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A Scalable Real-Time Multiple-Target Tracking

Algorithm for Sensor Networks

Songhwai Oh, Luca Schenato, Phoebus Chen, and Shankar Sastry

Abstract

Multiple-target tracking is a representative real-time application of sensor networks as it exhibits
different aspects of sensor networks such as event detection, sensor information fusion, multi-hop
communication, sensor management and real-time decision making. The task of tracking multiple objects
in a sensor network is challenging due to constraints on a sensor node such as short communication
and sensing ranges, a limited amount of memory and limited computational power. In addition, since a
sensor network surveillance system needs to operate autonomously without human operators, it requires
an autonomous real-time tracking algorithm which can track an unknown number of targets. In this
paper, we develop a scalable real-time multiple-target tracking algorithm that is autonomous and robust
against transmission failures, communication delays and sensor localization error. In particular, there is
no performance loss up to the average localization error of .7 times the separation between sensors and

the algorithm tolerates up to 50% lost-to-total packet ratio and 90% delayed-to-total packet ratio.

I. INTRODUCTION

In wireless ad-hoc sensor networks, many inexpensive and small sensor-rich devices are
deployed to monitor and control our environment [7], [9]. Each device, called a sensor node,
is capable of sensing, computation and communication. Sensor nodes form a wireless ad-

hoc network for communication. The limited supply of power and other constraints, such as
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manufacturing costs and limited package sizes, limit the capabilities of each sensor node. For
example, a typical sensor node has short communication and sensing ranges, a limited amount
of memory and limited computational power. However, the abundant number of spatially spread
sensors will enable us to monitor changes in our environment accurately despite the inaccuracy
of each sensor node.

Multiple-target tracking is a representative real-time application of sensor networks as it
exhibits different aspects of sensor networks such as event detection, sensor information fusion,
communication, sensor management, and real-time decision making. The applications of tracking
using sensor networks include surveillance, search and rescue, disaster response system, pursuit
evasion games [25], distributed control [27], spatial-temporal data collection, and other location-
based services [10]. However, the task of tracking multiple objects in a sensor network is
challenging due to the following issues. Each sensor node has a limited supply of power,
leading to low detection probability and high false alarm rate. The presence of false alarms
and missing observations complicate the problems of track initiation and termination. These
important issues are ignored by many tracking algorithm designed for sensor networks. For
example, when the false alarm rate is high, a naive track initiation algorithm will overflow the
network with spurious tracks. Hence, an algorithm for sensor networks must be robust against the
low detection probability and high false alarm rate. To conserve power and reduce interference,
multi-hop routing is used in sensor networks. In many cases, the communication links are not
reliable, causing transmission failures. In addition, due to the low communication bandwidth
and a limited amount of memory, communication delays can occur frequently. Moreover, the
localization of sensor nodes in an ad-hoc wireless sensor network without expensive hardware
such as the global positioning system (GPS) is a challenging problem [28). Since the position
of a target is reported with respect to the location of the reporting sensor, the algorithm must be
robust against the sensor localization error. It is well known that communication is costlier than
computation in sensor networks in terms of power usage [8]. Hence, it is essential to fuse local
observations before the transmission. However, since the data association problem of multiple-
target tracking is NP-hard [22], we cannot expect to solve it with only local information. But
at the same time we cannot afford to have a centralized algorithm since such a solution is not
scalable. Lastly, in sensor networks, we seek for an autonomous tracking algorithm which does

not require a continuous monitoring by a human operator.
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In summary, we need a real-time tracking algorithm that is robust against the low detection
probability and high false alarm rates; capable of initiating and terminating tracks; uses less
memory; combines local information to reduce the communication load; and is scalable. Also it
must be robust against transmission failures, communication delays and sensor localization error.
But at the same time we want an algorithm that provides a good solution which approaches the
optimum given enough computation time.

