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ABSTRACT
A number of multi-hop wireless reprogramming systems have
emerged for sensor network retasking but none of these sys-
tems support a cryptographically-strong, public-key-based
system for program authentication or any form of recovery
from authenticated, but Byzantine, programs. The tradi-
tional techniques for authenticating a program and recover-
ing from Byzantine user programs, namely a digital signa-
ture of the program hash and hardware-based memory pro-
tection, respectively, are not suited to resource-contrained
sensor nodes. We present techniques that are consistent
with the limited resources of sensor networks, can be used
to secure existing wireless reprogramming systems, and al-
low recovery from Byzantine programs. Our solution to the
secure reprogramming problem is based on authenticated
streams. A program image consists of several code and data
segments that are mapped to a series of messages for trans-
mission over the network. A hash of the first message in
this series is digitally signed and the hash and signature are
prepended to the series. The signed hash authenticates the
first message, which in turn contains a hash of the second
message. Similarly, the second message contains a hash of
the third message, and so on, recursively binding each mes-
sage to the one logically preceding it in the series through the
hash chain. The solution to the recovery problem requires
both on- and off-chip hardware support in the form of a
write-protected boot block and a grenade timer. Recovery
is enforced by periodically resetting the node which executes
a trusted bootloader located in the boot block. We imple-
mented the security and recovery primitives using TinyOS
and demonstrated that the overhead incurred is small com-
pared with the cost of network programming.

1. INTRODUCTION
Wireless sensor networks (WSNs) represent a new comput-
ing class consisting of large numbers of resource-constrained
nodes called motes [1, 2, 3] which are often embedded in
their operating environments [4, 5, 6], distributed over wide
geographic areas [7, 8, 9], or located in remote and largely
inaccessible regions [10, 11, 12]. These networks must op-
erate unattended for extended periods of time during which
evolving analysis and requirements can change application
semantics, creating the need to alter system behavior. While
many such changes are possible by varying management pa-
rameters [13], executing database queries [14], or download-
ing scripts [15], more substantive changes require installing
new program binaries. However, traditional methods of pro-

gramming embedded systems cannot scale to large numbers
of geographically distributed nodes. Fortunately, the wire-
less capability of sensor networks coupled with the in-system
programmability of many modern microcontrollers allows
nodes to be programmed wirelessly.

One-hop wireless reprogramming of sensor nodes [16] has
been available for a few years. More recently, this one-hop
wireless reprogramming capability has been extended and
many proposals have emerged for multi-hop schemes which
enable dissemination of programs through an entire network
[17, 18, 19, 20]. Multi-hop wireless reprogramming of sensor
networks promises great flexibility and convenience, and en-
ables efficient reprogramming of large-scale, embedded, dis-
tributed, and remote systems. However, these benefits come
with attendant risks. Since the dissemination protocols typ-
ically rely on epidemic algorithms in which nodes propa-
gate newer programs to neighboring nodes, a single faulty
or malicious node can expose the entire network to potential
security vulnerabilities and irrecoverable fault conditions.

To make wireless programming safe for large-scale sensor
networks, we are concerned with achieving two goals. First,
given a multi-hop network of wireless sensor nodes, we wish
to inject and propagate a program binary from an arbitrary
point that allows each node to authenticate the source and
verify the integrity of the program. Second, we wish to re-
cover and reprogram a node which has been programmed
with a Byzantine application. We provide a more detailed
problem definition in Section 2 and an overview of our solu-
tion in Section 3.

We reduce the secure dissemination problem to signing (and
verifying) digital streams. This problem has a surprisingly
simple and efficient solution for a finite stream whose con-
tents are known a priori and can be delivered reliably [21].
The solution is to transform the program binary into a series
of messages, with each message containing a commitment
hash of the next message in the series, and signing the head
of the message series. This approach supports an incremen-
tal receive-verify-store model which is more energy-efficient
and far more tolerant to message corruption than the mono-
lithic receive-store-verify model used by network program-
ming systems such as Deluge [17]. Section 4 describes our
system for secure dissemination of programs.



Our recovery system consists of a grenade timer [22, 3], net-
work bootloader, and lockable storage. The grenade timer
periodically resets the node which transfers execution con-
trol to the bootloader. The bootloader initializes the radio,
queries neighbors for their program version numbers, and
decides whether to acquire a new program by comparing
the local and network version numbers. If a new program
is not available, the bootloader checks the integrity and au-
thenticity of the existing program and transfers control to
the program if it passes these checks. If the current program
fails the integrity or authenticity checks, the bootloader en-
ters a recovery state in which it retrives the most recent pro-
gram available from neighboring nodes. If no neighbors are
present, then the node periodically retries with decreasing
frequency. The details of our recovery system are presented
in Section 5.

Secure dissemination and node recovery work hand-in-hand.
It does not help to boot to a new program unless one is
certain of the authenticity and integrity of the image. Sim-
ilarly, it does not help to disseminate a program securely if
one cannot run it.

The two basic cryptographic operations underlying our secu-
rity protocol are digital signature verification and hash com-
putations. Our implementation uses RSA signatures [23]
and SHA-1 hashes for the security primitives. We ported an
existing RSA implementation [24] for the Mica2 to the Telos
platform [2] and improved it by incorporating Montgomery
reduction. Our implementation is not well optimized for Te-
los but it can still check RSA signatures in 0.7 s and occupies
just 529 bytes of RAM and 1.2KB of ROM. We adapted a
Java implementation of SHA-1 to the Telos platform as well.
Our SHA-1 implementation can compute the hash of our
protocol message in 13 ms and occupies 95 bytes of RAM
and 2.3KB of ROM. Although the Telos radio transmits and
receives packets faster than we can process them, the pro-
cessor performance and the processor-radio pathway are the
bottlenecks, which means we can process packets at realized
channel capacity. This level of performance and overhead
makes cryptographically-secure program dissemination fea-
sible for mote-class devices. Evaluation details are presented
in Section 6.

