node retrieves the values
stored under key k using get(k), modifies these val-
ues, and writes them back using put(k,v). We mod-
ify the get operation so that a get(k) returns the value
stored under key k, a version number version(k) for
k and a bit auth(k). The version number is incre-
mented when the key is updated. The client retries
the get if auth(k) is 0. We define an atomic put
operation : atomic put(k,value,version, t). version
is the version number returned with the correspond-
ing get while t is the time elapsed between the get
and the atomic put. The atomic put succeeds only
if the root is authorized for key k, the version num-
ber of k is unchanged and t < history(k). The suc-
cessful atomic put increments the version number of
the key. When multiple concurrent updates are at-
tempted, all the atomic puts reach the same autho-
rized root and only one of these wins the race.

This atomicity of this operation relies on key con-
sistency, and the rest of this paper is devoted to the
description and evaluation of our proposed mecha-
nism for achieving key consistency.

3 Authorization Algorithm
We would like the authorization algorithm to ensure
that the DHT reaches and then remains in a key-
consistent state. The authorization algorithm ensures
the following properties. The proofs of the theorems
can be found in Section 3.4.

Theorem 1 In the DHT D, if no more than a single
node is authorized for a key at time t, the key will be
authorized to at most one node for all t ′ > t.

Theorem 2 Consider a DHT D in an arbitrary state
at time t, i.e., more than one node may be authorized
for a key. An authorization algorithm is initiated at
time t ′ > t. D reaches a state in which no key is au-
thorized to more than one node in finite time.

We assume a stable logical bootstrap node, which
always knows the IP addresses of some nodes in the
DHT. Its only role is to initiate a round of the au-
thorization algorithm every τToken seconds by con-
tacting some DHT node, which we will denote by
n0. We can use standard distributed system replica-
tion techniques to make this bootstrapping a persis-
tent service. We first describe the basic idea of the
algorithm in a simple but deficient design and then
discuss how we come up with a practical algorithm.

3.1 Simple but Impractical Algorithm
We describe a simple algorithm that authorizes nodes
to keys in a DHT with a ring geometry (for exam-
ple, Chord, Pastry) while satisfying key-consistency
as an illustration of the basic ideas behind the autho-
rization algorithm.

The authorization algorithm is initiated by node
n0 when it forwards a token to its successor in the
ring. The token is forwarded by a node to its suc-
cessor until it returns to n0. n0 begins with the en-
tire keyspace R = [0,2m− 1]. n0 removes its keyset
key(n0) = [k0,k1

0) from R to obtain a range R′. n0 is
now authorized for key(n0). n0 sends a token con-
taining R′ to its successor n1. Now n1 repeats this
process by declaring itself authorized for key(n1)∩R′

and forwards R′1 = R′− key(n1) to its successor. The
removal of a key from the token once it is authorized
to a node ensures that only one node can be autho-
rized for a key. This algorithm is repeated to adapt to
changes in the DHT. A node can remain authorized
for a certain period after the latest authorization. This
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prevents it from being designated authorized forever.
This consistency requirement leads to certain timing
constraints, which we discuss in Section 3.3.

This algorithm is simple and it is applicable to all
DHTs with a ring geometry, but it is not practical. It
can suffer from low availability, does not scale well
due to O(N) time complexity, and is not robust in
the face of packet drops. In the next section, we will
present an algorithm that addresses these issues.

3.2 Basic Algorithm
We present the scalable algorithm in several stages.
We use Chord as the underlying DHT. For simplic-
ity, let us assume that a Chord node owns all the
keys that lie between itself and its successor. Node
n0 (whose identifier is k0) starts out with the entire
keyspace R = [0,2m−1]. Let n1

0 (whose identifier is
k1

0) be the successor of n0 and n2
0 (whose identifier

is k2
0) be n0’s farthest finger. n0 removes its keyset

key(n0) = [k0,k1
0) from R to obtain a range R′. n0

is authorized for key(n0). It then splits R′ into two
ranges R1 = [k1

0,k
2
0) and R2 = [k2

0,k0). It passes R1
to n1

0 and R2 to n2
0. Now n1

0 repeats this process by
declaring itself authorized for key(n1)∩R1 and split-
ting R′1 = R1− key(n1) amongst its successor and its
farthest finger that lies in R′1. n2

0 does the same proce-
dure. This range-splitting process is repeated till we
reach a node that does not contain any further nodes
in the region passed to it.