In [20], Markov chain Monte Carlo data association (MCMCDA) is presented. MCMCDA
can track an unknown number of targets in real-time and is an approximation to the optimal
Bayesian filter. It has been shown that MCMCDA is computationally efficient compared to the
multiple hypothesis tracker (MHT) [23] and outperforms MHT under extreme conditions, such
as a large number of targets in a dense environment, low detection probabilities, and high false
alarm rates [20]. MCMCDA is suitable for sensor networks since it can autonomously initiate and
terminate tracks. Since transmission failure is another form of a missing observation, MCMCDA
is robust against transmission failures. MCMCDA performs data association based on both
current and past observations, so delayed observations, i.e., out-of-sequence measurements, can
be easily combined with previously received observations to improve the accuracy of estimates.
Furthermore, MCMCDA requires less memory as it maintains only the curmrent hypothesis and
the hypothesis with the highest posterior. It does not require the enumeration of all or some
of hypotheses as in [23], [14]. In this paper, we extend the MCMCDA algorithm to sensor
networks in a hierarchical manner so that the algorithm becomes scalable. To our knowledge,
the algorithm presented in this paper is the first general real-time scalable multiple-target tracking
algorithm for sensor networks which can systematically track an unknown number of targets in
the presence of false alarms and missing observations and is robust against transmission failures,
communication delays and sensor localization error.

We consider a simple shortest-path routing scheme on a sensor network. The transmission
failures and communication delays of the network are characterized probabilistically. We assume
the availability of a small number of special nodes, supernodes, that are more capable than regular
nodes in terms of computational power and communication range. Each node is assigned to its
nearest supernode and nodes are grouped by supernodes. We call the group of sensor nodes
formed around a supernode as a “tracking group”. When a node detects a possible target, it

communicates with its neighbors and observations from the neighboring sensors are fused and
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sent to its supernode. Each supernode receives the fused observations from its tracking group
and executes the tracking algorithm. Each supernode communicates with neighboring supernodes
when a target moves away from its range. Lastly, the tracks estimated by supernodes are combined
hierarchically. Although a specific sensor network model is used for the performance evaluation,
the algorithm is applicable for different routing algorithms and sensor models, e.g., distributed
air traffic control [19].

The remainder of this paper is structured as follows. In Section III, the multiple-target tracking
problem and its probabilistic model are described. The MCMCDA algorithm for multiple-target
tracking is presented in Section IV. The sensor network model is described in Section V and the
hierarchical MCMCDA method is given in Section VI. The simulation and experiment results

are shown in Section VII and VIII.

II. RELATED WORK

The general-purpose multiple-target tracking algorithms such as the joint probabilistic data
association filter (JPDAF) [1] and multiple hypothesis tracker (MHT) [23] are robust against the
low detection probability and high false alarm rate. But they are not suitable for sensor networks
since track initiation and termination is difficult with JPDAF and both JPDAF and MHT require
large memory and computation cycles. Since MHT can initiate and terminate tracks, the tracking
task can be easily distributed in a network of sensors. In [5], a distributed tracking algorithm
based on MHT is developed for multiple sensors. But the approach is not suitable for sensor
networks since it demands large computational power and a large amount of memory on each
Sensor.

In [15], the authors propose to use a classification algorithm to disambiguate closely located
targets. But signals received from targets are correlated and we cannot recover the uncorrelated
signals in all cases. Since we do not know in advance the number of targets around each sensor,
the problem is ill-posed and very challenging even for a high-end computer.

In [17], distributed track initiation and maintenance methods are described. By electing a
leader among the sensors by which a target is detected, unnecessary communication is reduced
while tracking targets using the nearest neighbor method. But considering the complexity of the
data association problem, the approach will suffer from incorrect associations when there are

many targets crossing or moving close to each other. In addition, when the false alarm rate is
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high, the proposed approach will overflow the network with spurious tracks and it is unclear
how the missing observations are handled.