We considered a number of tradeoffs in the design of our
system. Among them, the choice of digital signature algo-
rithms and sizes, broadcast authenication schemes, and fre-
quency of incremental checking (e.g. per message, per block
of messages, or per program image) are among the most im-
portant. We chose the RSA signature algorithm because of
the asymmetry in the signature and verification operations
which map well to the PC-class and mote-class devices which
perform these operations, respectively. We chose a broad-
cast authentication scheme which requires (nearly) in-order
message delivery because it provides the minimum number
of hashes required to authenticate every message incremen-
tally. We chose to verify every message upon arrival and in-
creased the default message size from 36 bytes to 104 bytes
to reduce the overhead of a hash in every packet. Our work
has led us to conclude that microcontrollers destined for
a networked world will require greater hardware protection
than today’s devices offer. Finding the right balance be-
tween no protection and fully protected modes of operation

remains an open question. An in-depth discussion of these
topics are presented in Section 7.

2. PROBLEM DEFINITION
In this section, we refine the secure and recoverable network
programming problem through simplifying assumptions, se-
curity and recovery goals, and a threat model. The simplify-
ing assumptions, in particular, makes this problem tractable
on the resource-constrained mote-class devices typically found
in sensor networks.

2.1 Simplifying Assumptions
The authenticated broadcast protocol used to ensure source
authentication and program integrity does not need to be
robust to message loss. This is the key simplification that
makes the secure network problem tractable on resource-
constrained sensor nodes. Since reliable, bulk data transfer
is the distinguishing feature of the network program dissem-
ination problem [20, 17], we can safely assume that the un-
derlying dissemination protocol masks the high packet rates
common in dense sensor networks. This assumption is sup-
ported by the fact that program images are generally needed
in their entirety to be useful, particularly on embedded de-
vices with monolithic images and in dense sensor networks,
a node can always recover a lost packet from any one of
several neighbors.

We assume that all messages are received in nearly sequen-
tial order. Exisiting network program dissemination proto-
cols divide large data objects into smaller pages, and pages
into packets, which are transferred sequentially. Packets are
transmitted using a windowed protocol and pages must be
transferred in full before the next page is transferred.

Secrecy of the program image is not essential. Since, in
the absence of tamper-resistant or tamper-proof hardware,
a compromised node’s memory contents can be accessed,
we argue that the secrecy of the program image is difficult
to ensure since it is stored on every node. However, we
might still like to provide protection against passive eaves-
dropping. If so, we argue that it is sufficient to encrypt the
program image with a network-wide symmetric cipher. But
with current hardware, the compromise of any node would
compromise the program anyway.

Efficient generation of program images and the correspond-
ing distribution packages is unnecessary since we assume
that a PC-class computer generates all of the authentica-
tion and integrity information and that this process occurs
infrequently. This opens the door to possibility of computa-
tionally asymmetric signature schemes like RSA.

Protection against denial-of-service (DoS) is not addressed
and a variety of denial of service attacks are not consid-
ered. In particular, we do not consider defending against
the class of DoS attacks aimed at energy starvation includ-
ing repeated false announcements, repeated version number
requests, combinatorial explosion attacks using forged pack-
ets with conflicting sequence numbers, and repeated packet
resend requests.

2.2 Security Goals



Source authentication: The source of a program must
be verified by a node prior to installation. Conversely, a
malicious attacker must not be able to trick a node into
installing an unauthenticated program. This ensures that
only a trusted source can install a program.

Integrity verification: The integrity of a program must
be verified prior to installation. This ensures that a program
has not been altered during transit from the trusted source
to target node. A node must be able to verify the authen-
ticity, integrity, and freshness of a messages incrementally,
assuming messages are received in order. This goal is mo-
tivated by the limited RAM available on mote-class devices
and the energy cost of optimistically writing unverified data
to flash memory. Note that we are not assuming strictly in
order packet arrival.

Freshness: An earlier version of a program binary cannot
be installed over a program with the same or larger version
number. This ensures that a node always installs the most
recent version of a program binary.

Compromise tolerance: It must not be possible to use a
compromised node to cause an uncompromised node to vi-
olate our security goals. In particular, a compromised node
must not be able to cause an uncompromised node to install
a forged, corrupted, or stale program.

Minimal state: A server should maintain no more state
than the server’s private key. This property ensures that any
server which has access to the private key, or to a service
that can sign messages with the server’s private key, can
generate signed program distributions. The motivation is
to avoid schemes which require, for example, precomputing
a large hash chain and seeding the nodes with the initial
value.

2.3 Recovery Goals
Available: At an aggregate level, network nodes should
be available. However, individual nodes may encounter la-
tent bugs, the algorithms they run may fail at scale, or
emergent pathological behavior may appear and cause lo-
cal faults. Even in the face of Byzantine application behav-
ior, the nodes should exhibit eventual availability. That is,
eventually a trusted program must regain execution control.

Retaskable: A node must exhibit eventual reprogramma-
bility over a multi-hop wireless network without human in-
tervention even in the face of Byzantine applications as long
as there are intermediate nodes which provide connectivity
between any pair of nodes with differing program versions.

2.4 Threat model
Sensor nodes are readily interfaced with desktop PC’s, so we
assume a PC-class attacker with significantly greater com-
putational ability than the nodes themselves. Due to the
distributed and embedded nature of sensor nodes, we as-
sume an attacker can compromise an arbitrary number of
nodes or introduce an arbitrary number of new malicious
nodes. Because nodes communicate wirelessly, we do not
trust the wireless medium. An attacker may eavesdrop on,
inject, change, delete, and delay packets. We assume that

the attacker cannot compromise the trusted server which
safeguards the private key used for digital signatures.

3. DESIGN OVERVIEW
In this section, we provide an overview of our secure and re-
coverable wireless programming system for sensor networks.
A detailed description of these systems are presented in Sec-
tions 4 and 5. We present our system as two separate subsys-
tems: (i) secure dissemination to distribute program bina-
ries among nodes and (ii) recovery mechanisms on the node
itself. Both subsystems are required to satisfy the design
goals of our system.