The range-splitting creates an authorization tree
rooted at n0. The information on the range handed
down the tree is passed from node to node by an
authorize token. By ensuring that no descendant
in the authorization tree can claim a key authorized to
an ancestor and by partitioning the keyspace at each
level of the tree, we ensure key-consistency. In fact,
we can use all the fingers available at a node to par-
tition the keyspace.

We perform the authorize phase at regular in-
tervals to adapt to the evolution of the DHT. The
problem that arises is that a node that gets an
authorize token may get partitioned from the
DHT so that it does not receive any further tokens.
This gives rise to a scenario in which there are stale
authorize tokens in the DHT leading to possi-
ble inconsistencies. To solve this issue, we use a
two-phase approach. In the first phase, the collect
phase, every node receives a collect token and

token {
src; // The node that initiates the token
sender; // The node that sent the token
sequence; // The sequence number of the token
range; // The region of the keyspace allocated

to the current node
nextToken; // The time when the next token will be sent
rt; // The time to wait for the authorize token

corresponding to the collect token
}

Figure 3: The format of a token

a range that it splits and forwards as described ear-
lier. However, nodes do not declare themselves au-
thorized in this stage. Instead, when a node sends out
a collect token, it expects an ack from each of its
children in the authorization tree.3 When it gets acks
from all its children or it has waited long enough, it
prunes away those children that did not ack and then
sends an ack to its parent in the tree. When node
n0 gets acks from all its children or has waited long
enough, it begins the next phase, the authorize phase,
by sending out the authorize token. However,
nodes now forward this token only along the pruned
tree.

The period between the issue of consecutive
collect tokens by n0 constitutes a round. Each
token carries a sequence number that is incremented
for each round. The sequence number is used by
nodes to discard old tokens. The token carries the
time interval before the next token is sent out and the
time to wait for the authorize token that follows
a collect token. These values are used in setting
the timers at the nodes (see Section 3.3). The token
also carries the range that is delegated to the current
node. The format of a token is shown in Figure 3.

Each node starts off in a NON-AUTH state. When
a node gets a collect token, it goes into a WAIT
state. When n0 times out on the collect token
or gets acks from all its children, it forwards an
authorize token with the same sequence number
as the collect token. A node in the WAIT state
accepts the token only if it has the same sequence
number as the latest collect token seen. Further,
the authorize must have arrived within τs of the

3In the case where a Chord node owns keys between its pre-
decessor and itself, the acks carry this additional information.
Refer Appendix 6.
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τa expires

τs expires

WAIT

UNAUTH AUTH

receive a collect token receive an authorize token 

Figure 4: State machine of the authorization algorithm.

collect (the reason for this will become clear in
Section 3.3). The node then moves into an AUTH
state with respect to the keys in its keyset that are
present in the authorize token and stays at the
state for τa seconds. The state machine that repre-
sents the authorization algorithm is shown in Fig-
ure 3.2.

The modified authorization algorithm algorithm
has a time complexity of O(logN) and an average
per-node message complexity of O(1). It is more re-
silient to message losses since the loss of a message
does not always result in all nodes moving into the
NON-AUTH state.

3.3 Timing
We make use of various timers to ensure that the pro-
tocol can provide guarantees about key-consistency.
For simplicity, we only discuss setting these timers
to constant values. The timers that control the autho-
rization algorithm are:

• τToken - This timer controls the duration of a
round. We could either set τToken to a large con-
stant value. The value of τToken in the current
round is referred to as T .

• τs - This is the time within which a node must
receive the collect and authorize tokens
in a round. By bounding the separation be-
tween the collect and the authorize to-
kens and adjusting the time spent in the AUTH
state, we can avoid inconsistencies due to de-
layed authorize tokens and network parti-
tions. In our application, we set τs = R, where

R is a time specified by node n0 and communi-
cated in each collect token.

• τa - This is the time for which a node can
remain in the AUTH state. So we set τa =
τToken − 2R = T − 2R pessimistically so that
even the last node to get an authorize to-
ken moves out of the AUTH state before the
earliest node to get an authorize token in
the next round. This again ensures that incon-
sistencies do not arise due to nodes missing the
collect-authorize tokens. We set T and
R so that the authorization algorithm responds
quickly to changes in the DHT while nodes re-
main in the authorized state for as long as pos-
sible. For a given value of T , small and large
values of R will cause nodes to switch to the
NON-AUTH state though the correctness of the
algorithm is unaffected. A reasonable value for
R is the time taken by a token to return to n0.