Recently, some multiple-target tracking algorithms specifically designed for sensor networks
have been proposed to solve the identity management problem [26], [16]. They assume the
availability of a classification algorithm as in [15] but the disambiguation is delayed until targets
are sufficiently separated. As assumed in the simulations of [16], when the targets are of different
classes, a target can be classified by the signature of its class. But, if all targets are of the
same class, a target cannot be easily classified by its signature and, in the absence of reliable
classification information, the proposed methods will behave like the naive neafést neighbor
tracker. Our algorithm can complement the identity management algorithms when tracking targets
within the same class or when reliable classification information is not available.

A distributed particle filtering algorithm for sensor networks is presented in [6] and used to
track a single maneuvering target, assuming the availability of supernodes and a hierarchical
topology similar to ours. The paper assumes the availability of sensors which can measure an
angle and distance to a target. But sensors with such capabilities are costly and they are not
suitable for a large sensor network with inexpensive sensor nodes. The most widely used and

realistic sensor model is based on the signal strength and this is the model we use in this paper.

1II. MULTIPLE-TARGET TRACKING
A. Problem Formulation

Let T € Z* be the duration of surveillance. Let K be the unknown number of objects moving
around the surveillance region R for some duration [t*,¢¥] C [1,T] fork=1,...,K. Let V be
the volume of R. Each object arises at a random position in R at t¥, moves independently around
R until t¥ and disappears. At each time, an existing target persists with probability 1 — p, and
disppears with probability p,. The number of objects arising at each time over R has a Poisson
distribution with a parameter A,V where ), is the birth rate of new objects per unit time, per
unit volume. The initial position of a new object is uniformly distributed over R.

Let F* : R"= — R™= be the discrete-time dynamics of the object k, where n; is the dimension
of the state variable, and let :zf € R"™ be the state of the object k at time t for k =1,..., K.

The object k moves according to

z¥, = F*(zF) + uf, fort =1tF,... tF =1, 1)
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where wf € R™= are white noise processes. The white noise process is included to model non-
rectilinear motions of targets. The noisy observation of the state of the object is measured with a
detection probability pg which is less than unity. There are also false alarms and the number of
false alarms has a Poisson distribution with a parameter AV where ) is the false alarm rate per
unit time, per unit volume. Let n, be the number of observations at time ¢, including both noisy
observations and false alarms. Let y;’ € R™ be the j-th observation at time ¢ for j =1,...,n,,
where n, is the dimension of each observation vector. Each object generates a unique observation
at each sampling time if it is detected. Let HY : R"= — R™ be the observation model. Then the

observations are generated as follows:

. HI(z¥) + o/ if j-th observation is from z*
i = (z) +v if v 1S lrom T; Q)

U otherwise,

where v} € R™ are white noise processes and u; ~ Unif(R) is a random process for false
alarms. Notice that, with probability 1 — pq4, the object is not detected and we call this a missing
observation. We assume that targets are indistinguishable in this paper. But, if observations
include target type or attribute information, the state variable can be extended to include target
type information. The multiple-target tracking problem is to estimate K from measurements as
well as tf, tf and ¥ for tf <t <tfand k=1,... K. '

B. A Solution to the Multiple-Target Tracking Problem

Lety,={y :j=1,...,n} and Y = {5, : 1 < ¢t < T}. Let Q2 be a collection of partitions
of Y such that, for w € ,

D w={mn,7m,...,7x};

2) UL, =Y and 7N 7; =0 for i # j;

3) 7o is a set of false alarms;

4) Nyl <lfork=1,...,Kandt=1,...,T; and

5) |n|=22fork=1,...,K.
Here, K is the number of tracks for the given partition w € Q and |7¢| denotes the cardinality
of the set 7,. We call 7, a track when there is no confusion although the actual track is the
set of estimated states from the observations 7. However, we assume there is a deterministic

function that returns a set of estimated states given a set of observations, so no distinction is
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Fig. 1. (a) An example of observations Y (each circle represents an observation and numbers represent observation times). (b)

An example of a partition w of Y

required. The fourth requirement says that a track can have at most one observation at each time,
but, in the case of multiple sensors with overlapping sensing regions, we can easily relax this
requirement to allow multiple observations per track. A track is assumed to contain at least two
observations since we cannot distinguish a track with a single observation from a false alarm.
An example of a partition is shown in Figure 1.