Secure dissemination is the basic mechanism to distribute
new program binaries to nodes within the network. The se-
curity is based on public-key cryptography, with all nodes
in a given administrative domain operating under the same
public-private key pair. The private key is kept secret on
a desktop PC and is used to sign a message that states
the intention of disseminating a new program binary. A
monotonically increasing version number is included within
this message, allowing nodes to determine the freshness of a
program. A hash of the entire program is also included to
authenticate the image itself. During dissemination, nodes
use the server’s public key to authenticate the intention of
transferring a new image. Because the program binary is
generally much larger than the maximum size of a packet
supported by the hardware, it is fragmented into a set of
messages. It is desirable to authenticate messages as they
are received, since the wireless medium is untrusted and po-
tentially malicious. To accomplish this, a reverse hash chain
is computed on the desktop PC over the program binary, and
allows nodes to efficiently verify whether a given message is
truly part of the sequence. The final value of the hash chain
is signed using the private key and serves as the hash value
representing the entire program binary.

In addition to secure dissemination, recovery mechanisms
on the node itself are also required to achieve the design
goals. The first component is the trusted network boot-
loader, whose major responsibilities include initializing the
hardware, checking the current version of the program bi-
nary, initiating a download of a new binary when necessary,
checking the integrity of stored programs, and programming
the node. The second component is a grenade timer, which
periodically returns control to the trusted bootloader re-
gardless of what program is currently running. This func-
tionality is necessary in microcontrollers that do not provide
privileged instructions. The grenade timer is armed by the
trusted bootloader. The third component is lockable storage
which allows the network bootloader to store updates to the
public key beyond the reach of applications.

The security system needs the recovery system to ensure
that the secure dissemination software is executed period-
ically. The secutity system also depends on the recovery
system to provide lockable storage. Without such a facility,
securely changing server private keys would be more diffi-
cult. Conversely, the recovery system’s network bootloader
uses the same cryptographic primitives that are used in the
secure dissemination software. These dependencies under-
score the deep relationship between these two systems and
justify their presentation in a single paper.



4. SECURITY MECHANISMS
This section presents the design of our security subsystem.
At manufacture time, nodes are given signed certificates and
pre-loaded with a default program and a low version num-
ber. The program dissemination process requires several
steps. First, the server takes as input a program in Intel
hex or Motorola S-record format and several network pa-
rameters like message payload size. The server then queries
the network for the version number of the current program.
Next, the server produces an ordered list of messages to
be transmitted by incrementing the version number, chain-
ing the messages which will comprise the program and its
meta-data, and signing the message at the head of the chain
which includes the new version number. The server, which
is connected to a base station, then transfers the new pro-
gram to neighboring nodes using any appropriate dissemina-
tion protocols including MOAP, Deluge, MNP, or INFUSE.
However, these protocols must be modified to include our
security primitives and protocol. The dissemination proto-
cols must verify the signature in the head message, transfer
messages sequentially, incrementally check messages upon
arrival, buffer out-of-order messages optimistically, and use
a moving window and negative acknowledgements to notify
the sender of missing messages.

4.1 Notation
The symbols A and B are used to represent arbitrary prin-
cipals, CA represents principal A’s certificate, D represents
user data, H(X) denotes the hash of X, K a key and K−1

its inverse. In a symmetric cryptosystem, K = K−1, and in
a public-key cryptosystem, K is the public key and K−1 is
the private key, and (K, K−1) is the key pair. The notation
{X}K means X is encrypted under K and [X]K−1 means
that X is signed with K−1. We use L to represent the length
or size of some object, M a malicious attacker, N a nonce, S
a server, T a timestamp, and X and Y represent user data.

We use the following notation to define message type Mn as
a message intended from A to B with payload X. We ask
the reader to forgive our overloaded use of the M symbol:

Mn , A → B : X

Even though the notation does not explicitly show Mn, A,
and B as being included in the message contents, these fields
are included and available to the receiver. If these fields need
to be protected by a hash, message authentication code, sig-
nature, or under encryption, these operations will be explic-
itly shown:

Mn , A → B : [A, B, Mn, X]
K−1

A

This notation is adapted from [25].

4.2 Node Initialization
When a node is first manufactured, the boot block is pro-
grammed with the following information:

1. Globally Unique Identifier: An identifier that unique
identifies the node globally. One possible identifier in-
cludes the IEEE GUID which is a 64-bit number con-
structed from a vendor-specific 24-bit IEEE OUI and

a 40-bit vendor serial number. Another possible iden-
tifier is Dallas Semiconductor’s UniqueWare SerialID
products. We use A to denote A’s unique identifier.

2. Factory Authority: The factory name F , and cor-
responding RSA public key KF , is pre-installed on the
node during manufacture.

3. Node Certificate: Much like an X.509 certificate, a
node A’s certificate CA consists of the following fields:

CA , ([Z, T, F, A]
K−1

F
) (1)

Z is the certificate type, and a value of Zi means that
certificate uses format i. Currently, only Z1 is sup-
ported. This format includes the certificate type Z,
expiration timestamp T , certificate signatory F , and
principal name A, all of which are signed by the sig-
natory’s RSA private key K−1

F .

4. Network Bootloader: See Section 5.

When control over a node is transferred from the factory to a
new server (e.g. the node is sold), the following information
is programmed into the node’s lockable storage:

1. Server Authority: The name of the server S, and
the corresponding server RSA public key KS , is pre-
installed on the node during manufacture and may be
subsequently changed.

2. Object Identifier: The node’s object identifier Xoid

is used to match a node to its program. If Xoid is set
to a unique value for each network deployed under a
particular server authority S, then multiple co-located
networks can co-exist since version announcements of
one network cannot be used to violate the freshness
invariants of another network.