The authorization algorithm ensures that the
DHT attains and, subsequently remains, in a key-
consistent state. However, to be useful, the nodes
must be authorized for keys that are conflict-free.
If we consider the authorization algorithm in a per-
fectly consistent DHT with tokens having a deter-
ministic time of transmission, each node stays in the
AUTH state for a time T − 2R and switches back to
the NON-AUTH state till it is authorized in the next
round. Each node is in the AUTH state for a frac-
tion T−2R

T of the time. A client intending to do a an
atomic update would simply have to retry a lookup
made during this time.

To tackle the problem of availability, we modify
the algorithm so that when a node becomes autho-
rized for a key for the first time, it waits in a PROVI-
SIONAL state and then enters the AUTH state. How-
ever if it already was in the AUTH state for a key and
the current round of authorization algorithm declares
that it is the authorized root, then it simply remains in
that state. The time for which a node remains in the
AUTH state depends on whether the node is newly
authorized for that key. τold

a is the time for which a
node that retains its authority on a key remains au-
thorized. τnew

a is the time for which a node that is
newly authorized remains authorized. τp is the time
that such a node waits in the PROVISIONAL state.
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Timer Function Value
τToken The time period of the token T -constant or decided by n0
τs Time spent in waiting for a test token after getting a set token R-time between the two phases
τp Time spent in the provisional state < T
τa Time spent in the AUTH state T −2R+ τp for a previously authorized key

T −2R for a newly authorized key

Table 1: A summary of the values used for the different timers

We set τp + τnew
a = τold

a . By choosing τp appropri-
ately, we can ensure that a node does not oscillate
between AUTH and NON-AUTH states during nor-
mal operations.

For example, we can set τp = W = R + S. So any
node that becomes newly authorized for a key will
become truly authorized only after at least R+S sec-
onds. A node that was previously authorized on the
same key and has become disconnected loses its au-
thorization R + S seconds into the next round ensur-
ing that key-consistency holds. If there is no new
claim on the key, the node that was formerly autho-
rized will remain so if it receives the authorize
token R + S seconds into the next round. There is a
trade-off between a value of τp which ensures that
nodes do not oscillate between states during normal
behavior, and one that makes nodes become autho-
rized quicker under churn. We summarize the timers
used and their values in Table 1.

3.4 Proofs of Correctness
In this section, we prove the following two theorems
about the authorization algorithm.

Theorem 1 In the DHT D, if no more than a single
node is authorized for a key at time t, the key will be
authorized to at most one node for all t ′ > t.
Theorem 2 Consider a DHT D in an arbitrary state
at time t, i.e., more than one node may be authorized
for a key. An authorization algorithm is initiated at
time t ′ > t. D reaches a state in which no key is au-
thorized to more than one node in finite time.

Let K be the set of keys, N the set of nodes. We
assume that clocks at the different nodes move at the
same speed although they may not be synchronized.

Definition 1 Kt(x) is the set of keys owned authori-
tatively by node x at time t.

The authorization algorithm CC comprises a col-
lect and a authorize message. Denote the au-
thorization algorithm with sequence number l by

CC(l). collect(l) and authorize(l) denote the col-
lect and authorize messages with sequence numbers
l. collect(l).nodes is the sequence of nodes visited
by the collect message. authorize(l).nodes is the se-
quence of nodes visited by the authorize message.
CC(l).K is the set of keys which have unique au-
thoritative roots. We denote by Tl the time elapsed
between the issue of collect tokens collect(l) and
authorize(l + 1). Rl is the the time taken by the to-
ken to go around the ring used in round l. Both these
values are communicated by n0 to the other nodes
through the token. The value of the timer τs used in
round l is denoted by Sl . The time spent in the pro-
visional state in round l is Wl , Wl ≤ Tl .

Definition 2 We refer to all the events that occur be-
tween the issue of two consecutive set tokens by n0 as
belonging to a round. So all events that occur since
collect(0) has been sent out and before collect(1)
has been sent out belong to round 0.

For k ∈ Kt(x) to hold, the precondition Px
0 must

hold Px
0(k): The latest round of authorization al-

gorithm in which node x participated must autho-
rize k ∈ Kt ′(x), t ′ ≤ t. Let Qx

1(l): x has success-
fully completed a authorization algorithm CC(l) at
t ′ ∈ [t− τa, t]. Px

0(k) is true if Px
1(k, l) is true where

Px
1(k, l) : Qx

1(l) and ∀l′ > l¬Qx
1(l
′) and k ∈CC(l).K.