Let e; be the number of targets from time ¢ — 1 and a; be the number of new targets at time
t. Let 2, be the number of targets terminated at time ¢ and ¢; = e; — 2; be the number of targets
from time ¢ — 1 that have not terminated at time . Let df\ be the number of detections at time
t and u, = ¢ + a; — d; be the number of undetected targets. Finally, let f; = n; — d; be the

number of false alarms. It can be shown that the posterior of w is:
P(w]Y) oc Ty p2(1 = po)omit (1 — pa)“ N\ P(Y |w) ©)

where P(Y|w) is the likelihood of observations Y given w, which can be computed based
on the chosen dynamic and measurement models. One solution to the multiple-target tracking
problem is to find a partition of measurements such that P(w|Y’) is maximized, i.e., a maximum

a posteriori (MAP) estimate.

IV. MARKOV CHAIN MONTE CARLO DATA ASSOCIATION ALGORITHM

In this section, we develop an MCMC sampler to solve the multiple-target tracking prob-
lem. MCMC-based algorithms play a significant role in many fields such as physics, statistics,
economics, and engineering [2]). In some cases, MCMC is the only known general algorithm

that finds a good approximate solution to a complex problem in polynomial time [13]. MCMC
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techniques have been applied to complex probability distribution integration problems, counting
problems such as #P-complete problems, and combinatorial optimization problems [13], [2).

MCMC is a general method to generate samples from a distribution m by constructing a
Markov chain M whose states are w and whose stationary distribution is (w). If we are at state
w € 2, we propose w’ € ) following the proposal distribution g(w,w’). The move is accepted
with an acceptance probability A(w,w') where

A(w,«) = min (1, *’;((‘L"u'))g((:'w“,’)) ) , @)

otherwise the sampler stays at w, so that the detailed balance is satisfied. If we make sure that
M is irreducible and aperiodic, then M converges to its stationary distribution by the ergodic
theorem [24].

Algorithm 1 MCMCDA
Input: Y, e, winit

Output: &

W =W  Winit

for n =1 to ny, do
propose w' based on w (see [20])
sample U from Unif[0, 1]
weu if U< Alw,w')
w—w if p(w|Y)/p(@]Y) > 1

end for

The MCMC data association (MCMCDA) algorithm is described in Algorithm 1. MCMCDA
is an MCMC algorithm whose state space is { described in Section III-B and whose stationary
distribution is the posterior (3). The proposal distribution for MCMCDA consists of five types
of moves. They are (1) birth/death move pair; (2) splitmerge move pair; (3) extension/reduction
move pair; (4) track update move; and (5) track switch move. The MCMCDA moves are
graphically illustrated in Figure 2. For a detailed description of each move, see [20]. The inputs
for MCMCDA are the set of all observations Y, the number of samples 7y, and the initial state
winit. The acceptance probability A(w,w’) is defined in (4) where m(w) = P(w|Y) from (3). In
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Fig. 2. Graphical illustration of MCMCDA moves (associations are indicated by dotted lines and hollow circles are false

alarms)

Algorithm 1, we use MCMC to find a solution to a combinatorial optimization problem. So it
can be considered as simulated annealing at a constant temperature.

In addition, the memory requirement of the algorithm is at its bare minimum. Instead of
keeping all {w(n)}™, we simply keep the partition with the maximum posterior, &. Notice
that, in MCMC, the construction of «’ is done on the fly according to the proposal distribution
q(w,w’) and there is no need to store previously visited states.

The Markov chain designed by Algorithm 1 is irreducible and aperiodic [20]. In addition,
the transitions described in Algorithm 1 satisfy the detailed balance condition since it uses
the Metropolis-Hastings kernel (4). Hence, by the ergodic theorem, the chain converges to its
stationary distribution [24].