4.3 Program Version Numbering
A node decides whether it should acquire a new version of
a program based on whether a more recent version num-
ber is available. We assign version numbers by querying
the network for the current version number, incrementing
this value by one, and setting the next version number to
the resulting value. We assume the existence of an out-of-
band process to ensure that two or more simultaneous, but
conflicting, upgrades with identical version numbers do not
occur. However, we note that even if such a process is ini-
tiated, nodes will eventually acquire whichever conflicting
version of the program it first learned about and reject mes-
sages from the alternate conflicting version(s). The version
number discovery protocol is:

MV,1 , A → B : Xoid

MV,2 , B → A : [S, Xoid, Xver, N, H]
K−1

S

where S is the signatory, Xoid is the object identifier, Xver

is the object version number, N is a random nonce selected
by the server, and H is the hash of the first data message



These fields are signed with the private key of the trusted
server, which establishes their authenticity and provides a
commitment for the remaining messages.

In this protocol exchange, A sends a version number request
to B for the program with identifier Xoid. B responds with
a cached program announcement message as described be-
low. B originally received this information when it first
acquired the program referenced by Xoid. If B is the broad-
cast address, all nodes which receive A’s message respond.
When A is the server and B is the broadcast address, the
protocol describes how the server obtains the list of poten-
tial current version numbers. The server then selects the
highest-numbered verifiable program version number as the
new version number.

The semantics and management of version numbering schemes
can become complex. In the case of our motivating appli-
cation – network reprogramming – we take a rather simple
view on generating version numbers. Specifically, the next
version number of a program should be relative to the cur-
rent version number of the program within the target net-
work. This perspective captures the user intent of our ap-
plication: “I want to program the network with the program
image I have right here regardless of what abstract version
the network is currently running.” Hence, the scope of ver-
sion numbers is entirely local and only serves to provide a
point of reference for nodes when deciding whether to ac-
quire a newer object. This scheme minimizes the state that
must be maintained outside of the network.

4.4 Program Packaging for Distribution
The packaging algorithm takes several inputs when prepar-
ing a program for distribution. The program to be transmit-
ted is provided as an Intel hex, Motorola S-record, or simi-
lar format. A program identifier that uniquely identifies the
program (or network) is also included. The packaging algo-
rithm is also given several network and cryptographic pa-
rameters including the message payload size, message digest
algorithm, public key signature algorithm, and private key
with which to sign the package. The output of the packaging
algorithm is an ordered list of messages to be transmitted
as shown in Figure 1 and listed below.

The contents of the messages shown in Figure 1 are :

MP,0 , A → B : [S, Xoid, Xver, N, HP,0]K−1
S

MP,1 , A → B : XP,1, DP,1, HP,1

MP,i , A → B : XP,i, DP,i, HP,i

MP,n , A → B : XP,n, DP,n, N

Each message consists of several header fields, a data pay-
load field, and a hash field. The packaging algorithm, which
generates this list of messages, works as follows. First, the
program is split into pages. Then, each page is further di-
vided into smaller blocks that can fit into the available mes-
sage payload. Once the data has been appropriately seg-
mented into n such blocks, the messages are built up from
the last message, MP,n to the second message MP,1, in re-

Figure 1: Output of the package creation process.
The program binary is split into sequential mes-
sages. The hash of message i serves as a commit-
ment for message i + 1. The first hash, HP,0 is au-
thenticated as being from a trusted source, thus the
authenticity and integrity of all remaining messages
follow by induction.

verse order. The first message, MP,0, identifies the server
authority, object identifier, version number, nonce to seed
the hash, and the hash of the second message. The hash
of the second message is signed and both the hash and sig-
nature are included in the first message. The signature au-
thenticates the source of the new program announcement.
In practice, the first message may actually span multiple
packets depending on the choice and size of the signature
algorithm and hash function.

The header field in messages MP,1 to MP,n contains X, a
data structure which uniquely identifies a data message:

X , (oid, ver, adu, seq) (2)

The contents of the data field of the i-th message, MP,i,
is simply the i-th data block. The hash field Hi, ∀i 6= n,
contains the hash of the concatenation of a nonce N , headers
X, data D, and hash H, of message MP,i+1:

HP,i , H(N, XP,i+1, DP,i+1, HP,i+1) (3)

The hash field of the n-th message contains a nonce. The
same nonce is used throughout a package, but different nonces
are chosen at random for different packages. The nonce
serves to seed the hash function, which in turn reduces



the required hash size to achieve a given level of protection
against pre-image and collision attacks.

Note that each hash serves as a commitment for the next
message to be received. Therefore, if the very first hash,
HP,0 can be authenticated as being from a trusted source,
then the authenticity and integrity of all remaining messages
follow by induction.

4.5 Program Dissemination
The object dissemination phase can use any reliable, page-
oriented scheme like Deluge. However, individual messages
must be verified incrementally and sequentially, in addition
to any integrity checking that the dissemination protocol
itself might perform. Messages that are received out of order
are buffered optimistically but they cannot be verified until
all prior messages have been received and verified.

4.5.1 New Package Announcement
A new object announcement consists of transmitting mes-
sage MP,0 created by the packaging algorithm in Section 4.4.
A receiving node verifies the signature provided that the ob-
ject version number is newer than its own version number.
If a valid, newer version is received, then the object dis-
semination phase begins. Otherwise, the node discards the
announcement if it contains a version number that is older
than the node’s current version.

4.5.2 Incremental Checking
A node can check the authenticity, integrity, freshness of a
messages incrementally, assuming messages are received in
order. To carry out this check, a node compares the hash
value HP,i, the hash received in the i-th message, with the
H(N, XP,i+1, DP,i+1, HP,i+1), a hash over the contents of
the i + 1-th message.