For successfully completing the authorization algo-
rithm, x must see a collect and authorize token:

1. Both of which have the same sequence number
l′

2. Arrive at x within a time window τs = S

3. that have traversed the same sequence of nodes.

Let Qx
2(l): x has seen a collect token collect(l) at t ′′ ∈

[t ′− τs, t ′] and a authorize token authorize(l) at t ′ ∈
[t−τa, t] and collect(l).nodes = authorize(l).nodes.
Here collect(l).nodes and authorize(l).nodes refers
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to the collect of nodes visited by collect(l) and
authorize(l) respectively. We can ensure Px

1(k, l) is
true by satisfying Px

2(k, l): Qx
2(l) and ∀l′ > l¬Qx

2(l
′)

and k ∈CC(l).K.
We can see from condition Px

2(k, l) how the algo-
rithms for set(token) and test(token) look like.

Lemma 1 Let Kt(x, l) be the set of keys authorized
to node x after participating in CC(l). Kt(x, l) ∩
Kt(y, l) = φ.

Proof: The collect token collect(l) is sent out by
node n0 at time t and it returns to n0 at some later
time t + ∆1. First, we prove that no node other than
those in collect(l).nodes responds to the correspond-
ing authorize(l). This is based on two properties of
the consistency check: the consistency check uses an
increasing sequence number for each round, and ev-
ery node that receives a token forwards it to only its
successor and no other nodes. Consider a node w /∈
collect(l).nodes that responds to authorize(l). Since
n0 uses increasing sequence numbers and the collect
and authorize can only be τs apart, the last collect
token received by w must be collect(l). Thus w ∈
collect(l). If there exists nodes Kt(x, l)∩Kt(y, l) 6= φ
and since a node forwards a token to only its suc-
cessor, this implies that atleast one of the nodes did
not receive collect(l) which contradicts our earlier
proposition.

Proof(of Theorem 1): At time t = 0, the desig-
nated node n0 sends out a collect token with se-
quence number l. We assume that at some time
0 ≤ ∆ < T , the DHT D satisfies proposition P(t):
¬∃x,y ∈ N(t),Kt(x)∩Kt(y) 6= φ. We prove that this
proposition is satisfied for ∆ < t ≤ Tl .

Let τa = τnew
a +τp = τold

a . Let there be nodes x and
y such that Kt(x)∩Kt(y) 6= φ. Thus, for some key k
Px

2(k, lx) and Py
2(k, ly) must be true. From Lemma 1,

lx 6= ly.
Consider Wl ≤ t ≤ Tl . Now consider the inter-

val [t − τs − τa, t]. Node x must have seen a col-
lect and a authorize token in this interval. This
means that n0 must have sent out a authorize token
in this interval. If τa + τs < Wl + Tl−1−Rl−1 then
t− τa− τs > −Tl−1 + Rl−1. The only token sent out
by n0 during this interval is authorize(l). Thus x and
y receive tokens with the same sequence number l
contradicting our assumption that lx = ly. Thus, we
have τa < Tl−1 +Wl−Rl−1− τs.

Consider ∆ < t <Wl . We now see that t−τa−τs >
t−Tl−1 +Rl−1−Wl . If Wl < Tl , we have t−τa−τs >
t−Tl−2 +Rl−2−Wl−1 >−Tl−2−Tl−1 +Rl−2. Thus,
Px

2(k, l− 2) cannot be true. Thus, the only authorize
tokens that could possibly be sent out by n0 during
the interval [t − τs − τa, t] are authorize(l − 1) and
authorize(l). However, no node could have been
newly authorized in round l because t < Wl . If say
Px

2(k, l) is true, then Px
2(k, l− 1) must also be true.

Thus, Px
2(k, l− 1) and Py

2(k, l− 1) must both be true
contradicting the assumption that lx 6= ly. From this,
we have Wl < Tl .

Proof(of Theorem 2): Let t ′ = t + T . A node that
authoritatively owns a key at t ′ must have partici-
pated in a consistency check between t and t ′ since
T > τa. If we have two nodes x and y that authori-
tatively own key k at t ′, node n0 must have sent out
a authorize token between t and t ′. This contradicts
Lemma 1.