V. SENSOR NETWORK MODEL

In this section, we describe the sensor network and sensor model used in simulations in
Section VII. Let N, be the number of sensor nodes, including both supernodes and regular
nodes, deployed over the surveillance region R C R?. We assume that each supernode can
communicate with its neighboring supernodes. Let s; € R be the location of the i-th sensor
node and let S = {s; : 1 < i < N;}. Let G = (S, E) be a communication graph such that
(si,s;) € E if and only if node i can communicate with node j. Let Nis < N; be the number
of supernodes and let s5 € S be the position of the j-th supernode, for j = 1,...,Ng. Let
g:{1,...,N;} = {1,..., Ny} be the assignment of each sensor to its nearest supernode such

that g(i) = j if ||s; — s3|| = ming=y, . ngs [lsi — sill- For a node 4, if g(z) = j, the shortest path
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from s; to s} in G is denoted by sp(). For each supernode j, its tracking group contains a set
of nodes {s; € S : g(i) = j}.
Let R; € R be the sensing range. If there is an object at z € R, a sensor can detect the

presence of the object. Each sensor records the sensor’s signal strength,

2= 1+ [[si—z[* +uf, if ||si -z < Rs 5

w if |s; — z|| > Rs,
where a, B and vy are constants specific to the sensor type, and we assume that 2; are normalized
such that w; has the standard Gaussian distribution. This signal-strength based sensor model (5)
is general for sensors available in sensor networks, such as acoustic and magnetic sensors, and
has been used frequently [16], [17], [18]. For each i, if z; > 5, where 7 is a threshold set
for appropriate values of detection and false-positive probabilities, the node transmits z; to its
neighboring nodes, which are at most 2R; away from s;, and listens to incoming messages from
its 2R; neighborhood. Note that this approach is similar to the leader election scheme in [17]
and we assume that the transmission range of each node is larger than 2R;. For the node i, if
z; is the larger than all incoming messages, 2;,,...,2;,_,, and z;, = z;, then the position of an

object is estimated as
k . .
~ Zj:l z‘jstj
2i = ~E

The estimate Z; corresponds to the computation of a center of mass of the sensing nodes weighed

©)

by measured signal strengths. The node ¢ transmits Z; to the supernode g(z) via the shortest path
sp(3). If z; is not the largest compared to the incoming messages, the node i does nothing and
goes back to the sensing mode. Although each sensor cannot give an accurate estimate of object’s
position, as more sensors collaborate, the accuracy of estimates improves as shown in Figure 3.

A transmission along the edge (s;, s;) fails independently with probability p, and the message
never reaches a supernode. Notice that the transmission failure includes failures from retrans-
missions. We can consider transmission failure as another form of a missing observation. If k is
the number of hops required to relay data from a sensor node to its supernode, the probability of
successful transmission decays exponentially as k increases. To overcome this problem, we use
k independent paths to relay data if the reporting sensor node is & hops away from its supernode.
The probability of successful communication p,s from the reporting node i to its supernode g(%)

can be computed as pi(pe, k) =1— (1— (1 - p,e)k)k, where k = |sp(t)|. See Figure 6 (left)
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Fig. 3. Single target position estimation error. See Section VII for the sensor network setup used in simulations (Monte Carlo

simulation of 1000 samples, unity corresponds to the separation between sensors)

for an example of the ratio between the number of lost packets and the number of total packets
as a function of the transmission failure rate p.

We assume each node has the same probability pg. of delaying a message. If d; is the number
of (additional) delays on a message originating from the sensor 4, i.e., the number of sampling
intervals elapsed since the required arrival time at the supernode g(¢), d; is distributed as

plds = d) = (Isp(i)l ; d— 1) (1 = pee) PO (pge)?. )

We are modeling the number of (additional) delays by the negative binomial distribution. A
negative binomial random variable represents the number of failures before reaching the fixed
number of successes from Bernoulli trials. In our case, it is the number of delays before |sp(7)|
successful delay-less transmissions. See Figure 6 (right) for an example of the ratio between the
number of delayed packets and the number of total packets as a function of the communication
delay rate pge.