Incremental checking is motivated by the limited RAM avail-
able on mote-class devices and the energy cost of optimisti-
cally writing unverified data to flash memory. Program bina-
ries range in size from a few kilobytes to tens of kilobytes.1

In many cases, the programs are too large to fit into the
available RAM of 4KB, 2KB, and 10KB on the Mica/Mica2,
Telos Rev. A, and Telos Rev. B nodes, respectively, requir-
ing the nodes to buffer the program to flash memory prior to
verifying the integrity of the binary. In the absence of incre-
mental checking, a receive-store-verify operation would be
required and these operations would cost dearly in terms of
energy usage. Of course, this cost must be borne for an au-
thentic program binary, but a receive-store-verify sequence
gives an adversary an advantage because the adversary only
pays the energy cost of transmitting packets but does not
pay the energy cost of writing to flash or verifying.

4.6 Permissions Management
We have heretofore described our system as it pertains to a
single immutable trusted server; this principal’s public key

1The TinyOS Blink application, which simply toggles an
LED, requires 1,644 bytes on the the Mica2 platform and
2,672 bytes on the Telos. The CntToLedsAndRfm, which in-
crements a counter, displays the results on three LEDs, and
transmits the counter value over the radio requires 10,948
bytes on the Mica2 and 11,540 bytes on the Telos.

KS installed on the nodes at manufacturing time determines
all future accesses. This model conveniently generalizes: the
principal may extend trust to other principals with distinct
public keys through permission management messages:

M1 , A → B : [S′, KS′ , permissions]
K−1

S

Note that this does not require infrastructure support like
trusted third parties. Our scheme also supports principal
transfer functionality. If a permission delegation message
adds server S′ and removes server S, a transfer of ownership
will have occurred.

Permission and key management requires careful control.
While trusted software must access this data to verify au-
thenticity and integrity of programs, and must modify this
data to support updates to server public keys, application
code must not be allowed to modify this data. Supporting
this functionality requires some form of hardware protection.
Our solution, lockable storage integrated with a grenade
timer, is presented in Section 5. Neither write-protected
memory nor add-only memory solves this problem if ap-
plication software can jump to code segments which access
these storage facilities.

5. RECOVERY MECHANISMS
Section 4 addressed how to verify program authenticity, in-
crementally verify program integrity, and ensure version fresh-
ness. This section addresses how to recover a node if it is
accidentally programmed with a pathological program. Re-
covery and reprogramming is initiated when a new program
version is available so the version number freshness provided
by the security mechanism is essential for recovery.

Our recovery system consists of a grenade timer, network
bootloader, and lockable storage. The grenade timer peri-
odically resets the node which transfers execution control to
the bootloader. The bootloader, which is located in a write-
protected memory section of the microcontroller, initializes
the radio, queries neighbors for their program version num-
bers, and decides whether to acquire a new program by com-
paring version numbers. If a new program is not available,
the bootloader checks the integrity and authenticity of the
existing program and transfers control to the program if is
passes these checks. If the current program fails the integrity
or authenticity checks, the bootloader enters a recovery state
in which it retrives the most recent program available from
neighboring nodes. If no neighbors are present, the the node
periodically retries with decreasing frequency.

5.1 Grenade Timer and Lockable Storage
Our grenade timer circuit is shown in Figure 2. This design
is based on the ideas outlined in [22] and the implementation
used in the XSM [3]. However, our design improves upon
the XSM design in two ways. First, our design does not suf-
fer from the “stuttering reset” problem of the XSM design
because we incorporate a hardware interlock which prevents
the grenade timer from resetting the processor as long as the
timer has not been armed. Second, we incorporate lockable
storage into the design to allow a trusted server’s public key
to be safely stored beyond the reach of application programs.
We use the same hardware interlock to allow the bootloader



to read and write keys to the lockable storage but prevent
the application from accessing these keys once the grenade
timer is armed. Without lockable storage, server keys can-
not be trusted since a malicious application can modify a
public key that resides in unprotected memory. Addition-
ally, we provide a detailed description of the circuit’s theory
of operation which should aid others designing similar cir-
cuits.

Otherwise, our design provides the same features as the
XSM grenade timer. An asynchronous trigger allows the
grenade timer to be fired by the application program and
force a node reset. An adjustable timeout allows the re-
set frequency to be changed. A lockout ensures that once
the grenade timer is started, it cannot be stopped and the
lockable storage cannot be accessed.

The grenade timer circuit works as follows. After a power-
on-reset (POR), capacitor C2 begins charging through R4

from an initially discharged state. As long as the voltage
across C2 is below VIH , the high-level input voltage of the
AND gate (U6), the output of the AND gate remains low.
The FIREN should be tri-stated during a reset and hence
tracks the voltage across capacitor C2. The AND gate’s
other input is pulled high by R2 since the INT output of
the DS2417 (U1) is asserted low only during an interrupt
interval and not during a POR.

The time constant, τ , of the R4C2-circuit is 1ms and the
equation for the voltage across capacitor C2 is:

V (t) = VCC(1− e−t/τ ) (4)

Rearranging to solve for t, we have:

t = −τ ln

(
1− V (t)

VCC

)
(5)

At a supply voltage of 3V, the AND gate’s VIH is 2.1V.
Substituting 3V and 2.1V for VCC and V (t), respectively,
gives t = 1.2ms. Therefore, after 1.2ms, both of the AND
gate’s inputs are high and the AND gate’s output goes high
as well, allowing the processor to exit the reset state and
begin program execution.

The output of the AND gate is also connected to the asyn-
chronous clear input of the D-type flip-flop U2. By waiting
1.2ms before asserting this line, the power is given enough
time to stabilize before the flip-flop’s state is cleared (set
low). Whenever the flip-flops’s output, Q, is low, the mul-
tiplexer/analog SPDT switch (U4), connects the processor’s
ONEWIRE signal to the DS2417’s DIO pin, allowing the
processor to communicate with the DS2417, a real-time clock
with a built-in timer. To start the grenade timer, the boot-
loader loads the value of Tfizz into the DS2417 using the
Dallas 1-wire bus ONEWIRE and enables the device. The
legal Tfizz values are: 1s, 4s, 32s, 64s, 2048s (34.13min),
4096s (68.27min), 65,536s (18.30hrs), and 131,072s (36.41hrs).