The value of τp can be collect to ensure that the
nodes do not lose authorization frequently under nor-
mal conditions. For example, in round l, we can
collect τp = Wl+1 = Rl+1 + Sl+1. So any node that
acquires authorization for a key in round l + 1 will
become authorized only after atleast Rl+1 +Sl+1 sec-
onds. A node that was previously authorized on the
same key and has become disconnected loses its au-
thorization Rl+1 + Sl+1 seconds into round l + 1 en-
suring that K-consistency holds. If there is no new
claim on the key and the node that was formerly au-
thorized does not get disconnected, it will remain au-
thorized if it receives authorize token authorize(l)
Rl+1 +Sl+1 seconds into round l +1.

The question that now arises is: how do we pre-
dict the values Rl+1 + Sl+1 to be used for τp. The
correctness of the algorithm is independent of the
value chosen for τp as long as the value of τp < Tl+1.
This can be enforced by node n0 which decides to
use the decide the value of Tl+1 based on the cur-
rent value of τp. In fact, the value of τp can be kept
approximately constant provided it satisfies the in-
equality τp < Tl+1. Or if a more accurate estimate
is needed, we can use an estimate of the time taken
for the token to go around the consistency in the next
round. There is a trade-off between a high value of
τp which ensures that nodes do not oscillate between
AUTH and NON-AUTH states during normal behav-
ior, and a low value that makes nodes become autho-

7



 96

 96.5

 97

 97.5

 98

 98.5

 99

 99.5

 100

 4  6  8  10  12  14  16  18  20  22  24

Pe
rc

en
ta

ge
 o

f r
ep

ly
 (%

)

Mean session time (hours)

Centralized algorithm
Authorized (T = 2 minutes)

Authorized (T = 10 minutes)

Figure 5: Effect of mean session time on availability.
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Figure 6: Effect of message loss on availability.

rized quicker under churn. We summarize the timers
used and their values in Table 1.

4 Experiments
In Section 3, we have shown how the authorization
algorithm provides key-consistency guarantees while
retaining scalability and a low overhead of operation.
To be useful, the authorization algorithm must also
provide high availability i.e., it must ensure that a
high fraction of the keyspace is authorized and that
the DHT routing algorithms reach the authorized root
as often as possible. In this section, we measure the
availability of the authorization algorithm.

We have implemented Chord and the authorization
algorithm. The first set of experiements were done
on a PlanetLab deployment to see how our algorithm
performs in the wild. We then performed measure-
ments on a simulated network to evaluate the behav-
ior of the algorithm under churn and in the face of
packet drops.

We performed measurements on the availability
of our key-consistency mechanism in a deployment
of approximately 300 PlanetLab nodes. A token
is issued every four minutes. Each node generates

a lookup for a random key. The interarrival time
of these lookups is exponentially distributed with a
mean of one minute. The lookups reached the autho-
rized roots in 97.6% of the queries which is higher
than the percentage of the uncontested keyspace pre-
sented in Figure 1. In almost all of these failure
cases, there was an authorized root for the key, but
the DHT routing led to a root that wasn’t authorized.
We can improve availability further by improving the
Chord routing algorithm, but this is not the focus of
our study. Any improvement in routing will increase
the availability.

The simulation testbed comprised a network of
500 nodes. We induce churn in the network. Each
node stays in the network for an exponentially-
distributed session time with mean TS equal to 6, 9,
12, 18, and 24 hours respectively. Each time a node
leaves the network, we add another node to main-
tain the total number of nodes to be 500. Each node
generates lookups for a random key. The interarrival
time of the lookups is exponentially distributed with
a mean of one minute.

Figure 5 shows the availability (percentage of
replies from authorized roots) of the authorization al-
gorithm with varying mean session time. The two
graphs correspond to token period T = 2 minutes
and T = 10 minutes respectively. With a 2-minute
token period, the algorithm can guarantee 98.5%
availability with a 6-hour mean session time. As
the mean session time decreases, the availability de-
creases especially when the token period becomes
higher. When a node fails after getting a collection
token, the subtree rooted at the node will not be au-
thorized until the next token is issued. By reducing
the token period, we can limit the effect of churn on
availability. As a reference, we show the percent-
age of replies that reach an authorized root as deter-
mined by a central authorization algorithm. This is
the best possible we can achieve, since it elides tran-
sient network outages, non-transitivity, and message
loss. Our authorization algorithm achieves availabil-
ity close to that of the central algorithm.