If the network is heavily loaded, the independence assumptions on transmission failure and
communication delay may not hold. However, the model is realistic under the moderate condi-

tions and we have chosen it for its simplicity.

VI. HIERARCHICAL MCMCDA
We use the online MCMCDA algorithm with a sliding window of size ws [20]. Each supernode
maintains a set of observations Y = {3 : 1 < j < ny,teur — ws + 1 < t < tour}, Where toyy is

the current time. Each y{ is a fused observation Z; from some sensor i. At time fqr + 1, the
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observations at time £q,r—w;s+1 are removed from Y and a new set of observations is appended to
Y. Any delayed observations are appended to appropriate slots. Then each supernode initializes
the Markov chain with the previously estimated tracks and executes Algorithm 1 on Y. Once
tracks are found, the next state of each track is predicted. If the predicted next state belongs
to the surveillance area of another supernode, track information is passed to the corresponding
supernode. The newly received tracks are incorporated into the initial state of MCMCDA for
the next time step.

Since each supernode maintains its own set of tracks, there can be multiple tracks from a
single object maintained by different supernodes. To make the algorithm fully hierarchical, we
do track-level data association to combine tracks from different supernodes. Let w; be the set
of tracks maintained by supernode j € {1,...,Ny}. Let Y = {n(t) €w; : 1 <t < T,1 <
i < |wj],1 £ j < N} be the combined observations only from the established tracks. We form
a new set of tracks win; from {r; € w; : 1 < i < lwjl,1 < j < N} while making sure that
constraints defined in Section III-B are satisfied. Then we run Algorithm 1 on this combined
observation set Y; with the initial state wiy;. An example in which the track-level data association
step corrects mistakes made by supernodes due to missing observations at the tracking group

boundaries is shown in [21].

VII. SIMULATION RESULTS

For simulations below, we consider the surveillance over a rectangular region on a plane,
R = [0,100]. The state vector is = [z1,Z3, %1, 2,]” where (z,,z,) is a position in R along
the usual z and y axes and (,%;) is a velocity vector. The linear dynamic and measurement

models are used
Ters = AsTi + Gswy ®)
v = Czi+v,

where § is a sampling interval, w; and v; are white Gaussian noises with zero mean and covariance

Q = diag(.15%,.15?) and R (set according to Figure 3), respectively, and

_ - - - - - T
10460 £ 0
01036 0 £

As = Gs = 2 C =
0010 § 0
0001 [ 0 46 | ] |
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We assume a 100 x 100 sensor grid, in which the separation between sensors is normalized to 1. So
the unit length in simulation is the length of the sensor separation. In all simulations, g, = 1000,
and ws = 10. For the sensor model, we use @ =2, vy =1, n =2, and 3 = 3(1 + YRY).

Since the number of targets K is not fixed, it is difficult to measure the performance of
an algorithm using a standard criterion such as the mean square error. Hence, we use two
separate metrics to measure performance: the estimation error in the number of targets ex and
the estimation error in position ex. Let K; be the number of targets at time ¢ and K; be the

estimated number of targets at time ¢{. We define ex as

1 .
€K='—ZT:ZIKt—Kt|. (9)

The computation of €x is done when it makes sense. At any ¢, there can be at most M; =
min(K;, K;) common tracks. We find M, matches between true tracks and estimated tracks
based on positions at ¢ — 1,¢,¢ + 1. For each match 3, let z; (i) and x.(7) be the position of the

true track and the estimated track at ¢, respectively. We define e¢x as
T M

e = let > lla(@) — =3 @) (10)

t=1 i=1

Both ex and ex are normalized with respect to the number of targets for easier comparison.

We first evaluate the effect of the sensing range and empirically find that there is an optimal
value at which the estimation error is minimized. Then we illustrate the robustness of our
algorithm against sensor localization error, transmission failures and communication delays. We
then give an example of surveillance with sensor networks and demonstrate how the hierarchical
MCMCDA algorithm works.