The bootloader or application code can start the grenade
timer and ensure that the no subsequent operation can alter
or disable the grenade timer, by asserting the LOCK signal
high. Doing so creates a low-to-high transition which has
the effect of clocking the positive edge-triggered flip-flop, U3.
Once clocked, the flip-flop output, Q, assumes the value of

its input, D. Since D is tied to VCC , the value of Q goes after
the first clock and remains high until it is asynchronously
cleared.

Once Q is high, the multiplexer/analog SPDT switch (U4),
disconnects or “locks out” the processor from communicat-
ing with the DS2417 and DS2433. No additional clocking
can reverse this latch-out of the processor until the next
DS2417 interrupt occurs or the processor asserts FIREN low,
both of which asynchronously clears the D flip flop, resets
the processor (if LOCK was previously asserted), and re-
turns control to the bootloader. We note that if neither the
bootloader nor the application code asserts LOCK high, the
DS2417 and DS2433 remain accessible to the processor and
can be used as a real-time clock and storage, respectively.

A second multiplexer/analog switch SPDT switch, U5, was
added to our design to compensate for the “stuttering re-
set problem” described in the XSM design [3]. This switch
implements a hardware mutex; the processor can either con-
figure the grenade timer or be reset by the grenade timer but
the processor cannot be reset by the grenade timer while the
timer is unlocked.

5.2 Network Bootloader
A grenade timer [22] periodically resets the microcontroller.
If the boot block of a microcontroller is write-protected, then
a grenade timer can be used to transfer control to a trusted
bootloader. Our recovery process is implemented in the net-
work bootloader, or simply bootloader, which is invoked im-
mediately after a node is reset. The network bootloader con-
sists of a minimal network stack, a network reprogramming
module, the grenade timer drivers, and a small application.
The bootloader is responsible for the following operations:

1. Hardware Reset: Causes the microcontroller to re-
set, the program counter to jump to the reset vector,
and bootloader execution to commence.

2. Hardware Initialization: The bootloader initializes
the radio.

3. Version Checking: Check the version of the current
application image. The current image’s version num-
ber should be stored in an area of non-volatile memory
that is protected from the application code.

4. Availability Checking: Check with neighboring nodes
for a newer version of the application image by broad-
casting a request and listening for a response.

5. Download: Initiate the downloading of a new appli-
cation image, if any, from a neighboring node. Keep
track of the application image version in a manner that
preserves authenticity.

6. Integrity Checking: Verify the integrity of a new ap-
plication image and its version number through cryp-
tographically secure techniques.

7. Programming: Move or copy the newly downloaded
application image to make it the default image.



Figure 2: Grenade timer.

8. Arm (Grenade) Timer: Enable and arm the (grenade)
timer to interrupt (reset) the processor in after some
period of time. Disable any further operations on the
(grenade) timer.

9. Load Application: Jump to the application entry
point and begin execution.

6. EVALUATION
To evaluate the feasibility of our system on mote-class de-
vices, we wrote a program packaging application in Java
and implemented or ported each of the required security
primitives to Telos rev B [2], a TinyOS supported hardware
platform. The Telos node contains a 8MHz, 16-bit MSP430
microcontroller, offers 48KB of flash memory and 10KB of
RAM, and communicates via an 802.15.4 radio operating
in the 2.4GHz ISM band and capable of transmitting at
250Kbit/s [26].

6.1 Primitives
For experimental purposes, we used publicly available code
when possible for each of our primitives and ported it to
the TinyOS environment as needed. Specifically, we exper-
imented with RSA and SHA-1 and the results are summa-
rized in 1. We do not provide computation times for the
base station since it is a PC-class device.

For RSA, we implemenged the algorithm in C code as de-
scribed in [27], including the use of Montgomery reduction
to speed modular exponentiation. Using e = 3 and a key
size of 1024 bits, a modular exponentiation takes an aver-
age of 0.7 seconds and represents the time to regenerate the
plaintext. Our implementation has a 40% higher running
time than the results reported in [27], which were based on
a highly optimized assembly-language implementation. The
code we used was optimized for 8-bit CPUs and does not
take advantage of the MSP430’s 16-bit core. We believe
comparable or better results are possible after making these
optimizations. We note a significant performance improve-
ment after incorporating Montgomery reduction – running
time for a signature verification decreased from 1.5 s to 0.7
s, RAM usage decreased from 755 bytes to 529 bytes, and
ROM usage decreased from 2.7 KB to to 1.2 KB.

Primitive Time RAM (bytes) ROM (KB)
RSA-1024 0.7 s 529 1.2

SHA-1 0.013s 95 2.3

Table 1: Summary of Primitives. Time is the time
elapsed to complete one primitive. The primitive
for RSA-1024 is a modular exponentiation with e = 3
and SHA-1 is computing a 160 bit hash with 64-byte
blocks over a stream of 64-bytes.

For SHA-1, we used publicly available code implemented
by Chuck McManis which implements the operation as de-
scribed in FIPS PUB 180-1. SHA-1 produces a 160-bit mes-
sage digest for a given data stream. The code consumes 95
bytes of RAM, 2.3 KB of ROM, and takes an average of
13 ms to hash a stream of 64 bytes using 64-byte blocks.
Once again, no optimizations were made for the MSP430,
and we believe performance could be improved if optimiza-
tions targeted to the MSP430 were implemented. However,
the current performance is sufficiently strong. While the ra-
dio can theoretically receive packets at a rate faster than
we can compute SHA-1 hashes, this effect did not surface
in practice. We may be able to use a block cipher like AES
in Davies-Meyer [28] mode in place of the SHA-1 hash to
improve performance.