Figure 6 shows that the authorization algorithm is
resilient against lost messages in the simulated net-
work, since lost messages are retransmitted. When
5% of the messages are dropped in the network, and
the token period is two minutes, the availability de-
creases only by 0.5%.
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5 Related Work
Emulating atomic shared memory in a distributed
setting is a widely studied problem. The instantia-
tion to DHTs was discussed in [6]. The solution as-
sumes that nodes execute a leave procedure before
leaving and that churn is the only cause of multiple
roots. Rosebud [10] is a Byzantine fault tolerant dis-
tributed storage system that can change replica con-
figuration under dynamic membership. Etna [7] sup-
ports atomic updates by using Paxos over replica sets
to handle changes in replica set configurations. The
problem of multiple roots remains and our approach
can be used as a basic substrate on which to layer
such approaches. The problem of multiple roots has
been considered in [1] and [4]. The former proposes
a solution to the problem in the face of churn using a
consistent join protocol. The latter fixes the problem
of multiple roots due to non-transitive links. Both
these approaches, however, are probabilistic in na-
ture.

6 Conclusion
DHTs present a challenge that is ever present in dis-
tributed systems; strong data consistency guarantees
are hard to achieve at scale. Our paper ducks this fun-
damental challenge by considering key consistency
rather than data consistency. However, we argue that
key consistency enables one to build DHT primitives
with atomic semantics, something that is difficult in
traditional DHTs. Moreover, we achieve key consis-
tency in a way that does not interfere with the un-
derlying DHT routing algorithm; one is free to opti-
mize DHT routing without endangering the key con-
sistency guarantees. Thus, our approach does not
impose any performance penalties on applications
which do not use the key consistency properties; the
application merely ignores the auth bit.

While atomic primitives do not ensure data con-
sistency, we hope to show in future work how clients
can use algorithms such as those in [3, 5] to achieve
data consistency with client-side algorithms.
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A Pseudocode for authorization al-
gorithm

INITIATE()
1 token.src← id
2 token.sequence← sequence++
3 token.level← 0
4 token.range← [0,2m−1]
5 collect(token)
6 set timer(NEXT ROUND,τToken)

COLLECT(token)
1 if token.sequence > sequence
2 then children← φ
3 sequence← token.sequence
4 level← token.level
5 parent← token.sender
6 state←WAIT
7 token.sender← id
8 token.level ++
9 token.range← token.range−my region

10 F ← ( fingers with increasing ids ∈ token.range)
11 if F == φ
12 then parent.ack(id,sequence,my region)
13 set timer(WAIT FOR DELEGAT E,τs)
14 else for f ∈ F
15 do
16 new token← token
17 next( f )← closest succeeding finger of f
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18 new token.range←
19 [ f ,next( f )−1]∩ token.range
20 f .collect(new token)
21 set timer(WAIT FOR ACKS,τw)
22

ACK(id′,sequence′,range)
1 if sequence′ == sequence
2 then children← children∪ id
3 range(id)← range′

4
5 if children == F
6 then if level == 0
7 then token.src← id
8 token.range← [0,2m−1]
9 authorize(token)

10 else parent.ack(id,sequence,my region)
11 set timer(WAIT FOR DELEGAT E,τs)

AUTHORIZE(token)
1 if token.sequence == sequence&&state == WAIT
2 then provisional← my region∩ token.range−authorized
3 set timer(AUT HORIZE,τw)
4 authorized← my region∩ token.range∩authorized
5 set timer(DE−AUT HORIZE,τa)
6 state← AUT HORIZED
7 token.range← token.range−my region
8 for f ∈ children in increasing order of ids
9 do new token← token

10 new token.range←
11 [ f ,next( f )]∪ range( f )− range(next( f ))
12 new token.range←
13 new token.range∩ token.range
14 authorize(new token)

HANDLE TIMER(event)
1 switch
2 case event = NEXT TOKEN :
3 initiate()
4 case event = WAIT FOR ACKS :
5 parent.ack(id,sequence,my region)
6 set timer(WAIT FOR DELEGAT E,τs)
7 case event = WAIT FOR DELEGAT E :
8 state←UNAUT HORIZED
9 case event = AUT HORIZE :

10 authorized← authorized∪ provisional
11 provisional← φ
12 set timer(DE−AUT HORIZE,τa− τw)
13 case event = DE−AUT HORIZE :
14 state←UNAUT HORIZED
15 authorized← φ
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