A. Sensing Range

When localizing a single target, we can minimize the localization error by allowing more
sensors to collaborate, which is equivalent to increasing R; as shown in Figure 3. But when
there is more than one target, this is no longer true, since observations from different targets
can collide, giving missing observations and observations away from target positions. Figure 4
shows the estimation errors ex and ex when 10 targets appear and disappear at random times and
T = 50. For slow-speed vehicles, |7,|, |Z2| € [0, 1]; |£1], |Z2] € [1,2] for medium-speed vehicles;

and ||, |2,| € [2,5] for high-speed vehicles. For each vehicle type, five different scenarios are
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separation between sensors)

used. When R; = .5, the sensors do not completely cover the surveillance region R and do not
detect targets at all times, hence the estimation error is higher. But as we increase R; beyond
1.0, estimation errors increase, since there are more collisions among observations of different
targets. The estimation errors are low for high-speed vehicles since it is easier to disambiguate
crossing targets. From Figure 4, we find that R; = 1.5 is a good range for all types of vehicles
and it is used in simulations below. Notice that when R, = 1.5, for each sensor s;, there are
28 neighboring sensors which are at most 2R, away from s;. We can also interpret this result
in terms of sensor density for a fixed value of R;. Hence, once the surveillance region is fully

covered by sensors, a further increase in density does not improve the estimation error.

B. Sensor Localization Error

The localization of sensor nodes in an ad-hoc wireless sensor network, without expensive
hardware such as the global positioning system (GPS), is a challenging problem [28]. Hence, an
algorithm which utilizes sensor positions needs to be robust against the sensor localization error.
Suppose that the true position of sensor node i is s} and s; = s} + w}, where w} are Gaussian
noises with zero mean and covariance & = diag(o?, 02). Figure 5 shows the estimation errors
from tracking 10 targets as functions of the sensor localization error o. It shows that the algorithm
is robust against the sensor localization error and, for ¢ < .5, the algorithm performs as if there
is no sensor localization error. This is remarkable since o < .5 corresponds to the case in which
the average localization error is .707 times the separation between sensors. Notice that ex is
always under .18, so the algorithm finds most tracks for all o. But ex gets larger at high o, since

the target position estimation was based on incorrect node positions. Considering the fact that
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ex is computed from the norm of a vector in R?, ex is mostly due to the sensor localization

CITOr.

C. Transmission Failures

To assess the effects of transmission failures alone, we assume that there are no delayed
observations, no false alarms, and no missing detections. A single supernode is placed at the
center. As mentioned earlier, transmission failures are missing observations and Figure 6 (left)
shows the ratio between the number of lost packets and the number of total packets as a function
of the transmission failure rate p,. As p, increases, we lose more packets and, at p,e =~ .9, we lose
all packets. Figure 7 shows the estimation errors and the algorithm performs well for p, < .4.
The estimation error ex is low at high p, since the most of packets are lost at high p,., making
the data association problem easier. Notice that when p, = .4 more than 50% of packets are
lost. It shows that our algorithm is very robust against transmission failures. Hence, for given
Pre» We can find the maximum radius ks, of a tracking group, measured by the number of hops
from a supernode, such that p(Pie, kmax) = .5, sustaining the performance of the algorithm.
For example, if pe = .1, kmax = 38, i.e., the most distant node can be 38 hops away from a
supernode. But one must consider the communication delays which increases with the number

of hops.

D. Communication Delays

As in the previous section, we assume that there are no transmission failures, no false alarms,

and no missing observations. Figure 6 (right) shows the ratio between the number of delayed
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packets and the number of total packets as a function of the communication delay rate pg. As
Pae increases to 1, all packets are delayed. Since w; = 10, we do not receive all the delayed
packets and the ratio between the number of delayed packets that are eventually received and
the number of packets is shown in a dotted line in Figure 6 (right). The estimations errors are
shown in Figure 8. It shows a good performance for pg. < .6. At pge = .6, 90% of packets are
delayed and 72% of packets have delays less than wy.