6.2 Complete Operation
We implemented the system described in this paper and
demonstrated that our ideas work. To test the feasibility
of integrating our system with Deluge, we included RSA
for announcement authentication and SHA-1 for data mes-
sage authentication with the Deluge protocol. The current
prototype implementation includes support for our version
numbering scheme, program package creation, program an-
nouncement, and program dissemination as described in Sec-
tions 4.3 through 4.5. For this prototype version, we only
included single-hop support. Multi-hop support would not
only require utilizing the external flash chip on the Telos, but
any attacks on the Deluge protocol are essentially single-hop
attacks. Securing the single-hop case is sufficient for main-
taining security.



Using the prototype integration of our system with the Del-
uge protocol, the observable overhead includes the cost of
verifying an announcement (0.7 seconds), an additional 8
bytes per packet for the SHA-1 hash, and the additional
RAM and ROM consumption. As we suspected, the SHA-1
hash computation over each incoming packet did not limit
the reception rate of the radio.

6.3 Sufficiency of the Design
We show our working system satisfies the security goals out-
lined in the problem definition in Section 2. We briefly list
the goals and describe how our system satisfies each goal.

• Source authentication: Met by virtue of the RSA
digital signature.

• Integrity verification: Met by virtue of the resis-
tance of SHA-1 to pre-image attacks.2. Under our
hash chain construction, each hash is a commitment
for the next message, permitting incremental message
authentication.

• Freshness: Ensured by using monotonically increas-
ing and digitally signed version numbers.

• Compromise tolerance: No secrets are stored in a
node (we assume the source code to the bootloader
and application program are widely available) so com-
promising a node does not give an adversary any ad-
ditional information or advantage. Similarly, the base
station does not transitively delegate its trust to nodes
in the network.

• Minimal state: A server only stores its private key.

• Available: The grenade timer periodically resets the
node at which time control returns to the bootloader.
If the the boot block can be write-protected, as is the
case with the Atmel ATmega128L, then the bootloader
can be trusted and availability is enforced. If the boot
block cannot be write-protected, as is the case on the
TI MSP430, then availability cannot be guaranteed.

• Retaskable: The bootloader contains the network
programming code so if its integrity is preserved and
it eventually gains execution, then retaskability is en-
forced.

7. DISCUSSION
We considered a number of tradeoffs in the design of our sys-
tem. In this section, we discuss some of these design trade-
offs and present several observations. We begin with the
main obstacle to recoverable operation in most 8- and 16-bit
microcontrollers – the lack of protected operation. Mecha-
nisms common on 32-bit processors, like memory protection
and privileged instructions which protect the operating sys-
tem from applications and applications from each other, are
not available on most 8- and 16-bit microcontrollers like the
Atmel ATmega128L processor used in the Mica2, MicaZ,
and XSM platforms and the Texas Instruments MSP430
used in the Telos platforms. Lacking hardware protection,

2We note that the recent attacks against SHA-1 have been
collision attacks

applications can take nearly complete control over the hard-
ware, disable timers, turn off interrupts, and leave the oper-
ating system with no mechanism to preempt a misbehaving
application.

Hardware-based solutions to the problem have been sug-
gested as well. The Mica mote [1] uses a coprocessor to
reprogram the main processor, which ensures that the ap-
plication can always be replaced. The eXtreme Scale Mote
(XSM) [3] uses a grenade timer [22] to ensure that a boot-
loader eventually regains execution control. The XSM boot-
loader can detect a golden gesture – three manual resets in
quick succession – and revert to a factory image. If the
XSM’s grenade timer fires, the node invokes a special man-
agement program which waits for commands to be issued
but no automatic recovery mechanism exists.

A number of software-based techniques have been proposed
to protect systems from application software including vir-
tual machines (VMs) [15], proof-carrying code (PCC) [29],
and software fault isolation (SFI) [30]. Both VMs and PCC
incur a level of overhead that is unacceptable for our embed-
ded application. Results reported in [15] range from 33× to
no overhead in execution time for interpreted code, although
the lower end of this range only emerges when highly ex-
pressive and largely application-specific VM operations are
invoked. Results reported in [29] show that a JVM (no JIT)
incurred a 41× overhead in execution time and that PCC in-
curred an overhead ranging between 3× and 8× of raw code
size. All of these techniques have drawbacks or caveats,
which makes them less then suitable for our problem. None
of these approaches completely obviate the need to change
program binaries and they have their own problems as well.

Our work has led us to conclude that microcontrollers des-
tined for a networked world will require greater hardware
protection than today’s devices offer. Finding the right bal-
ance between no protection and fully protected modes of
operation remains an open question. We offer the following
ideas for consideration.

Protected Trusted Computing Base: Ensuring that
the trusted computing base, minimally consisting of a net-
work bootloader and public keys for authentication, can-
not be altered by the application software appears to be
the obvious first step. Many microcontrollers, like the At-
mel ATmega128L, provide protected pages in onboard flash
memory, specifically the bootloader section. However, many
other microcontrollers, like the Texas Instruments MSP430
do not. Additionally, any non-volatile state of the trusted
computing base should be protected from application code.
We suggest that manufacturers more broadly support pro-
tected pages in flash memory and a mechanism similar to
base+offset memory protection.

Protected Timer and Interrupt: The purpose of the
grenade timer is to provide a periodic and guaranteed inter-
rupt. We observe that the same thing could be accomplished
with a protected timer in the microcontroller. A timer that
can only be started, stopped, and altered from code execut-
ing in the protected block, coupled with a similarly protected
interrupt that would vector to operating system code, could



replace the grenade timer and eliminate the unpleasant side-
effect of resetting a device in the process.

Non-maskable Interrupt: Atmel could have provided a
non-maskable external interrupt (i.e. an interrupt that can-
not be disabled at all). A non-maskable interrupt, when
coupled with the bootloader protection mechanisms and ei-
ther a protected internal timer or an external source of in-
terrupts, could provide a suitable quasi-protected mode. We
do recognize that in certain embedded applications, all in-
terrupts are legitimately disabled during execution of the
interrupt handler for a variety of quite valid reasons. How-
ever, we argue that it is reasonable to assume that an up-
per bound exists on the amount of time that any interrupt
handler, or atomic code block, is executing within a criti-
cal section. If this upper bound can be expressed in clock
cycles, we envision that a write-once register could be used
to store the maximum amount of time allowed between a
non-maskable interrupt being triggered and either enabling
interrupt or execution control being forcibly transferred to
the non-maskable interrupt handler. Perhaps such features,
which can be found in some processors today, will become
more common in future microcontrollers.

Disabling Jumps into the TCB: If application code were
to allowed to arbitrarily jump into the trusted code, it is
conceivable that such jumps could bypass any safety checks
and modify the protected flash pages, timers, or interrupts.
To guard against such threats, the hardware might disable
jumps or calls into the protected memory pages. System
calls might be possible through software traps which safely
transfer control to a well-known protected interrupt han-
dlers.

A serious drawback to our approach is that when the grenade
timer fires, the node is reset and all application context is
lost. While this behavior might be preferred for a Byzan-
tine application, it is highly disruptive to the normal oper-
ation of an application. Since it takes time and energy to
build neighbor tables, estimate link qualities, and synchro-
nize clocks, this kind of state is lost during an unexpected
reset. One way to mitigate this problem is to have the ap-
plication preemptively fire the grenade timer and reset the
timeout period. The application can choose a time that is
convenient for it – perhaps when it expects to be asleep. If
there is non-volatile storage available to the application, as
is the case on Mica, Mica2, MicaZ, and Telos motes, then
the application save its state to durable storage before firing
the grenade timer. An alternate approach might be to insert
a delay line on the grenade timer RESETN signal and route
the pre-delay signal to an interrupt. This would serve the
same functionality as the UNIX shutdown command.

The choice of a digital signature algorithm and sizes was
an area we explored. We considered ECC based public key
operations but had difficulty getting the performance of the
ECC implementation presented in [31] to match the perfor-
mance claimed in [27]. We suspect this is due to our lim-
ited experience and interest in optimizing code for 8- and
16-bit microcontrollers. Furthermore, the ECC implemen-
tation presented in [27] was not available to us. We were
originally interested in ECC because of its small key size
and nearly equal encryption and decryption speeds. In the

final analysis, we chose RSA digitial signatures because we
has access to a prototype implementation [24] and because of
the asymmetry in the signature and verification operations
which mapped well to the PC-class and mote-class devices
which perform these operations, respectively.

We chose a broadcast authentication scheme which requires
(nearly) in-order message delivery because it provides the
minimum number of hashes required to authenticate every
message incrementally. We considered several other authen-
ticated broadcast protocols [32, 33, 34, 35] but none fit the
particulars of the program dissemination problem. We chose
to verify every message upon arrival and increased the de-
fault message size from 36 bytes to 104 bytes to reduce the
overhead of a hash in every packet.

In Section 4.5.2, we discussed that a receive-verify-store se-
quence is preferable due to the high cost of flash storage op-
erations. However, another interesting question is whether
it is necessary to verify each packet as the are received. With
the current reverse hash chain mechanism, data block n− 1
must be received in order to verify data block n. Increasing
the size of the data block and partitioning it across multi-
ple packets is attractive since the cost of including the hash
value is amortized over the entire data block. However, the
drawback is that the entire data block must be discarded
when verification fails. Thus, the bandwidth an attacker
must expend to cause a failed verification is inversely pro-
portional with the size of the data block.

8. CONCLUSION
We present and evaluate a system for securing network pro-
gramming and recovering from Byzantine applications in
resource-constrained wireless sensor networks. Our work
demonstrates the feasibility of adding public key-based pro-
gram source authentication to existing network program-
ming services. In particular, we demonstrate that it is possi-
ble to verify a digital signature in 0.7 s and verify the authen-
ticity and integrity of messages used to wirelessly transfer a
program at wire speeds. Our secure program dissemination
protocol can be readily generalized to solve the problem of
secure, reliable, bulk data dissemination in sensor networks.

Network programming is essential for large-scale sensor net-
works which are often embedded in their operating environ-
ments, distributed over wide geographic areas, or located in
remote and largely inaccessible regions. In addition, net-
work programming provides great convenience and flexibil-
ity by making reprogramming simple. However, this sim-
plicity also raises multiple security issues. Among the most
damaging is that a single malicious or faulty node can change
the code of the entire network, either intentionally or acci-
dentally.

The usefulness of multi-hop wireless reprogramming is unde-
niable but the risks are real. We have experienced firsthand
many times that forgetting to “wire-in” the reprogramming
module almost instantly turns a wirelessly reprogrammable
network into one that reprogrammable only manually. We
are aware of a situation in which one large scale Deluge-
enabled application was poisoned by an incompatible pro-
gram from another large scale application. Apparently, a
few nodes from the first network wirelessly and unsafely co-



mingled with some nodes from the second network in a ho-
tel lobby while being transported by the two project teams.
The infected nodes, when subsequently repatriated, infected
the remaining nodes in their network. Experiences like this
will be repeated if we fail to secure our sensor networks.

As sensor network research progresses, we are witnessing
the emergence of testbeds consisting of tens, hundreds, or
thousands of nodes [36, 37, 3]. Since the purpose of a testbed
is to develop, test, and characterize experimental platforms
and algorithms, it is not only possible but likely that latent
bugs may exist, that algorithms may fail at scale, or that
emergent pathological behavior may appear and lock up the
network. As testbeds become untethered, the risks becomes
more severe. These new realities underscore the need for a
recoverable operation in large-scale networks.

We have begun integrating the security aspects of our pro-
posal into Deluge, the standard TinyOS network program-
ming component, to create a “Secure Deluge” variant. Our
goal for the integration is to evaluate the performance and
overhead of the security primitives in side-by-side multi-hop
programming experiments. In particular, we are interested
in total overhead, which includes latency, bandwidth, and
energy. We are building a testbed on the order of 100 nodes
to conduct such experiments. These nodes will include the
grenade timer and lockable storage hardware.
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