E. An Example of Surveillance with Sensor Networks

In this section, we give an example of surveillance with sensor networks. The surveillance
region R is divided into four quadrants and sensors in each quadrant form a tracking group,
where a supernode is placed at the center of each quadrant. The scenario is shown in Figure 9
(left). We used p, = .3, pge = .3, and 1 = 2. The surveillance duration is increased to 7" = 100.
There were a total of 1174 observations and 603 observations were false alarms. A total of 319

packets out of 1174 packets were lost due to transmission failures and 449 packets out of 855
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received packets were delayed. The tracks estimated by the algorithm are shown in Figure 9
(right). The algorithm is written in C++ and MATLAB and run on PC with a 2.6-GHz Intel

Pentium 4 processor. It takes less than 0.06 seconds per supernode, per simulation time step.

VIII. EXPERIMENTS

As a proof of concept, we implemented a scaled down tracking scenario on a 9-by-5 sensor
network testbed (see Figure 10). The tracking scenario was that of two crossing targets moving
at constant speed. Due to the small physical size of the network, there is a single supernode
and hence no track-level data association. Also, to retain enough distinct data points to form
meaningful tracks, we did not aggregate sensor readings as in Eqn. (6).

The sensor node platform used for our experiment was the mica2dot [4], an embedded, low-
power, wireless platform running TinyOS [11] which had a 4 MHz ATMegal28 processor with 4
kB of RAM and 128 kB of program memory, and a CC1000 radio that provided up to 38.4 kbps
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Fig. 10. (left) A mica2dot sensor node (attached to an eMote). (right) The sensor network testbed used in experiments

transmission rate. Each node was equipped with a Honeywell HMC1002 2-axis magnetometer
to sense the moving targets. See Figure 10 (left). Our moving targets were modified RC-cars
called COTSBOTs [3], which had a 1 inch (2.54 cm) diameter, 0.125 inch (3.175 mm) thick
neodymium magnet strapped to the top of the car.

The sensor nodes trigger a detection event when

1 t
W Z V(@ — @i P + (5 — pia)? >, (11)

i=t—W+1

where ¢ is the current detection time, z; and y; are the x and y axis magnetometer readings,
and W is the window size. We chose this detection function because of its low computation
requirement and robust performance, despite a tendency for the bias to drift on the magnetometers
(see [12] for more details). We used W =5 and 1 = 80 in our experiments.

We used the Minimum Transmission routing protocol [29] to route the sensor readings back to
the supernode for calculations. This algorithm has better end-to-end reliability than shortest path
routing, ensuring fewer packets are dropped from transmission errors. We performed multiple
experiments with different target trajectories and velocities, all with comparable performance.
The result from one of these experiments is is shown in Figure 11. The experiments showed

that the algorithm performed well in the presence of false alarms and missing observations.

IX. CONCLUSIONS

In this paper, a scalable hierarchical multiple-target tracking algorithm for sensor networks
is presented. The algorithm is based on the efficient MCMCDA algorithm and it is suitable

for autonomous real-time surveillance in sensor networks. This new multiple-target tracking
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Fig. 11. (left) Trajectories of targets from the experiment. (right) Estimated tracks from the algorithm with observations (circles)

algorithm can initiate and terminate tracks and requires a small amount of memory. The task
of tracking is done hierarchically by forming a tracking group around a supernode and later
combining tracks from different supernodes. In order to reduce the communication overhead,
observations are first fused locally and then transmitted to its supernode. The algorithm is robust
against sensor localization error and there is no performance loss up to the average localization
error of .7 times the separation between sensors. The algorithm is also robust against transmission
failures and communication delays. In particular, the algorithm tolerates up to 50% lost-to-total
packet ratio and 90% delayed-to-total packet ratio. The extensive simulation and experimental
results show that the algorithm is well suited for sensor networks where transmission failures

and communication delays are frequent.
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